
Editors 

Deog Ki Hong 

Chang-Hwan Lee 

Hvun Kvu Lee 

Dong-Pil Min 

Tae-Sun Park 

Mannque Rho 

COMPACT 
flr i 

The Quest for Heiu Srates of [tense Hotter 



COMPACT 
STARS 



This page is intentionally left blank



Proceedings of the KIAS-APCTP International Symposium 
on Astro-Hadron Physics 

COMPACT 
STARS 

The Quest for Mem States of Dense hotter 

Seoul, Korea 10-14 November 2003 

Editors 

D e o g Ki Hong & Chang-Hwan Lee 
Pusan National University, Korea 

Hyun Kyu Lee 
Hanyang University, Seoul, Korea 

Dong-Pil Min 
Seoul National University, Seoul, Korea 

Tae-Sun Park 
Korea Institute for Advanced Study, Seoul, Korea 

Mannque Rho 
CNRS, France 

Korea Institute for Advanced Study, Seoul, Korea 

S p o n s o r s 

Korea Institute for Advanced Study (KIAS) 

Asia Pacific Center for Theoretical Physics (APCTP) 

The Dae Woo Foundation 

VOD and copies of talks are available at the workshop homepage http://conf.kias.re.kr/astro.htm 

or directly from http://icprmr.snu.ac.kr/PHP/KIAS/200311/index.php. 

This service is provided by the Information Center for Physics Research (ICPR). 

YJ? World Scientific 
NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONGKONG • TAIPEI • CHENNAI 

http://conf.kias.re.kr/astro.htm
http://icprmr.snu.ac.kr/PHP/KIAS/200311/index.php


Published by 

World Scientific Publishing Co. Pte. Ltd. 

5 Toh Tuck Link, Singapore 596224 

USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661 

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE 

British Library Cataloguing-in-Publication Data 
A catalogue record for this book is available from the British Library. 

COMPACT STARS: THE QUEST FOR NEW STATES OF DENSE MATTER 
Proceedings of the KIAS-APCTP International Symposium on Astro-Hadron Physics 

Copyright © 2004 by World Scientific Publishing Co. Pte. Ltd. 

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, 
electronic or mechanical, including photocopying, recording or any information storage and retrieval 
system now known or to be invented, without written permission from the Publisher. 

For photocopying of material in this volume, please pay a copying fee through the Copyright 
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to 
photocopy is not required from the publisher. 

ISBN 981-238-954-7 

Printed in Singapore by World Scientific Printers (S) Pte Ltd 



V 

PREFACE 

This is the third in the series of meetings in the field of "astro-hadron 
physics" held in Korea funded jointly by Asian Pacific Center for Theoreti
cal Physics (APCTP) and Korea Institute for Advanced Study (KIAS). The 
first was held in 1997 funded by APCTP and the second in 2000 funded 
by KIAS. That KIAS has figured prominently in promoting this area of 
research is highly appropriate. Astro-hadron physics is a newly develop
ing field in its embryonic stage whose primary objective is to unravel the 
structure of extremely compact astrophysical objects in terms of hadron 
physics studied in controlled terrestrial experiments and described exactly 
by QCD (quantum chromodynamics). This pioneering field offers the kind 
of break-through opportunity that KIAS — whose primary mission is to 
enhance Korea's basic science — is tailored to. 

The first meeting in the series was mostly focused on hadronic matter 
under extreme conditions and the second on explosive astrophysical pro
cesses. This meeting — which is probably the last in the series to be held 
in KIAS — brings the two disciplines equally balanced and closer. This feat 
is made possible partly because there has been an impressive experimental 
as well as theoretical progress in the former giving us a clearer picture of 
what could be going on in dense and/or hot matter. To give an exam
ple, the landscape of QCD phase diagram which was barren in the second 
meeting, with hardly any empirical data points on it, is now richly pop
ulated by both theoretical and experimental points. Some of what seem 
puzzling in astrophysical observations will soon be studied in the terres
trial laboratories: The machines under construction will be able to create 
super-dense matter presumed to be present in the deep interior of compact 
stars. Indeed, heavy-ion experiments at such big accelerators as RHIC are 
exposing a surprisingly rich excitation spectrum in what was once thought 
to be a uniform quark-gluon plasma, hinting at a novel structure of the 
early Universe. 

It is important to recognize that this is a new field of physics in which 
the Asian Pacific region has a potential to play the leading role. Given the 



VI 

powerful machines soon to operate, JPARC in Japan and SIS 300 in Ger
many, with both of which Korean experimenters are closely associated, and 
combined with the early start in theoretical efforts, the field offers definite 
discovery potentials to the Korean physicists, an opportunity absolutely 
not to be missed. This KIAS-APCTP meeting is a first step towards that 
goal. 

Deog Ki Hong and Mannque Rho 
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N E U T R O N STARS A N D THE PROPERTIES OF MATTER 
U N D E R EXTREME CONDITIONS 

G O R D O N BAYM 

Department of Physics, University of Illinois at Urbana-Champaign 

1110 W. Green Street, Urbana, IL, 61801 USA 

This talk reviews our current understanding of the possible states of high-density 
matter found in the interiors of neutron stars - from the crust to the nuclear 
matter core, to exotic states including meson condensation, quark matter, and 
quark droplets - and discusses how observations of neutron stars, including masses 
and cooling, are beginning to confront theories of high density matter. 

1. Introduction 

Neutron stars are highly compact stellar objects with masses ~ 1-2 M© 
(where M 0 is the mass of the sun), and radii of order 10 km. They are 
produced in the cores of stars that at the end of their evolution undergo 
gravitational collapse and subsequent supernova explosion. Neutron stars 
contain ~ 1057 baryons, primarily in the form of the densest matter in the 
universe, with central densities approaching an order of magnitude beyond 
nuclear matter density, po — 0.16 baryons/fm3 ~ 2.8 x 1014 g/cm3. Typical 
interior temperatures are relatively cold, T ~ 1-100 KeV ~ 107-109 K, on 
a nuclear scale.a 

Since the discovery of pulsars in the late 1960's, neutron stars have 
come to be recognized as the central engines in a variety of compact en
ergetic astrophysical systems: isolated neutron stars (discussed here by 
Drake9 and Kaplan10); compact accretion-powered binary x-ray sources 
(discussed here by van Kerkwijk,11) - including quasi-periodic oscillation 
sources (QPO's) - in which a neutron star orbits a more normal compan
ion star; double neutron star binary pulsars; soft gamma-repeaters found in 
supernova remnants; and most likely gamma-ray burst sources (discussed 
here by Kulkarni12). 

Extensive reviews of the physics of neutron star interiors can be found in [1-8]. 
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Nuclei and electrons 

Nuclei, electrons and free neutrons 

Pasta nuclei 

-10 km • 

Figure 1. Schematic cross-section of a neutron star. Figure drawn by Michael Baym. 

The ever-growing body of observational data on neutron stars, gath
ered with a wide variety of detectors from radio to gamma-ray, provides in
creasingly stringent constraints on theories of their constitution. Precision 
radio and optical timing measurements show that pulsars have remarkable 
long-term timing stability, and thus the neutron stars forming them must 
have reasonably thick rigid crusts anchoring stable magnetic fields. On 
the other hand, observed timing irregularities in pulsars - the occasional 
sudden speedups, or glitches, and smaller fluctuations in pulsar repetition 
frequencies - give clues to the internal structure of neutron stars, and sup
port the idea that the interior is superfluid.13 X-ray satellite observatories, 
from UHURU, first flown in 1970, which discovered x-ray binary sources, 
to the current Rossi XTE and Chandra satellites, have provided a wealth 
of information on the luminosity and thermal history of neutron stars -
important probes of the states of matter in their interiors. [The first neu
tron star in fact discovered, that in Sco-Xl, was detected in the x-ray by a 
balloon flight in 1962.] 
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Despite substantial work over the past half century, the nature of mat

ter at the extreme densities in the cores of neutron stars remains uncertain. 

Many scenarios, from nuclear and hadronic mat ter , to exotic states involv

ing Bose-Einstein condensation of pions or kaons, to bulk quark mat ter 

and quark mat ter in droplets, have been proposed. Ultrarelativistic heavy 

ion collision experiments at the Brookhaven Relativistic Heavy Ion Col

lider (RHIC), and in the coming years at the LHC in CERN, probe hot 

dense mat ter , from which one can gain hints of the properties of cold mat

ter. However, the subject remains in a state of flux. These uncertainies in 

the properties of mat ter at densities much greater than po are reflected in 

uncertainties in the maximum possible mass a neutron star, important in 

distinguishing a possible black hole from a neutron star by measurement of 

its mass. A bet ter understanding of the possible states of mat ter in neutron 

star interiors can also enable us to infer whether an independent family of 

denser quark stars, composed essentially of quark mat ter , can exist. Astro-

physical observations of neutron stars give valuable information about the 

possible states of dense mat ter and their properties. In this talk, I would 

like to review our present knowledge of neutron star interiors, and briefly 

discuss constraints on the mat ter they contain from observation. 

2. N u c l e i in t h e Crus t 

Neutron stars temperatures are low on the nuclear scale of MeV. In addi

tion, nuclear processes in the early moments of a neutron star take place 

sufficiently rapidly compared with the cooling of the star tha t the mat ter 

essentially comes - via strong and electromagnetic, as well as weak, inter

actions - effectively into its ground state. The cross section of a neutron 

star interior is shown in Fig . l . The density, p, increases with increasing 

depth in the star. Beneath an atmosphere, compressed by gravity to less 

than 1 cm height, is a crust, typically ~ 1 km thick, consisting, except in 

the molten outer tens of meters, of a lattice of bare nuclei immersed in a 

sea of degenerate electrons, as in a normal metal. The mat ter in the outer 

par t of the crust is expected to be primarily 5 6Fe, the ul t imate end product 

of thermonuclear burning. 

With increasing depth the electron Fermi energy rises, and at p <; 8 x 

10 6 g/cm 3 electrons at the top of the Fermi sea begin to be captured by 

nuclei in the early moments of the star, converting protons into neutrons via 

e~ +p —• n + ve. [The produced neutrino escapes the nascent neutron star.] 

The mat ter becomes more neutron rich and rearranges into a sequence, with 
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increasing density, of increasingly neutron rich nuclei, first 56Fe, 62Ni, and 
64Ni; then nuclei in the closed neutron shell, N=50: 84Se, 82Ge, 80Zn, 
78Ni, and 76Fe, followed by a sequence with N=82: 124Mo, 122Zr, 120Sr, 
reaching 118Kr at a density, pdrip = 4.3 x 10 n g/cm 3 = 2 x 10™4fm~3. 
Beyond this neutron drip point, the matter becomes so neutron rich that 
the continuum neutron states begin to be filled, and the still solid matter 
becomes permeated by a sea of free neutrons in addition to the sea of 
electrons. Pauli blocking of the final electron state prevents the nuclei 
that are deep in the crust, although unstable in the laboratory, from beta 
decaying via n —> p + e~ + ve. The particular nuclei present result from 
a competition between surface and Coulomb energies, plus shell structure. 
Near the drip line and above the results are, however, quite sensitive to 
uncertain spin-orbit effects and shell structure in highly neutron-rich nuclei 
(see discussion in [3]); future radioactive beam experiments will help to 
clarify this situation. 

Above the neutron-drip point, the protons remain localized in nuclei in 
shells with Z — 40 or 50 as the matter continues to become more and more 
neutron rich. Then at about a density ~ po/3, Coulomb forces make spher
ical nuclei unstable, as in fission. The competition between surface and 
Coulomb energies leads to rather unusual structures, termed pasta nuclei, 
illustrated in Fig. 2. With increasing density the originally spherical nuclei 
(a) first become rod-like (b), and then laminar (c), with pure neutrons (the 
lighter regions in Fig. 2) filling the space between. At higher densities the 
system begins to turn "inside-out." The pure-neutron plates become thin
ner (d); eventually the neutrons form rods (e), and then spheres (f), with 
the regions between containing proton-rich matter.1 4 - 1 6 Remarkably, over 
half the matter in the crust is in the form of these non-spherical configu
rations. Finally, at a density ~ /Co/2, the matter dissolves into a uniform 
liquid composed primarily of neutrons, plus some 5% protons and electrons, 
and a few muons. By charge neutrality the number density of electrons plus 
muons equals that of protons. 

3. Nuclear Matter in the Interior 

The high density matter in the liquid interior determines the gross structure 
of neutron stars, such as their mass density profiles, p(r), radii, R, and 
moments of inertia, - as well as the maximum possible neutron star mass, 
Mmax- The neutrino emissivity of the matter in the interior determines how 
rapidly neutron stars cool in their earlier years. Substantial progress has 
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"Pasta" 

(a) Meatballs (b) Spaghetti (c) Lasagna 

"Antipasta" 

(!) Cheese (e) Anti-spaghetti (d) Anti-iasagna 

Figure 2. Sequence of nuclear shapes in the inner crust, from lowest densities (a) to 
highest (f). Figure kindly drawn and provided by F.K. Lamb. 

been made in determining the properties the liquid near po by extrapolation 
from laboratory nuclear physics. Considerable uncertainty remains however 
in pinning down the state of matter in the deep interiors. Various exotic 
scenarios, such as pion condensed and strangeness condensed matter, quark 
matter - including superconducting states, and strange quark matter (see 
[17,18]), have been proposed at higher densities. 

Present calculations of the equation of state of the nuclear matter in 
neutron stars are based on nucleon-nucleon interactions extracted from pp 
and pn scattering experiments at energies below ~ 300 MeV, constrained 
by fitting the properties of the deuteron. Examples of modern fits to the 
interactions are the Paris, Urbana-vi4 (UV14), and Argonne-vi8 (A18) two-
body potentials, described, e.g., in [19,20]; the 18's refer to the number of 
different components, such as central, spin-orbit, etc., included in the in
teractions. With these potentials one proceeds to solve the many-body 
Schrodinger equation numerically via variational techniques to find the en
ergy density as a function of baryon number. 

While the two-body potentials give a reasonable binding energy of nu
clear matter, the calculated equilibrium density turns out to be too high. 
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Similarly two-body potentials fail to produce sufficient binding of light nu
clei (A < 4). The binding problems indicate that one must take into 
account intrinsic three-body forces acting between nucleons, such as the 
Brown-Green process in which two of the nucleons scatter becoming inter
nally excited to an intermediate isobar state (A) while the third nucleon 
scatters from one of the isobars. The three-body forces must increase the 
binding in the neighborhood of po, but, to avoid overbinding nuclear mat
ter, they must become repulsive at higher densities. This repulsion leads 
to a stiffening of the equation of state of neutron star matter at higher 
densities over that computed from two-body forces alone. 

P[fm"3] 

Figure 3. Energy per nucleon of pure neutron matter as a function of baryon density 
calculated with the Argonne A18 two body potential with and without the Urbana IX 
(UIX) three-body potential, and lowest order relativistic corrections, Sv. From [20]. 

Figure 3 shows the energy per nucleon of neutron matter as a func
tion of baryon density, calculated by Akmal et al.20 with the Argonne A18 
two-body potential, and Urbana UIX three-body potential, together with 
relativistic boost corrections (Sv), accurate to order (v/c)2. This equation 
of state is essentially the best available taking into account all two-nucleon 
data, and data from light nuclei. One sees here the stiffening of the equation 
of state from inclusion of three-body forces, slightly mitigated by relativistic 
effects. 
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Figure 4. Neutron star mass vs. central density for the equations of state shown in 
Fig. 3, including beta equilibrium. The curves labelled QM show the effect of allowing 
for a transition to quark matter described in the simple MIT bag model, with bag 
constants B = 122 and 200 MeV/fm3 . 

Figure 4 shows the gravitational mass vs. central density for families of 
stars calculated by integrating the TOV equation for the same equation of 
state as in Fig. 3, with beta equilibrium of the nucleons included. The max
imum mass for the nucleonic equation of state, Al8+<5v+UIX, is ~ 2.2MQ, 
consistent with observed neutron star masses. By constrast, without three-
body forces, the maximum mass is ~ 1.6MQ. The corresponding mass vs. 
radius of the families of models is shown in Fig. 5; the radii of these models 
vary little with mass, and are in the range 10-12 km, except at the extremes. 

While an equation of state based on nucleon interactions alone gives 
an accurate description of neutron star matter in the neighborhood of po, 
it has several fundamental limitations. The first is that is does not take 
into account the rich variety of hadronic and quark degrees of freedom in 
the nuclear system that become important with increasing density. More 
generally, one should not expect beyond a few times po that the forces 
between particles can be described in terms of static few-body potentials; 
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Figure 5. Mass vs. radius of neutron stars for the same models as in Fig. 4, . 

nor can one continue to assume at higher densities that the system can even 
be described in terms of well-defined "asymptotic" laboratory particles. 
As one sees in Fig. 4, the density in the central cores rises well above 
po; equations of state and neutron star models based on consideration of 
nuclear matter alone should not be regarded as definitive. 

Further hadronic degrees of freedom include A's, hyperons, and higher 
baryon resonances, as well as mesonic degrees of freedom. The A's can both 
be excited as real states in the matter at sufficiently high electron chemical 
potential, fie, e.g., via n + e~ —> A - , with the accompanying neutrino 
escaping from the star, and contribute indirectly through the three-body 
forces among nucleons. The major uncertainties in including them in the 
equation of state are their interactions with nucleons and with other A's, 
interactions that become increasingly important with increasing density. 

Strange baryons, e.g., A and S, can similarly be excited via processes 
such as weak conversion of a neutron into a A, or electron capture, e~ + 
n —> E~ Again lack of detailed knowledge of the interactions of hyperons 
prevents an accurate description of their effect on the equation of state. 
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4. Meson Condensates 

The meson fields that mediate the low-energy interactions between baryons 
also become dynamical degrees of freedom with increasing density. In dense 
matter the meson fields can become macroscopically excited, leading to pion 
or kaon condensation. If mesons appear they macroscopically occupy the 
lowest available mode, i.e., form a condensate, as in ordinary Bose-Einstein 
condensation. The state of matter with condensed charged mesons would 
be superconducting. Such states in neutron stars would have enhanced 
neutrino emission and hence lead to more rapid cooling of the stars. 

Charged pion condensation (reviewed in [21-24] would occur through a 
softening of a collective mode with the quantum numbers of the charged 
pion - an oscillation of the matter with spatially-varying nucleon spin (S=l) 
and isospin (1=1) - which at a critical density, pv, goes to zero frequency at 
a critical wavevector, kc, accompanied by the development of a macroscopic 
spatially-varying (p-wave) pion field, (TT) ~ e*kr - the condensate - of net 
negative charge. An analogous neutral pion condensed state can also be 
formed through softening of the neutron particle-hole collective mode; the 
neutral condensed state is characterized by a spatially-varying finite expec
tation value of the neutral pion field. Early estimates predicted the onset 
of charged pion condensation at p^ ~ 2po! however, these estimates are 
very sensitive to the strength of the effective neutron-hole proton repulsion 
in the 1=1, S=l channel (described by the Landau Fermi-liquid parameter 
g') which tends to suppress the condensation mechanism. 

An alternative and perhaps more likely form of condensation involves 
spontaneous formation of kaons. The underlying chiral SU(3)®SU(3) sym
metry of strong interactions implies that K mesons have an effective attrac
tive interaction with nucleons, schematically of the form Heff ~ —pKK, 
where p is the baryon density and K is the K meson field, which acts as 
a density dependent term in the kaon effective mass, lowering its energy 
in the matter.25 Extensive calculations by Brown and coworkers,26'27 in
dicate that the energy of a K~ falls below pe at a critical density px ~ 
3-4 po; above this density the system should form a kaon or strangeness 
condensate with a macroscopic expectation value of the charged K field. 
Kaon condensation can lead to a substantial softening of the equation of 
state. Brown and Bethe28 predict that in the presence of kaon condensation 
the maximum neutron star mass is only ~ 1.5M@; stars that attempt to 
form with larger mass would collapse into black holes, a fate they predict 
for the core of SN1987A. Kaon condensation also enhances the neutrino 
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luminosity. The details of kaon condensation are, however, very sensitive to 
the interactions of K mesons in dense matter; see [29] for a critique. 

5. Quark Matter and Quark Droplets 

Nuclear matter is expected to undergo a transition to a quark-gluon plasma 
at sufficiently high baryon density. (Dynamics of the transition are dis
cussed in [30].) A quark matter core in a neutron star would lead to 
enhanced neutrino luminosity and cooling. However, because of the well-
known technical problems in implementing lattice gauge theory calculations 
at non-zero baryon density, we do not to date have a reliable estimate of 
the transition density at zero temperature or even compelling evidence that 
there is a sharp phase transition. Although estimates of the density range 
of the transition, ~ 5 — 10po, are possibly above the central density found 
in neutron stars models based on nuclear equations of state, the question of 
whether neutron stars can have quark matter cores remains open. Figure 4 
shows effects of including quark matter cores, calculated in the simple MIT 
bag model, with bag parameter B =122 and 200 MeV/fm3. In the absence 
of information about the equation of state at very high densities, the issue 
of whether a distinct family of quark stars with higher central densities 
than neutron stars can exist also remains open. 

The transition from pure neutron matter to quark matter would occur at 
the density pq, where the energy per baryon of quark matter crosses below 
that in neutron matter. However, the transition in matter in beta equilib
rium, which contains the additional constraint of charge conservation, must 
proceed through a mixed phase, as Glendenning pointed out,31 starting at 
density below the crossover density, pq. The mixed phase should consist of 
large droplets of quark matter immersed in a sea of hadronic matter.32 '33 

Formation of droplets is favored because the presence of s and d quarks 
allows a reduction in the electron density, and hence electron Fermi energy, 
and because it consequently permits an increase in the proton concentra
tion in the hadronic phase. A typical droplet is estimated to have a radius 
of ~ 5 fm, and contain ~ 100 u, and ~ 300 d as well as s quarks, and thus 
having a net negative charge ~ 150. The onset of the droplet phase could, 
for favorable model parameters of the quark phase, be at a density as low as 
~ 2p0- At higher densities the quark droplets should go through a similar 
sequence of "pasta" phases as the nuclei in the inner crust. Such phases 
would be important since the quark dispersion relations in the phases (b)-
(f), in the notation of Fig. 2, would not have a gap, and thus would also 
lead to enhanced neutrino cooling. 
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Quark matter at large density and low temperatures becomes a color 
superconductor.17,34,35 Two pairing states with condensates antisymmetric 
in color and flavor and zero pair angular momentum are most energetically 
favorable: a two-flavor color-antitriplet 2SC or isoscalar state, in which only 
u and d quarks are paired; and for massless u, d, and s quarks, a color-flavor 
locked state34 that breaks both color and flavor symmetry, containing, e.g., 
pairing of a red u quark with a blue s quark, a blue s quark with a green d 
quark, and a green d quark with a red u quark. The CFL state is the most 
stable for three flavors of massless quarks in the weak coupling limit, both 
at zero temperature, and near the critical temperature Tc. 

The behaviors of the 2SC and CFL phases in rotating, magnetic neutron 
stars are quite different.36 The isoscalar state, if a Type II superconductor, 
behaves analogously to that of superconducting protons in a neutron star, 
forming magnetic vortices in response to ordinary magnetic field with flux 
quantum 6iT/^3g2 + e2, where g is the qcd coupling constant. In response 
to rotations, the state forms a very weak London magnetic field, B Ss 1 G, 
dominated by the gluonic component, as in a rotating superconductor. 

On the other hand, the CFL phase forms U(l) vortices in response to 
rotation, as do superfluid neutrons, with a quantum of circulation, 37r//i, 
where fj, is the baryon chemical potential.36 Such vortices could play a role37 

in the pinning and depinning of rotational vortices that give rise to pulsar 
glitches.13 Vortices involving only a U( l ) e m phase of the gap are unstable36; 
however, the system does support stable magnetic vortices which involve 
the gradients of the full SU(3)cx U( l ) e m color structure.38 

Even though the magnetic fields expected in neutron stars are below 
the estimated critical fields for flux expulsion, the flux diffusion times, of 
order R2/C2T, where Rc is the neutron star core radius, and r is the mi
croscopic scattering time, are of order millenia or longer.36 Thus as with 
superconducting protons in neutron stars, magnetic fields in color super
conducting matter would be frozen in an intermediate state composed of 
alternating regions of normal and superconducting material if the system 
is a Type I superconductor, or in a lattice of vortices in a Type II super
conductor. 

6. Neutron Star Masses 

A general rule obeyed by families of neutron stars generated from a given 
equation of state is that the stiffer the equation of state, the higher is the 
maximum mass that a neutron star can have, but the lower is the central 
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density, pc at the maximum mass. Lower central mass means that there 
is less room for exotic matter in the interior. The question then arises as 
to the extent that observations of neutron star masses place constraints on 
the equation of state. 

Observations of millisecond binary radio pulsars, consisting of two orbit
ing neutron stars, have permitted accurate determinations of the masses of 
the neutron stars in them, as well as confirmed the existence of gravitational 
radiation; the masses lie in a relatively narrow interval, ~ 1 . 3 5 ± 0 . 0 4 M Q , 3 9 

a mass reminiscent of the Chandrasekhar core mass of the pre-supernova 
star. The newly discovered nearly in-plane binary neutron star system, 
J0737-3039, with masses of 1.34MQ and 1.25M© is no exception.40 If a 
mass of order 1.4M© were the maximum neutron star mass, then equations 
of state could allow for substantial exotica in the interior. For example, 
Brown and Bethe,28 have substantial kaon condensation in their equation 
of state, with a corresponding maximum neutron star mass ~ 1.5M©. 

The fact that the measured masses of neutron stars in binary neutron-
star systems are tightly constrained does not mean that all neutron stars 
have such small masses; the constraint could arise from the narrow evolu
tionary track that allows the two neutron stars to remain bound after their 
predecessors underwent supernova explosions. Two measurements of late 
of neutron star masses in compact binary x-ray sources begin to call into 
question whether the maximum mass is indeed of order 1.4MQ. The first 
is that of the neutron star in the X-ray binary, Vela X-l, with mass de
duced to lie in the range 1.86±0.16M©.41 As van Kirkwijk discusses,11 the 
uncertainties in the measurement arise from understanding the dynamic 
behavior of the atmosphere of the B-supergiant companion star, HD 77581; 
while the reported mass, if confirmed, would rule out very soft equations 
of state, e.g., that of Bethe and Brown based on kaon condensation, the 
uncertainties in the determination do not allow one to make a definitive 
conclusion. The second measurement is that of the neutron star mass in 
the low mass x-ray binary, Cyg X-2, 1.78 ± 0.23MQ.42 [However, Titarchuk 
and Shaposhnikov43 fit three x-ray bursts from this source with a lighter 
mass ~ 1.4.M©.] Such higher masses in x-ray binaries would allow for some 
exotic matter to be present in neutron stars. 

A very promising approach to measuring neutron star masses is through 
understanding the origins of QPO's, the KHz quasiperiodic oscillations ob
served in some by now 25 low mass x-ray binary neutron star systems.44'45 

The power spectra of these sources are characterized by pairs of peaks with 
a nearly constant frequency difference, Av, e.g., in 4U1820-30 the upper 
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frequency is z/2 ~ 1070 Hz, with Av ~ 280 Hz4 6 ; as confirmed by burst 

oscillations,47 e.g., in SAX J1808.4-3658,48 Av is either the spin frequency 

of the neutron star, vSpim or vspin/2. 

In these objects, mass accreted from the companion star works its way 

through a disk down onto the neutron star. The high frequency QPO ' s 

arise from gas orbiting very close to the neutron star surface, where gen

eral relativistic effects are crucial. The key is that the innermost sta

ble orbit tha t a particle circling a neutron star can have is at a radius 

-Risco = 6MG/c2 = 3-Rschwarzschiid- If, as is strongly suggested by de

tailed models,4 7 '4 9 v-i is an orbital frequency, at orbital radius r, so tha t 

vi = (MG/r3)1/2, then one finds powerful constraints on the neutron star 

mass and radius, R: from r > 6MG/c2 and r > R, one readily finds 

tha t M < c3/12\/6irv2G ~ 2 .19M 0 /V 2 (KHz) and R < c /2 \ /67w 2 ~ 

19.5km/i / 2(KHz). Indeed, if plausibly r = Risco, then measurement of 

V2 yields a precise mass measurement; M = c3 JYI^-KGVI- For 4U1820-30 

one would thus deduce a mass ~ 2.OM0. Such a mass can only come from 

a very stiff equation of state, which would not only exclude exotica such 

as quark mat ter in the cores of neutron stars, but would begin to confront 

even the best available nuclear equations of state, cf. Fig. 4, which give a 

maximum mass ~ 2 . 2 M 0 . 

7. N e u t r o n Star C o o l i n g 

One of the potentially most powerful probes of the mat ter in neutron stars 

is x-ray measurement of neutron star surface luminosity and temperatures. 

When correlated with the age of the neutron stars, this information en

ables one to construct a cooling history of neutron s t a r s . 5 0 - 5 2 In general, 

exotic states of mat ter tend to cool faster than nuclear mat ter cools via 

the modified URCA process. It is presently too early to tell whether the x-

ray luminosity da ta indicate the presence of such exotic mat ter in neutron 

stars. Whether thermal radiation from the neutron star surface is being 

detected is uncertain; indeed effects of neutron star atmospheres and sur

face emissivity in the presence of strong magnetic fields need to be bet ter 

understood. Also, significant uncertainties remain in the microscopies of 

the cooling processes. Observations also need to be compared with cooling 

scenarios for a range of neutrons star masses.5 3 Future x-ray imaging and 

spectra should make it eventually possible to carry out a detailed compar

ison between cooling scenarios and observations, and thus to learn about 

the existence and properties of exotic mat ter in the cores of neutron stars. 
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We explore some of the astrophysical consequences of the hadron-quark phase 
transition in compact stars. In particular, we describe a new model which is able 
to explain how a gamma-ray burst (GRB) can take place days or years after a 
supernova explosion. We show that above a threshold value of the gravitational 
mass a pure hadronic star ("neutron star") is metastable to the conversion into 
a quark star (hybrid star or strange star), i.e. a star made at least in part of 
deconfined quark matter. The stellar conversion process can be delayed if finite 
size effects at the interface between hadronic and deconfined quark matter phases 
are taken into account. A huge amount of energy, on the order of 1052 — 1053 

ergs, is released during the conversion process and can produce a powerful gamma-
ray burst. The delay between the supernova explosion generating the metastable 
neutron star and the new collapse can explain the delay inferred in GRB 990705 
and in GRB 011211. Next, we explore the consequences of the metastability of 
"massive" neutron stars and of the existence of stable compact quark stars on the 
concept of limiting mass of compact stars. 

1. The delayed Supernova—GRB connection 

A mounting number of observational data 1'2'3'i'5'6'7 suggest a clear con
nection between supernova (SN) explosions and long-duration Gamma Ray 
Bursts (GRBs). In particular, the detection of X-ray spectral features in 
the X-ray afterglow of several GRBs, has given evidence for a possible 
time delay between the SN explosion and the associated GRB. In the case 
of GRB990705, GRB020813, and GRB011211, it has been possible to esti
mate the time delay between the two events. For GRB990705 the supernova 
explosion is evaluated to have occurred a few years before the GRB2 '8, a 
few months before the burst in the case of GRB020813 (ref.7), while for 
GRB011211 about four days before the burst5. 

mailto:bombaci@df.unipi.it
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These findings demand for a two-step explosion mechanism. The first 

event, in this scenario, is the supernova explosion which forms a compact 

stellar remnant, i.e. a neutron star (NS); the second catastrophic event 

is associated with the NS and it is the energy source for the observed 

GRB. These new observational data , and the two-step scenario outlined 

above, poses severe problems for most of the current theoretical models 

for the central energy source (the so-called central engine) of GRBs. The 

main difficulty of all these models is to understand the origin of the second 

"explosion", and to explain the long time delay between the two events. 

In the so-called supranova model9 for GRBs the second catastrophic 

event is the collapse to a black hole of a supramassive neutron star, i. e. a 

fast rotat ing NS with a baryonic mass MB above the maximum baryonic 

mass MB,max for non-rotating configurations. In this model, the t ime delay 

between the SN explosion and the GRB is equal to the time needed by the 

fast rotat ing newly formed neutron star to get rid of angular momentum 

and to reach the limit for instability against quasi-radial modes where the 

collapse to a black hole occurs1 0 . The supranova model needs a fine tuning 

in the initial spin period P ; n and baryonic stellar mass MB,in to produce 

a supramassive neutron star that can be stabilized by rotation up to a few 

years. For example1 0 , if Pin > 1.5 ms, then the newborn supramassive 

neutron star must be formed within ~ O.O3M0 above Mgirnax. 

2. T h e na ture of N e u t r o n Stars: H a d r o n i c or Quark Stars? 

In a simplistic and conservative picture the core of a neutron star is modeled 

as a uniform fluid of neutron rich nuclear mat ter in equilibrium with respect 

to the weak interaction (/3-stable nuclear mat ter ) . However, due to the large 

value of the stellar central density and to the rapid increase of the nucleon 

chemical potentials with density, hyperons (A, S _ , S ° , S + , H~ and S° 

particles) are expected to appear in the inner core of the star. Other exotic 

phases of hadronic mat ter such as a Bose-Einstein condensate of negative 

pion (n~) or negative kaon (K~) could be present in the inner part of the 

star. 

Quantum Chromodynamics (QCD) predicts a phase transition from 

hadronic mat ter to a deconfined quark phase to occur at a density of a 

few times nuclear mat ter saturation density. Consequently, the core of 

the more massive neutron stars is one of the best candidates in the Uni

verse where such deconfined phase of quark mat ter (QM) could be found. 

Since /3-stable hadronic mat te r posses two conserved "charges" (i.e., electric 
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charge and baryon number) the quark-deconfinement phase transition pro
ceeds through a mixed phase over a finite range of pressures and densities 
according to the Gibbs' criterion for phase equilibrium11. At the onset of 
the mixed phase, quark matter droplets form a Coulomb lattice embedded 
in a sea of hadrons and in a roughly uniform sea of electrons and muons. 
As the pressure increases various geometrical shapes (rods, plates) of the 
less abundant phase immersed in the dominant one are expected. Finally 
the system turns into uniform quark matter at the highest pressure of the 
mixed phase12. Compact stars which possess a "quark matter core" either 
as a mixed phase of deconfined quarks and hadrons or as a pure quark mat
ter phase are called13 Hybrid Neutron Stars or shortly Hybrid Stars (HyS). 
In the following of this paper, the more conventional neutron stars in which 
no fraction of quark matter is present, will be referred to as pure Hadronic 
Stars (HS). 

A complementary manifestation of quark matter in compact stars is the 
possible existence of a new family of compact stars consisting completely of 
a deconfined mixture of up (w), down (d) and strange (s) quarks (together 
with an appropriate number of electrons to guarantee electrical neutrality) 
satisfying the so-called Bodmer-Witten hypothesis14'15 (see also ref.16). 
Such compact stars have been called strange quark stars or shortly strange 
stars17,18 (SS) and their constituent matter19 '20 as strange quark matter 
(SQM). Presently there is no unambiguous proof about the existence of 
strange stars, however, a sizable amount of observational data collected 
by the new generations of X-ray satellites, is providing a growing body of 
evidence for their possible existence21,22,23 '24 '25 '26. 

Present accurate determinations of compact star masses in radio pulsar 
binaries27 permit to rule out only extremely soft EOS, i.e. those giving 
Mmax less than about 1.45 MQ. However, in at least two accreting X-ray 
binaries it has been found evidence for compact stars with higher masses. 
The first of these star is Vela X-l, with a reported mass28 1.88 ± 0.13M©, 
the second is Cygnus X-2, with a reported mass29 of 1.78 ± 0.23MQ. Un
fortunately, mass determinations in X-ray binaries are affected by large 
uncertainties30, therefore the previous quoted "high mass values" should 
always be handled with care. 

In this paper (see ref.s31,32 for more details), we study the effects of the 
hadron-quark deconfinement phase transition in stellar compact objects. 
We show that when finite size effects at the interface between the quark-
and the hadron-phase are taken into account, pure Hadronic Stars, above a 
threshold value of the central pressure (gravitational mass), are metastable 
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to the decay [conversion) to hybrid neutron stars or to strange stars (de

pending on the properties of EOS for quark mat ter ) . The mean-life time 

of the metastable stellar configuration is related to the quantum nucleation 

t ime to form a drop of quark mat ter in the stellar center, and dramat

ically depends on the value of the stellar central pressure. The delayed 

stellar conversion liberates an enormous amount of energy, in the range 

of 0 . 5 - 1 . 7 x l 0 5 3 erg, which could power a GRB. This model3 1 explains 

the SN-GRB association and in particular the long time delay inferred 

for GRB990705, GRB020813, and GRB011211. Also, we explore the con

sequences of the metastabili ty of "massive" pure Hadronic Stars and the 

existence of stable compact "quark" stars (hybrid neutron stars or strange 

stars) on the concept of limiting mass of compact s tars 3 2 . 

3 . Q u a n t u m nuc leat ion of quark m a t t e r in hadronic s tars 

In the following, we assume tha t the compact star survives the early stages 

of its evolution as a pure hadronic star, and we study quark mat ter nucle

ation in cold (T = 0) neutrino-free hadronic matter . 

In bulk mat ter the quark-hadron mixed phase begins at the static tran

sition point defined according to the Gibbs' criterion for phase equilibrium 

/ in = MQ = Mo , PH{^O) = PQ(I^O) = Po (1) 

where 
£ff + pH £Q + PQ ,0, 

VH = , MQ = (2) 
nb,H nb,Q 

are the chemical potentials for the hadron and quark phase respectively, EH 

( E Q ) , PH (PQ) and nb,H ( ^ 6 , Q ) denote respectively the total (i.e., includ

ing leptonic contributions) energy density, the total pressure and baryon 

number density for the hadron (quark) phase, in the case of cold matter . 

Let us now consider the more realistic situation in which one takes 

into account the energy cost due to finite size effects in creating a drop of 

deconfined quark mat ter in the hadronic environment. As a consequence of 

these effects, the formation of a critical-size drop of QM is not immediate 

and it is necessary to have an overpressure AP = P — Po with respect 

to the static transition point. Thus, above Po, hadronic mat ter is in a 

metastable state, and the formation of a real drop of quark mat ter occurs 

via a quantum nucleation mechanism. A sub-critical (virtual) droplet of 

deconfined quark mat ter moves back and forth in the potential energy well 

separating the two mat ter phases (see discussion below) on a t ime scale 



22 

Pressure [MeV/fm ] Baryon number density nfc [fm" ] 

Figure 1. Chemical potentials of the three phases of matter (H, Q, and Q*), as denned 
by Eq. (2) as a function of the total pressure (left panel); and energy density of the H-
and Q-phase as a function of the baryon number density (right panel). The hadronic 
phase is described with the GM3 model whereas for the Q and Q* phases is employed 
the MIT-like bag model with ms = 150 MeV, B = 152.45 MeV/fm3 and as = 0. The 
vertical lines arrows on the right panel indicate the beginning and the end of the mixed 
hadron-quark phase defined according to the Gibbs criterion for phase equilibrium. On 
the left panel PQ denotes the static transition point. 

VQ1 ~ 10~ 2 3 seconds, which is set by the strong interactions. This t ime 

scale is many orders of magnitude shorter than the typical time scale for 

the weak interactions, therefore quark flavor must be conserved during the 

deconfinement transition. We will refer to this form of deconfined matter , 

in which the flavor content is equal to tha t of the /3-stable hadronic system 

at the same pressure, as the Q*-phase. Soon afterwards a critical size drop 

of quark mat te r is formed the weak interactions will have enough time to 

act, changing the quark flavor fraction of the deconfined droplet to lower its 

energy, and a droplet of/3-stable SQM is formed (hereafter the Q-phase). 

We have adopted rather common models for describing both the 

hadronic and the quark phase of dense matter . For the hadronic phase 

we used models which are based on a relativistic lagrangian of hadrons 

interacting via the exchange of sigma, rho and omega mesons. The param

eters adopted are the s tandard ones3 3 . Hereafter, we refer to this model 

as the GM equation of s tate (EOS). For the quark phase we have adopted 
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a phenomenological EOS (see e.g. ref.19) which is based on the MIT bag 
model for hadrons. The parameters here are: the mass ms of the strange 
quark, the so-called pressure of the vacuum B (bag constant) and the QCD 
structure constant as. For all the quark matter model used in the present 
work, we take mu = md = 0, ms = 150 MeV and as = 0. 

In the left panel of Fig. 1, we show the chemical potentials, defined 
according to Eq. (2), as a function of the total pressure for the three phases 
of matter (H, Q*, and Q) discussed above. In the right panel of the same 
figure, we plot the energy densities for the H- and Q*-phase as a function 
of the corresponding baryon number densities. Both panels in Fig. 1 are 
relative to the GM3 model for the EOS for the H-phase and to the MIT 
bag model EOS for the Q and Q* phases with B = 152.45 MeV/fm3. 

To calculate the nucleation rate of quark matter in the hadronic medium 
we use the Lifshitz-Kagan quantum nucleation theory34 in the relativistic 
form given by Iida & Sato35. The QM droplet is supposed to be a sphere 
of radius R and its quantum fluctuations are described by the lagrangian 

L{R,R) = -M{R)c2^l - [R/c)2 + M(R)c2 - U(R), (3) 

where M(R) is the effective mass of the QM droplet, and U(R) its potential 
energy. Within the Lifshitz-Kagan quantum nucleation theory, one assumes 
that the phase boundary (i.e. the droplet surface) moves slowly compared 
to the high sound velocity of the medium (R < < vs ~ c). Thus the number 
density of each phase adjust adiabatically to the fluctuations of the droplet 
radius, and the system retains pressure equilibrium between the two phases. 
Thus, the droplet effective mass is given by34 '35 

M(R)=47rpH(l-1^^)2R3, (4) 
^ nb,H ' 

PH being the hadronic mass density, nb,H and n^Q* are the baryonic num
ber densities at a same pressure in the hadronic and Q*-phase, respectively. 
The potential energy is given by34,35 

U(R) = -7ri?3n6>Q*(/xQ* - (iH) + iiraR2 , (5) 

where fin and /XQ* are the hadronic and quark chemical potentials at a 
fixed pressure P and a is the surface tension for the surface separating the 
quark phase from the hadronic phase. The value of the surface tension a 
is poorly known, and typical values used in the literature12'35 range within 
10-50 MeV/fm2. 
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For sake of simplicity and to make our present discussion more traspar-
ent, in the previous expression (5) for the droplet potential energy, we 
neglected the terms connected with the electrostatic energy and with the 
so-called curvature energy. The inclusion of these terms will not modifies 
the conclusions of the present study35,32. 

The process of formation of a bubble having a critical radius, can be 
computed using a semiclassical approximation. The procedure is rather 
straightforward. First one computes, using the well known Wentzel-
Kramers-Brillouin (WKB) approximation, the ground state energy EQ and 
the oscillation frequency î o of the virtual QM drop in the potential well 
U(R). Then it is possible to calculate in a relativistic framework the prob
ability of tunneling as35 

po = exp [ — j (6) 

where A is the action under the potential barrier 

A(E) = - f + {[2M(R)c2 + E-U(R)]x[U(R)-E}}1/2dR, (7) 
c JR-

R± being the classical turning points. 
The nucleation time is then equal to 

T = (vopoNc)-1 , (8) 

where Nc is the number of virtual centers of droplet formation in the inner
most region of the star. Following the simple estimate given in ref.35, we 
take Nc — 1048. The uncertainty in the value of ./Vc is expected to be within 
one or two orders of magnitude. In any case, all the qualitative features of 
our scenario will be not affected by the uncertainty in the value of Nc. 

4. Resul ts 

In our scenario, we consider a purely hadronic star whose central pressure 
is increasing due to spin-down or due to mass accretion, e.g., from the 
material left by the supernova explosion (fallback disc), from a companion 
star or from the interstellar medium. As the central pressure exceeds the 
threshold value PQ at static transition point, a virtual drop of quark matter 
in the Q*-phase can be formed in the central region of the star. As soon as 
a real drop of Q*-matter is formed, it will grow very rapidly and the original 
Hadronic Star will be converted to and Hybrid Star or to a Strange Star, 
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Figure 2. Nucleation time as a function of the maximum gravitational mass of the 
hadronic star. Solid lines correspond to a value of a = 30 MeV/fm2 whereas dashed 
ones are for a = 10 MeV/fm2 . The nucleation time corresponding to one year is shown 
by the dotted horizontal line. The different values of the bag constant (in units of 
MeV/fm3) are plotted next to each curve. The hadronic phase is described with the 
GM1 model. 

depending on the detail of the EOS for quark matter employed to model 
the phase transition (particularly depending on the value of the parameter 
B within the model adopted in the present study). 

The nucleation time r, i.e., the time needed to form a critical droplet 
of deconfined quark matter, can be calculated for different values of the 
stellar central pressure Pc which enters in the expression of the energy 
barrier in Eq. (5). The nucleation time can be plotted as a function of the 
gravitational mass MJJS of the HS corresponding to the given value of the 
central pressure, as implied by the solution of the Tolmann-Oppeneimer-
Volkov equations for the pure Hadronic Star sequences. The results of our 
calculations are reported in Fig. 2 which is relative to the GM1 EOS for the 
hadronic phase. Each curve refers to a different value of the bag constant 
and the surface tension. 

As we can see, from the results in Fig. 2, a metastable hadronic star 
can have a mean-life time many orders of magnitude larger than the age of 
the universe36 Tuniv = (13.7 ± 0.2) x 109 yr = (4.32 ± 0.06) x 1017 s. As 



the star accretes a small amount of mass (of the order of a few per cent of 
the mass of the sun), the consequential increase of the central pressure lead 
to a huge reduction of the nucleation time and, as a result, to a dramatic 
reduction of the HS mean-life time. 

Table 1. The critical mass and energy released in the conversion process 
of an HS into a QS for several values of the Bag constant and the surface 
tension. Column labelled MQstrnax denotes the maximum gravitational mass 
of the final QS sequence. The value of the critical gravitational mass of the 
initial HS is reported on column labelled Mcr whereas those of the mass of 
the final QS and the energy released in the stellar conversion process are 
shown on columns lallebed Mfin and Econv respectively. BH denotes those 
cases in which the baryonic mass of the critical mass configuration is larger 
than the maximum baryonic mass of the QS sequence (M^r > MQS max)-
In these cases the stellar conversion process leads to the formation of a black 
hole. Units of B and a are MeV/fm3 and MeV/fm2 respectively. All masses 
are given in solar mass units and the energy released is given in units of 105 1 

erg. The hadronic phase is described with the GM1 model, ms and aa are 
always taken equal to 150 MeV and 0 respectively. The GM1 model preditcs 
a maximum mass for the pure HS of 1.807 MQ. 

a = 10 cr = 30 

B 

208.24 
169.61 
136.63 
108.70 
106.17 
103.68 
101.23 
98.83 
96.47 
94.15 
91.87 
89.64 
87.45 
85.29 
80.09 
75.12 
65.89 
63.12 
59.95 

MQS,max 

1.769 
1.633 
1.415 
1.426 
1.433 
1.441 
1.449 
1.459 
1.470 
1.481 
1.494 
1.507 
1.552 
1.538 
1.581 
1.631 
1.734 
1.770 
1.814 

Mcr 

1.798 
1.754 
1.668 
1.510 
1.490 
1.469 
1.447 
1.425 
1.402 
1.378 
1.354 
1.329 
1.302 
1.275 
1.196 
1.082 
0.820 
0.727 
0.545 

Mfin 

1.434 
1.411 
1.388 
1.364 
1.339 
1.313 
1.285 
1.257 
1.228 
1.144 
1.029 
0.764 
0.672 
0.501 

BH 
BH 
BH 
BH 
BH 

&COTIV 

62.5 
64.0 
66.0 
68.5 
71.1 
74.2 
77.3 
80.7 
84.4 
92.9 
93.8 
100.6 
98.1 
79.7 

Mcr 

1.805 
1.778 
1.719 
1.615 
1.602 
1.588 
1.574 
1.559 
1.543 
1.527 
1.511 
1.495 
1.477 
1.458 
1.410 
1.359 
1.212 
1.160 
1.081 

Mfin 

1.474 
1.456 
1.438 
1.417 
1.397 
1.342 
1.284 
1.123 
1.067 
0.986 

ECo nv 

BH 
BH 
BH 
BH 
BH 
BH 
BH 
BH 
BH 

94.8 
98.1 
101.8 
105.9 
110.4 
122.7 
133.1 
159.9 
166.5 
168.8 

To summarize, in the present scenario pure hadronic stars having a cen
tral pressure larger than the static transition pressure for the formation of 
the Q*-phase are metastable to the "decay" (conversion) to a more compact 
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stellar configuration in which deconfined quark matter is present (i.e., HyS 
or SS). These metastable HS have a mean-life time which is related to the 
nucleation time to form the first critical-size drop of deconfined matter in 
their interior (the actual mean-life time of the HS will depend on the mass 
accretion or on the spin-down rate which modifies the nucleation time via 
an explicit time dependence of the stellar central pressure). We define as 
critical mass Mcr of the metastable HS, the value of the gravitational mass 
for which the nucleation time is equal to one year: Mcr = MHS{T = lyr)-
Pure hadronic stars with MH > Mcr are very unlikely to be observed. Mcr 

plays the role of an effective maximum mass for the hadronic branch of com
pact stars. While the Oppenheimer-Volkov maximum mass37 Mns,max is 
determined by the overall stiffness of the EOS for hadronic matter, the 
value of Mcr will depend in addition on the bulk properties of the EOS for 
quark matter and on the properties at the interface between the confined 
and deconfined phases of matter (e.g., the surface tension a). 

To explore how the outcome of our scenario depends on the details of 
the stellar matter EOS, we have considered two different parameterizations 
(GM1 and GM3) for the EOS of the hadronic phase, and we have varied the 
value of the bag constant B. Moreover, we have considered two different 
values for the surface tension: a = 10 MeV/fm2 and a = 30 MeV/fm2. 
These results, in the case of the GM1 EOS, are summarized in Tab. 1. 

In Fig. 3, we show the MR curve for pure HS within the GM1 model 
for the EOS of the hadronic phase, and that for hybrid stars or strange 
stars for different values of the bag constant B. The configuration marked 
with an asterisk on the hadronic MR curves represents the hadronic star for 
which the central pressure is equal to P0*. The full circle on the hadronic 
star sequence represents the critical mass configuration, in the case a = 30 
MeV/fm2. The full circle on the HyS (SS) mass-radius curve represents the 
hybrid (strange) star which is formed from the conversion of the hadronic 
star with MHS = Mcr. We assume38 that during the stellar conversion 
process the total number of baryons in the star (or in other words the stellar 
baryonic mass) is conserved. Thus the total energy liberated in the stellar 
conversion is given by the difference between the gravitational mass of the 
initial hadronic star (Mjn = Mcr) and that of the final hybrid or strange 
stellar configuration with the same baryonic mass (M/j„ = MQS(M^) ): 

Econv = (Min - Mfln)c
2 . (9) 

The stellar conversion process, described so far, will start to populate 
the new branch of quark stars (the part of the QS sequence plotted as 
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Figure 3. Mass-radius relation for a pure HS described within the GM1 model and that 
of the HyS or SS configurations for several values of the Bag constant and ma = 150 
MeV and cts = 0. The configuration marked with an asterisk represents in all cases 
the HS for which the central pressure is equal to P£. The conversion process of the 
HS, with a gravitational mass equal to Mcr, into a final HyS or SS is denoted by the 
full circles connected by an arrow. In all the panels a is taken equal to 30 MeV/fm2 . 
The dashed lines show the gravitational red shift deduced for the X-ray compact sources 
EXO 0748-676 (z = 0.35) and IE 1207.4-5209 (z = 0.12 - 0.23). 

a continuous curve in Fig. 3). Long term accretion on the QS can next 
produce stars with masses up to the limiting mass MQs,max for the quark 
star configurations. 

As we can see from the results reported in Tab. 1, within the present 
model for the EOS, we can distinguish several ranges for the value of the 
bag constant, which gives a different astrophysical output for our scenario. 
To be more specific, in Fig. 4 we plot the maximum mass of the QS se
quence, the critical mass and the corresponding final mass Mjin as a func
tion of B, in the particular case of the GM3 model for the EOS of the 
hadronic phase and taking a — 30MeV/fm2. Let us start the following 
discussion from "high" values of B down to the minimum possible value 
Bv (~ 57.5MeV/fm for as = 0) for which atomic nuclei will be unstable 
to the decay to a drop of deconfined u,d quark matter19 (non-strange QM). 
(1) B > B1. These "high" values of the bag constant do not allow the 
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Figure 4. The maximum mass MQs,max for the quark star configuartions (HS or SS), 
the critical mass Mcr and the mass Mfin of the stable QS to which it evolves are plotted 
as a function of the bag constant B. The vertical doted lines labelled B1 — BIV mark 
the boundary of different ranges of the bag constant which give a different astrophysical 
output for our scenario, as discussed in the text. The dashed horizontal line gives the 
value of the maximum mass for the pure hadronic star sequence. All the results are 
relative to the GM3 model for the EOS for the hadronic phase, the surface tension a is 
taken equal to 30 MeV/fm2 . 

quark deconfinement to occur in the maximum mass hadronic star either. 
Here B1 denotes the value of the bag constant for which the central density 
of the maximum mass hadronic star is equal to the critical density for the 
beginning of the mixed quark-hadron phase. For these values of B, all 
compact stars are pure hadronic stars. 
(2) BH < B < B1. Now, in addition to pure HS, there is a new branch 
of compact stars, the hybrid stars; but the nucleation time T(MHS,max) 
to form a droplet of Q*-matter in the maximum mass hadronic star, is of 
the same order or much larger than the age of the Universe. Therefore, it 
is extremely unlikely to populate the hybrid star branch. Once again, the 
compact star we can observe are, in this case, pure HS. 
(3) BIU < B < BH. In this case, the critical mass for the pure hadronic 
star sequence is less than the maximum mass for the same stellar sequence, 
i.e., Mcr < MHs,max- Nevertheless (for the present EOS model), the 
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baryonic mass Mb(Mcr) of the hadronic star with the critical mass is larger 
than the maximum baryonic mass MQS x of the hybrid star sequence. 
In this case, the formation of a critical size droplet of deconfined matter 
in the core of the hadronic star with the critical mass, will trigger off a 
stellar conversion process which will produce, at the end, a black hole (see 
cases marked as "BH" in Tab. 1). As in the previous case, it is extremely 
unlikely to populate the hybrid star branch. The compact star predicted by 
these EOS models are pure HS. Hadronic stars with a gravitational mass in 
the range MHS(M^Smax) < MHS < Mcr (where M^Smax is the baryonic 
mass of the maximum mass configuration for the hybrid star sequence) are 
metastable with respect to a conversion to a black hole. 

(4) BIV < B < BIU'. In this range for B one has Mcr < MHS{Mb
QSrnax). 

There are now two different branches of compact stars: pure hadronic stars 
with MHS < Mcr, and hybrid stars with MQS(M

b
r) < MQS < MQS,max 

(here MQs(Mb
r) = Mfin is the gravitational mass of the hybrid star with 

the same baryoinic mass of the critical mass hadronic star). 
(5) Bv < B < BIV. Finally, as B falls below the value BIV, the Bodmer-
Witten hypothesis starts to be fulfilled. Now the stable quark stars formed 
in the stellar conversion process are strange stars. 

4.1. The limiting mass of compact stars 

The possibility to have metastable hadronic stars, together with the feasible 
existence of two distinct families of compact stars, demands an extension 
of the concept of maximum mass of a "neutron star" with respect to the 
classical one introduced by Oppenheimer & Volkoff37. Since metastable 
HS with a "short" mean-life time are very unlikely to be observed, the 
extended concept of maximum mass must be introduced in view of the 
comparison with the values of the mass of compact stars deduced from 
direct astrophysical observation. Having in mind this operational definition, 
we call limiting mass of a compact star, and denote it as Mum, the physical 
quantity defined in the following way: 
(a) if the nucleation time T(MHS,max) associated to the maximum mass 
configuration for the hadronic star sequence is of the same order or much 
larger than the age of the universe TuniV, then 

MHm = MHS,max , (10) 

in other words, the limiting mass in this case coincides with the 
Oppenheimer-Volkoff maximum mass for the hadronic star sequence. 
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(b) If the critical mass Mcr is smaller than Mns,max {i-£- i~(MHS,max) < 
1 yr), thus the limiting mass for compact stars is equal to the largest value 
between the critical mass for the HS and the maximum mass for the quark 
star (HyS or SS) sequence 

Mlim = max[Mcr,MQS 

} • ( i i ) 
(c) Finally, one must consider an "intermediate" situation for which lyr < 
T(MHS,max) < Tuniv. As the reader can easely realize, now 

Mum = max MHS, max i MQS .max 

} , (12) 
depending on the details of the EOS which could give Mus,max > -^Qs.maa; 
or vice versa. 

In Fig. 5, we show the limiting mass Mum calculated in the case of the 
GMl+Bag model (dashed line) and in the case of the GM3+Bag model 
(continuous line) as a function of the bag constant B. In the same fig
ure, we compare our theoretical determination for Mnm with some of the 
"measured" masses of compact stars in radio pulsar binaries27 and for the 
compact stars Vela X-l (ref.28) and Cygnus X-2 (ref.29). 

5. Quark Deconfinement Nova and GRBs 

The delayed stellar conversion process, described so far, represents the 
second "explosion" - the Quark Deconfinement Nova32 (QDN) - in the 
two-step scenario proposed by Berezhiani et al.31 to explain the delayed 
SN-GRB connection. 

As we can see from the results reported in Tab. 1, the total energy 
(Econv) liberated during the stellar conversion process is in the range 0.5-
1.7xl053 erg. This huge amount of energy will be mainly carried out by 
the neutrinos produced during the stellar conversion process. It has been 
shown39 that near the surface of a compact stellar object, due to general 
relativity effects, the efficiency of the neutrino-antineutrino annihilation 
into e+e~ pairs is strongly enhanced with respect to the Newtonian case, 
and it could be as high as 10%. The total energy deposited into the electron-
photon plasma can therefore be of the order of 1051-1052 erg. 

The strong magnetic field of the compact star will affect the motion 
of the electrons and positrons, and in turn could generate an anisotropic 
7-ray emission along the stellar magnetic axis. This picture is strongly 
supported by the analysis of the early optical afterglow for GRB990123 
and GRB021211 (Ref.40), and by the recent discovery of an ultra-relativistic 
outflow from a "neutron star" in a binary stellar system41. Moreover, it 



32 

j i i i i i i i i i i i i i i i i i 
50 75 100 125 150 175 200 225 250 

B [MeV/fm3] 

Figure 5. The limiting (gravitational) mass Mnm, according to generalized definition 
given in the present work, is plotted as a function of the Bag constant. Solid (dashed) 
lines show the results for the GM3+Bag (GMl+Bag) model. In both cases we take 
a = 30 MeV/fm2 . The values of some "measured" masses of compact stars in radio 
pulsars and in Vela X-l and Cygnus X-2 are also reported for comparison. 

has been recently shown42 that the stellar magnetic field could influence the 
velocity of the "burning front" of hadronic matter into quark matter. This 
results in a strong geometrical asymmetry of the forming quark matter core 
along the direction of the stellar magnetic axis, thus providing a suitable 
mechanism42 to produce a collimated GRB. Other anisotropics in the GRB 
could be generated by the rotation of the star. 

6. Summary 

In this report, we have investigated the consequences of the hadron-quark 
deconfinement phase transition in stellar compact objects when finite size 
effects between the deconfined quark phase and the hadronic phase are 
taken into account. We have found that above a threshold value of the 
gravitational mass a pure hadronic star is metastable to the decay (conver
sion) to a hybrid neutron star or to a strange star. We have calculated the 
mean-life time of these metastable stellar configurations, the critical mass 
for the hadronic star sequence, and have explored how these quantities de
pend on the details of the EOS for dense matter. We have introduced an 
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extension of the concept of limiting mass of compact stars, with respect 

to the classical one given by Oppenheimer & Volkov. Within the astro-

physical scenario proposed in the present work, the existence of compact 

stars with "small" radii (quark stars) does not exclude the existence of 

compact stars with "large" radii (pure hadronic stars), and vice versa. We 

have shown tha t the present scenario implies, as a natura l consequence a 

two step-process which is able to explain the inferred "delayed" connection 

between supernova explosions and GRBs, giving also the correct energy to 

power GRBs. 

There are various specific features and predictions of the present model, 

which we briefly mention in the following. The second explosion (QDN) take 

place in a "baryon-clean" enviroment due to the previous SN explosion. Is 

is possible to have different t ime delays between the two events since the 

mean-life time of the metastable hadronic star depends on the value of the 

stellar central pressure. Thus the model of Berezhiani et al .3 1 is able to 

interpret a t ime delay of a few years (as observed2 '8 in GRB990705), of a 

few months (as in the case7 of GRB020813), of a few days (as deduced5 for 

GRB011211), or the nearly simultaneity of the two events (as in the case6 

of SN2003dh and GRB030329). 
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We present a brief account of two phenomena taking place in a neutron star crust: 
the Fermionic Casimir effect and the major density depletion of the cores of the 
superfluid neutron vortices. 

1. Fermionic Casimir effect and Neutron Star Crust 

At a depth of about 500 m or so below the surface of a neutron star the 
nuclear matter (which consists mostly of neutrons plus a small percentage 
of protons and electrons in /^-equilibrium) organize themselves in some ex
otic inhomogeneous solid phase 1. As a matter of fact, neutron star crusts 
seem to be just about the only other places in the entire Universe, apart 
from planets, where one can find condensed matter, in particular a solid 
phase 2. Moving from the neutron star surface inward, one finds at first a 
Coulomb crystal lattice of nuclei immersed in a very low density neutron 
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gas and even lower density electron gas. With increasing depth, the density 
and pressure increase, the nuclei get closer to each other and start evolving 
into some unusual elongated nuclei, which eventually become rods. These 
nuclear rods evolve gradually into plates, their place being taken later by 
tubes and bubbles (dubbed "inside out" nuclei) just before the average den
sity becomes almost equal to the nuclear saturation density and the entire 
mixture of neutrons, protons and electrons become an homogeneous phase. 
The properties of this part of the neutron star have been the subject of a 
lot of studies, see Refs. 1-3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 a n d o t h e r references 

therein. Most of these approaches however have missed a rather subtle and 
apparently important physical phenomenon, the fermionic counterpart of 
the Casimir interaction in such a medium i°>n,i2,i3,i4. 

In order to quickly explain the main physics ideas behind this new phe
nomenon, let us consider an over-simplified model of the neutron star crust. 
One can ask the rather innocuous question: "What is the ground state en
ergy of an infinite homogeneous Fermi sea of noninteracting neutral parti
cles with two hard spheres of radii a, separated by a distance r?" The naive 
and somewhat startling answer that perhaps one can place the two hard 
spheres almost anywhere with respect to each other and that the energy of 
the system will not be affected if one were to move the hard spheres around. 
The "theoretical argument" which can lead to such a conclusion is based on 
the same type of argumentation, which was used in Refs.1'5'6'7 and allowed 
these authors to establish that by going deeper and deeper into the interior 
of the neutron star one finds a well defined sequence of "exotic" nuclear 
shapes. This traditional argumentation is based essentially on liquid drop 
model, which includes the volume, surface, Coulomb contributions to the 
ground state energy only. This is basically "classical thinking." For a per
son using "quantum reasoning" instead, the fact that the ground state of 
such a system in infinitely degenerate (corresponding to an arbitrary rel
ative arrangement of the two hard spheres) will find such an answer most 
likely wrong. And indeed, a careful analysis of the problem reveals the fact 
that indeed a system of two hard spheres, immersed in an infinite Fermi sea 
of noninteracting particles at zero temperature has a well defined ground 
state. The correct answer, namely that the "interaction energy" of the two 
hard spheres of radius R, at distance r from each other, is somewaht even 
more surprising. One finds that 

m 2nr(r — 2R) 
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where j\{x) is the spherical Bessel function, kp is the Fermi momentum 
and m is the fermion mass. "Why would this "interaction energy" be a 
non-monotonic function of the hard sphere separation r?" and, moreover, 
"How does interaction really emerges here, where one starts with such a 
simple system of non-interacting particles?" As one soon "discovers" the 
"culprit" is the wave character of the Quantum Mechanics really. Fermions 
even at zero temperature do not stop moving and the space is really "filled" 
with an infinite number of de Broglie's waves. These waves reflect from the 
two hard spheres and as in the case of any wind musical instrument, for 
some frequencies one would have a favorable wave interference while for 
other frequencies there will not such a favorable interference. In an infinite 
Fermi sea there is an infinite number of waves with all frequencies ranging 
from zero to the Fermi frequency. If one carefully adds up the effects of 
all these waves one readily arrives at the result above 10<n. Things get 
a little bit more complicated when one adds more hard spheres, as then 
one naturally discovers that besides the "natural" two-body interactions 
there are genuine three- and four- and many-body interactions among these 
spheres. Moreover, there is absolutely no reason why not consider other 
type of objects, which could be immersed in this Fermi sea, like "logs" 
and "boards" and in principle almost anything else. Surprisingly all these 
combinations of various objects in various arrangements can be analyzed 
rather easily. What is surprising however is the fact that the characteristic 
interaction energy between such objects is of the same order as the energy 
differences between various phases in a neutron star crust 10>12>i3>14

 a n c i 
when taken into account this fermionic Casimir energy can in "ruin perfect 
crystalline structures" found in all previous studies. These conclusions 
have been backed by more sophisticated fully microscopic calculations of 
the nuclear matter in a neutron star crust 8 '9. 

Instead of describing in more detail results which have been published 
already, we shall instead draw the attention of our readers here to another 
element which was overlooked in studies of the neutron star crust, and 
which is apparently going to influence a great deal of properties. In or
der to analyze the thermal and electric conductivities of the crust, which 
are important for understanding of the thermal evolution of neutron stars 
one has to go beyond the static approximation. The "nuclei" which are 
immersed in the neutron fluid, which indeed is a superfluid, can and do 
move. As with boats on a lake, when they start moving they make waves 
and one has to include the dynamics of the surrounding superfluid in any 
analysis. We shall limit ourselves here to quoting a single result, namely 
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the kinetic energy of two penetrable spheres,located at the distance r, im
mersed in a superfluid at velocities below the critical velocity for the loss of 
superfluidity. One then finds 18 that the kinetic energy of two such spheres 
becomes: 

T= i(Mfenu? + M2
renu!) 

+4irmp0 

2 

•7 V (RiR2 3 
u\-u2 5-(iti • r)(u2 • r) , 2 7 + 1 

where the renormalized masses of nuclei have the form: 
2 

3 r " 1 l 2 7 + l '"* 2 7 + l ' 
where u, are the velocities of the two nuclei, i = 1,2 and Mi and Ri denote 
the nuclear bare mass and radii of the i — th nucleus, 7 = pout/pin and 
Pin,out are the densities inside and outside the two nuclei. The somewhat 
unexpected cross term appearing above shows that the existence of mere 
motion of the two objects in a perfect fluid can lead to a velocity-dependent 
interaction, which decays with the separation as slows as the static Casimir 
Fermionic energy, namely as 1/r3. Further analysis shows that this veloc
ity dependent-interaction is important as well when considering dynamical 
properties of neutron star crust 19. 

2. The Spatial Structure of a Vortex in Low-Density 
Superfluid Neutron Matter 

There is a long held belief that vortices in Fermi systems do not show any 
appreciable normal density variations and that only the anomalous density 
vanishes along the vortex axis, similarly to the behavior of the density 
(which is the order parameter) in Bose systems 20>21>22. Thus it came as 
somewhat of a surprise the fact that in Fermi systems one can have a spatial 
structure of a vortex with a significant normal density depletion along the 
vortex axis 23>24>25. What happens in low density superfluid neutron matter 
for example is the following. The magnitude of the pairing gap becomes 
comparable with the Fermi energy, 

The possibility that the value of the superfluid gap can attain large 
values was raised more than two decades ago in connection with the BCS 
—> BEC crossover 29>30. One can imagine that one can increase the strength 
of the two-particle interaction in such a manner that at some point a real 
two-bound state forms, and in that case a —> — 00. By continuing to 
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increase the strength of the two-particle interaction, the scattering length 

becomes positive and s tar ts decreasing. A dilute system of fermions, when 

PTQ <C 1 (here ro is the interaction radius), will thus undergo a transition 

from a weakly coupled BCS system, when a < 0 and a is of order ro, to a 

BEC system of tightly bound Fermion pairs, when a > 0 and a is of order ro 

again. In the weakly coupled BCS limit the size of the Cooper pair is given 

by the so called coherence length £ oc -^ f , which is much larger than the 

inter-particle separation wAj? = 2TT/kp. In the opposite limit, when kpa <C 

1 and a > 0, and when tightly bound pairs/dimers of size a are formed, the 

dimers are widely separated from one another. Surprisingly, these dimers 

also repel each other with a scattering length 0.6a 2 7 ' 2 8 and thus the BEC 

phase is also (meta)stable. The bulk of the theoretical analysis in the 

intermediate region where kp\a\ > 1 was based on the BCS formalism 

27,29,30,31 a n ( j thus is highly questionable. Even the simplest polarization 

corrections have not been included into this type of analysis so far. In 

particular, it is well known tha t in the low density region, where a < 0 

and kp\a\ <C 1 the polarization corrections to the BCS equations lead to a 

noticeable reduction of the gap 2 6 . Only a truly ab initio calculation could 

really describe the structure of a many Fermion system with fcp|a| 3> 1. In 

the limit a = ±oo, when the two-body bound state has exactly zero energy, 

and if kpro <C 1, one can expect tha t the energy per particle of the system 

is proportional to EF = h2kF/2m, see Bertsch's 1999 MBX Many-Body 

Challenge 3 2 . This problem was recently solved essentially exactly by the 

variational calculations of Refs. 33>34. The normal density at the vortex core 

is lowered, while the pairing field vanishes at the vortex axis as expected. In 

hindsight this result could have been expected. Large values of the pairing 

field correspond to the formation of a tom pairs/dimers of relatively small 

sizes. When these dimers are relatively strongly bound and when they 

are also widely separated from one another, they undergo a Bose-Einstein 

condensation. For a vortex s tate in a 100% BEC system the density at the 

vortex axis vanishes identically. Therefore, by increasing the strength of 

the two-particle interaction, the Fermion system simply approaches more 

and more an ideal BEC system, for which a density depletion of the vortex 

core is expected. 

Almost thir ty years ago Anderson and Itoh 2 put forward the idea that 

vortices should appear in neutron stars and tha t they can also get pinned to 

the solid crust. They argued tha t the "s tar-quakes," observable on Ear th 

as pulsar "glitches," apparently are caused by the vortex de-pinning in neu

tron star crust. This idea and its various implications have been examined 
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by numerous authors, see Refs. 2 1 , 2 4 and further references therein, but a 

general consensus does not seem to have emerged so far. 

The profile of a vortex in neutron mat ter is typically determined using a 

Ginzburg-Landau equation, which is expected to give mostly a qualitative 

picture and its accuracy is difficult to estimate. Surprisingly, prior to Ref. 
2 3 there exists only one microscopic calculation of a vortex in low density 

neutron mat ter 2 2 . The existence of a strong density depletion in the vortex 

core is going to affect appreciably the energetics of a neutron star crust. One 

can obtain a gross estimate of the pinning energy of a vortex on a nucleus 

as E^in = [e(pout)pout - £(Pin)Pm}V, where e(p) is the energy per particle 

at density p, pin and pout are the densities inside and outside the vortex 

core and V is the volume of the nucleus. Naturally, this simple formula 

does not take into account a number of factors, in particular surface effects 

and the changes in the velocity profile and the pairing field. These last 

contributions were accounted for (with some variations) in the past 2 ' 2 1 . 

However, if the density inside the vortex core and outside differ significantly 

one expects EYin to be the dominant contribution. In the low density 

region, where e{p0ut)Pout/s{pin)Pin is largest, one expects a particularly 

large anti-pinning effect (EY,in > 0). The energy per unit length of a 

simple vortex is expected to be significantly lowered when compared with 

previous estimates 2 ' 2 1 by « {s{p0ut)Pout — £{pin)Pin]^R2, where R is an 

approximate core radius. 
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In the early 1990's, isolated thermally-emitting neutron stars accreting from the 
interstellar medium were predicted to show up in their thousands in the ROSAT 
soft X-ray all-sky survey. The glut of sources would provide unprecedented op
portunities for probing the equation of state of ultra-dense matter. Only seven 
objects have been firmly identified to date. The reasons for this discrepency are 
discussed and recent high resolution X-ray spectroscopic observations of these ob
jects are described. Spectra of the brightest of the isolated neutron star candi
dates, RX J1856.5—3754, continue to present interpretational difficulties for cur
rent neutron star model atmospheres and alternative models are briefly discussed. 
RX J1856.5—3754 remains a valid quark star candidate. 

The observed population of stars as a function of mass, together with 
present day abundances of elements produced by nucleosynthesis in super-
novae and observed extragalactic supernova rates, lead to the deduction 
that our Galaxy should be inhabited by 108-109 neutron stars—up to 1% 
of the stellar population. Following their birth at temperatures as high 
as 1011 K, neutron stars cool, cease pulsar activity and become essentially 
inactive and invisible in a fleeting 106-107 yr51. Consequently, although 
in the solar vicinity there are expected to be 2-3 x 10 ~4 p c - 3 of these 
objects,43 only about 1500 neutron stars are currently known. The ma
jority of these were detected as radio pulsars, and the remainder became 
conspicuous through relative 7-ray or X-ray brightness. Most numerous 
among the latter minority are neutron stars in close binary systems, whose 
X-ray emission is driven by accretion of matter from a less evolved com
panion. 

In the early 1990's, the launch of the ROSAT soft X-ray (0.1-2.5 keV) 
satellite rekindled earlier ideas36 that isolated old radio-quiet neutron stars 
might be re-heated by accretion of interstellar material to sufficiently high 
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temperatures so as to be detectable in soft X-ray all-sky surveys2,50. Pre
dictions of the number of objects that would be detected were made—the 
numbers ranged from the hundreds to thousands. Such a population of 
re-heated objects would be important for probing the old neutron star pop
ulation and would provide a test of models of Galaxy evolution: in partic
ular, supernova rates and the nucleosynthetic and energetic history of the 
interstellar medium (ISM). 

More central to this meeting, the evolution and structure of neutron 
stars depends on the properties of matter at nuclear and supranuclear 
densities: observations of neutron stars—their masses, radii and cooling 
characteristics—might provide useful constraints for the equation of state 
(EOS) of ultra-dense matter27,20, including tests of exotic particle and 
strange quark solutions (Fig. 1). Neutron stars provide extremes of phase 
space unattainable in terrestrial laboratories. In this context, re-heated 
isolated neutron stars would be important since their spectra would not be 
complicated by strong accretion or magnetospheric signatures and would 
provide a direct glimpse of the neutron star surface. This aspect of neutron 
star astrophysics comfortably promotes these objects to the very top of the 
cosmic sexiness ladder (Figure 1). 

Prior to the first detailed high resolution spectroscopic observations 
obtained by the "next generation" Chandra and XMM-Newton X-ray ob
servatories, it was hoped that identification of metallic atmospheric ab
sorption lines would provide a measure of the gravitational redshift, from 
which the ratio of mass to radius, M/R, can be obtained. It has also 
been pointed out that simultaneous measurements of pressure-broadened 
line wavelengths and profiles can constrain both M and R37. For ob
jects with fairly strong magnetic fields, X-ray spectra are also expected 
to host deep, broad proton cyclotron lines that can constrain the mag
netic field strength, B. The apparent stellar radius (the "radiation ra
dius", Roo = Rj\J\ — 2GM/Rc2) can be derived from a measurement 
of the temperature and luminosity of the object, interpreted by means 
of models of the emergent spectra computed by solving simultaneously 
the radiative transfer and structure equations for the neutron star atmo
sphere. 

Unfortunately, the numbers of neutron stars actually detected by 
ROSAT did not quite meet optimistic expectations, by a mere 3 orders of 
magnitude. Later high resolution spectra obtained by Chandra and XMM-
Newton would also confound conventional interpretation. 
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The Cosmic Sexiness Ladder 
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Figure 1. Left: The well-known fact that purported scientific "sexiness" of different 
fields of astrophysics is in general inversely proportional to the observational information 
available is illustrated by the Cosmic Sexiness Ladder. Owing to their possible use for 
probing fundamental physics and exotic states of matter, neutron stars and quark stars 
occupy the top rung. Right: Mass-radius curves for several different EOS for stars 
containing nucleons and, in some cases, hyperons2 7 . 

Table 1. Known isolated, radio-quiet, thermally-emitting compact stars 

Source 

RBS 1223 

RBS 1556 

RBS 1774 

RX J0720 

RX J0806 

RX J1856 

RX J0420 

P S P C 
(count s - ) 

0.29 

0.88 

0.11 

1.69 

0.38 

3.64 

0.11 

Tbb 
(eV) 

118 

100 

92 

79 

78 

57 

57 

NH 

(10 2 0 c m - 2 ) 

~ 1 

< 1 

4.6 

1.3 

2.5 

2 

1.7 

l o g / * / / „ 

~ 5 

~ 5 

> 3 

5.3 

> 3.4 

4.9 

> 3.3 

Period 

(s) 

5.16 

8.37 

11.37 

22.7 

Optical 
Excess? 

Yes 

Yes 

Yes 

Yes 

Refs 

9,14,16 

9,10,17 

13 

6,7,8 

11,15 

2,3,4,5 

12 

References: (1) Stocke et al. 1995; (2) Walter et al. 1996; (3) Neuhauser et al. 1997; (4) 
Campana et al. 1997; (5) Walter & Matthews 1997; (6) Haberl et al. 1997; (7) Motch & 
Haberl 1998; (8) Kulkarni & van Kerkwijk 1998; (9) Schwope et al. 1999; (10) Motch et 
al. 1999; (11) Haberl et al. 1998; (12) Haberl et al. 1999; (13) Zampieri et al. 2001; (14) 
Hambaryan et al. 2002; (15) Haberl et al. 2002; (16) Kaplan et al. 2002; (17) Kaplan et 
al. 2003 

1. IRaTE Neutron Stars: Cooling and Re-heating 

Instead of the expected glut of thousands of isolated radio-quiet thermally-
emitting neutron stars (IRaTE NS), only seven candidates have so far been 
identified. The identification process for these sources is not trivial, how
ever, since firm identification requires exclusion of association with other 
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plausible counterparts, and since NS themselves are expected to be ex

tremely faint in optical light (V ;> 25 or so). The typical error in X-ray 

source positions in the ROSAT All-Sky Survey (RASS) is 10-15 arcsec, 

which is often sufficiently large to encompass possible culprits such as back

ground active galactic nuclei or stars in our own galaxy. A 90% confidence 

upper limit to the total number in the ROSAT All-Sky Survey has been 

estimated as 67 4 6 . 

The seven current I R a T E NS candidates are characterized by remark

ably similar properties: soft, thermal X-ray spectrum consistent with black-

body temperatures kT ~ 100 eV (at resolution E/AE ~ 2); low X-ray 

luminosity, Lx ~ 1030 — 1 0 3 1 e r g s _ 1 ; lying behind a low column density of 

interstellar hydrogen, NH ~ 1020 cm~ 2 ; extremely faint probable optical 

counterpart with V ;> 25, corresponding to X-ray-to-optical flux ratios of 

log(fx/fv) ~ 4 — 6; no association with a supernova remnant; and pulsa

tion periods (detected in four of the seven so far) in the 5-20s range. These 

seven objects are summarised in Tablel ; more detailed reviews have been 

presented by other workers.5 1 , 3 0 

The I R a T E NS are either young (<; 106 yr), cooling objects, or else are 

much older and have been re-heated to, or sustained at, X-ray temperatures 

by accretion of ambient medium. The expected population of IRaTE NS 

still young enough to be X-ray bright can be estimated by combining a 

census of the present day population of intermediate-high mass stars with 

NS cooling models, though not without considerably uncertainty, as we 

discuss below. Re-heating an older population is even more complicated, 

since the accretion process itself depends critically on the neutron star 

magnetic field, rotation ra te , and space velocity, as well as on the ISM 

density in which the star finds itself. 

1 .1 . Hot Young Ones 

The cooling of NS depends on the properties of mat ter at or near nuclear 

densities in the stellar core and crust. Cooling can be roughly divided into 

three stages: a very brief 10-100yr period of thermal relaxation of the inte

rior; 105-106yr period of neutrino-dominated losses through Urea processes, 

neutrino bremsstrahlung, Cooper pairing of nucleons, electron-positron an

nihilation and plasmon decay2 0; and ending with photon-dominated cooling 

from the outer layers. The interior neutrino processes are dependent on the 

EOS and on the density, and consequently neutrino-dominated cooling rates 

are strongly mass-dependent, with more massive stars cooling much more 
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rapidly. While EOS and mass dependency of cooling rates leads to degener
acy in interpreting the observed temperatures of different objects of known 
age, the required masses for young to middle-aged NS (~ 103-106yr) can 
be weakly constrained to the range 1.2-1.45M©20. 

Applying NS cooling models, together with estimates of the local Galac
tic NS birthrate, the observed numbers of hot cooling objects detected 
through their thermal emission in soft X-rays appears to exceed the ex
pected local disk population, but can be explained by the young stars that 
comprise the Gould Belt.42. If all the objects detected so far, including the 
seven IRaTE NS, are cooling objects, where are the thousands of re-heated 
objects and why are they not detected? 

1.2. Old Ones Trying to be Hot 

If the NS is hot, it will photoionize the surrounding medium whose accre
tion can then be arrested by the NS magnetic field. Both the magnetic 
field and spin of a NS act to inhibit accretion: the ram pressure of ac
creting material must overcome the radiation pressure generated by the 
spinning (assumed dipolar) magnetic field, and the gravitational pull must 
also overcome the magnetic field to within the corotation radius—the radius 
at which centrifugal force on particles contained by the spinning magneto-
sphere equal gravitational attraction. The different forces at play define four 
regimes of interaction with the ambient medium, depending on which dom
inates: ejector (outward radiation pressure); georotator (magnetic pressure, 
in analogy with the interaction of the Earth and solar wind); propeller (mag
netic pressure prevents penetration of the centrifugal barrier); and accretor 
(gravity)11,51,43. These regimes are illustrated as a function of magnetic 
field strength, B, and space velocity, v, in Figure 2. 

There are three large sources of uncertainty in placing the population 
of NS in Figure 2. The particular regime that a NS finds itself during its 
lifetime depends on a combination of its velocity, spin period and magnetic 
field strength. Both the initial strength and evolution of the magnetic field 
are not yet well-understood; in particular, whether or not the magnetic field 
decays significantly during the NS lifetime remains controversial (e.g. review 
by Verbunt56). It has been pointed out that for B field decay timescales 
of ~ 109yr, a NS might linger in the ejector or propeller state for a time 
comparable to or longer than the age of the Galaxy28'8. Importantly, the 
early estimates of the numbers of detectable accreting IRaTE NS assumed 
that all isolated NS would decay in magnetic field strength to a "low" value 
of B ~ 109 G, allowing accretion to proceed. 
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Figure 2. Left: The different interactions of a neutron star with the ISM as a function 
of the space velocity in units of 10 km s—1 and magnetic field strength in units of 
1012 GS 1 . Right: Comparison between neutron star initial velocity distributions34 , 9 

used in estimates of Bondi accretion ra tes 5 0 , 4 0 . 

Since they are powered by loss of gravitational potential energy of ac
creting matter, the X-ray luminosity of an accreting NS depends directly 
on the mass accretion rate, M. The ROSAT predictions employed the 
Bondi-Hoyle formalism3 

- ^ B o n d i 
4irG2M2p 

(v2 + C2)3/2 (1) 

for hydrodynamic accretion, which applies only when the ambient medium 
is collisional on the scale size of the accretion radius, racc — 2GM/v2. Here, 
ionization of the surrounding medium is essential because the Coulomb 
cross-section for protons, ap ~ 2 x 1014 cm~2 is two orders of magnitude 
larger than that for neutral particles, an ~ 3 x 1016 cm - 2 ; neutrals can only 
accrete hydrodynamically for NS with space velocities no larger than v ~ 
1 km s~x—an impossibly small value. Ballistic accretion of non-interacting 
particles is much less efficient1 and would be unable to drive X-ray emission. 
As long as the NS temperature is T ;> 105 K it should be able ionize the 
ISM flow beyond the accretion radius, r^c1, but cooler objects producing 
too few ionizing photons to drive hydrodynamic accretion might never be 
reheated. 

The applicability of the Bondi-Hoyle rate (Eqn. 1) has recently been crit
icised based on observed accretion rates around supermassive black holes40 

and on magnetohydrodynamic simulations of accretion onto magnetised 
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NS 4 9 . Perna et al .4 0 suggest instead 

M ~ f - ^ ) P M B o „ d i (2) 
\ ftacc / 

where i? ; n is a few tens of Schwarzchild radii and p ~ 0.5-1, giving M ~ 

10_2-10 -4M-Bondi, a n d predicted with this model a null detection rate of 

re-heated IRaTE NS in the RASS, in apparent agreement with observations. 

Another important aspect of the Bondi accretion rate predictions is 

the dependency of M on u~ 3 : the predicted X-ray luminosity distribution 

of the accreting population then depends sensitively on the assumed NS 

velocity distribution. This velocity distribution depends on the NS birth 

rate through time, on the natal "kick" velocity resulting from anisotropic 

core collapse in the supernova explosion, and on the subsequent evolu

tion of the velocity distribution in the Galactic gravitational potential over 

time—considerable uncertainties exist at each step. Recent work on pulsar 

velocities shows tha t the velocity distr ibution3 4 used in RASS I R a T E NS 

predictions and tha t peaks sharply at ~ 45 km s _ 1 greatly overpredicts the 

fraction of low velocity s tars 9 (Fig. 2). Adopting a more recent velocity 

distribution based on a sample of 49 young pulsars 9 leads to an order of 

magnitude reduction in the predicted number of detectable accreting NS 4 0 . 

Wi th some confidence in estimated accretion rates, the observed limits to 

the detectable number of accreting I R a T E NS can also be used to constrain 

the NS velocity distribution. Using such arguments, the mean natal kick 

velocity appears to be ^ 200 — 300 km s~1 4 3 . 

In summary, the catastrophic overestimates of the detectable number of 

X-ray emitting IRaTE NS can be a t t r ibuted to three main causes: (i) only 

a fraction of NS are likely to spend significant amounts of t ime as accreting 

objects owing to the longevity of the ejector and propeller phases4 3 ; (ii) 

the Bondi accretion rate likely substantially overestimates the t rue rate, 

possibly by orders of magni tude 4 9 ' 4 0 ; (hi) the assumed velocity distribution 

of accreting NS greatly overestimated the number of slow-moving objects.9 

It is then very likely tha t the seven known I R a T E NS are young cooling 

objects4 2 . This is potentially important for interpreting detailed spectro

scopic observations: the surface composition of young objects might be 

expected to consist of heavy elements such as Mg, Si or Fe, depending on 

the degree of fall-back in the supernova event; accreting objects in contrast 

will have an atmosphere of pure H, since heavier metals gravitationally 

settle in a very short time. 
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2. High Resolution Spectroscopy of IRaTE NS 

"The widespread astrophysical practice of declaring the nature of 
unresolved celestial objects is more entertainment than science"— 
Eugene Parker 

Of the seven known IRaTE NS listed in Table 1, six have now been 
observed by Chandra or XMM-Newton and RBS 1774 should be observed 
by XMM-Newton in the coming year. 

2.1. RX J1856.5-3754 

"Simply a discovery that defies all known laws of physics"— 
National TV news, France 2 

RX J1856.5—3754 was first identified as an isolated neutron star can
didate from ROSAT observations of the Corona Australis star forming 
region59. It is the closest and X-ray brightest of the IRaTE NS and is 
therefore especially important for attempting to understand the structure 
and thermal evolution of neutron stars. 

Optical and ultraviolet HST observations of RX J1856.5 —3754 led to 
identification of an extremely faint blue counterpart to the X-ray source58 

and have provided estimates of the parallax and proper motion. A distance 
of 117 ± 12 pc was derived by Walter & Lattimer 57, superseding their 
earlier estimate of approximately half this value (61 pc) and supporting a 
larger distance of at least 100 pc implied by the measured ISM absorption12; 
at the same time, Kaplan and co-workers22 had determined a range 110-
200 pc, and based on more recent observations their preliminary value for 
the distance is now 175 pc (D. Kaplan, private communication). 

Extrapolation of the ROSAT X-ray blackbody-like spectrum leads to 
significant underprediction of the optical flux, while pure hydrogen models 
overpredict it by factors of 30 or more41. Interpretation in terms of metal-
dominated and two-blackbody models—ie models invoking surface temper
ature inhomogeneity such as a hot spot—alleviates this problem and initial 
analyses using the distance of 61 pc implied an upper limit to the radius of 
Roo < 13 km41'57—compatible only with the softest EOS. 

Chandra observed RX J1856.5-3754 for 50 ks in 2000 March. These first 
50 ks yielded a smooth, blackbody-liked spectrum6 with none of the obvious 
line features predicted by heavy element atmosphere models. However, the 
spectra were noisy and RX J1856.5—3754 was observed under Director's 
time some 18 months later in 2001 October for a further 450 ks—about 
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ten times longer than a typical Chandra observation. All 500 ks of the 
combined data. . . yielded a smooth, blackbody-like spectrum with none of 
the obvious line features predicted by heavy element atmosphere models.12 

Timing analyses also failed to detect any sign of pulsations that might be 
expected from a hotspot or surface temperature inhomogeneities12,44; more 
recent XMM-Newton observations imply a pulse fraction upper limit of only 
1.3% (2a).5 

"Astronomers have discovered two quarks with the Hubble Space 
Telescope"—The Times (London) 

20 40 60^ 80 
Wovefength (A) 

Figure 3. Left: Chandra LETGS spectrum of RX J1856.5-3754 with blackbody model 
and residuals (observations—model) 1 2 . Residuals are consistent with Poisson noise, 
allowing for detector gaps (^§0 A) and calibration uncertainties. Right: Quark and 
neutron stars cunningly juxtaposed with the Grand Canyon to illustrate scale. The 
5 X 106 ~ 70 kg visitors to the Grand Canyon each year that are inevitably accreted 
allow the stars to shine with a luminosity of ~ 2 x 1024 erg s - 1 . 

If it radiates like a blackbody, the radius of RX J1856.5—3754 can be 
derived from the distance and the observed luminosity obtained from the 
best-fit blackbody spectrum, as illustrated in Figure 3: RQQ = D^/L/aT^. 
This exercise. yields a very small radius of R^ = 3.2-8.2 km12 for an as
sumed distance in the range 111-200 pc.22,12 Such a radius is incompatible 
with NS BOS and, combined with some expectations that they should have 
blackbody spectra,60 lead to the speculation that RX J1856.5—3754 might 
indeed be a strange quark star12 as had been suggested earlier based on 
ROSAT evidence alone19. This suggestion went down exceedingly well with 
the imaginative agents of publicity (Fig. 3, right panel). 
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2.1.1. Arguments for a "Conventional" EOS 

"Quark stars signify unstable Universe"—Harvard University 

Gazette 

It was subsequently argued tha t the revised distance5 7 of 110-130 pc, 

combined with metal-dominated atmospheres or two-blackbody models, re

moves observational support for extremely soft EOS because such mod

els yield radii compatible with canonical neutron s tars 5 7 . However, even 

for these models the allowed range of radii also encompass quark star 

solutions5 7 and these cannot be excluded. Moreover, the lines predicted 

by current metal-dominated model atmospheres are not supported by the 

observed smooth Planckian Chandra and XMM-Newton spectra, and two-

component models rely on a special orientation of the spin and /or magnetic 

axes in order to meet the now stringent pulse fraction limit of current ob

servations. 

Another proposed explanation for a lack of metallic spectral features is 

tha t these are washed-out to leave a near blackbody spectrum in the case 

of a very rapidly spinning pulsar ( P ~ 1 ms) 4 . However, such a short 

period does seem incompatible with other similar objects whose periods 

are in the 0.1-10s range, and based on the energetics of the H a bow-shock 

nebula discovered in deep VLT imaging observations5 5 would imply a very 

low magnetic field strength of 106-107 G.53 . 

Qualitative arguments appealing to magnetic smearing of spectral lines 

have also been invoked to explain the lack of observed features.52 In 

this work, R^ > 16.5 km was obtained from two-component surface 

T-varying blackbody analyses. While magnetic smearing arguments are 

plausible, the applicability of magnetized metal-dominated atmospheres to 

RX J1856.5—3754 has yet to be demonstrated, and the lack of observed 

pulsations for inhomogeneous T distributions again requires preferential 

sp in /B orientation. Unencumbered by the burden of observational fact, it 

was nevertheless concluded tha t "Quark stars and neutron stars with quark 

mat ter cores can be ruled out with high confidence".. . 

We note that the latter two of the above cited studies4 '5 2 used a dis

tance of 117 pc and canonical mass M ~ 1.5M© to obtain true NS radii 

(as opposed to QQ) of ~ 14 km. Such a radius demands a hard EOS. If 

the preliminary distance of 175 pc (D. Kaplan, private communication) is 

confirmed, these radii will need to be upwardly revised to ~ 20 km and 

would begin to look too large rather than too small, excluding all but the 

hardest equations of s tate unless the NS mass is extremely low (<; 0 . 3 M Q ) . 
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2.2. RX J0720.4 - 3125 

RX J0720.4 - 3125 is the second brightest IRaTE NS and was the first 
IRaTE NS to be observed by the new generation X-ray observatories on 
May 2000 in a 62.5 ks XMM-Newton pointing38. The EPIC-PN spectrum 
was well-represented by a blackbody and no spectral features were seen, 
apart from variations in the column density with pulse phase that may 
be explained in terms of energy-dependent beaming effects or cyclotron 
absorption38'10. Similar to RX J1856.5—3754, the optical spectrum is ele
vated above the extrapolated X-ray blackbody by a factor of 2.4 and shows 
signs of devation from a Rayleigh-Jeans tail25. 

The X-ray flux exhibits a modulation with a period of 8.31 s and a 
pulsed fraction of ~ 15%16,10. The period derivative, P ~ 5 x 10~1 4ss_ 1 , 
was derived using the long timeline provided by both ROSAT and XMM-
Newton data61. When interpreted in terms of magneto-dipolar braking, 
this deceleration implies a surface magnetic field of ~ 2 x 1013 G.61 The 
currently favoured interpretation of RX J0720.4 — 3125 is in terms of a 
young off-beam radio pulsar61'25. 

Very recently, the X-ray spectrum of RX J0720.4 — 3125 in succes
sive XMM-Newton observations has been seen to be slowly evolving away 
from a blackbody shape over a period of 3 years since the first observa
tion and is becoming harder13. This surprising result has been tentatively 
interpreted13 in terms of a model in which the observed quasi-blackbody is 
shaped by cyclotron-resonance scattering by electron-positron pairs in the 
magnetosphere45 (see below). In this model, the changing spectral shape 
is caused by a gradual change in viewing angle as a result of precession of 
the NS. 

2.3. The Rest: RBS1223, RBS1556, RX J0806, 
RX J04 20. . . 

With the exception of the "evolved" late RX J0720.4 - 3125 spectrum, 
the X-ray continuum spectra of all six IRaTE NS observed by Chandra or 
XMM-Newton to date appear to be consistent with blackbody energy distri
butions with temperatures in the range kT ~ 40-100 eV. X-ray pulsations 
have been detected in four of the six with periods in the range 5-22s. Recent 
developments include the detection of a shallow broad absorption feature 
in RBS1223 at 270 eV and one at 450 eV in RX J1605.3+3249. These fea
tures have been interpreted in terms of proton cyclotron absorption18,54; 
B field strengths implied are 2-6 x 1013 and 1014 G, respectively. This 
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interpretation is favoured if these objects are young pulsars in which the 
radio beam does not cross the Earth as the derived B field is then similar 
to those determined for radio pulsars with similar long spin periods18. If 
the features are instead electron cyclotron lines, the implied B fields are 
weaker by the factor mp/mei or ~ 2000. 

There is a growing list of neutron stars observed by high resolution X-ray 
spectrometers on-board Chandra and XMM-Newton that appear to have 
featureless, thermal components. Two further examples are the middle-
aged pulsar PSR B0656+14 and the anomalous X-ray pulsar 4U 0142+6129 

(see also the review of Pavlov et al.39). As with RX J1856.5-3754, they 
provide a challenge to current model atmospheres for neutron stars since 
both metal-dominated or pure H or He models are incapable of explaining 
their SEDs. 

3. Are RX J1856 .5 -3754 and RX J0720.4 - 3125 "Naked"? 

Figure 4. Left: Critical temperature for H and Fe as a function of the magnetic field.53 

Condensation is possible in the hatched region for Fe and in the cross-hatched region for 
H. The filled circles with error bars mark the position of five cool INSs; the horizontal 
line corresponds to RX J1856.5—3754. Right: Emergent spectrum (solid curve) from a 
neutron star with a condensed surface, and with effective temperature T = 106 K, B = 
2 X 1013 G and a 0.002 g c m - 2 overlying H layer. The dashed curve is a blackbody with 
the same temperature, while the dashed-dot curve corresponds to the best-fit blackbody 
to the model spectrum. 

Based on theoretical arguments that cool neutron stars (T <, 106 K) 
endowed with a rather high magnetic field {B ;> 1013 G) might undergo 
a phase transition to a solid state in the outermost layers,26 it has been 
suggested that RX J1856.5-3754, and perhaps also RX J0720.4 - 3125, 
might be left "naked" with no gaseous atmosphere53,6 (Fig. 4). Computed 
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spectra from naked neutron stars with a surface Fe composition are feature
less and virtually indistinguishable from a blackbody in the 0.1-2 keV range 
for energies above the plasma frequency, though the solid surface has an 
emissivity ~ 30 — 50% lower than that of a blackbody. Below the plasma 
frequency, electron-phonon interactions devastate the emissivity and the 
spectrum plummets to zero.53 The reduced X-ray emissivity leads to a 
larger radius than the blackbody radiation radius. This model is promising 
for explaining the X-ray SED of RX J1856.5—3754 and predicts an appar
ent star radius of R^ ~ 10-12 km—compatible with quark star EOS, and 
in reach of soft NS EOS, especially if the distance of 175 pc is confirmed. 

The optical excess above the X-ray blackbody can be explained in this 
model by a thin H layer that might have either been accreted, or has fallen 
back during the supernova explosion.53,33 One example of the emergent 
spectrum from this model is illustrated in the right panel of Figure 4. 

4. Cyclotron-resonance Scattering in an e+-e~ pair plasma? 

It has recently been proposed that the Planck-like spectrum of IRaTE NS 
might be explained by cyclotron-resonance scattering of the underlying stel
lar spectrum by an optically-thick e + /— pair plasma that is maintained by 
the conversion of gamma-rays associated with the polar-cap and/or outer-
gap accelerators.45. The scattering occurs within several radii of the neu
tron stars and prevents direct observations of thermal X-rays from the 
stellar surface. While quantitative modelling remains to be done, this in
triguing suggestion would imply that we are looking at the magnetospheres 
rather than the photospheres if the IRaTE NS. An impenetrable magneto-
sphere would put serious dampers on attempts to use IRaTE NS to con
strain the EOS, possibly precipitating a fall from the top of the Cosmic 
Sexiness Ladder. 

5. Concluding Remarks and the Future 

"One should always be suspicious of an experimental result until it 
is confirmed by theory"—Sir Arthur Eddington 

Arguments against there being a significant population of accretion-
heated IRaTE NS, combined with population synthesis of young cool
ing objects, conspire to imply that the seven objects found to date be
long to the latter class. The general similarity between objects such as 
RX J1856.5-3754 and RX J0720.4-3125 make it tempting to interpret the 
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Figure 5. The ratio of 25% and 75% quantile photon energies for sources detected in 
Chandra fields observed using the ACIS detector plotted as a function of the normalised 
median photon energy. The vast majority of sources are active galactic nuclei and stellar 
coronae. The grid is comprised of analogous quantile ratio loci computed for blackbody 
spectra in the range 105-10 K as a function of temperature (increasing to the right) 
and intervening ISM absorption (increasing upward). Only a small handful of possible 
candidates lie within these regions. 

IRaTE NS as young off-beam pulsars, or possibly as magnetar decendents30. 
However, there is as yet no satisfactory explanation for RX J1856.5—3754 
that fits all available data without invoking ad hoc explanations for lack 
of pulsations, spectral features or optical excess. While the awkward ob
servational data can with some effort be shoehorned into canonical theory, 
other quite different physical explanations are also possible. These include 
a strange quark star EOS and a solid phase naked star bereft of an optically 
thick atmosphere. 

Only when we can understand the outer layers better will observations of 
these stars become potentially useful for constraining the EOS. Three areas 
for future progress lie in (i) including magnetic fields in metal-dominated 
models that, other than for their gaping X-ray holes, appear quite promis
ing in explaining IRaTE NS SEDs; (ii) repeating observations of IRaTE 
NS already observed to search for secular variations that might betray as
pects of the underlying nature of these stars; (ii) finding new IRaTE NS to 
enlarge the woefully small sample of known objects. In this regard, work is 
currently underway to search the entire database of Chandra observations 
for serendipitous sources that might be NS candidates (Fig. 5). While the 
sky coverage is small (a few 10's of square degrees), many pointings are 
deep and the 1 arcsec Chandra PSF should allow for rapid counterpart 
identification. 
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PHASE TRANSITIONS IN N E U T R O N STARS 

N O R M A N K. G L E N D E N N I N G 
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Berkeley, California 94720 
USA 

Neutron stars are the densest objects in the universe today in which matter with 
several phases in adiabatic equilibrium can be found. Various high-density phases, 
both geometric and constitutional are spatially spread out by the pressure gradient 
in the star. Boundaries between phases slowly move, appear, or disappear as the 
density profile of the star is changed by the centrifugal force due to spindown caused 
by the magnetic torque of a pulsar, or the spinup of an x-ray neutron star because 
of the torque applied by mass accreted from a companion star. Phase transitions 
in turn produce their own imprint on the spin behavior through changes in the 
moment of inertia as one phase replaces another, in some cases on single stars, and 
in others on populations. These are the clues that we elucidate after first reviewing 
high-density phases. 

1. A Brief History of Neutron Stars 

• 1054 Chinese astronomer "observed the apparition of a guest star 
...its color an iridescent yellow". 

• 1933 Baade and Zwicky—binding energy of "closely packed neutrons" 
powers supernova. 

• 1939 Oppenheimer, Volkoff and Tolman—neutron fermi gas. 
• 1967 Pacini predicted magnetic dipole radiation. 
• 1967 Hewish & Bell's serendipitous discovery of neutron stars 

producing a radio pulse once every revolution from beamed radiation 
along the magnetic axis which is fixed in the star. They are believed 
to be the direct product of core collapse a mature massive star and 
its the subsequent supernova. 

• 1974 Hulse and Taylor binary neutron star pair in close orbit. 
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• 1984 Bacher's discovery of first Millisecond pulsar. They are believed 
to be very old supernova products that have been spun up by mass 
accretion from a low-mass companion star. 

• 1992 Wolszczan & Frail, discovery of 3 planets around a neutron star. 

2. Gross Features of Neutron Stars 

• Surface gravity M/R of Black hole =0.5, 
Neutron star =0.2, 
Sun =10" 6 

• Gravitational binding / Nuclear binding ~ 10 
• Radius = 10 - 12km, Mass> 1.44MQ 

• Spin periods from seconds to milliseconds 
• Neutron stars are degenerate objects (/J, << T). 
• Stars are electrically neutral. (Z-^et/A ~ (m/e)2 < 10 - 3 6) 
• Baryon number and charge are conserved. 
• Strangeness not conserved (beyond 10~10 seconds). 
• Millisecond pulsars have remarkably stable pulses: 

P = 1.55780644887275 ±0.00000000000003 ms 
(measured for PSR 1937+21 on 29 Nov 1982 at 1903 UT) 

CD 
V) 
D 
Q . 

E 
Z3 

Period in seconds 

Figure 1. There are two classes of pulsars. The great bulk of known ones are the 
canonical pulsars with periods centered at about 0.7 seconds. The millisecond pulsars 
are believed to be an evolutionarily different class. They are harder to detect, and were 
first discovered in 1982. 
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3. Hyperonization 

Free neutrons are unstable, but in a star the size and mass of a neutron 
star, gravitational binding energy is about ten times greater than nuclear 
binding so that neutrons are a stable component of dense stars. What 
about protons? The repulsive Coulomb force is so much stronger than the 
gravitational, that the net electric charge on a star must be very small 
(Znet/(N + Z) < (m/e)2 ~ 10~36). We can say that it is charge neutral. 
Since mp + me > mn, neutrons are the preferred baryon species. However, 
being Fermions, with increasing density of neutron matter, the Fermi level 
of neutrons will exceed the mass of proton and electron at some, not too 
high a density. Therefore, protons and electrons will also occupy neutron 
star matter. Because strangeness is conserved only on a weak interaction 
time-scale, this quantum number is not conserved in an equilibrium state. 
So with increasing density, the Pauli principle assures us that baryons of 
many species will be ingredients of dense neutral matter.1 '2 

Generally, it suffices to take the baryon octet into account together with 
electrons and muons. In Figure 2 we see that the A is most strongly popu
lated in the center of a typical neutron star if quarks have not become de-
confined at those densities. Notice that the lepton populations decrease as 
the populations of negatively charged hyperons increase. This is in accord 
with conservation of baryon number in the star. The number of electrons 
and muons are not by themselves conserved. 

The equation of state is softened in comparison with a neutron matter 
equation of state. The softening means that the Fermi pressure is reduced 
so that hyperon matter cannot support as large a mass against gravitational 
collapse than would be the case otherwise. The hyperon transition is second 
order; particle populations vary continuously with density in a uniform 
medium. However, the densities reached in neutron star cores, 5 to 10 
times nuclear matter density, are in all likelihood too high for baryons to 
exist as separate entities—quarks are likely to become deconfined at lower 
density than that. This is likely to be a first order phase transition. 

4. First Order Transitions in Stars 

Generally, physicists think of a phase transition such as from water to va
por as being typical of a first order transition. In the real world it is far 
from typical. Its characteristics are: if heated at constant pressure, the 
temperature of water and vapor will rise to 100 C and remain there until 
all the water has been evaporated before the temperature of the steam rises. 
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Baryon density (fnrf3) r (km) 

Figure 2. Particle populations as a function of baryon density in dense matter, and as 
a function of radial coordinate in a neutron star. 

This is true of substances having one independent component (like H 2 0) . 
The situation can, and usually is much more interesting for substances with 
two or more independent components, as I recognized a few years ago.3 Neu
tron stars are an example. The independent components are the conserved 
baryon and electric charge. Until about 1990, all authors forced stellar 
models into the mold of single-component substances by imposing a con
dition of local charge neutrality and ignoring the discontinuity in electron 
chemical potential at the interface of two phases in equilibrium. In 1992 I 
realized that all these models of phase transitions in nuclear matter—which 
has two independent conserved components, the total baryon charge and 
the electric charge—were intrinsically incorrect.3 They cannot satisfy Gibbs 
criteria for phase equilibrium in complex systems. And I stressed that an 
altogether new set of phenomenon were introduced by solving the problem 
correctly. Indeed, a Coulomb crystalline region involving the two phases in 
equilibrium could form, an idea that had not previously come to light.3 

4.1. Degrees of freedom and driving forces 

Two features can come into play in phase transition of complex substances 
that are absent in simple substances. The degree(s) of freedom can be 
seen in the following way. Imagine assembling a star in a pure phase (say 
ordinary nuclear matter) with B baryons and Q electric charges, either 
positive, negative or zero. (Of course, more precisely, we consider a typical 
local inertial region.) The concentration is said to be c = Q/B. Now 
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consider another local region deeper in the star and at higher pressure with 
the same number of baryons and charges, but with conditions such that 
part of the volume is in the first phase and another part in the second 
phase. Suppose the baryons and charges in the two phases are distributed 
such that concentrations in the two phases are 

Qi/Bi = ci and Q2/B2 = c2 . 

The conservation laws are still satisfied if 

Qi+Q2 = Q, Bx+B2 = B. 

Why might the concentrations in the two phases be different from each 
other and from the concentration in the other local volumes at different 
pressure? Because the degree of freedom of redistributing the concentration 
may be exploited by internal forces of the substance so as to achieve a lower 
free energy. In a single-component substance there was no such degree 
of freedom, and in an n-component substance there are n — 1 degrees of 
freedom. In deeper regions of the star, still different concentrations may be 
favored in the two phases in equilibrium at these higher-pressure locations. 
So you see that the each phase in equilibrium with the other, may have 
continuously changing properties from one region of the star to another. 
(This is unlike the simple substance whose properties remain unchanged in 
each equilibrium phase, until only one phase remains.) 

The key recognition is that conserved quantities (or independent com
ponents) of a substance are conserved globally, but need not be conserved 
locally.3 Otherwise, Gibbs conditions for phase equilibrium cannot be sat
isfied. Let us see how this is done. 

Gibbs condition for phase equilibrium in the case of two conserved quan
tities is 

Pl(fJ,n,He,T) =p2(n„,He,T) 

We have introduced the neutron and electron chemical potentials by 
which baryon and electric charge conservation are to be enforced. In 
contrast to the case of a simple substance, for which Gibbs condition— 
Pi(/x,T) = p2(/Li,T)—can be solved for /j,, the phase equilibrium condition 
cannot be satisfied for substance of more than one independent component 
without additional conservation constraints. Clearly, local charge con
servation (q(r) = 0) must be abandoned in favor of global conservation 
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Figure 3. Solid line: equation of state for neutron star matter with a kaon condensed 
phase. Regions of the normal nuclear matter phase, the mixed phase, and the pure kaon 
condensed phase are marked. Notice that the pressure changes monotonically through 
the mixed phase. Dashed line: The Maxwell construction with the typical constant 
pressure region does not satisfy equality of the electron chemical potential in the two 
phases. 

(J* q(r)q(r) = 0), which is after all what is required by physics. For a 
uniform distribution global neutrality reads, 

( ! - X)<7l(Mn, Ve,T) + XQ2(Hn, He,T) = 0 , 

where x = V2/V, V = V\ + V2. Given T and x w e c a n solve for [inand\ie. 
Thus the solutions are of the form 

Mn = M n ( x , T ) , Me = He(X,T) • 

Because of the dependance on x, we learn that all properties of the phases 
in equilibrium change with proportion, x> of the phases. This contrasts 
with simple (one component) substances. These properties are illustrated 
for the pressure in Figure 3. Behavior of the pressure is illustrated for two 
cases: (1) a simple, and (2) a complex substance. In the latter case, the 
pressure is monotonic, as proven above. This is in marked contrast to the 
pressure plateau of the simple (one component) substance. 



64 

4.2. Isospin symmetry energy as a driving force 

A well known feature of nuclear systematics is the valley of beta stability 
which, aside from the Coulomb repulsion, endows nuclei with N = Z the 
greatest binding among isotones (N + Z = const). Empirically, the form of 
the symmetry energy is 

^N-s y m = ~e[{N - Z)/(N + Z)]2 . 

Physically, this arises in about equal parts from the difference in energies 
of neutron and proton Fermi energies and the coupling of the p meson to 
nucleon isospin current. Consider now a neutron star. While containing 
many nucleon species, neutron star matter is still very isospin asymmetric— 
it sits high up from the valley floor of beta stability—and must do so because 
of the asymmetry imposed by the strength of the Coulomb force compared 
to the gravitational. 

Let us examine sample volumes of matter at ever-deeper depth in a 
star until we arrive at a local inertial volume where the pressure is high 
enough that some of the quarks have become deconfined; that both phases 
are present in the local volume. According to what has been said above, 

E (MeV/fm3) Baryon density (fm~3) 

Figure 4. Equation of state for matter in beta equilibrium for three hypothetical models 
of dense nuclear matter; (1): only neutrons and protons are present (n + p), (2): in 
addition to neutrons and protons, hyperons (H) are also present (n + p + H), (3): 
Hybrid denotes the equation of state for which matter has a low density nuclear phase, 
an intermediate mixed phase, and a high-density quark phase. Discontinuities in slope 
signal the transition between these phases. 

Figure 5. The particle populations are shown as a function of density as phases change. 
The low-density region, 0.3fm~3 PB, is pure charge-neutral nuclear matter; the mixed 
nuclear and quark matter region lies in the density range 0.3 < ps < 1-2 f m - 3 , and pure 
quark region lies above PB > 1-2 f m - 3 . 
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the highly unfavorable isospin of the nuclear phase can lower its repulsive 
asymmetry energy if some neutrons exchange one of their d quarks with a 
u quark in the quark phase in equilibrium with it. In this way the nuclear 
matter will become positively charged and the quark matter will carry 
a compensating negative charge, and the overall energy will be lowered. 
The degree to which the exchange will take place will vary according to 
the proportion of the phases—clearly a region with a small proportion of 
quark matter cannot as effectively relieve the isospin asymmetry of a large 
proportion of neutron star matter of its excess isospin as can a volume of 
the star where the two phases are in more equal proportion. We see this 
quantitatively in Figure 6 where the charge densities on hadronic and quark 
matter are shown as a function of proportion of the phases. 

X r (km) 

Figure 6. Charge densities on Hadronic and Quark matter as a function of proportion. 
Note that overall the mixture is neutral. 

Figure 7. Diameter (bottom curve) and spacing (top curve) of the geometrical phases 
are shown as a function of position r in the star of 1A54MQ. (see also Figure 8) 

4.3. Geometrical phases 

In equilibrium, the isospin driving force tends to concentrate positive charge 
on nuclear matter and compensating negative charge on quark matter. The 
Coulomb force will tend to break up regions of like charge while the sur
face interface energy will resist this tendency. The same competition is in 
play in the crust of the star where ionized atoms sit at lattice sites in an 
electron sea. For the idealized geometries of spheres, rods, or sheets of the 
rare phase immersed in the dominant one, and employing the Wigner-Seitz 
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approximation (in which each cell has zero total charge, and does not in
teract with other cells), closed form solutions exist for the diameter D, and 
spacing S of the Coulomb lattice. The Coulomb and surface energy for 
drops, rods or slabs (d = 3, 2,1) have the form: 

ec = Cd(X)D2, es = Sd(x)/D, 

where Cd abd Sd are simple algebraic functions of \- The sum is minimized 
by es = 2ec- Hence, the diameter of the objects at the lattice sites is 

D = [Sd(x)/2Cd(X)}1/3, 

where their spacing is S = D/xl if the hadronic phase is the background 
or S = D/(l — x)l^d if the quark phase is background. Figure 7 shows the 
computed diameter and spacing of the various geometric phases of quark 
and hadronic matter as a function of radial coordinate in a hybrid neutron 
star. 

Figure 8. Pie sections showing geometric phases in two stars of different mass 

4.4. Color-flavor locked quark-matter phase (CFL) 

Rajagopal and Wilczek have argued that the Fermi surface of the quark 
deconfined phase is unstable to correlations of quarks of opposite momen
tum and unlike flavor and form BCS pairs4. They estimate a pairing gap 
of A ~ 100 MeV. The greatest energy benefit is achieved if the Fermi sur
faces of all flavors are equal in radius. This links color and flavor by an 
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invariance to simultaneous rotations of color and flavor. The approximate 
energy density corresponding to the gap is 

EA-CFL ~ -C(kF A)2 - 50 • C MeV/fm3 , 

where C is an unknown constant. This is another "driving force" as spoken 
of above in addition to the nuclear symmetry energy esym. It acts, not to 
restore isospin symmetry in nuclear matter, but color-flavor symmetry in 
the quark phase. Alford, Rajagopal, Reddy, and Wilczek have argued that 
the CFL phase, which is identically charge neutral and has this large pair
ing gap may preempt the possibility of phase equilibrium between confined 
hadronic matter and the quark phase; that any amount of quark matter 
would go into the charge neutral CFL phase (with equal numbers of u, d 
and s quarks, irrespective of mass) and that the mixed phase spoken of 
above would be absent.5 That the nuclear symmetry driving force would 
be overcome by the color-flavor locking of the quark phase leaving the de
gree of freedom possessed by the two-component system unexploited. The 
discontinuity of the electron chemical potential in the two phases, hadronic 
and quark matter would be patched by a spherical interface separating a 
core of CFL phase in the star from the surrounding hadronic phase. For 
that conclusion to be true, a rather large surface interface coefficient was 
chosen by dimensional arguments. 

However, my opinion is that nature will make a choice of surface inter
face properties between hadronic and quark matter such that the degree of 
freedom of exchanging charge can be exploited by the driving forces (here 
two in number as discussed below). This is usually the case. Physical sys
tems generally have their free energy lowered when a degree of freedom (as 
spoken of above) becomes available. 

With two possible phases of quark matter, the uniform uncorrelated 
one discussed first, and the CFL phase as discussed by Rajagopal and 
Wilczek, there is now a competition between the CFL pairing and the 
nuclear symmetry-energy densities, and these energy densities are weighted 
by the volume proportion x of quark matter in comparison with hadronic 
matter in locally inertial regions of the star. That is to say, ecFL and esym 

are not directly in competition, but rather they are weighted by the relevant 
volume proportions. It is not a question of "either, or" but "one, then the 
other". 

The magnitude of the nuclear symmetry energy density at a typical 
phase transition density of p ~ 1/fm3 is 

eN-sym = -35[(JV - Z)/{N + Z)]2 MeV/fm3 . 
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To gain this energy a certain price is exacted from the disturbance of the 
symmetry of the uniform quark matter phase in equilibrium with it; eQ_sym. 
As can be inferred from Figure 6, the price is small compared to the gain. 
On the other side, the energy gained by the quark matter entering the 
CFL phase was written above and is offset by the energy not gained by the 
nuclear matter because the CFL preempts an improvement in its isospin 
asymmetry. So we need to compare 

-sym X e Q-sym [esurf(x) + £ c o u l ( x ) ] 
with 

XCA-CFL — (1 - X) e N-sym • 

The behavior of these two lines as a function of proportion of quark phase 
X in a local volume in the star is as follows:8. The first expression for the 
net gain in energy due to the formation of a mixed phase of nuclear and 
uniform quark matter monotonically decreases from its maximum value at 
X = 0 while the second expression, the net energy gain in forming the CFL 
phase monotonically increases from zero at x — 0. Therefore as a function 
of x o r equivalently depth in the star measured from the depth at which the 
first quarks become deconfined, nuclear symmetry energy is the dominating 
driving force, while at some value of x m the range 0 < x < 1 the CFL 
pairing becomes the dominating driving force. 

In terms of Figure 8, several of the outermost geometric phases in which 
quark matter occupies lattice sites in a background of nuclear matter are 
undisturbed. But the sequence of geometric phases is terminated before 
the series is complete, and the inner core is entirely in the CFL phase. 

In summary, when the interior density of a neutron star is sufficiently 
high as to deconfine quarks, a charge neutral color-flavor locked phase with 
no electrons will form the inner core. This will be surrounded by one or 
more shells of mixed phase of quark matter in a uniform phase in phase 
equilibrium with confined hadronic matter, the two arranged in a Coulomb 
lattice which differs in dimensionality from one shell to another. As seen 
in Figure 6, the density of electrons is very low to essentially vanishing, 
because overall charge neutrality can be achieved more economically among 
the conserved baryon charge carrying particles. Finally, All this will be 
surrounded by uniform charge neutral nuclear matter with varying particle 
composition according to depth (pressure), (cf. Figure 5.) 

a The behavior of the quantity in square brackets can be viewed in Figure 9.14 of reference 
[2, 2'nd ed.] 
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5. Rotation and Phase Transitions 

Except for the first few seconds in the life of a neutron star, at which time 
they radiate the vast bulk of their binding energy in the form of neutrinos, 
we think of them as rather static objects. However the spin evolution at 
millisecond periods of rotation brings about centrifugally induced changes 
in the density profile of the star, and hence also in the thresholds and 
densities of various hyperons, dense phases such as kaon condensed phase 
and inevitably quark matter. We shall assume that the central density 
of the more massive millisecond pulsars—being centrifugally diluted—lies 
below the critical density for pure quark matter, while the central density of 
canonical pulsars, like the Crab, and more slowly rotating ones, lies above. 
We explore the consequences of such assumptions. 

Because of the different compressibility of low and high-density phases, 
conversion from one phase to another as the phase boundary slowly moves 
with changing stellar spin (Fig. 9) results in a considerable redistribution 
of mass (Fig. 10) and hence change in moment of inertia over time. The 
time scale is of the order of 107 to 109 yr. The behavior of the moment of 
inertia while successive shells in the star are changing phase is analogous 

r (km) r (km) 

Figure 9. Radial boundaries at various rotational frequencies separating various phases. 
The frequencies of two pulsars, the Crab and PSR 1937+21 are marked for reference. 

Figure 10. Mass profiles as a function of equatorial radius of a star rotating at three 
different frequencies. At low frequency the star is very dense in its core, having a 4 km 
central region of highly compressible pure quark matter. Inflections at e m 220 and 950 
are the boundaries of the mixed phase. 
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to the so-called backbending behavior of the moment of inertia of deformed 
rotating nuclei brought about by a change of phase from one in which the 
coriolis force breaks nucleon spin pairing to one in which spins are paired. 
Compare Figs. 11 and 12. 

Elsewhere we have discussed the possible effect of a phase transition 
on isolated millisecond radio pulsars.6 Here we discuss x-ray neutron stars 
that have a low-mass non-degenerate companion. Beginning at a late stage 
in the evolution of the companion it evolves toward its red-giant stage and 
mass overflows the gravitational barrier between the donor and neutron 
star. The neutron star is spun up by angular momentum conservation of 
the accreted matter. The heated surface of the neutron star and its rotation 
may be detected by emitted x-rays. 

In either case—neutron star accretors or millisecond pulsars—the radial 
thresholds of particle types and phase boundaries will move—either out
ward or inward—depending on whether the star is being spun up or down. 
The critical density separating phases moves slowly so that the conversion 
from one phase to another occurs little by little at the moving boundary. 
In a rapidly rotating pulsar that is spinning down, the matter density ini
tially is centrifugally diluted, but the density rises above the critical phase 
transition density as the star spins down. Relatively stiff nuclear matter 
is converted to highly compressible quark matter. The overlaying layer of 
nuclear matter squeezes the quark matter causing the interior density to 
rise, while the greater concentration of mass at the center acts further to 
concentrate the mass of the star. Therefore, its moment of inertia decreases 
over and above what would occur in an immutable rotating gravitating fluid 
that is spinning down. If this occurs, the moment of inertia as a function of 
spin exhibits a backbend as in Figure 11. Such a phenomenon has been ob
served in nuclei, as illustreated in Figure 12.18>19>20 The opposite evolution 
of the moment of inertia may occur in x-ray neutron stars that are spinning 
up when the spin change spans the critical region of phase transition. 

As a result of the backbend in moment of inertia, an isolated ms pulsar 
may cease its spindown and actually spin up for a time, even though loosing 
angular momentum to radiation as was discussed in a previous work.6 An 
x-ray neutron star with a companion may pause in its accretion driven 
spinup until quark matter is driven out of the star, after which it will 
resume spinup. Spinup or spin down occurs very slowly, being controlled 
by the mass accretion rate or the magnitude of the magnetic dipole field, 
respectively. So, the spin anomaly that might be produced by a conversion 
of matter from one phase to another will endure for many millions of years. 
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If it were fleeting it would be unobservable. But enduring for a long epoch— 
if the phenomenon occurs at all—it has a good chance of being observed. 

A very interesting work by Spyrou and Stergioulas has recently ap
peared in the above connection.7 They perform a more accurate numerical 
calculation for a rotating relativistic star, as compared to our perturbative 
solution. They find that the backbend in our particular example occurs 
very close to, or at the maximum (non-rotating) star, but that it is generic 
for stars that are conditionally stabilized by their spin. This is possibly the 
situation for some or eventually all accretors. 

In fact, we expect a phase transition to leave a permanent imprint on 
the distribution in spins of x-ray accretors. Because of the increase of 
moment of inertia during the epoch in which the quark core is driven out 
of a neutron star as it is spun up by mass accretion, spinup is—during 
this epoch—hindered. Therefore we expect the population of accretors to 
be clustered in the spin-range corresponding to the expulsion of the quark 
phase from the stellar core. Spin clustering was reported in the population 
of x-ray neutron stars in binaries that were reported in data from the Rossi 
X-ray Timing Explorer.8 However, later observations failed to confirm this. 
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Figure 11. Development of moment of inertia of a model neutron star as a function 
of angular velocity. The backbend in this case is similar to what is observed in some 
rotating nuclei. (Adapted from Ref. 6 .) 

Figure 12. Backbending in the rotating Er nucleus and an number of others was dis
covered in the 1970s. 
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6. Calculation 

The theory and parameters used to describe our model neutron star are pre
cisely those used in previous publications. Its initial mass is M = 1.42M0, 
close to the mass limit. The confined hadronic phase is described by a 
generalization of a relativistic nuclear field theory solved at the mean field 
level in which members of the baryon octet are coupled to scalar, vec
tor and vector-isovector mesons.9'2 The parameters 6 '10 of the nuclear La-
grangian were chosen so that symmetric nuclear matter has the follow
ing properties: binding energy B/A = —16.3 MeV, saturation density 
p = 0.153 fm - 3 , compression modulus K = 300 MeV, symmetry en
ergy coefficient asym = 32.5 MeV, nucleon effective mass at saturation 
msat = 0.7m. These together with the ratio of hyperon to nucleon cou
plings of the three mesons, xa = 0.6, xw = 0.653 = xp yield the correct A 
binding in nuclear matter.10 

Quark matter is treated in a version of the MIT bag model with the 
three light flavor quarks (m„ = m<j = 0, ms = 150 MeV) as described. n 

A value of the bag constant B1/4 = 180 MeV is employed.6 The transition 
between these two phases of a medium with two independent conserved 
charges (baryon and electric) has been described elsewhere.3 We use a sim
ple schematic model of accretion. 12.13>14 AH details of our calculation can 
be found elsewhere.15'16'17 

7. Results 

The spin evolution of accreting neutron stars as determined by the changing 
moment of inertia and the evolution equation15 is shown in Fig. 13. We 
assume that up to QAMQ is accreted. Otherwise the maximum frequency 
attained is less than shown. Three average accretion rates are assumed, 
M_10 = 1, 10 and 100 (where M_10 is in units of 10- 1 0 M o /y ) . 

We compute a frequency distribution of x-ray stars in low-mass binaries 
(LMXBs) from Fig. 13, for one accretion rate, by assuming that neutron 
stars begin their accretion evolution at the average rate of one per mil
lion years. A different rate will only shift some neutron stars from one 
bin to an adjacent one. The donor masses in the binaries are believed 
to range between 0.1 and 0.4MQ and we assume a uniform distribution 
in this range and repeat the calculation shown in Fig. 13 at intervals of 
0.1M©. The resulting frequency distribution of x-ray neutron stars is shown 
in Fig. 14; it is striking. A spike in the distribution signals spinout of 
the quark matter core as the neutron star spins up. This feature would 
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Figure 13. Evolution of spin frequencies of accreting neutron stars with (solid curves) 
and without (dashed curves) quark deconfmement if OAMQ is accreted. The spin plateau 
around 200 Hz signals the ongoing process of quark confinement in the stellar centers. 
Spin equilibrium is eventually reached. (From Ref. 15 .) 

Figure 14. Calculated spin distribution of the underlying population of x-ray neutron 
stars for one accretion rate (open histogram) is normalized to the number of observed 
objects (18) at the peak. Data on neutron stars in low-mass X-ray binaries (shaded 
histogram) is from Ref. 8 . These results have not been observed in later observations, 
however. The spike in the calculated distribution corresponds to the spinout of the quark 
matter phase. Otherwise the spike would be absent. (From Ref. 15.) 

be absent if there were no phase transition in our model of the neutron 
star. 

The data in Fig. 14 is gathered from Tables 2-4 of the review article 
of van der Klis concerning discoveries made with the Rossi X-ray Timing 
Explorer.8 However, later observations have failed to confirm the original 
report. 

8. Conclusion 

We find that if a clustering in rotation frequency of accreting x-ray neutron 
stars in low-mass binaries were discovered, it could be caused by the pro
gressive conversion of quark matter in the core to confined hadronic matter, 
paced by the slow spinup due to mass accretion. When conversion is com
pleted, normal accretion driven spinup resumes. To distinguish this conjec
ture from others, one would have to discover the inverse phenomenon—a 
spin anomaly near the same frequency in an isolated ms pulsar.6 If such 
a discovery were made, and the apparent clustering of x-ray accretors is 
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confirmed, we would have some degree of confidence in the hypothesis tha t 

a dense mat te r phase, most plausibly quark mat ter , exists from bir th in the 

cores of canonical neutron stars, is spun out if the star has a companion 

from which it accretes mat ter , and later, having consumed its companion, 

resumes life as a millisecond radio pulsar and spins down. 
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1. Introduction 

Understanding the deaths of massive stars is one of the frontiers of mod
ern astrophysics. The detection of neutrinos from SN 1987A dramatically 
illustrated that more massive stars undergo core collapse1. The outcome of 
core collapse can either be a neutron star or a black hole2. However, there 
are great uncertainties in the mapping between initial mass of the star and 
the end product, and even more uncertainties in the natal properties of 
the stellar remnant. It is these uncertainties that give observers opportu
nities to make new discoveries and theorists to predict or "postdict" these 
discoveries. 

The natal properties of the stellar remnant involves delicate physics but 
has strong observations ramifications. The gravitational binding energy of 
a neutron star is 1053erg, of which only 1% appears to be coupled to the 
ejecta (which ultimately powers the SNR). Even more minuscule fractions 
go into rotational energy, kinetic energy (bulk motion) and magnetic fields. 
It is now generally agreed that three dimensional effects in the explosion 
determine the natal properties3'4. 

The discovery of pulsars in the Vela SNR5 and the Crab Nebula6 made 
concrete the suggestion that core collapse results in neutron stars7, some of 
which manifest themselves as radio pulsars. Young pulsars, in addition to 
pulsing in the radio, can and usually do power synchrotron nebulae8 that 
are indirect markers of pulsars. These synchrotron nebulae are commonly 
called pulsar wind nebulae, or PWNe. Over the following two decades, the 
notion that neutron stars resemble the Crab pulsar guided the search for 
central objects as well as intensive radio mapping of SNRs. As a result of 
these efforts, the term "composite" SNR (PWN + shell) was added to the 
SNR lexicon (see Milne et al.g). 

However, recent developments have severely revised our picture of 
young neutron stars. Most importantly, astronomers have come to ac
cept of tremendous diversity in the natal properties of young neutron stars. 
Anomalous X-ray pulsars10 (AXPs), soft 7-ray repeaters11 (SGRs), nearby 
thermal and radio quiet neutron stars12, long period radio pulsars with 
high inferred magnetic fields13'14 (HBPSR) are now routinely found in as
tronomical literature. These new classes of neutron stars have primarily 
come from high energy (X-ray and 7-ray) observations. 

While this diversity is clearly demonstrated observationally, theory and 
simulation cannot yet constrain the fundamental birth properties of neu
tron stars15. Models still have difficulties achieving explosions, much less 
following the activity in the post-collapse object in any detail. 
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2. Survey Design 

Three years ago we began a program of observationally investigating the 
stellar remnants in a volume-limited census of Galactic supernova remnants. 
The approach we took was inspired by the first light picture of Chandra^ 
the discovery of a central X-ray source in the well-studied and youngest 
known supernova remnant in our Galaxy, Cassiopeia A16. The nature of 
the object (Fig. 1) continues to be debated17"19. However, one conclusion 
is crystal clear: the X-ray source is not a standard radio pulsar (unbeamed 
or otherwise). 

* 

trvr\\ * < (1300 MW 

Figure 1. Images of the X-ray point source in Cas A — Chandra ACIS first-light 
image16 (left); Keck NIRC K s-band (2.2 jzm, right)2 0 ; VLA 1300 MHz (right). Error 
circle is 2.3" in radius; images are ~ 20" on a side, with north up and east to the left. 
Our optical/IR work leads us to conclude that star A is a foreground M dwarf — not an 
unexpected coincidence given the low latitude of Cas A. 

The basis of our effort is that observationally, all central sources in SNRs 
known to date, regardless of the band of their initial identification (7-ray, 
X-ray, or radio) appear to possess detectable X-ray emission. Theoreti
cally, we expect thermal X-ray emission from young neutron stars. Thus, 
on both counts the search for central sources in young remnants is very well 
motivated. However, a follow-up program is essential since many other fore
ground sources such as flare stars, young stars, and accreting sources and 
background sources such as AGN dominate the source counts21,22. For
tunately, the sub-arcsecond spatial resolution of Chandra allow efficient 
filtering of such contaminating objects. 

To this end, we have identified a sample of SNRs within 5 kpc of the 
Sun (Fig. 2). Most of these SNRs are expected to contain central neutron 
stars: < 20% are expected to result from Type la SNe and thus not contain 
a central compact source, while ~ 20% (dependent on the stellar initial 
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Figure 2. Galactic distribution of SNRs from et a/.23. Galactic longitude I (degrees) is 
plotted against distance (kpc), with the Sun at the origin and the Galactic center to the 
right. Black squares are the la SNRs, blue diamonds are associated with radio pulsars, 
green asterisks are associated with other types of neutron stars (RQNS, etc.), and the 
red circles are the hollow SNRs. The four filled circles are the SNRs from this paper 
with detailed analyses. 

mass function, the limiting mass for black holes, and binary evolution24) 
are expected to host a central black hole that may not be easily identified 
as such. Thanks to the persistent efforts by astronomers over the past four 
decades, central sources have been detected in the X-ray and/or radio bands 
in 18 of these SNRs, and three have been identified as probable Type la 
SNe. In some cases, only a centrally located PWN is detected, but in those 
cases (i.e. IC 443) it is reasonably assumed that the PWN is powered by 
a central compact source. We are then left with the SNRs that have no 
obvious indication of central sources: the hollow SNRs. 

Dividing the hollow remnants by size, we successfully proposed for a 
"large" Chandra effort in AO-3 to image the nine smallest SNRs. This 
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initial allocation has been supplemented with additional time in AO-4 of 
Chandra and AO-2 of XMM. Followup of the X-ray sources has been under
taken with a plethora of ground based telescopes in the optical and near-IR 
bands. Here, we report the first analysis of four SNRs (Fig. 3) for which 
the followup is now complete. For more details, see Kaplan et a/.23. 

Figure 3. Radio images of the SNRs whose analyses are presented in Kaplan et al.2 , 
with the field covered by the Chandra ACIS detector shown by the boxes. Upper left: 
SNR G093.3+6.9; upper right: SNR G315.4-2.3; lower left: SNR G084.2+0.8; lower 
right: SNR G127.1+0.5. The image of SNR G315.4-2.3 also has contours that show the 
diffuse X-ray emission (measured by the ROSAT PSPC) of the ROW 86 complex. 

3. X-ray Observat ions 

The X-ray observations of the SNRs were designed to detect cooling neutron 
stars down to a luminosity of 1/10 that of the Cas A-type source, which 
are among the least luminous of the central sources17'23. For the primary 
sample of sources observed with Chandra, we used the I& field of the ACIS-
I array. This array covered much if not all of the SNRs (Fig. 3), and should 
encompass neutron stars with velocities < 700 km s""1 in the worst cases. 
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The Chandra observations had durations of 15-50 ksec, and detected 10-50 
sources in each field with > 10 counts. 

4. Followup Observations 

After identifying X-ray sources with Chandra the question is then to 
determine which, if any, are the compact remnants of the SNRs. We 
have used source-count statistics22 '25 '26 to estimate the number of fore
ground/background sources given the iVn and diffuse SNR background 
toward each target, and these numbers roughly agree with the detected 
counts. Because of their small X-ray count-rates, weeding out interlopers 
requires multi-wavelength observations. 

Isolated neutron stars have high X-ray to optical flux ratios27 (Fig. 4). 
Interloper sources, on the other hand, typically have much brighter opti-
cal/IR counterparts21,28. In the Galactic plane, the majority of sources 
are either nearby bright stars or active late-type stars. The extragalactic 
sources are usually AGN or star-forming galaxies, although some nearby 
spiral galaxies are also detectable29. Deep optical/IR imaging is therefore 
an efficient way to identify background sources, and we follow our X-ray ob
servations with successively deeper optical and IR observations, identifying 
progressively fainter counterparts as we go. 

With deep optical and infrared imaging we were able to identify prob
able counterparts to all of the X-ray sources in the four SNRs discussed 
here. Figure 4 contains examples of these counterparts, showing that they 
are consistent with the known Galactic and extragalactic X-ray source pop
ulations. Additionally, we used X-ray hardness to determine likely source 
classifications and found that this was consistent with the results of Fig
ure 4. 

5. Initial Results 

All of the X-ray sources in SNRs G093.3+6.9, G315.4-2.3, G084.2+0.8, 
and G127.1+0.5 can be reasonably identified either with foreground or 
background sources. Therefore, there does not appear to be any detected 
neutron star in these SNRs. There are a small number of cases where ei
ther the association or the type of source (star versus galaxy) is uncertain, 
either due to an optical/IR detection in only one band and/or a detection 
at a somewhat large distance from the X-ray source, but there are cer
tainly no sources that scream out "I am a neutron star." If we accept this, 
we can then draw two limits to the flux of any compact central source: a 
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Figure 4. Top : examples of counterparts to X-ray sources. At left is a galaxy with 
R- Ks > 6 mag, while at right is a G5V star. B o t t o m : X-ray-to-J^ flux ratio vs. 
X-ray flux for sources in SNR G093.3+6.9 (left) and SNR G315.4-2.3 (right). Sources 
from the CDF/Orion studies2 5 '2 6 and selected neutron stars are also plotted. Stars 
from CDF/Orion are blue asterisks, galaxies are green circles. Selected neutron stars 
are black diamonds/limits, and are labeled. The unidentified X-ray sources are the red 
squares/limits. The diagonal lines represent constant magnitude, and are labeled by 
that magnitude. 

conservative limit (Limit I), and a loose limit (Limit II). The conservative 
limit will be the flux of the brightest source for which the optical/IR coun
terpart is at all in doubt. We gives these limits, converted to luminosities 
for various possible source models (thermal emitter, radio pulsar, AXP) in 
Table 1. 

We then plot these limits (incorporating uncertainties in- both distance 
and age) in Figure 5 along with the luminosities of other neutron stars 
found in SNRs. The limits for SNR G127.1+0.5 are significantly below 
those of the other SNRs as it had never been observed in the X-rays before, 
so we did not know what the level of the diffuse background would be and 
therefore selected an exposure time that would guarantee sufficient counts 
from a source above even the most pessimistic background. 
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Table 1. Limits on Central Sources in SNRs 
G093.3+6.9, G315.4-2.3, G084.2+0.8, and 
G127.1+0.5 

Model 

S N R G 0 9 3 . 3 + 6 . 9 : 
BB (fcToo = 0.25 keV) 
PL ( r = 1.5) 
PL ( r = 3.5) 

PWN (r = i.5, e = i') 
S N R G 3 1 5 . 4 - 2 . 3 : 
BB (/cToo = 0 . 2 5 keV) 
PL ( r = 1.5) 
PL (r = 3.5) 
PWN (r = 1.5, 9 = 1') 
S N R G 0 8 4 . 2 - 0 . 8 : 
BB (fcToo = 0.25 keV) 
PL ( r = 1.5) 
PL ( r = 3.5) 

PWN (r = i.5, e = i') 
S N R G 1 2 7 . 1 + 0 . 5 : 
BB (fcToo = 0.25 keV) 
PL ( r = 1.5) 
PL ( r = 3.5) 

PWN (r = i.5, e = i') 

Lx x 1031 ergs s " 1 

Limit I Limit II 

2.6 
3.7 
7.3 

30 

4.5 
6.4 

12.4 
40 

2.0 
2.9 
5.7 

40 

0.1 
0.3 
0.2 

3 

1.1 
1.6 
3.2 

1.1 
1.6 
3.0 

1.2 
1.7 
3.4 

0.1 
0.1 
0.1 

Note: Luminosities were computed using 
W3PIMMS. The luminosities are corrected for 
absorption and the known distances of the SNRs, 
and are in the 0.3-8.0 keV band. The mod
els are 0.25 keV blackbody (typical of sources 
like Cas A), T = 1.5 powerlaw (typical of radio 
pulsars30), T = 3.5 powerlaw (typical of AXPs), 
and r = 1.5 powerlaw for a 1' extended source 
(typical of PWNe). PWN limits are neither type I 
or type II but are instead simple 3 a limits. 

6. P W N Limits 

Pulsar wind nebulae (PWNe), are bright, centrally condensed nebulae 
with non-thermal (power-law) X-ray and radio spectra often associated 
with young, energetic pulsars and SNRs (here we refer only to "bubble" 
PWNe, as differentiated by the bow-shock PWNe produced by the motion 
of the pulsars through the ambient medium; for reviews, see Chevalier33 

or Gaensler34). The photon indices range30 from 1.3-2.3, similar to those 
of pulsars, but they are roughly ~ 10 times as luminous35 for a given E 
and the sizes range from a few arcseconds to several arcminutes. PWNe, 



83 

10 

10 

10 

10 

10 

10" 
10 

)Crab 

* SS 433 

+ 
* 
T 

o 

Thermal 
Non-thermal 
Limit 
X-ray PWN 

1.35 M 
sun 

Cas A ~~ 

- - .normal 

1.39?M=un" 

I 3 C 5 8 

C.093 34 6 9 

•J1811-1925 
._+ Puppis A A 

+ 13)7; 
B0?38+: 

+ RCW103 
~ - - _Vela B1706-44 

B1727-33 

i f B 2 3 3 4 + 6 l " \ 

(J) IC 443 
B1853+01 + B0656+14X 

G084.2-0.8 

10° 10 
Age (yr) 

10 10 

Figure 5. X-ray luminosities (0.5-2 keV) as a function of age for neutron stars in SNRs 
from Kaplan et al.23 and Table 1. Sources whose emission is primarily thermal are 
indicated with plus symbols, those whose emission is primarily non-thermal are indicated 
with stars, and those with only limits are indicated with triangles. The sources that have 
X-ray PWNe, which are typically > 10 times the X-ray luminosity of the neutron stars 
themselves, are circled and the PWN luminosities are indicated by arrows. We also 
plot the limits to blackbody emission from sources in SNRs G093.3+6.9 (red hatched 
region), G315.4—2.3 (green hatched region), G084.2+0.8 (blue cross-hatched region), 
and G127.1+0.5 (gold hatched region). The cooling curves are the lp proton superfluid 
models from Yakovlev et al. (solid lines, with mass as labeled) and the normal (i.e., 
non-superfluid) M = 1.35-MQ model (dot-dashed line), assuming blackbody spectra and 
Roo = 10 km. These curves are meant to be illustrative of general cooling trends, and 
should not be interpreted as detailed predictions. Faster cooling than the curves is 
possible, due either to the presence of exotic particles in the NS core or to the full onset 
of direct Urea cooling for a heavier NS 3 2 . 

both X-ray and radio, offer a great advantage over bare radio pulsars for 
inferring the existence of neutron stars: they are unbeamed. This fact has 
historically been used in a number of cases to infer the existence of ener
getic pulsars where the pulsar had not been seen itself, such as 3C 5836 '37, 
N157B38, and Kes 7539. 
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Any P W N e in the SNRs discussed here are > 3000 yrs old and may have 

already interacted with the reverse shocks40 , so their sizes and brightnesses 

would be hard to predict. We therefore estimate limits on P W N e for a 

fiducial size of 1 pc w 1' — we did not detect any sources with those sizes 

in our images except for the known thermal emission from R C W 86. We 

set limits on the emission by assuming a typical T = 1.5 powerlaw, as seen 

in Table 1. These limits are below the luminosities of virtually all young 

P W N e detected in X-rays 4 1 , but are consistent with some older sources 

such as the Vela PWN, C T B 80, and W44 4 2 . However, these P W N e all 

have significant non-thermal radio emission, emission tha t is not present in 

SNRs G093.3+6.9, G315 .4 -2 .3 , G084.2+0.8, or G127.1+0.5 since they are 

all shell-type SNRs. 

7. Con c lu s ion s 

Above we discussed observations of four shell remnants (G093.3+6.9, 

G315 .4-2 .3 , G084.2+0.8, G127.1+0.5) — the first segment of a larger sur

vey — tha t failed to find any convincing neutron stars. There are reasons 

why s tandard neutron stars were not found in these SNRs: they could have 

fallen in the gap between the chips, they could have escaped our field of 

view due to a very high velocities8-, they could be undetectable black holes, 

or they could not exist owing to the SNRs being the results of Type la 

explosions. All of these scenarios are unlikely for a single source, and even 

more so for all four, but are technically possible. If, on the other hand, these 

scenarios do not apply, then four remnants contain neutron stars tha t are 

fainter than our X-ray detection limit (typically, Lx < 103 1 erg s _ 1 in the 

0.5-10 keV band) . 

We now consider this last (and most interesting) possibility. In the 

absence of other forms of energy generation (accretion, rotation power, 

magnetic field decay) the minimum X-ray flux one expects is set by the 

cooling of the neutron star. From Figure 5 we immediately see tha t the 

central neutron stars in these four remnants must be cooler than those 

present for example in the similarly-aged Puppis A, P K S 1205—51/52 and 

R C W 103. 

Our knowledge of the physics of cooling is by no means firm. There is 

aTo not be visible in SNRs G093.3+6.9, G315.4-2.3, or G084.2+0.8, the neutron star 
would have to be moving faster than 1500 km s _ 1 : true for < 1% of known pulsars43 . 
For SNR G127.1+0.5, the neutron star would have to be moving faster than 700 km s _ 1 : 
true for < 10% of known pulsars43 . 
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considerable debate among theorists as to which of the multi tude of physical 

processes can significantly affect the cooling output and as to which of the 

physical parameters (mass, rotation rate, magnetic field) controls these 

processes44 . Nonetheless, there is agreement tha t more massive neutron 

stars (with their larger mean densities) cool more rapidly than those with 

smaller mass; this expectation is illustrated in Figure 5. Thus our upper 

limits can be made consistent with the cooling possibility provided the 

central neutron stars in these four SNRs are more massive than known 

cooling neutron stars. Indeed, the known examples of radio-quiet objects 

could well result from a strong selection effect, namely the earlier X-ray 

observations by Einstein and ROSAT detected the warmer cooling neutron 

stars (ignoring the neutron stars detected because of non-thermal emission). 

The existing da ta may already hint at a parameter affecting cooling, as 

exemplified by PSR J0205+6449 4 5 and the Vela pulsar4 6 , but also possibly 

by PSR B1853+01 4 7 and RX J0007.0+73024 8 . 

Of course, we also do not see rotation-powered pulsars such as the ma

jority of the objects in SNRs within 5 kpc. Recent observations are finding 

pulsars with lower radio luminosities and values of E t han ever before, and 

our limits would only be consistent with these newer sources. One might 

then ask why we see neither a s tandard cooling neutron star nor a s tandard 

active pulsar, assuming tha t there is no intrinsic correlation between these 

properties. It is possible tha t there truly are no neutron stars in these 

SNRs, allowing one to speculate wildly about what actually is there. 
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We have shown that if the Fe core in a presupernova star is to be sufficiently 
massive to collapse into a black hole, earlier in the evolution of the star the He 
core must be covered (clothed) by a hydrogen envelope during He core burning and 
removed only following this, in, e.g. common envelope evolution. This is classified 
as Case C mass transfer. These previous arguments were based chiefly on stellar 
evolution, especially depending on the way in which 1 2C burned. In this work 
we argue for Case C mass transfer on the basis of binary evolution. This has the 
consequence that the final separation aj following common envelope evolution will 
depend nearly linearly on the mass of the companion m j which becomes the donor 
after the He core of the giant has collapsed into the black hole. We show that 
the reconstructed preexplosion separations of the black hole binaries are consistent 
with our evolution scenario. 

1. Introduction 

In Table 1 of Lee et al.1 (denoted as LBW) the seven SXTs with shortest 
periods had K- or M-star companions and the unclassified companion in 
XTE 1859+226 may also well be K or M because of its short period P = 
0.380 days. The progenitor binaries of these would have involved ~ 25M0 

giants and ~ 1—2MQ companions, the latter having had some mass stripped 
off by the black hole. In other words, all of the shortest period SXTs are 
successfully evolved with the same Case C mass transfer2. 

We3 emphasized that in Case C mass transfer the orbital separations for 
the above progenitor binaries in Roche Lobe contact are at ~ 17OOi?0(± ~ 
10%), ~ 8 AU, for ZAMS 2OM0 black hole progenitor and 1M 0 companion 
star. Progenitors with more massive companions and the larger initial 
separation necessary for Case C mass transfer could have removed the H-
envelope of the giant with spiral-in to larger final separations a/, since 
their drop in gravitational energy of the more massive companion is then 

mailto:clee@pusan.ac.kr
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sufficient to remove the envelope, and we shall see that this is indeed what 

happens. 

In LBW we listed Nova Scorpii and IL Lupi as undergoing mass trans

fer while in main sequence. Beer & Podsiadlowski4 have carried out a 

detailed, convincing numerical evolution of Nova Scorpii, showing tha t the 

orbit has widened substantially under nearly conservative mass transfer. 

Podsiadlowski et al.5 (denoted as PRH) have recently extended such calcu

lations to the other binaries with evolved companions, showing that they 

all began mass transfer in main sequence, although V404 Cyg, J1550—564 

and probably GRS 1915+105 will have progressed beyond main sequence. 

The P R H calculations generally support the schematic LBW calculations of 

mass transfer, but have the added advantage tha t by beginning the transfer 

in main sequence, sufficient mass can be transferred in the traditional sub 

Eddington limit. Whereas we do not believe this to be necessary in the case 

of black holes, seeing no reason why the accretion across the event horizon 

could not be substantially hyper Eddington (and PRH also covers this case, 

as a possibility) the s tandard P R H scenario allays the fear of the greatly 

hyper Eddington scenario which may go against " accepted wisdom". 

In Case C mass transfer there is a great regularity expressed in the 

roughly linear dependence of companion mass on orbital separation of the 

giant black hole progenitor and companion on the companion mass 

Md /Mgiant V 0 ' 5 5 R m 

following the spiral-in stage which removes the envelope of the giant1 . Ex

cept for the roughly square root dependence on giant mass, this relation is 

linear. Here the companion (donor) mass is labelled Md, af is the separation 

of the He-star, companion binary following spiral-in in common envelope 

evolution, and R is the initial radius of the giant at the start of common 

envelope evolution. The dependence on M g i a n t is weak, the interval 

20M Q < M g i a n t < 30M Q (2) 

being used by LBW 1 . The term depending on giant mass originates from 

the term Mae/M^iant in common envelope evolution. The relation Eq. (1) 

is particularly useful because, as we shall argue, R is nearly constant, ~ 

lOOOi?0, to within ~ 10%. Because the giant evolutionary time is so short, 

a/ is essentially the preexplosion separation of black hole and donor. 

We thus have three classes: 
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(i) The 8 AML (angular momentum loss) SXTs with K or M-star 
main sequence companions come from binaries which overfill their 
Roche Lobe during spiral in, as discussed in LBW. Their periods 
are decreased as they transfer mass to the companion black hole, as 
they lose angular momentum by magnetic braking and gravitational 
waves. 

(ii) The next six SXTs which established Roche contact while in main 
sequence, some of them having evolved beyond. 

(iii) The special case of the continuously shining Cyg X-l which we place 
just before its Roche Lobe, the companion now undergoing unstable 
mass transfer to its lower mass companion black hole. 

Interestingly, we find that the division between the unevolved main 
sequence class (i) and evolved companion (ii) is given accurately by Fig. 2 
of de Kool et al.6, who plot the mass of the companion which undergoes 
angular momentum loss by gravitational waves and magnetic braking, both 
as functions of time. They obtain the companion mass of 2M 0 as giving 
the division. We find this to be true for Mgiant = 2OM0 in Eq. (1). 

Note that the binaries with late main sequence companions Nova Scor-
pii and IL Lupi are special in that these binaries have experienced large 
mass loss, which can be explained as in LBW by magnetohydrodynamic 
effects, not included in the evolution discussed here. One may wonder why 
just there two binaries, with ZAMS companion masses, have lost a sizable 
fraction of their progenitor He star masses, whereas there is no sign of a 
kick outwards in separation from copious mass loss in the Glass (i) SXTs. 

The above regularity shows immediately that at least the first class with 
K and M companions must have a very large a* (LBW find â  ~ 1700RQ 

for a 20MQ black hole progenitor with 1M 0 companion) corresponding to a 
giant radius of ~ 1OOO.R0, so that the binding energy of the giant envelope, 
which decreases inversely with its radius, is small enough to be furnished 
by the drop in gravitational binding energy of the low-mass companion as 
it spirals in to its Roche Lobe. 

As developed in many papers1 '3 and backed by evolutionary 
calculations5,7'8,9, the above delineation into three classes, depending upon 
companion mass, can be understood if the giant is required to finish (or 
nearly finish) He core burning before common envelope evolution takes 
place; i.e., if the mass transfer is essentially Case C. 

In Sec. 2, we discuss the stellar evolution necessary to produce models 
which allow Case C mass transfer for ZAMS 20 — 3OM0 stars. In Sec. 3, we 
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review the role of carbon burning. In Sec. 4, we discuss that Case B mass 
transfer would not only allow too much of the He envelope to blow away 
and leave too much 12C after He core burns, but also is disfavored by the 
population of SXTs. We summarize our conclusion in Sec. 5. 

2. The Case for Case C Mass Transfer 

In LBW we found that the Schaller et al.10
 20MQ star had the characteris

tics we desire for Case C mass transfer, but that the latter was not possible 
for their 25M© star. We therefore constructed "by hand" models in which 
the stellar radius as function of burning stage had a similar shape to the 
20MQ star, all the way up to 30M©. 

We show in Fig. 1 the results of the Schaller et al.10 stellar evolution for 
a ZAMS 20MQ star. It is seen that the main increase in radius comes after 
the start of He core burning (which begins while H shell burning is still going 
on). With further He core burning there is a flattening off of the radius 
versus burning stage and then a further increase in radius towards the end 
of and following He core burning. Our model requires that mass transfer 
take place during this last period of increase in radius, so that the orbital 
separation (~ 3/2 of the giant radius) is well localized a^RiOF ~ 17OOi?0 at 
the time of Roche Lobe contact, or ajit=o ~ 1500.R© initially, the difference 
due to mass loss by wind, with accompanying widening of the orbit. 

It is made clear1'3 that for Case C (or very late Case B) the radii of the 
relevant stars must have the following behavior, as shown in Fig. 1. 

(i) They must increase rapidly in radius with hydrogen shell burning 
and with the early He core burning, which begins while the hydrogen 
shell burning is still going on. 

(ii) The radii must flatten off, or actually decrease with further He core 
burning. This is so that if the companion reaches the Roche Lobe 
it will reach it before or early in He core burning. Then the He 
core made naked by common envelope will mostly blow away by 
the strong Wolf-Rayet type winds, and the final Fe core will be too 
low in mass to collapse into a high mass black hole7. 

(iii) The third (obvious) characteristic is that the stellar radius must 
grow following He core burning, because the massive star must be 
able to reach its Roche Lobe during this time. The massive star has 
o m y ^ 104 years of its life left, so wind losses no longer can carry 
much of it away. 
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F i g u r e 1. R a d i u s of b lack hole p rogen i to r s (R) a n d t h e in i t ia l o rb i t a l s e p a r a t i o n s (a^) of 

t h e p rogen i to r s of X- ray t r a n s i e n t b inar ies w i t h a I M Q c o m p a n i o n . T h e b u r n i n g s t age 

in t h e x-axis co r r e sponds t o t h a t of Schaller e t a l . 1 0 A ) T h e lower d o t t e d curves (-R) 

co r r e sponds t o t h e r ad iu s of t h e b lack hole p rogen i to r s t a k e n from Schaller et a l . 1 0 T h a t 

for t h e 25MQ s t a r is s imilar b u t for t h e 30MQ t h e r ad iu s does no t increase following t h e 

end of He core b u r n i n g . B ) F r o m t h e m a s s of t h e p r i m a r y a t t h e t a b u l a t e d po in t one can 

ca lcu la t e t h e s e m i m a j o r axis of a b i n a r y w i t h a I M Q s e c o n d a r y in which t h e p r i m a r y 

fills i ts R o c h e Lobe , a n d th i s s emima jo r axis is shown in t h e u p p e r d o t - d a s h e d curve 

(O'i R L O F ) - C ) T h e solid curves ( a i , t=o) co r r e spond t o t h e requ i red ini t ia l s epa ra t i ons 

after cor rec t ions of t h e orbi t w iden ing d u e t o t h e w ind m a s s loss, aitt=o = «i,RLOF x 

(Mp + M ^ ) / ( M P j o + Ma) w h e r e Mv is t h e m a s s of t h e b lack hole p rogen i t o r a t a given 

s t age a n d MPto = 20MQ is t h e Z A M S m a s s of t h e b lack hole p rogen i to r . P r i m a r i e s a t 

t h e evo lu t iona ry s tages m a r k e d by t h e s h a d e d a r e a c a n n o t fill t he i r R o c h e Lobe for t h e 

first t i m e a t t h a t s t age , b u t have r eached the i r R o c h e L o b e a t an ear l ier po in t in the i r 

evolu t ion . 

Portegies Zwart et al.11 have pointed out that wind loss from the gi
ant preceding common envelope evolution is important and we follow their 
development in identifying the "No RLOF" part of the curve in Fig. 1. 
Because of the wind loss the binary widens. The Roche Lobe overflow will 
take place during the very rapid increase in radius of the giant in the begin
ning of He core burning, or in very late Case B or in Case C mass transfer. 
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The binary has widened too much by the time the giant has reached the 
flat part of the R vs stage curve. In fact, it cannot transfer mass during 
this stage, because it will have already come to Roche contact during early 
Case B. This is made clear by the shaded area in the solid line in Fig. 1. 
Brown et al.9 have shown that the SXTs with main sequence companions 
can be evolved with a 1 — 1.25M0 companion mass, so the above results 
may be directly applicable. For higher mass companions, this shaded area 
becomes smaller because the effect of the winds is smaller. This makes the 
intermediate Case B mass transfer possible. However, in this case, high-
mass black holes may not form because the Fe core is not massive enough 
to form high-mass compact objects as we discussed above7. Furthermore, 
as in Fig. 2, the probability of the intermediate Case B mass transfer is 
small compared to that of Case C mass transfer. 

Now, in fact, the curve of radius vs burning stage for the next massive 
star, of ZAMS 25M0 , by Schaller et al.10 does not permit Roche Lobe 
contact during Case C at all, the winds having widened the binary too 
much by the time the giant radius begins its last increase in late He core 
burning. In the ZAMS 3OM0 star, there is no increase in R at this stage, 
so Case C mass transfer is not possible. 

The lack of increase in R for the more massive stars is due to the cooling 
effect by strong wind losses. As shown by LBW1 giant progenitors as 
massive as 30 M 0 are necessary as progenitors of some of the black holes 
in the SXTs, especially for the binaries with evolved companions, in order 
to furnish the high mass black hole masses. These authors reduce wind 
losses by hand, forcing the resulting curve of R vs burning stage to look 
like that for a ZAMS 2OM0 shown in Fig. I during the He core burning 
where the effect of wind loss is important. In other words, in order to get 
the observed regularities in the evolution of SXTs, especially Eq. (1) which 
gives the linear dependence on Mj of the preexplosion separation of the 
binary, we must manufacture R vs burning stage curves for which mass 
transfer can be possible both early in Case B and in Case C. With early 
Case B mass transfer, or intermediate Case B mass transfer if it occurs, 
the winds during He core burning are so strong that not enough of an Fe 
core is left to result in a high-mass black hole, rather, a low-mass compact 
object results7. 

This story is somewhat complicated, but there have been many years 
of failures in trying to evolve black holes in binaries without taking into 
account the effects of binarity (mass transfer in our model) on the evolution. 
On the other hand, de Kool et al.6 had no difficulty in evolving A0620—00 
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Figure 2. Probability of initial binary formation, in which the Roche Lobe overflow 
starts between the two adjacent burning stages of the 2 0 M Q ZAMS star. The burning 
stages are the same as in Fig. 1. The probability (logarithmic distribution of initial 
binary separation) is given by P = l o g ( a n + i / a „ ) / 7 where the initial binary separation 
ai,t=o 's between an and an+i i and the logarithmic distribution is normalized by the 
total logarithmic interval "7" of Bethe & Brown12 . Three different cases of mass transfer 
are marked by Case A, B, and C. The numbers for each case in the left panel are the 
total of the probabilities in each case. In the left hand panel, the radii for the Case B 
mass transfer between stage 14 and stage 27 are R = 22 — 892 .RQ with the corresponding 
initial binary separation a.i:t=o = 33 — 1330-R©. For Case C mass transfer between stages 
40-47, R = 971 - 1185fl0 and a; , t = 0 = 1331 - 1605R©. With a 6 M 0 companion, the 
intermediate Case B mass transfer is possible as in the right panel. However, the total 
probability for the intermediate Case B mass transfer is ~ 10% of that for the late Case 
B and Case C mass transfer. 

in Case C mass transfer. The necessity in a similar evolution for the other 
black hole binaries was, however, not realized at that time. 

3. Dependence on the 1 2 C (a , 7 ) l e O Rate 

Brown et al.7 showed that the mass at which single stars went into high-
mass black holes was determined by the 1 2 C(a ,7) 1 6 0 rate. For the 
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Woosley13 rate of 170 keV barns, stars from 8 — 18M0 would go into neu
tron stars, the narrow range from 18 — 20M© into low-mass black holes 
(We believe 1987A to be an example.) and the stars from 2OM0 on up 
to a maximum mass determined by wind losses, possibly ~ 3OM0 into 
high-mass black holes. 

The main conclusion of Brown et al.7 was that the massive star must 
be clothed by its H envelope during most, if not all, of its He core burning, 
if the core is to be massive enough so as to collapse into a high-mass black 
hole. 

Schaller et al.10 used ~ 100 keV barns for the 1 2 C(a ,7) 1 6 0 rate, and we 
can check that their central 12C abundance following He core burning goes 
down to ~ 15% for their 25M0 star. In fact their 25MQ star does expand 
quite rapidly just at their stage 43, the end of He core burn. However, large 
wind losses cause the binary to widen too much for Case C mass transfer, 
and these must be cut down somewhat as done by LBW if Case C is to be 
made possible. 

One consequence of the skipping of convective carbon burning is that 
the remaining lifetime of the core should be substantially foreshortened. 
Whereas convective carbon burning takes hundreds of years, neon and oxy
gen burning take only ~ one year. The interpolation from 12C to 1 6 0 
burning via radiative and shell 12C burning and neon burning, which re
mains even when the central 12C is less than 15%, will smooth out any 
abrupt change, but the foreshortening should none the less be apprecia
ble. It lessens the time available for tidal interactions in the He-star, donor 
binary lifetime. 

Our considerations apply to Galactic metallicity. With low metallicity, 
the opacity is less and winds would not be expected to blow off naked He 
envelopes. Thus, Case A, AB or B mass transfer might not be expected to 
lead to only low-mass compact objects. The LMC with metallicity about 
1/4 Galactic, has two continuously shinning X-ray binaries, LMC X-l and 
LMC X-3, even though the total LMC mass is only ~ 1/20 of Galactic. 

There is an important caveat to the large expected effect from lower 
metallicity and stronger winds. As discussed in Brown et al.7 (see their Ta
ble 2) the mass loss rate has to be lowered by a factor of 3 from the preferred 
rate (which fits the fractional period change P/P in V444 Cyg) before the 
convective 12C burning is skipped (with a central 12% 12C abundance). 
In fact, even then 14 the compact core is only 1.497, only large enough to 
collapse into a low-mass compact object. But, in the Fryer et al.14 calcula
tions, the compact core is brought back up to 1O.7M0 by fallback, sufficient 
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for collapse into a high-mass black hole (as in the 5.2M0 remnant obtained 
when the mass loss rate is cut down by a factor of 2, rather than 3). How
ever, in a binary magnetohydrodynamic effects should help expel the outer 
matter in the explosion, cutting down the fallback. 

From the above one can see that even cutting winds down will not 
necessarily make Case B mass transfer possible. Perhaps more important 
is the lack of 4He needed to burn the last 12C left. As the triple alpha 
reaction depends on the third power of the helium mass fraction it loses 
against the 12G(a, 7 ) 1 6 0 reaction toward the end of central helium burning; 
i.e., carbon is mostly burned rather than produced toward the end of central 
helium burning. That switch typically appears at a central helium mass 
fraction of ~ 10 — 20%. Most importantly, as can be seen from the central 
carbon abundances at the end of He burning, which decreases from 35% 
to 22% with the lowering of wind losses by a factor of 6 the He fraction is 
too low to burn the final carbon14. Only with the 6-fold reduction in wind 
from the Woosley et al.13 rate (which is 3-fold from our preferred value) is 
convective carbon burning skipped. (With a 4-fold lowering from WLW, 
the convective carbon burning goes on for 500 years.) 

In the clothed stars, on the other hands, the growth of the He core and 
accompanied injection of helium after this time leads to a further decrease 
of carbon as compared to the bare helium cores that do not have this addi
tional supply of helium. We believe the above may be the most important 
difference between naked and clothed He cores. 

4. Evolutionary Consequences If Case B Were Possible 

We see from Eq. (1) that the preexplosion separation a/ scales linearly with 
MD, a relation that was used in LBW to evolve all binaries with evolved 
companions. Note that the range of ai also depend on the donor masses 
through the changes in Roche Lobe radii as in Fig. 3. In LBW we used this 
scaling, which also followed from the Webbink15 common envelope evolu
tion, and showed that the evolution of all of the SXTs could be understood 
in terms of it. 

During H shell burning and He core burning the radius R of the giant 
increases rapidly up to ~ 892i?0. During the increase from ~ 892_R0 to 
971-RQ the wind losses widen the orbit at such a rate that there is no 
RLOF as shown in Fig. 1. This may change with decreased wind losses, 
but we expect any increase in the 01^=0 to be small, and neglect it here. 
Consequently, Case B mass transfer could be early, taking place with H 
shell burning or early He core burning. 
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Roche Lobe 
Overfill 

Figure 3. Orbital separations after common envelope evolution for Case B and Case 
C mass transfer. Dot-dashed lines are the limits for the Case C mass transfer with 
Mp = 30MQ , M H e = 11M©, and \ace = 0.2 (see LBW). All the area to the left of 
the left dot-dashed line is Case B mass transfer (shaded area). Line I is the sum of 
the radius of the companion and that of the He core which is assumed to be 1.5.R0. 
Line II is the orbital separation corresponding to the Roche Lobe overfill right after 
the spiral-in during the common envelope evolution. The companion stars in binaries 
between Line I and II will be inside their Roche Lobe (Roche Lobe overfill) when they 
finish common envelope evolution, and they will be pushed out with mass transfer as 
indicated by arrows or they will lose in the common envelope evolution. Those binaries 
(Mdonor > 2 . 5 M Q ) between Line II and the left boundary of Case C will be outside 
of the common envelope even with Case B mass transfer. Reconstructed preexplosion 
orbital separation and black holes masses of SXTs with evolved companions are marked 
by black squares (refer to Fig. 11 of LBW.) If the high mass black hole formation in 
Case B mass transfer were possible, the probability of observing them in Case B is ~ 7 
times larger than in Case C. However, for the donor masses >, 2 M Q , we see no SXTs 
in Case B, while we have two observations, V4641 Sgr and GRS 1915+105 in which the 
reconstructed data is consistent with Case C. We have put in both the reconstructed 
data with maximum initial black hole mass (open square), and the present position of 
V4641 Sgr (filled square) in order to show the uncertainty in reconstruction. The small 
change in orbital separation shows this binary to give an excellent fiducial preexplosion 
separation. Because of the long period, mass loss in the explosion will be low (LBW). 
Cyg X-l may have had the preexplosion separation shown by the open box; its current 
separation is shown by the filled box. Although the af is linear with companion mass 
JVfd, the curves delineating Case C mass transfer curve up when the orbital separation 
is plotted logarithmically. 
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Suppose Case B mass transfer takes place during the stages between 
15 and 27 as in Fig. 2. Certainly it can, although we say the results will 
be a binary with a low-mass compact object. It would most likely do so 
for radii from ~ 22 to 892i?©, and the corresponding initial binary sepa
ration from ~ 33i?0 to 1330-R©. We set the lower limit to be the radii 
at the stage 15 following the gap between Case A and Case B mass trans
fer in Fig. 2. For the total binary logarithmic interval we take the 7 of 
Bethe & Brown12. With the above 33 — 1330i?© the fractional logarith
mic interval is ln(1330/33)/7 ~ 0.53 whereas for Case C mass transfer it 
is ln(1604/1331)/7 = 0.026. Thus, for a logarithmic distribution of bina
ries, Case B mass transfer is favored by a factor ~ 20. What would the 
consequences of this be, assuming it to be possible ? 

First of all let us consider SXTs like V4641 Sgr which is just beginning to 
cross the Herzsprung gap; this consideration also includes GRS 1915+105 
which was shown by LBW to be a late V4641 Sgr on the other side of the 
Herzsprung gap. Both had the large, ZAMS ~ 6.5 — 8M© companions. 
V4641 Sgr has at present radius R = 21.3i?©. and from the closeness 
of black hole and companion masses, could not have been narrower than 
~ 20.5i?Q (= 21.3 x (9'68

1o7
6253)2fi0) at which separation the companion 

and black hole mass would have been of nearly equal mass, which could 
have been as massive as 8MQ originally. 

By way of example of how Case B mass transfer might function, we 
consider binaries with Mne = 11 MQ and Mo = 8M©; i.e., binaries similar 
to our reconstructed V4641 Sgr at the time of black hole formation, as an 
example. The orbital separation for Roche Lobe overflow is ~ 13.2i?©, 
taking the donor radius to be 4.5i?©. The radius of an 11 MQ He star 
is 1.5-RQ, so the sum of donor radius plus He-star radius is 6i?©. If the 
binary separation is smaller than this, it will merge during the evolution. 
So the range of orbital separations for Roche Lobe overfill after common 
envelope evolution is ~ 6 — 13/?©. This means that if the companion star 
spirals in from anywhere between an initial 823 and 1770.R© it will overfill 
its Roche Lobe. It will then transfer mass to the He star until it fits 
into its new Roche Lobe with reduced mass. Because of the substantial 
logarithmic interval ln(1770/823)/7 = 0.11, nearly 1/5 of the entire Case 
B logarithmic interval, or nearly 4 times the entire Case C logarithmic 
interval. Conditions of Roche Lobe overfill for various donor masses are 
summarized in Fig. 3. 

Now consider the case that the binary ended up with the orbital sepa
ration of 6i?© after common envelope evolution. Since the separation for 
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the Roche Lobe filling is 4.5i?Q/0.35 ~ 12.9i?©, the donor will lose mass 
until the radius of the donor fits its Roche Lobe. If we assume conservative 
mass transfer2, the mass transfer will stop before the donor reaches ~ 4M 0 . 
Furthermore, if the explosion occurs before the donor radius fits its Roche 
Lobe, the orbit will be widened during the explosion. This will reduce the 
mass loss from the donor star, so the final reduced main sequence mass will 
be larger than 4MQ as indicated by arrow in Fig. 3. 

The chance of seeing the SXTs with massive companions before they 
evolve is small, even if the high mass black hole formation is possible in 
Case B mass transfer, either because the binary will end up beyond its 
Roche Lobe on Line II or because the mass transfer during the early main 
sequence stage will be small if it ended up along the Line II and will increase 
the binary radius beyond the Roche Lobe. Note that the life time of main 
sequence with ZAMS mass J> 2MQ is shorter than the time scale of the 
orbital separation (e.g., Fig. 2 of De Kool et al. 1987, without magnetic 
braking). Instead, they will become SXTs when they evolve. In the case 
of V4641 Sgr with initial companion mass M^ = 8M 0 , MBH = 8M 0 we 
estimate that after common envelope evolution a/ ~ 1.5Ri. Since the 
radius more than doubles in late main sequence evolution10 it will reach its 
Roche Lobe before then. We thus find that all companions with masses > 
2MQ, aside from that in Cyg X-l, establish Roche contact in main sequence. 
In Fig. 3, therefore, all binaries between Line I and the boundary of Case B 
and Case C will become SXTs with evolved companions, if high mass black 
hole formation in Case B mass transfer were possible. In that case, from 
Fig. 3, one can see that there should be ~ 8 times more SXTs with evolved 
companions (with initial donor mass > 2.5MQ). On the other hand, from 
Fig. 3, we expect ~ 4 times more SXTs with companions in main sequence 
if Case B mass transfer were possible. 

Chiefly we see from our discussion of possible Case B mass transfer in 
the SXT evolution that there would be no correlation between companion 
mass and preexplosion separation, since the possible initial separations a* 
would be very widely spread. In many cases, the orbit following spiral-in 
would overfill its Roche Lobe and mass exchange or loss would spread out 
the companion masses, each binary filling its Roche Lobe. The validity 
of Eq. (1) depends on the possible post supergiant radii R being within 
a narrow range, consequently a narrow range in the preexplosion orbital 
separation a,. We show in Fig. 3 that empirically the relation Eq. (1) 
is satisfied with our preferred common envelope efficiency \ace = 0.2 of 
LBW. Of course this depends on the reconstruction of preexplosion orbits 
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by LBW, which generally is supported by P R H although they give a wide 

range of possibilities. 

LBW noted tha t the evolution of Cyg X-l also fits into our Case C 

mass transfer scenario as in Fig. 3. Assume the progenitor of the black 

hole to be a ZAMS 2 5 M 0 giant (with 8 . 5 M 0 He star which we assume 

to go into a black hole of the same mass because very little mass is lost 

in the case of such a long period). Following the supergiant stage of the 

massive giant a ZAMS 2OM 0 companion removes the envelope, coming to 

an af of - 50RQ (= ( 2 O M 0 / 8 M 0 ) x 2Oi?0), where 8 M 0 and 2Oi?0 are 

the reconstructed black hole mass and a / at the time of explosion in V4641 

Sgr. We followed the linear scaling of a / with Md here. The companion 

now transfers 2 . 2 M 0 to the black hole in unstable, but conservative mass 

transfer. This brings the separation a down to the present 4Oi?0 . 

5. D i s c u s s i o n 

The work of L B W 1 has been amalgamated with tha t of P R H (Podsiadlowski 

et al. 2002). Both papers agree tha t common envelope evolution must come 

following helium core burning; i.e., be Case C. Our work is based on the 

nearly linear relationship Eq. (1) between separation following common 

envelope evolution and companion (donor) mass. By choosing the common 

envelope parameter \ace = 0.2, we are able to evolve those binaries with 

K and M-star companions, which we believe to be the success of LBW and 

our earlier works. 

The P R H evolutions clarify tha t all of the binaries with the possible 

exception of Cyg X- l could have made Roche contact in main sequence evo

lution of the companion, as in the earlier work by Beer & Podsiadlowski4 . 

This makes it possible to evolve all of the binaries with sub-Eddington rate 

of mass transfer (although we do not believe this to be necessary in the 

case of black holes). 

LBW and P R H agree that the present evolutionary tracks of supergiants 

from ZAMS masses ~ 20 — 3OM 0 and possibly greater, must be changed 

so as to allow Case C mass transfer. An example of how to do this was 

constructed (by hand) in LBW. 

We would like to point out tha t there are uncertainties due to the ra

dius evolution of massive stars and the parameterization of mixing, etc. In 

particular, stars tha t use the LeDoux criterion or a small amount of semi-

convection burn helium as red supergiants, while those with Schwarzschild 

or a lot of semiconvection stay blue much of the time. Rotationally induced 

mixing also plays a role as in Langer and Maeder1 6 . 
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If strange quark matter is the true ground state of matter, it must have lower 
energy than nuclear matter. Simultaneously, 2 flavour quark matter must have 
higher energy than nuclear matter, for otherwise the latter would convert to the 
former. We show, using an effective chiral lagrangian, that the existence of a new 
lower energy ground state for 2 flavour quark matter, the pion condensate, shrinks 
the window for SQM to be the ground state of matter and sets constraints on the 
current strange quark mass and the sigma particle mass which may be precluded 
by the data and thus point to the implausibility of SQM being the true ground 
state of matter. In consequence, this points to the implausibility of strange stars 
and also almost eliminates the doomsday risk of the world being eaten up by 
strangelets produced at a heavy ion accelerator. Further, this analysis provides 
the unexpected bonus, that the phase diagram of QCD at finite density is such 
that chiral symmetry remains spontaeously broken at all density! 

1. Introduction 

The hypothesis that the true ground state of baryonic matter may have a 
roughly equal fraction of u,d and s quarks, termed strange quark matter 
(SQM) is of recent origin 1. This is based on the fact that at some density, 
when the down quark chemical potential is larger than the strange quark 
mass, conversion to strange quarks can occur. This reduces the energy 
density by having 3 (u,d and s) fermi seas instead of just 2 (u, d), and 
can yield a state of energy lower than nuclear matter. It is also possible to 
explain why such a state has escaped detection. 

This involves at least two puzzles. 

mailto:vsoni@del3.vsnl.net
mailto:dipankar@rri.res
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i) Why does ordinary 2 flavour nuclear mat ter , the observed ground 

state of baryonic mat ter , not decay into strange quark matter . 

The answer is tha t this decay is not like the radioactive decay of unstable 

nuclei, as the nucleons cannot decay one by one as it is not energetically 

favourable for the nucleon to change into a A. The entire nuclear mat ter 

has to t ransmute into strange quark mat te r and this requires a high order 

of the flavour changing weak interaction which renders the cross section to 

be exponentially and unobservably small. 

ii) Why was this mat ter not created in the evolution of the universe? 

This is due to the fact tha t as the universe cooled past a temperature 

equivalent to the strange quark mass , strange quark mat ter was not the 

chosen s tate of high entropy. Since the u and d quarks have almost neglible 

masses at this scale, as the temperature dropped further, the strange quarks 

were Boltzmann suppressed leaving just the u and d quarks, which as we 

know coverted largely into nucleons. For details we refer the reader to Refs. 
1,2,3 

It is really quite remarkable tha t the ground state cannot be realised 

easily! Only if we can produce high baryon density by compression can 

SQM be realised - for example, in the interior of neutron stars, 

We now turn to the theoretical underpinning of the case for SQM being 

the potential ground state of mat ter . 

We already know, empirically as well as theoretically, the ground state 

energy per baryon, EB, of saturat ion nuclear mat te r - 930 MeV for the 

Fe 56 nuclei. However, for calculating quark mat ter we take recourse to 

phenomenological models, which are pointers but foundationally inadequate 

and here lies the uncertainty. 

The usual ground state calculation for SQM treats the quarks as a free 

fermi gas of current quarks. This quark mat ter is in a chirally restored 

s tate (CRQM). The volume in which these quarks live comes at a cost of 

a constant energy density tha t provides 'confinement.' It is equivalently 

the same constant value of negative pressure and hence is often called the 

bag pressure term. This is a simple extension of the MIT bag philosophy, 

where the origin of the constant energy density is the fact tha t quarks 

must be confined. The bag pressure sets the equilibrium or ground state 

energy density and the baryon density. It can be fixed from the nucleon 

sector. Further structure can be introduced by adding interaction between 

the quarks, eg, one gluon exchange. Such a phenomenological model has 

been used by Wi t ten 1 and later by Jaffe and Farhi2 and others for SQM 

(see ref.3 for a review). 



104 

2. Chiral S y m m e t r y 

It is clear tha t such a model is phenomenological and does not, for exam

ple, address the issue of the spontaneous breaking of chiral symmetry - an 

essential feature of the strong interactions. We know tha t for the strong 

interactions the vacuum is a s tate with spontaneously broken chiral sym

metry (SBCS). On the other hand, the quark mat ter in the bag, in the 

state above, is in a chirally restored (CRQM) state. This means tha t as in 

the case of Superconductivity it costs energy to expel the chiral condensate 

which characterises the true vacuum state. Clearly, this will act just like 

the bag energy density/pressure. However, its value will be determined 

by the energy density of the chiral condensate. Such a term binds but 

does not confine. Confinement, thus requires further input than just a bag 

pressure 

All results for the SQM state will depend on the model tha t is used to 

describe it and the ground state thereof. We work with an effective chiral 

model, which is more versatile and which allows the system to dynami

cally choose, without prejudice, the lowest energy ground state - with or 

without spontaneous chiral symmetry breaking. We find tha t there is a 

plurality of ground states. Of these, we find tha t one particular ground 

state has the property of chiral restoration at high density and parallels 

the MIT bag state used in most previous estimates, where the ground state 

is a fermi sea of current quarks (CRQM) with the bag pressure provided 

by absence of the chiral condensate. This regime sets the connection be

tween the paramaters of the chiral model and the MIT bag model used in 

refs.1-2 '3. 

Unlike for the MIT bag case where the bag pressure is a parameter, in 

our formulation, it is the the chiral condensate energy with a negative sign 

and is given in terms of the parameters of low energy phenomenology - the 

pion decay constant, fv, which is precisely known and the scalar coupling 

or the a mass, which is rather poorly 'known'. 

There are, however, other ground states for this model, in which the 

pa t tern of symmetry beaking is different at high density, for example, the 

pion condensed (PC) ground state in which the chiral symmetry is still 

spontaneously broken (but with expectation values tha t are space depen

dent, see later) at high density. Such a state has lower ground state energy 

than the former and thus needs to be considered in the description quark 

mat ter . As we show it is found to influence the regime of existence of SQM 

importantly. 
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2 .1 . Effective chiral lagrangian 

We consider this issue in the framework of an intermediate chiral symmet

ric Lagrangian tha t has chiral spontaneous symmetry breaking. Such an 

effective Lagrangian has quarks, gluons and a chiral multiplet of [TT, a] tha t 

flavor couples only to the quarks. For SU(2)LXSU(2)R chiral symmetry, 

we have 

-\{d^f ~ \{d^f ^(<?2+^ - if,ff (1) 

The masses of the scalar (PS) and fermions follow on the minimization 

of the potentials above. This minimization yields 

< o >2= fl (2) 

where / w is the pion decay constant It follows tha t 

m2a = 2A2(/7r)2 mq = m = g < a >= gfv (3) 

This theory is an extension of QCD by additionally coupling the quarks 

to a chiral multiplet , (TT and a) 4>5-6. 

This Lagrangian has produced some interesting physics at the mean 

field level 6>7 

It provides a quark soliton model for the nucleon in which the nucleon is 

realized as a soliton with quarks being bound in a skyrmion configuration 

for the chiral field expectation values 5 ' 6 . 

Such a model gives a natural explanation for the 'proton spin puzzle'8 , 

satisfies the Gottfried sum rule 9 and can also yield from first principles 

(but with some drastic QCD evolution), s tructure functions for the nucleon 

which are close to the experimental ones 10 . 

In a finite temperature field theory such an effective Lagrangian also 

yields screening masses tha t match with those of a finite temperature QCD 

simulation with dynamical quarks 1 1 and also gives a consistent equation 

of s tate for strongly interacting mat ter at all density 1 2 '6 . 

We shall first briefly establish the parameters of the above effective 

Lagrangian and the specific connection with the MIT bag model of confine

ment used in previous t reatments of SQM. 
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1) As already pointed out above, the nucleon in this model is realised 
as a soliton in a chiral symmetry broken background with quark bound 
states 5>6'7. This sets the value of the yukawa coupling, g, required to fit 
the nucleon mass in a Mean Field Theory (MFT) treatment to be , g = 5.4. 

II) For the description of the nucleon the dependence on the scalar 
coupling, A , is marginal as long as it is not too small. Further, in MFT , 
the QCD coupling does not play a role; only if 1 gluon exchange is included 
does the QCD coupling enter. 

However, A, determines the scalar mass and also determines the chiral 
condensate energy density/pressure which is an important parameter for 
the quark matter phase. 

III) There are no other parameters except /„•, the pion decay constant 
which is set to 93 Mev. 

This model has been extended to the SU(3) flavour group for treating 
the case of strange quark matter 13. 

3. Prel iminaries for SQM 

1) The connection to MIT bag description of quark matter is set as follows. 
The last term in the above lagrangian, the potential functional, 

^(^+^-( / . ) 2 ) 2 

is minimized by the VEV's (space uniform expectation values) 
(< a > = U, < n > = 0) 
and is equal to zero at the minimum. 
In MFT at high density (as we shall see), when chiral symmetry is 

restored, (< a >= 0, < ir > = 0), this term reduces to a constant energy 
density term equal to 

£(A)4 

Besides, due to chiral symmetry restoration the constituent mass of the 
quarks also vanishes , leaving free massless quarks. This reduced lagrangian, 
for high density is no different from MIT bag quark matter with 

This completes the identification of the bag pressure term in this model. 
It shows that bag pressure is automatically generated by chiral restoration 
and is controlled simply by the scalar coupling or equivalently the sigma 
mass. 

2) We first briefly describe the logical basis for the investigation of 
the QM ground states vis a vis the usual nuclear matter ground state at 
saturation density. Here, we follow Jaffe and Farhi 2. 
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1. We fix coordinates by noting that SQM can be the true ground state 
only if its, EB, is lower than the lowest energy per baryon found in nucleii, 
930 Mev for iron, as done by Jaffe and Farhi 2. 

2. We calculate the 2 flavour quark matter ground states and fix a lower 
bound for the only free parameter in our lagrangian, the scalar coupling; 
or equivalently, we get a lower bound on the chiral condensate pressure (or 
bag pressure) from the condition that the 2 flavour quark matter state must 
have higher EB than nuclear matter - otherwise nuclear matter would be 
unstable to conversion to the 2 flavour QM. As pointed out in ref.2 this 
condition is that bulk 2 flavour quark matter must have, EB > 934 Mev. 

3. We calculate the SQM with the parameters established in 2 above 
and see if for SQM, EB, is smaller than that given in 1, above. If this 
is the case,and as, EB, increases monotonically with the scalar coupling 
(or the chiral condensate pressure), we get an upper bound on the chiral 
condensate pressure (or bag pressure), when EB crosses beyond 930 MeV. 
SQM can then exist, as the true ground state, in this interval between the 
two bounds. 

4. The patterns of symmetry breaking - the SU(2) case 

1) For the space uniform phase the pattern of symmetry breaking is such 
that the expectation values of the meson fields are uniform, given below. 

At zero density they are just the VEVs. 

< a > = U (4) 

< 7f > = 0 (5) 

For arbitrary density we allow the expectation value to change in magni
tude, as it becomes a variational parameter that is determined by energy 
minimization at each density. 

< a > = F (6) 

< TT > = 0 (7) 

This phase has two features, a chiral restoration at some baryon density 
(above nuclear density), px, followed, with increasing density, by an abso
lute minimum in EB, at pc > px 

Since EB decreases monotonically with density till the chiral restoration 
density, px, and then continues to decrease till the minimum is reached at 
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pc, this implies that the density regime till pc is unstable and has negative 
pressure. This has been recently conjectured as the density at which self-
bound droplets of quarks form, which may be related to nucleons. Further, 
since at this density chiral symmetry is restored, these 'nucleons' will be 
like those in the MIT bag model in which chiral symmetry is unbroken 
inside the nucleons. 

We would like to clarify this issue. 
From the comparison of this phase with the nucleon and nucleonic 

'phase' arising from the same model (see 6 ' 1 2 ) , it is clear that the nucle
onic phase is always of lower energy than the uniform phase above, upto 
a density of roughly 3 times the nuclear density, which is above the chi
ral restoration density in the uniform phase. Further, the minimum in the 
nucleonic phase occurs very much below the minimum in the uniform phase. 

The chiral restoration density in the uniform phase is thus not of any 
physical interest as matter will always be in the lower energy nucleonic 
phase and so the identification of nucleon as a quark droplet at the density 
at which the minimum occurs in the uniform phase is not viable. Clearly, 
the nucleon is a quark soliton of mass M =938 MeV and falls at the zero 
density limit in the nucleonic phase. 

2) Here we shall consider another realization of the expectation value 
of < a > and < 7? > corresponding to neutral pion condensation. This 
phenomenon was first considered in the context of nuclear matter. 

Such a phenomenon also occurs with our quark based chiral a model and 
was first considered at the Mean Field Level by Kutschera and Broniowski 
in an important paper 13. Working in the chiral limit they found that the 
pion condensed state has lower energy than the uniform symmetry breaking 
state (phase 2) we have just considered for all density. This is expected, as 
the ansatz for the PC phase is more general than for phase 2. 

For the pion condensed (PC) phase the expectation values carry a par
ticular space dependence 

< a > = FCos(q.f) (8) 

< 7T3 > = FSin(q.r) (9) 

< TTi > = 0 (10) 

< 7T2 > = 0 (11) 

Note, when \q\ goes to zero, we recover the uniform phase (2). 
We briefly remark on some features of this phase: 
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(1) The 2 flavour PC state is quite different from the uniform phase: 
unlike the 2 flavour CRQM states considered in 2, it cannot be 
recovered from 3 flavour CRQM by taking the strange quark mass 
to infinity. As we shall see in the next sections, this gives a new 
feature - a maximum strange current quark mass for SQM to be the 
true ground state. 

(2) The reason that the PC phase has energy lower than the uniform 
< a > condensate is perhaps best understood in the language of 
quarks and anti quarks. To make a condensate a quark and anti-
quark must make a bound state and condense. For a uniform < a > 
condensate the q and q must have equal and opposite momentum. 
Therefore, as the quark density goes up the system can only couple 
a quark with k > kf and a q with the opposite momentum . This 
costs much energy so the condensate can only occur if kf is small, 
at low density. On the other hand, the pion condensed state is not 
uniform. So at finite density, if we take a quark with k — kf the q 
can have momentum k = \kf — q\, which is a much smaller energy 
cost. 

(3) Since the pion condensate is a chirally broken phase, the chiral 
restoration shifts from very low density in the uniform phase to 
very high density: ~ 10p„uc. This is a signature of this phase. 

(4) Since this phase is always lower in energy than the uniform phase 
we go directly from the nucleonic phase to the PC phase completely 
bypassing the uniform phase, and thus all the interesting features 
and conjectures for the uniform phase are never realized. 

(5) Another feature of this n condensate is that since we have a spin 
isospin polarization we can get a net magnetic moment in the ground 
state. 

For all the details we refer the reader to 13 where we consider, in Mean 
Field Theory, the phases of 2 flavour quark matter in the SU (2) ̂ xSU (2) R 
chiral model above. We then extend the model to 3 flavours (u, d, s) to 
describe SQM. 

The results are for 3 flavour quark matter with a general ansatz for the 
ground state that can access both, the the SBCS phases (including pion 
condensation ) as well as the CRQM phase assumed in previous treatments 
(for example, in Ref. 2). 

For 2 flavour (u,d) quark matter the pion condensed(PC) state is the 
preferred state for all density 14 - it is always lower in energy than the 
CRQM state. 
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For 3 flavours and with the current strange quark mass, ms, less than 
about 200 MeV, the ground state is well described by the CRQM state used 
in Ref.2. But for higher ms, it is the state with a pion condensate that is 
preferred. This puts a limit on m s . 

In Ref. 2, since all quark matter is calculated in the CRQM state, 
the transition from 3 flavour quark matter to 2 flavour quark matter is 
accomplished essentially by taking the limit, ms —> oo. 

It is clear that with the appearance of the lower energy 2 flavour pion 
condensed (PC), this is no longer true. As we tune, ms, upwards the 
transition to the 2 flavour PC (CSB) state occurs at a finite value of ms. 

5. Results and Conclusions 

5.1. Results 

I) 1) Our finding is that ( without including 1 gluon exchange) the new PC 
ground state 

i) limits the bounds on the bag pressure, B , allowing 
U8MeV < B1'4 < 162.5MeV 
instead of the result of ref.2 

U5MeV < B1!4 < 162.5MeV 
ii) it cuts down the allowed pararmeter space of the explicit or current 

strange quark mass 
ms < 250 MeV 
2) With, CCQCD = 0.6, and including 1 gluon exchange the new PC 

ground state, with some simplifying approximations 
i) strongly limits the bounds on the bag pressure, B , allowing 
141.5(156.5)MeV < B1/4 < 150.3(166)MeF 
(where the result without brackets follows on using the expression for 

the interaction energy, Ei, as derived in ref.2 and that in brackets uses, Ei, 
from Baym et al 15 (see Ref. 13)). 

instead of the result of ref.2, in the absence of the PC state, 
!28.5MeV < Bxl4 < U5.6MeV 
ii) it further cuts down the allowed pararmeter space of the explicit 

strange quark mass 
ms < 150 MeV 
This is a rather punishing constraint 

II) The bag pressure ,B,in our chiral model (the SU(2) version) is given 

by, 
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What is different is that this is now determined from low energy phe
nomenology. 

(i) j v is the pion decay constant and is well known. 
(ii) TOO- is the scalar mass and is poorly known. 
Thus, we get a small window in B, which allows for strange quark matter 

as the true ground state. Now, this allowed range translates into a certain 
range of allowed values for, ma. 

As can be seen from 13, for the case of SU(3) there is a modification 
B- 3Ai(7 )4 = 3r^i f2 
D — 2 4 w*V 2 8 • 'T 

For all cases considered by us the maximum value of B1/4 is 166 MeV, 
which corresponds to, ma = 680MeV. Such a value for the sigma mass 
may be a little too low in the context of the linear sigma model employed 
by us, as can be seen from the following. 

Recently, Schechter et al 16, have made fits to the scalar channel scat
tering data to see how it may be fitted with increasing range in ^fs, by 
chiral perturbation theory and several resonances. They have also looked 
at this channel using just a linear sigma model. Their results indicate that 
for ifs < 800MeV, a reasonable fit to the data can be made using the linear 
sigma model with a sigma mass between, 700 - 800 MeV. 

This establishes that the conditions for SQM to be the absolute ground 
state are such as to require ms < 150Mev and ma < 700Mev, both of 
which are close to being not admissible from data. Of course, this is within 
the framework of MFT in a chiral model. 

5.2. Neutron /Strange stars and the equation of state 

i) Strange stars require the absolute stability of SQM. Since this has been 
shown to be highly implausible so is then the existence of strange stars. 

ii) This analysis also points to an interesting and hitherto unclaimed 
EOS for dense matter, where chiral symmetry is never restored at any 
density! Let us explain: a) We start with saturation nuclear matter at 
nuclear density and this persists till the nuclear matter gets squeezed into 
quark matter at moderately higher density, when a pion condensed state 
takes over. Since we have not investigated other condensates, for example, 
a charged pion running wave condesate or a kaon condensate, we cannot 
vouch for our neutral pion condensate being the best ground state. How
ever, it is worth pointing out that all these states , that have lower energy 
than the chirally restored CRQM state, are chiral symmetry broken states. 
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Figure 1. Allowed region in the bag constant-strange quark mass parameter plane for 
the Strange Quark Matter (SQM) ground state to be the absolute ground state of matter. 
Gluon exchange interaction is not included. The solid line shows the allowed window, 
taking into account the Pion Condensed (PC) phase reported in this paper. The region 
included within the curve is the allowed region. The dashed line shows the result for 
Chirally Restored Quark Matter (CRQM) from ref. 2 . The vertical left boundary for 
either case represents E g = 934 MeV in 2-flavour matter and the curved line reresents 
EB = 930 MeV in 3-flavour matter. The curve for CRQM shown here is a linear 
interpolation to 930 MeV from the results for 919 MeV and 939 MeV presented in ref. 2 . 

At even higher density the most likely state is a diquark condensate - a 
colour flavour locked ( CFL ) state - which can persist till arbitrarily high 
density. Such a ground state spontaneously breaks both chiral and colour 
symmetry. Diquark condensates are unlikely at moderately high density 
as they depend on the quark density of states and so the pion condensate 
is most likely at such densities. An important point to note is that, in 
any case, for quark matter we cannot have chirally restored SQM as it 
is unstable to the formation of diquark condensate. We will then make 
a transition from a PC state to a CFL state - both, spontaneously break 
chiral symmetry. We then arrive at the remarkable conclusion that chiral 
symmetry is never restored at any density - a situation to be contrasted 
with that at high temperature. This has profound implications. 

ii) In neutron star interiors the central density is well beyond nuclear 
density. In this case we expect that the profile for star density will start 
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Figure 2. Similar to Figure 1, but with 1-gluon exchange included. The exchange 
energy is computed using two alternative prescriptions, by Farhi-Jaffe 2 and Baym 16 , 
as indicated. The solid lines represent the constraints imposed by taking into account 
the PC phase in these two cases. The dashed line is for CRQM, obtained from the data 
presented by Farhi and Jaffe 2 . OLQCD is set to 0.6. The PC phase places a strong 
constraint on the strange quark mass if SQM should represent the absolute ground state 
of matter. 

with the nucleonic EOS on the outside and go to a pion condensate in the 

interior and could well go to a a colour flavor locked state at the centre if 

the density there is large enough; though, this is unlikely if we have a pion 

condensate as its softness may result in smaller maximum mass. 

A summary of the results without the one gluon exchange interaction 

appears in Fig. 1. For the case with the one gluon exchange interaction the 

results are summarized in Fig. 2. 

6. Conc lus ions 

We have found tha t the existence of a new and lower energy state of 2 

flavour quark mat ter , the pion condensed state, has a significant effect on 

the window of opportunity for SQM to be the t rue ground state of mat ter . 

In effect, as far as the existence of SQM as the true ground state is 

concerned, this analysis provides 

~ I r T I I r 

s Farhi-Jaffe 

_i i i u _ 
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i) A new and interesting constraint for the current mass of the strange 

quark, ii) Further, our results indicate tha t the window for SQM sets a 

constraint on the sigma mass used in our chiral model. 

Both these constraints may not be admissable by the experimental da ta 

and thus point to the implausibility of SQM being the t rue ground state of 

mat ter . 

In consequence, this points to the implausibility of strange stars. In 

conequence, this also almost eliminates the doomsday risk of the world 

being eaten up by strangelets produced at a heavy ion accelerator (see l r ) . 

Further, since this lower energy pion condensed state is favoured by 

the data, and CRQM quark mat ter is always unstable to the formation 

of a diquark condensate,this analysis provides the unexpected bonus tha t 

the phase diagram of QCD at finite density is such tha t chiral symmetry 

remains spontaeously broken at all density! 
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I review attempts made to determine the properties of neutron stars. I focus on 
constraints on the maximum mass that a neutron star can have, and on attempts 
to measure neutron-star radii. So far, there appears to be only one neutron star 
for which there is strong evidence that its mass is above the canonical 1.4 M@, viz., 
Vela X-l, for which a mass close to 1.9 M Q is found. Prospects for progress appear 
brightest for studies of systems in which the neutron star should have accreted 
substantial amounts of matter. While for individual systems the evidence that 
neutron stars can have high masses is weak, the ensemble appears to show that 
masses around 1.6 M Q are possible. For the radius determination, most attempts 
have focussed on neutron stars in low-mass X-ray binaries in which accretion has 
temporarily shut down. These neutron stars are easiest to model, since they should 
have pure Hydrogen atmospheres and low magnetic fields. To obtain accurate radii, 
however, requires precise distances and very high quality data. 

1. Trying to constrain the equation of state 

The physics of matter at ultra-high density is not only of interest on its 
own accord, but also because of its astronomical implications: to under
stand the core collapse of massive stars, the supernova phenomenon, and 
the existence and properties of neutron stars, knowledge of the physics, 
as summarised in the equation of state (EOS), is required. As is clear 
from other contributions to these proceedings, quantum-chromodynamics 
calculations are not yet developed well enough to determine the densities 
at which, e.g., meson condensation and the transition between the hadron 
and quark-gluon phases occur. At densities slightly higher than nuclear 
and at high temperatures, the model predictions can be compared with the 
results of heavy-nuclei collision experiments. The substantial progress on 
this front is discussed elsewhere in these proceedings. For higher densities 
and low temperatures, however, no terrestrial experiments seem possible; 
the models can be compared only with neutron-star parameters. Recent 



117 

reviews of our knowledge of the EOS, and the use of neutron stars for con

straining it, are given by Heiselberg & Pandhar ipande 1 1 , and Latt imer & 

Prakash.1 5-1 6 

Here, I focus on two possible ways to constrain the EOS: aiming to find 

the highest observed neutron-star mass, and to measure precise radii. The 

first part is an update of reviews I have given earlier.31 ,32 

2. M a x i m u m m a s s 

Observationally, after spin periods, masses are perhaps the easiest bulk 

properties to determine. Their possible interest for constraining the EOS is 

tha t for any given EOS, there is a maximum mass a neutron star can have; 

beyond this, it would collapse to a black hole. For instance, for EOS with a 

phase transition at high densities, such as Kaon condensation,5 only neutron 

stars with mass < 1.5 MQ could exist. This EOS would be excluded if a 

neutron star with a mass above this maximum were known to exist. Below, 

I first describe the constraints given by the very accurate masses derived 

from relativistic binary neutron stars, and next the less precise masses from 

X-ray binaries. I then discuss whether the narrow mass range implied by the 

most accurate masses implies a constraint on the EOS, or rather reflects 

the astrophysical processes by which neutron stars form. I conclude by 

briefly describing the situation for neutron stars for which on astronomical 

grounds one might expect tha t they have accreted a substantial amount, 

and hence have become more massive. 

2 . 1 . Relativistic neutron-star binaries 

The most accurate mass determinations have come from radio timing stud

ies of pulsars (see Thorsett & Chakrabar ty 2 9 for an excellent review). The 

best among these are for pulsars that are in eccentric, short-period orbits 

with other neutron stars, in which several non-Keplerian effects on the orbit 

can be observed: the advance of periastron, the combined effect of variations 

in the second-order Doppler shift and gravitational redshift, the shape and 

amplitude of the Shapiro delay curve shown by the pulse arrival times as the 

pulsar passes behind its companion, and the decay of the orbit due to the 

emission of gravitational waves. The most famous of the double neutron-

star binaries is the Hulse-Taylor pulsar, PSR B1913+16, for which M P S R = 

1.4411 ±0 .0007 M 0 and M c o m p = 1.3874 ±0 .0007 M© was derived.28-27 Al

most as accurate masses have been inferred for PSR B1534±12, for which 

the pulsar and its companion were found to have very similar mass:2 6 

M P S R = 1.3332 ± 0.0010 MQ and M c o m p = 1.3452 ± 0.0010 M 0 . 
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To these two best-known systems, recently two further interesting bi
naries have been added. The first is PSR J1141—6545, for which M P S R = 
1.30 ± 0.02 MQ and M c o m p = 0.99 ± 0.02 M© was measured;1 here, the 
companion is most likely a massive white dwarf.a Very recently (after the 
conference), the discovery of a neutron-star binary was announced in which 
both components are radio pulsars.17 Prom this 'double-lined' radio pulsar 
binary, masses M P S R , I = 1.337 ±0.005 M 0 and M P S R , 2 = 1.250 ±0.005 MQ 

were derived. 

From the above, one sees that all these well-determined masses are in a 
relatively narrow range, between 1.25 and 1.44 M©. 

2.2. The high-mass X-ray binary Vela X-l 

Neutron-star masses can also be determined for some binaries containing 
an accreting X-ray pulsar, from the amplitudes of the X-ray pulse delay 
and optical radial-velocity curves in combination with constraints on the 
inclination (the latter usually from the duration of the X-ray eclipse, if 
present). This method has been applied to about half a dozen systems.13'36 

The masses are generally not very precise, but are consistent with ^1.4 M© 
in all but one case. 

The one exception is the X-ray pulsar Vela X-l, which is in a 9-day orbit 
with the B0.5 lb supergiant HD 77581. For this system, a rather higher mass 
of around 1.8 M© has consistently been found ever since the first detailed 
study in the late seventies.37,35 A problem with this system, however, is that 
the measured radial-velocity orbit, on which the mass determination relies, 
shows strong deviations from a pure Keplerian radial-velocity curve. These 
deviations are correlated within one night, but not over longer periods. A 
possible cause could be that the varying tidal force exerted by the neutron 
star in its eccentric orbit excites high-order pulsation modes in the optical 
star which interfere constructively for short time intervals. 

The velocity excursions appeared not to depend on orbital phase, and 
we hoped that, with sufficient observations, it would be possible to average 

aGiven that this system has an eccentric orbit, it seems certain that the white dwarf 
was formed before the supernova explosion that left the neutron star (and made the 
orbit eccentric). Likely, what happened is that both stars in the binary originally had 
masses too low to form a neutron star, but that as the originally more massive star 
evolved, a phase of mass transfer ensued in which the originally less massive star received 
sufficient material to push its mass over the limit required for neutron-star formation 
(for references, see citations in Bailes et al. ). 
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Figure 1. Radial-velocity measurements for HD 77581, the optical counterpart to Vela 
X-l . Overdrawn is the Keplerian curve that best fits the nightly averages of the data 
(solid line; Kopt = 21.7 ± 1.6 km s - 1 ) , as well as the curve expected if the neutron star 
has a mass of 1 .4MQ (dotted line; Kopt = 17 .5kms _ 1 ) . The residuals to the best-fit are 
shown in the middle panel. For clarity, the error bars have been omitted. Points taken 
within one night are connected with lines. In the bottom panel, the residuals averaged in 
9 phase bins are shown. The horizontal error bars indicate the size of the phase bins, and 
the vertical ones the error in the mean. The dotted line indicates the residuals expected 
for a 1.4 MQ neutron star. 

them out. For that purpose, we obtained about 150 spectra, taken in as 
many nights and covering more than 20 orbits, of the optical counterpart.2 

Unfortunately, we found that the average velocity curve does show sys
tematic effects with orbital phase (see Fig. 1), which dominate our final 
uncertainty. While our best estimate still gives a high mass, of 1.86 MQ , 
the 2cr uncertainty of 0.33 MQ does not allow us to exclude soft equations 
of state conclusively. 
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A different approach would be to try to obtain very dense coverage of 
the orbit, in the hope that one could model and remove the excursions. 
This approach was tried too,21 and for the two weeks covered by the obser
vations, it was found to be possible to model the velocity excursions as a 
fairly coherent, 2.18-d oscillation (in contrast to what was the case in ear
lier observations35). After removal, however, the systematic orbital-phase 
dependent effects that plagued our determination became apparent here 
too, and the final mass has roughly the same value, but also roughly the 
same uncertainty as the one described above. 

2.3. Physical or astrophysical implications? 

While we cannot draw a firm conclusion about the mass of Vela X-l, it 
is worth wondering how it could be the only neutron star with a mass so 
different from all others. I would argue one should be careful in taking the 
narrow mass range around 1.4 M© as evidence for an upper mass limit set 
by the EOS.2 After all, for all EOS, neutron stars substantially less massive 
than 1.4 M© can exist, yet none are known. Gould it be that the narrow 
range in mass simply reflects the formation mechanism, i.e., the physics of 
supernova explosions and the evolution of stars massive enough to reach 
core collapse? There certainly is precedent: white dwarfs are formed with 
masses mostly within a very narrow range around 0.6 MQ, well below their 
maximum (Chandrasekhar) mass. 

Interestingly, from evolutionary calculations,30 it is expected that single 
stars produce neutron stars with a bimodal mass distribution, with peaks 
at 1.27 and 1.76 MQ. For stars in binaries, only a single peak at ~1.3M© 
was found, but it is not clear whether this result will hold (S. Woosley, 
2000, pers. communication). If not, could it be that the progenitor of Vela 
X-l was a star that managed to produce a massive neutron star? If so, 
one may still wonder why no massive radio pulsars or pulsar companions 
have been found. This may be a selection effect:2 all neutron stars with 
accurate masses are in binary neutron stars systems in close orbits, whose 
formation requires a common-envelope stage. During this stage, a merger 
can only be avoided if the initial orbit was very wide. Stars massive enough 
to form a massive neutron star, however, likely do not evolve through a 
red-giant phase, and a common-envelope phase would occur only for rather 
close orbits, for which the binary would merge. 
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2.4 . Trying for bias 

In considering the mass measurements discussed above, it should be noticed 

that for all neutron stars with good masses, it is expected tha t they accreted 

only little mass after their formation. Only neutron stars in low-mass X-

ray binaries and radio pulsars with low-mass white dwarf companions are 

expected to have accreted substantial amounts of material. It may thus be 

worthwhile to try to bias oneself to more massive neutron stars by studying 

these. 

For low-mass X-ray binaries, higher masses, of ~ 2M©, have indeed 

been suggested; e.g., from dynamical measurements and lightcurve fitting 

for Cyg X-2,1 9 and from inferences based on quasi-periodic oscillations.40 

These estimates, however, rely to greater or lesser extent on unproven as

sumptions. 

The radio pulsars with white dwarf companions provide cleaner systems, 

for a number of reasons. First, most of the radio pulsars in these binaries 

spin very rapidly and stably, making them ideally suited for precision tim

ing. Second, both components can safely be approximated as point masses 

for dynamical purposes, so tha t deviations from Keplerian motion can be 

readily interpreted. Third, by taking optical spectra of the white dwarf, it 

is possible to determine its radial-velocity curve, and thus obtain the mass 

ratio. Finally, from a model-atmosphere analysis of optical spectra, one can 

infer the surface gravity and, using the white-dwarf mass-radius relation, 

the mass. Combined with a mass ratio, this yields the pulsar mass. 

In many of these systems, one expects the neutron star to have accreted 

a substantial amount of mat ter . This is because many of the white dwarf 

companions have masses of only ~ 0 . 2 ¥ g . In order for their progenitors 

to have evolved off the main sequence in a Hubble time, the initial masses 

much have been at least O.8M0. Hence, at least 0.6 MQ was lost. From 

evolutionary considerations, one would expect much of this to have been 

accreted to the neutron star, as mass transfer should have been relatively 

slow and stable. 

Despite the above expectations, initial results showed no evidence for 

such high masses.2 9 Current results for four systems are shown in Fig. 2. 

One sees tha t for none of these, the mass measurements exclude 1.4 M© at 

high significance, but for all the best values are above it. This is t rue for a 

number of other systems as well.18 

While the masses appear to be above the narrow range inferred from the 

relativistic binary pulsars, suggesting that some accretion has happened, 
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Figure 2. Constraints on the masses of four radio pulsars with white-dwarf 
companions.3 8 , 3 3 , 7 '1 4 , 1 8 '1 2 In all panels, the solid line with hashing on the lower right 
reflects the limit set by the pulsar mass function. The horizontal lines reflect the limits 
on the companion mass, with the 2-cr uncertainties. For PSR J1012+5307, the mass is 
inferred from a fit to the optical spectrum, while for the other three sources it is mea
sured from Shapiro delay. The Shapiro delay also implies inclinations very close to 90° 
(edge-on) for PSR B1855+09 and PSR J1909-3744. For PSR J0437-4715, the curved 
line is the constraint on the inclination, inferred from the change in aspect with which we 
view the system due to its proper motion. For PSR J1012+5307, the diagonal straight 
lines show the mass ratio and its 2-cr uncertainties, inferred from the radial-velocity am
plitudes of the two components. The vertical lines show the resulting 2-cr constraints on 
the pulsar masses. 

the masses are not as high as the expected ~ 2MQ. Could this reflect 
a hard limit set by the EOS? Unfortunately, there may also be a more 
mundane, astronomical explanation. The pulsars in these binaries have 
magnetic fields that are much weaker than those inferred for regular radio 
pulsars. On empirical grounds, it is believed this reduction is related to 
being in a binary, with the magnetic field being reduced somehow by the 
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accretion (for a review, see Phinney & Kulkarni20). If this is indeed the 
case, above some amount of accreted matter, the magnetic field may be 
reduced so far that no pulsar will be seen. This would thus lead one to find 
a upper limit to the mass of pulsars that accreted matter. 

Even though the above may mean a low apparent upper limit to the 
mass distribution may not be very meaningful, the masses do appear to be 
higher than in other systems. At present, therefore, the radio pulsars with 
white dwarf companions still seem to be the most promising systems for 
obtaining precise and reliable masses that provide strong constraints on the 
EOS. Further radio timing observations, as well as optical spectroscopy, are 
underway. 

3. Atmospheric modelling 

Spectroscopic analysis of emission arising in the photosphere of a neu
tron star offers, in principle, the possibility of much stronger constraints. 
From models, the temperature and angular diameter could be inferred, 
which, combined with a distance, gives the radius. If absorption lines are 
present, also the gravitational redshift (=> M/R) and pressure broadening 
(=> M/R2) can be measured. An accurate measurement of even just one 
of these may be useful, given the narrow range of observed neutron-star 
masses for neutron stars that did not accrete much after their formation. 

In practice, most neutron stars are unsuitable: many have spectra con
taminated or even dominated by poorly understood magnetospheric or ac
cretion processes. Even without those, the strong magnetic fields present 
in many neutron stars imply that the microphysics (energy levels, radiative 
transfer, etc.) is complicated and that the temperature will in general not 
be uniform. Finally, most have atmospheres almost certainly composed of 
pure Hydrogen, since, if any is present, gravitational settling ensures that 
it will quickly float to the top. 

3.1. Quiescent emission from low-mass X-ray binaries 

The only neutron stars for which no pulsations are seen, and which therefore 
may not have significant magnetic fields, are those that reside in low-mass 
X-ray binaries. For some of these, the accretion is episodic, and when 
accretion turns off, one may be able to observe simple thermal emission 
from the surface.6 

Given that the accreted matter contained Hydrogen, which will float to 
the top, the atmosphere should be composed of pure Hydrogen. This makes 
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the modelling relatively easy, even if it also implies likely no lines will be 
seen (small features may be visible due to continuing low-level accretion). 
Thus, the best one can hope for is to determine effective temperatures and 
angular diameters. If one has a distance, e.g., because the source is in a 
globular cluster, this will yield the radius. This may even be quite precise, 
as distances to globular clusters are becoming better and better. 

A possible problem lies in the interpretation: one measures the radius as 
seen at infinity, R^ = R/y/l — 2GM/Re2, which, unfortunately, depends 
more strongly on the precise value of the mass than the radius itself. Since 
accretion has happened, one does not know the mass a priori. Nevertheless, 
significant constraints are possible. For instance, for many soft EOS, one 
finds -RQO < 14 km for neutron stars with any mass between 0.5 and the 
upper limit for those EOS, ~ 1.6MQ. Similarly, for the stiffer EOS, one 
finds Roo > 15 km for any mass above 1.35 M©. 

Attempts to measure radii for neutron stars in low-mass X-ray binaries 
in quiescence have been made by a number of authors. Most work has 
been done for binaries in the field.6'22'23,25'39 For these, one will need to 
obtain parallaxes to obtain meaningful radii. However, the observations 
also showed that the interpretation was not always as straightforward as 
hoped. First, for some sources, interstellar absorption cuts off a large part 
of the spectrum, making it difficult to measure the temperature accurately. 
Second, in the best studied source, Aql X-l, a non-thermal component 
was found, and even the thermal component was found to be variable on 
a relatively short timescale of months.24 These complications shed some 
doubt on whether the observations are interpreted correctly. It also gives 
some hope, however: the non-thermal emission is likely due to residual 
accretion, and it may be possible to see the signature of that in lines from 
heavier elements. 

More recently, the focus has shifted to sources in globular clusters, where 
the distances are known to fair precision. The best results have come from 
XMM, because of its large collecting area.9'10 For the two sources studied 
in most detail, the uncertainty in the radius now seems dominated by the 
uncertainty in the distance; the uncertainty due to just the X-ray fitting 
appears to be below 0.5 km. 

3.2. X-ray bursts 

The X-ray emission of low-mass X-ray binaries is dominated by emission 
from the neutron-star surface not only in quiescence, when accretion is 
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absent, but also during so-called X-ray bursts. These X-ray bursts oc
cur when the layer of freshly accreted matter becomes unstable to nuclear 
burning (usually of Helium; Hydrogen is burnt at least partially as mat
ter accretes; for a review, see Bildsten3). The bursts typically last a few 
seconds, and occur every few hours. 

In a very long, 335 ks XMM observation of the X-ray burst source 
EXO 0748—676, taken for calibration purposes, 28 X-ray bursts were ob
served. By analysing the summed spectra obtained during these bursts 
(which lasted a cumulative 3.2ks), possible small absorption features were 
found, which could be identified with the n = 2 to 3 transition of Hydrogen-
and Helium-like Iron,8 for a gravitational redshift z = 0.35. It is not clear 
where the Iron originates. One might think it results from the nuclear fu
sion, and is brought to the surface, but an alternative explanation is that the 
metals observed are brought to the photosphere by continuing accretion.4 

Unfortunately, while the results are extremely intriguing, they are very 
difficult to confirm, since observationally it is hard to get much higher 
quality data. 

4. Conclusions and prospects 

The pessimistic conclusion from the above would be that, since their discov
ery, neutron stars have not much advanced our understanding of the physics 
at extreme densities. Viewing the situation more positively, though, one 
sees that the mass determinations are now getting accurate enough to be 
interesting, especially for the radio pulsars with white dwarf companions. 
The precision will increase with further timing of the pulsars, helped by 
optical studies of the white dwarfs. 

Furthermore, new avenues are explored in which the thermal emission 
is modelled and used to derive angular diameters and gravitational red-
shifts. The study of low-mass X-ray binaries in quiescence seems particu
larly promising, particularly once the distances settle down. For globular 
clusters, this is in progress, while for individual systems in the field it will 
come in the somewhat longer run, using direct parallax determinations with 
NASA's Space Interferometry Mission or ESA's GAIA, both expected to 
be launched in about ten years. 

Finally, not mentioned in my talk or this write-up, there are a number 
of nearby neutron stars with what appear to be purely thermal spectra. 
Recently, for a number of these, absorption features have been detected, 
which are likely due to Hydrogen atmospheres in extremely strong magnetic 
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fields, 101 3 to 1014 G.34 In such fields, absorption might be due to proton 

cyclotron or neutral Hydrogen; with more than a single line, one may be 

able to solve for the field strength and the gravitational redshift. Several are 

close enough for parallax determinations; combined with angular diameters 

from atmospheric modelling, this might yield good radii. 

Overall, the outlook seems fairly bright. 
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N E U T R O N STARS A N D QUARK STARS 

F R I D O L I N W E B E R 
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The tremendous densities reached in the centers of neutron stars provide a high 
pressure environment in which exciting particles processes are likely compete with 
each other and novel phases of matter may exist. The particle processes range 
from the generation of hyperons, to quark deconfinement, to the formation of kaon 
condensates and H-matter. Another striking possibility concerns the formation of 
absolutely stable strange quark matter. In the latter event all neutron stars could 
in fact be strange (quark matter) stars, which would be largely composed of pure 
quark matter possibly enveloped in a thin nuclear crust made up ordinary hadronic 
matter. This paper gives an overview of the properties of both classes of stars. 

1. Introduction 

Most neutron stars are spotted as pulsars by radio telescopes and X-ray 
satellites. They are more massive (~ 1.5 MQ) than our sun but are typically 
only about ~ 10 kilometers across so that the matter in their centers is 
compressed to densities that are up to an order of magnitude higher than 
the density of atomic nuclei. A neutron star, therefore, provides a high-
pressure environment in which numerous subatomic particle processes are 
expected to compete with each other and novel phases of matter-like the 
quark-gluon plasma being sought at the most powerful terrestrial particle 
colliders-could exist. Of key importance for the theoretical analysis of 
the properties of neutron stars is the equation of state (EoS), that is, the 
functional dependence of pressure on total energy density of neutron star 
matter. It forms the basis input quantity in Einstein's field equations, from 
which the properties of neutron stars and strange stars are computed. 

2. Equation of State 

The EoS of neutron star matter below neutron drip, which occurs at densi
ties around 4 x 1011 g/cm , and at densities above neutron drip but below 
the saturation density of nuclear matter is relatively well known. This 
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is to a less extent the case for the EoS in the vicinity of the satura
tion density of normal nuclear matter, p0 = 0.16 fm~ (energy density 
of eo = 140 MeV/fm ). Finally the physical properties of matter at still 
higher densities are highly uncertain and the associated EoS is only very 
poorly known. The models derived for it differ considerably from one an
other with respect to the functional dependence of pressure on density, as 
can be seen in Fig 1. This has its origin in various sources which concern: 

(1) The many-body technique used to determination the EoS. 
(2) The model of the nucleon-nucleon interaction (non-relativistic two-

nucleon interaction, phenomenological three-nucleon interaction, 
relativistic meson-exchange interaction). 

(3) Relativistic (field theoretical) effects. 
(4) The alteration of hadrons properties by immersion in dense matter. 
(5) The treatment of neutron star matter as an electrically charge neu

tral system of particles in chemical equilibrium. 
(6) The fundamental constituents of neutron star matter which may be: 

(a) Neutrons (n), 
(b) Neutrons and protons (p) in chemical equilibrium with elec

trons (e~) and muons (/x~), 
(c) Nucleons, hyperons ( I ^ ' 0 , A,H°'~) and possibly more mas

sive baryon states (A + + ' + ' 0 , ~) , 
(d) Presence of boson condensates (TT~ or K~), 
(e) Formation of H dibaryons, 
(f) Phase transition of confined hadronic matter into the decon-

fined phase of (u, d, s) quarks and gluons. 

(7) The true ground state of the strong interaction (strange quark mat
ter versus nuclear matter). 

3. Nuclear Matter 

Nuclear matter is an idealized many body system made up of equal number 
of neutrons and protons. The interactions among them are generally treated 
within the following treatments: 

(1) The semiclassical Thomas-Fermi method.1,2 '3 '4 

(2) Schroedinger-based theories (i.e. variational approach, standard 
Monte Carlo, Quantum Monte Carlo, Green function Monte Carlo, 
hole line expansion (Brueckner theory), coupled cluster method, 
Green function method).5,6 '7 '8 
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Figure 1. Models for the EoS of neutron star. 

(3) Relativistic nuclear field theories solved for the Hartree, Hartree-
Fock, or Brueckner-Hartree-Fock approximation.9,10 

Any acceptable nuclear many-body calculation must reproduce the bulk 
properties of nuclear matter at saturation density, po, a n d finite nuclei. 
The nuclear matter properties are the binding energy E/A, effective nucleon 
mass m^j/mN, incompressibility K, and symmetry energy as. Table 1 shows 
these properties computed for numerous different many-body techniques as 
well as nuclear forces. Of the four, the value for the incompressibility carries 
the biggest uncertainty. Its value is currently believed to lie in the range 
between about 220 and 250 MeV. As can be seen from Table 1, several 
theoretical studies predict values considerably higher than that. Table 1 
also shows the symmetry energy density derivative, L, and the slope, y, of 
the saturation curve of isospin asymmetric nuclear matter. These quantities 
are defined as9 '11 

L = 3p0(das/dp) Pen y = -Kas (3p0£) 1, (1) 

respectively. Evidently both L and y vary tremendously from one force to 
another. 
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Table 1. Saturation properties of nuclear matter. 

Force 

SI 
SII 
SIII 
SIV 

sv 
SVI 
Ska 
Skb 
SG-0 
SGI 
SGII 
SkM 
SkM* 
E 
Ea 

Z 

za 
K 
Ra 

Ga 

MSkA 
SkT6 
SkP 
SkSC4 
SkX 
MSk7 
BSkl 
SLy4 
SLy7 
TM1 
Bro A 
Bro B 
Bro C 
RHFW 
RHF(2) 
RHF<3) 
NL1 
NL-SH 
FRDM 
ETFSI-1 

PO 
(fm"3) 
0.155 
0.148 
0.145 
0.151 
0.155 
0.144 
0.155 
0.155 
0.168 
0.154 
0.158 
0.160 
0.160 
0.159 
0.163 
0.159 
0.163 
0.163 
0.158 
0.158 
0.154 
0.161 
0.163 
0.161 
0.155 
0.158 
0.157 
0.160 
0.158 
0.145 
0.174 
0.172 
0.170 
0.148 
0.148 
0.148 
0.152 
0.146 
0.152 
0.161 

E/A 
(MeV) 
-16.0 
-16 .0 
-15 .9 
-16 .0 
-16 .1 
-15 .8 
-16 .0 
-16 .0 
-16 .7 
-15 .8 
-15 .6 
-15.8 
-15.8 
-16 .1 
-16 .0 
-16 .0 
-15.9 
-16 .0 
-15.6 
-15.6 
-16 .0 
-16 .0 
-16 .0 
-15 .9 
-16 .1 
-15 .8 
-15 .8 
-16 .0 
-15 .9 
-16 .3 
-16 .5 
-15 .7 
-14 .4 
-15 .8 
-15 .8 
-15 .8 
-16 .4 
-16 .4 
-16 .3 
-15 .9 

K 
(MeV) 

371 
342 
356 
325 
306 
364 
263 
263 
253 
261 
215 
217 
217 
334 
249 
330 
233 
235 
238 
237 
314 
236 
201 
235 
271 
231 
231 
230 
230 
281 
280 
249 
258 
610 
360 
460 
212 
356 
240 
235 

as 

(MeV) 
29.2 
34.2 
28.2 
31.2 
32.8 
26.9 
32.9 
23.9 
35.6 
28.3 
26.8 
30.7 
30.0 
27.6 
26.4 
26.8 
26.7 
28.8 
30.6 
31.4 
30.4 
30.0 
30.0 
28.8 
31.1 
27.9 
27.8 
32.0 
32.0 
37.9 
34.4 
32.8 
31.5 
28.9 
43.3 
38.6 
43.5 
36.1 
32.7 
27.0 

L 
(MeV) 

1.18 
50.0 
9.87 
63.5 
96.1 

-7 .38 
74.6 
47.5 
41.6 
64.1 
37.6 
49.3 
45.8 

-31 .3 
-36 .9 
-49 .8 
-29 .4 
-4 .58 

85.7 
94.0 
57.2 
30.8 
19.5 

-2 .17 
33.2 
9.36 
7.15 
45.9 
47.2 
114 

81.9 
90.2 
76.1 
132 
135 
138 
140 
114 

-
-9 .29 

y 
(MeV fm3) 

-19700 
- 5 2 4 

-2330 
- 3 5 3 
- 2 2 4 
3080 
-249 
-284 
-430 
- 2 5 0 
-322 
- 2 8 1 
-296 

617 
364 
373 
432 

3030 
-179 
- 1 6 7 
- 3 6 1 
-475 
-632 
6460 
-545 

-1460 
-1908 

-335 
- 3 2 8 
- 2 1 5 
-225 
-175 
-209 
- 3 0 1 
-260 
-290 
- 1 4 5 
-257 

-
1414 

4. Neutron star matter 

In the simplest conception, neutron star matter is made up of only neu
trons. In a more accurate representation, however, because of chemical 
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Figure 2. Neutron star mass versus radius for different EoS. The horizontal lines refer 
to the masses of Vela X-l (1.86 ± 0.16 M 0 ) 1 2 , Cyg X-2 (1.78 ± 0.23 M Q ) 1 3 , and PSR 
1913+16 (1.442 ± 0.003 M Q ) . 1 4 

equilibrium, such matter will consist of neutrons and protons whose charge 
is balanced by electrons and muons. Finally, additional hadronic states 
may make their appearance in neutron star matter at densities higher than 
a few times po, as will be discussed in this section. The uncertainties in 
the stellar composition together with the uncertainties in the many-body 
technique itself lead to theoretical predictions of neutron star properties 
that vary greatly with the underlying model for the EoS. This is illustrated 
for the mass-radius relationship of 'neutron' stars in Fig. 2. 

4 .1 . Hyperons 

At the densities in the interior of neutron stars, the neutron chemical po
tential, fj,n, exceeds the mass, modified by interactions, of various members 
of the baryon octet.15 Hence, in addition to nucleons, neutron star matter 
is expected to have significant populations of hyperons and possibly more 
massive baryon states too. If so, pure neutron matter would constitute an 
excited state relative to hyperonic matter which, therefore, would quickly 
transform via the weak reaction 

p + e + ve (2) 
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to the lower energy state. The chemical potentials associated with reaction 
(2) in equilibrium obey the relation 

Mn = MP + Me~ > (3) 

where [iVe = 0 since (anti) neutrinos do not accumulate in neutron stars. 
(This is different for proto-neutron stars.16) Equation (3) is a special case 
of the general relation 

fix = Bxnn - qxne~ , (4) 

which holds in any system characterized by two conserved charges. These 
are in the case of neutron star matter electric charge, qx, and baryon num
ber charge, Bx. Application of Eq. (4) to the A hyperon (BA = 1, qA = 0), 
for instance, leads to 

MA = Mn • (5) 

Ignoring particle interactions the chemical potential of a relativistic particle 
of type x is given by 

Hx =u{kFx) = <Jml + k2
Fx, (6) 

where uj(kFx) is the single-particle energy of a particle \ moving with Fermi 
momentum kFx • Substituting (6) into (5) leads to 

kFn > \]m\ - ml ~ 3 fm^1 =4> pn = - ~ ~ 2p0 , (7) 

where m^ = 1116 MeV and mn = 939 MeV. That is, neutrons are replaced 
with A's in neutron star matter at densities just around twice the density 
of nuclear matter. This figure is only slightly altered by the inclusion of 
particle interactions.15 Aside from chemical equilibrium, the condition of 
electric charge neutrality of neutron star matter, which reads 

5 3 < ?
x 4 x + 3 7 r 2 p M e ( / x M - m M ) = 0 , (8) 

X=P.S, ...;e-, Il

ls of key importance for the composition of such matter too. 

4.2. Meson Condensation 

The last term in (8) accounts for the electric charges carried by condensed 
mesons of type M. The only mesons that may plausibly condense in neutron 
star matter are either the n~ (see, for instance, Ref. 17) or the currently 
more favored x~.ls'19,20 The condensation of mesons other than these two 
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is unfavored because of electric charge reasons. Early estimates predicted 
the onset of charged pion condensation around 2po. However, these esti
mates are very sensitive to the strength of the effective nucleon particle-hole 
repulsion in the isospin T = 1, spin S = 1 channel, described by the Lan
dau Fermi-liquid parameter g' which tends to suppress the condensation 
mechanism.21 Measurements in nuclei tend to indicate that the repulsion 
is too strong to permit condensation in nuclear matter.22 '23 Nevertheless, 
some authors argue to the contrary in the case of neutron star matter.24,25 

Pion as well as kaon condensation would have two important effects on 
neutron stars. Firstly, condensates soften the EoS above the critical den
sity for onset of condensation, which reduces the maximal possible neutron 
mass. At the same time, however, the central stellar density increases, be
cause of the softening. Secondly, meson condensates would lead to neutrino 
luminosities which are considerably enhanced over those of normal (mod
ified Urea process) neutron star matter, leading to dramatically different 
cooling histories of neutron stars.9 '26 

4.3. Nucleon Matter 

Whether a meson of a certain type condenses in neutron star matter de
pends decisively on the meson's in-medium mass, m*M, since condensation 
can only occur if the meson energy equals the electron chemical potential. 
The condensation point would be given precisely by the bare mass if the 
meson did not interact with other hadrons. In the presence of interactions, 
however, the determination of the condensation point is considerably more 
complicated. In the case of K~ mesons, for instance, highly degenerated 
electrons can be replaced with kaons if the reaction 

e™ -> K~ + v (9) 

becomes possible in neutron star matter. Information about the kaon's 
in-medium mass is provided by the K~ kinetic energy spectra extracted 
from Ni+Ni collisions at SIS energies measured by the KaoS collaboration 
at GSI.27 An analysis of the KaoS data shows that the attraction from 
nuclear matter may bring the K~ mass down to rn*K_ ~ 200 MeV at 
p ~ 3po- For neutron-rich matter the relation28'29'30'31 

m*K-(p)~mK-(l-0.2^\ (10) 

was established with mjf = 495 MeV the K~ vacuum mass. Values around 
m*K- ~ 200 MeV lie in the vicinity of the electron chemical potential pe in 
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neutron star matter9 '10 '15 so that the threshold condition for the onset of 
K~ condensation, fie = m*K, which follows from Eq. (9), could be fulfilled 
in high-density neutron star matter. Equation (9) is followed by 

n + e'-yp + K'+v, (11) 

with the neutrinos leaving a neutron star. By this conversion the nucleons in 
the cores of newly formed neutron stars can become half neutrons and half 
protons, which lowers the energy per baryon of the matter.30 The relatively 
isospin symmetric composition achieved in this way resembles the one of 
atomic nuclei, which are made up of roughly equal numbers of neutrons 
and protons. Neutron star matter is therefore referred to in this scenario as 
nucleon matter, and neutron stars constructed for such an EoS as nucleon 
stars.28-29-30'31 

4.4. H-dibaryons 

A novel particle that could make its appearance in the center of a neutron 
star is the so-called H-dibaryon, a doubly strange six-quark composite with 
spin and isospin zero, and baryon number two.32 In neutron star matter, 
which may contain a significant fraction of A hyperons, the A's could com
bine to form H-dibaryons which could give way to the formation of H-matter 
at densities somewhere between 3 eo and 6 eo, depending on the in-medium 
properties of the H-dibaryon. H-matter could thus exist in the cores of 
moderately dense neutron stars.33 '34 '35 If formed, however, H-matter may 
not remain dormant in the centers but, because of its instability against 
compression, could trigger the conversion of neutron stars into hypothetical 
strange stars.35 '36 '37 

4.5. Quark Deconfinement 

One item that came recently into particular focus concerns the possible 
quark-hadron phase transition of neutron star matter.9>38>39 The phase 
transition is characterized by the conservation of baryon charge and elec
tric charge. The Gibbs condition for phase equilibrium then is that the two 
associated chemical potentials fin and [ie and pressure in the two phases be 
equal,40 

PH(nn,He,{x},T) = PQ(tin,»e,T). (12) 

PH denoted the pressure of hadronic matter computed for a given hadronic 
Lagrangian £({x}), where {x} denotes the field variables and Fermi mo
menta that characterize a solution to the equations of confined hadronic 
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matter . The pressure of quark mat ter , PQ, is obtainable from the bag 

model. The quark chemical potentials \iu, [id, ps are related to the baryon 

and charge chemical potentials as 

nu = \nn-\v?, vd = »s = \»n + l»e- (13) 
Equation (12) is to be supplemented with the two global relations for con

servation of baryon charge and electric charge within an unknown volume 

V containing A baryons. The first one is given by 

P=^ = (l-v)pn(vn,Ve,T)+ripQ((xn,iie,T), (14) 

where r\ = VQ/V denotes the volume proportion of quark matter , VQ, in 

the unknown volume V, and pn and P Q are the baryon number densities 

of hadronic mat ter and quark mat ter . Global neutrality of electric charge 

within the volume V can be writ ten as 

0=^ = (l-V)qK(^,pe,T)+vqQ(pn,pe,T) + qL, (15) 

with qi the electric charge densities of hadrons, quarks, and leptons. For a 

given temperature , T, Eqs. (12)—(15) serve to determine the two indepen

dent chemical potentials and the volume V for a specified volume fraction 

r\ of the quark phase in equilibrium with the hadronic phase. After comple

tion VQ is obtained as VQ = rjV. Because of Eqs. (12)—(15), the chemical 

potentials depend on the proportion 77 of the phases in equilibrium, and 

hence so also all properties tha t depend on them, i.e. the energy densi

ties, baryon and charge densities of each phase, and the common pressure. 

For the mixed phase, the volume proportion of quark mat ter varies from 

0 < 77 < 1, and the energy density is the linear combination of the two 

phases, 

e=(l-V)eH^n,^,{X},T) + r,eQ(jMn,^,T). (16) 

One model for the EoS computed along these lines is shown in Fig. 1 (la

beled 'hyperons and quarks ' ) . 4 0 Possible astrophysical signals of quark de-

confinement are discussed in Sect. 5 and in Refs. 9, 41, 42, 43 (see also this 

volume). 

4.6 . Color Superconductivity of Quark Matter 

There has been much recent progress in our understanding of quark mat

ter, culminating in the discovery tha t if quark mat ter exists it will be a 

color superconductor .3 8 '3 9 , 4 4 '4 5 (See Rajagopal's contribution elsewhere in 
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this volume.) The phase diagram of such mat ter is very complex.3 8 '3 9 

At asymptotic densities the ground state of QCD with a vanishing strange 

quark mass is the color-flavor locked (CFL) phase. This phase is electrically 

neutral in bulk for a significant range of chemical potentials and strange 

quark masses.4 6 If the strange quark mass is heavy enough to be ignored, 

then up and down quarks may pair in the two-flavor superconducting (2SC) 

phase. Other possible condensation pat ters are the GFL-K0 phase 4 7 and 

the color-spin locked (2SC+s) phase.4 8 The magnitude of the gap energy 

lies between ~ 50 and 100 MeV. Color superconductivity thus modifies the 

EoS at the order (A//u)2 level, which is only a few percent. Such a small 

effect can be safely neglected in present determinations of models for the 

EoS of neutron star mat ter and strange star mat ter . This appears to be 

very different for phenomena involving the cooling by neutrino emission, 

the pa t tern of the arrival times of supernova neutrinos, the evolution of 

neutron star magnetic fields, rotational (r-mode) instabilities, and glitches 

in rotation frequencies of pulsars (see Refs. 39, 38, 49, 50, 51, 52, and ref

erences therein). Aside from neutron star properties, an additional test of 

color superconductivity may be provided by upcoming cosmic ray space ex

periments such as AMS 5 3 and ECCO. 5 4 As shown in Ref. 55, finite lumps 

of color-flavor locked strange quark mat te r (see Sect. 6), which should be 

present in cosmic rays if strange mat ter is the ground state of the strong in

teraction, tu rn out to be significantly more stable than strangelets without 

color-flavor locking for wide ranges of parameters . In addition, strangelets 

made of CFL strange mat ter obey a charge-mass relation of Z/A oc A~x'3, 

which differs significantly from the charge-mass relation of strangelets made 

of ordinary strange quark matter . In the latter case, Z/A would be con

stant for small baryon numbers A and Z/A oc A~~2/3 for large ,4.55>56,57 

This difference may allow an experimental test of CFL locking in strange 

quark mat ter . 5 5 

5. Quark D e c o n f l n e m e n t in R o t a t i n g N e u t r o n Stars 

Whether or not quark deconflnement occurs in neutron stars makes only 

very little difference to their static properties, such as the range of possi

ble masses and radii, which renders the detection of quark mat te r in such 

objects extremely complicated. This turns out to be strikingly different for 

rotat ing neutron stars (i.e. pulsars) which develop quark mat ter cores in 

the course of spin-down. The reason being tha t as such stars spin down, 

because of the emission of magnetic dipole radiation and a wind of electron-
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positron pairs, they become more and more compressed. For some rotating 
neutron stars the mass and initial rotational frequency may be just such 
that the central density rises from below to above the critical density for 
dissolution of baryons into their quark constituents. This effects the star's 
moment of inertia dramatically,58 as shown in Figure 3. Depending on the 
ratio at which quark and normal matter change with frequency, the mo
ment of inertia can decrease very anomalously, and could even introduce 
an era of stellar spin-up lasting for ~ 108 years.58 Since the dipole age 
of millisecond pulsars is about 109 years, one may estimate that roughly 
about 10% of the ~ 25 solitary millisecond pulsars presently known could 
be in the quark transition epoch and thus could be signaling the ongoing 
process of quark deconfinement. Changes in the moment of inertia reflect 
themselves in the braking index, n, of a rotating neutron star, as can be 
seen from (/' = dZ/dfi,. / " = d2I/dfl2) 

n{n) 
3 v n +1" n2 

2i + rn 
(17) 

The right-hand-side of this expression reduces to the well-known canonical 
constant n = 3 if / is independent of frequency. Evidently, this is not the 
case for rapidly rotating neutron stars, and it fails completely for stars that 
experience pronounced internal changes (phase transitions) which alter the 
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moment of inertia significantly. Figure 4 illustrates this for the moment of 
inertia of the neutron star of Fig. 3. Because of the changes in I, caused by 
the gradual transition of hadronic matter into quark matter, the braking 
index deviates dramatically from 3 at the transition frequency, when pure 
quark matter is generated. Such dramatic anomalies in n(f2) are not known 
for conventional neutron stars, because their moments of inertia appear 
to vary smoothly with f2.9 The future astrophysical observation of such 
anomalies in the braking behavior of pulsars may thus be interpreted as a 
signal for quark deconfinement in neutron stars. 

Accreting x-ray neutron stars provide a very interesting contrast to the 
spin-down of isolated neutron stars discussed just above. These x-ray neu
tron stars are being spun up by the accretion of matter from a lower-mass 
(MISOAMQ), less-dense companion. If the critical deconfinement density 
falls within that of canonical pulsars, quark matter will already exist in 
them but will be spun out of x-ray stars as their frequency increases dur
ing accretion. This scenario has been modeled in Refs. 42 and 59, and is 
discussed by Glendenning elsewhere in this volume. 

6. Absolutely Stable Strange Quark Matter 

As pointed out in Refs. 60, 61, 62, for a collection of more than a few 
hundred up, down, and strange quarks the energy of strange quark matter 
may be just as well below the energy of nuclear matter, E/A = 930 MeV. A 
simple estimate indicates that for strange quark matter E/A — ABn2//!3, 
so that bag constants of B = 57 MeV/fm3 (i.e. Bl'A = 145 MeV) and B = 
85 MeV/fm3 (S 1 / 4 = 160 MeV) would place the energy per baryon of such 
matter at E/A = 829 MeV and 915 MeV, respectively, which correspond 
to strange quark matter which is absolutely bound with respect to nuclear 
matter.63 '64 '65 If this were indeed the case, neutron star matter would be 
metastable with respect to strange quark matter, and all neutron stars 
should in fact be strange quark stars.63 '64 '65 As briefly described in Sect. 
4.6, strange quark matter is expected to be a color superconductor which, 
at extremely high densities, should be in the CFL phase. This phase is 
rigorously electrically neutral with no electrons required.46 For sufficiently 
large strange quark masses, however, the low density regime of strange 
quark matter is rather expected to form a 2SC phase (or possibly other 
phases) in which electrons are present.38'39 The presence of electrons causes 
the formation of an electric dipole layer on the surface of strange matter, 
which enables strange quark matter stars to carry crusts made of ordinary 
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nuclear matter.66 '67 '68 The maximal possible density at the base of the crust 
(inner crust density) is determined by neutron drip, which occurs at about 
4 x 1011 g/cm . This somewhat complicated situation of the structure of 
strange matter enveloped in a (chemically equilibrated) nuclear crust can 
be represented by a proper choice for the EoS shown in Fig. 5.69 The EoS 
is characterized by a discontinuity in density between strange quark matter 
and nuclear crust matter across the electric dipole gap where the pressure 
of the nuclear crust at its base equals the pressure of strange matter at its 
surface.9'69 

Since the nuclear crust surrounding a strange star would be bound to 
the star by gravity rather than confinement, the mass-radius relationship 
of a strange matter star with a nuclear would be qualitatively similar to 
the one of purely gravitationally bound stars, that is neutron stars and 
white dwarfs, as illustrated in Fig. 2. The fact that strange stars with 
crusts tend to possess somewhat smaller radii than neutron stars leads to 
smaller mass shedding (Kepler) periods PK for strange stars. This is obvi
ous from the classical mass shedding expression PK = 2iryfW/M and has 
its correspondence in the full general relativistic case.9 In more qualitative 
terms, it is found that, due to the smaller radii of strange stars, the com-
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plete sequence of such objects and not just those close to the mass peak 

as is the case for neutron stars, can sustain extremely rapid rotat ion.7 0 In 

particular, strange stars of a canonical pulsar mass around 1.45 MQ have 

Kepler periods in the range of 0.55 msec IS P K ~ 0.8 msec, depending on 

the thickness of the nuclear curst and the bag constant .6 9 '7 0 This range is to 

be compared with PK ~ 1 msec obtained for s tandard (i.e., no phase tran

sition) neutron stars of the same mass. Phase transitions in neutron stars, 

however, however, may lower this value down to Kepler periods typical of 

strange s tars . 7 1 

As a last issue, I would like to mention the possible existence of a new 

class of white dwarfs-so called strange dwarfs-which could hide strange 

mat ter cores in their centers.7 2 Until recently, only rather vague tests of 

the theoretical mass-radius relation of white dwarfs have been possible. 

This has changed because of the availability of new da ta emerging from the 

Hipparcos project.7 3 These da ta allow the first accurate measurements of 

white dwarf distances and, as a result, establishing the mass-radius relation 

of such objects empirically. 
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We study the dynamical effect of strange quark mass as well as kinematical one on 
the color-flavor unlocking transition using a NJL model. Paying a special attention 
to the multiplicity of gap parameters, we derive an exact formula of the effective 
potential for 5-gap parameters. Based on this, we discuss that the unlocking 
transition might be of second order rather than of first order as is predicted by a 
simple kinematical criterion for the unlocking. 

1. Introduction 

The dynamics which quark-gluon matter exhibits under high baryon den
sity is one of the most challenging and exciting problems in QCD 2>3-4. A 
number of literatures have revealed the realization of the color-flavor locked 
(CFL) type of the pairing order 5 for sufficiently large quark number chem
ical potential 4>6'7>8. In contrast to this solid fact, however, the phases 
for large, and realistic value of Mf/fi are still veiled in mystery, and so 
many phases and the associated phase transitions have been studied so far 
9,io,ii, 12,13,14,15̂  T h e u n l o c k i n g transition from the CFL phase to the 2SC 
state is simplest one of the examples. This transition with increasing the 
value of Mil[i is firstly investigated using Nambu-Jona-Lasinio (NJL) type 
effective models 9 , 1°. Their results show that the 1st order unlocking tran
sition takes place at some critical Ms

c, and a simple kinematical picture for 
the critical mass works in quite satisfactory way. This criterion is based on 
the conjecture that the transition occurs when the mismatch of the Fermi 
momenta of light and strange quark becomes as large as the magnitude of 

"Talk given at KIAS-APCTP Internatinal Symposium on Astro-Hadron Physics "Com
pact Stars: Quest For New States of Dense Matter", November 10-14, 2003, KIAS, 
Seoul, Korea. This talk is based on Ref. 1. 
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the gap. In Ref. 9, the expansion in flavor breaking parameter M^/fi is used 

to the construction of the fermionic dispersions and the effective potential. 

On the other hand, in Ref. 10, the coupled gap equation is exactly solved 

with non-perturbative t reatment of Ms. However, their construction of the 

effective potential is quite ambiguous and, as we shall show, possibly fails 

because of the multiplicity of gap parameters. Even though their results 

are in good accordance with each other, there still exist a possibility tha t 

the t rue solution is missed. 

In this talk, we revisit the unlocking transit ion in more complete way 

than others 9 '1 0 , by making a proper use of the Pauli construction of the 

effective potential. In particular, we study how the CFL state and other 

states are realized in the multi-gap parameter space and how the potential 

gets distorted with increasing the value of M^l\i. More complete analyses 

have been made in Ref. 1. 

2. C o u p l e d G a p E q u a t i o n a n d Effect ive P o t e n t i a l 

In this section, we present an outline for obtaining the gap equations and 

the effective potential with which we can determine the ground state of the 

system characterized by (/z, T, Ms) parameter. 

Self-energies. We first introduce the color-flavor mixed quark base: qa = 

Ylai ( ^ a / v ^ ) 9f> w n e r e A a ( a = 1 ~ 8) are the Gell-Mann matrices and 

we defined (A9)" = y §<5f. Then the Nambu-Gor'kov propagator in the 

2-compnent quark field Q = (q, (f) is writ ten as 

S(^)^F.T.<T{Q(,)Q(0)}>=( * l+/ - f / ( ^ J _ 1 - ( l ) 
V7o£(<?o,q)T7o i -/ft +MJ 

E(qo,q) is off-diagonal self-energy which gives rise to gaps in the quasi-

quark dispersion. M is the quark mass matr ix in the color-flavor mixed base 

Maf3 = tT[\arh\p] /2, where m = diag.(0,0, MS) is mass matr ix in flavor 

space. The pure CFL ansatz for the off-diagonal self-energy is expressed in 

the color-flavor mixed base as following, 

£ X ( ? o , g ) = C 7 5 0 ( A 8 l 8
A i ) . (2) 

Here, C is the charge conjugation matr ix C = 17270- C75 guarantees 

that the pairing takes place in the Jp = 0 + channel. On the other hand, 

we would have the 2SC state with u-d pairing £ 2 S C " d = —eijea 6 3A2sc = 
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A-AEij£ab3 for sufficiently large value of Ms, which is written as 

fA 
2SC-I3 

S ^ - ( g o , 9 ) = C75 jA2sc —-^A2sc 

V 
3 

^ A 2 S C - § A 2 S C ) 
3 
2 

(3) 

in the color-flavor mixed base. From the two expressions for the 2SC and 
CFL phases, it is quite natural to expect the distorted CFL state (dCFL), 
the minimal interpolating pairing ansatz between those phases, for the small 
but finite strange quark mass 9 , 1° , 

vdCFL MS<M-
{qo,q) = C75' 

/ A 8 3 l 3 

V 

A8214 
\ 

A8 1 A 
A A n / 

(4) 

In this parameterization, the SU(3)c+v symmetric CFL phase and 
SU(2)c x SU(2)L x SU(2)R symmetric 2SC phase are expressed only 
as different limits of the dCFL phase which is invariant under color fla
vor simultaneous rotation SU(2)c+v- By introducing the 5-dimensional 
vector A = (As3, As2, Asi, A, An)*, we can express the model space for 
the pure CFL state as AQFL = (As, Ag, Ag,0, Ai)*, which spans a 2-
dimensional planer section, while the 2SC phase as the 1-parameter vector 
A2sc = (A2 Sc,0, - A 2 S c / 3 , - y 2 A 2 S C / 3 , -2A2 Sc/3)*. 

Gap equations. The anomalous propagator is defined by the off-diagonal 
element of the Nambu-Gor'kov propagator, which takes the following form 
for our ansatz Eq. (4), 

/RBSU 

5 1 f (g )= iF .T . (^ (x ) / (0 ) )= 7 5C. -R82I4 
\ 

V 
Rgi R 
R R\i/ 

(5) 

{Rsz, R%2, Rsi, R, Rii] are propagatores, which are complicated functions 
of (q,A, (i, Ms)

 l. The gap equation is obtained by using Feynman rule 
for the self consistency between proposed self-energy and the one-loop self-
energy. In the case of NJL model with interaction vertex for one-gluon 
exchange, £ i n t = {l/2)g2q^^taqq^^taq, we obtain 

Ea /3 = iAg' 7 d
4q -,7(5 

{Ta)laSj°{q){Ta)6p. (6) 
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Here, the bare vertex in the color-flavor mixed base is defined by (Ta)ap = 
tr [AaAaA,3] /4. This integral matrix equation contains the following set of 
five equations. 

A8 3 = 92^ (57*83 - ttsi - 2^/27* - 27*n) = g2K83[A], (7) 

A82 = g2^ (27*82 + 2 ^ 8 1 + ^ 7 * - 27*n) = g2K82[A], (8) 

A81 = g2^ ( -37*8 3 + 87*82 - 7*8i + 2^/27* - 27*n) = g2K81[A], (9) 

A = g2^ (-37*83 + 27*82 + 7*8i - v ^ ) = g2K[A\, (10) 

A n =g2\ ( - 3 7 * 8 3 - 47*82 - 7 * s i ) = g2Kn[A]. (11) 

Here, we have defined 7* by 

7 * l ( A ; M s ) = i y ^ I i t r [ c 7 5 ^ ( < ? ; A , M s ) ] . (12) 

Effective potential for multi-gap parameters. Here, we do not attempt to 
formulate the Pauli-construction of the effective potential, which is exactly 
done in Ref. 1. But instead, we illustrate how we would miss the true 
effective potential due to the multiplicity of gap parameters when it is 
constructed by the integration of the gap equation, and only show the 
correct procedure to obtain true one. 

We might think that the derivative of the effective potential is 

_ ,e oc (gap equation for A»). (13) 
oAi 

If so, the effective potential is constructed by 

fteff [A] oc Y, ̂  - 12 J dtAiKi[t&]. (14) 

But this gives a false formula in the case that the many gap parameters 
exist and couple each other by different couplings. 

Actually, the derivative of the effective potential coincides with some 
linear combination of the gap equation like 

g2Drj^=AiJ(AJ-g
2KJ[A]), (15) 

where the diagonal matrix D = diag.(3, 4,1, 2,1) represents the degen
eracies of the gap parameters, and the matrix A is relating the gap pa
rameters A = (As3, A82, Asi, A, A n ) and the corresponding condensates 
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0 = (083, 082, ^81, 0, 011) as 4g20 = AA. For the detail of the definition 0 
and the form of the matrix A, see Ref. 1. We can obtain the true formula 
for the effective potential as 

{DA)l3 fieff[A] = £ ^ ^ A A - - Y, I dtiDA^AiKjitK]. 
z9 ,„• Jo 

(16) 
. . -/n 

Note that DA is real-valued symmetric matrix, whose eigenvalues are all 
real. 

3. Numerical Results 

Here, we present our numerical results. The cutoff parameter is set to 
A = 800MeV, and the coupling parameter g2 is tuned to reproduce 400MeV 
for the constituent mass of quark at zero chemical potential 10. 

3.1. Solution of gap equation 

We display the solution of the coupled gap equation Eqs. (7)~(11). In 
FIG. 1(a), we show the eigenvalues of the original gap matrix Eq. (4) as 
functions of Ms. (A83, A82) are the gaps for iso-triplet and doublet modes. 
(XI1X2) a r e the eigenvalues of the iso-singlet mixing sector. According to 
the values of these parameters, the states are distinguished by 

Gap parameters Global Symmetry States 

A83 

A83 

A82 = X2, Xi + 0 
Xi, A82 =X2 = 0 
otherwise 

SU(S)V 

SU(2)L x SU(2)R 

SU(2)V 

CFL for Ms = 0 
2SC for Ms > Mc

s 

distorted CFL (dCFL) 

It is surprising that the system seems to undergo continuous transition from 
the CFL to the 2SC, and actually stays in the distorted CFL (dCFL) phase 
even for Ms > fj, = 400 MeV. We will see later that even in our case, the 2SC 
is always a solution of the gap equation, but with higher energy than the 
CFL state. In FIG. 1(b), we display in FIG. 1, the gaps (A83, A82,Xi,X2) 
for Ms = 250 MeV as functions of temperature. We see that as the tem
perature is raised, the dCFh phase encounters the continuous transition to 
the 2SC state at T = 35MeV, and eventually the system undergoes 2nd 
order phase transition to the normal fermi-liquid at T = 60MeV. 

3.2. Effective potential for multi-gap parameter space 

We now study how these states are realized in the multi-gap parameter 
space by computing the effective potential with help of the formula Eq. (16). 
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Figure 1. (a) Gaps are plotted as functions of Ms. (b) The temperature dependence of 
the gaps for Ms = 250 MeV. 

Let us first introduce the vector 

X r -N tt ~ 1Q)ACFL + (J - 10)A2SC . . 

with the CFL gap vector ACFL = (80,80,80,80,-175) and the 2SC gap 
vector A2 S C = (106,0 , -35 , -50 , -70) for Ms = 0 (in the chiral limit). 
Eq. (17) define 2-dimensional planer section in the 5-dimensional gap pa
rameter space, which includes the simple Fermi gas (10,10) with A = 0, 
the CFL (60,10) and the 2SC (10, 60). In FIG. 2, we show the contour plot 
of the effective potential neS[A(i,j);Ms], for Ms = 0 MeV (a), 200 MeV 
(b), 300 MeV (c) and 400 MeV (d). We can see that the CFL state (60,10) 
looks the global minimum in this 2-parameter space [i, j) for Ms = 0 MeV. 
On the other hand, the 2SC state (10,60) is realized as a saddle point which 
is stable in the direction of the simple Fermi gas (10,10), but is unstable 
in the direction towards the CFL state (60,10). As the strange quark mass 
is increased to 200 MeV, the CFL minimum moves towards the 2SC point, 
and its condensation energy gets reduced, while the position and the en
ergy of the 2SC state is unaffected by Ms. This minimum point (55, 20) is 
expected to be located close to the distorted CFL dCFL state in the full 
5-parameter space. The dGFL state gets distorted significantly towards the 
2SC state at Ms = 300 MeV (FIG. 2(c)), and seems absorbed into the 2SC 
as the strange quark mass approaches the order of the chemical potential 
~ (j, of the system. We can conclude that the unlocking transition is not of 
1st order. More detailed analyses made in Ref. 1 reveals that this transition 
is of 2nd order and indicates that the dCFL satate at low strange quark 
density is the Bose-Einstein condensation of tightly bound pairs rather than 
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[MeV/ftn8] 

Figure 2. Contour plot of the effective potential Oeff[A(i,j)] where A(i, j) is defined 
by Eq. (17), for Ms = 0 MeV (a), Ms = 200 MeV (b), Ms = 300 MeV (c), and for 
Ma = 4 0 0 MeV (d). 

the BCS state 16. 

2SC as a solution of gap equation. What should be stressed here is that 
the 2SC stays at least a saddle point in the full model space irrespective of 
the value of M8. This means that the 2SC is always a solution of the gap 
equation, and if we had missed in obtaining the correct effective potential, 
then we misunderstood it as the true ground state instead of the dCFL 
state for intermediate strange quark mass Ms. 

Unstable CFL state? In FIG. 3(a), we plot the section of the effective 
potential surface FIG. 2(a) on the line linking the 2SC (10,60) At=o = A2SC 
and the CFL (80,10) At=i = ACFL* Both states are determined by solving 
the gap equation in 5-gap parameter space for M3 = 0 MeV. Now we address 
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Figure 3. (a) The values of the effective potential on the 1-dimensional line con
necting from the 2SC state t = 0 to the CFL state t = 1. (b) The bold line is 
just an enlargement of the potential curve for Ms = 0 in (a), and five set of the 
points (triangles, bold dots, squares, reflected triangles, lozenges) represent the po
tential curves in the directions of the eigenvectors belonging to the five eigenvalues 
A S (0.19, 0.14, -0 .99, -1 .70, -2.20)/ i3 of the Hessian curvature matrix at the CFL. 

the question whether the CFL state is true global minimum even in the full 
model space or not. FIG. 3(b) shows us the answer for this question. Five 
potential curves are shown near the pure CFL for Ms = 0, each of which 
represents the potential curve in the direction of an eigenvector belonging 
to the corresponding eigenvalue A of the Hessian curvature matrix at the 
CFL point a/f.JV _ _ • What is surprising is that the CFL state is not 

* i A = A C F L 

the global minimum in the full model space. It is unstable in three out of 
five directions. These three directions correspond to the color-flavor sextet 
channels in which the interaction acts repulsive x. Also it should be noted 
that the color-flavor sextet gap parameters do not break any symmetry, 
thus are not the order parameter for the unlocking as is anticipated in 
their critical behaviour ~ (1 — T/T c)3 /2 near critical temperature Tc in the 
chiral limit 17. Anyway, because the effective potential becomes unbound 
once the sextet condensations are included, it makes no physical sense to 
include symmetric mean fields contribution 5>18'19 in the ansatz for the gap 
matrix. It is said that the sextet condensations are not induced within 
the mean field approximation, whereas those might be triggered by higher 
order fluctuation effects beyond the mean fields. 

4. Conclusion 

We have adopted the NJL model to study the phases of quark matter under 
high chemical potential. By making proper use of the Pauli-construction 
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method, we have derived the exact formula for the effective potential for 
multi-gap parameters. In particular, we have studied the unlocking phase 
transition from the CFL to the 2SC. We list main results below. 

1. Second order phase transition. The unlocking transition is of con
tinuous weak 2nd order. The 1st order unlocking never appear even at 
T = 0. This contradicts the simple kinematical picture for the color-flavor 
unlocking transition. 

2. Toughness of the CFL state. The CFL state at T = 0 is much more 
robust against the increase of Ms than is predicted from the kinematical 
criterion, and the 2SC state is continuously connected from the dCFL state 
at the strange quark mass M£ > fi (2> 2y//jJA8(f^, Ms = 0)). 

3. The 2SC as a saddle point. 2SC state is always a saddle point, a 
solution of the gap equation, of the effective potential for any value of 
M,, which is unstable in the direction towards the dCFL state, as well as 
three color-flavor sextet directions. The dCFL state, a solution of the gap 
equation with a larger condensation energy than the 2SC state approaches 
the 2SC saddle point as Ms approaches M£. 

4. Role of the sextet gap parameters. The dCFL state is also unstable in 
the directions for three color-flavor symmetric channels. This is attributed 
to the fact that the interaction is repulsive in these channels. We should 
not include the symmetric components of the gap parameter into our ansatz 
from the beginning, because no Cooper instability is present in these chan
nels due to the absence of the attractive force. However, the effects of the 
sextet gaps on the anti-triplet sector are very small even if they are in
cluded. In this talk, we completely neglected the electric charge neutrality 

and also the color neutrality 20. It would be interesting to include these 
effect into the gap equation, and to study how our dCFL phase is robust or 
fragile to be withdrawn by the neutrality condition. Also, we have ignored 
the usual chiral condensates in the vacuum. However, we have to include 
this effect to discuss the phase transitions in the lower chemical potential 
region. Studying phase transitions in this regime by improving our model 
along this line is also an interesting subject to be done in the future. 
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We use an effective chiral quark theory to incorporate the nucleon structure into the 
description of nuclear matter, and use the resulting equation of state to discuss 
the EMC effect in nuclear matter. We also construct the equation of state for 
quark matter including the effect of color superconductivity, and describe the phase 
transition from nuclear matter to quark matter in the region of high baryon density. 
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1. Introduction 

The question to what extent the properties of nuclear many body systems 
reflect the quark substructure of the single nucleon is an important re
search subject of intermediate energy hadronic physics. Directly related 
to this problem is the behavior of matter at high baryon densities, where 
one expects a phase transition to quark matter. In order to describe these 
phenomena reliably, one needs a theoretical framework which can account 
for not only for the quark substructure of the single nucleon, but also for 
(i) the properties of normal nuclear matter (NM), (ii) the medium modifi
cations of nucleon properties, and (iii) the properties of high density quark 
matter (QM). It has been shown in recent works 1,:2'3 that the Nambu-Jona-
Lasinio (NJL) model 4 is a strong candidate for these purposes: Besides a 
covariant description of the nucleon as a quark-diquark bound state 5, it 
reproduces a saturating NM equation of state (EOS), the EMC effect in 
NM, and describes the transition to 2-flavor color superconducting QM. It 
is the purpose of this paper to discuss the most important results which we 
obtained in our studies of these three subjects. 

The NJL model is characterized by a chiral symmetric contact inter
action between quarks. Because of its simplicity, the relativistic Faddeev 
equation for the nucleon can be solved in the ladder approximation, tak
ing into account the interactions in the scalar and axial vector diquark 
channels5. For our present investigations at finite density, however, we will 
restrict ourselves to the scalar diquark channel, and to a simple approxi
mation to the Faddeev equation, where the momentum dependence of the 
quark exchange kernel is neglected6. The calculations presented in this 
paper are based on this "quark-diquark picture" of the single nucleon. 

2. Description of nuclear matter 

The effective (grand) potential for NM at zero temperature in the mean 
field approximation has the form 2 

y < ^ ) = Kac + VN + VU, (1) 

where Vvac describes the polarization of the Dirac sea of quarks due to 
the presence of the valence nucleons, Viv arises from the Fermi motion of 
the valence nucleons depending on the nucleon mass M J V ( M ) , which is a 
solution of the quark-diquark bound state equation and depends on the 
constituent quark mass M, and V^ is the contribution of the mean vector 
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field (V0) acting on the quarks in NM. The conditions OV^^/dM 
Qy(NM)/Qy0 = o determine M and Vb for fixed chemical potential \x. 
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Figure 1. Nucleon mass as a function of the scalar potential for A I R = 0 (dashed line) 
and A I R = 0.2 GeV (solid line). Mo is the constituent quark mass for zero density. 

In effective meson-nucleon theories based on the linear realization of 
chiral symmetry, one often observes a collapse of the NM EOS because the 
a mass decreases too rapidly as a function of the density 7. It has been 
shown in Ref.1, however, that the saturation properties of the NM EOS can 
be described if the quark structure of the nucleon is taken into account, 
provided that one eliminates the thresholds for the unphysical decay of the 
nucleon into quarks. This can be done, for example, in the proper time 
regularization scheme by introducing an infrared cut-off (AIR) in addition 
to the ultraviolet one 8 . The elimination of the unphysical decay threshold 
then leads to a positive scalar polarizability 9 of the single nucleon, and 
this in turn gives rise to an effective NNaa interaction which raises the a 
meson mass and prevents the collapse. 

These points are shown in Figs. 1 and 2. Fig. 1 shows the function 
M J V ( M ) , which is the solution of the quark-diquark bound state equation 
for the nucleon. For the case AIR = 0, where the unphysical quark decay 
thresholds are present, one obtains an almost linear function. This is similar 
to the case of a point nucleon, and leads to the same kind of collapse as 
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observed in the linear sigma model, see the dashed line of Fig. 2. The 
elimination of unphysical quark decay thresholds by an infrared cut-off AIR, 
however, leads to a positive scalar polarizability (curvature of the function 
M J V ( M ) ) , which is clearly shown by the solid line in Fig. 1. This effect 
stabilizes the NM EOS, and leads to the saturation of the binding energy 
per nucleon, as shown by the solid line in Fig. 2. The saturation problem in 
effective chiral field theories can therefore be solved by taking into account 
the quark structure of the nucleon and a particular aspect of confinement 
physics, namely the absence of quark decay thresholds of the nucleon. 

3. The EMC effect in nuclear matter 

The isoscalar light cone momentum distribution {fq/A = fu/A + fd/A) °f 
quarks per nucleon in a nucleus with mass number A is defined as10 

fq/A{XA)= J^ 
dw 
~2TT 

jP-xAW M < 4 ) p | ^ ( o ) 7 + ^ ( « r ) | , 4 ) p > . (2) 

Here P^ is the total 4-momentum of the nucleus and P_ its light cone 
"minus component", ip is the quark field, and XA is the Bjorken variable 
of the nucleus, which is equivalent to the fraction of the total P_ carried 
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by a quark times A. In the rest system of the nucleus (NM) we have 
P_/A = ep/y/2, where ep is the Fermi energy (that is, the mass per nucleon 
or the chemical potential) of the nucleons. 

The distribution (2) can be expressed as a convolution of the light cone 
momentum distributions of quarks in the nucleon and of nucleons in the 
nucleus3. For the evaluation of the quark distribution in the nucleon, we 
describe the nucleon as a bound state of a quark and a scalar diquark in 
the NJL model as in the previous section. The presence of the nuclear 
medium is taken into account via the same scalar and vector mean fields 
which were used to describe the EOS of NM. The most important relation 
of this approach, which shows the direct effect of the vector mean field on 
the quark distribution function, is as follows3: 

c I \ eF i l i eF Vo N. 

Jq/AKXA) = —fq/A0(XA = ~ X A - —)• (3) 
E / " ™ 1 " EF " EF 

Here the distribution without the explicit effect of the mean vector field 
is denoted as fq/Ao(xA)> an (^ the n u c l e o n Fermi energy has the form ep = 
Ep + 3Vo, where Ep = \/Mfj + pF and Vo is the mean vector field as in 
sect.l. 
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Figure 4. Ratio of the structure function per nucleon in isospin symmetric nuclear 
matter to the free isoscalar nucleon structure function at Q2 = 10 GeV2 . 

The actual calculation of fq/A therefore proceeds as follows: First we 
calculate the distribution for a free nucleon in the quark-diquark approach, 
then we replace the quark, diquark and nucleon masses by the effective 
ones according to the EOS of NM determined in sect.l, then we include 
the effect of the Fermi motion of nucleons with effective mass M/v, and 
finally we perform the scale transformation (3) to include the direct effect 
of the vector mean field. The results for these 4 steps are shown in Fig.3 at 
the saturation density of our NM EOS for the low energy scale Q\ = 0.16 
GeV2. The dotted line shows the distribution in a free nucleon, which is 
consistent with the empirical parametrizations11. The dashed line shows 
the result when all masses are replaced by the effective ones, the dot-dashed 
line shows the result including the Fermi motion of nucleons without the 
direct effect of the mean vector field, and finally the solid line is obtained 
from the dot-dashed one by the scale transformation (3). We see that the 
direct effect of the mean vector field is to squeeze the quark distribution 
from both the small and the large side of the Bjorken variable. The mean 
vector field is therefore essential to describe the depletion in the valence 
quark region, and also leads to an enhancement for smaller values of the 
Bjorken variable. This is shown by the EMC ratio12 in Fig. 4, which has 
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been obtained by performing the Q2 evolution up to Q2 = 10 GeV213. We 
see that the calculation can reproduce the main features of the EMC effect, 
namely the suppression at large x and the enhancement at smaller x. 

4. Phase transition to color superconducting quark matter 

The EOS of color superconducting QM in the mean field approximation 
has the form2 

y(QM) = y^ + VQ + VA + V „ , ( 4 ) 

where Vv&c describes the polarization of the Dirac sea of quarks due to the 
presence of the valence quarks, VQ arises from the Fermi motion of the 
valence quarks without the effect of quark pairing, VA arises from quark 
pairing in the scalar diquark channel and depends on the color supercon
ducting gap (A)14, and Vw is the contribution of the mean vector field (Vb) 
in QM. The conditions dV&W/dM = dV^^/dk = dV^M^/dV0 = 0 
determine M, A and Vb for fixed chemical potential /j,. 
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Figure 5. Pressure as function of chemical potential in NM (solid line), and in QM for 
several values of rB, which is the ratio of the coupling constant in the scalar diquark 
channel to the one in the pionic channel. 

Fig. 5 shows the EOS for QM with several values for the strength of the 
pairing interaction in the scalar diquark channel (r s). Curve 1 corresponds 
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to normal, i.e., non-color superconducting, QM, and the other curves show 

the results for increasing strength of the pairing interaction. We also show 

the EOS for NM by the solid line. 

It is clear from Fig. 5 tha t there is no phase transition from NM to 

normal QM in our model. The scalar diquark condensation, however, gives 

rise to a substantial softening of the QM EOS, and to a phase transition 

from NM to QM at a transition density which decreases with increasing 

strength of the pairing interaction. 

We now assume a particular value of the coupling constant in the scalar 

diquark channel, which leads to reasonable transition densities, and inves

tigate the nature of the phase transition more closely. Fig. 6 shows the 

resulting pressure of the ground state as a function of the baryon density 

for the case corresponding to rs = 0.2 of Fig. 5. We obtain first order 

transitions from the vacuum (VAC) to NM, where in both phases chiral 

symmetry is broken and color symmetry is intact, and from NM to color 

superconducting QM, where in the lat ter phase chiral symmetry is largely 

restored and color symmetry is broken. The present calculation gives large 

color superconducting gaps in the QM phase (A > 200 MeV), see ref.2 for 

details. 
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5. S u m m a r y 

Let us summarize the three most important points which we found in our 

investigations on the role of quark degrees of freedom in strongly interacting 

baryonic mat ter : First, the effects of quark substructure of the nucleons 

can solve the saturat ion problem in chiral many-body theories. The main 

difference to the point nucleon case is tha t the extended nucleon has a 

positive scalar polarizability, which leads to a curvature of the nucleon mass 

function M J V ( M ) , an in-medium sigma meson mass which depends only 

weakly on the density, and a saturat ion of the binding energy per nucleon. 

Second, the coupling of the mean vector field in nuclear mat ter to the quarks 

inside the nucleons influences the form of the quark light cone momentum 

distributions directly, besides its indirect influence through the equation of 

s tate of the system. This direct modification of the quark distribution is 

expressed by Eq.(3), and is the principal agent to explain the EMC effect in 

the framework of a mean field description of nuclear mat ter . Third, there is 

a phase transition from nuclear mat ter to quark mat ter , provided tha t the 

effects of scalar diquark condensation (color superconductivity) are taken 

into account. This phase transition is characterized by the restoration of 

chiral symmetry and the spontaneous breaking of color symmetry in the 

high density region. 
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The main objective of this work is to explore the evolution in the structure of the 
quark-antiquark bound states in going down in the chirally restored phase from the 
so-called "zero binding points" Tzb to the QCD critical temperature Tc at which 
the Nambu-Goldstone and Wigner-Weyl modes meet. In doing this, we adopt the 
idea recently introduced by Shuryak and Zahed for charmed cc, light-quark qq 
mesons ir,a,p,Ai and gluons that at Tzb, the quark-antiquark scattering length 
goes through oo at which conformal invariance is restored, thereby transforming 
the matter into a near perfect fluid behaving hydrodynamically, as found at RHIC. 
We name this new state of matter as "sticky molasses". We show that the bind
ing of these states is accomplished by the combination of (i) the color Coulomb 
interaction, (ii) the relativistic effects, and (iii) the interaction induced by the 
instanton-anti-instanton molecules. The spin-spin forces turned out to be small. 
While near Tzb all mesons are large-size nonrelativistic objects bound by Coulomb 
attraction, near Tc they get much more tightly bound, with many-body collective 
interactions becoming important and making the a and 7r masses approach zero 
(in the chiral limit). The wave function at the origin grows strongly with binding, 
and the near-local four-Fermi interactions induced by the instanton molecules play 
an increasingly more important role as the temperature moves downward toward 
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1. I n t r o d u c t i o n 

The concept tha t hadronic states may survive in the high temperature phase 

of QCD, the quark-gluon plasma1 , has been known for some time. In par

ticular, it was explored by Brown et al .2 , 3 . The properties of (degenerate) TT 

and a resonances above Tc in the context of the NJL model was discussed 

earlier by Hatsuda and Kunihiro4 , and in the instanton liquid model by 

Schafer and Shuryak 5 . Recently, lattice calculations 6 ' 7 have shown tha t , 

contrary to the original suggestion by Matsui and Satz 8 , the lowest char-

monium states J/ip,rjc remain bound well above Tc. The estimates of the 

zero binding temperature for charmonium Tj/^ is now limited to the inter

val 2TC > TJ/ip > 1.6TC, where Tc ss 270 MeV is tha t for quenched QCD. 

Similar results for light quark mesons exist but are less quanti tat ive at the 

moment. However since the "quasiparticle" masses close to Tc are large, 

they must be similar to those for charmonium states. 

In the chiral limit all states above the chiral restoration go into chiral 

multiplets. For quark quasiparticles this is also true, but although the 

chirality is conserved during their propagation, they are not massless and 

move slowly near Tc where their "chiral mass" m — E(p —> 0) is large (~ 1 

GeV). 

RHIC experiments have found tha t hot /dense mat ter at temperatures 

above the critical value Tc « 170 MeV is not a weakly interacting gas 

of quasiparticles, as was widely expected. We envision it to be "sticky 

molasses." Indeed, RHIC da t a have demonstrated the existence of very 

robust collective flow phenomena, well described by ideal hydrodynamics. 

Most decisive in reaching this conclusion was the early measurement of the 

elliptic flow which showed tha t equilibration in the new state of mat ter 

above Tc set in in a t ime < 1 fm/c 9 . Furthermore, the first viscosity 

estimates 10 show surprisingly low values, suggesting tha t this mat ter is the 

most perfect liquid known. Indeed, the ratio of shear viscosity coefficient 

to the entropy is only n/s ~ 0.1, two orders of magnitude less than for 

water. Furthermore, it is comparable to predictions in the infinite coupling 

limit1 1 (for iV=4 SUSY YM theory) r\js = 1/47T, perhaps the lowest value 

possible. 

Shuryak and Zahed1 2 (hereafter referred to as SZ whenever unam

biguous) have recently connected these two issues together. They have 

suggested tha t large rescattering cross sections apparently present in hot 

mat te r at RHIC are generated by resonances near the zero-binding lines. 

Indeed, at the point of zero binding the scattering length a of the two 
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constituents goes to oo and this provides low viscosity. This phenomenon 

is analogous to the elliptic flow observed in the expansion of t rapped 6Li 

atoms rendered possible by tuning the scattering length to very large values 

via a Feshbach resonance 13 . 

Near the zero-binding points, to be denoted by Tzb, introduced by SZ 

the binding is small and thus the description of the system can be simple 

and nonrelativistic. The binding comes about chiefly from the at tractive 

Coulomb color electric field, as evidenced in lattice gauge calculation of 

Karsch and collaborators6 , 1 4 , and Asakawa and Hatsuda 7 , as we shall de

tail. The instanton molecule interactions, which we describe below, are less 

important at these high temperatures (T ~ 400 MeV). All changes as one 

a t tempts (as we show below) to dicuss the more deeply bound states just 

above Tc. 

In another work 15 , Shuryak and Zahed have also found sets of highly 

relativistic bound light states in the strongly coupled N=A supersymmetric 

Yang-Mills theory at finite temperature (already mentioned above in re

spect to viscosity). They suggested tha t the very strong Coulomb at t ract ion 

can be balanced by high angular momentum, producing light states with 

masses m ~ T'. Furthermore, the density of such states remains constant 

at arbitrarily large coupling. They argued tha t in this theory a transition 

from weak to strong coupling basically implies a smooth transition from 

a gas of quasiparticles to a gas of "dimers", without a phase transition. 

This is an important part of the overall emerging picture, relating strong 

coupling, viscosity and light bound states. 

In this work we wish to construct the link between the chirally broken 

state of hadronic mat te r below Tc and the chirally restored mesonic, glueball 

s tate above Tc. Our objective is to understand and to work out in detail 

what exactly happens with hadronic states at temperatures between Tc 

and Tzt,. One important new point is tha t these chirally restored hadrons 

are so small tha t the color charges are locked into the hadrons at such 

short distances (< 0.5 fm) tha t the Debye screening is unimportant . This 

is strictly t rue at T ^ Tc , where there is very little free charge. In this 

temperature range the nonrelativistic t rea tment of SZ should be changed 

to a relativistic one. 

The relativistic current-current interaction, ultimately related with the 

classical Ampere law, is about as important as the Coulomb one, effectively 

doubling the at t ract ion (see section 2.1). We also found tha t the spin-

spin forces discussed in 2.2 are truly negligible. In effect, with the help of 

the instanton molecule interaction, one can get the bound quark-antiquark 
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states down in energy, reaching the massless a and n at Tc, so that a smooth 
transition can be made with the chiral breaking at T < Tc. 

The non-pertubative interaction from the instanton molecules becomes 
very important. Let us remind the reader of the history of the issue. The 
nonperturbative gluon condensate, contributing to the dilatational charge 
or trace of the stress tensor TMAt = e — 3p, is not melted at Tc. In fact more 
than half of the vacuum gluon condensate value remains at T right above 
Tc. the hard glue or epoxy which explicitly breaks scale invariance but is 
unconnected with hadronic masses. The rate at which the epoxy is melted 
can be measured by lattice gauge simulations, and this tells us the rate at 
which the instanton molecules are broken up with increasing temperature1. 

As argued by Ilgenfritz and Shuryak 16, this phenomenon can be ex
plained by breaking of the instanton ensemble into instanton molecules 
with zero topological charge. Such molecules generate a new form of effec
tive multi-fermion effective interaction similar to the orignal NJL model. 
Brown et al.17 (denoted as BGLR below) obtained the interaction induced 
by the instanton molecules above Tc by continuing the Nambu-Jona-Lasinio 
description upwards from below Tc. 

Our present discussion of mesonic bound states should not be confused 
with quasi-hadronic states found in early lattice calculations18 for quarks 
and antiquarks propagating in the space-like direction. Their spectrum, 
known as "screening masses" is generated mostly by "dynamical confine
ment" of the spatial Wilson loop which is a nonperturbative phenomenon 
seen via the lattice calculations. Similar effects will be given here by the 
instanton molecule interaction. 

2. Binding of the qq states 

2.1. The Coulomb interaction and the relativistic effects 

At T > Tc the charge is screened rather than confined 19, and so the 
potential has a general Debye form 

as(r, T) ( r \ , . v=-rJez'{-sm) m 

(Note that we use a (somewhat nonstandard) definition in which as absorbs 
the 4/3 color factor.) The general tenet of QCD tells us that the strength 
of the color Coulomb should run. We know that perturbatively it should 
run as 

Us ~ log(0/AQ C D) ( 2 ) 
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with A Q C D ~ 0.25 GeV. The issue is what happens when the coupling is 

no longer small. In vacuum we know that the electric field is ultimately 

confined to a string, producing a linear potential. 

In the so-called "plasma phase" this does not happen, and SZ assumed 

tha t the charge runs to larger values, which may explain the weak binding 

at rather high T we discussed in the introduction. Lattice results produce 

potentials which, when fitted in the form V(r) = —Aexp(-mr) + B with 

constant A, B indeed indicate tha t A(T) grows above Tc by a large factor, 

before start ing to decrease logariphmically at high T. The maximal value 

of the average coupling max(A) « 1/2. This is the value which will keep 

charmonium bound, as found by Asakawa and Hatsuda, up to 1.6TC
7. 

Running of the coupling is not very important for this work in which 

we are mostly interested in deeply bound states related with short enough 

distances. Therefore we will simply keep it as a non-running constant, 

selecting some appropriate average value. 

It is well known in the point charge Coulomb problem (QED) tha t when 

Za is increased and the total energy reaches zero there is a singularity, 

preventing solutions for larger Za. In the problem of the "sparking of 

the vacuum" in relativistic heavy ion collisions, the solution of the problem 

was found by approximating the nuclei by a uniformly charged sphere; for a 

review of the history see Rafelski et al. 2 0 . As a result of such regularization, 

the bound electron level continues past zero to —m, at which point e+e~ 

production becomes possible around the critical value of Zcr = 169. In 

short, the problem of the point Coulomb charge could be taken care of by 

choosing a distributed electric field which began from zero at the origin. 

In QCD the charge at the origin is switched off by asymptotic freedom, 

the coupling which runs to zero value at the origin. A cloud of virtual 

fields making the charge is thus "empty inside". We will model a resulting 

potential for the color Coulomb interaction by simply setting the electric 

field equal to zero at r = 0, letting it decrease (increase in at tract ion) going 

outward. We can most simply do this by choosing a charge distribution 

which is constant out to R, the radius of the meson. If the original 2mq 

mass were to be lowered to zero by the color Coulomb interaction and 

instanton molecule interaction, then the radius of the final molecule will be 

although the rms radius will be substantially greater with the instanton 
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molecule interactions playing the main role around Tc. 

y = - ^ ( 3 ^ ) < r < R 

= -as-, r>R. (4) 
r 

This V has the correct general characteristics. As noted above, the electric 
field E must be zero at r = 0. It is also easy to see that V must drop 
off as r2/R2 as the two spheres corresponding to the quark and antiquark 
wave functions are pulled apart. Precisely where the potential begins the 
1/r behavior may well depend upon polarization effects of the charge, the 
+ and — charges attracting each other, but it will be somewhere between 
R and 2R, since the undisturbed wave functions of quark and antiquark 
cease to overlap here. 

The qq system is similar to positronium in the equality of masses of 
the two constituents. Since the main term value is ma2/4, the 4, rather 
than 2 in hydrogen, coming from the reduced mass, one might think that 
the Coulomb, velocity-velocity and other interactions would have to be 
attractive and 8 times greater than this term value in order to bring the 
2mq in thermal masses to zero. However, this does not take into account 
the increase in reduced mass with a. Breit and Brown 21 found an a 2 /4 
increase in the reduced mass with a, or 25% for a — 1, to that order. It 
should be noted that in the Hund and Pilkuhn 22 prescription the reduced 
mass becomes \i = m2/E, which increases as E drops. 

We first proceed to solve the Coulomb problem, noting that this gives 
us the solution to compare with the quenched lattice gauge simulations, 
which do not include quark loops. 

Having laid out our procedure, we shall proceed with approximations. 
First of all, we ignore spin effects in getting a Klein-Gordon equation. The 
chirally restored one-body equation which has now left-right mixing is given 
by 

(po + a - p > = 0. (5) 

Expressing ip in two-component wave functions <& and 4*, one has 

po$ = —<J -pM/ 

po* = - C T - P $ , (6) 

giving the chirally restored wave function on vl> 

i - a - p — C T - p W = 0. (7) 
Po J 
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Here 

Po=Ev = E + as/r. (8) 

Neglecting spin effects, a • p commutes with po, giving the Klein-Gordon 

equation p%— p2 = 0. We now introduce the effective (thermal) mass, so 

tha t the equations for quark and hole can be solved simultaneously following 
22. 

[(e-V(r))2-fi2-f]xP(r)=0 (9) 

where p is momentum operator, and the reduced energy and mass are e = 

(E2 — m2 — m?,)/2E, fi = mim^/E with m i = m-i = mq. 

Furthermore from eq.(6), 

(a) = (* f , <?$) + (&,&V) = 2 . - —([a x p\). (10) 
Po Po 

If a is parallel to p, as in states of good helicity, the second term does not 

contribute. From the chirally restored Dirac equation (5), ignoring spin 

effects such as the spin-orbit interaction which is zero in S-states we are 

considering, we find PQ = p2-

Brown 2 3 showed tha t in a stat ionary s tate the EM interaction Hamil-

tonian between fermions is 

flint = - (1 - a i • a 2 ) , (11) 
r 

where the dit2 are the velocities. Applying (11) to the chirally restored 

domain of QCD, we expect 

Hint = — - for <3i • a 2 = - 1 
r 

= 0 for a1-a2 = + 1 (12) 

2.2 . The spin-spin interaction 

The nonrelativistic form of the spin-spin interaction, in the delta-function 

form, may give an impression that it is maximal at the smallest distances. 

However this is not true, as becomes clear if the relativistic motion is in

cluded in full, and in fact at r —» 0 it is suppressed. At large r, when 

particle motion is slow, it is of course again suppressed, thus contributing 

mostly at some intermediate distances. 

This fact is clear already from the derivation of the l s -s ta te hyperfine 

splitting Fermi-Breit due to hyperfine interaction in hydrogen from 1930 2 4 
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2^ .-* f J3 $H d 

given by 

6H = ^(S-u) I cfr^^-- f; . (13) 

Note the complete denominator, which non-relativistically is just substi
tuted by m alone, but in fact contains the potential and is singular at 
r —> 0. The derivative of the e2 / r in the denominator insured that the 
electric field was zero at r = 0. Here a is the electron spin, /Z the proton 
magnetic moment. In eq (13) the derivative can then be turned around 
to act on ^xp, and to order a = 1 and with the e2 /r neglected in the 
denominator, one has 

SHc*-*?•(*. ft)^(0), (14) 

with ifi taken to be the nonrelativistic Is wave function to lowest order in 
a. 

The hyperfine structure is obtained by letting the first p in eq. (7) act 
on the p0 and the second p go p + y/al A with 

with /2 the magnetic moment of the antiquark. One finds that the hyperfine 
structure is 24 

Hhfs = ^^Tsa-[ExA] (16) 
Po 

where E is color electric field. Thus, 

_ y/a; \E\ f a • fl a-rj2-r\_2yfa;\E\a-il 
Ms~ pi V r* r* J' 3 pi r2 ' [ > 

where \E\ = 2as/r
2. As in the hydrogen atom, the magnetic moments of 

quarks and antiquarks are 

Hq.q = T l_ (18) 
Po + mqtg 

except that the Dirac mass mq^ = 0 and po, in which the potential is in
creased by a factor of 2 to take into account the velocity-velocity interaction, 
is now 

p0=E + 2(as/r) (19) 
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for QCD so tha t in terms of the quark and antiquark magnetic moment 

operators, 

#hfe = - ! - ^ ( / V & ) - ( 2 0 ) 
3 po?~ 

Of course, our po for the chirally restored regime has substantial r depen

dence, whereas the e/r in the hydrogen atom is generally neglected, and 

E + m is taken to be 2m, so tha t / i e = —e/2me. From Fig. 1 it will be seen 

tha t (square of) the wave function is large just where as/r is large. 

For rough estimates we use averages. We see tha t , as in Table 1, if 

E is to be brought down by ~ 0.5mq for the a and IT by the Coulomb 

interaction, then 

2(as/r) ~ l-mq ~ - ^ (21) 

so tha t with as ~ 0.5, 

( r - 1 ) ~ \mq. (22) 

We next see tha t this is consistent with the spin splitting forming a fine 

structure of the two groups, the lower lying a and w, and the slightly higher 

lying vectors and axial vectors. Using our above estimates, we obtain 

(Hhts) ~ ^ Y^CT, • aqrnq. (23) 

so tha t for the a and 7r where <ri • <?2 = — 3 we have 

<#fc/«>~-§!> (24) 
the approximate equality holding when as = 0.5. Note tha t the hyperfine 

effect is negligible for the as ~ 0.5. Although formally eq. (23) looks like 

the hyperfine structure in the chirally broken sector, it is really completely 

different in makeup. 

In our expression for (Hhfs)
 w e have the r dependence as (por)-4^1 

and por = 4, basically because the Coulomb interaction lowers the IT and 

a only 1/4 of the way to zero mass. This explains most of the smallness of 

the spin-dependent interaction. 

A recently renewed discussion of spin-spin and spin-orbit interactions in 

a relativistic bound states has been made by Shuryak and Zahed 2 5 , who 

derived their form for bo th weak and strong coupling limits. Curiously 

enough, the spin-spin term changes sign between these two limits: perhaps 

this is another reason why at intermediate coupling considered in this work 

it happens to be so small. 
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2.3. The resulting qq binding 

We first construct the bound states for T ^ Tc, at temperature close enough 
to Tc so that we can take the running coupling constants at T = Tc + e. The 
fact that we are above Tc is important, because the AXSB ~ 47r/7r ~ 1 GeV 
which characterizes the broken symmetry state below Tc no longer sets the 
scale. Until we discover the relevant variables above Tr we are unable to 
find the scale that sets as 

12 

4 si 
3 he 

the color Coulomb coupling constant. 
Following SZ 12, we adopt quark-antiquark bound states to be the rele

vant variables and specifically, the instanton molecule gas 26 as a convenient 
framework. In particular, Adami et al.27, Koch and Brown28, and BGLR 17 

have shown that ^ 50% of the gluon condensate is not melted at T = Tc. 
The assumption motivated by Ilgenfritz & Shuryak 16 is then that the glue 
that is left rearranges itself into gluon molecules around T = Tc, i.e., what 
BGLR call "epoxy". We have quantitatively determined couplings for the 
mesons in the instanton molecule gas by extending the lower energy NJL 
in the chiral symmetry breaking region up through Tc

 17. We set these 
couplings in order to fit Miller's 29 lattice gauge results for the melting of 
the soft glue. 

V 

Figure 1. The color Coulomb potential V and the corresponding wave function ip for 
relativistic Klein-Gordon case. The interaction eq. (4) with R = h/2mq was used. The 
ground state energy with cts = 1 corresponds to -Eground = 0.645 mq. The minimum of 
the potential at the origin is at —3mq here. 
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In Fig. 1 we show that if we choose as = 1 (effectively as = 2 by the 
doubling in Eq. (12)) as would be required to enter the strong coupling re
gion considered by Shuryak and Zahed30 we bring the meson mass down by 
— 1.36 mq from their unperturbed 2 mq. However, we switch to the region 
of a3 ~ 0.5, which is required by charmonium (intermediate coupling). In 
Table 1 we summarize the Coulomb binding for a few choices of as. 

In the case of the instanton molecule interaction the coupling constant 
G = 3.825 GeV~2 is dimensionful, so that its contribution to the molecule 
energy scales as G m3. (Since we take as = 0.5 and will find that with in
clusion of the velocity-velocity interaction the effective as will be 1, powers 
of a will not affect our answer. We will use mq = 1 GeV, essentially the 
lattice result for |TC and 3TC

14, which works well in our schematic model.) 
Of course, in QCD the Polyakov line goes to zero at Tc, indicating an infi
nite quark mass below Tc; i.e., confinement. Just at Tc the logarithmically 
increasing confinement force will not play much of a role because the dy
namic confinement holds the meson size to ~ h/mqc, or ~ 0.2 fm with 
our assumption of mq = 1 GeV. (Later we shall see that the rms radius is 
~ 0.3 fm.) Since we normalize the instanton molecule force, extrapolating 
it through Tc, and obtain the color Coulomb force from charmonium, our 
mq is pretty well determined. However, our mq = 1 GeV is for the un-
quenched system and at a temperature where the instanton molecules play 
an important role. 

Given these caveats, we may still try to compare our Coulomb re
sult with the lowest peak of Asakawa et al.31 which is at ~ 2 GeV for 
T = 1.4TC ~ 0.38 GeV and for Petreczky at <, 5T ~ 2.030 GeV for 
T = 1.5TC ~ 0.406 GeV where we used the Asakawa et al. Tc. We wish to 
note that: (i) These temperatures are in the region of temperatures esti
mated to be reached at RHIC, just following the color glass phase (which 
is estimated to last ~ 1/3 fm/c). Indeed, Kolb et al. begin hydrodynamics 
at T = 360 MeV. (ii) These are in the region of temperatures estimated 
by SZ12 to be those for which bound mesons form. We find these mesons 
to be basically at zero binding, because the instanton molecule interac
tions although important at T = Tc (unquenched) because of the smallness 
(~ 1/3 fm) of the Coulomb qq states, will be unimportant at T ~ 400 MeV 
where the molecules are much bigger. In the lattice calculations the scalar, 
pseudoscalar, vector and axial-vector mesons come at the same energy. 

Whereas there seems to be consistency between our estimates and the 
giant resonances of both Asakawa et al.31 and of Petreczky32, we should 
note that with the mq ~ 1.6 GeV by Petreczky et al.14 the mesons would 
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still be bound by ~ 1.2 GeV at T = 1.5TC (quenched). We do not think 
that the instanton molecules should play an important role at such a high 
(~ 400 MeV) temperature, so this seems to be a discrepancy. Such a high 
binding would seem to invalidate the SZ12 need for the mesons to break up 
around this temperature. Earlier we have argued for a lower mq ~ 1 GeV. 

We are unable to extend our consideration to higher temperatures, 
where the situation may move towards the perturbative one, but we be
lieve that lattice calculations do support our scenario that the QGP con
tains large component of bound mesons from T ~ 170 MeV up to T ~ 400 
MeV. 

Table 1. Binding energies from color Coulomb interaction and the 
corresponding rms radii for various as (effectively, 2as including ve
locity-velocity interaction). 4-point interactions are calculated using 
the parameters obtained from color Coulomb interaction. 

a s 

0.50 
0.55 
0.60 
1.00 

AEC 
oulomb 

[GeV] 
-0 .483 
-0.595 
-0.707 
-1.355 

v V > [fm] 
0.360 
0.313 
0.276 
0.143 

AB 4 . -point [GeV] 
-0.994 
-1.385 
-1.834 
-7.574 

For as = 0.5, which is the value required to bind charmonium up 
through T = 1.6TC, we find that the Coulomb interaction binds the molecule 
by ~ 0.5 GeV, the instanton molecule interaction by ~ 1.5 GeV. However, 
the finite size of the xp^ip of the instanton zero mode could cut the latter 
down by an estimated ~ 50%. As in the usual NJL, there will be higher 
order bubbles, which couple the Coulomb and instanton molecule effects. 
We draw the Coulomb molecule in Fig. 2, where the double lines denote 
the Furry representation (Coulomb eigenfunction for quark and antiquark 
in the molecule). 

Figure 2. Coulomb molecule. The wavy line on the left represents the momentum trans
fer necessary to produce the molecule. The double line denotes the Furry representation, 
i.e., Coulomb eigenstate. 

The four-point instanton molecule interaction is shown in Fig. 3. There 
will be higher-order effects as shown in Fig. 4, of the 4-point interaction 
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Figure 3. The four-point instanton molecule interaction between Coulomb eigenstates. 
The (i'4')2 intersect at the thick point. 

Figure 4. Higher order effects of four-point interaction. 

used in higher-order between Coulomb eigenstates which always end in a 
4-point interaction. The energy of the propagators has been lowered from 
the 2 GeV of the two noninteracting quarks to 1.5 GeV by the Coulomb 
interaction. The series beginning with terms in Figs. 2—4 is 

= - 0 - 5 G e V - - ^ g ^ . (25) 
1 1.5GeV 

Now AE = -1.25 GeV is accomplished for F = 0.5. 
Working in the Furry representation, we have a —0.5 GeV shift already 

in the representation from the Coulomb wave functions. This means that 
we must obtain AE = —1.5 GeV to compensate for the 2mq = 2 GeV, in 
order to bring the IT and a masses to zero. The four-point interaction is 
a constant, at a given temperature, so this problem is just the extended 
schematic model of nuclear vibrations (See Sec. V of Brown 33, where simple 
analytical solutions are given). 

Our eq. (25) corresponds to the Tamm-Dancoff solution, summing loops 
going only forward in time. If AE decreases —0.75 GeV in this approxi
mation, then when backward going graphs are added x, AE will decrease 
by twice this amount 33, or the —1.5 GeV necessary to bring the n and a 
energy to zero. Of course, forward and backward going loops are summed 
in the Bethe-Salpeter equation to give the NJL in the broken symmetry 
sector, but the actual summation is more complicated there, because the 
intermediate state energies are not degenerate. In the next section we shall 
show that the backward going graphs appear in lattice gauge calculations. 
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In detail, with our estimated F = (0.75)2 and the 4-point energies from 

Table 1, our ir and a excitations without inclusion of backward going graphs 

are brought down 58% of the way from —0.5 GeV to —2 GeV; i.e., slightly 

too far. We have not made the adjustment down to 50%, because the 

uncertainties in our estimate of _F, etc., do not warrant greater accuracy. 

3 . Conc lus ions 

Shuryak and Zahed have discussed the formation of the mesonic bound 

states at higher temperatures, well above Tc. They pointed out tha t in the 

formation of the bound state, or any one of the molecular excited states, 

the quark-quark scattering length becomes infinite, similarly for the more 

strongly bound gluon-gluon states. In this way the nearly instantaneous 

equilibration found by RHIC can be explained. As we explained in the last 

section, lattice calculations seem to support the scenario of nearly bound 

scalar, pseudoscalar, vector and axial-vector excitation at ~ 2TC (~ 1.5 

times the quenched Tc). 

In this work we are able to construct a smooth transition from the 

chirally broken to the chirally restored sector in terms of continuity in the 

masses of the a and TV mesons, vanishing at T —» Tc . In doing so we had to 

include relativistic effects. One of them - the velocity-velocity term related 

to Amper law for the interacting currents - nearly doubles the effective 

coupling. The spin-spin term happen to be very small. The crucial part of 

strong binding in our picture of qq mesons (or molecules) is the quasi-local 

interaction due to instanton molecules (the "hard glue"). We found tha t 

the tight binding of these mesons near Tc enhences the wave function at the 

origin, and gives us additional understanding of the nonperturbative hard 

glue (epoxy) which is preserved at T > Tc. 

Thus, we believe tha t the material formed in RHIC was at a temperature 

where although the mat ter is formally in a quark-gluon plasma phase, most 

of it is made of chirally restored mesons. Certainly this is not the weakly 

coupled quark-gluon plasma expected at high T. 

Finally, in this paper we have focused on quantum mechanical binding 

effects in the vicinity of the critical temperature Tc coming down from 

above. Nice continuity in the spectra of the light-quark hadrons - e.g., the 

pions and the a - across the phase boundary should also hold for other 

excitations such as the vector mesons p,u>,A\ which lie slightly above 7r 

and a because of quantum corrections. Since going below Tc from above 

involves a symmetry change from Wigner-Weyl to Nambu-Goldstone, there 
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is a phase transition and to address this issue, it would be necessary to 

treat the four-fermi interactions more carefully than in the pseudo-potential 

approximation adopted here. It seems plausible from the renormalization 

group point of view 3 4 tha t the four-fermi interactions generated by the 

instanton molecules - at tractive in all channels - will not only trigger the 

quark pairs to condense, thereby spontaneously breaking chiral symmetry 

but also bring down the mass of the vector mesons, as the temperature 

approaches Tc from above. We will show in a future publication 3 5 how 

this phenomenon can take place in a schematic model. 
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We study the soft mode along the critical line in the phase diagram with the 
tricritical point, using the Nambu-Jona-Lasinio model. At the critical point with 
finite quark mass, the ordering density becomes a linear combination of the scalar, 
quark number and energy densities, and their susceptibilities diverge with the 
same exponent. Based on the conservation law, it is argued that the divergent 
susuceptibility of a conserved density must be accompanied by a critically-slowing 
hydrodynamic mode. The shift of the soft mode from the sigma meson to the 
hydrodynamic mode occurs at the tricritical point on the critical line. 

1. Introduction 

The phases of QCD have been explored by investigating the behavior of 
the quark condensate, the Polyakov loop and the color superconducting 
gap as functions of the temperature (T) and the quark chemical potential 
(/x). Among various possibilities on the phase structure, existence of a 
critical point (CP) as an endpoint of the first-order phase boundary has 
been theoretically suggested and discussed in the literature1,2 '3. 

When we extend the phase space by taking the mass (m) of the u and d 
quarks as the third variable, we can study this CP from the viewpoint of the 
phase space T-[i-m with a tricritical point (TCP). The static properties of 
this phase diagram with the TCP is well described by the Ginzburg-Landau 
(GL) effective potential of the quark condensate a expanded up to the er6 

term.4 First in the case of exact chiral symmetry m = 0 the T-/i plane 
must be devided into two domains of the symmetric and broken phases 
with a boundary line. Although the order of the singularity of this line is 

mailto:hfujii@phys.cu-tokyo.ac.jp
mailto:ohtani@rarfaxp.riken.jp
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Figure 1. Phase diagram of the NJL model. The critical line is drawn in a dashed line. 
The first-order phase boundary forms a surface shown by hatch. The TCP is indicated 
by X. 

unknown in general, we assume the TCP where the order of the singularity 
shifts from the 2nd to the 1st order. Next, when the quark mass takes small 
but non-zero value, the 2nd order line disappears and the assumed TCP 
becomes a usual CP (see Fig. 1). In this consideration, the relation of this 
CP to the chiral symmetry is rather obscure. 

Characteristic time scale of the system response becomes infinitely large 
at a CP, which is known as critical slowing down. The mode whose typical 
frequency vanishes at the CP is called "soft mode." In the conventional 
theory increase of this time scale of a soft mode is related to the divergence 
of the susceptibility at the CP. The most familiar example will be the sigma 
meson or the radial fluctuation of the quark condensate in the chiral critical 
transition5. 

In this talk we discuss the soft mode along the line of the CP within 
effective approaches to QCD.6 '7 We will point out that the soft mode as
sociated with the CP at finite m must have hydrodynamic character. This 
argument is based on the conservation of the baryon number and energy 
densities, and therefore is very general. Near the TCP the critical mode 
is different between the symmetric and broken phases. Although we re
strict ourselves to the result obtained in the Nambu-Jona-Lasinio (NJL) 
model here, we should stress that the same result can be reached within 
the time-dependent GL approach as well.7 
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Figure 2. Effective potentials O with two ordering densities, a—p and as at critical 
poinsts, chiral CP (left), T C P (middle), CP (right). Those with the single ordering 
density (uppermost) are also shown. 

2. Effective potent ia l 

We use the NJL model8,9 £ = q(i# — m)q + g[(qq)2 + (#75Ta<7)2]> in the 
mean field approximation ((qq) = tr=const, (qi~f%raq) = 7r=0). The ther
modynamics is described by the effective potential, 

d3k 
0 ( T , / i , m ; a ) / F —v 

(2TT) ; 
-\E - T ln( l - n+) - T ln( l - n_)] 

£<*">"• (1) 

where n± = ( e ^ 2 ^ + l ) " 1 , £ = VM 2 + k2
5 M = m - 2ga, and i/ = 

2NfNc = 2 • 2 • 3 = 12 with AT/ and i¥c the numbers of flavor and color, 
respectively. The true thermodynamic state is determined by the extremum 
condition, 90 /da = 0, and the corresponding grand potential is Q(T, /x, m). 
We define the model with the three-momentum cutoff A and with the 
coupling constant gA2 = 2.5 which allows the TCP. In the following, all the 
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dimensionful quantities are expressed in the units of A. 
It is useful to difine the GL effective potential (l with two order pa

rameters in studying the true flat direction.7 It is numerically constructed 
as shown in Fig. 2 at the chiral CP with (T,//)=(0.3419, 0.3), the TCP 
(0.20362, 0.49558) and a CP (0.1498, 0.5701) with m = 0.01 in the units 
of A.6 The susceptibilities Xij = —yd2Q/didj (i,j = T,p,m) are equal 
to the inverse of the curvature matrix of the GL effective potential at the 
extremum point. Therefore the divergence of the susceptibilities at the crit
ical point is related to the appearance of a flat direction in the GL effective 
potential. 

At the chiral CP, the flat direction must be the scalar density a due 
to symmetry (Fig. 2). The susceptibility of a is divergent while those of 
the quark number density p and the entropy density s remain finite in the 
mean field approximation. 

The a2 and <r4 terms in the potential (1) vanish at the TCP. This fact 
results in the large fluctuation along the potential valley of Ct with two 
ordering densities (Fig. 2). The fluctuations of p and s become divergent 
at the TCP approached from the broken phase.a If we define a potential 
of e.g., the quark density p by eliminating a with dCl(a, p)/da = 0, we see 
that the potential is flat on the lower density side of the critical density pt 
at the TCP.7 

On the other hand, at the CP with the explicit breaking m ^ 0 the 
proper ordering direction becomes a linear combination of a, p and s 
(Fig. 2).10 ,7 ,11 The susceptibilities of these densities diverge with the same 
exponent since all of them involve a fraction of the critical fluctuation of 
the proper ordering density. Here the a direction is no longer special. One 
may choose equally well any of these densities as the ordering density in 
the static GL potential. 

3. Susceptibility and spectral density 

The susceptibility is obtained in the q-limit of the response function, which 
allows us to express the susceptibility as a sum of the spectral density: 

X , i = ^ ( 0 , q ^ 0 ) = l i n r / ^ 2 I m ^ ( " ' q ) . ( i , j = r ^ . T ) (2) 
q-*0 J ZlX U) 

From this expression we see that divergence of the susceptibility is caused 
by spectral enhancement at w = 0 or mode softening, provided that the 

aNote that the fluctuation of s is a linear combination of those of the quark number 
density and the energy density. 
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spectral density 2Imxij(w,q) itself is integrable. 
At the chiral CP, the divergence of the scalar susceptibility is generated 

by softening of the sigma meson mode, which is the chiral partner of the 
pion mode. However, we should recognize that there is no symmetry reason 
to expect the massless sigma at the CP with explicit symmetry breaking 
due to TO 7̂  0. 

There is a strong constraint on the spectrum in the fluctuations of the 
conserved quantity: the modes contributing to the susceptibility of a con
served quantity have to be hydrodynamic, that is, the typical frequency 
must vanish as q —> 0. Physically this is a consequence of the existence of 
the current j such that dtp + V • j = 0 for e.g., the quark number density. 
Using the fact that the conserved density operator is commutative with the 
total Hamiltonian and the fluctuation-disspation theorem, we can express 
the susceptibility in another form,8'7 

f dw2Imxij(u),q) 
^ ^ o V ^ l-e-*> • (3) 

These two expressions (2) and (3) coincide with each other if and only if 
limq^o 2Imxij(w,q) = 2n5(Lu)uXij- Hence, when the susceptibility of a 
conserved quantity diverges, there must be a hydrodynamic mode which 
shows critical slowing. 

Finally we remark that the w-limit of the response function Xij{w ~^ 
0, 0) has no contribution from the hydrodynamic mode spectrum. 

4. Soft modes in the NJL model 

The response functions in the random phase approximation are written as 

1 

l-2gU mm (m, q) 

(4) 

X»j(*94,q) = n,j(ig4 ,q) + Uim(iq4, q)- ^-^ 77::-^2gTImj(iq4,q). 

Here polarization functions are defined with the imaginary-time quark 
propagator S(k) = l/(/c + M) as 

T ^ T J2 trtcDSCk)rS(k-q)r', (5) 
n— — oo 

where g4 = 21-KT {I e Z), k = (k, fc4 + i/i) with fc4 = - ( 2n + 1)TTT, T is 
an appropriate Dirac matrix, and the traces are taken over the flavor, color 
and Dirac indices. T = 1 for the scalar, Z74 for the baryon number, and 
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Figure 3. Spectral functions of the scalar channel above (Left, T/A = 0.35) and below 
(Right, T/A = 0.339) the chiral transition point with ju/A = 0.3 in the w-q plane. 
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Figure 4. (a) Physical processes contributing to the spectrum with the detailed balance. 
(b) Analytic structure of the response function. The a meson and p—h poles (x) locate 
in the unphysical Riemann sheet. 

TLMF for P with 

%MF - i -7 - V +M + i/X74. (6) 

We deal with the response function of HMF instead of the entropy because 
the entropy has no microscopic expression. The real-time response func
tion is obtained from the imaginary-time propagator through the usual 
replacement iq^ —> go + *e in the final expression. 

The collective modes are generated by the infinite sum of the bubble dia
grams in the NJL model. The spectral function pmm(u, q) = 2Im^mm(w, q) 
of the scalar response function5 just above and below the chiral critical point 
with fixed /J, = JJLC are shown in Fig. 3. The spectrum in the time-like region 
comes from the quark pair creation/annihilation while the spectrum in the 
space-like region is due to the absorption/emission of the scalar fluctuation 
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(a) (b) 

Figure 5. Spectral functions of the scalar and the quark number susceptibilities at the 
CP with m/A = 0.01. 

by a quark or an anti-quark. The latter particle-hole (p-h) process gives 
rise to the Landau damping of collective motion in medium. These physical 
processes are schematically shown in Fig. 4 (a). In the unphyscal Riemann 
sheet of w (Fig. 4 (b)), we found two kinds of complex poles corresponding 
to the collective excitations of these processes. We shall call here the pole 
related with the time-like spectrum the sigma meson and the pole for the 
space-like one the p-h mode. 

Approaching the chiral CP from the symmetric phase, we see in Fig. 3 
(a) that the sigma meson mode becomes soft. Meanwhile the p-h mode 
does not show any particular enhancement. From the broken phase, on the 
other hand, the mass gap of the sigma meson mode is vanishing and the 
p-h mode spectrum also gets stronger at q = 0 (Fig. 3 (b)). 

At the critical point with TO/A = 0.01 both the scalar and quark-number 
susceptibilities diverge. The scalar spectral function is shown in Fig. 5 (a). 
In this case the sigma meson has finite mass gap, which is set by the quark 
mass as ~ 2M ~ TO1/5. The p-h mode has the hydrodynamic character 
(w —> 0 as q —> 0). We note that the strength of this mode is strongly 
enhanced at this critical point. In Fig. 5 (b), we show the specral function 
of the quark-number response function. It is clear that the divergence is 
caused solely by the p-h mode spectrum with hydrodynamic character, 
which is consistent with the general argument given in Sec. 3. 
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Figure 6. Ratio (7) of the spectral contribution along the chiral critical line in Fig. 1 
approached from the broken phase. R —> 1 toward the TCP. 

5. Change of the spectral contribution along the critial line 

We know that the sigma meson mode is the soft mode associated with the 
chiral CP while we have seen that the p-h mode shows the critical slowing 
at the CP with finite quark mass m. Let us study the change of the critical 
eigenmode along the critical line as shown in a dashed line in Fig. 1, with 
defining the relative weight of the spectral contributions of the p-h mode 
to the total spectrum by 

(0,0+) 
Xmm(0,0+) • U 

Here we used the fact that the difference between the q- and w-limits of 
Xmm(w, q) stems from the spectral contribution of the hydrodynamic mode. 
From the argument in Sec. 3, this ratio must be unity for the susceptibility 
of a conserved quantity, which can be confirmed explicitly. 

We show the numerical result of R in Fig. 6. The ratio vanishes if the 
chiral CP or the TCP is approaced from the symmetric phase, which means 
that the critical divergence is generated by the sigma mode without any 
contribution from the p-h mode. From the broken phase, on the other 
hand, we see the finite portion of the divergence comes from the p-h mode 
spectrum in the chiral critical transition — even in the \i = 0 case. Ap
proaching the TCP along the critical line, we see that the contribution from 
the p-h mode increases and eventually saturates the spectral sum (2). 

First one may ask why the p-h mode gives no contibution in the sym
metric phase. This is because that the chirality and helicity is the same for 
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a massless quark and that the chirality flip in the scalar coupling requires 
the finite momentum transfer q. In the broken phase, a massive quark with 
definite chirality has both helicity components, and therefore the p-h mode 
spectrum remains contributing to the susceptibility in the q —> 0 limit. 

Next we note that the mixing of this p-h spectrum in the susceptibility 
of p and s is possible in the broken phase through the coupling proportional 
to the condensate a. This mixing gives rise to the finite gap of these 
susceptibilities across the chiral critical line. This fact implies that the p-h 
mode contribution must be of order of 1/er2 —> oo in the scalar channel, to 
cancel the a2 factor from the coupling. 

At the TCP approached from the broken phase with fixed /x, Xmm di
verges as 1/cr4 while x^n a n d XTT blow up as 1/er2, which is easily confirmed 
within the Ginzburg-Landau approach. Only the p-h mode spectrum with 
hydrodynamic character can cause this divergence in the NJL model. The 
sigma meson mode in the NJL model provides the singularity of order 1/a2 

to Xmm at the TCP approached from the broken phase. From the symmeric 
phase, where a = 0, there is no contribution from the p-h mode and the 
critical divergence at the TCP is completely provided by softening of the 
sigma meson. The x w

 a n d XTT are finite there. 
Along the critical line with finite quark masses m ^ 0, XMJ. a n d XTT 

as well as x^n diverge with the same exponent. Generally these divergence 
must come from softening of a hydrodynamic mode in the system because 
the baryon number and the energy are conserved quantities. We can prove 
this within the NJL model as well as the time-dependent GL approach. 

6. Summary 

We have seen that, unlike at the chiral CP, the ordering density at the CP 
with finite quark mass m is a linear combination of the scalar density, the 
baryon number density and the energy density, and that the susceptibilities 
of these density diverge there. Since the susceptibility of a conserved density 
solely comes from the hydrodynamic spectrum, the associated critical soft 
mode must be hydrodynamic. We identified the p-h mode in the NJL model 
as this critical mode. Recently it is explicitly argued that the dynamic 
unversality class of this point is the same as the liquid-gas critical point11 '12. 

Experimentally, it is worthwhile to study the fluctuation of the con
served densities.1 The correct evolution equation for the correlation length 
must be hydrodynamic one, which is slower than the sigma like motion. 
In this sense the growth of the correlation length in the heavy ion events 
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passing by the C P acquires a renewed interest.1 3 

Along the critical line in the phase space otT-fi-m, we have studied the 

changeover of the associated soft mode from the sigma meson mode at the 

chiral C P to the p - h mode at the C P with m ^ 0. This shift occurs at the 

TCP, where the critical soft mode is different between the symmetric and 

broken phases. The dynamic classification of this T C P will be theoretically 

interesting.7 '1 1 '1 2 

There is a speculated phase diagram of QCD in the space of T-fi-m-

m s , 1 4 in which we see several critical lines and surfaces. It seems important 

to keep the hydrodynamic viewpoint in mind when we study these critical-

ities. 
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Using the Ginzburg-Landau (GL) free energy, we study the effects of thermal fluc
tuations of gluons and the diquark pairing field on the superconducting-to-normal 
state phase transition in a three-flavor color superconductor. At high baryon den
sities, the system becomes a Type I superconductor and the gluonic fluctuations 
dominate over diquark fluctuations. The thermal gluons induce a cubic term in the 
GL free energy, as well as large corrections to quadratic and quartic terms of the 
order parameter. The cubic term leads to a relatively strong first order transition 
in comparison to the very weak first order transitions in metallic Type I super
conductors. The strength of the first order transition decreases with increasing 
baryon density. In addition, gluonic fluctuations lower the critical temperature of 
the first order transition. We derive explicit formulae for the critical temperature 
and the discontinuity of the order parameter at the critical point. The validity of 
the first order transition obtained in the one-loop approximation is also examined 
by estimating the size of the critical region. 

1. Introduction 

Degenerate quark matter at high baryon density is expected to undergo a 
phase transition to a color superconducting state.1 The properties of color 
superconductors have been much studied in various approaches.2'3'4,5'6 A 
major difference of color superconductors and metallic superconductors is 
that the former is a highly relativistic system in which the long-range mag
netic interaction (dynamically screened only by Landau-damping7) is re
sponsible for the formation of the non-standard form of the superconduct
ing gap, A.8 Despite this non-BCS feature of color superconductivity, the 
finite temperature transition in mean-field theory is of second order, with 
a BCS critical temperature Tc ~ 0.57A.9 

In this article, we address the question of thermal fluctuations of the 
gluons and of the diquark pairing 10. The similar thermal fluctuations were 
first studied in BCS superconductors in metals in Ref. 11, and in finite 
temperature field theory in Ref. 12. In metalic superconductors, Type I 
materials have a weak first order transition, characterized by a cubic term of 
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the order parameter in the GL free energy induced by the thermal photons. 
A similar mechanism can be expected in color superconductors.2 However, 
there are some crucial differences from metallic superconductors. Firstly, 
the fluctuations of the diquark field alone may lead to a first order phase 
transition.13'14 Secondly, thermal gluon fluctuations may induce a relatively 
strong first order transition, in contrast to the metallic case partly because 
of the relativistic nature of the quarks and partly because of the large 
coupling constant as. 

We study the effects of fluctuations of the diquark and gluon fields on 
the phase transition via their effects on the GL free energy, emphasizing the 
relative importance of the diquark and gluon fluctuations, and of a theoret
ical treatment of gluon fluctuations that consistently keeps all terms of the 
same order. We estimate, semi-quantitatively, the strength of first order 
transition as well as the modification of the transition temperature. Unlike 
the conclusion of Ref. 2, we find that the first order transition becomes 
weak with increasing baryon density, and that the transition temperature 
is lowered from its mean-field value. 

2. Ginzburg-Landau Free Energy 

Let us consider a system of degenerate massless u, d, s quarks with a com
mon Fermi momentum. The pairng gap of the quark of color b and flavor 
j with that of color c and flavor k in the Jp — 0 + channel is written as 
4>bcjk- By further assuming that the pairing takes place in the color-flavor 
antisymmetric channel which is expected to be the most attractive in the 
weak coupling, the gap is parametrized as4 '5 4>bcjk = £abc€ijk{d)l

a. Under 
G = SU(3)C x SU(3)L+R x U(1)B, dl

a transforms as a vector and belongs 
to the (3*, 3*) representation of SU(3)C and SU(3)L+R. 

The GL free energy in three spatial dimensions, written in terms of 
djj(x), with coupling to the SU(3)C gluon gauge fields, reads 5 

S = a £ |da|
2 + ft ( £ Mai2)2 + & ( £ Id! • dfe|)

2 (1) 
a a ab 

+2KT]T|(Ad)a|
2 + iGfrnG?m. 

a 

The parameters a, /3i, and fa characterize the homogeneous part of 
the free energy, while KT is the stiffness parameter. Since d^ is anti
symmetric in color space, the color-covariant derivative reads (Did)a = 
dida + ^gAf(\a*d)a, where the AQ* are the complex conjugates of the Gell-
Mann matrices. Gim is the spatial part of the gluon field-strength tensor. 
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The free energy density Eq.(l) may be interpreted as an SU(3)C x SU(3)f 
scalar field theory coupled to an SU(S)C gauge field in three-spatial dimen
sions. Eq. (1) is model independent and valid near the critical temperature 
of the second order transition. 

Although the general analysis does not require specific values of the 
parameters in the GL free energy, it is useful to bear in mind their charac
teristic scales, as found in weak coupling: 

a = 4 J V 0 V 3 ) l n Q ^ , ft = f t = 3 * 7 = 3 ^ 2 ^ / 3 ) , (2) 

where N(n/3) = (/X/3)2/(2TT2), C(3) = 1.2020-••, fi the baryon chemical 
potential and Tc the critical temperature in the weak coupling. 

The color-flavor locking (CFL) and isoscalar (IS) ordering in three-flavor 
matter are characterized as d^ = d 8ai (CFL), d 5az5a (IS), respectively. 
Since a changes sign at the mean field Tc, it is useful to introduce the 
reduced tempetature as a = cto(T — Tc)/Tc = aot. Whether the paired 
state just below Tc is CFL or IS depends on the values of 0i and 02- In 
the weak coupling limit where 0i = 02 and a0 ~ ji2, the CFL ordering is 
favored with dcFh ~ ^cVrl f° r T ~ Tc. 

3. Fluctuation about the mean-field 

Let us consider the effect of thermal fluctuations of the spin-zero diquark 
(scalar) field and the spin-one gluon fields about their mean values, in 
the Gaussian approximation. The fluctuations of the gauge fields at the 
same spatial coordinate, are given by the thermal average, (A"A'3), of the 
product of the gauge fields: 

(A a A") = 28a0 T f , f* ^ } ,2 , (3) 
J|k|<A (2TT)3 k2 + (mA)la 

where we have taken the Coulomb gauge V • A = 0. The momentum 
A is an ultraviolet cutoff, which corresponds to an upper bound on the 
wave numbers of the classical thermal fluctuations with zero Matsubara 
frequency. This cutoff is inversely proportional to the size of the quark 
pairs (A ~ d — Tc).17'11 In the following we take A = Tc for simplicity. In 
Eq. (3), (m^)Q(j is the Meissner mass matrix. Its components are listed in 
Table 1. 

In weak coupling, we have TUA ~ gf^y/\t\ for T ~ Tc. Since the Meissner 
mass is vanishingly small compared to A ~ Tc near the second order critical 
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Table 1. The inverse squared correlation lengths of the scalar (d) and gauge (A) fluc
tuations, m^ and m2

A, together with the number of degenerate modes corresponding 
to each fluctuation. 

d 

A 

IS 
md.A 

2(f3i + (32) d2/KT 

-02d
2/KT 

0 

itrgW 
KTg2d2 

0 

degeneracy 

1 
8 
9 
1 
4 
3 

CFL 
md,A 

2(30 i+ /3 2 ) d J / « T 
2{32d

2/KT 

0 

2KTg2d2 

degeneracy 

1 
8 
9 

8 

point, we may expand Eq. (3) in terms of {mA)aa/Tc as 

(AaA /3) 
TT x c _ n (mA)c 

2 T0 + 
{mA 

T? 
(4) 

One can similarly calculate the expectation value of the product of the 
fluctuations of the scalar diquark field. 

The number of modes corresponding to a given correlation length is also 
indicated in Table 1. The ninefold massless scalar modes (vrid = 0) may 
be understood as follows. The IS state, characterized by d^ = <5o3fed, is 
invariant under G' = SU(2)C x SU(2)L+R x £7(1) x U(l). Here the first U(l) 
symmetry corresponds to a simultaneous rotation in baryon-color space, 
and the second to a simultaneous rotation in baryon-flavor space. Thus 
the number of Nambu-Goldstone bosons is dim[G]-dim[G'] = 17 — 8 = 
9. The CFL state, characterized by d^ = d5ai, is invariant under G' = 
SU(3)C+L+R- Thus one has 17 - 8 = 9 Nambu-Goldstone bosons in this 
case too. Note that not all massless scalar modes with m^ = 0 in Table 1 
are physical. Parts of them are absorbed in the longitudinal components 
of the gluon. As a result, only four scalar modes out of nine are physical 
in the IS state, while only one scalar mode is physical in the CFL state. 
However, as we show later, the physical massless modes do not modify the 
structure of the one-loop free energy. In weak coupling, the masses of the 
physical modes behave as md ~ Tc^/\t\ for T ~ Tc. 

As discussed in Refs. 11 and 17, the initial term in the expansion Eq. (4) 
proportional to TTC simply shifts the critical temperature, Tc, of the second 
order transition. On the other hand, the terms proportional to TTcmd and 
TTcrriA in Eq. (4) induce a cubic term of the order parameter in the GL 
potential, and thus generally drive the first order phase transition.11 The 
terms TTcmd and TTcmA in Eq. (4) modify the coefficient of quadratic 
term of the order parameter in the GL potential, which turn out to be 
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important in determining the strength of the first order transition. 

4. Critical region 

Let us now discuss the critical regions for scalar and gauge fluctuations. In 
the immediate vicinity of Tc, fluctuations of the soft modes become signifi
cant, leading to a breakdown of the Gaussian approximation.17 The temper
ature span of this critical region can be determined from standard scaling 
arguments near the critical point. For our problem, the typical spatial 
scales of scalar and gauge field fluctuations are m^ 1 and m^1, respectively. 
Using these scales, we can thus define the "effective" coupling strengths 
among the soft modes for the scalar and gauge fields as /3iTc/(327r2K|md) 
and g2Tc/(2ir2mA) = 2asTc/(irmA), respectively. These coupling strengths 
should be small enough that the calculation of the free energy in a loop ex
pansion is meaningful. Also the three dimensional effective theory for the 
soft modes is meaningful only when the masses of the soft mode are small 
enough compared to A ~ Tc. Combining the conditions discussed above, 
one finds necessary (but not sufficient) conditions for the Gaussian approx
imation to be valid, 

| f t | Tc<^md<^Tc, ~Tc<^mA<^Tc, (5) 
3 2 ^ 2 4 c ^ a ^ c ' IT 

namely the temperature should be inside the appropriate region where the 
masses of the soft modes are not too small and not too large. Also the 
above equations imply that the coupling constants should be sufficiently 
small, |/3i|/(327r2/4) < 1 and 2as/7T <C 1. 

Let us introduce a ratio of the typical spatial scales of scalar and gauge 
field fluctuations 

where the last equation is valid only in the weak coupling and a numeri
cal coefficient of order unity is neglected. As we shall see later, the gauge 
(scalar) fluctuations are more important than the scalar (gauge) flucuta-
tions for K <C 1(^> 1). In the weak coupling, K is considerably smaller than 
unity. 

The parameter n defined in Eq. (6) has also the meaning of Ginzburg-
Landau parameter19 that distinguishes the type of color superconductor 
under an external chromomagnetic field; n = 5/£ where 5 is the penetration 
depth, and £ the coherence length. It was recently shown, by the explicit 
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calculation of the surface energy of a domain wall separating the normal 
and superconducting phases in the presence of an external magnetic field, 
that Type I color superconductor is realized for K\S < I / A / 2 in the IS 
state5 and for KCFL < 0.589 in the CFL state20 with fi1 = (32. As Eq. (6) 
indicates, m^ <C rriA is realized in the weak coupling. Therefore, the color 
superconductor is Type I at least at very high density. Whether the system 
is Type I or Type II at low densities is not known. 

In the weak coupling limit, the Ginzburg criterion (the first of the in
equalities in Eq. (5)) becomes 

t » ed = 102 (J^j , t » eA = 10as C^j . (7) 

where we have neglected unimportant numerical coefficients of order unity. 
In the weak coupling, the ratio Tc//z is exponentially suppressed as 
exp(—37r2/\/2g)- Therefore one finds 1 > £A > £j at high baryon den
sity. Note also the relation K2 ~ 10~2ed/eA', the relative sizes of the critical 
regions are related to the types of color superconductor. 

We briefly summarize the results obtained so far. For a Type I color 
superconductor, as realized in the high density region, gluon fluctuations 
give the dominant correction to the free energy. In the one-loop approxima
tion, the gluon fluctuations change the order of the phase transition from 
second to first, and modify the critical temperature to T*. If the relative 
shift of the critical temperature (T* — Tc)/Tc is well outside the critical 
region dictated by Eq. (5), the Gaussian approximation is consistent. This 
situation is quite analogous to the first order transition in Type I metallic 
superconductor.11 

On the other hand, in a Type II color superconductor, which may be 
realized in the low density region for Tc comparable to /i, scalar fluctuations 
are not at all negligible. Furthermore, the Gaussian approximation becomes 
highly questionable. A renormalization group analysis with an e expansion 
shows that, even without gauge fields, scalar fluctuations alone induce a 
first order transition14 in an SU(n) x SU(n) model with n > 3. Our model 
falls in this category when the coupling of the gauge field with the diquarks 
is neglected. A further complication for Type II color superconductors is 
that the non-Abelian self-coupling of the gauge field may not be negligible. 

Once we take into account fluctuations of the order-parameter and the 
gauge fields, we need to consider the phase structure in the four dimensional 
(PI,@2,KT,as) space. Fig. 1 shows its projection onto the two dimensional 
(/?, as) space with a constraint (3 = j3\ — fa = 3«T- The CFL phase in the 
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weak coupling limit lies on this reduced space. The solid line in the figure 
is a boundary separating Type I and Type II color superconductors which 
is characterized by K, = 1 in Eq.(6). For the Gaussian approximation on the 
gauge field to be reliable, 2as/'K < 1 should also be satisfied. Therefore, as 
long as we stay in the shaded region in the figure, the one-loop approxima
tion taking into acount only the gauge field is reliable to study the effect 
of the thermal fluctuation. Also shown in the figure by the dashed line is a 
relation between as and f3 (both functions of /i) in the weak coupling. The 
weak coupling regime is found to be well inside the shaded area. 

l 

ou 

o 
Type II 1 1 w/^ :^^^^*^l^- ; j i i ; i : : .A?l 

10" 1(T 10' 

P=3K, 

,4 

T 

10° 10' ,8 

Figure 1. The phase structure in the two dimensional (/3,a s) space. The solid line 
characterized by K, = 1 is the boundary between Type I (right side) and Type II (left 
side) superconducting behavior. The dashed line shows as as a function of 0, calculated 
in the weak coupling. The loop expansion for gauge field fluctuations is valid in the 
shaded area. 

In Fig. 2, we show K calculated in weak coupling. The dependences 
of /i on Tc and as are taken from the weak coupling results. The figure 
indicates that /c- <C 1 (Type I superconductor) is satisfied not only at high 
density but also at moderate densities, to the extent that one can rely on 
the extrapolation using the weak coupling formulae. 

5. Fi rs t order t rans i t ion induced by gauge field 

In this section, we assume a Type I color superconductor and evaluate the 
free energy of the CFL state up to the one-loop order, taking into account 
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Figure 2. The parameter K calculated as a function of fi in the weak coupling approxi
mation. 

only the gauge field fluctuations. The free energy difference between the 
superfluid and normal phases, Feg(d), in this approximation reads, in the 
Coulomb gauge, 

FeS(d) = S(d) + \ In detf^L^ FeS(d = 0) (8) 

= S(d) +T^2 h K O L - a s ( " M ) L + a4(mA)ia] , (9) 
a 

= 3ad2 - qd3 + rd4. (10) 

where a-i = Tc/(2ir2),a,3 = l/(67r),a4 = l/(47r2Tc) and TUA is given in 
Table 1. At each order of the expansion of Feg(d) in terms of d, dominant 
contribution comes from the modes with larger mass which is evident from 
Eq.(9). 

The terms in Eq.(10) are explicitly written as 

«„j2 3ad 

qd3 

rd4 

3a H — (32TTKTO!S) 
STT-Z 

d\ 

T8\ /2 

IT 3 

3(3/?!+/32) 

(4irKTas)
1 d3, 

2 „2 128n^a 

(11) 

(12) 

(13) 

The effects of gauge fluctuations are three-fold: First, they increase the 
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size of the quadratic term proportional to d2. This increase implies that 
thermal fluctuations tend to make the superconducting phase less energet
ically favorable. Second, we find a cubic term with a negative coefficient, 
—q, which favors the superconducting phase. Furthermore, the second-
order transition found in mean-field theory turns into a first order one due 
to this term, independent of the magnitude of /i. Finally, we find a positive 
correction to the quartic term from the fluctuations. Like the correction 
to the quadratic term, this term acts against the superconducting phase. 
The sum of these three corrections leads to a first order transition which is 
significantly stronger than the metallic superconductor, but is much weaker 
than that claimed in Ref. 2 where the quartic correction was neglected. 

For later convenience, we define a "renormalized" critical temperature 
T'c at which a = 0. Then, one finds, T'c/Tc = [1 + (T2/a0)(32KTas/3w)}-1 

and a = a0(T — T'^)/T'c = atf'. The decrease of the renormalized critical 
temperature from the mean-field one (T'c < Tc) is consistent with the fact 
that the contribution of the fluctuations to the quadratic term makes the 
superconducting state less favorable. On the other hand the true critical 
temperature of the first order transition, T*, is the temperature where the 
free energy has two degenerate minima, d = 0 and d = d* =/= 0. Then one 
finds 

^ = 1 + ^ — , d* = —. (14) 
T'c 12a0r ' 2r v ' 

Due to the effect of the cubic term — qd3 in the free energy which tends 
to stabilize the superconducting phase, the critical temperature of the first 
order transition is increased from T'c as seen in Eq. (14). Thus the ratio 
T* /T'c is one of the measures of the strength of first order transition induced 
by the thermal gluons. One may also define another measure such as the 
jump of the diquark condensate at T = T* relative to its T = 0 value, 
d*/do, where do = d(T = 0) = (7r/e7)Tc with 7 being the Euler constant. 
Using the formulae for /% and KT in the weak coupling, we find the following 
estimates at high density; 

T* as d* 10 (Tc\ 
Tc W2 d0 y/as \ fi J 

The jump of the order parameter at the critical point, d*/do, is at 
most a few percent level for /i > 1 GeV, but is much larger than that 
expected in Type I metalic superconductors. Also, the first order transition 
becomes weaker logarithmically as \i increases, and approaches a second 
order transition at /x = 00. As we have mentioned, this is in contrast to 
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the result of Ref. 2 in which the first order transition becomes strong as 
fi increases. Such behavior is unreasonable because the coupling of gluons 
and diquarks becomes weak at high density due to the asymptotic freedom. 
The discrepancy between our result and that in Ref. 2 originates from the 
fact that thermal corrections to the quartic 

term in the free energy were not taken into account in Ref. 2. As we 
approach to the baryon density close to the confinement-deconfinement 
transition, \i ~ 1 GeV, the fluctuations of the scalar field as well as the 
non-Abelian interactions of the gluons neglected in our calculation become 
important. Therefore the results here may be modified qualitatively in such 
region. Study of the super-to-normal transition in the low density region 
remains an interesting open question. 

Let us now discuss the reliability of the first order phase transition 
obtained in the weak coupling, from the point of view of the critical region 
examined in Sec. 4. The first inequalities in Eq. (5) can be interpreted as 
conditions for the size of T — Tc or alternatively the conditions for the size 
of d: If T* — Tc or d* is too small, critical fluctuations are not negligible 
and one cannot trust the result of the one-loop approximation. In the weak 
coupling, we have t* = \T* — Tc\/Tc ~ 10~2as as well as Tc//i <C 1, which 
implies that the conditions given in Eq.(7), t* 3> €A,d, are well satisfied. 
Namely the critical temperature of the first order transition is outside the 
critical region of the diquark and gauge fluctuations. Also, by substituting 
d*/do in Eq. (15) into the first inequalities in (5), one finds as/f3 <C 1.6 TT5 

and as <C 7r2/6, which should be satisfied for the effective three-dimensional 
approach to be valid. They are in fact well satisfied, insofar as the couplings 
stay in the shaded region in Fig. 1. 

6. Summary 

We have discussed the effect of thermal fluctuations of diquarks and the 
gluons on the superconducting-to-normal phase transition in a three-flavor 
color superconductor. For this purpose, we adopted the Ginzburg-Landau 
free energy in three-spatial dimensions. The relative importance of the two 
types of fluctuations is controlled by re, the ratio of the masses of the scalar 
field and the gluon just below the critical temperature; re is also identified 
as the Ginzburg-Landau parameter which differentiates Type I and Type II 
color superconductors. In the high density regime where the weak coupling 
approximation is valid, the system is Type I and the gauge fluctuations 
dominate over the scalar fluctuation. 
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The thermal phase transition of Type I color superconductor, which is 

second order in the mean field theory, becomes first order due to the cubic 

term in the GL free energy. The first order transition weakens (strengthens) 

as the baryon density increases (decreases). This is in sharp contrast to tha t 

found in Ref. 2. The difference stems from the thermal correction to the 

quartic term missing in Ref. 2. 

Our general considerations in this paper for Type I superconductor are 

valid insofar as the parameters in the Ginzburg-Landau free energy stay in 

the shaded area in Fig. 1, which corresponds to high density region. On 

the other hand, in the low density, strong coupling region, not only scalar 

fluctuations but also non-Abelian interactions among thermal gluons are 

not negligible. Furthermore, the strange quark mass plays an important role 

in the unlocking transition from the CFL state to the IS s tate 2 1 . The anti-

quark pairing and the non-perturbative running of aa a t low momentum are 

also not negligible at low density.22 These effects may change the nature of 

the phase transition at low density from what is realized at high densities. 

Lattice simulations of the SU(3)C x SU(3)L+R X U{\)B sigma-model + 

SU(3)C gauge field introduced in the present paper would be a good start ing 

point to analyse the phase structure in the strong coupling region. 
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We show that the pseudogap of the quark density of states is formed in hot quark 
matter as a precursory phenomenon of the color superconductivity on the basis of 
a low-energy effective theory. We clarify that the soft mode of the di-quark pair 
field gives rise to a peculiar behavior of the quark dispersion relation and a short 
life-time of the quasiparticles near the Fermi surface, both of which make a depres
sion of the density of states of quarks. Our result suggests that the appearance 
of the pseudogap is a universal phenomenon of strong coupling superconductors, 
irrespective of the dimensionality. A brief comment is given on the behavior of the 
specific heat above the critical temperature. 

1. Introduction 

It is an intriguing subject in hadron physics to determine the phase struc
ture of QCD at large chemical potential \i and relatively low temperature 
T. The recent renewed interest in the color superconductivity (CS)3 stim
ulated intensive studies in these region, which in turn are revealing rich 
physics of the high density hadron/quark matter with CS4. 

Possible physical realizations of the CS in compact stars or ultrarela-
tivistic heavy-ion collisions are also discussed actively. Here, note that these 
systems are at relatively low density p where the strong coupling nature of 
QCD may show up. The strong coupling may invalidate the mean-field 
approximation a la BCS theory3, and make the so-called Ginzburg region 
so wide that precursory fluctuations of the pair field can have a prominent 
strength and may give rise to physically significant effects even above the 
critical temperature Tc

5. 

"This talk is based on the work in collaboration with T. Koide, T. Kunihiro and Y. 
Nemoto1 and the work with T. Kunihiro2. 

http://maskyQruby.scphys.kyoto-u.ac.jp
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The existence of the large fluctuations suggests us that the CS may 
share some basic properties with the high-Tc superconductivity (HTSC) of 
cuprates rather than with the usual superconductivity in metals. One of the 
most characteristic phenomena of HTSC is the existence of the pseudogap, 
i.e., the anomalous depression of density of state (DOS) N(u>) as a func
tion of the fermion energy u> around the Fermi surface above Tc. Although 
the mechanism of the pseudogap in HTSC is still controversial, precursory 
fluctuations of the pair field and the quasi-two dimensionality of the sys
tem seem to be basic ingredients to realize the pseudogap6. Interestingly 
enough, a pseudogap above Tc can be realized by the fluctuation of the pair 
field even in the three-dimensional nuclear matter at low densities7. Thus, 
one may naturally expect that although the relativistic kinematics may in
troduce additional complications, the pseudogap of the quark density of 
states exists as a precursory phenomenon of the CS at finite T. In this 
talk, we shall show that it is the case using a chiral model1. Our result also 
suggests that the appearance of the pseudogap is a universal phenomenon 
of strong coupling superconductors, irrespective of the dimensionality. 

2. Formalism 

To describe a system at relatively low T and p, it is appropriate to adopt 
a low-energy effective theory of QCD. Here we employ the Nambu-Jona-
Lasinio model with the scalar-diquark interaction in the chiral limit, 

A 

+ G s [ W 0 2 + (^75T</02], (1) 

where ipc = C-tpT, with C = 17270 being the charge conjugation opera
tor. Here, T2 and A^ mean the antisymmetric flavor SU(2) and color SU(3) 
matrices, respectively. The coupling Gs and the three dimensional momen
tum cutoff A = 650 MeV are determined so as to reproduce the physical 
quantities and we choose Gc = 3.11GeV~2. 

We neglect the gluon degrees of freedom, especially their fluctuation, 
which is known to make the CS phase transition first order in the weak 
coupling region3. However, nothing definite is known on the characteristics 
of the CS in the intermediate density region. In this work, simply assuming 
that the fluctuation of the pair field dominates that of the gluon field, we 
examine the effects of the precursory fluctuations of the diquark pair field 
on the quark sector in the T-matrix approximation (T-approximation8) 6 '7. 
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The DOS N(LJ) is given by 

f H3k 
N{LO)=AJ _T r c , f [p 0 ( f c , W ) ] , (2) 

where pQ = (l/4)Tr[70A] with A(k,u) = -1 /TT • lmGR(k,uj) denoting the 
spectral function of a single quark. The retarded Green function GR is 
given by the analytic continuation of the imaginary-time Green function G, 
which obeys the following Dyson-Schwinger equation 

G(k, un) = G0(fc, w„){l + E(fc, iun)G(k, ton)}, (3) 

where Go(fc,wra) = [(iwn+/Li)7° —fc-7]-1 andE(fc,wn) denote the free Green 
function and the self-energy in the imaginary time with u>n = (2n + 1)TTT. 

As was shown in our previous work5, the fluctuating diquark pair field 
develops a collective mode (the soft mode of the CS) at T above but in 
the vicinity of Tc, in accordance with the Thouless criterion9. Our point 
in this work is that the soft mode in turn contributes to the self-energy 
of the quark field, thereby can modify the DOS so much to give rise to a 
pseudogap. 

The quark self-energy E owing to the soft mode may be obtained by the 
infinite series of the ring diagrams shown in Fig. 1; 

)G0(kULjni), (4) 

Z(k,isn) = -Gc(l + GcQ{k,vn)y\ (5) 

with the lowest particle-particle correlation function Q(k, vn)
 5 and vn = 

2mrT. 
Inserting Eqs. (4) and (5) into Eq. (3) and performing the analytic 

continuation to the upper half of the complex energy plane, we obtain the 
retarded Green function, GR{k,uj) = (G(7

1(fc,w + irj) — Efl(fc, w))_ 1 , with 
Y,R(k,ui) = 'E(k,Lun)\iUjrl=u>+ir)- Here, the self-energy T,R has the matrix 
structure ER(fc,u;) = E0(fc,w)7° - Ev(fe,w)fc • 7 = 7°(E_A_ + E+A+), 
where AT = (1 ± 7°7 • k)/2 denotes the projection operators onto the 
positive and negative energy states. E T = Eo =f Ev represents the self-
energies of the particles and anti-particles, respectively. 

3. Numerical Results 

Since po(k,co) for UJ > —fj, is well approximated solely by the positive-
energy part, we see the characteristic properties of the quark self-energy 
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Figure 1. The Feynman diagrams representing the quark Green function. 

£ _ . We show the real and imaginary part of £ _ at fi = 400MeV and the 

reduced temperature e = (T — Tc)/Tc = 0.01 in Fig. 2. From figure, one 

sees tha t R e S _ has a rapid increase around u> = /j, — k. The behavior of 

R e £ _ affects the quark dispersion relation u> = w(fc), since it is given by 

u>(k) + (i — \k\ — Re(k,u>(k)) = 0. In particular, R e S _ around to — \k\ — fi 

which is the dispersion relation of the free system is responsible for the 

dispersion relation. The rapid increase of R e S _ near CJ = \k\ — fi appears 

around the Fermi energy u> = 0 or the Fermi momentum k = 400MeV, 

which means that the dispersion relation is strongly affected around the 

Fermi surface. The rapid increase of R e £ _ implies the similar behavior of 

the dispersion relation, and hence there appears a rapid increase of u(k) 

around the Fermi momentum k = 400MeV, although not shown because of 

the lack of space. Therefore, the DOS proportional to (dco^/dk)-1 becomes 

smaller near the Fermi surface, which suggests the existence of a pseudogap, 

provided tha t the imaginary part I m £ _ is neglected, which will be discussed 

below. 

Figure 2 also shows tha t the peak of | I m £ _ | appears around u> = —k+/i. 

This means that the quasiparticles with this energy are dumped modes. In 

our approximation, I m £ _ describes a decay process of a quark to a hole 

and a diquark, q—>h+(qq), as shown in Fig. 3, where the hole is on-shell 

with a free dispersion relation uih = /•* — |feft|- The essential point for 

the pseudogap formation is tha t the above process is enhanced when the 

diquark (qq) makes a collective mode, which we have emphasized is the case; 

the diquark soft mode (qq)soft has a prominent strength at small energy UJS 

and momentum ks near Tc. Owing to the energy-momentum conservation, 

the energy-momentum of the decaying particle {up, kp) should satisfy iov + 

LJh = us ~ 0 and kp + kh = ks ~ 0. It means tha t when the decaying 

particle has almost the same energy as a free quark has, | Im£_(fc, w)| has 

the largest value. 

We show the spectral function po(k,u>) in Fig. 4, at the same fj, and 

£ as those in Fig. 2. One can see the quasiparticle peaks of the quarks 

and anti-quarks at w = u>(k) « k — fi and w = —k — /x, respectively. It 

should be noticed tha t the quasiparticle peak has a clear depression around 
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ReE.(a>,k) 

500 

-ImZ.(a), 

Figure 2. The quark self-energy E_ (k, w) at fj, = 400MeV and e = (T - T c ) /T c = 0.01. 
Top and bottom panels show the real and imaginary parts of E_(fc,u>), respectively. 

Figure 3. Decaying process of quarks in the T-approximation. 

cu = 0, i.e., the Fermi energy. The mechanism for the depression is easily 

understood in terms of the characteristic properties of I m S _ mentioned 
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Figure 4. The spectral function pg. There is a depression around UJ = 0, which is 
responsible for the pseudogap formation. 

-400 -300 -200 -100 0 100 

(0 

Figure 5. Density of state at p, = 400MeV and various e = (T — Tc)/Tc- A clear 
pseudogap structure is seen, which survives up to e as 0.05. 

above: Since the peak of ImE_(fe,w) manifest itself around UJ = \i — |fc|, it 
coincides with the quasiparticle peak UJ = uj(k) around u> = 0. 

Integrating p0, one obtains the DOS N(u): Fig. 5 shows the DOS at 
fj, = 400MeV and various values of the reduced temperature e together 
with that of the free quark system,. NQ(LO). As anticipated, one can see a 
remarkable depression of N(u>), i.e., the pseudogap, around the Fermi energy 
UJ — 0; N(oj)/No(ij)\ul=o ~ 0.55 at e = 0.01. The clear pseudogap structure 
survives even at e = 0.05. One may thus conclude that there is a pseudogap 
region within the QGP phase above Tc up to T = (1.05 ~ 1.1)TC at fi = 
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400MeV, for instance. A numerical calculation shows that e dependence 
of the width of the pseudogap region hardly changes for 320MeV< fi < 
500MeV. 

4. Specific Heat 

The anomalous behavior of the DOS in the pseudogap region may affect 
various observables near Tc. In this section, we consider the behavior of 
the specific heat cy near Tc as an example of such effects on observables. 
Although precise calculation for cy is in progress2, it is possible to give an 
intuitive discussion on the qualitative behavior of it from the behavior of 
the DOS. 

As was shown above, the DOS N(u>) around the Fermi surface becomes 
smaller as temperature is lowered toward Tc. In particular, N(to) decreases 
sharply near Tc while the Fermi-Dirac distribution function f(ui) remains 
almost the same. In this case, number of particles around the Fermi surface 
becomes smaller due to the decrease of the DOS in these region, and hence 
particles are emitted from the vicinity of the Fermi surface. Therefore, 
the energies corresponding to the particle emission are released around the 
Fermi surface as T is lowered. This energy release may lead to the anoma
lous enhancement of cy near Tc, because the specific heat is the released 
energy from the system while the temperature is lowered by a unit tem
perature: Recall that the definition of cy is the amount of energy required 
to raise the temperature of the system. In particular, one can expect that 
the enhancement of cy becomes more remarkable as T approaches Tc since 
the decrease of the DOS around the Fermi energy becomes sharp as T is 
lowered toward Tc. 

The behavior of cy discussed above is reasonable in accordance with 
the fact that cy is enhanced near Tc in the usual superconducting phase 
transitions on account of the enhancement of the pair fluctuations9. It 
should be noted, however, that the rather wide pseudogap region as we 
have shown above indicates that the anomalous behavior of the specific 
heat can manifest itself in the similar range of temperatures, T — (1.05 ~ 
1.1)TC. This temperature range is quite wide compared with the one in the 
usual metal superconductivity in which anomalous behavior of cy is seen 
only in e < 10~10. Thus, it might be possible to observe the anomalous 
enhancement of cy as a signature of the phase transition of the CS in the 
observation of the compact stars; for example, in the cooling process of 
the proto neutron stars in the very early stage. It is also interesting that 
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Voskresensky estimated tha t cy increases anomalously from T ~ 2TC based 

on a GL approach with parameters determined in the weak coupling limit1 0 . 

This estimation of the temperature range is about one order larger than 

ours. The discussion on the origin of this difference will be given in our 

future work2 . 

5. Con c lu s ion 

In this work, we have found tha t the pseudogap can be formed as a pre

cursory phenomenon of the CS in a rather wide region of T above Tc. The 

rather wide region of It should be noted tha t our work is the first calculation 

to show the formation of the pseudogap in the relativistic framework. 

We notice tha t the pseudogap region obtained in the present work is 

more than one order of magnitude wider in the unit of e than in the nu

clear ma t t e r 7 where the clear pseudogap is seen up to e « 0.0025. This is 

just a reflection of the strong coupling nature of the QCD at intermediate 

density region. Our result obtained for a three-dimensional system tells 

us tha t a considerable pseudogap can be formed without the help of the 

low-dimensionality as in the HTSC and tha t the pseudogap phenomena in 

general may be universal in any strong coupling superconductivity. 
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We discuss the salient features of the high density effective theory (HDET) of 
QCD, elaborating more on the matching for vector-vector correlators and axial-
vector-vector correlators, which are related to screening mass and axial anomaly, 
respectively. We then apply HDET to discuss various color-superconducting phases 
of dense QCD. 

1. I n t r o d u c t i o n 

As physics advances, its frontier has expanded. One of the frontiers un

der active exploration is mat ter at extreme conditions. Recent surprising 

data, obtained from heavy-ion collisions and compact stars such as neu

tron stars, and also some theoretical breakthroughs have stimulated active 

investigation in this field 1 . 

How does mat ter behave as we squeeze it extremely hard? This question 

is directly related to one of the fundamental questions in Nature; what are 

the fundamental building blocks of mat ter and how they interact. Accord

ing to QCD, mat ter at high density is quark matter , since quarks interact 

weaker and weaker as they are put closer and closer. 

At what temperature and density does the phase transition to quark 

mat ter occur? To determine the phase diagram of thermodynamic QCD is 

an outstanding problem. The phases of mat ter are being mapped out by 

colliding heavy-ions and by observing compact stars. Since QCD has only 

one intrinsic scale, A Q C D , the phase transition of QCD mat ter should occur 

at tha t scale as mat ter is heated up or squeezed down. Indeed, recent lat

tice QCD calculations found the phase transition does occur at temperature 

around 175 MeV 2. Even though lattice QCD has been quite successful at 

finite temperature but at zero density, it has not made much progress at 

finite density due to the notorious sign problem. The lattice calculation is 

mailto:dkhong@pusan.ac.kr
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usually done in Euclidean space and Euclidean QCD with a chemical poten

tial has a complex measure, which precludes use of importance samplings, 

the main technique in the Monte Carlo simulation for lattice calculations. 

Lattice QCD at finite density is described by a parti t ion function 

ZQj) = fdA det (M) e ~ s ( / 1 } , (1) 

where M = J^Dg + fi-y^ is the Dirac operator of Euclidean QCD with a 

chemical potential \i. The eigenvalues of M are in general complex, since 

jgDg is anti-Hermitian while /ijg is Hermitian. For certain gauge fields 

such as A^{—x) = —A,J'(x), M can be mapped into M^ by a similarity 

transformation and thus its determinant M is nonnegative. However, for 

generic fields M ^ P~lM'[P and det (M) is complex. 

Recently there have been some progress in lattice simulation at small 

chemical potential, using a re-weighting method, to find the phase line 3 '4 . 

Another interesting progress in lattice simulation was made at very high 

density in 5 '6 , where it was shown tha t for QCD at high density the sign 

problem is either mild or absent, since the modes, responsible for the com-

plexness of the Dirac determinant, decouple from dynamics or become ir

relevant at high baryon density 7 . 

2. H i g h D e n s i t y Effective T h e o r y 

At low temperature or energy, most degrees of freedom of quark mat ter are 

irrelevant due to Pauli blocking. Only quasi-quarks near the Fermi surface 

are excited. Therefore, relevant modes for quark mat ter are quasi-quarks 

near the Fermi surface and the physical properties of quark mat ter like the 

symmetry of the ground state are determined by those modes. High density 

effective theory (HDET) 8-9 of QCD is an effective theory for such modes 

to describe the low-energy dynamics of quark matter . 

To find out the modes near the Fermi surface, one needs to know the 

energy spectrum of QCD, which is very difficult in general since it is equiv

alent to solving QCD. However, at high density fj, 3> A Q C D , quarks near 

the Fermi surface carry large momenta and the typical interaction involves 

a large momentum transfer. Therefore, due to the asymptotic freedom 

of QCD, the spectrum near the Fermi surface at high density looks very 

much like tha t of free fermion: (d? • p — fi + j3m) ip± = E±tp± , as shown 

in Fig. 1. We see tha t at low energy, E < 2fi, the states near the Fermi 

surface (|p| ~ pF), denoted as tp+, are easily excited while states deep in 

the Dirac sea, denoted as i/'-j are hard to excite. 
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Figure 1. Energy spectrum of quarks at high density 

At low energy, the typical momentum transfer by quarks near the Fermi 
surface is much smaller than the Fermi momentum. Therefore, similarly 
to the heavy quark effective theory, we may decompose the momentum of 
quarks near the Fermi surface as 

p" = /*«" + /", (2) 

where v^ = (0, vp) and vp is the Fermi velocity. For quark matter, the typ
ical size of the residual momentum is | P | ~ AQCD, and the Fermi velocity 
of the quarks does not change for fi 3> AQCD, when they are scattered off 
by soft gluons. 

We now introduce patches to cover the Fermi surface, as shown in Fig. 2. 
The sizes of each patch are 2A in vertical direction to the Fermi surface and 
2Ax in horizontal direction. The quarks in a patch are treated to carry a 
same Fermi velocity. 

The energy of the quarks in the patch is given as 

E = -n+ v V + m2 = l-vF+l—+0 (\\ . (3) 

We see that at the leading order in 1/fi expansion, the energy is independent 
of the residual momentum, lj_, perpendicular to the Fermi velocity. In 
HDET, therefore, the perpendicular momentum labels the degeneracy and 
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Fermi Surface 

Figure 2. A patch covering the Fermi surface 

should satisfy a normalization condition 

J2 J d*l±=4npF. (4) 
patches* 

To identify the modes near the Fermi surface, we expand the quark field 

as 

*(a;) = £%-<"*•**• [IP+(VF,X) + ^-(VF,X)] , 

where 4>±(VF,X) satisfies respectively 

1 ± a • VF 
ip± = ipd 

(5) 

(6) 

Note that the projection operator P± = (1 ± a • £>F)/2 projects out the 
particle state, ip+, and the anti-particle state, i\)_ (or more precisely ij)-), 
from the Dirac spinor field \&. The quasi-quarks in a patch carries the 
residual momentum l^ and is given as 

tjj+(vF,x) = 
l + a-vp jrfF.s ip{x) (7) 

The Lagrangian for quark fields becomes 

C = * iiJf) + M7°) * = ^ ( « F , X ) (P+ + P~) ^V+V>) (P+ + P-)i>{vF,x) 

= ijj+ipll^+ + iP- (2^7° + i#u)V- + [$ - if>± i>+ + h.c.] , (8) 

where we neglected the quark mass term for simplicity and V^ = (1,VF)-

II The parallel component of the covariant derivative is D1?, = V^ D • V and 
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the perpendicular component D±_ = D — D\\. From the quark Lagrangian 
one can read off the propagators for ip± (vp, x): 

&p — -T_|_— , Op — r-
\ H°/|| 

2/z 
(9) 

h * ^ 
We see indeed that in HDET the quarks near the Fermi surface or ip+ 

modes are the propagating modes, while ip- a r e n°t-
By integrating out ip- modes and the hard gluons, one obtains the 

high density effective theory of QCD. In general the integration results in 
nonlocal terms in the effective theory and one needs to expand them in 
powers of l//x. This is usually done by matching the one-light-particle 
irreducible amplitudes of the microscopic theory with those of the effective 
theory. For tree-level amplitudes, this is tantamount to eliminating the 
irrelevant modes, using the equations of motion. 

*-'*"*> = - 2 ^ 1 / * " "f S {-'$)" **+ • (10) 

For instance, a one-light particle irreducible amplitude in QCD of two glu
ons and two quarks is matched as 

xj)+i ^>±xp-{vF,x)tlj_i p±ip+(vF,y) = xp+ifl1_ ( -— J i jZ>±ip+(vF,y), 

(11) 
which is shown in Fig. 3. Similarly one can eliminate the hard gluons. In-

Figure 3. Tree-level matching: The double line denotes V - modes and the single line 

in

tegrating out hard gluons results in four-Fermi interactions of ip+ modes. 
(See Fig. 4.) One continues matching one-loop or higher-loop amplitudes. 
One interesting feature of HDET is that a new marginal operator arises at 
the one-loop matching, when incoming quarks are in Cooper-paring kine
matics, namely when they have opposite Fermi velocities. As shown in 
Fig. 5, when the incoming quarks have opposite Fermi velocity, the ampli
tudes in HDET are ultra-violet divergent while QCD amplitudes are not. 
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Figure 4. Tree-level matching: Four-Fermi interaction due to hard gluons 

Therefore, one needs to introduce a four-Fermi operator as a counter term 
to remove the UV divergence. If we collect all the terms in the effective 

Figure 5. One-loop matching 

theory, it has a systematic expansion in l//z and coupling constants as as 

£HDET = bl$+irfDllrP+ - | ^ + 7 0 ( # J V + + • • • , (12) 

where &i = 1 + 0(as), a = 1 + 0{a8), •••. Note that HDET has a 
reparametrization invariance, similarly to heavy quark effective theory, 
which is due to the fact that the Fermi velocity of quarks in a patch is 
not uniquely determined. For a given quark momentum, the corresponding 
Fermi velocity is determined up to reparametrization; vp —> vp + Sl±/fi 
and I —> 1 — 51, where 51 j_ is a residual momentum perpendicular to the 
Fermi velocity. As in the heavy quark effective theory 10, the renormaliza-
tion of higher-order operators are restricted due to the reparametrization 
invariance. For instance, b\ = c\ at all orders in as. 

In order for the effective theory to be meaningful, it should have a 
consistent power-counting. We find the consistent counting in HDET to be 
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for Aj_ = A 

^ • • ( ^ " • * ~ ( ^ r ^ - <* 
To be consistent with the power counting, we impose in loop integration 

d2l± 11 = 0 for n > 0. (14) L 
So far we have restricted ourselves to operators containing quarks in the 
same patch. For operators with quarks in different patches, one has to 
be careful, since the loop integration might jeopardize the power-counting 
rules. Indeed, consistent counting is to sum up all the hard-loops, as shown 
by Schafer u . 

3. More on matching 

In HDET, the currents are given in terms of particles and holes but without 
antiparticles as 

J>i = ^2ip(vF,x)^i)(vF,x) - —^{vF,x)[^7 ift_i]ip(vF,x)-\ , 

vF 

2/x 

where the color indices are suppressed and we have reverted the notation xp 
for ip+ henceforth. We find that the HDET current is not conserved unless 
one adds a counter term. Consider the current correlator 

r2p r 

where the vacuum polarization tensor 

KKP) = - ^ - * - > / % ( , T, TV* :-, ) (is) a b W ) - - o *<* I 47r {p.v + iep-vF 

and M2 = Nfg2fi2/(2n2). We see that the vacuum polarization tensor is 
not transverse, p^Jl^ip) ^ 0, which means that the current is not con
served. The physical reason for this is that not only modes near the Fermi 
surface but also modes deep in the Fermi sea respond to external sources 
collectively. To recover the current conservation in the effective theory, we 
need to add the DeBye screening mass term due to ip- (See Fig. 6): 

peff ^ f eff = peff _ J ™_ £ A ^ g ^ . ( 1 7 ) 

X VF 
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Then vacuum polarization tensor becomes 

iP"(p) ^ wv(p) = I F " - - J2dTM2 (18) 

The modified polarization tensor is now transverse, plJJIJ'1' = 0. 

Figure 6. Matching two-point functions 

Now, let us consider the divergence of axial currents in HDET, which 
is related to the axial anomaly and also to how the quark matter responds 
to external axial-current sources like electroweak probes. 

It is easy to show that the axial anomaly in dense matter is independent 
of density or the chemical potential fj, 12. In general one may re-write the 
divergence of axial currents in dense QCD as follows: 

< « 9 
167I-2 

F^F^ + A^i^A.Ap, (19) 

where the first term is the usual axial anomaly in vacuum and the second 
term is due to matter. However, one can explicitly calculate the second 
term, which is finite, to find Aa/3(/z) = 0. In HDET, the axial anomaly due 
to modes near the Fermi surface is given as 

E / eik^+ik'-y (d^(vF,0)Ja(vF,x)J?(vF,y)) = A°£ (20) 

By explicit calculation we find 

A*(fci,fc2) = - 9 
127T2 (* x tf>A-=& Ajl(kwk2l-kllk20).{21) 

We see that the modes near the Fermi surface contributes only some parts 
of the axial anomaly. As in the vector current, the rest should come from 
modes in the deep Fermi sea and from anti-particles. To recover the full 
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axial anomaly we add a counter term (See Fig. 7), which is two thirds of 
the axial anomaly plus a Chern-Simons term: 

Ks(ki,k2) = A e t + ^ea^klpk2a + ^ t a m (frofo - kuk20) • (22) 

Figure 7. Matching axial anomaly. + denotes tfi-y and — denotes ip— • 

4. Color superconductivity in dense QCD 

At high density, quarks in dense matter interact weakly with each other and 
form a Fermi sea, due to asymptotic freedom. When the energy is much 
less than the quark chemical potential (E <C //), only the quarks near the 
Fermi surface are relevant. The dynamics of quarks near the Fermi surface is 
effectively one-dimensional, since excitations along the Fermi surface do not 
cost any energy. The momentum perpendicular to the Fermi momentum 
just labels the degeneracy, similarly to the perpendicular momentum of 
charged particle under external magnetic field. This dimensional reduction 
due to the presence of Fermi surface makes possible for quarks to form a 
Cooper pair for any arbitrary weak attraction, since the critical coupling 
for the condensation in (1+1) dimensions is zero, known as the Cooper 
theorem in condensed matter. 

While, in the BCS theory, such attractive force for electron Cooper 
pair is provided by phonons, for dense quark matter, where phonons are 
absent, the gluon exchange interaction provides the attraction, as one-gluon 
exchange interaction is attractive in the color anti-triplet channel.a One 

aThere is also an attractive force between quarks and holes in the color octet channel: 
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therefore expects that color anti-triplet Cooper pairs will form and quark 
matter is color superconducting, which is indeed shown more than 20 years 
ago 14>15>16. 

At intermediate density, quarks and gluons are strongly interacting and 
gluons are therefore presumably screened. Then, QCD at intermediate 
density may be modelled by four-Fermi interactions and higher-order terms 
by massive gluons. 

G-
£QCD 3 ^ ^ H > + " • • , (23) 

where the ellipsis denotes higher-order terms induced by massive gluons. 
When the incoming quarks have opposite momenta, the four-Fermi inter
action is marginally relevant, if attractive, and all others are irrelevant. As 
the renormalization group flows toward the Fermi surface, the attractive 
four-Fermi interaction is dominant and blows up, resulting in a Landau 
pole, which can be avoided only when a gap opens at the Fermi surface. 
This is precisely the Cooper-instability of the Fermi surface. The size of 
gap can be calculated by solving the gap equation, which is derived by the 
variational principle that the gap minimizes the vacuum energy: 

dlfrcs(A) = A [*k_ A 

which gives 

A = -zG f-^j = A • (25) 
J W [(1 + ie)k0}

2 - (k • vF)2 - A2 

We note that the integrand in Eq. 25 does not depend on k±, whose integra
tion gives the density of states at the Fermi surface, and the it prescription 
is consistent with the Feynman propagator. The pole occurs at 

fc0 = ±y{k-vF)2 + A2 Tie (26) 

or in terms of full momentum p = [i v + k it occurs at 

Po = ± \ / ( b 1 - / x ) 2 + A2 T ie • (27) 

(,4>i(—p)4'j(p)) J^ 0, which corresponds to a density wave. However, because of the 
momentum conservation, the density wave condensate does not enjoy the full Fermi 
surface degeneracy. Indeed, for QCD, the diquark condensate is energetically preferred 
to the density wave condensate 1 3 . 
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We find the solution to the gap equation 

A o = 2 ^ X P ( - ^ ) ' ( 2 8 ) 

For generic parameters of dense QCD, the gap is estimated to be 10 ~ 
100 MeV at the intermediate density. The free energy of the BCS state is 
given as 

W A o ) = f ° ^ d A 

= ^G~lX0 (x + 92lnx)dx = -^A°> (29) 

where x — A/(2//) and g2 = 2G/J,2/TT2. At high density magnetic gluons 
are not screened though electric gluons are screened 17 '18 '19. The long-
range pairing force mediated by magnetic gluons leads to the Eliashberg 
gap equation (See Fig. 8). 

A W ^ f ^ h f p L ) , (30) 
36TT2 J_ll v^o + A V bo - qo | J 

where A = A^L/TT • (fi/M)5e3^2^ and £ is a gauge parameter. Due to the 

- v 

^ # ̂  - + 
V —V V —V V - V 

Figure 8. Eliashberg equation at high density. 

unscreened but Landau-damped gluons, there is an extra (infrared) loga
rithmic divergence in the gap equation, when the incoming quark momen
tum is collinear with the gluon momentum. The Cooper-pair gap at high 
density is found to be 19'20 

^ 4 „ f 3 ? r 2 
A n - 2 n

 r 3 $ / 2 + l . }i_ 
exp 

N5/2 9 l ^ \ V2gt 

The numerical prefactor of the gap is not complete, since the contributions 
from subleading corrections to the gap equation that lead to logarithmic 
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divergences, such as the wavefunction renormalization and the vertex cor
rections, are not taken into account. Recently, however, the contributions 
to the prefactor, coming from the vertex corrections and the wavefunc
tion renormalization for quarks were calculated by finding a (nonlocal) 
gauge 21, where the quark wavefunction is not renormalized for all mo
menta, Z(p) = 1. At the nonlocal gauge, £ ~ 1/3. The subleading cor
rections therefore increase the leading-order gap at the Coulomb gauge by 
about two thirds. 

5. Quark matter under stress 

It is quite likely to find dense quark matter inside compact stars like neutron 
stars. However, when we study the quark matter in compact stars, we need 
to take into account not only the charge and color neutrality of compact 
stars and but also the mass of the strange quark, which is not negligible at 
the intermediate density. By the neutrality condition and the strange quark 
mass, the quarks with different quantum numbers in general have different 
chemical potentials and different Fermi momenta. When the difference in 
the chemical potential becomes too large the Cooper-pairs breaks or other 
exotic phases like kaon condensation or crystalline phase is more preferred 
to the BCS phase. 

Let us consider for example the pairing between up and strange quarks 
in chemical equilibrium. The energy spectrum of up quarks is given as 

E = -n±\p\, (31) 

while the energy of strange quarks of mass Ms becomes 

£ = - M ± \ / b T + Ms
2. (32) 

The Fermi sea of up and strange quarks is shown in Fig. 9. Because of 
the strange quarks mass, they have different Fermi momenta. Note that 
the Cooper-pairing occurs for quarks with same but opposite momenta. 
Therefore, at least one of the pairing quarks should be excited away from 
the Fermi surface, costing some energy. Let us suppose that the Cooper-
pair gap opens at \p\ = p between two Fermi surfaces, ps

F < p < p'p. 
To describe such pairing, we consider small fluctuations of up and 

strange quarks near p. The energy of such fluctuations of up and down 
quarks is respectively 

Eu = -/j,+ \p + l\ ~ ~5/J,U + vu-l, Es ~ -Six3 + vs-l, (33) 
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Figure 9. Fermi sea of up and strange quarks. 

where 5[iu = ji — p and 5fj,s = /J, — yjp2 + M 2 . vu and vs are the velocities 
of up and strange quarks at |pj = p. Let A be the BCS gap for the u, s 
pairing. Then, the Lagrangian for the u, s quarks is given as 

£ = u (i <?+ M7°) u + sc (i$- M7° ~ Ms) sc- Ascu + h.c. + Ant, (34) 

where sc is the charge conjugate field of s quark. In HDET, the Lagrangian 
becomes 

£HDET = uf {iVu • d + 5fiu) u + sl(iVs-d-5ns)sc-Ascu + ---, (35) 

where Vu = (l,vu) and Vs = (l,—vs). The Cooper-pair gap equation is 
then 

i&(l)K(p-l) ^ 
[(1 + ie)l0 - I- vu + Sfiu] [(1 + it)l0 + I- vs - 5^iu] - A 2 ' 

where K is the kernel for the gap equation and is a constant for the four-
Fermi interaction. By examining the pole structure, we see that the Cooper-
pair gap does not exist when 

- W > ^ - (37) 

Only when S^,u6ns < A2 /4, one can shift l0 —• l'Q = l0 + S^LU or l0 —> l'Q = 
lo — Sfis without altering the pole structure. Note that the gap becomes 

A(p) 
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biggest when Sfxu = —8^LS{= d[i), which determines the pairing momentum 

to be 

M2 

P = , ~ ~ . (38) 

If 6/J, < A / 2 or A > M2/(2/x), the solution to the Cooper-pair gap exists. 

The gap equation then can be writ ten as, shifting lo, in Euclidean space 

^ / i S F i f ^ * ' ' - " - (39) 

where I2 = I2 + c2{l • v)2 and c2 = p/^/p2 + M2 . In H D E T , one can 

easily see tha t the Cooper-pair gap closes if the effective chemical potential 

difference, 26fi, due to an external stress, exceeds the Cooper-pair gap when 

there is no stress. One should note tha t even before the Cooper-pair gap 

closes other gap may open as shown by many authors 22>23>24. But , one 

needs to compare the free energy of each phases to find the t rue ground 

state for quark mat te r under stress. 
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MODEL I N D E P E N D E N T SUM RULES FOR STRANGE 
FORM FACTORS 

S O O N - T A E H O N G * 

Department of Science Education 

Ewha Womans University, Seoul 120-750 Korea 
E-mail: soonhong@ewha.ac.kr 

We study chiral models with SU(3) group structure such as Skyrmion and chiral 
bag to yield theoretical predictions of proton strange form factor comparable to 
the recent experimental data of the SAMPLE Collaboration. For these predictions 
we formulate model independent sum rules for proton strange form factor in terms 
of baryon octet magnetic moments. We also investigate the Becci-Rouet-Stora-
Tyutin symmetries associated with the Stiickelberg coordinates, ghosts and anti-
ghosts involved in the Skyrmion model. 

1. Introduction 

There have been many interesting developments concerning the strange 
flavor structures in the nucleon and the hyperons. Especially, the internal 
structure of the nucleon is still a subject of great interest to both exper
imentalists and theorists. In 1933, Frisch and Stern 1 performed the first 
measurement of the magnetic moment of the proton and obtained the ear
liest experimental evidence for the internal structure of the nucleon. How
ever, it wasn't until 40 years later that the quark structure of the nucleon 
was directly observed in deep inelastic electron scattering experiments and 
we still lack a quantitative theoretical understanding of these properties 
including the magnetic moments. 

Recently, the SAMPLE Collaboration reported the experimental data of 
the proton strange magnetic form factor through parity violating electron 
scattering at a small momentum transfer Q2

S = 0.1 (GeV/c) 2 

GliiQl) = + 0 - 1 4 ± °-2 9 (stat) ± 0.31 (sys) n.m.. (1) 

*Work partially supported by the Korea Science and Engineering Foundation grant R01-
2000-00015. 
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On the other hand, baryons were described by topological solitons 3>4,5,6,7 
and the MIT bag model 8 was later unified with the Skyrmion model to yield 
the chiral bag model (CBM) 9, which then includes the pion cloud degrees 
of freedom and the chiral invariance consistently. Moreover, the soliton was 
exploited to yield superqualiton 10 in color flavor locking phase n . 

The QCD is the basic underlying theory of strong interaction, from 
which low energy hadron physics should be attainable. Moreover, for 
hadron structure calculations, the coupling constant g is not a relevant 
expansion parameter of QCD. Long ago, 't Hooft noted that 1/NC could 
be regarded as expansion parameter of QCD 12 where Nc is the number of 
colors and gN% is kept constant. The properties of large Nc limit of the 
QCD can be satisfied by the meson sector of the nonlinear sigma model 
such as the Skyrmion model. 

In this paper, we will study the chiral models such as the Skyrmion and 
chiral bag to yield theoretical predictions of proton strange form factor com
parable to the recent experimental data of the SAMPLE Collaboration. To 
do this, we will formulate the model independent sum rules for the proton 
strange form factor in terms of the baryon octet magnetic moments. We 
will also investigate the Becci-Rouet-Stora-Tyutin (BRST) symmetries as
sociated with the Stiickelberg coordinates, ghosts and anti-ghosts involved 
in the Skyrmion model. 

2. BRST symmetries of Skyrmion in improved Dirac 
quantization 

Now, in order to study the hadron physics phenomenology, we treat \/Nc 

as expansion parameter of QCD, so that the properties of large Nc limit of 
the QCD can be satisfied by the SU(3) Skyrmion model whose Lagrangian 
is of the form 4 

/ ' 
L= ddx 

2 

+ Lwzw (2) ~^(i^) + ^^M2 

where l^ = U^dyXJ and U G SU(3) is described by pseudoscalar meson 
fields ira (a = 1, 2,..., 8) and the topological aspects can be included via the 
WZW action 4. Assuming maximal symmetry, we introduce the hedgehog 
ansatz UQ embedded in the SU(2) isospin subgroup of SU(3) to yield the 
topological charge 

Q = -—XE(0-sm9cos8) = l (3) 
Z7T 
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where 9 is the chiral angle and \E is the Euler characteristic being an inter 

two in the spherical bag surface. 

In order to define the spin and isospin we can quantize, in the SU(2) 

Skyrmion for instance, the zero modes via 

U0 - AU0A^ (4) 

and 

A(t) = a° + ia-r, (5) 

with aM being the collective coordinates. We can then obtain the La-

grangian 

L = - m 0 + 2ndMdM (6) 

where the static mass TOO and the moment of inertia i± are calculable in 

the Skyrmion model. Introducing the canonical momenta 7rM we can obtain 

the canonical Hamiltonian 

H = m0 + - ^ T T V . (7) 

Note tha t the second-class geometrical constraints 

n± = a V - 1 K, 0, 

fl2 = a V « 0 (8) 

should be treated via the Dirac brackets 13 . However, in the Dirac quanti

zation, we have difficulties in finding the canonically conjugate pair, which 

were later overcome 14 by introducing pair of auxiliary Stiickelberg fields 9 

and 7T0 with 

{9,7T6} = 1. (9) 

In the Skyrmion the first-class constraints 

fix = aPa? - 1 + 29, 

n2 = a^ir" - aWirg (10) 

were constructed 15 to satisfy the strongly involutive Lie algebra 

{n1,n2} = o. (ii) 
Similarly, the first-class Hamiltonian was formulated to yield the baryon 

mass spectrum 

1 
mB = mo + — 

2i\. 
J(J+\) + \ (12) 
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with the isospin quantum number J. Here note that an additional global 
shift is due to the Weyl ordering correction. Following the BRST quantiza
tion scheme 16 with (anti)ghost and their Lagrangian multiplier fields, we 
obtain the BRST symmetric Lagrangian 15, 

2i1a>1a» 2nd2 % 
Leff - -m0 + ~Y^2f ~ (i _ 29)2 " Y^W 

-2ii{l-20)2(b + 2cc)2 + tc (13) 

invariant under the transformations, 

Sxa11 = Aa^c, 6X6 = -A( l - 26)c, 

Sxc = -Xb, 5xc = 5xb = 0. (14) 

(For more details of the BRST quantization of the SU(2) and SU(3) 
Skyrmions, see Ref. 15 and Ref. 17, respectively.) 

3. Model independent sum rules and proton strange form 
factors 

Next, we consider the CBM which is a hybrid of two different models: the 
MIT bag model at infinite bag radius on one hand and Skyrmion model 
at vanishing radius on the other hand. (The explicit CBM Lagrangian is 
given in Ref. 7 for instance.) In the CBM the total topological charge Q in 
(3) is now splitted into the meson and quark pieces to satisfy the Cheshire 
cat principle 18. Moreover, the quark fractional charge is given by sum 
of integer one (from valence quarks) and the quark vacuum contribution, 
which is also rewritten in terms of the eta invariant 19. 

In the collective quantization of the CBM, we explicitly obtain the pro
ton magnetic moment 20 ,21 

MP = ^ ( 9 / i + 24I2 + 12/3 + I6J4 - 4/5) + ^ | (9/i + 4/2 - 8/3) (15) 

with the inertia parameters In (n = 1, ...,6) calculable in the CBM. Sim
ilarly we construct the baryon octet magnetic moments to reproduce the 
Coleman-Glashow sum rules 22 '21 such as [/-spin symmetries, 

ME+=A*P> MEO=/U„, /^H- =/•«£-• (16) 

Now we define the Dirac and Pauli EM form factors via 

(p + q\Vi*\p) = u{p + q) FiB(q2)r + ^F2B(q
2)a^qu u(p) (17) 



Table 1. The baryon octet strange form factors 

CBM 0.30 0.49 0.25 -1 .54 
Exp 0.32 1.42 1.10 -1 .10 

where q is momentum transfer and crMJ/ = §(7^7" — 7"7M) and TUB is baryon 
mass. The Sachs form factors are then given by 

q2 

GM = F\B + F2B, GE = FIB + -.—J-^B, (18) 

so that, at zero momentum transfer, the Pauli strange form factor is iden
tical to the Sachs strange form factor: 

* 2 B ( 0 ) = GS
M(0). (19) 

In the SAMPLE experiment, they measured the neutral weak form factor 

GZMP =(j~ sin2 <V) GP
M \Gn

M - \GS
M (20) 

with GP
M and G ^ being the proton and neutron Sachs form factors, to 

predict the proton strange form factor (1) which is positive value contrary 
to the negative values from most of the model calculations except the pre
dictions 20 '23 of the SU(3) CBM and the recent predictions of the chiral 
quark soliton model 24 and the chiral perturbation theory 25>26. (See Ref. 7 

for more details.) 
In the CBM the proton strange form factor is given by 20 

^IJV(O) = ^j(21/i - 4/2 - 2/3 - 4/4 - 2/5) 

+ 2 § 0 ( " 1 2 9 / l + 7 6 / 2 ~ 5 2 / 3 ) ( 2 1 ) 

which, after some algebra with the other baryon octet strange form factors, 
yields the sum rule for the proton strange form factor in terms of the baryon 
octet magnetic moments only (for the other baryon sum rules see Ref. 27) 

1 4 
f 2 J v ( ° ) = Mp - M 3 - - (Mp + Mn) - g(MS+ - A*3°) + ^ n ~ MS") - ( 2 2 ) 

Explicitly calculating the inertia parameters /„ numerically in (21), we 
predict the proton strange form factor, 0.30 n.m. as shown in Table 1. 
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Moreover, exploiting the experimental da ta for the baryon octet magnetic 

moments in (22) we obtain 

*2jv(0) = GS
M(0) = 0.32 n.m.. (23) 

On the other hand, the quantities G § M in (20) for the proton can be 

determined via elastic parity-violating electron scattering to yield the ex

perimental da t a GS
M(Q2

S) = +0.14 ± 0.29 (stat) ± 0.31 (sys) n.m. 2 for the 

proton strange magnetic form factor. Here one notes tha t the prediction 

for the proton strange form factor (23) obtained from the sum rule (22) is 

comparable to the SAMPLE da ta and is shown in Table 1, together with 

those of the other baryon strange form factors. Moreover, from the relation 

(20) at zero momentum transfer, the neutral weak magnetic moment of the 

nucleon can be writ ten in terms of the nucleon magnetic moments and the 

proton strange form factor 2 8 

4/if = nv-nn-A sin2 ewnP - F^N (0). (24) 

4. Con c lu s ion s 

In conclusion, we discussed the SAMPLE experiments in the topological 

solitons such as the Skymion and chiral models to predict baryon strange 

form factors by constructing the model independent sum rules for the pro

ton strange form factor in terms of the baryon octet magnetic moments. 

We also exploited the improved Dirac quantization scheme to investigate 

the BRST symmetries associated with the Stiickelberg coordinates, ghosts 

and anti-ghosts involved in the Skyrmion model. 
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We investigate the positivity of the Euclidean path integral measure for low-energy 
modes in dense fermionic matter. We show that the sign problem usually associated 
with fermions is absent if one considers only low-energy degrees of freedom. We 
describe a method for simulating dense QCD on the lattice and give a proof using 
rigorous inequalities that the color-flavor locked (CFL) phase is the true vacuum 
of three flavor, massless QCD. 

1. Introduction 

Euclidean quantum chromodynamics (QCD) with a non-zero chemical po
tential has a complex measure, which has made lattice simulation partic
ularly difficult1. (Lattice simulation of the QCD phase boundary at finite 
density2,3 has been a topic of recent interest.) This problem is often re
ferred to as the sign problem, because, by appropriately grouping terms, 
quantities such as the partition function can be written as a sum over real, 
but potentially negative, terms. (That this grouping can be accomplished 
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is in many systems a consequence of a discrete symmetry such as parity or 
time-reversal invariance.) Indeterminate signs are enough to preclude use 
of importance sampling, the main technique for speeding up Monte Carlo 
integration. It is important to note that while the sign problem often arises 
in systems of fermions, it is neither inevitable nor inescapable. For exam
ple, in QCD at zero chemical potential and in the Hubbard model at half 
filling one can organize the sum so that terms are real and positive. 

Analytical work in color superconductivity4 has demonstrated a rich 
phase structure at high density, and stimulated interest in QCD at non
zero baryon density. Several experiments have been proposed to probe 
matter at density of a few times nuclear matter density5. Even rudimen
tary information about the behavior of dense matter would be useful to the 
experimental program, as well as to the study of compact astrophysical ob
jects such as neutron stars. Recently6, we showed that QCD near a Fermi 
surface has positive, semi-definite measure. In the limit of low energies, 
the contribution of the remaining modes far from the Fermi surface can be 
systematically expanded, using a high density effective theory previously 
introduced by one of us7 '8. This effective theory is sufficient to study phe
nomena like color superconductivity, although quantities like the equation 
of state may be largely determined by dynamics deep in the Fermi sea. 

The expansion about the Fermi surface is in powers of l//i, where /i is 
the chemical potential. For this expansion to be controlled, the ultraviolet 
cutoff of our effective theory must be less than /J, or equivalently the scale 
of the physics of interest must be small relative to the chemical potential. 
In QCD at asymptotic density, the superconducting gap is exponentially 
small, so this condition is satisfied. However, it is also quite possible that 
at intermediate densities (e.g., those inside a neutron star) the gap is some
what smaller than /i, providing us with an additional small dimensionless 
parameter. Even if this is not the case, the power expansion of the effec
tive theory is qualitatively different from the usual perturbation in as, and 
therefore worth exploring. 

2. Example: (1+1) Dimensions and Beyond 

We begin with an example that illustrates the basic ideas in a simple setting. 
Consider the Euclidean (1+1) action of non-relativistic fermions interacting 
with a gauge field A 

S = / drdx VC [(-dT + i<t> + eF) - e(-idx + A)] $a (1) 
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where e(p) is the energy as a function of momentum (e.g. e(p) « 2m + ' ' ' )• 

In (1) and below we may consider it as a function of the operator (— id x+A). 

The dispersion relation in the presence of the chemical potential ep is: 

E(p) = e(p) — ep, and a low energy mode must have momentum close 

to ±PF, where e(±pp) = ep. The Fermi surface in (1+1) dimensions is 

reduced to the two points p = ±pp. Near these points we have 

E(p±pF) K, ± vFp , (2) 

where vp = dE/dp\PF is the Fermi velocity. 

The action (1) is not obviously positive. In fact, the operator in brackets 

[ • • • ] clearly has Hermitian as well as anti-Hermitian components, and 

hence complex eigenvalues. 

Let us assume tha t the gauge field has small amplitude and is slowly 

varying relative to the scale pp. We will extract the slowly varying compo

nent of the fermion field to construct a low energy effective theory involv

ing quasiparticles and gauge fields. This effective theory will have positive, 

semi-definite determinant. 

First, we extract the quasiparticle modes (we suppress the spin index 

in what follows) 

iP(x,T)=ipLe+ipFX + i)Re'%^x , (3) 

where the functions ipL,R are slowly varying. To simplify the action, we use 

the identity 

e±iVPx E(_idx + A) eTiPFx ^ _ ± vp^_idx + A)^(X) , (4) 

to obtain3, 

<Seff 

= / drdx U [ ( - 9 T + icp + idx - A)\pL + ip^(-dT + i<\> - idx + A)ipR . 

(5) 

We can write this in a more familiar form by introducing the Euclidean 

(1+1) gamma matrices 70,1,2 , which are Hermitian and can be taken as 

7i = Ci where a are the Pauli matrices. Using ipL,R — 5 ( 1 ^ 7 2 ) ^ we obtain 

Seff = / drdx •07M(9At + iA^ip = / drdx 'tppp . (6) 

aFor simplicity we set vp = 1. Alternatively it could be absorbed in the definition of 
the spatial 71 as in QCD below. 
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Since the gamma matrices are Hermitian, and the operator (9M + iA^) is 
anti-Hermitian, the operator ft in (6) has purely imaginary eigenvalues. 
However, because 72 anticommutes with ft, the eigenvalues come in conju
gate pairs: given ft cf> = X(p, we have 

ft (72^) = -72 ft 4> = -72A0 = -A(720n) • 

Hence the determinant det$> = J} A* A is real and positive semi-definite. 
Thus, by considering only the low-energy modes near the Fermi points 

of the original model (1), we obtain an effective theory with desirable pos-
itivity properties. Note that it is necessary that the interactions (in this 
case, the background gauge field A) not couple strongly the low-energy 
modes to fast modes which are far from the Fermi points. This is a reason
able approximation in many physical situations, where it is the interactions 
among quasiparticles that are of primary interest. In what follows, we will 
apply this basic idea to more complex models such as QCD. 

It is straightforward to go beyond (1+1) dimensions. Consider an elec
tron system, described by 

L = ^ [idt - e(p)] ^ + wAV, (7) 

where e(p) is the electron energy, a function of momentum p. It is interesting 
to note that the non-relativistic system already has a sign problem even at 
the zero density, /J, = 0, though the free case does not suffer this, thanks to 
the separation of variables. In fact, it is quite unusual to have a system like 
vacuum QCD which has no sign problem. In Euclidean space the electron 
determinant is 

M=-dT- e(p) + [i. (8) 

The first term in operator (8) is anti-Hermitian, while the rest are Hermi
tian. Since there is no constant matrix P in the spin space that satisfies 
Aft = PMP-\ it has a sign problem in general. 

Let us decompose the fermion momentum as 

P = PF+1- (9) 

Again, the Fermi momentum is defined to be a momentum at which the 
energy equals to the chemical potential at zero temperature: fi = C(P_F), 

and the Fermi velocity is defined as 

vF=94$ . (10) 
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If we are interested in low energies, I <C pp, we may integrate out the fast 

modes to get an effective operator, 

M E F T = -dT -VF-l, (11) 

which has complex eigenvalues. However, when we include the —vp sector, 

we have ME,FT(VF)MEFT(—VF) < 0 (i.e., has real negative eigenvalues), 

assuming e(p) = e(—p). We again see tha t the sign problem in the electron 

system is alleviated in the low-energy effective theory. 

3 . Q C D 

Let us recall why the measure of dense QCD is complex in Euclidean space. 

We use the following analytic continuation of the Dirac Lagrangian to Eu

clidean space: 

x 0 - • -ix%, Xi - • x%
E • 70 -»• -yE, 7 i - > ijE • (12) 

The Euclidean gamma matrices satisfy 

7 ^ = 7 ^ , {l%,lv
E} = ^ v . (13) 

The Dirac-conjugated field, {p — 1/^7°, is mapped into a field, still denoted 

as ip, which is independent of ip and transforms as tp^ under 5 0 ( 4 ) . Then, 

the grand canonical parti t ion function for QCD is 

Z(/x) = J dA„ det (M) e~s{A»\ (14) 

where S(A^,) is the positive semi-definite gauge action, and the Dirac op

erator 

M = 1EDE + ^%, (15) 

where Dp = BE + iAp is the analytic continuation of the covariant deriva
tive. The Hermitian conjugate of the Dirac operator is 

M^ = ~lEDE + nlE . (16) 

The first term in (15) is anti-Hermitian, while the second is Hermitian, 

hence the generally complex eigenvalues. When p = 0, the eigenvalues are 

purely imaginary, but come in conjugate pairs (A, A*) b , so the resulting 

determinant is real and positive semi-definite: 

det M = J J A * A > 0 . (17) 

As before, note that 75 anti-commutes with M, so if M<j> = \<j>, then M7s</> = —fgM<p -
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In what follows we investigate the positivity properties of an effective 

theory describing only modes near the Fermi surface. To low energy modes, 

the curvature of the Fermi surface is not evident, and the positivity of the 

usual Dirac sea determinant is recovered. 

A system of degenerate quarks with a net baryon number asymmetry is 

described by the QCD Lagrangian density with a chemical potential /i, 

LQCD = $ipil>- \F;VF^V + / ^ 7 o ^ (18) 

where the covariant derivative DM = d^ + iA^ and we neglect the quark 

mass for simplicity. 

At high density (/x >• A Q C D ) , due to asymptotic freedom the energy 

spectrum of quarks near the Fermi surface is approximately given by a free 

Dirac eigenvalue equation, 

(d-p-n)ip± = E±'ip±, (19) 

where a = 707 and tp± denote the energy eigenfunctions with eigenvalues 

E± = —fj, ± \p\, respectively. At low energy E < fi, the states tp+ near the 

Fermi surface, \p\ ~ //, are easily excited but ip-, which correspond to the 

states in the Dirac sea, are completely decoupled due to the presence of the 

energy gap \i provided by the Fermi sea. Therefore the appropriate degrees 

of freedom at low energy consist of gluons and ip+ only. 

Now, we wish to construct an effective theory describing the dynamics 

of -0+ by integrating out modes whose energy is greater than /i. Consider a 

quark near the Fermi surface, whose momentum is close to /JVF- Without 

loss of generality, we may decompose the momentum of a quark into a Fermi 

momentum and a residual momentum as 

Vti = VVfj, + ^ , (20) 

where v^ = (0,VF). Since the quark energy is given as 

£ = ^+V^H+^) 2 + ^' (21) 

the residual momentum should satisfy (Zy -\-fi)2 + l\ < 4/x2 with Zy = VFI-VF 

and Zj_ = I — Z||. 

To describe the small excitations of the quark with Fermi momentum, 

/ivp, we decompose the quark fields as 

•^[x] = e^F-s[i;+(vF,x)+^(vF,x)}, (22) 

where 

i>±(vF,x)=P±(vF)e-^VF-xxP(x) with P±(vF) = 2 ~ ~ ^ . (23) 
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The quark Lagrangian in Eq. (18) then becomes 

$ {ip+ nj°) V = $+(vF,x)i^D„4>+(vF,x) 

(VF, X) 

+ [Tp-{vF,x)ip±iP+(vF,x)+h.c:\ (24) 

where 7ff = (7 0 , vFiTF • 7) , 7 ^ = 7^ - 7^, D{] = V^D^ with V* = {l,vF), 

V» = (1, -vF), and ]/>± = HDp. 

At low energy, we integrate out all the "fast" modes tp_ and derive 

the low energy effective Lagrangian by matching all the one-light-particle 

irreducible amplitudes containing gluons and ip+ in loop expansion. The 

effects of fast modes will appear in the quantum corrections to the couplings 

of low energy interactions. At tree-level, the matching is equivalent to 

eliminating ^>_ in terms of equations of motion: 

(25) 
Therefore, the tree-level Lagrangian for ip+ becomes 

Le°ff = $+irfD^+ - - ^ + 7 0 ( # i _ ) V + + • • • , (26) 

where the ellipsis denotes terms with higher derivatives. 

Consider the first term in our effective Lagrangian, which when contin

ued to Euclidean space yields the operator 

M e f t =i(-D{A). (27) 

Meft is anti-Hermitian and it anti-commutes with 75, so it leads to a positive 

semi-definite determinant. However, note tha t the Dirac operator is not well 

defined in the space of tp+(vF,x) (for fixed vF), since it maps ip+(vF,x) 

into I/)+(—VF,X): 

1% P+V = P-i% il>. (28) 

Since P_(vF) — P+(—vF), ilpip+{vF,x) are ip+{—vF,x) modes, or fluctu

ations of a quark with momentum —\xvp. 

Thus far we have considered the quark velocity as a parameter labelling 

different sectors of the quark field. This is similar to the approach of heavy 

quark effective theory (HQET) 9 , in which the velocity of the heavy charm 

or bot tom quark is almost conserved due to the hierarchy of scales between 

the heavy quark mass and the QCD scale. However, this approach contains 
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an ambiguity often referred to as "reparameterization invariance", related 
to the non-uniqueness of the decomposition (20) of quark momenta into a 
large and residual component. In the dense QCD case, two ip(vF> x) modes 
whose values of VF are not very different may actually represent the same 
degrees of freedom of the original quark field. In what follows we give a 
different formulation which describes all velocity modes of the quark field, 
and is suitable for defining the quasiparticle determinant. 

First, a more precise definition of the breakup of the quark field into 
Fermi surface modes. Using the momentum operator in a position eigen-
state basis: p= —id, we construct the Fermi velocity operator: 

which is Hermitian, and a unit vector. 
Using the velocity operator, we define the projection operators P± as 

before and break up the quark field as, ip(x) = ip+{x) + ip-(x), with ip± = 
P±ip- By leaving v as an operator we can work in coordinate space without 
introducing the HQET-inspired velocity Fourier transform which introduces 
VF as a parameter. If we expand the quark field in the eigenstates of 
the velocity operators, we recover the previous formalism with all Fermi 
velocities summed up. 

The leading low-energy part of the quark action is given by 

L+=i>P-(v)(i9-4 + w0)P+(v)il> . (30) 

As before, we define the fields -0+ to absorb the large Fermi momentum: 

1>+(x)=e-i»s-i!P+(vMx). (31) 

Let us denote the eigenvalue v obtained by acting on the field tp (which has 
momentum of order fi) as vi (or v "large"), whereas eigenvalues obtained 
by acting on the effective field theory modes I/J+ are denoted vr (or v "resid
ual"). If the original quark mode had momentum p with \p\ > fj, (i.e. was 
a particle), then vi and vr are parallel, whereas if \p\ < fi (as for a hole) 
then vr and vi are anti-parallel. In the first case, we have P+(vi) = P+(vr) 
whereas in the second case P+(vi) = P_(vr). Thus, the residual modes ip+ 

can satisfy either of P±(vr)ip+ — ip+, depending on whether the original ip 
mode from which it was derived was a particle or a hole. In fact, ip+ modes 
can also satisfy either of P±(vi)tp+ = ip+ since they can originate from ip 
modes with momentum ~ +/J,V as well as —JJLV (both are present in the 
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original measure: Dip Dtp). So, the functional measure for tp+ modes con
tains all possible spinor functions - the only restriction is on the momenta: 
|Zo|) |'| < A, where A is the cutoff. 

In light of the ambiguity between vi and vr, the equation ip = e+l^x'vip+ 

must be modified to 

ip = exp (+ifj,x • v a • v) ip+ = exp (+i/j,x • vr a • vr) tfj+ , (32) 

where the factor of a • vr corrects the sign in the momentum shift if vr 

and vi are anti-parallel. In general, any expression with two powers of v 
is unaffected by this ambiguity. For notational simplicity we define a local 
operator 

X ss px-va-v = ^ Q ^ J - 03) 

Taking this into account, we obtain the following action: 

L+ = ^+e-iX(i$-4 + ^0)e
+iXiP+ . (34) 

We treat the A1 term separately from i$ + fi-yo since the former does not 
commute with X, while the latter does. Continuing to Euclidean space, and 
using the identity P_7 /JP+ = 7I1P+, we obtain 

L+=i>+^(d^ + iA^+)^+ , (35) 

where 

A»+ = e~iX A* e+lX , (36) 

and all 7 matrices are Euclidean. The term containing A cannot be fully 
simplified because [v,A] 7̂  0. Physically, this is because the gauge field 
carries momentum and can deflect the quark velocity. The redefined ip+ 

modes are functions only of the residual momenta 1, and the exponential 
factors in the A term reflect the fact that the gluon originally couples to 
the quark field ip, not the residual mode T/J+. 

The kinetic term in (35) can be simplified to 

7 p " = 7 " ^ (37) 

since v • dv • 7 = d • 7 . The action (35) is the most general dimension 
4 term with the rotational, gauge invariance0 and projection properties 

cIf we simultaneously gauge transform A+ and V+ in (35) the result is invariant. There 
is a simple relation between the gauge transform of the + fields and that of the original 
fields: U+(x) = U(x)etX. Of course, the momentum-space support of the + gauge 
transform must be limited to modes less than the cutoff A. 
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appropriate to quark quasiparticles. Therefore, it is a general consequence 

of any Fermi liquid description of quark-like excitations. 

The operator in (35) is anti-Hermitian and leads to a positive, semi-

definite determinant since it anti-commutes with 75. The corrections given 

in (26) are all Hermitian, so higher orders in the 1/fi expansion may re

introduce complexity. The structure of the leading term plus corrections 

is anti-Hermitian plus Hermitian, just as in the original QCD Dirac La-

grangian with chemical potential. 

By integrating out the fast modes, the Euclidean QCD parti t ion func

tion can be rewritten as 

Z((i)= JdA+ detMeS{A+)e-s'«(A+). (38) 

The leading terms in the effective action for gluons (these terms are gen

erated when we match our effective theory, with energy cutoff A, to QCD) 

also contribute only real, positive terms to the part i t ion function: 

Seff (A) = J d^XE \F«VF«V + ^ E A±»A% ) ^ °' (39) 

where A± = A — A\\ and the Debye screening mass is M = ^/Arj/(27r2)t?s/i . 

Note tha t Landau damping is due to softer quark modes which have not 

been integrated out, and therefore do not contribute to matching. 

Although the H D E T only describes low-energy modes, it still contains 

Cooper pairing interactions. This is because Cooper pairing, in which the 

quasiparticles have nearly equal and opposite momenta, is induced by glu-

onic interactions with small energy and momentum transfer. Tha t is, al

though a gluon exchange (or other interaction) which causes a large angular 

deflection of a quasiparticle 

\P) - \f) 

must involve a large momentum transfer, and hence is not part of the 

effective theory, a Cooper pairing interaction 

W, ~P) - • W, -P1) 

only involves a small energy and momentum transfer, even if the angle 

between p and p' is large. Hence, it is described by the leading order 

interaction between soft gluons and quarks in the effective theory (35). 
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4. Lat t i ce S imula t ion 

The goal of this section is to give a method for simulating QCD at finite 

density. We will consider a chemical potential \i much larger than A Q C D 

throughout , and divide the functional integral over quark excitations into 

two parts : (I) modes within a shell of width A of the Fermi surface, and (II) 

modes which are further than A from the Fermi surface. We will assume 

the hierarchy 

li » A » A Q C D . (40) 

The quark determinant in region (I) is well approximated by the deter

minant of the leading operator in high density effective theory (HDET) as 

long as the first inequality in (40) is satisfied. As discussed in the previous 

section, it is positive and real. 

Here we will show tha t the contributions to the effective action for the 

gauge field from quark modes in region (II) are small and vanish as the A 

grows large compared to A Q C D -

First consider the theory in Minkowski space. The Dirac operator is 

M = ip+ ^70 (41) 

and the Dirac equation can be writ ten as 

idotp = Hip (42) 

with 

H = ia-d-fi (43) 

a Hermitian operator. The break up into regions (I) and (II) proceeds 

naturally in terms of energy eigenvalues of H (or ^0 in the H D E T notation). 

The low-lying modes in region (I) are particle states with spatial momenta 

satisfying |p| « /i. 

The analytic continuation of region (I) to Euclidean space leads to the 

H D E T determinant considered previously. 

Modes in region (II) all have large energy eigenvalues, at least as large as 

A. In considering their effect on physics at the scale A Q C D , we can integrate 

them out in favor of local operators suppressed by powers of A Q C D / A . 

To make this concrete, consider the effective action for gauge fields with 

field strengths F^ of order A Q C D • The quark contribution to this effective 

action is simply the logarithm of the determinant we wish to compute. It 

can be expanded diagrammatically in graphs with external gauge field lines 

connected to a single quark loop. Restricting to region (II), we require tha t 
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the quark modes in the loop have large H eigenvalues. Evaluating such 
graphs leads only to operators which are local in the external fields A^(x). 

The resulting renormalizable (dimension 4) operator is the finite density 
equivalent of F^, except that due to the breaking of Lorentz invariance 
it contains separate time- and space-like components which represent the 
contribution of high-energy modes to the renormalization of the coupling 
constant, and Debye screening. These effects do not introduce a complex 
component when continued to Euclidean space. 

Higher dimension operators, which involve additional powers of F^, or 
covariant derivatives D^ are suppressed by the scale A. These are pre
sumably the source of complex terms introduced to the effective action. 
However, due to the 1/A suppression they are dominated by the contribu
tion from the low-lying modes in region (I), which is necessarily non-local, 
but real. 

The logarithm of the Euclidean quark determinant will have the form: 

IndetM ~ O^) + (non - local, real) + O(-)(local, complex) , (44) 

where the first term is the (real, constant) free energy of non-interacting 
quarks, the second term is from the positive determinant in region (I) and 
the last term is the suppressed, complex contribution from region (II). Only 
the last two terms depend on the gauge field A^{x) 

On the lattice, one can use the dominant dependence of detM on the 
first and second terms to do importance sampling. In order to keep the com
plex higher dimension operators (last term in (44)) small, it is important 
that the gauge field strengths are kept smaller than A2. One can impose 
this condition by using two different lattice spacings, ag for the gluons and 
adet for the quarks, with ag > aaet. The determinant is calculated on the 
finer a^et lattice, and is a function of plaquettes which are obtained by 
interpolation from the plaquettes on the coarser ag lattice. Interpolation 
can be defined in a natural way, since each lattice link variable Uxfi is an 
element of the gauge group, and one can connect any two points gi,g2 on 
the group manifold in a linear fashion: g(t) = gi + £(<?2 — <?i) , 0 < £ < 1. 

5. Inequalities and Anomaly Matching 

Positivity of the measure allows for rigorous QCD inequalities at asymptotic 
density. For example, inequalities among masses of bound states can be 
obtained using bounds on bare quasiparticle propagators. One subtlety 
that arises is that a quark mass term does not lead to a quasiparticle gap 



247 

(the mass term just shifts the Fermi surface). Hence, for technical reasons 
the proof of non-breaking of vector symmetries10 must be modified. (Naive 
application of the Vafa-Witten theorem would preclude the breaking of 
baryon number that is observed in the color-flavor-locked (CFL) phase11). 
A quasiparticle gap can be inserted by hand to regulate the bare propagator, 
but it will explicitly violate baryon number. However, following the logic of 
the Vafa-Witten proof, any symmetries which are preserved by the regulator 
gap cannot be broken spontaneously. One can, for example, still conclude 
that isospin symmetry is never spontaneously broken (although see below 
for a related subtlety). In the case of three flavors, one can introduce a 
regulator d with the color and flavor structure of the CFL gap to show 
rigorously that none of the symmetries of the CFL phase are broken at 
asymptotic density. On the other hand, by applying anomaly matching 
conditions12, we can prove that the SU(3)A symmetries are broken. We 
therefore conclude that the CFL phase is the true ground state for three 
light flavors at asymptotic density, a result that was first established by 
explicit calculation13'8,14. 

To examine the long-distance behavior of the vector current, we note 
that its correlator in a given background gauge field A can be written as 

(J-(vF,x)Jb
v(vF,y)Y -Tv^TaSA(x, y; d)lvT

bSA{y, x; d) 

where the SU(Nf) flavor current J " ( V F , X ) = t/j+(vF,x)ry^Taip+(vF,x). 
The propagator with 5[/(3)v-invariant IR regulator d is given as 

SA(x,y;d) = 

where with D = d + iA 

(x\ -b \v) = [ i 
M 

dr (x\ e -ir(-iM) 
\y) 

M = 7o 
D-V d 

d^ D-V 

(45) 

Since the eigenvalues of M are bounded from below by d, we have 

1 
M y) < L -dr V(x\x)V(y\y) 

-dR 

where R : 

R d 

The current correlators fall off rapidly as R 

V^W)VW), (46) 

JdA+detMeS(A) e~s^ (J^(vF,x)J^(vF,y)Y 

< f [jA(vF,x)J^(vF,y))J 
-2dR 

< 
d2 \(x\x)\\(y\y}\, (47) 
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where we used the Schwartz inequality in the first inequality, since the mea
sure of the effective theory is now positive, and equation (46) in the second 
inequality. The IR regulated vector currents do not create massless modes 
out of the vacuum or Fermi sea, which implies that there is no Nambu-
Goldstone mode in the SU(3)v channel. Therefore, for three massless 
flavors SU(3)v has to be unbroken as in CFL. The rigorous result provides 
a non-trivial check on explicit calculations, and applies to any system in 
which the quasiparticle dynamics have positive measure. The case with 
non-zero quark masses is complicated, and requires careful consideration of 
the order of limits6. 

6. Conclusion 

The low-energy physics of dense fermionic matter, ranging from quark mat
ter to electronic systems, is controlled by modes near the Fermi surface. An 
effective Lagrangian describing the low-energy modes can be given in a sys
tematic expansion in powers of the energy scale over the chemical potential. 
The leading term in this expansion has a simple form, and we have shown 
that it leads to a real, positive Euclidean path integral measure. 

This observation opens the door to importance sampling in Monte Carlo 
simulations of dense matter systems. The key requirement is that the in
teractions do not strongly couple the low-energy modes to modes far from 
the Fermi surface. QCD at high density satisfies this requirement, as do 
all asymptotically free models. Electronic systems in which the important 
interactions involve momentum transfer less than the Fermi energy are in 
this category, although some idealized models such as the Hubbard model 
are not. We have given some proposals for how the positive effective theory 
might be simulated numerically. Ultimately, we hope that actual practi
tioners will develop even more practical methods. 

Finally, positivity has analytical applications as well, since it allows the 
use of rigorous inequalities. In QCD we obtain restrictions on symmetry 
breaking patterns at high density. Similar restrictions can probably be 
obtained for electronic systems with suitable interactions. 
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We apply the canonical quantum field theory based on the Liouville-von Neumann 
equation to the nonequilibrium linear sigma model. Particular emphasis is put on 
the mechanism for domain growth of disoriented chiral condensates due to long 
wavelength modes and its scaling behavior. Scattering effects, decoherence and 
emergence of order parameter are also discussed beyond the Hartree approxima
tion. 

1. Introduction 

The high density and temperature state of hadronic matter consists of 
quark-gluon plasma and would have occurred in the early universe or may 
be realizable in heavy ion collision experiments. In QCD with two mass-
less quarks, the chiral symmetry SU(2)L X SU(2)R at high temperatures 
spontaneously breaks down to SU(2)L+R at lower temperatures by the 
quark-antiquark condensate (ql

LqRj) = crSl + Or • T!-, an order parameter. 
The field 4>a = (<r, 7?) respects 0(4) rotations and thus belongs to the uni
versality class of a four component isotropic Heisenberg antiferromagnet.1 

The effective theory of the QCD phase transition is described by the linear 
sigma model2 or equally by a mean-field theory of Polyakov loops and/or 
by the glueball fields for the hadronic states of QCD.3 

In QCD the SU{2) phase transition would probably be a second order 
whereas the SU(3) phase transition would be a weakly first order. In rel-
ativistic heavy ion collisions, hot and high dense regions are made, where 
the chiral symmetry would be restored, and as the regions cool, the quark-
gluon plasma would undergo the second order phase transition. In second 
order phase transitions, as temperature approaches a critical temperature, 
the correlation length cannot grow indefinitely and must be frozen due to 

mailto:sangkim@kunsan.ac.kr
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causality.4 However, the cooling process may be fast enough for the kine
matic time scale of quench to be smaller than thermal relaxation time scale. 
The rapid expansion of the quark-gluon plasma enforces a rapid quench and 
results in a phase transition far from equilibrium (nonequilibrium). In such 
a nonequilibrium phase transition domains (regions of misaligned vacuum) 
develop due to the instability of long wavelength modes. 

Another possible candidate for the QCD phase transition is Centauri 
events in comic rays.5 Anomalously large event-by-event fluctuations have 
been observed in the ratio of charged to neutral pions and thus require 
a new theory or interpretation. The disoriented chiral condensate (DCC) 
of classical pion fields was introduced as one of the proposed mechanisms 
for coherent emission of pions from a large domain.6 If the QCD phase 
transition proceeds in equilibrium, all directions of 7? are equally probable 
and domains of size 1/TC cannot explain the anomalous production of pions 
of a certain kind. Rajagopal and Wilczek advocated the nonequilibrium 
QCD phase transition through a quench for DCC domain growth, where 
unstable long wavelength modes of pions are exponentially amplified.2 

In this talk, we adopt a recently introduced canonical field method to 
elaborate the nonequilibrium QCD phase transition based on the linear 
sigma model. The quench process is imitated by a mass squared that 
changes signs during a finite quench time.7 '8 '9 We particularly focus on 
the dynamical process of domain formation from long wavelength modes of 
pions growing exponentially during an instability period and on the scaling 
behavior of domains size. The scaling behavior of domains has been found 
through simulations in condensed matter systems and cosmology. We fur
ther discuss the effects of direct scatterings among each pion field modes 
on domains size and on decohering long wavelength modes and emergence 
of an order parameter. 

2. Nonequilibrium Linear Sigma Model 

The effective theory of QCD phase transition with two massless quarks is 
described by the quark-antiquark condensate (qq), which, in turn, defines 
4>a = (<T, jf), if being the pion field. The quark mass mq provides a symmetry 
breaking external field to an, otherwise, 0(4) symmetric field theory at high 
temperatures. To include a quench, we may write the linear sigma model10 

in the form 

\d^aduK ~ \{r4>a? - \m2{tW<pa + Ha . (1) 
/ 

dAx 
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The time-dependent quench process has been imitated by the symmetry 
breaking mass squared m2 (t), which changes signs during the phase transi
tion. In this sense Eq. (1) is the nonequilibrium linear sigma model. As H 
does not affect much the instability of long wavelength modes during the 
phase transition, we assume H = 0 for simplicity reason. 

To illustrate how nonequilibrium phase transitions in general affect for
mation of domains, we consider a simple field model with a quench time 
scale.7 The simple model motivated by the nonequilibrium linear sigma 
model is given by the potential 

V{<t>a) = ^4>a4>a + \^a4>a)\ (2) 

with the mass squared 

m {t) = m1 — m0 tanhf — ), {m0>m\). (3) 

In the limit of zero quench time (r = 0), we obtain the instantaneous 
(sudden) quench. Now finite temperature field theory11 cannot be applied 
to this model when the quench time scale r is smaller than relaxation 
time scale. Further, in the second order phase transitions, long wavelength 
modes grow exponentially during rolling over the barrier. Finite tempera
ture field theory does not properly take into account dynamical processes 
of phase transitions. 

One therefore needs some nonequilibrium quantum field theory when 
the kinematic time scale is smaller than thermal relaxation time scale so 
that finite temperature field theory cannot be applied. There are sev
eral methods for nonequilibrium quantum fields such as the closed-time 
path integral12 and the functional Schrodinger-picture.13 Recently there 
has been developed a canonical method based on the quantum Liouville-
von Neumann equation, which provides all time-dependent Fock states at 
the leading order.7,8 The new canonical method is equivalent, at leading 
order, to the time-dependent Hartree approximation, but it can go beyond 
the Hartree approximation since any perturbation method can be readily 
applied to these Fock states. 

As a nonlinear theory, the linear sigma model has defied yet any nonper-
turbative solution in a closed form. We can, at best, rely on perturbation 
methods. The Hartree approximation, though being a perturbation scheme, 
includes some part of nonperturbative effects at the lowest order.14'15 In 
the Hartree approximation, dividing the <x field into a background field <p(t) 
and its quantum fluctuation x(x, t), and using the Hartree factorization,14 
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we obtain the truncated Hamiltonian for the linear sigma model 

Ho = / d6x 
7r: ̂ ^ , ( v ^ | ( v ^ + M i k + ! ! i W x 2 + ^ 2 (4) 
2 2 2 2 v w 2 2 

where the effective couplings are 

M * ) = <K*)[™2(*) + 4A02(t) + 4A<7?2)], 

m 2 (t) = m2(i) + 4A02(t) + 4A(T?2), 

TO|(t) = m
2 ( t ) + 12A02(i) + 4A(7?2}. (5) 

3. DCC Domain Growth 

Quantum dynamics of DCC can be further approximated by an exactly 
solvable model now motivated by the linear sigma model (1) or the Hartree 
approximation (4). The model Hamiltonian for the pion field <fia is16 

H0(t) = Jd3x[Kaira + ^(V(j>a • Vcj>a)
2 + i m 2 ( i ) 0 a 0 a ] . (6) 

Note that all pion fields are decoupled from each other since the nonlinear 
term is neglected at this moment. In terms of the Fourier cosine and sine 
modes 

<f>i+)(t) = \lMt) + 4>-*(t)}, d{-\t) = %-[Mt) -<*-k(*)], (7) 

and with a compact notations a = {(±),k}, the Hamiltonian becomes a 
sum of decoupled time-dependent oscillators 

#o(t) = £ ^ L + ^ W L > (^(t)=k2+m2(t)). (8) 
aa 

Then quantum states of the pion field are found by the time-dependent 
creation and annihilation operators7'8 

« L ( 0 = -i[<Paa{t)Traa ~ <paa{t)cj)aa}, 

aaa{t) = i[p*aa(t)Traa - <p*aa{t)(j>aa\, (9) 

where waa and 4>aa are Schrodinger operators. Note that these operators do 
not diagonalize the Hamiltonian (8), but satisfy the Liouville-von Neumann 
equations 

^ 4 a ( * ) + [oL (*).#»«(*)] = 0, ig-taaa(t) + [aaa{t),Haa(t)] = 0, (10) 

which lead to mean-field equations for the auxiliary field variables 

<Pac(t) + 0J2
a(t)cpaa(t) = 0. (11) 
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In fact, these operators satisfy the equal time commutation relations 

[aaa(t),alp(t)] = 6ab6a/3, (12) 

with the aid of the Wronskian condition 

V*aa<Paa ~ Plata* = *• (13) 

The Fock space for each pion field mode consists of number states de
fined as 

Naa(t)\naa,t)0 = ala(t)aaa(t)\naa,t)0 = naa\naa,t)0. (14) 

We should note that these are exact quantum states of the time-dependent 
Schrodinger equation for the Hamiltonian (6) or (8). The quantum state of 
the pion field itself is then a product of each mode state for each pion field. 
Of a particular interest is the Gaussian vacuum state of the pion field 

io,t)0=ni°-' i)o- (is) 
aa 

Now the Green function for the pion field is simply given by 

G0(x, t; x', *') = J ] G0aa(<j>aa,t; #,Q , *'), (16) 
aa 

where the (aa)-mode Green function takes the form 

G0aa{<f>aa,t;(p'aa,t') = ^ ( < ? W \naa, *>0 0 ( " a a , *'I<f>'aa)• (17) 

To study formation of domains during a nonequilibrium quench process, 
we consider the smooth finite quench (3). The free field theory (6) is then 
exactly solvable,7 and is a good approximation for the linear sigma model 
as long as |m2(t)| is larger than \<j>(t)\ and (ir)2 = ^Zbafbpfbp- Far before 
the phase transition, each mode is stable and oscillates around the true 
vacuum with the solution 

¥>„<*(*) = —1=6-***'*, uai = Jv+ml (18) 
\l lUJai

 v 

The two-point correlation function for each component of pion field is the 
Green function at equal times 

G0 a(x,x ' , t ) = (0 a(x, i )0 a(x ' , i ) ) o = G 0 a ( x , t ; x ' , t ) (19) 

with respect to the Gaussian vacuum or thermal equilibrium. 
On the other hand, after the phase transition (m2 = —rrii = —(m2 — 

m2)), the long wavelength modes with k < rrif become unstable and ex
ponentially grow, whereas short wavelength modes with k > rrif are still 
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stable and oscillate around the false vacuum. Far after the phase transition, 

the unstable long wavelength modes have the asymptotic solutions 

^aaf V 2 ( m 2 - k 2 ) V 2 ^ ( m 2 - k 2 ) V 2 e 

(20) 

Here /Ltk and z/k depend on the quench process and satisfy the relation |/J.k|2 — 

\v]g\2 = 1. The correlation function is then dominated by the exponentially 

growing par t 

fmf ^ 3 K . 2 ^ / m ^ - k 2 * 

G„.,(*. <;*',<)-/ ^"'-^wr^-y PD 

Using the exact solutions,7 we obtain the two-point thermal correlation 

function for each pion field at the intermediate stage of the quench (—r < 

t < T ) 

sin( ^*r) 2 
GoaT(r,t)~GoaT(0,t) ^ ° ^ e x p ( — ^ = ) . (22) 

-r 
m 0 mo 

It follows tha t domains obey a scaling relation for the correlation length 

fcW = 2 S • (23) 

The power 1/4 has been found in numerical simulations.1 7 At the later 

stage far after the quench (t ^> r ) , domains still show the Cahn-Allen 

scaling behavior but with a different power 

/ Of \ 1/2 T-3 

M*) = 2(—) , i=t--ia3)-l}(ml+m2
f). (24) 

The scaling relation for the instantaneous quench is obtained by letting 

r = 0 in Eq. (24). A kind of resonance has also been observed in the 

correlation function with simple poles at 

Tl 

m , (n = 1,2,3, • • • ) • (25) (m) - k 2 ) 1 / 

This structure implies certain adjusted quench rates r may lead to suffi

ciently large domains.7 
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4. Scattering, Decoherence and Order Parameter 

The tree level approximation in Sec. 3 does take into account neither any 
interaction among different modes of each pion field nor the interaction be
tween pions. Similarly the Hartree approximation includes only mean-field 
effects among modes and pion fields and thus neglects any direct scatterings 
among modes. To go beyond the Hartree approximation we may use the 
formalism in Ref. 8. The wave functional for the Schrodinger equation can 
be expressed in terms of the Green function (kernel or propagator) as 

* ( x , t ) = I G(x, t;x0 , io)*(x0 , t0)dx0dt0 . (26) 

As the linear sigma model is nonlinear, we use a perturbation method. We 
divide the Hamiltonian 

H(t)=H0{t) + XHp{t), (27) 

into an exactly solvable (quadratic) Gaussian and a perturbation part 

#o = \*%Tr*a + \{V<Pa • V0 a ) 2 + i ( m 2 + 9A(/0b))0a0a, 

HP = \{r^af ~\{<t>b4>b)^^a. (28) 

Then in terms of the Green function for HQ in Sec. 3, 

^ - f l - o ( x , « ) ) G o ( x ) t ; x , , t ' ) = * ( x - x ' ) < J ( t - 0 . (29) 

we write the wave functional as 

#(x , i ) = # 0 ( x , t ) + A /Go(x,i;x' , t ')HP(x' ,*')*(*' , t ')dx!d£ , (30) 

and finally obtain the wave functional of the form 

*(1) = *0(1) + A f G0(l , 2)fl"p(2)*o(2) 

+A2 / /Go(l )2)Fp(2)Go(2,3)ffp(3)*o(3) + - " , (31) 

where (i) denotes (xj,ij) and \l>o is a wave functional for Ho- This method 
goes beyond the Hartree approximation and gives us the wave functional 
in a series of A 

tf(x)t) = *o(x)t) + $ > n * < n ) . (32) 
n=l 

The term <3>Q comes from nth order correction of Hp. 
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We now give a few remarks on the effects on DCC formation of the 
non-Gaussian (beyond the Hartree) approximation. First, the nonlinear 
correction due to \&o enhances the correlation length for domains by a 
factor9 

% ^ = (2n + l ) 1 / 2 . (33) 

Higher order correction terms begin to grow provided that the duration of 
instability is long enough before crossing the inflection point. This condition 
may be provided by the quench time scale that is comparatively large but 
still smaller than relaxation time scale. Under this condition, significantly 
large DCC domains may lead to observable effects in heavy ion collisions or 
high energy cosmic rays. Second, the higher order correction terms in Eq. 
(32) include direct scattering effects. The direct scattering can be shown 
obviously in Eq. (31), where the Green function is simply given by 

oo 

G0(x, t; x', 0 = Y, *^x ' *)**(x'> *') (34) 
9=0 

with ^/q being the Fock states of HQ. Thus the nonlinear perturbation Hp 
scatters $ a a ( ] into ^bpP, and vice versa. In particular, direct scatterings 
with short wavelength modes (environment or noise) would lead to decoher-
ence of long wavelength modes. Therefore, long wavelength modes achieve 
not only classical correlation but also decoherence18 and long wavelength 
modes emerge as a classical order parameter. 

5. Conclusion 

The QCD with two massless quarks would undergo a second order phase 
transition. The effective theory for the QCD phase transition is the lin
ear sigma model for the quark-antiquark condensate, that is, the sigma 
and pion fields. Under a rapid cooling process, the QCD phase transition 
proceeds far from equilibrium (nonequilibrium). In this talk we focused 
on the dynamical process of the nonequilibrium phase transition and its 
implications on DCC domain growth. 

The most prominent feature of nonequilibrium second order phase tran
sitions is the instability of long wavelength modes. These modes begin to 
grow exponentially at the onset of phase transition while rolling over the 
barrier from the false vacuum to the true vacuum. Therefore, this nonequi
librium dynamical process leads to large domains of disoriented chiral con
densate, regions of misaligned vacuum. On the contrary, domains formed 
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from thermal equilibrium have small sizes determined by thermal energy 

and are randomly oriented in isospin space. 

Using the nonequilibrium linear sigma model with a smooth finite, we 

observed tha t DCC domains grow according to some power-law scaling rela

tions. We found the power i 1 / 4 for the scaling behavior in the intermediate 

stage and the Cahn-Allen scaling power i 1 / 2 at the later stage of phase 

transition. However, in the Hartree approximation, exponentially growing 

long wavelength modes contribute A(7r2), which in turn at tenuates the in

stability. The instability completely stops when \{n2) dominates over mi. 

Therefore, domains grow for a limited t ime and reach a typical size of 1 ~ 2 

fm in the Hartree approximation.1 4 This size of DCC domain may not be 

large enough to lead to any significant observation. 

It was shown tha t higher order quantum corrections increase the do

mains size by additional factors (2n + l ) 1 / 2 if the duration of instability is 

long enough to make higher order terms grow. The longer is the quench 

t ime, the larger domains are. However, relaxation t ime scale gives a limi

tat ion on domain growth through instability, because thermal equilibration 

competes with instability when the quench time is comparable to relaxation 

time. This non-Gaussian effects on DCC domains may lead to observations 

in heavy ion collisions and high energy cosmic rays. This mechanism should 

be distinguished from the anomaly enhanced domain formation.1 9 
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In this paper, some of the new results from the Belle experiment are reviewed. 
In particular, we report new measurements on the CP violation in B —> 4>Ks 
and related modes. We also present Belle's new measurements on the recently 
discovered unusual hadrons states DsJ(2317), D s j (2457), and X(3872). 

1. Introduction 

The Belle experiment is one of the two "B-Factory" experiments currently 
running in the world. The main goal of a -B-factory is to first observe 
and establish CP violation in B-decays and then to precisely measure the 
CP violation angles of the Unitarity Triangle, as well as the lengths of its 
sides. With these measurements, we want to either confirm the Kobayashi-
Maskawa model1 for the mechanism of CP violation or find evidence of 
physics beyond the Standard Model. In this paper, we present a new result 
on the time-dependent CP violation in b —> sss decays, in particular B —> 
phiKs-

Since the initial state of the collision process e+e~ —> T(45") —> BB is 
cleanly known, the kinematics of B decay products are very tightly con
strained. This helps Belle to observe unusual hadron states and study their 
properties. In this paper, we will present Belle's new results on the recently 
discovered unusual hadron states £>sJ(2317), £>Sl7(2457), and X(3872) 

This paper is organized as follows. In the next section, we briefly de
scribe the experimental apparatus: KEKB accelerator and the Belle detec
tor. In section 3, we present the new CP violation results in B —> Ks4> a n d 

"This work is supported by bk21 from krf and chep src from kosef. 
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261 

related modes. In section 4, experimental results on recently observed new 
hadron states are described. 

2. KEKB and Belle 

KEKB 2 is an asymmetric e+e~ collider, which consists of 8 GeV e~ and 
3.5 GeV e + storage rings and an injection linear accelerator for them. It 
has one interaction point where the e+ and e~ beams collide with a finite 
crossing angle of 22 mrad. The collider has been operated with peak beam 
currents of 1470 mA(e+) and 1130 mA(e~) (as of February, 2004), giving 
a peak luminosity of l . lx l0 3 4 /cm 2 / sec , exceeding the target luminosity 
1034/cm2/sec. Due to the energy asymmetry, the T(4Sr) and its daughter 
B-pair are produced with fij =0.425 along the electron beam direction (z 
direction) in the laboratory frame. The average distance between the two 
decay vertices of B mesons is approximately 200 /xm. A total integrated 
luminosity of 140 fb_ 1 was accumulated during the period between October 
1999 and the end of July 2003, corresponding to 152 million BB pair events. 

Belle is an international collaboration consisting of ~300 physicists from 
^50 institutes in 14 countries. The Belle detector 3 is a general purpose 
large solid angle magnetic spectrometer surrounding the interaction point. 
Charged particle tracking is done by a silicon vertex detector (SVD) and a 
central drift chamber (CDC). The SVD consists of three layers of double-
sided silicon strip detectors (DSSD) at radii of 3.0, 4.5 and 6.0 cm. The 
CDC is a small-cell cylindrical drift chamber consisting of 50 layers of anode 
wires (18 stereo wire layers), covering 17° < 8iab < 150°. The CDC is 
operated with a _H"e(50%)+C2-ff6(50%) mixture. The CDC also provides 
measurements of the energy loss with a resolution of a(dE/dx)=6.9%. 

Particle identification is done by three detectors: dE/dx measurements 
in the CDC, time-of-flight counters (TOF) and aerogel Cherenkov coun
ters (ACC). The TOF system consists of 128 plastic scintillators. The 
time resolution is 95 psec (rms) which provides 7r±/if± separation up to 
1.5 GeV. The ACC consists of 1188 aerogel blocks with refractive indices of 
between 1.01 and 1.03, depending on the polar angle. By combining infor
mation from these detectors, the efficiency for K± identification is about 
90% and the 7r fake rate is 6% with the requirement P(K/TT) > 0.6. The 
electromagnetic calorimeter (ECL) consists of 8736 CsI(Tl) crystal blocks, 
16.1 radiation length thick, and covering the same angular region as CDC. 
Electron identification in Belle is based on a combination of dE/dx mea
surements in the CDC, the response of the ACC, and the position, shape 
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and total energy (i.e. E/p) of its associated Csl shower. The outermost 
detector, for the measurement of ^ and KL (KLM), consists of 14 layers 
of iron (4.7 cm thick) absorbers alternating with resistive plate counters 
(RPC). 

3. CP violation in b —»• sss decays 

In the standard model (SM), CP violation arises from an irreducible phase, 
the Kobayashi-Maskawa (KM) phase 1, in the weak-interaction quark-
mixing matrix. In particular, the SM predicts CP asymmetries in the time-
dependent rates for B° and B° decays to a common CP eigenstate fcp 4. 
Recent measurements of the CP-violation parameter sin 2<j>i by the Belle 5 

and BaBar 6 collaborations established CP violation in P° —> J/ipKg and 
related decay modes, which are governed by the b —> ccs transition, at a 
level consistent with KM expectations. 

Despite this success, many tests remain before one can conclude that 
the KM phase is the only source of CP violation. The P° —> (f)K^ decay, 
which is dominated by the b —> s~ss transition, is sensitive to new CP-
violating phases from physics beyond the SM 7. The other charmless decays 
B° —» K+K~KSg and B° —> rj'Kg, which are mediated by b —> ss~s, suu and 
sdd transitions, also provide additional information. Since the SM predicts 
that measurements of CP violation in these charmless modes should also 
yield sin2^i to a good approximation 8 '9, a significant deviation in the 
time-dependent CP asymmetry in these modes from what is observed in 
b —> ccs decays would be evidence for a new CP-violating phase. 

In the decay chain T(4S) —> B°B° —> fcpftag, where one of the B 
mesons decays at time tcp to a final state fcp and the other decays at 
time i t a g to a final state / t a g that distinguishes between B° and B°, the 
decay rate has a time dependence given by 4 

e - | A t | / T B o f "I 
P(At) = — {l + q-[Ssm(AmdAt) + Acos(AmdAt)} } , (1) 

4rBo [ J 
where Tgo is the B° lifetime, Amd is the mass difference between the two 
B° mass eigenstates, At = tcp — itagj and the b-flavor charge q = +1 
(—1) when the tagging B meson is a B° (B°). S and A are CP-violation 
parameters; to a good approximation, the SM predicts S = —^/sin2</>1, 
where £f = +1(—1) corresponds to CP-even (-odd) final states, and A = 0 
for both b —> ccs and b —> sss transitions. In this paper, we report a 
measurement incorporating an event sample with integrated luminosity of 
140 ftr1 (152 million P P pairs). 
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We reconstruct B° decays to (pK'g and rfK'g final states for £/ = — 1, and 
B° —• K+K~Kg decays that are a mixture of £/ = +1 and —1. K+K~ 
pairs that are consistent with <p —» K+K~ decay are excluded from the 
B° -> K+K~K°S sample. We find that the K+K~K°S state is primarily 
£/ = +1; a measurement of the £/ = +1 fraction with a 140 fb_ 1 data set 
yields 1.03 ± 0.15(stat) ± 0.05(syst), which is consistent with the previous 
result 9. In the following determination of S and A, we fix £/ = +1 for this 
mode. The intermediate meson states are reconstructed from the following 
decay chains: rj' —> p°(—• 7r+7r~)7 or rf —> ir+ir~ri(-^ 77), K^ —> ir+ir~, 
and 4> ~^ K+K~. We reject K+K~ pairs that are consistent with D° —> 
K+K~, Xco -> K+K~, or J/4> - • K+K~ decay. D+ - • K°SK+ candidates 
are also removed. We use the same 7/ selection criteria as those used in our 
previously published analyses 10>u. 

For reconstructed B —• fcp candidates, we identify B meson decays 
using the energy difference AE = _B^ms — E™*m and the beam-energy 
constrained mass M^c = \f{E™lm)2 — (p^11)2, where Sbelfm ^s t n e D e a m 

energy in the cms, and .Egms and p™s are the cms energy and momentum 
of the reconstructed B candidate, respectively. Figure 1 shows the Mbc 

distributions for the reconstructed B candidates that have AE values within 
the signal region. 

We use events outside the signal region as well as a large MC sample to 
study the background components. 

The 6-flavor of the accompanying B meson is identified from inclusive 
properties of particles that are not associated with the reconstructed B° —> 
fcp decay 5. We use two parameters, q and r, to represent the tagging 
information. The first, q, is already defined in Eq. (1). The parameter 
r is an event-by-event, MC-determined flavor-tagging dilution factor that 
ranges from r = 0 for no flavor discrimination to r = 1 for unambiguous 
flavor assignment. It is used only to sort data into six r intervals. The 
wrong tag fractions for the six r intervals, wi (I = 1,6), and differences 
between B° and B° decays, Awi, are determined from the data; we use the 
same values that were used for the sin2</>i measurement 12. 

We determine S and A for each mode by performing an unbinned 
maximum-likelihood fit to the observed At distribution. The prob
ability density function (PDF) expected for the signal distribution, 
-PSig(At; S, A,q,wi, AIDJ), is given by Eq. (1) incorporating the effect of 
incorrect flavor assignment. The distribution is convolved with the proper-
time interval resolution function i?sig(At) 12, which takes into account 
the finite vertex resolution. Table 1 gives the fit values of — £/S and A. 
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Figure 1. The M b c distributions for (a) B° -> ^ i fg , (b) B° - • K + i f - i f g , and (c) 
_B° —> r /Kg within the A_B signal region. Solid curves show the fit to signal plus 
background distributions, and dashed curves show the background contributions. 

Table 1. Results of the fits to the At distributions. The first 
errors are statistical and the second errors are systematic. The 
third error for the K+K~K% mode arises from the uncertainty in 
the fraction of the CP-odd component. 

Mode -isS (= sin 20i in the SM) A (= 0 in the SM) 

4>K° -0.96 ±0 .50 +0.09 
-0.11 

K+K-K% +0.51 ±0 .26 ± 0 . 0 5 

+0.43 ± 0 . 2 7 ±0 .05 

+0.18 
.0.00 

-0 .15 ±0 .29 ± 0 . 0 7 

-0 .17 ±0 .16 ±0 .04 

-0 .01 ±0 .16 ±0 .04 

We obtain values consistent with the present world average of sin 2<j>i = 
+0.731 ± 0.056 13 in the B° -> K+K~K°S and r)'K% decays, while a nega
tive value is observed in B° —> 4>Kg decay. 

We define the raw asymmetry in each At bin by A = (Ng£f=-i — 

N, <?€/=+1 )/Wrf,= N, ««/=+!; where 7Vg^/=+1(_1) is the number of ob
served candidates with q£f = +1(—1). Figures 2(a-f) show the raw asym
metries in two regions of the flavor-tagging parameter r. While the num
bers of events in the two regions are similar, the effective tagging effi
ciency is much larger and the background dilution is smaller in the region 
0.5 < r < 1.0. The observed CP asymmetry for B° —> 4>Kg in the region 



265 

Figure 2. (a) The asymmetry, A, in each At bin for B° —> <f>K°s with 0 < r < 0.5, (b) 
with 0.5 < r < 1.0, (c) for B° -> i ^+ i f - iYg with 0 < r < 0.5, (d) with 0.5 < r < 1.0, 
(e) for B° -> 7 7 ' ^ with 0 < r < 0.5, and (f) with 0.5 < r < 1.0, respectively. The solid 
curves show the result of the unbinned maximum-likelihood fit. The dashed curves show 
the SM expectation with sm2<j>i = +0.731 and A = 0. 

0.5 < r < 1.0 [Fig. 2(b)] indicates the difference from the SM expecta
tion (dashed curve). Note that these projections onto the At axis do not 
take into account event-by-event information (such as the signal fraction, 
the wrong tag fraction and the vertex resolution), which is used in the 
unbinned maximum-likelihood fit. 

The dominant sources of systematic error for the B° ->• cj)K% mode are a 
possible fit bias for the input S value near the physical boundary (io'oo f° r 

S), the uncertainties in the B° -> K+K~K% and f0{980)K^ background 
fractions (1 0 08 f° r & a n d ±0-04 for A), in the other background fractions 
(±0.05 for S and ±0.04 for A), and in the vertex reconstruction (±0.02 for 
S and ±0.05 for A). Other contributions come from uncertainties in the 
background At distribution, wrong tag fractions, TQO, and Am^. We add 
each contribution in quadrature to obtain the total systematic uncertainty. 
We find that the dominant sources are uncertainties from the background 
fractions and from the vertex reconstruction. 

We use the Feldman-Cousins frequentist approach 14 to determine the 
statistical significance of the observed deviation from the SM expectation 
in B° —> 4>K°S. From 1-dimensional confidence intervals for S with A set 
at zero, the case with S = ±0.731 is ruled out at 99.95% confidence level, 
equivalent to 3.5<r significance for Gaussian errors. 

4. Unusual hadron states 

4.1 . Properties of DsJ 

Recently a new Ds7r° resonance with a mass of 2317 MeV/c2 and a very 
narrow width was observed by the BaBar collaboration 15. A natural 
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interpretation is that this is a P-wave cs quark state that is below the 
DK threshold, which accounts for the small width 16. This interpretation 
is supported by the observation of a D*TT° resonance 17 by the CLEO col
laboration 18 and Belle collaboration 19. All groups observe these states in 
inclusive e+e~ processes. The mass difference between the two observed 
states is consistent with the expected hyperfine splitting of the P-wave 
Ds meson doublet with total light-quark angular momentum j = 1/2 16. 
However, the masses of these states are considerably below potential model 
expectations 20, and are nearly the same as those of the corresponding cu 
states recently measured by Belle 21. The low mass values have caused 
speculation that these states may be more exotic than a simple qq meson 
system 22.23.24.25.26. To clarify the nature of these states, it is necessary to 
determine their quantum numbers and decay branching fractions. 

Belle searched for new decays of these states, which we refer to as 
DsJ. Figure 3(a) shows the AM(£>+7) = M(Df-y) - MD+ distribution. 
Here photons are required to have energies greater than 600 MeV in the 
CM and those that form a 7r° when combined with another photon in 
the event are not used. A clear peak near AM(Dfjy) ~ 490MeV/c2, 
corresponding to the Dsj(2457), is observed. No peak is found in the 
Dsj(2317) region. The £>+ sideband distribution, shown as a histogram, 
shows no structure. We fit the distribution with a double Gaussian for 
the signal, which is determined from the MC, and a third-order poly
nomial for the background. The fit yields 152 ± 18 (stat) events and 
a AM peak at 491.0 ± 1.3(stat) ± 1.9(syst)MeV/c2 (corresponding to 
M = 2459.5 ± 1.3(stat) ± 2.0(syst) MeV/c2). The £>sJ(2457) mass de
termined here is consistent with the value determined from D*TT° decays. 

Using the detection efficiency of 10.2% for the Dfj decay mode, we 
determine the branching fraction ratio 

6(7^(2457) -> D+l) 

B(Dfj(2457) - D*+n°) 
0.55 ± 0.13(stat) ± 0.08(syst). 

The existence of the £)sj(2457) —> Ds^ mode rules out the 0± quantum 
number assignments for the £>sj(2457) state. For the £>sj(2317), we obtain 
the upper limit 

5 ( ^ ( 2 3 1 7 ) ^ Dtl) < Qm ( 9 Q % C - L ) . 
5 ( ^ ( 2 3 1 7 ) ^ £ U ° ) " ^ 

From the M(D*+j) = M(D*+~f) - MD,+ distribution, we determine the 
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M(Ds 7) - M(Ds) (GeV/c^) 
0.65 

M(Ds JI+ it") - M(Ds) (GeV/cz) 

Figure 3. (a) The AM(-DJ" 7) distribution. The curve is a fit using a double Gaussian 
for the signal and a third-order polynomial for the background, (b) The AM(Dtn+Tr~) 
distribution. The curve is a fit using Gaussian for the signals and a third-order polyno
mial for the background. 

upper limits 

g(£>+j(2317) -+ £>a*+7) 
5 ( ^ ( 2 3 1 7 ) -+ Dsn°) 

< 0.18 (90% C.L.) and 

B(£>+J(2457) ^ * + 7 ) 
6(15^(2457) - -D *+7T°) 

<0.31 C.L.) 

Figure 3(b) shows the AM(D+i M(DfTr+TT-) - MD+ distri
bution. For pions, we require at least one of them to have momentum 
greater than 300MeV/c in the CM, one with P(K/TT) < 0.1 and other 
with P(K/n) < 0.9, and |M(7r+7r-) - MKs\ > 15MeV/c2. A clear peak 
near AM(D+n+7r~) ~ 490 MeV/c2, corresponding to the £>sj(2457), is ob
served. Evidence of an additional peak near AM(D+7r+7r~) ~ 570MeV/c2 

corresponding to Dsi(2536) is also visible. No peak is found in the 
Dsj(2317) region. The D+ sideband distribution, shown as a histogram, 
shows no structure. We fit the distribution with Gaussians for the sig
nals, which are determined from the MC, and a third-order polynomial for 
the background. The fit yields 59.7 ± 11.5(stat) events and a AM peak 
at 491.4 ± 0.9(stat) ± 1.5(syst)MeV/c2 (corresponding to M = 2459.9 ± 
0.9(stat) ± 1.6(syst)MeV/c2) for L>sJ(2457), and 56.5 ± 13.4(stat) events 
for Dsl(2536). The statistical significance is 5.7<r for Dsj(2457), and 4.5<r 
for £>„i(2536). This is the first observation of the L»sJ(2457) -» D+TT+TT" 

decay mode. 
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The existence of the Dsj(2457) —> Dsir
+ir~ mode also rules out the 0 + 

assignment for £>sj(2457). Using the detection efficiency of 15.8% for the 
Dsir

+TT~ decay mode, we determine the branching fraction ratio 

B(Dtj(2457) -> D+ir+n-) 

B{D+j(2457) -v £>:+7r°) 
0.14 ± 0.04(stat) ± 0.02(syst), 

ysJ\ 

where the systematic error is dominated by the systematic uncertainty of 
the DsJ(2457) -> D*+n° yield. We establish the upper limit 

g(£>+j(2317) ^ Dfn+TT-) 

B(D+j(23l7) - • D+n°) 
< 4 x 1(T3 (90% C.L.). 

In summary, we observe radiative and dipion decays of the £>sj(2457) 
and set upper limits on the corresponding decays of the _Dsj(2317). We 
determine the £>sj(2317) and _Dsj(2457) masses from their decays to Dfir0 

and D*+TT°, respectively, and set an upper limit on the decay of Dsj(2457) 
to D~^ir°. These results are consistent with the spin-parity assignments for 
the P>sJ(2317) and DsJ(2457) of 0+ and 1+, respectively. 

In order to clarify the nature of the Dsj states, it is useful to search for 
these states in exclusive B decay processes. The well-defined initial state 
of B mesons can help identify the quantum numbers of the Dsj states. We 
search for exclusive decays of the type B —> DDsj, which are expected to 
be the dominant exclusive Dsj production mechanism in B decays. Be
cause of the known properties of the parent B meson, angular analyses 
of these decays can unambiguously determine the Daj quantum numbers. 
Moreover, since QCD sum rules in HQET predict that P-wave mesons with 
j — 1/2 should be more readily produced in B decays than mesons with 
j = 3/2 27, the observation of B —> DDsj would provide additional support 
for the P-wave nature of these states as well as serving as a check of these 
predictions. 

The AE and Dsj candidate's invariant mass (M(Dsj)) distributions for 
B —> DDsj candidates are presented in Fig. 4, where all D° and D~ decay 
modes are combined. Each distribution is the projection of the signal region 
of the other parameter; distributions for events in the M(Dsj) and AE 
sidebands are shown as crosshatched histograms. Clear signals are observed 
for the DDsJ(23l7)[Dsn

0} and DDsJ(2A57)[D*n°,D3-f] final states. The 
measured masses for the P»sJ(2317) and P>sJ(2457) are (2319.8 ± 2.1 ± 
2.0) MeV/c2 and (2459.2 ± 1.6 ± 2.0) MeV/c2 respectively. The fitted 
widths are consistent with those expected for Dsj mesons of zero intrinsic 
width. The systematic error in the Dsj mass is expected to come from the 
photon energy scale. 
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AE (GeV) M ( D
S J ) (GeV/c 2 ) 

Figure 4. AE (left) and M{Dsj) (right) distributions for the B —> DDsj candidates: 
(a) D s J(2317) -> DS7T°, (b) D s J(2457) -> D*TT° and (c) £>sJ(2457) -> D s 7 . Points with 
errors represent the experimental data, crosshatched histograms show the sidebands and 
curves are the results of the fits. 

cos(e D „ v ) 

Figure 5. The D s j(2457) —> D s 7 helicity distribution. The points with error bars are 
the results of fits to the AE spectra for experimental events. Solid and dashed curves 
are MC predictions for the J = 1 and J = 2 hypotheses, respectively. The highest bin 
has no events because of the cut on the D-/ invariant mass. 

We also study the helicity distribution for the DsJ(2457) —• Dsj decay. 
The helicity angle 9Dgl is defined as the angle between the L>sj(2457) mo
mentum in the B meson rest frame and the Ds momentum in the Dsj(2457) 
rest frame. The 8DS1 distribution in the data (Fig. 5) is consistent with MC 
expectations for the J = 1 hypothesis for the £>sj(2457) (x2/n.d.f= 5/6), 
and contradicts the J = 2 hypothesis (x2/n.d.f.= 44/6). The J = 0 hy
pothesis is already ruled out by the conservation of angular momentum and 
parity in DsJ(2457) -> Dsl. 
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4.2. Observation of X (3872) 

A major experimental issue for the cc charmonium particle system is the 
existence of as yet unestablished charmonium states that are expected to 
be below threshold for decays to open charm and, thus, narrow. These 
include the n = 1 singlet P state, the JPG — l+~ l 1 P c i , and possibly the 
n = 1 singlet and triplet spin-2 D states, i.e. the JPC — 2 h 11DC2 and 
Jpc — 2~~ 13DC2, all of which are narrow if their masses are below the 
DD* threshold. The observation of these states and the determination of 
their masses would provide useful information about the spin dependence 
of the charmonium potential. 

In addition to charmonium states, some authors have predicted the 
existence of !)(*)£)(*) "molecular charmonium" states 28 and ccg "hybrid 
charmonium" states 29. If such states exist with masses below the relevant 
open charm threshold, they are expected to be narrow and to have large 
branching fractions to low-lying cc charmonium states. 

The large B meson samples produced at S-factories provide excellent 
opportunities to search for new charmonium states. In this paper, in par
ticular, we report on an experimental study of the ir+ir~J/ip and 7Xci mass 
spectra from exclusive B+ —> K+Tr+ir~J/ip and K+jXd decays. Candi
date B+ —> K+ir+Tr~J/ip mesons are reconstructed using the energy dif
ference AE and the beam-energy constrained mass M\,c. The signal region 
is denned as 5.271 GeV < Mhc < 5.289 GeV and \AE\ < 0.030 GeV. 

Figure 6(a) shows the distribution of AM = M(TT+w^£+£~) - M(£+£-) 
for events in the AE-Mbc signal region. Here a large peak corresponding to 
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Figure 7. Signal-band projections of (a) Mj,c , (b) A^^-+^-j/w, and (c) AE for the 

X(3872) —> 7r+7r - J ftp signal region with the results of the unbinned fit superimposed. 

Table 2. Results of the fits to the ip' and M = 3872 MeV regions. 
The errors are statistical only. 

Quantity tp' region M = 3872 MeV region 

Signal events 489 ± 23 35.7 ± 6.8 

Mmeas_ k 3685.5 ± 0.2 MeV 3871.5 ± 0.6 MeV 
7r"T7r J/ip 

VMir+TT-J/i, 3.3±0.2MeV 2.5±0.5MeV 

ijj' —> ir+n~J/ip is evident at 0.589 GeV. In addition there is a significant 
spike in the distribution at 0.775 GeV. Figure 6(b) shows the same distri
bution for a large sample of generic BB Monte Carlo (MC) events. Except 
for the prominent tp' peak, the distribution is smooth and featureless. The 
spike at AM = 0.775 GeV corresponds to a mass near 3872 MeV. 

Figures 7(a), (b) and (c) show the M\,c, M^+v-j/^, and AE signal-band 
projections for the M = 3872 MeV signal region, respectively. The super
imposed curves indicate the results of the fit. There are clear peaks with 
consistent yields in all three quantities. The signal yield of 35.7±6.8 events 
has a statistical significance of 10.3cr, determined from \J—2 ln(£o/-Cmax), 
where £ m a x and LQ are the likelihood values for the best-fit and for zero-
signal-yield, respectively. The results of the fits are presented in Table 2. 
In the following we refer to this as the X(3872). 

We determine the mass of the signal peak relative to the well measured 
tp' mass: 

Mx = M^eas - M$eas + M^ D G = 3872.0 ± 0.6 ± 0.5 MeV. 

Here the first error is statistical and the second systematic. Since we use 
the precisely known value of the ip' mass as a reference, the systematic 
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error is small. The M^i measurement, which is referenced to the J/ip mass 

tha t is 589 MeV away, is —0.5 ± 0.2 MeV from its world-average value 3 0 . 

Variation of the mass scale from M^i to Mx requires an extrapolation of 

only 186 MeV and, thus, can safely be expected to be less t han this amount. 

We assign 0.5 MeV as the systematic error on the mass. 

The measured width of the X(3872) peak is a = 2 .5±0 .5 MeV, which is 

consistent with the MC-determined resolution and the value obtained from 

the fit to the ip' signal. To determine an upper limit on the total width, we 

repeated the fits using a resolution-broadened Breit-Wigner (BW) function 

to represent the signal. This fit gives a B W width parameter tha t is con

sistent with zero: T = 1.4 ± 0.7 MeV. From this we infer a 90% confidence 

level (CL) upper limit of T < 2.3 MeV. 

We determine a ratio of product branching fractions for B+ —> 

K+X{3872), X(3872) - • -K+n-J/ip and B+ - • K+tp', ip' - • TT+ir-J/ip 

to be 

Br(B+ -> K+X{3872)) x Br(X (3872) -> ir+n~J/xp) 
- — V , J{ „ ) , v ~ ——— ' - ^ - = 0.063±0.012±0.007. 

Br(B+ - • K+ip') x Br{%l)> -^ -K+ir-J/ip) 

Here the systematic error is mainly due to the uncertainties in the effi

ciency for the X(3872) —> ir+Tr~J/tp channel, which is estimated with MC 

simulations tha t use different models for the decay. 

4 .3 . Conclusions 

In this paper, some of the new results from the Belle experiment are re

viewed. Improved measurements of CP-violat ion parameters for B° —> 

4>Kg, K+K~Kg and rj'Kg decays are obtained. These charmless decays 

are sensitive to possible new CP-violat ing phases. A 3.5CT deviation from 

the Standard Model (SM) is observed for B° —> <f>Kg. The result sug

gests tha t there is a large CP-violat ing phase in its decay amplitude, which 

cannot be explained by the SM. 

Several new results on unusual hadron states have been obtained by 

Belle . In particular, the new narrow charm-strange states D s j (2317) and 

Dsj(2A57) which are discovered by BaBar and CLEO, respectively, are 

confirmed by Belle. New radiative and dipion decays of .Dsj(2457) are 

observed by Belle, which helps determine the spin-parity of Dsj states. 

Belle has also observed Dsj states in B decays for the first t ime. In addition, 

Belle has observed a strong signal for a state tha t decays to TX+TT~ J/ip with 

M = 3872 ± 0.6 ± 0.5 MeV and T < 2.3 MeV (90% C.L.). 
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1. I n t r o d u c t i o n 

At high temperature and /o r density, hadrons are expected to possess prop

erties tha t are very different from those at normal conditions. Understand

ing the properties of hadrons in such extreme conditions is currently an 

important issue not only in nuclear and particle physics but also in many 

other related fields such as astrophysics. Da ta from the high energy heavy 

ion colliders, astronomical observations on compact stars and some theoret

ical developments have shown tha t the phase diagram of hadronic mat ter 

is far richer and more interesting than initially expected. Lattice QCD cal

culations have been carried out successfully at high temperature , however 

similar calculations at high density have not yet been possible1. Theo

retical developments have unveiled such interesting QCD phases as color 

superconductivity2 . Moreover effective theories can be derived for these ex

treme conditions, using macroscopic degrees of freedom, by matching them 

to QCD at a scale close to the chiral scale A x ~ 4 ^ / ^ ~ 1 GeV3 . 

We have followed a different pa th to dense mat ter studies by using 

as our start ing point a model Lagrangian, in the spirit of Skyrme, which 

describes hadronic mat ter and meson dynamics respecting the symmetries 

of QCD. The parameters of the model are fixed by meson dynamics at 

zero baryon number density. A la Skyrme4 , baryons arise from a soliton 

solution, the skyrmion, with the topological winding number describing the 

baryon number. In our scheme dense mat ter is approximated by a system 

of skyrmions with a given baryon number density whose ground state arises 

as a crystal configuration5 '6. Start ing from this ground state our approach 

provides insight on the intrinsic in-medium dependence of meson dynamics. 

We have studied (i) the in-medium properties of the mesons and (ii) the role 

of the other degrees of freedom besides pions in the description of mat ter 

as it becomes denser7 , 8 '9 , 1 0 , 1 1 '1 2 . 

2. M o d e l Lagrangians 

The original Skyrme model Lagrangian4 reads 

U = - ^ T r ( L M L " ) + ^ T r [ L M , Lvf + ^ T r ( £ / + tf- 2), (1) 

where LM = U^d^U and U = exp( i f • 7?) € 5/7(2) is a nonlinear realization 

of the pion fields, f„ the decay constant and m^ the pion mass . The second 

term with e, the Skyrme parameter , was introduced to stabilize the soliton 

solution. 
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The dilaton field \ w a s incorporated in the model to make it consistent 
with the scale anomaly of QCD13. The Lagrangian (1) then becomes 

+ f^(x\\i{u + u]_2) (2) 

Note the different powers of (x/fx) m front of each term. The 
last line is the Lagrangian for the free dilaton field, where ^ (x) = 
(m2/2/4)( (x / / x ) 4 ( ln(x/ / x ) - \) - \), mx is the dilaton mass and fx its 
decay constant. 

The vector mesons, p and ui, can be incorporated into the Lagrangian as 
dynamical gauge bosons of a hidden local gauge symmetry which requires 
the doubling of the degrees of freedom as U = CL£,R- This Lagrangian 
reads14 

L«XP„ = -ff(j^ Tr(L^) + ̂ Q 0 Tr(£/ + [/t_2) 

~f-f*(j) T r [ a ^ l + ^ ^ + i ( 5 / 2 ) ( f - ^ + ^ ) ] 2 (3) 

with pM„ = d,Mpu - dvp^ + gpp x pv, UJ^ = dlxujv - dvuj^ and where B^ is 
the topological baryon number current. The quartic Skyrme term of (1) is 
not present, because its stabilizing role is played here by the vector mesons. 

3. In-Medium Pion Dynamics 

In order to explain our basic strategy, we start with the Skyrme model (1). 
Table 1 serves to generalize the discussion to other models. The vacuum 
solution of (1) in the B = 0 sector is U = 1. Fluctuations on top of this 
vacuum describe pion dynamics. The Lagrangian supports solitons with 
nontrivial topological structures. The B — 1 soliton solution with low
est energy is a "hedgehog" , UB=1 = exp(zr • rF(r)) with the boundary 
condition for the profile function F(r), F(0) = ir and F(oo) = 0. The two-
skyrmion system has lowest energy when one on the skyrmions is rotated 
relatively to the other in isospin space, by an angle ir, about an axis per
pendicular to the line joining their centers. Therefore, skyrmion matter has 
the lowest energy in an FCC (face centered cubic) single skyrmion crystal 
structure, where the skyrmions at the nearest site are relatively oriented 
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in such a low energy configuration and U(r) has the symmetry structure 

described in Table 1. 

For a given baryon number density, the lowest energy configuration can 

be found numerically by varying the field values at points of a discrete 

mesh5 or by adjusting the coefficients of the Fourier series expansion for 

the fields with specific symmetries6 . 

We show in Figure 1 the energy per baryon E/B of skyrmion mat ter and 

a, the average value of \TvU = (pQ over space, as a function of the FCC 

single skyrmion crystal size parameter L. Dimensionless units are used 

for E/B (in units of 67r2/7r/e) and L(in units of ( e ^ ) - 1 ) . For massless 

pions, for a value of L ~ 3.8 the slope of E/B changes indicating tha t the 

system undergoes a first order phase transition. If we look into the actual 

baryon number distributions (see figures in the small boxes), we see tha t 

the system changes from the FCC single skyrmion crystal to a CC half-

skyrmion crystal. In the former phase, a well-localized single skyrmion is 

located at each FCC lattice site where 4>Q = — 1. In the latter phase, one 

half of the baryon number carried by the single skyrmion is concentrated at 

each FCC site while the other is concentrated on the links where 0J = + 1 -

Both "half-skyrmions" centered at the points where 0Q = ± 1 can hardly be 

distinguished and therefore they form a CC crystal. This phase transit ion 

Table 1. Summary of the properties of the B = 0 vacuum solution,the 
hedgehog Ansatz for the B = 1 skyrmion, the symmetries of the FCC single 
skyrmion crystal for pions, dilaton and vector mesons. 

vacuum 

hedgehog 

boundary 
condition 

reflection'1 ' 
(yz-plane) 
3-fold axis 
rotation'2 ' 
4-fold axis 
rotation'3 ' 

FCC 
translation' ' 

Ansatz for 
fluctuations 

pion &i rho 

U = 1, Pi = 0 

U = exp(ir • fF(r)) 
Pi = £aipfPG(r)/gr 
F(0) = -K F(oo) = 0 

G(0) = - 2 G(oo) = 0 

(4>W
0'

P,4>V,W,4>TP) 

a a.M . ~a 

PI = Pv + PI 

dilaton &i omega 

X = : /x> WM = ° 
X = X{T) 

OJO = oj(r) 

cy(o) 
X'(0) 

X 
W M = 

= 0 co(oo) = 0 
= 0 x(oo) = 0 

X, u 

X, u 

X> ^ 

X> " 

= x M + x 

*U = 4>l+ir-^,Pl= eabc<t>p
bdi<j>p/{l + <pp) 

(x, y, z) - • (1) ( -x , y, z), (2) (y, z, x), (3) (x, z, -y), (4) (x + L, y + L, z) 
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Figure 1. This figure shows the energy per skyrmion and the average value of a = 
(^Tr({7)} as a function of the FCC crystal parameter L (in units of ( e / j r ) - 1 ) . The 
figures in the small boxes correspond to samples of the baryon number distribution on 
the xy-plane (2 = 0). The corresponding FCC boxes are drawn by a square. 

can be seen more apparently in the quantity ( | T W ) (see the inset figure). 
In the literature5, the vanishing of a is often interpreted as the restoration 
of the chiral symmetry. 

If we turn on the pion mass (results shown in the figure by open cir
cles) , we see no sudden change in the slope of E/B but at sufficiently high 
baryon number density skyrmion matter behaves as in an approximate half-
skyrmion phase. 

The phase to the left of the minimum, referred to in our work as "ho
mogeneous" , is described by a crystal configuration. The phase to the right 
of the minimum, which we called "inhomogeneous", because the pressure 
P = dE/dV is negative and therefore skyrmion matter is unstable against 
condensation of the skyrmions into dense lumps leaving large volumes of 
space empty. 

We incorporate the pion fluctuations through the Ansatz 

U(f,t) = y/JhUM(r)>JK, (4) 

where UM(T) describes the background baryonic matter and Uv = 
exp(iTa7fa//7r) describes the fluctuating pions. Substitution of this Ansatz 
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into (1) leads to 

L%*° = \Gab{r)d^ad»iTb + \mlTr(UM)nana 

-d^A^r) ~ eabcKad^bV?{r) + ••• , W 

where we have expanded up to the second order in the fluctuating fields. 
Eq.(5) describes the dynamics of the pion in the dense medium. Gab(r), 
V°(r) and A^ (f) are the interaction potentials appearing due to background 
matter. 

As a first approximation let's average the potentials over space. Due 
to the reflection symmetries of the background matter, (V£) = (A") = 0, 
(Gab) = (1 - <t>1<j>l) = Z%5ab and (<p^) = a. Thus, the Lagrangian becomes 

L%*° = \Zld^ad^a + \mlana%a. (6) 

The factor Zv in front of the kinetic term can be absorbed into the renor-
malization of the pion fields as 

TTa - » 7r' = Z^TTa. (7) 

In terms of this newly defined fields ir'a, the Lagrangian can be rewritten as 

L^° = \d,Kd^'a + \ml{o/Zl)^'a. (8) 

This implies that the pions effective mass in the medium is given by 

m* = m^^/a/Z^. (9) 

Furthermore, we may reinterpret the wave function renormalization factor 
ZTT as the ratio between the in-medium decay constant and the free space 
one, 

K/U = z*. (io) 
The results on these in-medium quantities (9) and (10) are presented 

in Figure 2 as a function of the baryon number density. The scales are 
strongly dependent on the the parameters fT and e, e.g. the density units 
in p could change considerably, and therefore the shown numbers should 
not be taken as definitive. However, the qualitative behavior will remain 
unchanged. In particular, the dependence on the baryon number density 
showing approximate scaling with the Skyrme parameter e a s ~ e~3 is a 
solid statement. 

In Figure 2, we show that at low densities m*/m,r ~ 1, while at higher 
density the ratio decreases down to zero. The density dependence does 
not appear linear in p, since the classical background leads automatically 
to higher powers in the density dependence. At higher densities, powers 
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0 1 2 3 
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Figure 2. We show the effective pion mass and decay constant in the dense medium as 
a function of the baryon number density. The dependence on the baryon number density 
approximately scales with the Skyrme parameter e a s ~ e~3 . The right figure illustrates 
a pseudo-gap scenario. 

greater than one in p come to play important roles. As the density increases 

the decay constant / * decreases, which can be interpreted as a part ial 

restoration of the chiral symmetry in the medium. However, the ratio 

/ * / / , r only decreases up to ~ 0.65 remaining constant thereafter. This non 

vanishing of the pion decay constant, despite the vanishing of a, indicates 

tha t we may be describing a phase which is not in the s tandard Wigner-

Weyl symmetry. It may be a pseudo-gap phase where the gap is non-zero 

though chiral symmetry is restored, resembling what might be happening 

in the normal phase of high Tc superconductivity1 6 . The pseudo-gap phase 

is schematically illustrated in Figure 2. 

The pseudo-gap phase may be an artifact of the model with only pions. 

If we have only pion degrees of freedom which are realized non-linearly 

through the phase of U, they must live on the chiral circle and the pseudo-

gap phenomenon might appear. 

However if we introduce a dilaton field x, as in (2), we see t ha t it 
may shrink the chiral circle to a point and the conventional Wigner-Weyl 
symmetry appears 9 . To illustrate this we take the \ field constant, x/fx = 

X. In baryon free space the vacuum of the dilaton field is the minimum 
point of V(x) and is X = 1. However, for the dense baryonic mat ter , 
the ground state should be the minimum of E/B, the energy per baryon 
expressed as 

E/B(X) = X\E2/B) + (E4/B) + X3(Em/B) + (2L3)V(X). (11) 
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Figure 3. The effective potential E/B(X) as a function of the constant scalar field X 
for various L. 

Here, £2, E4 and £ m are the contributions from the skyrmion field con
figurations of the given baryon number density through the kinetic term, 
Skyrme term and mass term of the Skyrme Lagrangian, respectively. Cou
plings to dilaton matter terms contributes with other effective potentials 
which will modify the value of X at which E/B has a minimum further. 

Shown in Figure 3 is E/B as function of X for various FCC length 
parameters, where we have substituted for E2/B, E4/B and Em/B the 
values that led to Figure 1. At low density (large L), the minimum of the 
effective potential E/B(X) is shifted slightly away from X = 1. As the 
density increases, E/B{X) starts developing another minimum at X = 0 
which was an unstable extremum in free space. At L ~ 1 fm, the newly 
developed minimum can compete with the one near X ~ 1. At higher 
density, the minimum gets shifted to X = 0. The figure in the small box 
presents the resulting values of Xmin as a function of L. There we see an 
explicit manifestation of a first order phase transition. This mechanism 
corresponds to reformulating BR-scaling15 in a more accurate way. 

One can perform a more rigorous treatment by allowing the space de
pendence in XM(r) (with the symmetries summarized in Table 1), which 
leads basically to the same physics except for small quantitative difference. 
The most essential new ingredient is that the static dilaton field for dense 
matter vanishes identically all over the space in the half-skyrmion phase. 

By incorporating the fluctuations of pions and dilaton, as summarized 
in Table 1, we obtain as before the Lagrangian for the dynamics of these 
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p/p0 

Figure 4. In medium properties of the pion and dilaton fluctuations as a function of the 
baryon number density. In the inset figure, the pion and dilaton masses are presented 
in the actual energy scale. The numerical results on the average values of XM arlc^ a °^ 
the background matter are presented in the small figure on the left hand side. 

p a r t i c l e s 

L(U, x ) = LM,TT + Lu,x + ^M,7rX; (12) 

where we have put the subscript "M" to denote that it describes the in-
medium dynamics. Explicitly, each term can be expressed as 

+ £abcd^aTrbV*(r) 

Lu,x = \d^x - \M(r)x2, (12b) 

LM,X, = Pl(r)xdlKa + Qa(r)x^a- (12c) 

Here, Gab(r), S(r), V^(r), M(r), P*(f) and Qa(r) are the effective poten
tials provided to the fluctuating fields by the background fields UM{T) and 
X M ( 0 (F° r the details, see Ref.9). 

By applying the same approximation, i.e taking the average values for 
the effective potentials over the space, we can estimate the medium effects 
on the properties of the fluctuating fields. As for the pion, we are led 
to a Lagrangian similar to (6), where Zn and a take the average values 
with the additional factors ( X M / / X ) 2 an<^ (XM/ /X) 3 > respectively. Since 
XM vanishes in the chiral symmetry restored phase, the ratio f^/fx now 
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vanishes. However, even in the chirally restored phase, with (<r) = ( x M ) = 

0, (M) does not vanish due to the background UM(^) couplings to \ . In 

Figure 4 we show the ratios of the in-medium parameters relative to their 

free-space values. 

The phenomenon discussed above is closely related to "Brown-Rho" 

scaling 15 . In the description of Ref.15, the density dependence comes solely 

from the change in the mean field x* where the corresponding change in 

the skyrmion structure has been ignored. Our present result corrects this 

fact and gives a precise meaning to the scaling relation of Ref.15. 

We can treat the background interactions more systematically following 

the perturbative scheme we have developed. We decompose the Lagrangian 

into an unper turbed part , LQ, and an interaction part , L / . This leads to a 

Hamiltonian split also in two parts 

H = HQ + Hj. (13) 

The free propagators are defined by HQ and the interaction potentials ap

pearing due to Hj are summarized in Figure 5. In Figure 5, Gab(£), for 

example, is the Fourier transform of the local potential Gab(f): 

1 
Gab(£) = d6reltrGab{r), (14) 

''box J box 

where the integration is over a unit box of the crystal and Vbox is its volume. 

Due to the periodic structure of the crystal only discrete values of the 

momentum are allowed. 

T6 
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Figure 5. Free propagators and interactions for the pion and the scalar fields in the 
presence of background skyrmion matter. The energy-momentum conservation delta 
functions are not shown. 
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Figure 6. Diagrams used to evaluate the self-energy of the 7ra propagation up to second 
order in the interaction. Here, 6 runs over 1, 2, 3 and the intermediate states run over all 

We show in Figure 6 the diagrams used to evaluate the self-energy. 
Only the diagrams for £„•„„-,, appear. The symmetry structure of skyrmion 
matter allows a non vanishing self-energy only for a = b. To first order, 
SW is nothing but Hj(£ = 0). Since H^x{y) = 0, no mixing between 
the fluctuating pions and the fluctuating scalar occurs. Thus, the pion 
propagator for 7ra can be expressed as 

1 1 

Pi . 02 ZW(Po,P) G«°(5)(pg-p2)" 
(15) 

where we have used that the self energy to this order is Sjro'7ra(po,p) = 
—p2(Gaa(0) — 1). The superscript "(1)" means that the quantities are eval
uated to first order. 

Since Lorentz symmetry is broken by the medium, the general form of 
the in-medium propagator can be written as 

1 (16) 
zrVo Z71?-

with Zt s = (ft,s/fir)2 and the "pion velocity" in medium is given as 

Zt/Zs. Comparing with this, we obtain ft = fs = f^yGaa(0). Since 

Goo(0) is nothing but the average of Gaa(f) over the space, our calculation 

thus far reproduces the naive approximations discussed above. To the same 
order, the self-energy of the scalar field is T, ( i ) M(0) Since it is 
constant, this self-energy modifies just the scalar mass from the free value 

mx to M(0). 
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Figure 7. ft and fs as a function of skyrmion matter density in arbitrary units for the 
chiral limit, m„- = 0 and mx = 720 MeV. The in medium pion velocity appears as 
function of matter density in the small box. The arrow indicates the point at which the 
observed ratio in pionic nuclei (at p ~ 0.6po) is located. 

Now, the second order diagrams shown in Figure 6 can be calculated 
similarly. Again, in spite of the 7r — \ coupling term in the interaction 
Lagrangian (12), E ^ a vanishes so that the pion propagator and the scalar 
propagator can be simply written as 

I I (17) 

respectively. 
The po and p dependence of Y,^ is not so simple as that of X^1). By 

assuming that energy and momentum are small, we may expand the self-
energy E7ra7r6 in powers of po and p. Then, we can express the propagator in 
the form of (16), but Zs gets some corrections terms from the second order 
diagram. The corrections are negative definite so that the pion velocity 
becomes vv < 1. 

The results of our calculation are shown in Figure 7. We show the decay 
constants ft and fs in units of fn as a function of the density measured 
in a dimensional unit. The inset figure is their ratio, i.e. the in-medium 
pion velocity vv. To second order the contribution to f3/fv turns out to be 
small, and thus the pion velocity stays ^ ~ 1. The lowest value is about 
~ 0.9. Furthermore, for the pions at higher matter densities, the internal 
propagator provides an extra suppression because L scales as p 1 ' 3 . Once 

• 

yf„=o.78in 
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we pass the density at which the pion velocity has its minimum, the pion 
velocity increases with density and approaches 1. When the background 
matter is in the half-skyrmion phase, xo(^) vanishes identically and so 
do all the local potentials. Thus, both ft and f8 vanish. Moreover, their 
difference is proportional to the square of the potentials and vanishes faster. 
This fact explains the asymptotic behavior vv —*• 1 in Figure 7. This result 
is very similar to that of Ref. 17 found in heat bath, where the pion velocity 
approaches 1 while both the spatial and temporal pion decay constants 
vanish at T = TC. 

4. Vector mesons 

At higher density and/or temperature we need more degrees of freedom 
such as the p and ui vector mesons. The same procedure can be repeated 
with the vector mesons using the Lagrangian (3). The lowest energy FCC 
skyrmion crystal configuration can be found by requiring the symmetries 
given in Table 1 to the pion, dilaton, rho and omega fields. The numerical 
results are presented in Figure 8. 

In the npx model, as the density of the system increases (L decreases), 
E/B changes slightly. Its value is close to the energy of a single skyrmion 
up to densities larger than p$ (L ~ 1.43). because the size of the skyrmion 
is very small and the skyrmions in the lattice only interact at very high 
densities when their tails overlap. 

In the absence of the u> the dilaton field plays as before an important 
role. Skyrmion matter undergoes an abrupt phase transition at the density 
at which the expectation value of the dilaton field vanishes (x) = 0 . 

In the npcux model, the situation changes dramatically, because the w 
provides not only a strong repulsion between the skyrmions but also an 
intermediate range attraction. In both the irpoj and the irpu>x models, at 
high density, the interaction reduces E/B to 85% of the B — 1 skyrmion 
mass. This value should be compared with 94% in the np model. In the 
7rpX"m0(iel, E/B goes down to 74% of the B = 1 skyrmion mass, but in 
this case it is due to the dramatic behavior of the dilaton field. 

In the irpujx model the role of the dilaton field is suppressed. It provides 
only a small attraction at intermediate densities. Moreover, the phase 
transition towards its vanishing expectation value, (x) = 0, does not take 
place. Instead, its value grows at high density! 

The reason for this can be found in the role played by omega in (3). In 
the static configuration, omega produces a potential, whose source is the 
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E/B <XM
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Figure 8. E/B and the average values of the fields over the space as a function of L. 

baryon number density, which mediates the self-interaction energy of the 
baryon number distribution. Thus, unless it is screened properly by the 
omega mass, the periodic source filling infinite space will lead to an infinite 
self-energy. To reduce the energy of the system, the effective u> mass must 
grow at high density, for which \ must grow too. Note the factor ( x / / x ) 2 

in the omega mass term in Lagrangian (3). 

5. Summary 

We have developed a unified approach to dense matter in the Skyrme phi
losophy, where systems of baryons and mesons can be described by a sin
gle Lagrangian. In our approach dense baryonic matter is approximated 
by skyrmion matter in the lowest energy configuration for a given baryon 
number density. By incorporating in it fluctuating mesons we can get some 
insights on meson dynamics in a dense medium. Our approach enables us 
to study this dynamics beyond the first order in the baryon number density. 
One can continue to work in this direction by incorporating more degrees 
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of freedom, by improving the way of treat ing mat ter beyond the crystal 

solution, and so on. 

However, before closing the presentation, we must clearly lay down the 

scope of our work. We do not claim tha t the results obtained at present de

scribe reality. The most fundamental problem we phase is tha t our "ground 

s ta te" for mat ter is a crystal not a Fermi liquid. Our aim has been to as

sume a s tate for mat ter , given by a classical solution of a theory considered 

to be valid at large Nc, and have studied the implications for its excita

tions. Our work should be taken as representing the first step towards a 

more realistic t rea tment of a dense mat te r theory. 
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The recent discoveries by the BaBar and CLEO II collaborations on the splitting 
between Ds and Ds which exhibited surprises in the structure of heavy-light-quark 
systems are connected - via the Harada-Yamawaki "vector manifestation" of hid
den local symmetry - to chiral symmetry restoration expected to take place at 
some critical temperature Tc in heavy-ion collisions or at some critical density nc 

in the deep interior of compact stars, the main theme of this symposium. This 
unexpected connection exemplifies the diversity of astro-hadronic phenomena dis
cussed in this meeting. 

1. Foreword 

This is the last talk of this Symposium and as such it is supposed to con
clude it. What distinguishes this meeting from other meetings of a similar 
scope is the diversity of the topics covered, ranging from hadron/particle 
physics to astrophysics, but with a common objective, that is, to explore the 
extreme state of matter in high density or/and high temperature. Given 
the diversity and the exploratory stage of the development, it would be 
presumptuous of me to make any conclusion on any subtopic of the meet
ing, not to mention the totality, so what I will do is to present to you yet 
another surprising development that at first sight might appear unrelated 
to the main theme of the meeting but as it turns out, has an uncanny 
connection to what we have been discussing throughout this meeting. 

What I shall present here is a combination of the work I did with Ma-
ciej A. Nowak and Ismail Zahed a decade ago 1 and the work I did very 

*The concluding talk at the KIAS-APCTP Symposium in Astro-Hadron Physics "Com
pact Stars: Quest for New States of Dense Matter," November 10-14, 2003, Seoul, Korea. 

mailto:rho@spht.saclay.cea.fr
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recently with Masayasu Harada and Chihiro Sasaki 2. The question I will 
address here is: Do the recent discoveries on the structure of heavy-light-
quark mesons by the BaBar, CLEO and Belle collaborations that we have 
just heard have any ramifications on what we have been discussing in this 
meeting, i.e., the structure of compact stars and the early Universe? My an
swer is: Yes, if the chiral phase transition predicted in QCD has significant 
influence on them. 

2. The BaBar, CLEO and Belle Discoveries 

On April 12th 2003, the BaBar collaboration announced a narrow peak 
of mass 2.317GeV /c 2 that decays into D+ir° 3. On May 12th 2003, the 
CLEO II collaboration confirmed the BaBar result, and also observed a 
second narrow peak of mass 2.46 GeV/c2 in the final D*+TT° state 4 . Sub
sequently both states were confirmed by the Belle collaboration 5. The ex
perimental results were surprising since such states were expected neither to 
lie below DK and D*K thresholds nor to be so narrow. These observations 
have recently generated a flurry of theoretical activities. The excitement 
surrounding these developments was nicely summarized by Nowak 6. 

Remarkably, however, the existence of this type of states was theoret
ically predicted more than a decade ago l'7 based on the combination of 
chiral symmetry of light quarks and heavy-quark symmetry of heavy quarks. 
What is relevant in my discussion in this meeting is the suggestion made 
in 8 that the splitting of the chiral doublers carries a direct information on 
the light-quark condensate (qq) and can therefore be a litmus indicator for 
chiral symmetry property of the medium in which the chiral doubling phe
nomenon is observed. In particular, if one measures the splitting in hot or 
dense matter, then as the chiral phase transition point generically denoted 
\pt]x (such as the critical temperature Tc or density nc) is approached, the 
splitting should disappear in the chiral limit. This could then be an ideal 
tool to map out the chiral phase structure of hot/dense matter. 

3. Chiral Doubling Starting From the "Vector 
Manifestation (VM)" 

The standard approach to hot/dense-matter physics starts with a La-
grangian for cold/dilute matter for which one has both experimental and 
theoretical control and then drives the system to a hot/dense environment 
so as to bring it to a phase transition. This is what is being done in heavy-
ion collisions and in compact-star physics heard in this meeting. This was 
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the idea proposed by Nowak, Rho and Zahed in 8 for heavy-light mesons 
in medium. The idea of Harada, Sasaki and myself 2 is to go in the op
posite direction: Instead of going from zero temperature/density to high 
temperature/density, that is, "bottom-up", we will go "top-down". This is 
because we think we have a theory which is well-defined at the critical point 
\pt]x although whether that theory is directly related to QCD is yet to be 
verified. Our task then is to simply assume that this description of \pt]x 

has something to do with that of QCD and then deduce the chiral dou
bling of heavy-light hadrons. This strategy seems to work amazingly well, 
giving credence to the notion of the "vector manifestation (VM)" of chiral 
symmetry at chiral restoration introduced by Harada and Yamawaki 9. 

3.1. The Vector Manifestation of Hidden Local Symmetry 

To make the discussion as simple as possible, I shall take in the light-
quark sector all the current quark masses to be zero, the so-called chiral 
limit. The experiments that brought surprises involve the strange quark 
whose current quark mass is comparable to the strong interaction scale, 
namely, the pion decay constant Fn ~ 93 MeV, so to make a quantitative 
comparison with experiments, one would have to worry about the explicit 
breaking of chiral symmetry. However I believe that the qualitative feature 
can be captured in the chiral limit. 

Now up to the transition point \pt]x, that is, in the chiral symmetry 
broken phase, the relevant degrees of freedom are hadrons. In the standard 
way of doing things, one assumes that the only relevant degrees of freedom 
are the pions with other degrees of freedom such as vector mesons, baryons 
etc. considered to be too heavy to be relevant to the chiral phase transition. 
This is the picture typically given by the linear sigma model. The key 
point in my discussion which departs from the conventional picture is that 
not just the pions but also the vector mesons, namely, the p mesons, are 
quite relevant. Now how does one "see" this? One cannot see it if one 
has a Lagrangian with the pions and massive vector mesons coupled in 
the usual way which is consistent with the global symmetry but not local 
gauge invariant because of the vector-meson mass. With such a Lagrangian 
it is not easy - although not impossible - to go toward \pt]x: There is 
no systematic way to compute loop corrections. In fact, there is no easy 
way to see whether the theory without local gauge invariance breaks down 
and if so, locate at what point it does so. There is however a "trick" 
to make the theory locate, and work up to, the break-down point. That 
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is to introduce hidden local symmetry and make the theory local-gauge 
invariant 10. The authors in Ref.10 call it "fake" symmetry but it has the 
advantage of endowing the vector mesons with a chiral power counting 9. 

To illustrate the idea, consider the chiral G = SU(3)L X SU(3)R sym
metry appropriate to three-flavor QCD. The symmetry G is spontaneously 
broken in the vacuum to H = SU(3)L+R, SO the coordinates of the sys
tem are given by the coset space G/H parameterized by the Sugawara field 
U = el7F/'f where n is the Nambu-Goldstone pion field. In the absence of 
other fields than pions, we have the well-known chiral perturbation devel
opment a la Gasser and Leutwyler. In this pion-only chiral perturbation 
theory, the vector mesons p can be introduced in consistency with the as
sumed symmetry. In fact there are several different ways of doing this but 
they are all physically equivalent, provided they are limited to tree order or 
the next-to-leading order in chiral perturbation. See 9 for a clear discussion 
on this point. The massive vectors so introduced do not, however, render 
themselves to a systematic chiral perturbation treatment beyond the tree 
order. This means that such a theory is powerless as one moves toward 
the \pt]x point. In my opinion, works purporting to describe chiral proper
ties of hot/dense matter away from the vacuum without resorting to this 
strategy all suffer from this defect and cannot be trusted. This difficulty is 
beautifully circumvented if the nonlinearly realized chiral symmetry G/H 
is gauged to linear Ggi0bai x Hiocai as recently worked out by Harada and 
Yamawaki. If one fixes the gauge to unitary gauge, one then recovers the 
same theory without gauge invariance. 

Harada and Yamawaki 9 have shown that in hidden local symmetry 
theory that exploits the above strategy with pions and p mesons as the 
relevant degrees of freedom and where a consistent chiral perturbation can 
be effectuated, the vector mesons are found to play an essential role at 
\pt]x since the mass of the vector meson mass goes to zero in proportion to 
the quark condensate (qq). In fact by matching the HLS theory to QCD 
at a matching scale A M above the vector meson mass, they show by one-
loop renormalization-group equation involving the vector mesons as well 
pions that \pt]x corresponds to the vector manifestation (VM) fixed point 
at which the local gauge coupling g goes to zero and the ratio a = F%/F% 
(where a are the scalar Goldstone bosons arising from the spontaneous 
breaking of the gauge symmetry) goes to 1. 

Up to date, there are no proofs - lattice or otherwise - for or against 
that the vector mass goes to zero at \pt]x. In many conference talks (e.g., 
QM2004), one frequently sees view-graphs in which the p and a% masses 
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come together at the critical temperature Tc but at non-zero value above 
the degenerate IT and a. A recent study of chemical equilibration in RHIC 
experiments shows that this is most probably incorrect n in hot matter: 
Both the 7r — a complex and the p — a\ complex should become massless 
at Tc. Real-time lattice calculations in temperature should ultimately be 
able to validate or invalidate this scenario: The screening mass measured 
on lattice in hot matter does not carry the relevant information. In the 
absence of evidence either for or against it, we will simply assume that the 
VM is realized at the chiral transition point and see whether the result 
we obtain gives an a posteriori consistency check, if not a proof, of the 
assumption. 

The presence of the VM at the chiral transition point \pt]x implies a 
scenario that is quite different from the standard one based on the linear 
sigma model invoked to describe two-flavor chiral restoration. For instance, 
the pion velocity at [pt)x is predicted to be near the velocity of light with 
the vector mesons at VM 12 whereas the linear sigma model predicts it to 
be zero 13. 

3.2. From the VM Fixed Point to the Nambu-Goldstone 
Phase 

Consider the heavy-light-quark, Qq, mesons where Q is the heavy quark 
and q is the light quark. Again for simplicity, I shall take the mass of Q 
to be infinite - and as mentioned, that of q to be zero. Let us imagine 
that we are at the VM fixed point. In constructing the Lagrangian for the 
light-quark system, the relevant variables are the HLS 1-forms for the light 
mesons, 

OtR(L)p, = T<9^R(L) • ̂ R ( L ) ] (1) 

which transform under SU(3)L X SU(3)R as aR^L)^ —> R(L) a^( i) / i[i?(L)]^ 
with R(L) e SU(3)R(SU(3)L)- Since the gauge coupling g is zero at the 
fixed point, the HLS gauge bosons are massless and their transverse com
ponents decouple from the system. Two matrix valued variables £L,R are 
parameterized as £L,R = exp[z0L/j]. Here the combination {4>R + <PL)/^ 

corresponds to the longitudinal components of the vector mesons p (the 
p meson and its flavor partners) in the broken phase, while the com
bination (<pR — 4>L)/2 corresponds to the pseudoscalar Nambu-Goldstone 
bosons ir (the pion and its flavor partners). With these 1-forms and since 



296 

a = (Fa/F-x)2 = 1, the light-quark HLS at the VM takes the simple form, 

A*ght = 2FZtTlaR»aR + OLL^a^], (2) 

with the star representing the VM fixed point and Fn denoting the bare pion 
decay constant. The physical pion decay constant fn vanishes at the VM 
fixed point by the quadratic divergence although the bare one is non-zero 9. 

For the heavy mesons, one introduces the right and left fluctuation 
fields HR and HL that transform under SU(3)L X SU(3)R as T~CR(L) ~^ 
HR^R^IJ). The fixed point Lagrangian for the heavy mesons in the 
presence of the light mesons takes the form 

•CLavy = - t r [HRW^HR] - tr [HLiv^HL] + m0 tr [HRHR + HLHL\ 

-2fctr UROLR^-^-HR + HLaL^l—^HL (3) 

where v^ is the velocity of the heavy meson, TOO represents the mass gen
erated by the interaction between heavy quark and the "pion cloud" sur
rounding the heavy quark, and k is a real constant to be determined. 

Next we need to consider the modification to the VM Lagrangian gener
ated by the spontaneous breaking of chiral symmetry. The gauge coupling 
constant becomes non-zero, g ^ 0, so the derivatives in the HLS 1-forms 
become the covariant derivatives. Then ctj,,, and OR^ are covariantized: 

dn -^ F>n = <9M - igp^, 

otRn —> aRll, aLfi -> aLfi- (4) 

These 1-forms transform as &R(L)/J. ~> hctR(L^h) with h £ [5,c^(3)v]iocai-
Apart from the kinetic-energy term £pkin = — | t r [p^p^], there may be 
other terms, such as e.g., (a — \)F2tr[aL^o<-R] which vanishes at the fixed 
point with a = 1. Although generally a ^ 1 in the broken phase, a = 1 
gives a variety of physical quantities in good agreement with experiment 
in matter-free space, as shown in 9. A detailed analysis in preparation for 
publication 14 shows that in the present problem, at the one-loop level that 
we consider, there are no (a — 1) corrections. Therefore we can safely set 
a = 1 in what follows. In the heavy sector, chiral-symmetry breaking will 
generate the term 

£.xSB = ^AMtr[HLHR + HRHL} , (5) 

with ?{R(L) transforming under the HLS as "HR(L) ~^ ^-R(L)^ • Here AM 
is the bare parameter corresponding to the mass splitting between the two 
multiplets and can be determined by matching the EFT with QCD. 
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The main finding of this approach is that AM comes out to be propor
tional to the quark condensate, i.e., AM ~ (QQ)-

In order to compute the mass splitting between D and D a , we need to 
go to the corresponding fields in parity eigenstate, H (odd-parity) and G 
(even-parity) as defined, e.g., in 8; 

HR,L = ^=[GTiH^]. (6) 

We shall denote the corresponding masses as MH,G- They are given by 

MH = -m0 - -AM , 

MG = -m0 + -AM . (7) 

The mass splitting between G and H is therefore given by AM: 

MG-MH = AM . (8) 

The next step in the calculation is to determine AM at the matching 
point in terms of QCD variables. We shall do this for the pseudoscalar and 
scalar correlators for D(0~) and D(0+), respectively. The axial-vector and 
vector current correlators can similarly be analyzed for D(l~) and £)(1+). 
In the EFT sector, the correlators are expressed as 

Gp{Q } - MlTQ-i' 
FlM% 

GsiQ) = Mf^> (9) 

where FQ (FQ) denotes the D-meson (D-meson) decay constant and the 
space-like momentum Q2 = {MD + A)2 with A being the matching scale. If 
we ignore the difference between FD and F^ which can be justified by the 
QCD sum rule analysis 15, then we get 

ASp{Q') = GS(Q
2) - GP(Q'2) ~ ^2

D
+^AMD. (10) 

ZFlMl 
r2 

aAlthough we are referring specifically to the D mesons, our discussion generically applies 
to all heavy-light mesons. 
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In the QCD sector, the correlators Gs and Gp are given by the operator 
product expansion (OPE) as 15 

GS(Q
2) = G(Q2^ 

I per t 

bH 

mi, +1 
mH(qq) + ^(G^G^) 

GP(Q2) = G(Q2)\ 
pert 

lH 

m2
H + Q2 mH vt^G^ Ul) 

where mn is the heavy-quark mass. To the accuracy we are aiming at, 
the OPE can be truncated at 0(l/Q2). The explicit expression for the 
perturbative contribution G(Q2)\ e r t is available in the literature but we 
do not need it since it drops out in the difference. From these correlators, 
the Asp becomes 

ASP(Q2) 
2m\ 

-Am)- (12) 
m\ + Q2 

Equating Eq. (10) to Eq. (12) and neglecting the difference (m# — Mp), 
we obtain the following matching condition: 

3FlAMD~-2(qq). 

Thus at the matching scale, the splitting is 

2{qq) AMD 3F2
D 

(13) 

(14) 

As announced, the splitting is indeed proportional to the light-quark con
densate. Let us denote the AMp> determined at the scale A as AMbare 
which will figure in the numerical calculation. 

Given the splitting AMbare at the scale A, we need to decimate down 
to the physical scale. This amounts to making quantum corrections to the 
correlators written in terms of the bare quantities or more specifically to 
JCXSB in Eq. (5). This calculation turns out to be surprisingly simple for 
a = 1. For a = 1, cf>L does not mix with (f>p in the light sector, and hence 0£ 
couples to only HL and 4>R to only HR. As a result Ti.L(R) cannot connect 
to T~(-R(L) by the exchange of <j>i or (pp. Only the p-loop links between the 
fields with different chiralities as shown in Fig. 1. 

This term contributes to the two-point function as 

= - ^ A M C 2 ( J V / ) ^ ( l - 2 A ; - f c 2 ) l n A , (15) n LR 
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g AM 

Figure 1. Diagram contributing to the mass difference. 

where C2(Nf) is the second Casimir defined by (Ta)ij(Ta)ji = C2(Nf)Su 
with i,j and I denoting the flavor indices of the light quarks. This di
vergence is renormalized by the bare contribution of the form HLR,hare = 
iAMbare- Thus the renormalization-group equation (RGE) takes the form 

dAM g 
A*—J— =c2{Nf) dfi 2TT 2 

\ -2k-k2)AM. (16) 

For simplicity, we may neglect the scale dependence in g and k. Then the 
solution to the RGE for AM is 

AM = AMh a r e exp - C 2 ( 7 V / ) | ^ ( l - 2 f c - / c 2 ) l n (17) 

This is our main result. This shows unequivocally that the mass splitting is 
dictated by the bare splitting AMbare proportional to {qq) corrected by the 

quantum effect given by Cquantum = exp -fc(*/)£( 1 - 2k - k2 In ; 

4. Prediction 

4.1. AM 

In the chiral limit, one can make a neat prediction on the splitting AM. 
There are no free parameters here. 

I shall not attempt any error analysis and merely quote the semi
quantitative estimate arrived at in 2. The second Casimir for three flavors 
is Cz(Nf = 3) = 4/3; the constant k can be extracted from D* —> Dir 
decay 16 and comes out to be k ~ 0.59. By taking fi = mp — 771 MeV, 
A = 1.1 GeV and g = g(mp) = 6.27 determined through the Wilsonian 
matching 9, we find that the quantum effect increases the mass splitting 
by about 60%, i.e., Cquantum ~ 1-6. It turns out 14 that this result is quite 
stable against the matching scale A. Taking the value for FJJ, FD ~ 0.205 
GeV, and that for {qq), {qq) = -(0.243GeV)3 from the literature ll as 
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typical ones, we find from (14) 

A M b a i e ~ 0.23 GeV (18) 

so tha t 

A M ~ 0.37 GeV. (19) 

This should be compared with the constituent quark mass ~ TTIJV/3 where 

mjv is the nucleon mass. This is consist with what was observed in the ex

periments 3 '4 . Of course, in comparing with experiments, particularly the 

B a B a r / C L E O experiments, we need to take into account the flavor symme

try breaking which is not yet systematically investigated in the framework 

discussed here. But the point is tha t it is the quark condensate tha t carries 

the main imprint of the splitting. Another point of interest in the result is 

tha t the bare splitting depends on the heavy-meson decay constant. This 

suggests tha t the splitting may show heavy-quark flavor dependence. This 

could be checked with experiments once a systematic heavy-quark expan

sion (which is not done here) is carried out. 

4.2 . Implications 

There is an obvious implication on heavy-light baryons tha t can be ob

tained as skyrmions 1 9 '2 0 from the heavy-light mesonic Lagrangian. One 

expects off-hand tha t the chiral doubling splitting in heavy-light baryons 

would also be given by the p-exchange graph and hence will likewise be pro

portional to the light-quark condensate. Another exciting avenue would be 

to look at pentaquarks as skyrmions in this HLS/VM-implemented theory 

with a heavy quark replacing the strange quark in the recently observed 

0 + baryon which is generating lots of activities nowadays. It would be 

interesting to expose the contribution to the heavy penaquark mass tha t 

bears directly on chiral symmetry as in the heavy-light mesons. 

Suppose future experiments do show tha t in hot /dense matter , the split

ting in heavy-light mesons or baryons gets reduced as temperature /densi ty 

goes up in such a way as to be consistent with the vanishing splitting at 

the critical point in the chiral limit. An attractive interpretation of such an 

observation is tha t one is realizing the VM at \pt]x, and hence the p meson 

mass does go to zero at the phase transition as predicted in a different con

text a long time ago 18 . Furthermore a recent striking development u on 

the phase structure of hot mat ter near T c suggests tha t massive excitations 

in the p channel above Tc in the form of an instanton liquid go massless at 
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Tc as do the pion and the scalar a. Lattice confirmation of this phenomenon 

would be highly desirable. 

5. C o n c l u d i n g R e m a r k s 

This is a "concluding" talk in more than one sense. It is the last talk 

in this Symposium and is also most likely the last talk in this series of 

astro-hadron physics I have been helping develop in KIAS. So let me add 

a few of my personal remarks here. 

In early 1990's, with a small group of young - as well as less young -

theorists in hadronic physics in Korea I initiated a concerted effort to under

stand how hadronic physics involved in the strong interactions of mat ter 

can be merged into certain aspect of astrophysical phenomena tha t are 

thought to be produced under extreme conditions of temperature and /or 

density, a new field of research which we called "astro-hadron physics." 

The first international meeting in Korea bearing tha t name - funded by 

A P C T P - was held at Seoul National University in 1997. Wi th the advent 

of Korea Inst i tute for Advanced Study (KIAS) originally conceived with the 

primary purpose of generating and developing original, innovative research 

activities in Korea tha t could be brought to the forefront of the world, the 

activity in astro-hadron physics was taken up at KIAS in the precise spirit 

of the insti tute 's objective. Wi th the influx of a large number of bright 

visitors from abroad, the activity has met with success. This then led to 

the first KIAS astrophysics meeting in 2000 in which astro-hadron physics 

figured importantly in bringing together such explosive astrophysical pro

cesses as supernovae, gamma-ray burst , black-hole formations with such 

explosive laboratory processes as relativistic heavy-ion collisions. The so-

called hadronic phase diagram shown at this meeting was quite barren with 

most of the areas unexplored or empty, with little overlap between what the 

astronomers were observing and what the laboratory experimenters were 

measuring. Since then, the phase map has rapidly filled up, as we witnessed 

in this meeting, with measurements coming from various terrestrial labora

tories (CERN, R H I C . ) and from satellite observatories (Chandra, R X T E 

...). This meeting is clearly a timely one to start establishing crucial con

nections between the two sources and synthesizing a coherent picture tha t 

will ultimately expose the structure of the novel form of mat ter searched 

for in extreme conditions of temperature and /o r density. 

Although this may be - at least for the t ime being - the last meeting of 

the series here at KIAS, the activity in this field should, and surely will, go 
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on, if not here, then elsewhere in this country. Wi th the advent of JPARC 

in Japan in tandem with tha t of SIS 300 at GSI in Germany together with 

forthcoming satellite observatories, this field is poised to develop strongly 

in this Asian Pacific area. It would be a pity if Korea with her early start 

were to miss out in this exciting new development. Wha t I discussed in 

my talk together with the discovery of the novel structure in pentaquark 

systems promise clearly tha t there will be surprises and breakthroughs in 

store in this field. 
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1. Introduction 

Symmetries, anomalous and exact, are used to constrain effective La-
grangian theories . The latter are applicable to any region of Quantum 
Chromodynamics (QCD) or QCD-like phase diagram, whenever the rel
evant degrees of freedom and the associated symmetries are known. To 
decide in which phase a strongly interacting theory can be one uses exper
imental inputs, model computations, such as Nambu-Jona Lasinio model, 
and/or computer simulations. Exact non-perturbative constraints, like 
anomaly matching conditions, are another elegant and powerful way to 
help deciding among the phases that a strongly interacting theory (vector-
and chiral-like) can be in. The original idea of t'Hooft has been extended 
1,2,3 to strongly interacting gauge theories at non-zero chemical potential. 

A number of novel effective Lagrangians have been used in the litera
ture to describe QCD and similar theories at zero temperature (see 4 for 
a review). At zero temperature and quark chemical potential some non-
perturbative quantitative predictions about the spectrum and the vacuum 
properties of QCD with one Dirac flavor have been made through an ef
fective Lagrangian able to interpolate from super Yang-Mills to QCD 5. 
These predictions can be tested via lattice simulations. These results are 
also linked to a different type of l/N expansion around the supersymmetric 
limit 6, in which the fermions transform according to the two index anti
symmetric representation of the gauge group. This expansion in the inverse 
number of colors may very well be more convergent then the ordinary l/N 
expansion. Here fermions remain in the fundamental representation of the 
gauge group, while increasing the number of colors. In 7 the existence of a 
critical number of colors has been identified. For and above this number of 
colors the low energy TT — n scattering amplitude, computed from the sum 
of the current algebra and vector meson terms, is crossing symmetric and 
unitary at leading order in a 1/7V expansion. This critical number of colors 
is N = 6 , and is insensitive to the explicit breaking of chiral symmetry, 
meaning that ordinary l/N corrections for the real world are large. These 
results are supported by the findings in 8. As an important outcome, our 
results are consistent with the expectation that the low lying sigma state, 
cr(560) , is not a qq object 9>io,ii,i2_ its implications are on the physics 
of chiral symmetry restoration, since this state should not be considered 
as the chiral partner of the pion, as it is at times assumed in literature. 
While we expect large l/N corrections for Â  = 3 , for six or more colors 
and with two or three flavors the physics should be well described by the 
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large number of colors limit, for which a number of properties can be dia-
grammatically deduced 13. SU(6) gauge theories are currently explored by 
lattice simulations 14. Encouraged by the findings in the hadronic world 
7,8,11 ̂  w e precijct a transition from the world of infinite N to the world of 
small N already for N = 6 with two flavors, and possibly with three fla
vors as well. Some ideas on N = infinity at non-zero temperature are also 
available 15. 

Deconfinement and chiral symmetry restoration at finite temperature, 
quark chemical potential or number of flavors has attracted much interest 
I6,2i,i8_ j j e r e w e c|isCUSS recently developed effective Lagrangians for QCD, 
relevant for gaining insight on the deconfinement and/or chiral symmetry 
restoration problem at non-zero temperature and matter density. Our goal 
is to provide a unifying point of view in which different models can be seen 
as different description of the same physics. 

We first consider the effective theory unifying two apparently very differ
ent sectors of a Yang-Mills theory at non-zero temperature 19: the hadronic 
sector and the Polyakov loop. This theory is able to communicate the in
formation about the center group symmetry to the hadronic states. It also 
provides the link between deconfinement and conformal anomaly. Then, 
discussion of effective Lagrangians for strongly interacting theories with 
matter fields will follow. Via these theories we offer a simple interpretation 
for the intertwining between chiral symmetry restoration and deconfine
ment in QCD with matter fields in the fundamental and in the adjoint rep
resentation of the gauge group, as function of temperature and/or chemical 
potential. We also show that the most relevant term is a trilinear interaction 
between the singlet field and the order parameter. This term differentiates 
between different fermion representations, and it has been neglected previ
ously in the literature 20>21>22. Finally, we suggest possible applications. 

2. Heavy Fields and Phase Transitions 

Phase transition dynamics and the associated critical behavior are best in
vestigated using order parameters. These are the degrees of freedom whose 
correlation length diverges when approaching the phase transition. How
ever, the choice of the order parameters is not always obvious. Furthermore, 
even if the order parameter can be formally constructed, often this may be 
hard, or even impossible to be detected directly experimentally. A time 
honored example is the Polyakov loop in gauge theories. A true order 
parameter is zero in the symmetric phase, and has a finite value in the 
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symmetry broken phase. In what follows we term order parameter field a 

field whose expectation value is a t rue order parameter. Any field whose 

expectation value does not have this kind of behavior we call non-order 

parameter field. We consider non-order parameter fields which are singlets 

under the symmetry transformation acting on the order parameter. 

One can ask some simple questions: Given a system consisting of an 

order parameter and singlet field(s), what can we learn about the phase 

transition by monitoring the singlet field? Can we identify the onset of the 

phase transition without referring to the order parameter? We show here 

tha t there is a clear and universal characteristic behavior of the singlet field, 

induced by the order parameter close to the phase transition. Our consid

erations are universal, and as such, can be carried over to virtually any 

phase transition once the symmetries of the order parameter are identified. 

We explicitly consider the cases of Z2 symmetry, which is of relevance for 

the pure Yang-Mills gauge theory with two colors, and SU(4) , which is of 

relevance for the effective theories of two color QCD with two quark flavors 

in either the fundamental or adjoint representation of the gauge group. 

Lattice simulations of the pure Yang-Mills gauge theory 27>37>38 already 

confirm our prediction. 

For QCD with quarks lattice simulations pose the following interesting 

puzzle: Why, for mat ter in the fundamental representation deconfinement 

and chiral symmetry restoration appear to be linked with a single phase 

transit ion observed at a given critical temperature , while for mat te r in 

the adjoint representation there are two phase transitions, well separated 

in temperature? Our effective Lagrangian description can offer a simple 

unifying way of addressing this puzzle. 

3 . From t h e Po lyakov L o o p t o t h e Glueba l l s 

At non-zero temperature the pure SU(N) Yang-Mills theory possesses a 

global ZJSS symmetry. This symmetry is intact at low temperatures and 

is broken at high temperatures. The associated order parameter is the 

Polyakov loop, which is the trace of the thermal Wilson line. Under the 

action of Zjq the Polyakov loop transforms as £ —> zl with z G Z^. 

The condensation of Polyakov loops is associated to deconfinement, 

since the potential V(x, T) at a given temperature T between static funda

mental charges is related to the Polyakov loop: 

e x p ( - ^ , T ) / T ) = (€(0)£t(f)> - ^ |^|2 , 
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For T < Tc the static quarks experience a linearly rising potential 

V(x,T) = a(T)\x\, (1) 

where <r(T) is the string tension. For T > Tc the potential is no longer a 

confining one: 

V(x,T)cxk(T), (2) 

and it does not depend on the distance between the static sources. 

Close to Tc, using age-old arguments by Landau, the mean field effective 

potential is 

V(l) = T^T(l), (3) 

where T[i) is a Zjv-invariant polynomial in £ . It was Svetitsky and Yaffe 

23,24,25 wfo0 provided the first reliable non-perturbative study of the critical 

behavior of Yang-Mills theories, as well as the above form for the effective 

potential. The idea of describing the Yang-Mills pressure using directly a 

mean field theory of Polyakov loops has been recently advocated by Pis-

arski 2 6 . This model has since been used in several phenomenological stud

ies 2 0 '2 1 . The scale dimension is set by the temperature . Physical states 

(i.e. hadrons), however, do not carry any charge under ZN • In order 

for a hadronic state to know about the center group symmetry this must 

communicate with the Polyakov loop. 

In the following, we consider as representative of the hadronic spectrum 

the lightest scalar glueball. At zero temperature a well known effective 

theory constrained by the trace anomaly has been constructed in 3 0 , using 

the potential of the form 

tflnj. (4) 

The glueball field H is related to G£„ G»v>a, where G^'a is the gluon field 

strength and a = 1 , . . . , N2 — 1 the gauge indices. This potential encodes 

the basic properties of the Yang-Mills vacuum at T = 0 3 1 , and has also 

been used at non-zero density 32 and temperature 33>34. As we increase the 

temperature the Polyakov loop becomes a well defined object. We stress 

that previously in the li terature the Yang-Mills pressure has been described 

by either glueball theories 3 3 and their generalizations 3 5 , or directly with 

the Polyakov loop model 2 0 . In effective glueball theories a possible drop at 

Tc of the non-perturbative contribution to the gluon condensate has been 

often considered as an indication of deconfinement 33-32 . However, since the 

gluon condensate is not an order parameter for the center group symmetry 



309 

there is, a priori, no guarantee that such a drop, even if observed, should 
appear at the same critical temperature. Furthermore, the glueball theory 
by construction is blind to the number of colors. This explains why it always 
predicts a first order phase transition independent of the number of colors 
of the underlying Yang-Mills theory one wants to describe 21. The Polyakov 
model, on the other hand, has automatically built in the knowledge about 
the number of colors, but looses contact with a simple physical picture in 
terms of hadronic states. 

We will now show, by marrying these two theories, that: i) The drop of 
the non-perturbative part of the gluon condensate must happen exactly at 
the deconfming phase transition 19, partially justifying glueball models; ii) 
Information about the order of the transition is now encoded in a nontrivial 
way in the profile of the condensate drop. 

We constructed the following general potential using all of the relevant 
symmetries, i.e. trace anomaly, ZN invariance, and analyticity of the inter
action term between the glueball field and the Polyakov loop19 

V(£, H) = Hln^+ VT{H) + HV{£) + T4T(£). (5) 

VT(H) is the intrinsic temperature dependence of the glueball gas. This 
we can neglect, since the glueball is heavy near the phase transition. The 
most general interaction term compatible with the saturation of the trace 
anomaly is HV(£) , where V{t) is a ZJV symmetric polynomial ml. In the 
static limit we can use the equation of motion for the H field to integrate 
this out in terms of I field, yielding the functional relation H = H(£) . This 
shows that the center group symmetry is transferred to the singlet sector 
of the theory. However, we find it more illuminating to keep both fields. 
For two colors we take 

T(t) = aie
2 + a2t + o(ee), 

V{1) = M 2 + 0(£4). 

The coefficients ai and 61 are assumed to be positive and independent of 
the temperature, while a\(T) = a(T — T„) , with a > 0 . Solving for the 
minimum, one finds that below Tc the two fields are completely decoupled 
and 

(£) = 0, {H)=A4/e. (6) 

As the critical temperature Tc = T* + ^ ^ 3 - is reached, the symme
try is spontaneously broken, and the Polyakov loop obtains a non-zero 
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expectation value, which affects also the one for H: 

(t)oc 
AT 

(H) 
A4 

exp -2h{£)2] . (7) 

For three colors the essential modification is the inclusion of the £3 and £*3 

terms into the Polyakov loop potential T . The interaction potential be
comes V oc |^|2. Cubic terms render the transition first order, and thus the 
change in both the Polyakov loop and the glueball becomes discontinuous. 
Once more we deduce that the change in the order parameter C induces 
a change in the expectation value of the non-order parameter field. The 
behavior in these two cases is shown in figure 1. In conclusion, not only 

Figure 1. Expectation values of the fields as function of temperature. Left panel: two 
color theory (2nd order transition). Right panel: three color theory (1st order transition). 

the drop of the non-perturbative part of the gluon condensate knows about 
the Yang-Mills phase transition, but also that the drop occurs at Tc . Fur
thermore, the profile of the gluon condensate as function of temperature 
encodes the information on the order of the phase transition. With this 
theory we unified two apparently very different pictures of the deconfining 
phase transition. 

4. Chiral Symmetry versus Confinement 

Consider now adding quarks into the Yang-Mills theory. Lattice results for 
quarks in the fundamental representation of the gauge group 39 indicate 
that as chiral symmetry is restored, the expectation value of the Polyakov 
loop rises, signalling deconfinement. Figure 2 illustrates that the critical 
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Figure 2. The Polyakov loop (left panel) and the chiral condensate (right panel), with 
the corresponding susceptibilities, as determined on the lattice with quarks in the fun
damental representation. From 3 9 . 

temperature8- of deconfinement and of chiral symmetry restoration coincide, 
Tchirai = 2~dec0nf • We further learn from lattice that for quarks in the 
adjoint representation this is not the shown in Fig. 3 taken from 
40. Here Tchirai — 8TdeConf • Note, that even if the two transitions happen 

(a) 

i * 

, *v 

-.;/" 
- % 

• * J 

1 
i 

1 

^ * 

. ,:**i^"J 

* *^ * * 
^ 

,.: 
..-*"*" 

f :rS:l ' ... « ..-• m = 0 . o « 
— nMJ.080 
• » m=0.i00 

J ••-' * " > " 

2.0 

1.5 

1.0 

0.5 

0.0 

8 > 

« 
« 

ta • 

' ^ 

m-0 080 
m CC* 

y [ 

m=0 000 

~-A 

* 

A 
• 

• 

* 

(a) 

5.8 6.0 P 6.2 5.4 5.8 6.2 6.6 P 7.0 

Figure 3. Behavior of the Polyakov loop (left panel) and of the chiral condensate (right 
panel) as determined on the lattice with quarks in the adjoint representation. From 4 0 . 

separately, the chiral condensate knows about deconfinement, as the jump 
in its behavior at Tdeconf indicates. 

Lattice simulations are already available for two color QCD at non
zero baryon chemical potential 41, and observe deconfinement for 2 color 
QCD and 8 continuum flavors at \i ^ 0 . Figure 4 illustrates the rise 

a The (pseudo) critical temperatures are identified from the peak position of the corre
sponding susceptibilities, also shown in figure 2. 
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Figure 4. Polyakov loop versus chiral condensate for two color QCD and 8 continuum 
flavors at non-zero baryon chemical potential as determined on the lattice. From 4 1 . 

in the Polyakov loop when the chiral condensate vanishes. The two phase 
transitions happen at the same value of the chemical potential, /ichirai = Hd • 

Our goal is to provide a simple unified way to describe all of these 
features. This is possible thanks to a crucial interaction term 27>28.29

) which 
has been neglected in previous phenomenological investigations 20>21>22. 

The quark representation with respect to the gauge group is significant 
42. When quarks are in the fundamental representation the ZM symmetry 
is not exact for any finite value of the quark mass. When, on the other 
hand, quarks are in the adjoint representation of the gauge group the center 
group symmetry is intact. Chiral symmetry is also explicitly broken by the 
quark mass. In the non-perturbative regime we do not know the amount 
of ZN breaking (unless a fit to lattice data 4 3 is performed 4 4 ) . Thus, we 
cannot establish which symmetry is more broken for a given quark mass. 
Fortunately, at least theoretically, we can take limits in the QCD parameter 
space, allowing for exact statements, independent of the lattice results. 
When chiral symmetry is exact, i.e. quark masses are zero, for any number 
of flavors and colors, ZN is not a symmetry and the only order parameter is 
the chiral condensate (qq ~ a). We demonstrate, that due to the presence of 
a relevant ZN symmetry breaking term the Polyakov loopb has an induced 
critical behavior driven by the chiral transition. This term is the most 
relevant term differentiating among fermion representations. We expect 

bX is the canonically normalized field associated with the Polyakov loop. The subscript 
X refers to the Polyakov loop, not to chiral symmetry. These have the subscript a. 
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that its inclusion drastically affects phenomenological predictions 20 '21
) and 

their implications for heavy ion collision experiments. 
If ZJV symmetry is only softly broken one might expect another transi

tion for deconfinement 45>46>47. The main motivation for having advocated, 
in the past, two independent phase transitions is related to the possibility of 
two independent scales in QCD: one associated to chiral symmetry break
ing and the other associated to deconfinement. As explained above, lattice 
results now dismiss this possibility. If quark masses are smaller than the 
confining scale of the theory and barring accidental dynamical suppression 
we expect that by comparing the ratios 

mq /A for chiral breaking and Nf/N for ZN breaking, 

we can have a rough estimate of which symmetry is more broken. For chiral 
symmetry one could use also mv/AnFv . We expect the Z^ breaking term 
to be a more complicated function of number of flavors, colors and quark 
masses f(Nf,Nc,mq/A) . A two phase transitions scenario is still possible 
in QCD with fixed number of flavors of massless quarks, in the limit of 
large number of colors, Nf/N <C 1 . This is unnatural for Nf ~ N . 

We now study the two color theory with Nf flavors in the chiral limit. 
The rational behind this choice is that at the same time, with minor mod
ification of the effective Lagrangian, we can discuss the fundamental and 
adjoint representations at non-zero temperature or quark chemical poten
tial. The generalization to three colors is straightforward at non-zero tem
perature, while a bit more involved for the quark chemical potential. 

4.1. Fundamental Representation 

The global symmetry group for two colors is SU(2Nf). After chiral sym
metry breaking has occurred, SU(2Nf) —> Sp(2Nf), the degrees of freedom 
in the chiral sector of the effective theory are 2./V? — Nf — 1 Goldstone fields 
7ra , and a scalar field a. For Nf = 2 the potential is 48-49: 

2 \ 

Vch[<T,TTa] = ~TT [MfAf] + AiTr [M^M]2 + -^Tr [M^MM^M] (8) 

with 2 M = a + i 2v/27ra Xa, a = 1 , . . . , 5 and Xa e A(SU{4)) - A(Sp(A)). 
The generators Xa are given by equations (A.5) and (A.6) of 48. The 
Polyakov loop \ is now a heavy field, singlet under chiral symmetry. Its 
contribution to the potential in the absence of the Z2 symmetry is 

Vx[x]=90X+rfx2 + 9jx3 + ^X4. (9) 
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To complete the effective theory we introduce interaction terms allowed by 
chiral symmetry 

Vint[X, a, ira] = {glX + <?2X2) Tr [M*M] = (glX + g2X
2) (^ + T T V ) • 

(10) 

The <?i term plays a fundamental role. This is the term we previously 
emphasized. For T < Tca chiral symmetry is spontaneously broken, the a 
acquires a non-zero expectation value (adopt usual (IT) = 0 ), which in turn 
induces a change in (x) • The extremum of the linearized potential is at 

< a } 2 ^ - ^ , m ^ m 2 + 2 5 l(X) , (11) 

where A = Ai + A2 . Equation (12) hold near the phase transition, where 
a is small. m% is the full coefficient of the a1 term in the tree-level La-
grangian which, due to the coupling between x a l ld a, also depends on (x) • 
Spontaneous chiral symmetry breaking appears for m\ < 0 . In this regime 
the positive mass squared is M 2 = 2X(a2) . Near Tc the mass of the order 
parameter field is assumed to posses the generic behavior ml ~ (T - Tcf . 
Equation (12) shows that for gx > 0 and go < 0 the expectation value 
of x behaves oppositely to that of a : As the chiral condensate starts to 
decrease towards chiral symmetry restoration, the expectation value of the 
Polyakov loop starts to increase, signaling the onset of deconfinement. This 
is illustrated in the left panel of figure 5. When applying the analysis pre
sented in 27 '28

: the general behavior of the spatial two-point correlator of 
the Polyakov loop can be determined. Near the transition point, in the 
broken phase, the x two-point function is dominated by the infrared diver
gent cr-loop. We find a drop in the screening mass of the Polyakov loop 
at the phase transition. When approaching the transition from the un
broken phase we find again a drop in the screening mass of the Polyakov 
loop (this is actually the string tension) close to the phase transition. We 
deduce for this drop, the variation of the x mass with respect to the tree 
level mass, AmJ(T) = rn^iT) —m2 , using a large N framework motivated 
resummation 28: 

^ m = - s r a - T<T<°- <14> 



315 

From the above equations one finds that the screening mass of the Polyakov 
loop is continuous and finite at Tca, and Am^(TOT) = —2gf/(3X), inde
pendent of Nv , the number of pions. Please find a detailed discussion 
regarding the necessity for and distinction between different resummation 
schemes in 28. We emphasize that this analysis is not restricted to the chi-
ral/deconfining transition. The entanglement between the order parameter 
and the non-order parameter field is universal. 

4.2. Adjoint Representation 

Consider now two color QCD with two massless Dirac quark flavors in the 
adjoint representation. Here the global symmetry is SU(2Nf) which breaks 
via a bilinear quark condensate to 0(2Nf). The number of Goldstone 
bosons is 2iV? + Nf — 1. We take Nf = 2. There are two exact order 
parameter fields: the chiral a field and the Polyakov loop % . Since the 
relevant interaction term gix^2 is n o w forbidden, one might expect no 
efficient information transfer between the fields. While respecting general 
expectations the following analysis suggests the presence of a new and more 
elaborated structure which future lattice data can clarify. The chiral part 
of the potential is given by (8) with 2 M = a + i 2^f2ixa Xa, a = 1 , . . . , 9 
and Xa 6 A(SU(4)) — .4.(0(4)). Xa are the generators provided explicitly 
in equations (A.3) and (A.5) of 48. The now Z2 symmetric potential for 
the Polyakov loop is 

2 
, , r i m0x 2 , 9A 4 / i r \ 

vxlx} = -if-X + ^X , (15) 

and the only interaction term allowed by symmetries is 

Vintlx,*,*] =92X2TT[M^M] =g2X
2(a2+irawa). (16) 

The effective Lagrangian does not know which transition happens first, but 
this is irrelevant for the validity of our general results. Consider the physical 
case in which deconfinement happens first, Tcx < T < Tca both symmetries 
are broken, and the expectation values of the two order parameter fields 
are linked to each other: 

(a)2 = ̂ \(m2 + 292(Xf)^-7f, 

{X)2 = --(m2
0x + 292(af)^-r^. (17) 

The coupling g2 is taken to be positive. In the neighborhood of the two 
transitions, Tcx and TC(T, we find the qualitative situation illustrated in 
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Figure 5. Left panel: Expectation values of the Polyakov loop and chiral condensate 
close to the chiral phase transition as a function of temperature, with massless quarks in 
the fundamental representation. Right panel: Same as in left panel, for massless quarks 
in the adjoint representation and Tcx <C TctT (see discussion in the text). 

the right panel of figure 5. On both sides of Tcx the relevant interaction 

term 52(o")o"X2 emerges, leading to a one-loop contribution to the static 

two-point function of the a field oc (a)2/mx . Near the deconfinement 

transition mx —> 0 yielding an infrared sensitive screening mass for a. Sim

ilarly, on both sides of Tca the interaction term (x )x ( j 2 i s generated, leading 

to the infrared sensitive contribution oc (X)2/TO<T to the x two-point func

tion. We conclude, tha t when Tcx <C Tca, the two order parameter fields, 

a priori unrelated, do feel each other near the respective phase transitions. 

We thus predict the existence of substructures near these transitions, when 

considering fermions in the adjoint representation. Searching for such hid

den behaviors in lattice simulations would help to further understand the 

nature of phase transitions in QCD. 

The analysis can be extended for phase transitions driven by a chem

ical potential. In fact, for two color QCD this is straightforward. When 

considering fermions in the pseudoreal representation there is a phase tran

sition from a quark-antiquark condensate to a diquark condensate 5 0 . We 

hence predict, in two color QCD, tha t when diquarks form for /i = m^ , 

the Polyakov loop feels the presence of the phase transition exactly in the 

same manner as it feels when considering the temperature driven phase 

transition. Such a situation is supported by recent lattice simulations 4 1 . 
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5. Conclusions and Outlook 

We have shown how deconfmement (i.e. a rise in the Polyakov loop) is 
a consequence of chiral symmetry restoration in the presence of massless 
fermions in the fundamental presentation. In nature quarks have small, but 
non-zero masses, which makes chiral symmetry only approximate. Never
theless, the picture presented here still holds: confinement is driven by the 
dynamics of the chiral transition in the chiral limit. The argument can be 
extended even further: If quark masses were very large then chiral sym
metry would be badly broken, and could not be used to characterize the 
phase transition. But in such a case the Zi symmetry becomes more exact, 
and by reversing the roles of the protagonists in the previous discussion, 
we would find that the Z2 breaking drives the (approximate) restoration of 
chiral symmetry. Which of the underlying symmetries demands and which 
amends can be determined directly from the critical behavior of the spa
tial correlators of hadrons or of the Polyakov loop 27-28. With quarks in 
the adjoint representation we investigated the physical scenario in which 
chiral symmetry is restored after deconfmement sets in. In this case we 
have pointed to the existence of an interesting structure: There are still 
two distinct phase transitions, but since the fields are now entangled, the 
transitions are not independent. This entanglement is shown at the level 
of expectation values and spatial correlators of the fields. More specifically, 
the spatial correlator of the field which is not at its critical temperature will 
in any case feel the phase transition measured by the other field. Lattice 
simulations will play an important role in checking these predictions. The 
results presented here are not limited to describing the chiral/deconfining 
phase transition and can readily be used to understand phase transitions 
sharing similar features. Furthermore, the effective Lagrangians presented 
here can be immediately used, following 20'21

1 to study the physics at RHIC. 
We expect the new trilinear term 28, essential for our understanding of the 
relation between confinement and chiral symmetry breaking 29, to play a 
role also for the physics of heavy ion collisions. 
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PION VELOCITY 
NEAR THE CHIRAL PHASE TRANSITION* 

C H I H I R O SASAKI 

Department of Physics, Nagoya University, Nagoya, 464-8602, JAPAN 

We study the pion velocity near the critical temperature Tc of chiral symmetry 
restoration in QCD. Using the hidden local symmetry (HLS) model as the effec
tive field theory, where the chiral symmetry restoration is realized as the vector 
manifestation (VM), we show that the pion velocity for T —• Tc receives neither 
quantum nor (thermal) hadronic corrections at the critical temperature even when 
we start from the bare theory with Lorentz symmetry breaking. We show that this 
is related to a new fixed point structure originated in the VM. Further we match 
at a matching scale the axial-vector current correlator in the HLS with the one in 
the operator product expansion for QCD, and present the matching condition to 
determine the bare pion velocity. We find that the pion velocity is close to the 
speed of light, vw(T) = 0.83 - 0.99. 

1. Introduction 

Chiral symmetry in QCD is expected to be restored under some extreme 
conditions such as large number of flavor Nf and high temperature and/or 
density. In hadronic sector, the chiral symmetry restoration is described by 
various effective field theories (EFTs) based on the chiral symmetry 3. 

By using the hidden local symmetry (HLS) model 4 as an EFT and per
forming the Wilsonian matching which is one of the methods that determine 
the bare theory from the underlying QCD 5, the vector manifestation (VM) 
in hot or dense matter was formulated in Refs. 6, 7. In the VM, the massless 
vector meson becomes the chiral partner of pion at the critical point 8 a . 
There, the intrinsic temperature or density dependences of the parameters 
of the HLS Lagrangian, which are obtained by integrating out the high 

*Talk given at KIAS-APCTP International Symposium on Astro-Hadron Physics, 
November 10-14, 2003, KIAS, Seoul, Korea. This talk is based on the works done 
in Refs. 1 and 2. 
aAs studied in Ref. 15 in detail, the VM is defined only as a limit with bare parameters 
approaching the VM fixed point from the broken phase. 
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energy modes (i.e., the quarks and gluons above the matching scale) in hot 
and/or dense matter, play the essential roles to realize the chiral symmetry 
restoration consistently. That the vector meson mass vanishes at the critical 
temperature/density supports the in-medium scaling of the vector meson 
proposed by Brown and Rho, Brown-Rho scaling 9, and has qualitatively 
important influences on the properties of hadrons in medium. 

In the analysis done in Ref. 10, it was shown that the effect of Lorentz 
symmetry breaking to the bare parameters caused by the intrinsic temper
ature dependence through the Wilsonian matching are small 10>n. Starting 
from the bare Lagrangian with Lorentz invariance, it was presented that the 
pion velocity approaches the speed of light at the critical temperature 10, 
although in low temperature region (T <C Tc) the pion velocity deviates 
from the speed of light due to hadronic corrections 11. 

However there do exist the Lorentz non-invariant effects in bare EFT 
anyway due to the intrinsic temperaure and/or density effects. Further 
the Lorentz non-invariance might be enhanced through the renormalization 
group equations (RGEs), even if effects of Lorentz symmetry breaking at 
the bare level are small. Thus it is important to investigate how Lorentz 
non-invariance at bare level influences physical quantities. 

In this talk, we pick up the pion velocity at the critical temperature 
and study the quantum and hadronic thermal effects based on the VM. 
The pion velocity is one of the important quantities since it controls the 
pion propagation in medium through a dispersion relation. We show the 
non-renormalization property on the pion velocity v^, which is protected 
by the VM, and estimate the value of vv near the critical temperature. 

2. Model Based on the Hidden Local Symmetry 

In this section, we show the HLS Lagrangian at leading order including the 
effects of Lorentz non-invariance. 

The HLS model is based on the Ggi0bai x H\oca\ symmetry, where 
Q = SU{Nf)L x SU(Nf)R is the chiral symmetry and H = SU(Nf)v is 
the HLS. The basic quantities are the HLS gauge boson V^ and two matrix 
valued variables £L(X)

 a n d £R(X) which transform as £L,R(%) —* £L R(X) = 
Hx)£L,R(x)g\R, where h(x) e H\ocal and gL,R e [5C/(AT/)L)R]global. These 
variables are parameterized as b

 £L,R(X) = e"7 'I)''f '«e : f™'I '/f», where 

The wave function renormalization constant of the pion field is given by the temporal 
component of the pion decay constant 1 ' 1 2 . Thus we normalize n and a by iTj and F* 
respectively. 
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7r = iraTa denotes the pseudoscalar Nambu-Goldstone bosons associated 
with the spontaneous symmetry breaking of Ggi0bai chiral symmetry, and 
a = <jaTa denotes the Nambu-Goldstone bosons associated with the spon
taneous breaking of Hioca\. This a is absorbed into the HLS gauge boson 
through the Higgs mechanism, and then the vector meson acquires its mass. 
F\ and F* denote the temporal components of the decay constant of ir and 
a, respectively. The covariant derivative of £L is given by 

D^L = d^L ~ iV^L + i£LC A" (1) 

and the covariant derivative of £R is obtained by the replacement of £M 

with TZ^ in the above where V^ is the gauge field of H\oca\, and £M and 7£M 

are the external gauge fields introduced by gauging Global symmetry. In 
terms of £M and TZ^, we define the external axial-vector and vector fields 
as Ap = (ftM - £M)/2 and VM = (ftM + £„) /2 . 

In the HLS model it is possible to perform the derivative expansion 
systematically 13'14>15. In the chiral perturbation theory (ChPT) with HLS, 
the vector meson mass is to be considered as small compared with the chiral 
symmetry breaking scale Ax, by assigning 0(p) to the HLS gauge coupling, 
g ~ 0(p) 13 '14. (For details of the ChPT with HLS, see Ref. 15.) The 
leading order Lagrangian with Lorentz non-invariance can be written as 7 

C {FlYu^ + F*F° (g^ - Uiluv) 

+ 

+ 

tr[&£diJ 

{Fl)2u^uv + FlF° (g^ - u^uv) tr 

--2" U^Uag^p - — 3 - (g^a9iy/3 ~ Zu^Uagvp) 
9L ^9T 

tr[y^FQ/3] ,(2) 

where 

"lir^^^-^T^L-d] (3) 

Here F£ denote the spatial pion decay constant and similarly F£ for the 
a. The rest frame of the medium is specified by u^ = (1,0) and V „̂ is the 
field strength of V^. gL and gr correspond in medium to the HLS gauge 
coupling g. The parametric 7r and a velocities are defined by 16 

Vz F'JFl, Va
2 = F'JFZ. (4) 
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3. Vector Manifestation Conditions 

In this section, we start from the HLS Lagrangian with Lorentz non-
invariance, and requiring that the axial-vector current correlator be equal to 
the vector current correlator at the critical point, we present the conditions 
satisfied at the critical point. 

Concept of the matching in the Wilsonian sense is based on the following 
assumptions: The bare Lagrangian of the effective field theory (EFT) £bare 
is defined at a suitable matching scale A. Generating functional derived 
from £bare leads to the same Green's function as that derived from the 
generating functional of QCD at A. In other words, the bare parameters 
are obtained after integrating out the high energy modes, i.e., the quarks 
and gluons above A. When we integrate out the high energy modes in 
hot matter, the bare parameters have a certain temperature dependence, 
intrinsic temperature dependence, converted from QCD to the EFT. The 
intrinsic temperature dependence is nothing but the signature that hadrons 
have an internal structure constructed from quarks and gluons. In the 
following, we describe the chiral symmetry restoration based on the point 
of view that the bare HLS theory is defined from the underlying QCD. We 
note that the Lorentz non-invariance appears in bare HLS theory as a result 
of including the intrinsic temperature dependences. Once the temperature 
dependence of the bare parameters is determined through the matching 
with QCD mentioned above, from the RGEs the parameters appearing in 
the hadronic corrections pick up the intrinsic thermal effects. 

Now we consider the matching near the critical temperature. The axial-
vector and vector current correlators at bare level are constructed in terms 
of bare parameters and are expanded in terms of the longitudinal and 
transverse projection operators P^T- ^ A V

 =
 ^L^^AV + ^T^^AV At 

the chiral phase transition point, the axial-vector and vector current cor
relators must agree with each other, i.e., chiral symmetry restoration is 
characterized by the following conditions: G^/ H L S N — Gy,HhSs —• 0 and 
£?A(HLS) — Gy(HLS) —> 0 for T —> Tc. In Ref. 7, it was shown that they 
are satisfied for any values of po and p around the matching scale only if 

t h e fol lowing Condi t ions a r e m e t : (#L,bare, ST,bare, a^are ' a bare) -* (°i ° . ! ' ! ) 

for T —> Tc. This implies that at bare level the longitudinal mode of the 
vector meson becomes the real NG boson and couples to the vector current 
correlator, while the transverse mode decouples. 

In Ref. 1, we have shown that (<7L,a',as) = (0,1,1) is a fixed point of 
the RGEs and satisfied in any energy scale. Thus the VM condition is given 
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by 

(gL,a\as)^ (0,1,1) for T^TC. (5) 

The vector meson mass is never generated at the critical temperature since 
the quantum correction to M% is proportional to g\. Because of gi —> 0, the 
transverse vector meson at the critical point, in any energy scale, decouples 
from the vector current correlator. The VM condition for a* and a3 leads to 
the equality between the 7r and a (i.e., longitudinal vector meson) velocities: 

(VJVa)
4 = (FZFt/FZFi)2 = at/a* T ^ 1. (6) 

This is easily understood from a point of view of the VM since the lon
gitudinal vector meson becomes the chiral partner of pion. We note that 
this condition Va = V^ holds independently of the value of the bare pion 
velocity which is to be determined through the Wilsonian matching. 

4. Non-renormalization Property on the Pion Velocity 

As we have seen in the previous section, the dropping mass of vector meson 
can be realized as the VM which is formulated by using the HLS theory. 
Then what is the prediction of the VM? Recently it was proven that the 
non-renormalization property on the pion velocity which is protected by 
the VM 1. In the following, we show that this can be understood based on 
the idea of chiral partners. 

Before going to the critical temperature Tc, let us consider the situation 
away from Tc. Starting from the bare pion velocity V£b a r e = F^haiJF^ •baie 

and including quantum and hadronic corrections into the parameters 
through the diagrams shown in Fig. 1. Away from Tc, there exists the 

..Jt_ * K_ 

"ft." "ft."' A-
I I 1 I 

Ouantum correction Hadronic correction 

Figure 1. Diagrams for contribution to the pion velocity. Center (right) diagram de
notes the interaction between the pion (vector meson) and heat bath. 

hadronic thermal correction to the pion velocity n . 

?7T2 T 4 

^(D.^-iV,^ f „ T<TC, (7) 
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where the contribution of the massive a (i.e., the longitudinal mode 
of massive vector meson) is suppressed owing to the Boltzmann factor 
exp[—Mp/T], and then only the pion loop contributes to the pion velocity. 

On the other hand, when we approach the critical temperature, the vec
tor meson mass goes to zero due to the VM. Thus exp[-Mp /T] is no longer 
the suppression factor. As a result, the hadronic correction in the pion 
velocity is absent due to the exact cancellation between the contribution 
of pion and that of its chiral partner a. Similarly the quantum correction 
generated from the pion loop is exactly cancelled by that from the a loop. 
Accordingly we conclude 

v*(T) = K.bareCT) for T^TC, (8) 

i.e., the pion velocity in the limit T —> Tc receives neither hadronic nor 
quantum corrections due to the protection by the VM. This implies that 
(<7L, a', as, Vn) = (0,1,1, any) forms a fixed line for four RGEs of g^, at, as 

and Vn. When one point on this fixed line is selected through the matching 
procedure as done in Ref. 2, namely the value of V^bare is fixed, the present 
result implies that the point does not move in a subspace of the parameters. 
Approaching the restoration point of chiral symmetry, the physical pion 
velocity itself flows into the fixed point. 

5. Matching Conditions on the Bare Pion Velocity 

One possible way to determine the bare parameters is the Wilsonian match
ing proposed in Ref. 5 which is done by matching the axial-vector and vector 
current correlators derived from the HLS with those by the operator prod
uct expansion (OPE) in QCD at the matching scale A. In this section, 
we present the matching conditions to determine the bare pion velocity in
cluding the effect of Lorentz symmetry breaking at the bare level following 
Ref. 2. 

In the EFT sector, pion couples to the longitudinal part of the axial-
vector current correlator G\. We regard GA' as functions of — q2 and \q\2 

instead of go and q, and expand G\ in a Taylor series around q = \q\ = 0 
in q2/{—q2) as follows: 

GL
A{-q

2,f) = GL}°\^2) + GL}1\-q2)q2
 + .... (9) 

Expanding the axial-vector current correlator derived from the HLS theory 
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GA in terms of q2/(—q2), we obtain 

Ft ,F£ 
G (HLS)L(0)/' 2\ 7T,bare 7r,bare 0 L 

A —Q — o IZo JA \ y > ~ _ r , 2 ^ 2 , b a r e > 

G ( H L S ) L ( l ) ( _ g 2 ) 7r,bare Tr.bareV-1- K7r,bare/ 

(-Q2) 
2^2 

(10) 

(11) 

where z^bare is ^ n e parameter of the higher order term. 
On the other hand, the axial-vector current correlator obtained from 

the OPE is given by 17-18-19 

G7(qo,q) = (q^-g^q')-r 
1 U^VM 1 /a 

2TT 2 

2nas 

Anas 

6Q4\ ir 
*-s ra & 

(w7M75AaM - djflj5\
adj ^ 

uin 

U , C I , S 

A°M + dllx\
ad\ J2 QJ^^q 

[ - 0 M V V 2 + g^1ql/q>12 + q^q^ g^2 + g^1 gvfi2Q2] 

y\—A4'2 I 16„M3„A»4,/|6,2 
H2H3H4> ' 

(12) 

where Q2 = —q2, r = d — s denotes the twist, and s = 2k is the number 
of spin indices of the operator of dimension d. In the above expression, 
we restrict ourselves to contributions from the twist 2 (r = 2) operators c. 
^•/j-i—illk ls the residual Wilson coefficient times matrix element of dimen
sion d and twist r. The general tensor structure of the matrix element of 
A^-illk is given in Ref. 17. 

Now we proceed to estimate the pion velocity by matching to QCD. We 
require the following matching conditions at Q2 = A2: 

d r(HLS)L(0)(n2,_n2
 d

 r(OPE)L(0),n2s 

G ( H L S ) L ( l ) ( g 2 ) = G ( p P E ) L ( l ) ( g 2 ) _ (13) 

c The higher the twist of operators becomes, the more these operators are suppressed 
since the dimensions of such operators become higher and the power of 1/Q2 appear. 
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They lead to the conditions on the bare pion decay constants as 

K.hwK.ba.re 1 \(. OLx\ 2TT2{9^G2) 3 1408 a s (<?(?) | 
H—7. n 1~ "" 

A2 8TT2 (1 + T) 3 A4 27 A6 

'bare — 1 — K- b a r e — — - 7T „ A 4 . (15) 

^ T 4 1 6 T T 4 T 6 

+ 15A4 4 '2 21 A6^ 6 ' 4 - t " } ' 
/ ? * P S f l _ T / 2 \ o r ) rrn6 

7r,bare 7r,bareV ' b a r e / *>^ 4 - 1 JTT r-\»\ 

A3 = 105" A ^ 4 > ( 1 4 ) 

where we use the dilute pion-gas approximation in order to evaluate the ma
trix element (G)T 17 in the low temperature region. From these conditions, 
we obtain the following matching condition to determine the deviation of 
the bare pion velocity from the speed of light in the low temperature region: 

1 32 4 T 6 

G^1057T A«' 

This implies that the intrinsic temperature dependence starts from the 
G(T6) contribution. On the other hand, the hadronic thermal correction 
to the pion velocity starts from the C(T4) [see Eq. (7)]. Thus the hadronic 
thermal effect is dominant in low temperature region. 

6. Pion Velocity near the Critical Temperature 

In this section, we extend the matching condition valid at low temperature, 
Eq. (15), to near the critical temperature, and determine the bare pion 
velocity at Tc. 

As is discussed in Ref. 2, we should in principle evaluate the matrix ele
ments in terms of QCD variables only in order for performing the Wilsonian 
matching, which is as yet unavailable from model-independent QCD calcu
lations. Therefore, we make an estimation by extending the dilute gas ap
proximation adopted in the QCD sum-rule analysis in the low-temperature 
region to the critical temperature with including all the light degrees of free
dom expected in the VM. In the HLS/VM theory, both the longitudinal 
and transverse vector mesons become massless at the critical temperature 
since the HLS gauge coupling constant gi, vanishes. At the critical point, 
the longitudinal vector meson which becomes the NG boson a couples to 
the vector current whereas the transverse vector mesons decouple from the 
theory because of the vanishing gi,. Thus we assume that thermal fluctua
tions of the system are dominated near Tc not only by the pions but also by 
the longitudinal vector mesons. We evaluate the thermal matrix elements 
of the non-scalar operators in the OPE, by extending the thermal pion gas 
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approximation employed in Ref. 17 to the longitudinal vector mesons that 
figure in our approach. This is feasible since at the critical temperature, we 
expect the equality A^(TC) = A^(TC) to hold as the massless longitudinal 
vector meson is the chiral partner of the pion in the VM. It should be noted 
that, although we use the dilute gas approximation, the treatment here is 
already beyond the low-temperature approximation because the contribu
tion from vector meson is negligible in the low-temperature region. Since we 
treat the pion as a massless particle in the present analysis, it is reasonable 
to take Al(T) ~ AJ(T = 0). We therefore use 

A 2 ( T ) ~ A J ( T ) ~ A J ( T = 0) for T~TC. (16) 

Therefore from Eq. (15), we obtain the deviation <5bare as 

1 32 4 T 6 

^71",bare -— ~~~" 
i _ Y2

 = -r4 

T h p r e Go 105 A6 Al + Al (17) 

This is the matching condition to be used for determining the value of the 
bare pion velocity near the critical temperature. 

Let us make a rough estimate of 5\>aYe. For the range of matching scale 
(A = 0.8 - 1.1 GeV), that of QCD scale {AQCD = 0.30 - 0.45 GeV) and 
critical temperature (Tc = 0.15 — 0.20GeV), we get 

< W r c ) = 0.0061 - 0 . 2 9 . (18) 

Thus we obtain the bare pion velocity as K-ibare(7c) = 0.83 — 0.99 . Finally 
thanks to the non-renormalization property, i.e., vv(Tc) = K-,bare(7c) given 
in Eq. (8), we arrive at the physical pion velocity at chiral restoration: 

vv(
Tc) = 0 .83-0 .99 , (19) 

to be close to the speed of light. 

7. Summary 

In this talk, we started from the Lorentz non-invariant HLS Lagrangian at 
bare level and studied the pion velocity at the critical temperature based on 
the VM. We showed that the pion velocity does not receive either quantum 
or hadronic corrections in the limit T —> Tc, which is protected by the VM. 
This non-renormalization property means that it suffices to compute the 
pion velocity at the level of bare HLS Lagrangian at the matching scale 
to arrive at the physical pion velocity at the critical temperature of chiral 
symmetry restoration. We derived the matching condition on the bare pion 
velocity and finally we found that the pion velocity near Tc is close to the 
speed of light, vn{T) = 0.83 - 0.99. 
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This is in contrast to the result obtaied from the chiral theory 2 0 , 

where the relevent degree of freedom near Tc is only the pion. Their result 

is t ha t the pion velocity becomes zero for T —> Tc. Therefore from the 

experimental data, we may be able to distinguish which picture is correct, 

Vjr ~ 1 or v„ —> 0. 
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E F F E C T I V E T H E O R Y O F S U P E R F L U I D Q U A R K M A T T E R 
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We provide a brief introduction to the high density effective theory of QCD. As an 
application, we consider the instanton correction to the perturbatively generated 
gap in the color superconducting phase. We show that the instanton correction 
becomes large for JX ~ 1.25 GeV in Nf = 2 QCD, and for n ~ 750 MeV in Nf = 3 
QCD with a massive strange quark. We also study some other numerical issues 
related to the magnitude of the gap. We find, in particular, that a renormalization 
group improved gap equation does not give results that are substantially different 
from a gap equation with a fixed coupling. 

1. Introduction 

Over the last several years we have seen rapid progress in the theoretical 
study of very dense hadronic matter. Many new phases of strongly inter
acting matter, such as color superconducting quark matter and color-flavor 
locked matter have been predicted 1<2<3<4:'5. Reviews of these developments 
can be found in 6>7.8.9>i°. Exotic phases of matter at high baryon density 
may be realized in nature in the cores of neutron stars. In order to study 
this possibility quantitatively we would like to develop a systematic frame
work that will allow us to determine the exact nature of the phase diagram 
as a function of the density, temperature, the quark masses, and the lep-
ton chemical potentials, and to compute the low energy properties of these 
phases. In this contribution we give a brief review of an attempt to use 
effective field theory methods to address this problem. 

2. High Density Effective Theory 

At high baryon density the relevant degrees of freedom are particle and hole 
excitations which move with the Fermi velocity v. Since the momentum 
p ~ v[i is large, typical soft scatterings cannot change the momentum by 
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very much. An effective field theory of particles and holes in QCD is given 
by n>12 

L = J24(™-D)IPV~\G;VG^ + ..., (l) 
V 

where v^, = (l,v). The field describes particles and holes with momenta 
p = [iv +1, where I <C /i. We will write I = 1$ + ly +1± with l\\ = v(l • v) and 
l± = I — l\\. In order to take into account the entire Fermi surface we have 
to cover the Fermi surface with patches labeled by the local Fermi velocity. 
The number of these patches is nv ~ (/i2/Aj_) where Aj_ <C /J, is the cutoff 
on the transverse momenta l±. 

Higher order terms are suppressed by powers of l//x. As usual we have 
to consider all possible terms allowed by the symmetries of the underlying 
theory. At 0(1/II) we have 

L = E { - ^ J D 1 ^ - ^ ^ ^ ^ | - (2) 

At higher order in l//x there is an infinite tower of operators of the form 
irniplD2^x(v • D)^^ withC = (1,-v) and n = 2 n i + 7 i 2 - l . At 0(1/y?) 
the effective theory contains four-fermion operators 13 

L = — ^ ^ C r r (Vi • V2, V! • V3, V2 • V3) 

^ vt r,r' 

• ( W ^ ) ( < r V i 4 ) 5 ( v i + v2 - v3 - v4). (3) 

There are two types of operators that are compatible with the restriction 
v\ + V2 = v3 + V4. The first possibility is that both the incoming and 
outgoing fermion momenta are back-to-back. This corresponds to the BCS 
interaction 

i. y^ y^ T/IT' Drr" i = ^ > ' > °vr•Ri
l
T'(v-v')(^vT1p_v)(:pl,T'^_vl), (4) 

M t,,^r,r' 

where v • v' = cos 9 is the scattering angle and Rfr (v • v') is a set of 
orthogonal polynomials. The second possibility is that the final momenta 
are equal to the initial momenta up to a rotation around the axis defined 
by the sum of the incoming momenta. The relevant four-fermion operator 
is 

L = \2 E E^r r'(^rr'(^-^)(^r^)(^rvl,), (5) 
v,v',4>Y,T' 
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where v,v' are the vectors obtained from v,v' by a rotation around vtot = 

v + v' by the angle (f>. 

The four-fermion operators in the effective theory can be determined by 

matching moments of quark-quark scattering amplitudes between QCD and 

the effective theory. The matching conditions involve on-shell scattering 

amplitudes in BCS and forward kinematics. The scattering amplitude in 

the effective theory contains almost collinear gluon exchanges which do not 

change the velocity label of the quarks as well as four-fermion operators 

which correspond to scattering involving different patches on the Fermi 

surface. There are several contributions in the microscopic theory tha t are 

absorbed into four-fermion operators in the effective theory. Examples are 

large angle scatterings 13 and non-perturbative instanton effects 14 . 

3. P o w e r C o u n t i n g 

In this section we briefly discuss the power counting in the high density 

effective theory. We will denote the small scale by I <C \i. We first discuss 

the scaling properties of a generic operator. We assume tha t v • D scales 

as I, tpv scales as l3^2, A^ scales as /, and Dj_,v • D ~ I. Complication 

arise because not all loop diagrams scale as I4. In fermion loops sums 

over patches and integrals over transverse momenta can combine to give 

integrals that are proportional to the surface area of the Fermi sphere, 

J _ V [ £LL = J!L- f^l (6\ 
2it^J (2TT)2 2TT2 J 4TT ' U 

v 

These loop integrals scale as I2, not lA. In the following we will refer to 

loops tha t scale as I2 as "hard loops" and loops tha t scale as I4 as "soft 

loops". In order to take this distinction into account we define V^ and V^1 

to be the number of soft and hard vertices of scaling dimension k. A vertex 

is called soft if it contains no fermion lines. In order to determine the I 

counting of a general diagram in the effective theory we remove all gluon 

lines from the graph, see Fig. 1. We denote the number of connected pieces 

of the remaining graph by Nc- Using Euler identities for both the initial 

and the reduced graph we find that the diagram scales as Is with 

6 = E t(fc ~ A)V" + (k ' 2 - MVk
H] +EQ+4- 2NC. (7) 

i 

Here, /& denotes the number of fermion fields in a hard vertex, and EQ is 

the number of external quark lines. We observe tha t in general the scaling 
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3CvC 

Figure 1. Counting hard loops in the effective field theory. If all (soft) gluon lines are 
removed the remaining fermionic loops contain sums over the velocity index. 

dimension 6 increases with the number of higher order vertices, but there 
are two important exceptions. 

First we observe that the number of disconnected fermion loops, Nc, 
reduces the power S. Each disconnected loop contains at least one power 
of the coupling constant, g, for every soft vertex. As a result, fermion loop 
insertions in gluon n-point functions spoil the power counting if the gluon 
momenta satisfy / ~ g/j,. This implies that for I < gfj, the high density 
effective theory becomes non-perturbative and fermion loops in gluon n-
point functions have to be resummed. The generating functional for hard 
dense loops in gluon n-point functions is given by 15,16 

r fjQ pa p/3 
LHDL = -m* ] - K G ^ - ^ - ^ ^ , (8) 

where m2 = Nfg2fi2 /(Air2) and the angular integral corresponds to an 
average over the direction of Pa = (l,p). For momenta I < g/i we have 
to add LHDL to LHDET- In order not to over-count diagrams we have 
to remove at the same time all diagrams that become disconnected if all 
soft gluon lines are deleted. Note that the high density effective theory is 
different from the standard hard dense loop approximation, because hard 
loops are resummed only in gluon Green functions, but not in quark Green 
functions or quark-gluon vertex functions. 

The second observation is that the power counting for hard vertices is 
modified by a factor that counts the number of fermion lines in the vertex. 
It is easy to see that four-fermion operators without extra derivatives are 
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leading order (k — 2 — fk = 0), but terms with more than four fermion 
fields, or extra derivatives, are suppressed. This result is familiar from the 
effective field theory analysis of theories with short range interactions 17>18. 

4. Color Superconductivity 

In the last section we saw that hard loops lead to non-perturbative effects 
in the effective theory that require resummation at the scale I ~ g/j,. In ad
dition to that, there are logarithmic divergences that have to be resummed 
at exponentially small scales I ~ /xexp(—c/g). The most important effect 
of this type is the BCS instability in the quark-quark scattering amplitude. 
This instability leads to the formation of a gap in the single particle spec
trum. We can take this effect into account in the high density effective 
theory by including a tree level gap term 

L = ARf(v-A)ip-v(72Tijjv + h.c.. (9) 

The Dirac matrix T and the angular factor Rf(x) determine the helicity and 
partial wave channel. The magnitude of the gap is determined variationally, 
by requiring the free energy to be stationary order by order in perturbation 
theory. 

At leading order in the high density effective theory the variational 
principle for the gap A gives the Dyson-Schwinger equation 

2g2 f d4q A(g4) . , 

where we have restricted ourselves to angular momentum zero and the color 
anti-symmetric [3] channel. DM2, is the hard dense loop resummed gluon 
propagator. We also note that equ. (10) only contains collinear exchanges. 
According to the arguments give in Sect. 3 four-fermion operators are of 
leading order in the HDET power counting. However, even though collinear 
exchanges and four-fermion operators have the same power of I, collinear 
exchanges are enhanced by a logarithm of the small scale. As a consequence, 
we can treat four-fermion operators as a perturbation. 

Sine the electric interaction is screened it is possible to absorb electric 
gluon exchanges into four-fermion operators. At leading order in the high 
density theory the gap equation is completely determined by the collinear 
divergence in the magnetic gluon exchange interaction. This IR divergence 
is independent of the helicity and angular momentum channel. We have 

^' I S W O V</I + A(g4)2
 \\PI-QI\1/2J V 
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The leading logarithmic behavior is independent of the ratio of the cutoffs 
and we can set Ap = Aj_ = A. We introduce the dimensionless variables 
variables x = log(2A/(<74 + eq)) and y = log(2A/(p4 + ep) where eg = 
(g| + A(q,4))1'2. In terms of dimensionless variables the gap equation is 
given by 

A(y) = ^ p dx A(x)K(x, y), (12) 

where XQ = log(2A/Ao) and K(x,y) is the kernel of the integral equation. 
At leading order we can use the approximation K(x,y) = min(a;,y). We 
can perform an additional rescaling x = XQX, y = xoy. Since the leading 
order kernel is homogeneous in x and y we can write the gap equation as 
an eigenvalue equation 

A(y) = x 2
0 ^ J dxA(x)K(x,y), (13) 

where the gap function is subject to the boundary conditions A(0) = 0 and 
A'(l) = 0. This integral equation has the solutions 19 

An(x) = A„ i0sin I x0,nx) , x0,„ = (2n + 1 )^=- . (14) 

The physical solution corresponds to n = 0 which gives the largest gap, 
A0 = 2Aexp(—37r2/(v/2g)). Solutions with B / 0 have smaller gaps and 
are not global minima of the free energy. 

5. Higher Order Corrections to the Gap 

The high density effective field theory enables us to perform a systematic 
expansion of the kernel of the gap equation in powers of the small scale and 
the coupling constant. It is not so obvious, however, how to solve the gap 
equation for more complicated kernels, and how the perturbative expansion 
of the kernel is related to the expansion of the solution of the gap equation. 

For this purpose it is useful to develop a perturbative method for solv
ing the gap equation 20>13. We can write the kernel of the gap equation as 
K(x,y) = Ko(x,y) + 5K{x,y), where Ko{x,y) contains the leading IR di
vergence and 6K(x, y) is a perturbation. We expand both the gap function 
A (a;) and the eigenvalue XQ order by order 5K, 

A{x) = A<°>(z) + AW(x) + A{2\x) + ..., (15) 

s0 = 4 0 ) + 4 1 ) + 4 2 ) + ---> (16) 
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-> 
• V 

a—< * < > A > D 

x 0 — 2 

Figure 2. Higher order corrections to the gap equation in the high density effective 
theory. The diagrams shown in this figure correspond to four-fermion operators, fermion 
self-energy corrections, and vertex corrections. 

where we have defined x\ = g1x\j(\%'K1"). The expansion coefficients can 
be found using the fact that the unperturbed solutions given in equ. (14) 
form an orthogonal set of eigenfunctions of KQ. The resulting expressions 
f o r 4 i } and AW(x) are very similar to Rayleigh-Schroedinger perturbation 
theory. At first order we have 

1 ^ i 0 ) ) 2 j dx f dyA$>\x)6K(x0x,x0y)A{o\y), (17) 
0 JO 

- (0) fl rl 
( 1 ) " ^—2 / dx dy ^\x)5K{x0x,x0y)^\y), (18) 

1 \ Jo Jo 
2k+l ) 

with A^(x) =J2c{
k
1)A{

k°\x) and SK = g/(3V2n)5K. 
We can now study the role of various corrections to the kernel. The 

simplest contribution arises from four-fermion operators. We find 

SK(x0x,x0y) = log(b), 6 = ~ ^ 5 ^ ( ] H • (19) 

This contribution does not change the shape of the gap function but it gives 
an 0(g) correction to the eigenvalue XQ. This corresponds to a constant pre-
exponential factor, A'1) = bA^°\ An important advantage of the effective 
field theory method is that this factor is manifestly independent of the 
choice of gauge. The gauge independence of the pre-exponential factor 
is related to the fact that this coefficient is determined by four-fermion 
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operators in the effective theory, and that these operators are determined 
by on-shell matching conditions. 

Another effect that contributes to the eigenvalue at O(g) is the fermion 
self energy 20>21. A one-loop calculation in the high density effective theory 
gives 22.23,24,25,26 

£M = ^ P « l o g ( £ ) . (20) 

The correction to the kernel of the gap equation is 

- _ _ 92 

SK(xox,x0y) = -—; (x0x) Ko(x0x,xoy), (21) 

and the shift in the eigenvalue is given by 

where (OlJ-K'lO) denotes the matrix element of the kernel between unper
turbed gap functions, see equ. (17). At this order in g, there is no con
tribution from the quark-gluon vertex correction. Note that the quark self 
energy correction makes an O(g) correction to the eigenvalue, even though 
it is an 0(g2) correction to the kernel. This is related to the logarithmic 
divergence in the self energy. The perturbative expansion of XQ is of the 
form 

x0 
g log(A) = O(g0) + 0(g log(5)) + O(g) + .... (23) 

Brown et al. argued that equ. (22) completes the 0(g) term. At this order 
the spin zero gap in the 2SC phase of Nf = 2 QCD is 21,27,13 

4 . - 5 -i±l-
A = 512TTVS e — ~ e ^ . (24) 

In other spin or flavor channels the relevant four fermion operators are 
different and the pre-exponential factor is modified 5>21,28,29^ j n ^e CFL 
phase of Nf = 3 QCD the gap is suppressed by a factor (2/3) 5 / 22 - 1 / 3 . 

6. Instanton Correction 

In this section we shall focus on the correction to the perturbatively gener
ated gap parameter which is due to instantons. If the density is very large 
instanton effects are exponentially small as compared to perturbative inter
actions. In this regime instantons are important for physical observables, 
like the mass of the U(1)A Goldstone mode, that receive no contribution 
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Figure 3. Instanton correction to the perturbatively generated gap in QCD with Nf = 2 
and Nf = 2 + 1 flavors. We show the gap with and without instanton corrections. In 

the N f 2 + 1 case we have used ms 150 MeV. 

from perturbative interactions, but they make no significant contribution to 
the gap. As the density is lowered instanton effects grow. In the following 
we will use the methods described in the last section in order to determine 
the scale at which instanton contributions to the gap become important. 

Instantons induce a chirality changing four-fermion operator. In QCD 
with Nf = 3 flavors and mUid <C ms we have 

2Nc-l 2(27rp)V 
L= I n{p, p)dp T71^^ 7vmse / l /2egig2 

4(iVc2 - 1) 2Nr 

1 

(^R,h^L,gi)(^RJ21pL,g2) 

R)) , (25) 

where the sum over flavors runs over up and down quarks only, / i ^ = <?i,2 = 
{u,d), and the instanton size distribution n{p, /J,) is given by 

2NC 

n(p, p) = CN [^r-CN 

CN 

8TT2 

87T2 

92 p exp 
8ir2 

~9(P)2\ 

2 , . 2 1 exp \—Nfp p 

0.466 exp(-1.679iVc)1.34 
( JV c - l ) ! ( iV c -2 ) ! 

= -61og(pA), b = 

N, 

II 
-Nr. -Nf 

(26) 

(27) 

(28) 
92{p) — - ' " 3 - 3 ' 

Note that equ. (25) is an effective interaction for quarks near the Fermi 
surface. In particular, there are no form factors that have to be included. 
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We also observe that the integration over sizes is cut off at p ~ H~l • As a 
consequence, instanton effects are of order exp(—87r2/p2(/x)) ~ (AQCD/V) 6 -

In addition to the four-fermion vertex given in equ. (25) instantons also in
duce a six-fermion operator. This operator has important physical effects, 
but it does not contribute to the gap to leading order in the effective in
teraction, so we will not consider it here. In QCD with Nf = 2 massless 
flavors instantons induce a four-fermion operator which can be obtained 
from equ. (25) by making the replacement msp —> 1. 

We can now compute the instanton correction to the kernel of the gap 
equation. In the three flavor case we find 5Kj = log(6j) with log(6/) = 
9G//g2 and 

G/(W/=3)=%(^(W)Y^* 
^ 2 \ M / V ^ / V 92 

(2TT)2 A(NC + 1) 
(&±3) 

2(JVf - l ) Nc 2NV>o+3)/2> 
(29) 

P T)°(-
(27T)2 

2(A^c2 " 

92 ) 

4(iVc + 
1) Nc 

l ) r ( t + >) 
2 j v ( /3o /2+l ) 

where /3Q = HJVc/3 — 27V//3 is the first coefficient of the beta function. In 
the two flavor case we get 

GI{N1 = 2) 
p~ v P / \ y~ / 

(30) 

We note that the main difference is a suppression factor (ms//i) in the 
Nf = 3 flavor case. Numerical results are shown in Fig. 3. We observe that 
the instanton correction becomes large for p ~ 1250 MeV in Nf = 2 QCD 
and for fj, ~ 750 MeV in the realistic case of QCD with three flavors and a 
massive strange quark. 

We should note that the fact that the instanton correction to the gap 
is on the order of 100% does not necessarily invalidate the perturbative 
expansion. As explained in the previous section, the quantity that is being 
expanded is not the gap A, but log(/i/A). In Fig. 4 we compare the size of 
the leading order 0(l/g) term, the sub-leading 0(log(p)) and 0(1) terms, 
as well as the instanton contribution to the logarithm of the gap in Nf = 3 
QCD. We observe that exponentially small instanton contributions start to 
dominate over all other contact terms for /j, ~ 600 MeV. 
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Figure 4. This figure shows successive terms in the perturbative expansion of log(/i/A) 
in QCD with Nf = 3 flavors. 

For /j ~ 500 MeV the instanton term becomes comparable to the leading 
0(1/(7) term and we can no longer consider instantons effects to be a small 
correction. In this regime it probably makes more sense to do an instanton 
calculation and consider perturbative gluon exchanges as a correction. This 
is the approach originally suggested in 3 '4. We should note, however, that 
for (j, < 500 MeV the instanton calculation requires some phenomenological 
input because the instanton size distribution equ. (26) is no longer reliably 
calculable. 

Ideally, we would like to check perturbative calculations of the gap 
against numerical calculations on the lattice. While this cannot be done in 
the realistic case of QCD with Nc = 3 colors, the comparison is possible for 
QCD with Nc = 2 colors and an even number of flavors, or for QCD with 
Nc = 3 colors and a non-zero chemical potential for isospin rather than 
baryon number. In both of these cases it is also possible to separate the 
perturbative and instanton contributions by measuring both the gap and 
the mass of the U(1)A Goldstone boson 30. 

7. Numerical Estimates 

In this section we shall address a few more issues related to the magnitude of 
the gap. We will estimate the size of certain higher order corrections using 
numerical solutions of the gap equation. The first problem we wish to study 
is the importance of the fermion self energy correction. In Sect. 5 we saw 
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Figure 5. Numerical solution of the perturbative gap equation. We show the results 
with and without the fermion self energy included. We also show the asymptotic result, 
which corresponds to a reduction of the gap by a factor exp(—(w2 + 4)/8) ~ 0.18. 

that at asymptotically large chemical potential non-Fermi liquid effects in 
the fermion self energy reduce the gap by a factor exp(—(TT2 +4)/8) ~ 0.18. 
In order to study the problem at moderate densities we consider the gap 
equation 

Af ^ 92 r , 7( , A(g4) ( bpfi \ 
A(Pi) = 7 ^ / dq4 z 94) /-^— A , ^9 log T-2 2TT7i ' (31) 

with 

and bo = 256n4g~5. If the density is very large then the scale inside the 
logarithm in equ. (32) does not matter. For our numerical estimates we have 
used the electric screening mass which is the scale suggested by one-loop 
calculations 24. 

Numerical results are shown in Fig. 5. We observe that the gap is indeed 
reduced by the effects of fermion wave function renormalization, but at 
moderate density the reduction is smaller as compared to the asymptotic 
result. This is related to the fact that for \i - 500 MeV and A ~ 50 MeV 
the logarithm log(mrj/A), which is formally 0(1/g), is numerically not 
very large. 
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Figure 6. Numerical solution of the gap equation with running coupling constant effects 
included. We show the result with a fixed coupling g = g(/n), with a coupling that runs as 
a function of the momentum transfer as long as the momentum is larger than the electric 
screening scale, and a coupling that runs as a function of the momentum without any 
restrictions. 

The second issue we wish to address is the role of running coupling con
stant effects in the gap equation 31. For the numerical estimates presented 
in the last section we have used the weak coupling result equ. (24) with the 
coupling constant evaluated at the scale fi. It is easy to see that variation 
in the scale correspond to 0(g2) corrections, which is of the same order as 
other terms that have been neglected. 

In order to estimate the size of these effects we consider the gap equation 

4/(3,9o 

A(p4) dq± 
9 (mD) 

18TT2 
log m D •AJ, 

A3 2 log 
g2(mD) 

A(g4) 

v7?! + A(g4)
2 

(33) 

where A M = (nmD\p4 ± q^/A)1/3 is the scale that characterizes magnetic 
gluon exchanges. For momenta above the electric screening scale we have 
used the one-loop running coupling at the scale set by the momentum 
transfer. For momenta below the screening scale the coupling is frozen. In 
the language if the high density effective theory this means that the we have 
performed the matching at the electric screening scale. The four-fermion 
operator acquires an anomalous dimension which is equal to the QCD beta 
function 32. Below the electric screening scale the gluonic interaction is 
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effectively three-dimensional and does not run. 
In Fig. 6 we show results obtained by solving equ. (33) numerically. 

For comparison we also show results obtained by solving a gap equation 
in which the coupling is allowed to run all the way down to the magnetic 
scale (m2

DA)1^3. This approximation was suggested by Beane et al. 31. We 
observe that for a moderate chemical potential /u, ~ 500 MeV the running 
coupling constant does not lead to very large effects. The reason is that 
there is no large hierarchy between the scales mp and \x. If the chemical 
potential is very large, \i ~ 10 GeV, the gap is increased by about 50%. 
This effect slowly disappears at asymptotically large chemical potential. 
The situation is different in case of the gap equation proposed by Beane et 
al. In that case the gap equation involves an extra large logarithm log(/i/A) 
and the pre-exponential factor in the asymptotic solution is modified 31. 

8. Conclusions 

We discussed an effective field theory for QCD at high baryon density. We 
studied, in particular, the problem of power counting in the high density 
effective theory. We showed that the power counting is complicated by 
"hard dense loops", i.e. loop diagrams that involve the large scale fx2 and 
proposed a power counting that takes these effects into account. The mod
ified I counting implies that hard dense loops in gluon n-point functions 
have to be resummed below the scale gfi, and that four fermion operators 
are leading order in the HDET power counting. 

We used the high density effective theory to study the size of instanton 
corrections to the gap in superfluid quark matter. We found that instanton 
effects are very large in the regime \i ~ 500 MeV which is of physical 
interest. We argued that numerical calculation in QCD with Nc = 2 colors, 
or QCD with Nc = 3 colors and non-zero isospin chemical potential, will 
of great help in determining the gap in Nc = 3 QCD at non-zero baryon 
density. We also studied a renormalization group improved gap equation. 
We find no significant corrections as compared to a gap equation with a 
fixed coupling. 

Acknowledgments: This work was supported in part by US DOE grant 
DE-FG-88ER40388. 

References 

1. D. Bailin and A. Love, Phys. Rept. 107, 325 (1984). 
2. M. Alford, K. Rajagopal and F. Wilczek, Phys. Lett. B422, 247 (1998), 

[hep-ph/9711395]. 



344 

3. R. Rapp, T. Schafer, E. V. Shuryak and M. Velkovsky, Phys. Rev. Lett. 81, 
53 (1998), [hep-ph/9711396]. 

4. M. Alford, K. Rajagopal and F. Wilczek, Nucl. Phys. B537, 443 (1999), 
[hep-ph/9804403]. 

5. T. Schafer, Nucl. Phys. B 575, 269 (2000), [hep-ph/9909574]. 
6. K. Rajagopal and F. Wilczek, The condensed matter physics of QCD, in: 

Festschrift in honor of B.L. Ioffe, 'At the Frontier of Particle Physics / 
Handbook of QCD', M. Shifman, ed., World Scientific, Singapore, [hep-
ph/0011333], 

7. M. Alford, Ann. Rev. Nucl. Part. Sci. 51, 131 (2001), [hep-ph/0102047]. 
8. G. Nardulli, Riv. Nuovo Cim. 25N3, 1 (2002), [hep-ph/0202037]. 
9. T. Schafer, Quark Matter, BARC workshop on Quarks and Mesons; to appear 

in the proceedings, hep-ph/0304281. 
10. D. H. Rischke, Prog. Part. Nucl. Phys. in press, nucl-th/0305030. 
11. D. K. Hong, Phys. Lett. B 473, 118 (2000), [hep-ph/9812510]. 
12. D. K. Hong, Nucl. Phys. B 582, 451 (2000), [hep-ph/9905523]. 
13. T. Schafer, Nucl. Phys. A 728, 251 (2003) [hep-ph/0307074]. 
14. T. Schafer, Phys. Rev. D 65, 094033 (2002), [hep-ph/0201189]. 
15. E. Braaten and R. D. Pisarski, Phys. Rev. D 45, 1827 (1992). 
16. E. Braaten, Can. J. Phys. 71, 215 (1993), [hep-ph/9303261]. 
17. R. Shankar, Rev. Mod. Phys. 66, 129 (1994). 
18. J. Polchinski, hep-th/9210046. 
19. D. T. Son, Phys. Rev. D 59, 094019 (1999), [hep-ph/9812287]. 
20. W. E. Brown, J. T. Liu and H. C. Ren, Phys. Rev. D61, 114012 (2000), 

[hep-ph/9908248]. 
21. W. E. Brown, J. T. Liu and H. C. Ren, Phys. Rev. D 62, 054016 (2000), 

[hep-ph/9912409]. 
22. B. Vanderheyden and J. Y. Ollitrault, Phys. Rev. D 56, 5108 (1997), [hep-

ph/9611415]. 
23. W. E. Brown, J. T. Liu and H. c. Ren, Phys. Rev. D 62, 054013 (2000), 

[hep-ph/0003199]. 
24. C. Manuel, Phys. Rev. D 62, 076009 (2000), [hep-ph/0005040]. 
25. C. Manuel, Phys. Rev. D 62, 114008 (2000), [hep-ph/0006106]. 
26. D. Boyanovsky and H. J. de Vega, Phys. Rev. D 63, 034016 (2001), [hep-

ph/0009172]. 
27. Q. Wang and D. H. Rischke, Phys. Rev. D 65, 054005 (2002), [nucl-

th/0110016]. 
28. T. Schafer, Phys. Rev. D 62, 094007 (2000), [hep-ph/0006034]. 
29. A. Schmitt, Q. Wang and D. H. Rischke, Phys. Rev. D 66, 114010 (2002), 

[nucl-th/0209050]. 
30. T. Schafer, Phys. Rev. D 67, 074502 (2003) [hep-lat/0211035]. 
31. S. R. Beane, P. F. Bedaque and M. J. Savage, Nucl. Phys. A 688, 931 (2001) 

[nucl-th/0004013]. 
32. T. Schafer, in preparation. 



345 

AXIAL ANOMALY IN DENSE QCD 
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By explicit calculations, we show that the axial anomaly does not depend on the 
chemical potential in dense QCD. We also calculated the axial anomaly in the 
high density effective theory of QCD to find that the anomaly matching leads to 
additional operators in the effective theory. 

1. Introduction 

New emergent phenomena often appear at extreme conditions, unseen at 
normal circumstances. At extreme density, a density higher than the nu
clear density, p = 0.16 fm~ , which might be reached in the core of compact 
stars like neutron stars or in the relativistic heavy ion collision(RHIC), the 
asymptotic freedom of QCD predicts quark matter. The ground state of 
matter turns out to be a color superconducting state with rather rich phase 
structures1. 

Not only in compact stars but also in collider experiments, photon can 
be a useful probe to newly proposed phases of quark matter, since it can 
propagate into a color superconductor and interact easily with its low-
energy excitations2. It is therefore quite important to find out how quark 
matter responds to external electromagnetic probes. In this talk, we con
sider among others the axial anomaly in quark matter, which is relevant to 
the anomalous decay of pions into two photons. 

mailto:dkhong@pnu.edu
mailto:tspark@kias.re.kr
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It is well-known that the axial vector currents is not conserved due to 
quantum effects in regularizing the ultraviolet divergences. When there is 
no matter, the divergence of the axial vector current is given as3 

< « > = 4^e"VaPF^FaP- {1) 

Since hot and dense matter does not change the structure of ultraviolet 
divergences, one expects that the anomaly is independent of temperature 
and density. However, since the Lorentz symmetry is broken in medium, 
there could be other terms besides the Pontriagin index, contributing to 
the axial anomaly. A prime candidate is the Chern-Simons term, 

(d^Jg) oc e^kAiFjk (2) 

which is invariant under rotations and gauge transformations. As discussed 
in the case of finite temperature4, the anomaly condition 

Q J- flap = n 2
eaf3p<r 1 2 ( " ) 

does not necessarily imply the singularity of the axial-vector-vector current 
correlator TMQ;g = (JM Ja Jj) at q2 = 0 in medium. 

2. Axial Anomaly in Full QCD 

The axial-anomaly(AA) can be studied the divergence of the following 
three-point function, 

T^(h,k2) = i Jd4
Xl JdAx2 {0\TJ^Xl)Mx2)4(0)\0) eik^+ik*-x* (4) 

where J^x) = ^(x)y^ip(x) and J^(x) = ^(x)7^75VK^) denote the vector 
and axial-vector current, respectively, and i/){x) is the quark field. At the 
tree-level, Ward identities read as /ef TM„A (^I , k2) = k2T^x{ki, k2) = 0 and 
(fci +k2)

xT^u\(ki, k2) = 0. Here and hereafter, we neglect quark masses. In 
free space, it has been known that we cannot satisfy all the Ward identities 
simultaneously due to quantum fluctuations; Requiring the vector Ward 
identities to be preserved, we have 

A^fc i . f c ) = (h +k2)
xTllvX(k1,k2) = ^e^a(3klak2p. (5) 

In this section, we will prove that this equation holds even in matter. 
Let us begin with writing QCD Lagrangian with the chemical potential 

CQCD = i>(x)(i P-m + woMx) - l(G%)2. (6) 
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The corresponding free quark propagator reads 

SF{p;ii) = -i I(Pie** (0\TiP(x)^(0)\0) 

where e is the positive 
(1 + ie)po7° — P • 7 + M7° 

infinitesimal. 
The anomaly amplitude A^ in QCD reads 

A " » 
f d*p 

J (2TT)< 

+ (fj, <->• v, 

: t r [5ir(p;/i) 4l5SF(p q: 

fci <-> fo) 

; M ) 7 " 

— m ' 

' 5 F ( p - -fci ĥ" 

v; 

] 

(8) 

where q^ = {ki+kiY- As mentioned, the loop-integral is linearly divergent 
and a care is needed in doing the regularization. To amuse this, let us review 
the usual trick in evaluating the anomaly in free-space, 

#75 = 7 5 ^ - d - m) + (p1 - m)75 + 2mj5 - {p1, 75} . (9) 

The contributions from the first two terms are identical but with opposite 
sign, provided that the integral is invariant under the change of variable, 
pV —> pV + a/\ If translational invariance is imposed in evaluating loop 
integrals, the contributions from the first two terms cancel each other ex
actly. The third term is proportional to the quark mass, and gives us 
vanishing contribution when we put m to be zero. But if use Pauli-Villars 
regularization which introduces fictitious quark field with a large mass M, 
the contribution from the third term cannot be neglected and actually ac
count for the axial-anomaly in this regularization. Finally the last term 
vanishes identically when D = 4, D is the spacetime dimension.a Thus, 
there would be no AA if there is a regularization that has [1] translational 
invariance, [2] defined in D = 4 and [3] can be evaluated with vanishing 
quark masses. In reality, there is no such a regularization, and gives us 
the non-vanishing AA. For example, in CO, there is no translational in
variance and the first two terms give us the AA. In DR, the last term is 
non-zero. In PV, we need to consider the limit of large quark mass since 
A^y = limM^oo [A""(m) - A""(M)]. 

In sharp contrary to the free-space case, we observe that the medium 
modification 

A""(/*) = A^(/x) - A""(0) = [^ drf / y A ^ G / ) (10) 
Jo "M 

aEven in D ^ 4, {(/, 75} equals to zero since qM is a tangent vector lying in 1 + 3 
dimension. 
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is UV-finite and can be evaluated without any regulator. To show this, let 
us rewrite (8) using the change of variable13, 

jf - • p'» = jf + u*>, (11) 

where uM = (1, 0). We then observe, omitting primes on p, 

SF(p-un\ij) = (p, + m)DF(p;/j,), 

DF(p;fi) = -2
 1 -. (12) 

We further note that 

^DF(p; M) = 2m 5(p> - m2)S(p° - M) = 2m ^ ~ ^ ^ ~ ^ (13) 

where Ep = y/p2 + m2. That is, derivation with respect to \x makes the 
loop integral into an angle integration, which is UV-finite. 

For an explicit proof, we consider m = 0 case. In (9), only the first two 
terms survive and gives us 

= - 4 i e ^ a / 3 [p2 k2a(p - fa)p + (p- qf faapp] . (14) 

We thus have 

| - A ^ ( M ) = W a e j ^ ~ [k2a(p - fa)pDF(p - q; H)DF{P - fa;n) 

+klappDF(p; n)DF(p - fa; n) I 

+(fj, <-> v, fa <-» k2) 

= ^[^2^-^-4 
J (27r)4 2Ep 

•(k2app[DF(p + k2;fi) +DF(p-k2;/i)) 

+faapp[DF(p + fa;n) + DF(p- fa;n)}) 

+((i <-> v, fa <-> fa)- (15) 
Being odd under // <-> v while even under fa <-> k2, they cancel exactly with 
the crossing terms, 

| ^ ( / x ) = 0 . (16) 

bHere one can say that we are using dimensional regularization which guarantees the 
translational invariance. 
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Inserting the AA in free-space, we have 

A""(/*) = ^e^klak2!3, (17) 

which is independent of \i. 

3. Axial Anomaly in High Density Effective Theory 

We can do the same calculation using high density effective theory(HDET) 
which is constructed by integrating out " fast" modes whose energy is higher 
than the chemical potential energy E > fi 5. In calculating the triangle di
agram which is linearly divergent one has to regularize it. There are many 
methods of regularization. One of them is the Pauli-Villars regularization 
in which a new field with large mass is introduced. However, the introduc
tion of a fictitious field having large mass may cause some discrepancies in 
the effective theory. The most convenient way of regularizing a Feynman 
diagram is the dimensional regularization. Obviously 75 is defined only in 
4-dimensional space-time. Thus we define a gamma matrix ~fs, a substitute 
for 75, as a product of all gamma matrices in a general dimension in order 
to satisfy key properties of projection operators in HDET. 

7 ^ ± = P^, llP± = P±l1, (18) 

where the projection operators and gamma matrices parallel (perpendicular) 
to the Fermi velocity are given by 

1 ± 7S7 • v{j • vh, _ 
P± = , vF = vi x v2 

1\\ = (7o, vFvF- 7), 7 ^ = 7 ^ - 7 ^ (19) 

v\ and V2 are defined to be an orthonormal set of unit vectors on the surface 
of the 2-dimensional Fermi sphere. In HDET quark field with momentum 
close to the Fermi momentum can be viewed as a composite of two compo
nents with different energy, 

^(x) = ei^F-3ip+{vF,x) + ei^F-sxl)-{vF,x) (20) 

where ip+ modes correspond to quarks near the Fermi momentum, while ip-
modes correspond to antiquarks which are irrelevant at the energy of our 
interest due to the presence of the large Fermi sphere. Then the Lagrangian 
for quarks becomes 

= ^+(.vF,x)i^D^ip+(vF,x) + 4>^(vF, x)i°(2/j, + iD\\)ip_(vF, x) 

+ tp-(vF,x)ij±D^ip+(vF,x) + tp+(vF,x)i^±DIJ,^^(vF,x) (21) 
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where we have used (18) and D\\ = V^D^ with V1 = (1, —VF) and V^ 
(l,vF). 

The axial current is expanded in terms of powers of - . 

(c^J£) = / / 2A ( 2 )+/xA ( 1 ) + A (0) H-i) (22) 

Consider the anomaly amplitude of order of /i2, A(2) which corresponds to 
the triangle diagram with three intermediate fermions ip+. 

A g = - H e ) 2 J ^Lir[4l5S+{l + k2)^S+(l)rSF(l - fci)] 

+(a <-> P, k% <-» fc2) 

d4l 
-(-ieY rtr 

(27T) 

+ ( a <-> p, ki <-> fc2) 

= 0 

1175^ {V+fa ^iila-tt' {V-h) 

(23) 

where Sp(l) is the propagator for if>+ and it can be obtained from (21). 

S+(l) = P+- (24) 

One can expand the propagator for T/J_ in terms of ^ and calculate the 
anomaly amplitudes order by order like (22). 

Sp(l) "2/7 
?7 

2 / i 
•JJ? + i>^ (25) 

We have seen that the term proportional to /z2 does not contribute to the 
axial anomaly. Using the first term in (25), Sp , we obtain the next-leading 
terms 

.a/3 
\ l ) a 

.a/3 
\ l ) b 

y (2^ 
rtr l5S+(l-kl)1

aSp'1
0S+(l + k2) 

+(a <-> /?, fci <-> fc2) 

0 

0 - A g c 

(26) 

where the subcripts a, 6, c denote three triangle diagrams according to the 
possible fermion line for ip-. Therefore there is no axial anomaly up to 
order of \x which is consistent with the argument in Section 2. Similarly 
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A&^AgJu, A« = - A « 1 (29) 

if we adopt the second te rm as the ip- propagator from (25), we get the 

anomaly amplitudes as 

A j = ~ie2 J ^ t r [fr6S+{l - h^S/^S+il + k2) 

-\-(a <-> /3, fci <-> k2) 
• 2 

= ^Sai5^h^e^ (27) 

where i, j means the spatial components of Dirac indices. Summing all the 

contributions at this order gives the axial anomaly 

< = * $ ) „ + A & + A & (28) 
1 .. 9 
_ A 0 i A1-3 - - / 

(0 ) ~ 3 f u l b (°) ~ 3 

Note tha t the amplitudes computed using H D E T differ by some factors 

from calculations in full theory. We find tha t in effective theory additional 

operators are needed for anomaly matching. 
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In this paper we discuss the phenomenon of the Andreev reflection of quarks at 
the interface between different types of QCD phases, appeared in QCD at asymp
totically high densities. 

1. Introduction 

Quantum Chromodynamics is a non-abelian quantum field theory describ
ing interactions between quarks and gluons. It describes the effect of con
finement at low energy x and asymptotic freedom at high energy 2 compared 
to the QCD scale AQCD ~ 200 MeV. The only known systematic approach 
to low energy QCD are lattice calculations. The physics of the high energy 
QCD can be controled by the perturbation analysis in strong coupling con
stant. There are three different types of phenomena of strong interactions 
which one can hope to describe in the perturbative regime: high energy 
scattering processes, high temperature and high baryon density systems. 
Especially the high baryon density quark matter at low temperatures is ex
pected to exist in the cores of the compact stars 3. Unfortunately, here also 
the densities are not high enough for direct perturbative calculations (by 
many orders of magnitude). Then the only possible approches are based on 
universal features of the phase transitions and models. The lattice approach 
fails at non-zero density physics because of the sign problem. 

In this paper we focus on the high baryon density phases at T = 0. 
Since long ago one expected supeconducting phenomena in this kinemati-
cal region 4. However only recently there have been a new interest in the 
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subject because new features were found in the theory 5 , 6 ' r . If the energy 
scale is set by the quark chemical potential \x one can expect that at high 
enough densities there are a gas of free quarks and gluons. However the in
teraction between quarks mediated by the one-gluon exchange is attractive 
in the color 3 channel. This leads to the well known phenomenon of the 
Cooper instability of the Fermi sea and finally results in the creation of a 
new vacuum - the condensate of Cooper pairs. This is the version of the 
BCS theory of superconductivity 8 applied to the interacting quark matter. 
The picture is generally correct, however somehow oversimplified. There 
are subtle but important differences between BCS theory and superconduc
tivity in QCD which follow from the non-abelian character of the interation 
in quark-quark scattering (eg. [7]). The review of the whole subject can be 
found in [9]. Despite of some differences the high density QCD shares a lot 
of features with condensed matter systems. 

Our subject of interest are scattering processes at the interfaces between 
different types of QCD phases. These are the analogs of the Andreev reflec
tion 10 in condensed matter systems. This reflection appears at the junction 
between conductors and superconductors. In the case of dense QCD the 
role of conductor is played by the free Fermi gas of quarks and superconduc
tor is 2SC or CFL phases of QCD. In this paper we consider the interface 
between 2SC and CFL phase. We shall show that this interface is the most 
general in a sense that it already contains the other cases: free quarks/2SC 
11 and more: 2SC/2SC and one only peculiar to 2SC/CFL. The case of 
free quarks/CFL interface 12 has to be considered independently. 

2. Superconductivity in QCD 

The perturbative approach to high density QCD is well established at much 
higher densities than one can expect in the cores of the compact stars. Thus 
the use of models are inevitable in the description of interesting physics. 
This is the approach we chose in this paper. The one gluon exchange 
suggests that the diquark condensate is created in color and flavor anti
symmetric scalar channel. Similar feature one can also find using instanton-
based models. The effective hamiltonian describing quark interaction with 
the pseudoscalar condensate at the high baryon density can be written in 
the general form (for the review see [9]): 

/ • 
H= d6x 

a,i a,b,i,j 
(1) 
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where ipl
a are Dirac bispinors, a, b color indices, i,j flavor indices, C the 

charge conjugation matrix and \i is the quark chemical potential. At zero 
temperature the condensate A^fc is a vacuum expectation value of the 2-
point field correlator: 

ira
Tcj54) = A* (2) 

In the case of two flavors, the gap matrix (2) becomes: 

A* = Ae^eab3 (3) 

where the third direction in color space was chosen arbitrarily. This combi
nation breaks gauge symmetry SU(3)C —+ SU(2)C whereas chiral symmetry 
SU(2)L x SU{2)n remains untouched. This is the 2SC phase. The Cooper 
pairs are created between the quarks of different two colors and flavors and 
third color quarks are unpaired. The lowest energy excitations are of course 
unpaird quarks. The quasiparticles are separeted by the gap A from the 
vacuum. The value of the gap depends on the model and is usualy in the 
range 50 - 150 MeV. 

For the case of three flavors the gap parameter takes the forma: 

A ^ = A e ^ W (4) 

This is color-flavor locked (CFL) phase. The gauge symmetry and global 
chiral symmetry are broken according to the scheme SU(3)C x SU(3)L X 

SU(3)R —> SU(3)L+R+C- The baryon U(l) symmetry is also broken. All 
quarks are gapped in Cooper pairs with different colors and flavors. The 
lowest excitations are nine Nambu-Goldstone bosons related to the spon
taneous symmetry breaking of global symmetries. There is also additional 
Nambu-Goldstone boson connected to the breaking of restored axial sym
metry [//t(l). The value of the gap is model dependent of the order of the 
2SC gap but usualy slightly smaller. 

aThere is also a small admixture of the condensate in color symmetric 6 channel but we 
neglect it in our considerations. 
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The gap matrix can be written in general as: 

/ 0 A „ d A u s 

A„d 0 Ads 
Aus Ads 0 

ab Aab 

%3 

0 

-Aud 
-Av 

0 
0 

V 
0 

-A r f 

-Arfs 

0 / 

(5) 

in the basis 

^•us 

Aus 

= Ads = 0, Aud = A for 2SC 

= Ads = Aud = A, for CFL 

dblue), (6) 

where: 

(7) 

(8) 

^Prom the gap matrix structre one can easily recognize the (ured: dgreen), 
\Ugreen-, ^ r e d) pairings in 2SC phase. The quasiparticle excitations are two 
doublet representations of the remaining unbroken symmetry SU(2)i x 
SU(2)C of given chirality L. The second similar set exists for oposite chi-
rality. The unpaird quarks are singlets under color rotations SU(2)C and 
doublets under chiral symmetries. All of the excitations have the same gap 
A. The detail wave-functions of quasiparticle are given in Appendix B. For 
the CFL phase we have pairings: (dred,ugreen), (sred,ubiue), (sgreen, dbiue) 
similar to the 2SC and the combination of {ured,dgreen,suue) which is es-
sentialy new for the CFL phase. After diagonalization of the matrix we 
can find 8 excitations with the gap A and one excitation with the gap 2A. 
These are octet and singlet representations of the unbroken SU(3)L+R+C 

symmetry. 

3. Andreev reflection in superconducting QCD 

In this section, let us consider the Andreev reflection at the interface con
sisting of two different superconductors in QCD, that is, the 2SC/CFL 
interface since we find it is the most general case among the possible in
terfaces. As is obvious from the expression of the gap matrix (5) with the 
conditions (7) and (8), there are three kinds of possibilities of the quark 
scatterings at this interface. 

file:///Ugreen-
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• (sred,Ubiue) and/or (sgreen, dbiue)'- m this case, the Andreev reflec
tion is similar to QGP/2SC because strange quark as well as blue 
up and down quarks are unpaired in the 2SC phase. This interface 
has already been studied n . 

• (dred, Ugreen): in this case, the reflection is 2SC/2SC - like because 
the gap of each phase is, in general, different. 

• (ured,dgreen,Sbiue)'- m this case, the reflection is a mixture of 
(QGP-2SC)/CFL interface. This happens because in the 2SC 
phase the ured,dgreen quarks are paired whereas strange quarks 
remain free. 

Since the last two cases are specific to the 2SC/CFL interface and have not 
been studied so far, let us restrict our consideration into those cases. The 
comparison to other possibilities would be given at the end of this section. 

Let us start with the 2SC/2SC case. Physical setup we are interested 
in is that the interface is placed at z = 0 in space. For z < 0, we have 2SC 
phase and for z > 0, CFL phase and we provide the boundary condition 
that matches the wavefunctions at z = 0. 

For z < 0, the wavefunction takes the form as (below we put m = 0 for 
simplicity) 

(9) 

(10) 

where hi = /x + A, &2 = —A* + A,pi = Ai + £ andp2 = —/x + £. £ = \/E2 — A2 

and A = VE 2 — A2 . A is the gap in the 2SC phase. The angles 8S and Sc are 
phases of the gap parameters in 2SC and CFL superconductors respectively. 
The bispinors <pn, hi are desribed in Appendix A of Ref.[14]. 
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By matching these wavefunctions at z = 0, we find the results as follows; 

A = 0, 

B 

C 

^/{E-0{E + \)eia - y/{E + £)(E-\) 

VWToW-X)-y/iE~-
2Aelf 

0(E-X)e-
+ O(VM). 

y/{E + £)(E + A) - y/(E - 0(E - A)e* 
+ 0(l/n), 

D = 0, (11) 

where a — 5S — Sc is a phase difference of the gaps crossing the interface. 
Note here that the coefficients A and D exactly vanish in the massless limit. 
First of all, the transition and reflection coefficients, when E > A, A, are 
given by the formulae: 

4A£ 1 
T = i | C | 2 

A 
R=l-T 

( £ + £)(£ +A) 1 + r 2 -2rcosa' 

where 

l(E-\)(E-Q 
(E + \)(E + £) 

(12) 

(13) 

whereas f o r A < i ? < A , T = 0 and of course R 1. The conserved 
current is defined as j = ifj'>dip> — ip*<dil)< and coincides at both sides of 
the interface: 

0 
4A" 

for 

for 

A >E> A 
E> A, A 

(14) 
[ ^E (E+£)(E+\)(l+r2-2rcosa) 

The coefficients and currents depend on the phase difference a of the gap 
parameters. We suggest that this combination is a gauge invariant quan
tity. Indeed in the case of U(l) superconductors a variable is responsible 
for many interesting physical phenomena like, for example, the Josephson 
effect. 

Let us move to the case (QGP - 2SC)/CFL interface (the mixed case). 
In this case, the basis of the wavefunction must be 

/ rred \ 
ibd 

rgreen 
blue 

Wred 
^ d t T 
rgreen 

V ^blue J 

(15) 
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In the 2SC side, the wavefunction takes the form [14]: 

#<(*) = 

/ e«^/4tA«,« \ 
2B -PlR 

e ' > J^hf-

Ah\z 

+ A 

C 

+ F 

I r i % ,/-E+A u 
e y 2E ^t-R IE 

0 
0 
0 

e-*J*&h*? 

e \j IE ^Tfi 

-ik\z + B 

0 

-ik-zz 

e 2 
E+X 

2E <P"R 

e-i*jM=*tfrr 
IE " J .L 

0 
0 

-ikiz _|_ £j 

- 2 y-2E-^R 2E 

0 
-E+AiufT 

0 
0 

-?/C22 : 

/ o \ 
0 

0 
0 

V ° / 

-ik^z + G 

( 0 \ 
0 
0 
0 
0 

-ik^z (16) 

The first wavefunction describes the incoming quasiparticle, second and 
third the reflected quasiparticles of the same kind. The next two wavefunc-
tions are quasiparticles of the second kind whereas the last two describe 
the posssibility of the reflection of the unpaired strange quark. The mo
menta of the strange quark and hole are k% — fi + E and k± = —fi + E, 
the others were already given previously. On the other hand, for z > 0, 
we have the wavefunction given by the formula in Appendix C of [14]. In 
the massless limit we consider here the momenta in the wave function are 
given by qi = \x + £, qi = —fj, + £, p\ = \x + C and p2 = —fJ, + C- Solv
ing the boundary condition which connects ^<(z) with $>>(z), we find the 
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following results (the phase exp(i5s/2) was absorbed into the redefinition 
of constants G, H, K and N): 

2eia(eialx(x - 2z) + x + z)X 

~~ + (1 - eialx)(3 + elax{x - 2z)){E + A) ^ ' 

2eia(2a; - z)X 

H 

(1 - eialx){i + eial(x - 2z))(E + A) 

G - A / 2E (a: + 2)e- ig° 

~ E\ E + X3 + eial(x-2z) 

A / 2£ a : ( l + ^ ( a ; - ^ ) e i Q ) e - ^ 
E\ E + \{1- etalx)(3 + eial(x - 2z)) 

E\ E + X3 + elal{x-2z) 

Ar X I 2E ze-lS-
N = — 1 £ V £ + A3 + eiaZ(o;-2,z) 

£ - £ , E-X E-C , s 

l = \-Er^>x = \irr7> (18) 

where 

£ + £' V £ + A' Y-B + C' 
Other coefficients (A, C, D, F, J, L and P) vanish. Let us notice that the 
modulus square of the above coefficients depends only on the phase differ
ence a crossing the interface. Similarly to the case of 2SC/2SC junction 
this quantity we consider is gauge independent. 

The probability current for z < 0 and E > A, 2A is 

3 EE < « * * < = 2 M [ | ( 1 - \B\2 - \D\2) - \G\\ (19) 

The analytical result is not given by short expression thus we rather show 
the current dependence on the energy in the Fig. 1 for generic set of 
parameters. Let us notice that the current starts at energy E = A and 
then rises linearly up to the point E = 2A where there is a jump. This 
behaviour is expected because below the gap there is no probability current 
and at the energy twice the gap additional current appears from the singlet 
excitation in the CFL phase. 

4. Conclusions 

In this paper we consider the general structure of the Andreev reflection be
tween two superconductors 2SC and CFL in the high density QCD. We also 
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Figure 1. Dependence of the probability current (19) as a function of energy E [MeV] 
for two sets of parameters: A = 80 MeV, A = 60 MeV (black curve) and A = 100 MeV, 
A = 60 MeV (gray curve). 

give the review of the Andreev reflection between QGP/2SC and QGP/CFL 
phases. 

The essence of the AR stems from the peculiar behaviour of particles 
which hit the interface. If the energy of the incoming particle from the 
conductor side is below the energy gap in superconductor then the hole is 
reflected from the interface. The energy and momentum13 are conserved, 
however, there is an apparent violation of the charge conservation. This 
last effect stems from the fact that the superconductor serves as an infinite 
suply of Cooper pairs. At the microscopic level charge is conserved, of 
course. The Andreev reflection can be understood as follows: the incoming 
particle takes another particle from the Fermi sea and creates a Cooper pair 
which dissolves in the condensate. Then the hole is left in the conductor 
with the appropriate kinematics constaraind by energy and momentum 
conservation. 

So far, the only known place one can expect the color superconduc
tors are the cores of protoneutron or Neutron Stars. Any subtle effects of 
Andreev reflection that happen inside these objects far away from our lab
oratories may be never observed. However there is at least one possibility 
one can imagine. The Andreev reflection affects the transport properties 
at the interfaces. If the protoneutron stars go through the first order phase 
transitions between QGP or/and 2SC or/and CFL phases during their his
tory cooling then one can expect the mixed phase to be present in the core 

b The momentum conservation is violated at the 0(1/Ep) level and can be neglected in 
the first approximation. 
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of the stars. In this situation the Andreev reflection influences the dynamics 

of the bubbles grow between different phases. These in tu rn influence the 

neutrino emission. Thus the time dependence of neutrino luminosity from 

supernovae can carry the information of the Andreev processes which took 

place inside the protoneutron stars. These intriguing possibilities require 

more attention. 
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Recently, strongly bound K nuclear systems have been predicted, which are shown 
to have large binding energies about 100 MeV for single-K systems and 200 MeV 
for double-K systems. Since these K bound nuclei are predicted to have enormous 
nucleon densities, several times as much as the normal nuclear density, they provide 
a unique playground for studying possible quark-gluon structure in dense, cold 
and microscopic nuclear systems. We discuss this new paradigm and offer various 
experimental ways to search for such interesting objects that should be deeply 
related to chiral symmetry restoration, hadron masses, kaon condensation and 
strange matter. 

1. Introduction 

Recently, exotic nuclear systems involving a K (K - or K°) as a constituent 
have been predicted1'2,3'4'5'6 based on phenomenologically constructed KN 
interactions (hereafter referred to as AY), which reproduce low-energy KN 
scattering data7, kaonic hydrogen atom data8 and the binding energy 
and decay width of A(1405). The KN interactions are characterized by 
a strongly attractive 1 = 0 part, which is responsible for the deep bound 
state of A(1405), but is fully reconciled with the "repulsive-like" low-energy 
scattering lengths and kaonic hydrogen level shift. These empirically based 
bare KN interactions are consistent with theoretical predictions based on 
a chiral SU(3) effective Lagrangian9. Whereas these bare interactions lead 
to a shallow K~ optical potential for continuum states in infinite nuclear 
matter10'11, they persist to be strong for isolated bound states of finite nu
clei, despite a prevailing claim for non-existence of kaonic nuclear states12. 

http://ac.jp
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The effective interactions derived in Ref.1 were examined and tested by 
comparing with exact few-body calculations using the bare interactions. 

The strongly attractive K _ -p interaction was shown to cause not only 
enormous binding of K~ in proton-rich nuclei, but also shrinkage of PC-
bound nuclei. The calculated bound states in ppnK - , ppnnK - and 8BeK~ 
lie below the T,ir emission threshold, which is the main decay channel of 
K~N, and thus, are predicted to have narrow decay widths. These few-body 
treatments have been further extended to more complex systems by the 
method of Antisymmetrized Molecular Dynamics (AMD)3,4'5, which is now 
capable of calculating the structure with density distributions of individual 
constituent particles in an ab initio way without a priori assumption about 
the structure. The predicted K bound states have central nucleon densities 
(JO(0)), 4-9 times as much as the normal nuclear density (po = 0.17 fm - 3) , 
with large binding energies (EK ~ 100 MeV). Such strongly bound compact 
systems can be called "K nuclear clusters". 

Since the predicted nucleon densities very much exceed the nucleon com
paction limit, pc « 1/VN ~ 2.3/5o, with ujv ~ 2.5 fm3 being the nucleon 
volume, it may be questionable to apply the hadronic KN and NN inter
actions to such dense systems. Although the K clusters are expected to be 
in deconfined quark-gluon states13 '14 '15 '16, there is no theoretical treatment 
available on "dense and cold" microscopic systems. Thus, it is vitally im
portant to pursue experimental strategies to search for K clusters and to 
examine their properties, in which we take the predicted binding energies 
and widths as a guiding reference; an observed deviation from predicted 
values will bring us important implications. 

2. Single-K nuclear systems 

The strongly attractive force of p + K~ in the 1 = 0 channel plays an 
essential role in the following consideration1. When another proton is added 
to A(1405), the "atomic" p + K~ system is changed to a "molecular" 
system, p + p + K~, where the K~ behaves as a glue to combine two 
protons. The predicted ppK~ system has a binding energy (EK = 48 MeV) 
and a width (IV = 61 MeV)2. It is shown to have a p-p rms distance of 
1.90 fm, close to the normal inter-nucleon distance. No such strong binding 
is expected for pnK~ and nnK~. 

We performed four-body variational calculation using the Tamagaki po
tential (OPEG)17 as a bare NN interaction and the AY KN interaction as 
a bare KN interaction. We also constructed effective K interactions using 
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Figure 1. Calculated KN and K-nucleus potentials and bound levels: A(1405), ^ H and 
^ H for K~p, K _ p p and K~ppn systems, respectively2. The nuclear contraction effect 
is taken into account. The shaded zones indicate the widths. The T,n and ATT emission 
thresholds are also shown. 

the ^-matrix method. In the ppnK - and ppnnK - systems drastic changes 
of the binding energy and width occur. The first effect is a shrinkage of 
the nucleus 3He and 4He due to the strong attraction of K~. Although it 
is somewhat counterbalanced by the strong nuclear incompressibility, the 
equilibrium size of the system is substantially smaller. The binding energy 
is predicted to be so large that the state lies below the emission threshold of 
E + 7T, which is the main decay channel of K~+N. This situation makes the 
width of the state narrow. The predicted total binding energy of ppnK" 
is 118 MeV and the width is 21 MeV, much smaller than that of A(1405). 
The potential energies of K~ in the p + K~, pp + K~ and ppn + K~ 
systems are shown in Fig. 1. 

The AMD calculation is now capable of producing the spatial distribu
tions of p, n and K~ in strongly bound kaonic systems. Fig. 2 shows the 
result of 8Be + K~, where K~ shrinks drastically the two alpha particles to 
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two mini-alpha clusters. Fig. 3 shows density contours of ppnK , pppK' 
and pppnK - . 

(a) 8 B e (b) 8BeK•"-

Figure 2. Calculated density contours of 8 BeK — 4 . Comparison of the density distribu
tions of (a) ordinary 8 Be and (b) 8BeK~ is shown in the size of 7 by 7 fm. 

Figure IS. Density contours of the iiuclooii distributions of (left) ppnK , (middle) 
p p p K - and (right) pppnK~~ nuclei: 3fm x 3fm. 

2.1 . Double-K systems 

We extended the same theoretical treatments to double-K systems6. First, 
we performed four-body variational calculation on ppK~~K~5 where we ne
glected the K-K interaction simply because of lack of information. The 
binding energy and width obtained in this system are EK = 117 MeV and 
YK = 35 MeV, with a p-p rms distance very much reduced to 1.3 fm. 
Thus, the addition of a K increases the binding energy and the nucleoli 
density. We found from an AMD calculation that the double-K cluster 
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(ppnK~K~~) is more tightly bound than the dense single-K cluster (ppnK~), 
as shown in Fig. 4, where we present the density contours of 3He? ppnK™ 
and ppnK~K~. The central nucleon density reaches p(0) ~ 1.5 mi""""3 for 
ppnK" and ~ 1.5 fm~3 for ppnK~K~. We summarize these results in 
Table 1 together with the results on single-K clusters4'5'6. 

Figure 4. Calculated density contours of (left) 3He, (middle) ppnK and (right) 
p p n K - K - . 

Table 1. Summary of predicted K clusters. M: total mass [MeV]. EK- total 
binding-energy [MeVj. Fj^: decay width [MeV]. p(0): nucleon density at the 
center of the system [fen -3]. Rrms- root-mean-square radius of the nucleon sys
tem [fm]. kp and kj^' rms internal momenta [fm - 1] of p and K - , respectively. 
The calculated binding energies are subject to an increase by « 10 MeV, when 
the relativistic effect o n K " is taken into account. 

K cluster 

ppK~ 
pppK~ 
ppnK ~ 
ppppK~ 
pppnK~ 
ppnnK~ 
ppK~~K~ 

ppnK~~ K~ 
pppnK~K~~ 

Mc2 

[MeV] 
2322 
3211 
3192 
4171 
4135 
4135 
2747 
3582 
4511 

EK 
[MeV] 

48 
97 
118 
75 
113 
114 
117 
221 
230 

r^ 
[MeV] 

61 
13 
21 
162 
26 
34 
35 
37 
61 

MP) 
[fm-3] 

0.52 
1.56 
1.50 
1.68 
1.29 

2.97 
2.33 

" r m s 
[fm] 
0.99 
0.81 
0.72 
0.95 
0.97 
1.12 

0.69 
0.73 

kp 

[fm-l] 
1.49 

kK 
[fm-i] 

1.18 

2.2. Unified view of S = —1 nuclear systems 

We point out that the kaonic bound states are "Feshbach resonance" states 
embedded in the continuum, belonging to the S = — 1 sector of nuclear 
excitation. A unified view is given in Fig. 5 in the case of A = 4. 



367 

Energy 
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Figure 5. A unified view of the S — — 1 sector of nuclear excitation as Feshbach reso
nances. In the case of A = 4. 

3. Direct react ions t o popula te K nuclei 

3 .1 . (stopped K~~ ,n) 

The ppnK~™ system can be populated by 4He(stopped K~~, n) reaction, in 
which the "Auger neutron" serves as an indicator of the bound state1. An 
experiment has been carried out at KEK, indicating a candidate for the 
predicted bound state with a mass of M ~ 3140 MeV and a total binding-
energy of ~ 170 MeV 18, as shown in Fig. 6. This value is significantly larger 
than the predicted value of 118 MeV, suggesting that the KN interaction 
in this nuclear system may be enhanced over the bare one by 17 %. 

3.2. (K~~,N) reaction 

The reaction of (K~, N) can be used to populate K bound states, in which 
the incoming K knocks out one of the target nucleons and stops in the 
nucleus19. 
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Figure 6. The first indication of a deeply bound kaonic state of p p n K - populated in 
the 4He(stopped K~,n) reaction. (Left) The momentum spectra of neutrons tagged by 
backward (upper) and forward (lower) fast pions, showing a peak at p„ ~ 480 MeV. 
(Right) Corresponding energy spectrum, showing a mass of ~ 3140 MeV (total binding 
energy of 170 MeV). From Iwasaki et al.ls. 

3.3. (K , IT ) and (ir+ , K+0 ) reactions 

Various exotic K nuclei can be populated in strangeness exchange reac
tions such as (K~,ir~) and (TT+'~, K°'+). Table 2 lists kaonic nuclei to be 
produced. 

Table 2. Various reactions to produce exotic K bound systems 

AQ 

Target 

V 
[n] 
d 
3He 
4He 

(K~,p) 
-2 

-
-
-

pnK~ 
pnnK~ 

(K-,n) 
-1 

-
-

A, A* 
ppK~ 

ppnK~ 

i*-,K°) 
-1 

A, A* 
XT, £ - * 

pnK~ 
ppnK~ 

ppnnK~ 

( K - . T T - ) 
{n+,K+) 

0 

E+, E+* 
pnK~ 
ppK~ 

pppK~ 
pppnK~ 

(1T+,K°) 

+ 1 

-
ppK~ 

-
-

ppppK~ 

(P,K+) 
0 

ppK~ 

ppnK~ 
pppnK~ 

pppnnK~ 

(P,K°) 

+1 

-

pppK~ 
ppppK~ 

ppppnK~ 
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The spectral shape of the bound-K_ region populated in direct reac
tions, (K~,n~) and (n+,K+), was calculated based on the A* doorway 
model2'20. In this treatment the formation of kaonic systems proceeds via 
the elementary production of A(1405) by n(K~,Tr~)A* and n(TT+,K+)A*, 
which is then melted to form koanic states. The results for (n+, K+) and 
(ir~,K°) on targets of d, 3He and 4He are shown in Fig. 7. The dense 
kaonic states produced from 3He and 4He are shown to be well separated 
from the huge "quasi-free" continuum. On the other hands, the ppK~ 
state is broader in the natural width and closer in energy to the A(1405) 
threshold, and thus its broad peak is partially separated from the quasi-free 
continuum. We need an efficient tagging to enhance the bound-state peak. 

E- (M|A-1 ] + M[A1405])cz [MeV] E - (M[A-1] + M[A1405])c2 [MeV] 

Figure 7. Spectra (iVeff) of (7r+,K+) and (7r_,K°) at p* = 1.5 GeV/c on d, 3He and 
4He as functions of Ex — [M(A — l ) + M(Ai4os)]c2. Calculated based on the A* doorway 
model20 . 

3.4. K clusters from compound K states 

The "quasi-free" component involves excited continuum compound states 
of K~ nuclear systems, which immediately emit nucleons and end up in 
kaonic bound states. This is similar to the known situation in hyperfrag-
ment formation21'22. Such a "decay-channel" spectroscopy is even more 
feasible for kaonic bound states, because of their strong binding and char
acteristic decay channels from which invariant-mass spectra can be easily 
reconstructed. 
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The decay modes that can be detected are: 

pppK~ —> p + p + A (1) 

ppnK~ - • d + A (2) 

pppnK~ —> d + p + A (3) 

The production cross sections of hyperfragments from continuum compound 
process were calculated by Sano et al.23. The same method can be extended 
to the case of K fragments. 

4. K CLUSTERS AS RESIDUES IN HEAVY-ION 
COLLISIONS 

4.1. Evolution of K clusters as deep trapping centers 

The K~ mesons born in a fireball of heavy-ion collisions produce extra-deep 
and localized self-trapping potentials, which are intermittently accommo
dated by a few correlated nucleons (notably, p2 , p2n (3He) and p2n2 (4He)). 
Since K clusters once produced are hardly destroyed by further collisions 
because of their extremely large binding energies compared to the tem
perature, we expect a cascade evolution of K clusters, as shown in Fig. 8. 
These processes occur as collisional capture processes, when aided by sur
rounding nucleons, which transfer energies and momenta to form K clusters 
efficiently. 

4.2. Direct formation ofK. clusters from QGP 

In central collisions of relativistic heavy ions, a dense and hot fireball is 
produced. When the temperature of a primordial fireball exceeds a QCD 
transition temperature (T > 150 MeV) it is expected to be in quark-gluon 
plasma (QGP). Since the K clusters are by themselves dense, and are likely 
to be in a deconfined quark-gluon phase, as in QGP, they will be sponta
neously formed in a self-organized way, like clusterized islands, remaining 
in a cooling and expanding hadron-gas medium throughout the freeze-out 
phase, as schematically shown in Fig. 9. Here, the s quarks in a primordial 
QGP act as seeds for K clusters. 

Recently, it was shown that particle emission data including strange 
particles are well accounted for by a hadro-chemical equilibrium model in 
terms of the freeze-out temperature, the baryon chemical potential and the 
fireball volume as parameters24 '25 '26. In this model all particles (or states) 
are treated on equal footing, and the yields of various K clusters have been 
calculated by Andronic et al.27, as discussed in the next section. 
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Figure 8. Cascade evolution of K clusters as deep traps in heavy-ion collisions. The 
calculated binding energies are shown. 

5. K-CLUSTER INVARIANT-MASS SPECTROSCOPY 

Eventually, the K clusters formed in heavy-ion collisions decay via strong 
interactions by their own intrinsic decay modes. The condition to observe 
the free decay of a K cluster with a decay width IV is 

TK = H/TK > Tf, (4) 

where T/ is the freeze-out time. For the predicted decay width of TK W 20 
MeV, TK ~ 10 fm/c, which is marginally longer than the calculated freeze-
out time, Tf ~ 5 fm/c28 '29 '30 '31. Thus, most K clusters formed in (and 
before) the freeze-out phase are likely to survive and undergo free decays. 

The unique signature for K cluster formation is a clear peak to be re
vealed in invariant-mass spectra of its decay particles, provided that all of 
the decay particles with their energies and momenta are correctly identi
fied. This method applies to limited cases, where K clusters can decay to 
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Figure 9. Quark gluon plasma and its transition to evaporating hadron gases with heavy 
and dense residues of K clusters. 
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(7) 
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These decay processes are energetically the most favoured, though their 
branching ratios are not known. The "decay-channel spectroscopy" ii) on 
ppnK~ is being examined by Herrmann32 by using the experimental data of 
A and d, obtained from the FOPI detector of GSI33. This can be compared 
with a recent result of the "entrance-channel spectroscopy" performed at 
KEK18. 

Recent calculations of Andronic et al.27 based on a hadron-gas model24 

give Y(ppnK~) ~ 3 x 10~3 per total charged pion, or ~ 0.06 per collision, 
when the incident energy is 2 GeV/u. It is interesting to note that this 
yield is larger than Y(K~). This means that, even if the decay branching 
to A + d is 0.1, the ppnK~ —> A + d signal can be identified with a ratio of 
R ~ 0.02 over a large combinatorial background. 
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Once single-K clusters are found, the next step will be to pursue double-
K clusters. Here, we need a fireball with a large multiplicity of strangeness. 
Recently, abundant productions of A are observed at the RHIC energy by 
PHENIX34 and STAR35. The future accelerator at GSI will provide 30-40 
GeV/u heavy-ions36, which is suitable for double-K-cluster invariant-mass 
spectroscopy in view of the large baryon density to be achieved in collisions, 
and also of abundant strangeness production. The calculated yield of the 
double-K cluster, ppK~K~, has a maximum at the cm. collision energy of 
Y/S = 5 — 10 GeV/u (the incident energy around 30 GeV/u), and amounts 
to Y{ppK~ K~) ~ 2 x 10~4 per total charged pion, or ~ 0.01 per collision27. 
In view of such a large yield the invariant-mass spectroscopy for A + A may 
also be feasible. 

6. TOWARD COLD A N D DENSE NUCLEAR MATTER 

6.1. Multi-K nuclear systems as a precursor to strange 
matter 

We can conceive of a further extension of the double-K systems to multi-
K nuclear matter. Whereas the nucleons and hyperons are hard to com
press, presumably because of the Pauli repulsion in the quark sector, multi-
K systems, such as (pK~)mn™, become self-compressed dense matter with
out the aid of gravity. A speculated diagram of strange nuclear matter is 
shown in Fig. 10. The characteristic feature of K in producing dense nuclear 
systems may be intuitively understood as a result of the non-existence of 
Pauli blocking in the (u, d) quark sector by implanting K~, since K~ is com
posed of su. Here, kaon condensation may also play an essential role37'38. 
The K matter with a large K fraction (K~/N ~ 1) may be more stable 
than the corresponding non-strange matter6. 

6.2. Chiral symmetry restoration and phase transition to 
quark phases 

So far, the present treatment does not contain the effect of chiral symmetry 
restoration at high density. If the KN interaction is increased along with 
a restoration of the chiral symmetry in accordance with the Tomozawa-
Weinberg relation39,40, similar to an effect recently observed in the 7rN 
interaction in a nuclear medium41, the K~ energy line in Fig. 10 bends 
downward with the increase of p; the K clusters may be more bound and 
denser, and the K matter may become more stable. If we take the first 
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Figure 10. Speculated diagram for the density dependences of the bound-state energies 
of various baryon composite systems ( p K _ ) m n n . The KN energy is represented by the 
red straight line, where no effect of chiral symmetry restoration is invoked. The nuclear 
compression is represented by the black curve and the total energies for representative 
fractions of K ~ / N (=1/2, 1 and 3/2) are depicted by respective curves. 

indication of the KEK experiment, it implies a 17% enhancement of the 
KN interaction. The K (or s-quark) clusters, which we propose to study 
experimentally, will provide not only a unique playground to study possi
ble quark-gluon phases of dense and bound nuclear systems, but also an 
important access toward the understanding of strange matter and stars. 
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We investigate the stability of strangelets in a chiral effective model. We focus on 
the effects of the chiral symmetry breaking in the strangelets by using the NJL 
model as an effective theory of QCD. The self-bound quark droplets are formulated 
by implementing the confinement picture in the MIT bag model. It is shown that 
the strangelets are not absolutely stable due to the chiral symmetry breaking and 
the large current mass as compared with light flavor. The observable quantities 
(the charge-mass ratios, the radii) of the strangelets are discussed to compare them 
with observed data in heavy ion collisions and/or in cosmic rays. 

1. Introduction 

The finite density quark matter is expected to give us the rich structures. 
Recently, the physics of the strangeness show us interesting phenomena, 
for example, the deeply bound state of kaonic nuclei1 and the experimental 
observation of the 0 + (uudds) particles2. Concerning the quark matter, 
some decades ago, it was pointed out that the strange matter could be the 
true ground state of finite density QCD matter due to the increase of the 
number of degrees of freedom.3 4 5 In the MIT bag model, it was shown 
that the bulk strange matter had a possibility to be more stable than the 
normal nuclear matter. The stability of the bulk strange matter would lead 
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the stability of finite lumps of strange matter which were called strangelets.a 

The strangelets are exotic quark states different from the ordinary nuclei. 
They are expected to be observed in heavy ion collisions and in cosmic 
rays as heavy particles with small charge-mass ratios. In order to identify 
such particles, it is necessary to predict observable quantities (charge-mass 
ratios and radii) of the strangelets. For the study the realistic strangelets, it 
is necessary to consider chiral symmetry breaking, which plays important 
roles in the low energy QCD physics. Our purpose is to investigate the 
stability of the strangelets and obtain the observable quantities in a chiral 
effective theory. 

2. Strangelets 

2.1. The NJL model with the MIT bag boundary condition 

The bulk quark matter is described by the NJL model as an effective the
ory of QCD.6 In fact, the NJL model explains spontaneous chiral symme
try breaking in the hadronic vacuum and reproduces many properties of 
hadrons. Many authors have discussed the stability of the bulk quark mat
ter with the chiral symmetry breaking in the NJL model. It was discussed 
that the bulk strange matter is not favored due to the chiral symmetry 
breaking in the strange flavor.7 Our interest here is to study the stability 
of finite lumps of quark matter with chiral symmetry breaking and strange 
flavor. In contrast with the bulk quark matter, we cannot neglect effects 
of confinement of quarks in the quark droplets. It is known that the NJL 
model cannot give an explanation of the confinement of the quarks. In 
order to confine quarks in the quark droplets in the NJL model, we assume 
the boundary condition of the MIT bag model.8 Therefore we consider the 
following lagrangian; 

8 

o=0 

where ip is the quark field, m° = diag(m°,m°, m°s) is current mass matrix, 
A°/2 generators of U{2>) and G the coupling constant. The first term is 
the kinetic term and the second term is the NJL interaction, which has 
the symmetry U(3)L XU(3)R. The last term represents the confinement of 

a In general, the lumps or droplets of finite volume size of quark matter are called quark 
droplets. In this definition, the strangelets are quark droplets including not only u and 
d quarks, but also s quarks. 

-Miptp6(r-R), (1) 



379 

quarks in the bag with radius R. The mass parameter M is set infinity after 
all the calculations to confine quarks in the bag. The radius R is obtained 
by minimizing the total energy of the strangelet. The inside of the bag is 
the (chirally restored or broken) quark matter phase, and the outside is the 
baryonic vacuum phase, where chiral symmetry is broken. 

The boundary condition makes the calculations in the quark droplets 
complicated rather than the bulk quark matter due to the discretized energy 
levels in the droplets. In principle, we can calculate the energy density 
and the number density by summation of all the energy levels occupied 
by the quarks. In order to simplify numerical calculations, we perform 
momentum integration in the energy density and the number density by 
multiple reflection expansion (MRE) in the quark propagater.9 10 The state 
density in the momentum space is corrected by the function 

6?r2
 12TT2 

PMRB(p,m,R) = 1 + —jj-fsip/m) + -7-^2 fc(p/m) H , (2) 

where p and m are the momentum and the dynamical mass of the quark 
and R is the radius of a quark droplet, fs and fc are universal functions 
given by 

1 2 
fs(x) = ~ F - ( 1 arctanz), (3) 

1 3^C TV 

fc(x) = Y ^ J I 1 ~ y ( 2 ~ a r c t a n ; r ) ] -
The second and third terms in Eq. (2) represent the corrections by the 
surface and the curvature of the droplet. Though it is not possible for the 
MRE method to include the shell structure by the discrete levels in the 
quark droplets, it is known that the MRE approximation reproduces the 
results obtained by the direct summation over the discrete levels for the 
quark droplets with baryon number A > 10. 

2.2. Energy density in the quark droplet 

The energy density in the quark droplets with the radius R is obtained 
from the lagrangian Eq. (1) by the mean field approximation. 

.p2dp 

f=u,d,s 

fPf I 0 P dp 
' ^p2+m2

fpMRE{p,mf,R)^¥ (4) 

+ K ^ / ) .. fA U , ^2 . , _ „ mP 2 * 
4G* 

- / yV + m2
fpMRE (p, mf, R) y ^ - eo, 
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where TO/ and pj are the dynamical mass and the Fermi momentum of 
flavor / , A is a cut-off parameter and v = 6 is the degrees of degeneracy 
of spin and color. The last term stands for the energy density in the bulk 
vacuum given by 

f—u,d,s 

(rn}-m°fy fA / , p*dp 
— J - ^ J - v] ^p2+mfpMRE(p,m},R)^- (5) 

where m** is quark mass of flavor / in the baryonic vacuum. The boundary 
condition in the MIT bag model is included in the momentum integration 
by MRE approximation Eq. (2). The Fermi momentum pF, is obtained by 

F 

v\ PMRE{P,mf,R)—^-=nf, (6) 
Jo 27r 

where n / — Nf/V is the quark number density. (V = ^-R3 is the volume 
of the droplet.) The quark mass m./ in the quark droplet is determined 
by the Schwinger-Dyson equation which is given by the derivative of the 
energy density Eq. (4) by the quark mass TO/; de/dmf = 0. 

In our study, the parameters are fixed as TO° = m°d = 5.9 MeV, A = 
0.6 GeV and GA2 = 4.7 to reproduce the averaged mass TOJV+A = 1-134 
GeV of the nucleon and A, the pion mass m^ = 0.139 GeV and the pion 
decay constant fn = 93 MeV in the vacuum. The mass TUN+A is related 
with the constituent quark mass by m./v+A = 3m*. We suppose the isospin 
symmetry in the u and d flavors. The strange current mass m°s is then a 
free parameter, for which we take m°s=Q.\ GeV. In actual calculations, we 
include the zero point energy in the quark droplets. It is known that the 
static energy a/R has to be subtracted from the total energy of the bag 
(quark droplet) in the MIT bag model, where a ~ 2.04. We compare the 
energy of the quark droplets with several strangeness fraction rs = Ns/Nq 

to investigate the stability for the weak processes, where N8 is the number 
of the strange quarks and Nq is the quark number which is obtained as 
Nq = A/3 once the baryon number A is given. We keep the strangeness 
fraction rs as a parameter. The ud droplets and the electrically neutral 
strangelets with equal number of quarks in each flavor corresponds to rs = 0 
and 0.33 respectively. Then the total energy E in the quark droplets with 
the radius R, the baryon number A and the strangeness fraction rs is written 
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f—u,d, 

(mf-m°f)
2 fPf r——- p2dp I ' I ) 

4 G >vl yp2 + m2
fpMRE{p,mf,R)-2^2 

V(7) 

-e0V + E c - - , 

where Ec is Coulomb energy. For simplicity, the Coulomb energy Ec is not 
considered in our discussions. 

The minimization of the energy of the quark droplets are performed by 
fixing the baryon number A and the strangeness fraction rs of the quark 
droplet with the radius R. Then the Fermi momentum pj in the flavor / 
is obtained from Eq. (6). After that, we obtain the quark mass rrif in the 
quark droplets by the SD equation The energy and the radius of the quark 
droplets are given by 8E/dR = 0 from Eq. (8). 

3. Numerical results 

3.1. Restoration of chiral symmetry in the cavity vacuum 

In order to see the chiral symmetry of the cavity vacuum (the bag without 
valence quarks), the quark mass m in the cavity vacuum is shown in Fig. 1. 
As the radius of the cavity becomes small, there is a first order chiral phase 
transition. For example, the critical radius is 14 fm for massless quarks (see 
also Fig. 2). When chiral symmetry of the strange flavor is restored in the 
quark droplets and the mass of the s quarks is equal to the current mass, it 
would be energetically favorable to generate the s quarks from the u quarks 
by the weak decay in the ud droplets. Namely we have a possibility that 
the strangelets are absolutely stable when the radius of the quark droplets 
is sufficiently small. 

3.2. The absolute stability of quark droplets 

Now we compare the stability of the bulk quark matter and the quark 
droplets. Here we separate the discussions of the stability for the strong 
and weak forces to make the points clear, since the time scale of them 
are different. The energies per baryon number e/ns in quark droplets 
with fixed baryon number A and the strangeness fraction rs are shown 
as function of the baryon number density ns in Figs. 3 and 4 for the 
strangeness fraction rs = 0 {ud droplet) and 0.33 (strangelet) respectively. 
The energy per baryon number in the vacuum UB = 0 corresponds to the 
baryon mass in the vacuum. Concerning the bulk quark matter, we see the 
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Figure 1. The quark mass m in the cav- Figure 2. The energy density as function 
ity vacuum with the radius R. of the dynamical quark mass in the cavity 

vacuum with several radii. The current 

mass is set as m 0. 

absolute stability of the bulk quark matter at the baryon number density 
2.57 rig and 4.27 n°B for rs = 0 and 0.33 respectively by comparing e / n j 
in vacuum and at finite density. The energy gains are 19.4 MeV and 21.7 
MeV for rs = 0 and 0.33 respectively. Though the quark matter with any 
strangeness fractions is stable against the baryonic vacuum, the strange 
matter at the local minimum is not stable against the ud quark matter at 
the local minimum. 
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3.3. The investigation of stability of strangelets 

Let us turn to the stability of the quark droplets. We see the local minima 
in the energy per baryon number in Figs. 3 and 4. It is recognized that 
energy per baryon number in the quark droplet increases as the baryon 
number decreases. In the ud droplet (Fig. 3), when the baryon number 
is smaller than the critical baryon number 1.1 x 107, then the energy per 
baryon number at the minimum is larger than the single baryon mass in the 
baryonic vacuum. The ud droplets with baryon number A < 1.1 x 107 are 
not absolutely stable against the hadronization, while the ud droplets with 
A > 1.1 x 107 are absolutely stable. This result is not changed qualitatively 
in the strangelets (Fig. 4) , provided that the critical baryon number is 
5.0 x 105 for rs = 0.33. 

We have seen that the cavity vacuum with a small size restore chiral 
symmetry breaking as shown in Figs. 1. From this result, we can expect 
that the dynamical mass of the strange quark becomes small due to the 
restoration of the chiral symmetry breaking in the small quark droplets, 
which would lead absolute stability of the strangelets as compared with the 
ud droplets with small baryon number. 

We plot the energy per baryon number E/A as a function of the baryon 
number A in a quark droplet with several strangeness fractions rs in Fig. 5. 
As we expected, the strangelets (rs =0.33) are more stable than ud droplets 
for the small baryon number A < 1.1 x 103. In fact, chiral symmetry 
breaking of the strange flavor is restored in the strangelets with A < 1.1 x 
103 as shown in Fig. 6. Generally, it is known that the strange quarks are 
generated in the quark matter, when the chemical potential \iu of the u 
quarks are larger than the mass ms, by the weak decay; u —> s + e+ + ve. 
Actually, in Fig. 7, we see fj,u > ms in the ud droplets with A < 1.1 x 103. 
However the strangelets which are more stable than the ud droplets are not 
absolutely stable against the strong decay to the hadrons, since the energy 
of such strangelets is larger than the mass of the baryons. 

Though the strangelets with baryon number A > 5.0 x 105 are not 
stable as compared to the ud droplets, they have a possibility to have a 
long life time. The life time r of the weak decay of s quarks is estimated as 
about 10~7 sec. in the MIT bag model.11 12 It is expected that the total 
decay time to change all the s quarks into the u quarks in the strangelets 
takes more time when there are many strange quarks. Concerning the 
strong decay of unstable quark droplets with small baryon number, such 
quark droplets could have long life time to observe them in the heavy ion 
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collisions. The transition amplitude from the quark droplets to hadrons 
must be suppressed, when the uniform quark wave functions in the quark 
droplet have to be localized to form the baryon wave functions. 
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We have to be careful for using our model in the quark droplets with 
small radii. The last term in our lagrangian Eq. 1 breaks explicitly chiral 
symmetry, which would not change our result that the quark droplets with 
large baryon number is absolutely stable. On contrast, concerning the 
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quark droplets with small baryon number, we need to consider this problem 

seriously. One performance is to introduce meson fields around the bag to 

keep chiral symmetry on the surface. For further understanding, we need to 

discuss the possible decay modes of the unstable quark droplets, the effects 

of the color superconductivity1 3 14 and so on. 

4. Con c lu s ion 

We discussed the stability of the quark droplets with chiral symmetry break

ing by the NJL model supplemented by the boundary condition of the MIT 

bag model. The vacuum of the cavity with small radius restores chiral sym

metry breaking. When the baryon number is sufficient large A > 1.1 x 107 

and A > 5.0 x 105 for the strangeness fraction r = 0 and 0.33 respectively 

due to the boundary condition of the finite system, we found the abso

lute stability of the droplets against the baryons. The quark droplets with 

small baryon number is not stable against ordinary nuclei. Though the 

strangelets with large baryon number are unstable against the ud droplets, 

there is still a possibility tha t such strangelets have a long life t ime since 

the weak decay is considered to be suppressed in the strangelets with many 

baryon number. 
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1. Introduction 

It has been proposed that cold dense quark matter should be in a su
perconducting state with the formation of a diquark condensate1'2. The 
consequences of the diquark condensation for the configuration and the 
cooling behaviour of compact stars have been broadly studied 3>4>5>6 and 
the question if this phase can be detected by the signatures still remains 7. 

Also the engine for the most energetic phenomena in the universe like 
supernova explosions and gamma ray burst does not have a satisfactory 
explanation yet 8and it has been proposed that the energy involved could 
be related with the occurence of the color superdonductivity phase 9 '10. 

Since the pairing energy gap in quark matter is of the order of the 
Fermi energy, the diquark condensation gives a considerable contribution 
to the equation of state (EoS) that is estimated of the order of (A///)2 . 
Disregarding relativistic effects, the total binding energy release in the core 
of a cooling protoneutron star has been estimated as (A/^)2M c o r e ~ 1052 

erg. But, if relativistic effects are considered, the gravitational mass defect 
of the cooling star decreases when diquark condensation is included and 
there is no explosive process 6 possible since the color superconductivity 
transition is second order. 

In this work a new mechanism of releasing the energy in an explosive 
way is presented (for the original idea see n ) . During the collapse of a pro
toneutron star antineutrinos are produced by the /^-processes and remain 
trapped due to the small mean free path. This increases the asymmetry in 
the system and therefore the diquark condensation is inhibited at moderate 
densities. So, a two-phase structure developes in the star: a superconduct
ing interior and a sorrounding shell of normal quark matter, the latter 
being opaque to antineutrinos for T > 1 MeV 12. In the cooling process the 
antineutrino mean free path increases above the size of this normal mat
ter shell and an outburst of neutrinos occurs releasing an energy of about 
1051 — 1052 erg. This first order phase transition leads to an explosive 
phenomenon in which a pulse of antineutrinos could be observed. 

1.1. Equation of state for 2-flavour quark matter 

A nonlocal chiral quark model for 2-flavour {u, d} and three color {r, b, g} 
superconducting (2SC) quark matter in the mean field approximation is 
used, for details see 6 '13. The order parameters are the mass gap </>/ and 
the diquark gap A for the chiral and superconducting phase transitions 
respectively. As in 13, the following chemical potentials are introduced: 
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Mg = (M«+Aid)/2 for quark number, fii = (fiu-fid)/2 for isospin asymmetry 
and /is for color charge asymmetry. We consider that the deviation in the 
color space fi$ <C fiq, so we neglect the effect of considering fig. 

The quark thermodynamic potential is expresed as 14 

4>2 A2 

nq(</), A; fiq, fiu T) + nvac = — + — 

2 f00 

" 2 ^ 2 / d(?92(iVc-2){2JE;0 + a; [E^ - nq - in,T\ 

+LU [E,j, - flq+ fll, T}+U! [Ecf, + fig - fll, T}+U) [E<j, + flq+ fll, T]} 

4 r°° 
~^TI dqq2{E+ + E-+uJ[E^-fiI,T} 

^ Jo 

+Lu[E^+fiI,T}+w[E+-fiI,T}+tu[E++fiI,T}} (1) 

with 

io{E,T]=T\n[l+exp{-E/T)} . (2) 

The dispersion relations for the quarks of unpaired and paired colors 
are respectively, 

E4,
2 = q2 + (m + F2(q)<t>)2 (3) 

Ef = {Et±nf + Fi(q)tf (4) 

The interaction between the quarks is implemented via a Gaussian form-
factor function F(q) in the momentum space (Gaussian types give stable 
hybrid configurations 7) as F(q) = exp(—q2/A2) . 

The parameters A = 1.025 GeV, G\ = 3.761 A2 and mu = md = m = 
2.41 MeV are fixed by the pion mass, pion decay constant and the con
stituent quark mass at T = \i = 0 15. The constant G2 is a free parameter 
of the approach and is fixed as G2 = 0.86 G\. 

1.1.1. Stellar matter conditions 

The stellar matter in the interior of the compact stars consists of u and d 
quarks and leptons (electrons e~ and antineutrinos De) under the following 
conditions 

• /3-equilibrium d <—> u + e~ + De, 
• Charge neutrality \nu — |rid — ne = 
• Color neutrality ng = 0, 2nqr -

Me + M P e = - 2 / X j , 

= 0, riB +ni — 2ne -

- nqb = 0, 
= 0, 



392 

where rij = j^— are the number densities corresponding to the 
T,0=4>o,A=Ao 

chemical potential fij defined above. 
The lepton contributions (I = e, De) as ideal Fermi gases 

are added to the quark thermodynamical potential 

fi(^A;/i,)W,^e,T) = n , ( 0 , A ; ^ ) W , T ) + fie(/ie,T) + nP e(/iP e ,T).(6) 

The baryon chemical potential \IB = 3/xg — /Uj is introduced as the 
conjugate of the baryon number density ng . 

The fl function can have several minima in the 0, A plane, an example 
is shown is Fig. 1. The global minimum represents the stable equilibrium 
of the system and the minima search is perfomed solving the gap equations 

dn 
&A 

= 0 (7) 
; A = A 0 

UV </>=0o;A=Ao 

under the conditions that are mentioned above for the stellar interior. 
The thermodynamics of the system, e.g. pressure P , energy density e, 

number density n and entropy density s, is defined via this global minimum 

f2(</>0, A0; / i s , M/, T) = e - Ts - nBnB - fJ-ini = -P . (8) 

To fulfill the charge neutrality condition (see Fig. 2, right) a mixed 
phase between a subphase with diquark condensation (subscript A > 0) 
and normal quark matter subphase (subscript A = 0) is defined via the 
Glendenning construction. The Gibbs condition for equilibrium at fixed T 
and HB is that the pressure of the subphases should be the same 

P = P A > 0 ( M B , /x/,/xe,T) = PA = 0GuB , m,ne,T). (9) 

The volume fraction \ that is occupied by the subphase with diquark 
condensation is defined by the charge Q in the subphases, 

X = <2A>O/(QA>O - <2A=O) , (10) 

and is plotted on the right panel in Fig. 2 for different antineutrino 
chemical potentials as a function of ^B- In the same way, the number 
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Figure 1. Cuts of the thermodynamic potential 0(<^, AI/IB^I^ = 0) m the planes 
A = const (on the left) and </> = const (on the right) for two different constant values 
of fjLB and the corresponding /xj. For /JLB = 933 MeV (upper panel) two degenerate 
minima can coexist at the values: <j> = 331 MeV, A = 0 (solid lines) and <f> = 107 MeV, 
A = 98 MeV (dashed lines). For \i& = 1100 MeV (lower panel) the minimum with a 
nonvanishing diquark A = 121 MeV and (p = 54.8 MeV (dashed lines) is preferable. This 
corresponds to a first order transition from the vacuum to a superconducting phase. In 
this example G2/G1 = 1 was taken. 

densities for the different particle species j and the energy density are given 

by 

nj = X%A>0 + C1 - X)%A=0 , C11) 

€ = X^A>0 + (1 - X)^A=0 • (12) 

1.1.2. Equation of state with trapped antineutrinos 

Increasing the antineutrino chemical potential /ipe increases the asymme
try in the system and this shifts the onset of the superconducting phase 
transition to higher densities. 

Above a critical value of fipe > / i | e ~ 30 MeV (see critical value in Fig. 
2, on the left) first a normal quark matter phase occurs and then the phase 
transition to superconducting matter takes place, see Fig. 3, on the left. 
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He [MeV] nB = 1 GeV n B [MeV] 

Figure 2. Left: Solutions of the gap equations and the charge neutrality condition 
(solid black line) in the fij vs. / ie plane. Two branches are shown: states with diquark 
condensation on the upper right (A > 0) and states from normal quark matter (A = 0) 
on the lower left. The plateau in between corresponds to a mixed phase. The lines 
for the /3-equilibrium condition are also shown (solid and dashed red lines) for different 
values of the (anti)-neutrino chemical potential. The stellar matter should satisfy both 
conditions (intersection of the corresponding lines) and therefore for /i^e = 0 a mixed 
phase is preferable. Right:Volume fraction \ °f the phase with nonvanishing diquark 
condensate obtained by a Glendenning construction of a charge-neutral mixed phase. 
Results are shown for two different values of iJ,ae. 

The consequences for the equation of state can be seen on the right of 
the Fig. 3: the onset of the superconductivity in quark matter is shifted to 
higher densities and the equation of state becames harder. 

1.2. Quark stars and antineutrino trapping 

The configurations for the quark stars are obtained by solving the Tolman-
Oppenheimer-Volkoff equations for a set of central quark number densities 
nq for which the stars are stable. 

In Fig. 4 the configurations for different antineutrino chemical poten
tials are shown. The equations of state with trapped antineutrinos are 
softer and therefore this allows more compact configurations. The presence 
of antineutrinos tends to increase the mass of the star for a given central 
density. 

A reference configuration with total baryon number Ng = 1.51 NQ 
(where NQ is the total baryon number of the sun) is chosen and the case 
with (configurations A and B in Fig. 4) and without antineutrinos (/ 
in Fig. 4) are compared. A mass defect can be calculated between the 
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Figure 3. Left: Solutions of the gap equations and HI as a function of fiB- Increasing 
the antineutrino chemical potential increases the asymmetry in the system and the su
perconducting phase is inhibited at moderates densities. Right: Equation of state for 
different values of fioe of trapped antineutrinos. As jive increases the equation of state 
becomes harder. 

configurations with and without t rapped antineutrinos at constant total 

baryon number and the result is shown on the right panel of Fig. 4). The 

mass defect could be interpreted as an energy release if the configurations 

A, B with antineutrinos are initial states and the configuration / without 

them is the final state of a protoneutron star evolution. 

1.2.1. Protoneutron star evolution with antineutrino trapping 

After the collapse of a protoneutron star the star cools down by surface 

emission of photons and antineutrinos. Antineutrinos are t rapped because 

they were generated by the direct /3-process in the hot and dense mat ter 

and could not escape due to their small mean free path. The region of the 

star where the temperature falls below the density dependent critical value 

for diquark condensation, will transform to the color superconducting s tate 

which is almost t ransparent to (anti)neutrinos. But nevertheless due to 

the t rapped antineutrinos there is a dilute normal quark mat ter shell which 

prevents neutrino escape from the superconducting bulk of the star, see Fig. 

5 and Fig. 6. The criterion for the neutrino untrapping transition is to cool 

the star below a temperature of about 1 MeV when the mean free pa th of 

neutrinos becomes larger than the shell radius 1 6 . If at this temperature the 

antineutrino chemical potential is still large then the neutrinos can escape 

in a sudden outburst . If it is small then there will be only a gradual increase 
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Figure 4. Left: Quark star configurations for different antineutrino chemical potentials 
H1je = 0, 100j 150 MeV. The total mass M in solar masses (M s u n = MQ in the text) is 
shown as a function of the radius R (left panel) and of the central number density nq in 
units of the nuclear saturation density no (right panel). Asterisks denote two different 
sets of configurations (A5B5f) and (A',B'5f) with a fixed total baryon number of the 
set. R i g h t : Mass defect A M and corresponding energy release AE due to antineutrino 
untrapping as a function of the mass of the final state Mf. The shaded region is defined 
by the estimates for the upper and lower limits of the antineutrino chemical potential in 
the initial state fipe = 1 5 0 MeV (dashed-dotted line) and /ipe = 100 MeV (dashed line), 
respectively. 

in the luminosity. An estimate for the possible release of energy within the 
outburst scenario can be given via the mass defect defined in the previous 
subsection between an initial configuration with trapped neutrinos (state 
A or B) and a final configuration without neutrinos (state / ) . 

T = 40 MeV 

\ ' \ „ J .' 

•• 1 0 0 A L \ ' 

T < 10 MeV T < 1 MeV 

Figure 5. Left graph: Quark star cooling by antineutrino and photon emission from the 
surface. Middle graph: Two-phase structure developes due to the trapped antineutrinos: 
a normal quark matter shell and a superconducting interior. Right graph: Antineutrino 
untrapping and burst-type release of energy. 



397 

50 

40 

> 30h 

H 201-

10 h 

1 

-

-

-

r-

tv 
L _ L 

1 1 V 1 1 1 

\ 11 
\ 

\ 

y -iOOMeVJj 

[^ 

— r — T ~ 

li
ng

 |
 

o 

^ 

' ___! 1 ' ' ' ' I ' M 
<\j/ \j/> = <\}/ \\r> = 0 1 

M M I M QM J\ 

^^^^^^^^B ^"^^ ] 
^ i 

.^^ ZdL-

<\|/ \|/> = 0 -

^^^^^^^^^^^^^M <\|/ \|/> > o ; 

^ ^ L. 1 1 I l l 

800 1000 1200 

MMeV] 
1400 

Figure 6. Star evolution corresponding to Fig. 5 plotted in the phase diagram 

2. Conclusions 

The effects of trapped antineutrinos on the diquark condensates in quark 
star configurations are investigated. At fixed baryon number the energy 
release in the antineutrino untrapping transition is of the order of 1052 erg. 
This is a first order transition and leads to an explosive release of energy 
that could help to explain energetic phenomena in the universe like gamma 
ray bursts or supernova explosions. 
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The influence of neutrino trapping (NT) on the early cooling evolution of hot proto 
quark stars (PQS) with initial temperatures in the range T ~ 40 MeV is studied. 
Within a simplified model for the neutrino transport it is shown that the time for 
reaching neutrino opacity temperature of Topac ~ 1 MeV is about 10 sec. This 
is an order of magnitude larger than without NT and of the same order as the 
duration long gamma ray bursts. 

1. I n t r o d u c t i o n 

Gamma ray bursts (GRBs) are among the most intriguing phenomena in 

the Universe, see l and references therein. If the energy is emitted isotrop-

ically, the measured energy release is of the order of 105 3 ~ 1054 erg and it 

is a puzzle to explain the engine of a GRB. However, there is now a com

pelling evidence tha t the gamma ray emission is not isotropic, but displays 

a jet-like geometry. When the emission is collimated within a narrow beam 

a smaller energy, of the order of 1052 erg, would be sufficient for the GRBs 
2 but their sources are not yet understood. There is growing evidence for 
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a connection of GRBs to supernovae now from emission features in some 
GRB afterglows, e.g. GRB 990707 3, GRB 991216 4, GRB 000214 5 and, 
most recently GRB 030329 6. As in the realm of a supernova explosion a 
compact star is likely to be born, it has been conjectured (see 7 and refer
ences therein) that a phase transition from hadronic to deconfined quark 
matter might power the GRB. However, although the energy release might 
be in the right order of magnitude, the collapse timescale is too short (~ 
several ms) to explain long GRBs with a duration of several tens of sec
onds. Recently, it has been suggested 7 that the deconfinement transition 
in a compact star might be an example for a nucleation process of quark 
matter droplets which is a quantum tunneling process between metastable 
states, with a sufficient delay, depending on the surface tension of the quark 
matter droplet. This approach has been criticized 8 since during the su
pernova collapse the protoneutron star can be heated up to temperatures 
of the order of the Fermi energy T ~ ep « 30 4- 40 MeV so that the ther
mal fluctuations would dominate over quantum ones and make the phase 
transition sufficiently fast without the delay claimed in Ref. 7. 

In the present contribution we consider the cooling evolution of a hot 
protoneutron star above the neutrino opacity temperature Topac ~ 1 MeV 
9, so that the neutrino mean free path is by orders of magnitude smaller 
than the size of the star. As it has recently been estimated 10 and also 
reported at this conference u , the neutrino untrapping transition occuring 
when the star cools below Topac might serve as an engine of a GRB. The 
question to be considered here is whether the energy release by neutrino 
emission can be sufficiently delayed due to neutrino trapping so that the 
typical duration of a long GRB could be explained. 

2. Early cooling evolution 

During the collapse of the progenitor star the density increases in its very 
interior from the densities of the iron core to those at and above the de-
confinement transition. For this huge interval of densities, part of which 
we display in Fig. 1, matter can undergo several phase transitions. During 
these processes, like leptonization and deleptonization, neutrinos and an-
tineutrinos are produced in weak interactions which eventually could also be 
trapped during the early stages of the evolution when the temperatures are 
expected to be much higher than Topac. The cooling process for such a PQS 
is investigated in this contribution, where we use a simplified model of a 
homogeneous PQS structure and an approximate global thermal evolution. 
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Quark core 

10 

Deleptonisation 

Figure 1. Schematic representation of the evolution of the composition of compact star 
matter with increasing density. Y, = TH/UB is the fraction of particles of species i 
per baryon and n s / n o is the baryon density in units of the nuclear saturation density 
(no =0 .16 fm" 3 ) . 

If the star cools below Topac by surface-radiation, neutrinos could escape in 
a sudden outburst. For brevity, saying neutrino means both neutrino and 
antineutrino. 

The loss of energy in a homogeneous system due to emission is given by 

dU{T) 

dt 
-e„(T)-V. (1) 

Here the photon emissivity has been neglected since neutrinos dominate 
the cooling evolution of a PQS for temperatures well above 106 K. For the 
cooling behaviour of a star from a given initial-temperature Tj to a final 
temperature Tj with the luminosity L(T) = — e„(T) • V follows 

At 
Cv(T)-dT 

L(T) (2) 

The luminosity L(T) = L%(T) + L%(T) is explained more in detail in 
Section 3 and the specific heat CV(T) can be derived from the thermal 
energy U(T) for relativistic quark matter 12 

a co 
dU_ 

~dT 
= 1.8 x 10 48 M nB 

n 0 

-1/3 
T9 erg. (3) 
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Here M is the mass of the star in units of the solar one and ns is the 
baryon density of the star for a homogeneous mass distribution in units of 
the nuclear saturation density no = 0.16 fm - 3 . For the temperature we use 
the standard notation T9 = T/109 K. 

The emissivity for the direct URCA process in normal quark matter is 
given by 

eURCA{T) „ | i 7 r 2 G ^ o s 2 ^ Q s nB{3Yd yu ye)i T 6 ; { 4 ) 

where Gp is the Fermi constant of the weak interaction, as is the strong 
coupling constant and 9C the Cabbibo angle. We have introduced the frac
tions of the particle species i as Yi = ni/riB and the baryon density in terms 
of up and down quark densities is ns = (nu + rid)/3- The neutrino mean 
free path (MFP) has the expression 13 

+ 2 I Yu ) + 10 V Yu 

(6TT)5 YJ 

12GFcos2ecYjYe 

x[(Ev - iivf + (TTT)2]"1•• (5) 

Using the PQS matter constraints of charge neutrality \nu — |n<2 — ne = 0 
and /3-equilibrium for the case of trapped neutrinos \iv = /j,u + fie — /i^, 
we can express all particle fractions Yi via Ye. In our model calculation 
we choose Ye = 0.001 and approximate Ev ~ T. For the above choice of 
parameters, the temperature dependence of the MFP is shown in Fig. 2 
and the emissivity in Fig. 3, respectively. 

3. Emissivity and luminosity of PQS 

The emissivity £URCA for ^ e direct URCA-process in quark-matter Eq. (4) 
has to be modified for temperatures, at which the star is opaque to neutri
nos. Due to the trapping of the neutrinos their emissivity is modified by 
a factor which takes into account the probability that the neutrino created 
at a distance r from the center can leave the star in the direction given by 
the angle a. The effective emissivity is given by a product of the emissivity 
for the direct URCA process and an exponential suppression factor 

ev(r, a;T) = exp [-l(r, a)/X(T)} • eu
v
RCA{T) , (6) 

where l(r,a) is the distance from the neutrino creation point to the star 
surface, which for a spherically symmetric star with radius R is given by 

l(r, a) = V R 2 — r2sin2a — r cosa. (7) 
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Figure 2. The neutrino MFP as a function of the temperature for given baryon density 
and electron fraction. 

We average over all possible neutrino directions 

e„(r;T) da ew(r,a;T) (8) 

and integrate over all distances r up to the star radius R in order to obtain 
the total luminosity for neutrino emission from the star volume 

R 

LY(T) = ATT / drr2 -ev{r;T) (9) 

As long as the temperatures are high enough, T ~ 1 MeV, there is a 
spherical inner star region, from where practically no neutrinos escape so 
that their number is quasi conserved and can be defined by a finite chemical 
potential \iv. This region extends up to a distance Rs from the center. The 
radius Rs of the neutrinosphere is a function of the temperature and moves 
towards the center during the cooling evolution, see Fig. 4. In calculating 
the bulk neutrino luminosity of a PQS during the trapping era, we can 
restrict the integration in Eq. (9) to the region between the neutrinosphere 
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Figure 3. Temperature dependence of the neutrino emissivity for the URCA process 
for given baryon density and electron fraction. 

^ (Vol) 

Figure 4. Evolution of the neutrinosphere. 

and the surface of the star. Besides the bulk luminosity we have additional 
neutrino radiation just from the neutrinosphere which can be taken into 
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account by the generalized blackbody radiation formula 

,2 TH2 7^2 rpi 

L^(T) = 4nRi 
4TT2 2 60 

(10) 

which we denote as inner surface luminosity. From the evolution of Rs 

with t ime we can characterize the untrapping transition of neutrinos as a 

burst- type phenomenon or a smooth fading. In Fig. 5 we compare the 
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Figure 5. Temperature dependence of the bulk and inner surface neutrino luminosities. 

temperature dependence of the bulk and inner surface luminosities. These 

results show tha t the t rapping of the neutrinos changes the luminosities 

by about 6 orders of magnitude within the trapping regime. Moreover, for 

the t rapping case, in contrast to the untrapped bulk emission, the bulk 

luminosity has a maximum at 105 3 erg/s for temperatures around 15 MeV. 

Due to this particuliar behavior of the bulk luminosity in the neutrino 

trapping regime we expect tha t for initial temperatures much higher than 

30 MeV there is not only a quanti tat ive change in the cooling evolution but 

rather a qualitative change in the temporal evolution of the energy release. 
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Figure 6. Cooling behavior of a protoneutron star with initial temperature T, = 30 
MeV and R = 12 km. 

4 . R e s u l t s 

In Fig. 6 we show the cooling curves of a PQS for an initial temperature of 

Ti = 30 MeV and a star radius of R = 12 km. The solid line corresponds to 

a cooler in the trapping regime including all effects discussed above. The 

other curves correspond to limiting cases, in particular to the case without 

t rapping (dotted line), the case with t rapping but without surface emission 

(dashed line) and the emission from the inner sphere only (dash-dotted 

line). The comparison shows that at the vicinity of the total untrapping 

regime for T = 0.6 MeV the t ime delay of the cooling with trapping amounts 

to a factor of ten. If one will neglect the inner surface emission of the 

neutrinos, then the neutrino release will not only be delayed but also occur 

within a sudden burst . 

5. O u t l o o k 

The investigation of the effects of neutrino t rapping on PQS evolution is 

only in its beginning. We have outlined a simple model for the study of 

spherical neutrino emission from a hot PQS with and without trapping. 
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Detailed investigations have to be conducted in order to make firm conclu
sions whether the hot neutrino trapping scenario could shed light into the 
mysteries of GRBs and the GRB supernova connection. We underline two 
observations made in this report: 

• The main thermal energy of the star is released in a time interval, 
which is of the order of the duration of long GRB's (~ 10 s). 

• The amount of energy which can be released in the cooling of a 
homogeneous PQS depends much on the initial temperature which 
is unknown and might for the PQS scenario be up to one order of 
magnitude larger than for the canonical protoneutron star scenario. 

This latter observation can have significant implications for the early cool
ing evolution after a supernova collapse due to the strong temperature de
pendence of the dominating URCA process on the one hand and the large 
effective absorption of bulk emissivity on the other. Note that we have 
omitted here the possible effects of finite thermal conductivity which could 
make the separation of the neutrinosphere from the bulk emission zone 
even stronger and enhance the eventual temporal structure in the cooling 
evolution. First estimates show that the neutrino release can occur within 
a burst 10 and provided the conversion process to gamma rays is effective 
enough 14, an interesting PQS-GRB scenario emerges which can include a 
beaming mechanism due to the formation of a vortex lattice in a strongly 
magnetized superconducting PQS 15. 
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1. Introduction 

In the recent paper x, hereafter BGV, we have reinvestigated the cooling 
of neutron stars (NS) within a purely hadron model, i.e., ignoring the pos
sibility of quark cores in NS interiors. We have demonstrated that the NS 
cooling data available by today can be well explained within the "Nuclear 
medium cooling scenario", i.e., if one includes medium effects in the emis-
sivity and takes into account a suppression of the 3P2 neutron gap. In 
a subsequent work 2 we have shown that this result does not exclude the 
possibility that neutron stars might possess large quark matter cores that 
extend up to more than half of the star radius. Such a hybrid structure 
gives room for a whole variety of additional scenarios of compact star cool
ing which fall into two classes: either nuclear and quark matter phases have 
similar cooling behavior (homgeneous cooling) or the faster cooling of the 
one phase is compensated by the slower cooling of the other (inhomoge-
neous cooling). In the present contribution we will report on our results 
within the former, homgeneous cooling scenario of hybrid stars and what 
implications the comparison with present-day cooling data may provide for 
the EoS and transport properties of quark matter. 

2. Color superconductivity 

The quark-quark interaction in the color anti-triplet channel is attractive 
driving the pairing with a large zero-temperature pairing gap A ~ 100 MeV 
for the quark chemical potential [iq ~ (300-^500) MeV, cf. 3 '4, see review 5 

and Refs therein. The attraction comes either from the one-gluon exchange, 
or from a non-perturbative 4-point interaction motivated by instantons 6 

or from non-perturbative gluon propagators 7. Various phases are possi
ble. The so called 2-flavor color superconductivity (2SC) phase allows for 
unpaired quarks of one color, say blue. There may also exist a color-flavor 
locked (CFL) phase 8 for not too large values of the dymanical strange 
quark mass or other words for very large values of the baryon chemical 
potential 9, where the color superconductivity (CSC) is complete in the 
sense that the diquark condensation produces a gap for quarks of all three 
colors and flavors. The value of the gap is of the same order of magnitude 
as that in the two-flavor case. There exist other attractive quark pairing 
channels for quarks that can't participate in 2SC and CFL pairing. These 
weak pairing channels are characterized by gaps typically in the interval 
~ 10 keV -hi MeV, and a prominent example which will be used in the 
present work is the spin-1 pairing channel of single color diquarks in the 
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isospin singlet state, also named as color-spin locking (CSL) phase. 
The high-density phases of QCD at low temperatures may exist in the 

interiors of hybrid stars affecting their cooling, rotation and magnetic field 
evolution, cf. n.i2,i3,i4,i5_ 

3. Hybrid stars 

In describing the hadronic part of the hybrid star we exploit the Argonne 
V18 + 5v + UIX* model of the EoS given in 16, which is based on the most 
recent models for the nucleon-nucleon interaction with the inclusion of a 
parameterized three-body force and relativistic boost corrections. Actually 
we adopt here an analytic parameterization of this model by Heiselberg 
and Hjorth-Jensen 17, hereafter HHJ. The latter uses a compressional part 
with the incompressibility K ~ 240 MeV, and a symmetry energy fitted 
to the data around nuclear saturation density that smoothly incorporates 
causality at high densities. The density dependence of the symmetry energy 
is very important since it determines the value of the threshold density 
for the DU process (n)?u). The HHJ EoS fits the symmetry energy to 
the original Argonne V\% + Sv + UIX* model yielding n|?u ~ 5.19 no 
(MC

DU ~ 1.839 MQ). 

The 2SC phase occurs at lower baryon densities than the CFL phase, 
see 18>19. For applications to compact stars the omission of the strange 
quark flavor is justified by the fact that central chemical potentials in star 
configurations do barely reach the threshold value at which the mass gap 
for strange quarks breaks down and they appear in the system 22. 

We will focus on the model of the quark EoS developed in 23. The 
Gaussian, Lorentzian and NJL type cutoff formfactors were studied. The 
Lorentzian interpolates between a soft (Gaussian type, a ~ 2), and a hard 
(NJL, a > 30) depending on the value of the parameter a. We will further 
work out two possibilities of the Gaussian and the Lorentzian formfactors. 

In some density interval at the first order phase transition there may 
appear the region of the mixed phase, see 21. Ref. 21 disregarded finite 
size effects, such as surface tension and charge screening. Refs 24 on the 
example of the hadron-quark mixed phase have demonstrated that finite 
size effects might play a crucial role substantially narrowing the region of 
the mixed phase or even forbidding its appearance. Therefore we omit the 
possibility of the hadron-quark mixed phase in our model where the quark 
phase arises by the Maxwell construction. For the case of the Gaussian 
formfactor the quark core appears for n > nc = 0.34fm~3 (M > 0.852 M 0 ) , 
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R[km] 

Figure 1. Mass - radius relations for compact star configurations with different EoS: 

purely hadronic star with HHJ EoS (dashed line), stable hybrid stars with HHJ - S M Q 

EoS (solid line) and with HHJ - SM^S) EoS (dash-dotted line). 

(S) 

for the Lorentzian formfactor n > nc = 0.80fm 3 (M > 1.81 M 0 ) . In the 
following, we will not further discuss the Lorentzian case which gives a 
marginal quark core in a small mass range only, see Fig. 1. 

A large difference between chemical potentials of u and d quarks forbids 
the pure 2SC phase, cf. 23. The CFL phase is still not permitted at 
such densities. Ignoring the possibility of a weak coupling we have two 
possibilities: either the quark matter for n > nc is in the normal phase, or 
there appears a region of the 2SC - normal quark mixed phase. Following 
21, Ref. 22 considered the latter possibility disregarding finite size effects 
and has found the possibility of a wide region (for Gaussian formfactor) of 
the 2SC - normal quark mixed phase instead of a pure 2SC phase. In the 
given case arguments of 24 are relaxed since the surface tension on the 2SC 
- normal quark boundary should be much less compared to that for the 
quark - hadron boundary. Indeed, the surface tension is proportional to 
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the difference of the energies of two phases, being very small in the given 
case, oc (A/fiq)

2 <C 1. 
In Fig. 1 we present the mass-radius relation for hybrid stars with HHJ 

vs. SM EoS. Two sets of configurations given by Gaussian (solid lines) 
and Lorentzian (dash-dotted lines) formfactors are stable, see also Ref. 23, 
where similar results for the nonlinear Walecka model EoS (RMF) have 
been found. 

If one switches on the possibility of the weak coupling, e.g. the CSL 
pairing channel, see 10<lg<20 all the quarks in the normal phase may acquire 
a corresponding spin-1 pairing gap, typically A ~ 10 keV 4-10 MeV. In such 
a way all the quarks may get paired, either strongly in the 2SC channel or 
weakly in the CSL one. 

4. Cooling 

For the calculation of the cooling of the hadron part of the hybrid star 
we adopt the same model as in BGV. The main processes are medium 
modified Urea (MMU) and pair breaking and formation (PBF) processes. 
The HHJ EoS was adopted. In Fig. 2 (Fig. 20 of BGV) we show the 
cooling of different NS calculated within the hadron model of BGV. We 
use a fit-law for the relation between surface and interior temperatures, 
see BGV. Possibilities of the pion condensation and of the other so called 
exotic processes are for simplicity suppressed. Direct Urea is irrelevant in 
this model up to very large NS mass M > 1.839 MQ . ISo neutron and 
proton gaps are taken the same as in paper 25, whereas SP2 neutron gap is 
suppressed by the factor 0.1, see Fig. 4 of BGV. 

For the calculation of the cooling of the quark part of the hybrid star 
we are basing on the model 13. We include the most efficient processes: the 
quark direct Urea (QDU) processes on unpaired quarks, the quark modified 
Urea (QMU), the quark bremsstrahlung (QB), the electron bremsstrahlung 
(EB) Following 26 we include the emissivity of the quark pair formation 
and breaking (QPFB) processes. The specific heat incorporates the quark 
contribution, the electron contribution and the gluon-photon contribution. 
In the CSL phase 20 the specific heat is proportional to T2. This new 
term does not significantly affect the total specific heat since the main 
contribution comes from electrons. The heat conductivity contains quark, 
electron and gluon terms. 

We are basing on the picture presented in Fig. 2 and add the contri
bution of the quark core. For the Lorentzian formfactor the quark core 
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Figure 2. Cooling curves according to the nuclear medium cooling scenario, see Fig. 20 
of BGV. The labels correspond to the gravitational masses of the configurations in units 
of the solar mass. 

appears only for M > 1.81 M©, see Fig. 1. The existing cooling data are 
not affected, thereby. 

For the Gaussian formfactor the quark core occurs already for M > 
0.852 MQ according to the model 23, see Fig. 1. Most of the relevant NS 
configurations (see Fig. 2) are then affected by the presence of the quark 
core. First we check the possibility of the 2SC+ normal quark phases. 

Fig. 3 shows the cooling curves calculated with the Gaussian ansatz. 
The variation of zero temperature gaps for the strong pairing of quarks 
within 2SC phase in the interval A ~ 20 -f- 200 MeV only slightly affects the 
results. The main cooling process is the QDU process on normal quarks. 
We see that the presence of normal quarks leads to too fast cooling. The 
data could be explained only if all the masses lie in a very narrow interval 
(0.82 < M/MQ < 0.90 in our case). The existence of only a very narrow 
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Figure 3. Cooling curves for hybrid star configurations with Gaussian quark matter core 
in the 2SC phase. The labels correspond to the gravitational masses of the configurations 
in units of the solar mass. 

mass interval in which the data can be fitted seems us unrealistic as by 
itself as from the point of view of the observation of the NS with different 
masses: M ~ 1.41 M© and M ~ 1.25 M©, cf. 27. Thus the data can't be 
satisfactorily explained. 

In Fig. 4 we permit the weak pairing for all quarks which were assumed 
to be unpaired. We use A ~ l MeV for the corresponding quark gap. Fig. 
4 demonstrates too slow cooling. 

In Fig. 5 we again allow for the weak pairing of those quarks which 
were assumed to be unpaired in Fig. 3, but now we use A = 50 keV for 
the corresponding CSL quark gap. The data are appropriately fitted. The 
" slow cooling" data are explained by the cooling of NS either without quark 
core (M ~ 0.5 M©, see Fig. 2) or with a quark core. Although the majority 
of experimental cooling points are covered by NS masses in a very narrow 
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Figure 4. Cooling curves for hybrid star configurations with Gaussian quark matter 
core in the 2SC+CSL phase. The weak pairing gap is 1 MeV. The labels correspond to 
the gravitational masses of the configurations in units of the solar mass. 

mass interval M = 0.86 -r- 0.87 MQ the difference with Fig. 3 is crucial. 
We see that with the higher masses, up to 1.6 MQ one may cover the rapid 
cooling point (Vela). Besides, the variation of parameters allows to shift all 
the curves up what permits to essentially broaden the mass interval that 
would cover the data. E.g. with the so called Tsuruta law for the Ta — T{n 

relation the corresponding mass interval is M = 0.86 H- 1.79 MQ. With 
these remarks we showed that the 2SC+CSL+hadron scenario allows to fit 
the data as well as the purely hadronic scenario, see l. To be more realistic 
one should further inlcude density dependences of the gaps what we intend 
to do in the forthcoming publication. 
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Figure 5. Same as Fig. 4 but with a weak pairing gap of 50 keV. 

Conclusion 

Concluding, we demonstrated that the present day cooling data can be 
explained not only by a purely hadronic structure of NS interiors but also 
by a hybrid one with a complex pairing pattern, where quarks are partly 
strongly paired within the 2SC channel, and partly weakly paired within 
the CSL channel with gaps A ~ 50 keV. We conclude also that our choice 
of a density-independent weak pairing gap could be the reason why the 
mass interval for explaining slow and intermediate cooling data is very 
narrow. As it is well-known that the CSL gap should have a strong density 
dependence 20, the fastening of the cooling by increasing the star masses 
should be partly compensated for by the corresponding increase of the weak 
pairing gap. Corresponding calculations are under way. 
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NEUTRINO OSCILLATION EXPERIMENTS: 
SUPER-KAMIOKANDE, K2K A N D THE JPARC 

NEUTRINO PROJECT 
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E-mail: kajita@icrr.u-tokyo.ac.jp 

Neutrino oscillations have been studied using various neutrino sources including 
solar, atmospheric, reactor and accelerator neutrinos. Our understanding on neu
trino masses and mixing angles has been improved significantly by recent experi
ments. This report mainly discusses the present status and the future prospect of 
our understanding of neutrino masses and mixing angles that are related to larger 
Am2. 

1. In t roduct ion 

Neutrinos are known to be much lighter than any other quarks or charged 
leptons. Study of neutrino masses and mixing angles is one of a few ways 
to explore physics beyond the standard model of particle physics, since 
small neutrino masses are related to physics in very high energy scales 1,2. 
Small neutrino masses can be studied by neutrino flavor oscillations. For 
simplicity, we consider two-flavor neutrino oscillations. If neutrinos are 
massive, the flavor eigenstates, va and vp, are expressed as combinations 
of the mass eigenstates, Vi and Vj. The probability for a neutrino produced 
in a flavor state va to be observed in a flavor state vp after traveling a 
distance L through the vacuum is: 

, , /1.27Am?-(eV2)L(km)\ 

P(ya ^ Vp) = S i n 2 2B.. s i n 2 ( £{GeY) ) > ( ^ 
where Ev is the neutrino energy, Oij is the mixing angle between the flavor 
eigenstates and the mass eigenstates, and Amf • = m^- — vr?vi. 

The above description has to be generalized to three-flavor oscillations. 
In the three-flavor oscillation framework, neutrino oscillations are param
eterized by three mixing angles (#12, #23> and #13), three mass squared 

mailto:kajita@icrr.u-tokyo.ac.jp
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differences (Amf2, A m ^ , and A m ^ ; among the three Am2 's, only two are 
independent) and one CP phase (5). However, if a neutrino mass hierarchy 
is assumed, the three Am2 's are approximated by two Am2 's, and neu
trino oscillation lengths are significantly different for the two Am2 's. One 
Am2(Am2

2) is related to solar neutrino experiments and the KamLAND 
reactor experiment. The other Am2(Am2

3) is related to atmospheric, re
actor and long baseline neutrino oscillation experiments. It is known that 
it is approximately correct to assume two-flavor oscillations for analyses of 
the present neutrino oscillation data. Therefore, in this article, we mostly 
discuss two flavor neutrino oscillations assuming two significantly different 
Am2 's. We mostly discuss experiments related to larger Am2 . Especially, 
emphasis will be made on the atmospheric neutrino results from Super-
Kamiokande, the K2K results and the sensitivity in JPARC-Kamioka neu
trino project. 

2. Present data 

2.1. Atmospheric neutrino experiments 

The strongest evidence for v^ —> vT oscillation to date is given by atmo
spheric neutrino data from Super-Kamiokande 3. The atmospheric neutrino 
flux is predicted to be up-down symmetric for the neutrino energies above 
a few GeV where the geomagnetic field effect can be neglected. On the 
other hand, neutrino oscillations with Am2 of about 3xlO_ 3eV2 predict a 
significant deficit of upward-going neutrino events. The first convincing ev
idence for oscillations was discovered by the zenith angle dependent deficit 
for muon neutrino events 3 (see also Ref. 4 for an earlier result.) Atmo
spheric neutrino experiments determine the v^ —> vT neutrino oscillation 
parameters utilizing the zenith angle and energy dependent deficit of muon 
neutrino events. 

Recently, Super-Kamiokande has updated their neutrino interaction 
Monte Carlo simulation based on the K2K neutrino data. The detector 
Monte Carlo simulation and the event reconstruction have also been im
proved. In addition, a recent flux model based on a three dimensional cal
culation method 5 is used. Figure 1 shows the zenith angle distributions 
for various data samples from Super-Kamiokande. The zenith angle and 
energy dependent deficit of muon neutrino events is clearly seen. Consistent 
results have been obtained from Kamiokande 6, Soudan-2 7 and MACRO 8. 

The allowed regions of v^ —• vT oscillation parameters from these exper
iments are shown in Figure 2. The allowed regions from various experiments 



422 

-0.5 0 0.5 
cos6 

Mlllti-fipV Multi-ring 

-1 -0.8 -0.6 -0.4 -0.2 0 
COS 9 

4 I Ipwarri Thrm igh fining 11 

3.5 

-0.5 0 0.5 
cos 9 

0.8 -0.6 -0.4 -0.2 0 
cos 9 

F igu re 1. Zen i th angle d i s t r i b u t i o n s observed in S u p e r - K a m i o k a n d e . T h e d e t e c t o r ex

p o s u r e is 1489 days (92 k ton-yr ) for ful ly-contained (FC) a n d pa r t i a l l y - con ta ined ( P C ) 

events , 1646 days for u p w a r d s t o p p i n g m u o n a n d t h r o u g h going m u o n events . E v e n t s de

n o t e d by " s u b - G e V " ( " m u l t i - G e V " ) have t h e i r visible energies lower t h a n (h igher t h a n ) 

1.3 G e V . cos© =1(—1) m e a n s down-go ing (up-go ing) . T h e solid h i s t o g r a m s show t h e 

p red ic t ion w i t h o u t n e u t r i n o osci l la t ions . T h e d o t t e d h i s t o g r a m s show t h e p red ic t ion w i t h 

Up —> vT osci l la t ions ( A m | 3 = 2 . 0 x l 0 ~ 3 e V 2 , s in 2 2^23 = 1 . 0 ) . In t h e osci l la t ion pred ic 

t ion , var ious u n c e r t a i n t y p a r a m e t e r s such as t h e abso lu t e no rma l i za t i on a re ad jus t ed t o 

give t h e bes t fit t o t h e d a t a . 
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Figure 2. Allowed neutrino oscillation parameter regions for v^ —> vT from atmospheric 
neutrino experiments 6 7 8 at 90% C.L. (left) and the K2K 1 0 long baseline neutrino 
oscillation experiment at 68, 90 and 99% C.L. (right). 

are consistent. The best fit point from the Super-Kamiokande allowed re
gions is 2.0xlO~3eV2 for Am2 and 1.00 for sin2 29 (preliminary). The 90% 
C.L. allowed region is 1.3 x K T 3 < Am2 < 3.0 x 10~3eV2 and sin2 20 > 0.90 
(preliminary). The present best fit Am2 from Super-Kamiokande is lower 
than the previous estimate by about 20%. Each change in the flux model, 
interaction model, the detector simulation and the event reconstruction 
shifted Am2 in the same direction. As of this writing, Super-Kamiokande 
is finalizing the atmospheric neutrino analysis. The final results based on 
the data taken between 1996 and 2001 will be published soon. 

Several alternative hypotheses have been proposed to explain the atmo
spheric neutrino data. Most of them have been excluded or disfavored for 
various reasons. Neutrino oscillations between v^ and vT give the best fit to 
the data. For maximal v^ —•> vT oscillations with the Am2 preferred by the 
present data, it is expected that about 1 CC vT interaction should occur 
per kton per year. Super-Kamiokande has searched for CC vT interactions 
in the fully-contained atmospheric neutrino sample. Since the r decays im
mediately after the production, a typical vT event looks like an energetic 
NC event in Super-Kamiokande. No single selection criterion can select 
the vT events efficiently. Therefore, maximum likelihood or neural network 
methods are used to maximize the detection sensitivity. Finally, the zenith 
angle distribution is used to statistically estimate the number of r events, 
since only upward going events are expected for the r events. Prelimi
nary results showed that the data are consistent with the T production 9. 
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However, the statistical significance is only 2 to 3 standard deviation level. 
More statistics and improved analysis are required for convincing evidence 
for r production. 

2.2. K2K 

It is not trivial for atmospheric neutrino experiments to estimate the Am2 

value precisely, since it is not possible to precisely estimate the Lv/Ev value 
for each event. On the other hand, a long baseline experiment has only 
one neutrino flight length. Therefore, it is much easier for a long baseline 
neutrino oscillation experiment to estimate the Am2 value accurately. 

K2K is the first long baseline neutrino oscillation experiment. Neutrinos 
are produced by using a 12 GeV proton beam at KEK. The neutrinos are 
detected in Super-Kamiokande. The neutrino flight length and the mean 
neutrino energy are 250 km and about 1.3 GeV, respectively. The estimated 
Am2 value from the atmospheric neutrino experiments suggests that the 
maximum oscillation effect should occur at the energies of less than 1 GeV 
for neutrinos whose flight length is 250 km. Therefore, K2K studies energy 
dependent deficit of muon neutrino events. 

|12 
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2 

°0 1 2 3 4 ^ 5 
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Figure 3. The reconstructed Ev distribution for single-ring /ii-like events. Points with 
error bars show data. Box histogram shows expected spectrum without oscillations, 
where the height of the box show the systematic error. Solid line shows the best fit spec
trum. These histograms are normalized by the number of observed events (29). Dashed 
line shows the expectation with no oscillations normalized to the expected number of 
events (44). 
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During the first data taking period between 1999 and 2001, 4.8x10 
protons were delivered on target. 56 neutrino events have been observed in 
the far detector (Super-Kamiokande), while the expected number of events 
is 80.ll|-j for no oscillations 10. In addition, K2K have studied the neutrino 
energy distribution using 29 single-ring /x-like events. It is possible to calcu
late the neutrino energy from the muon energy and the direction assuming 
a quasi-elastic interaction. Figure 3 shows the observed neutrino energy 
distribution from these single-ring /j,-like events. A deficit of events is ob
served between 0.5 and 1.0 GeV. (However, the statistics of the present data 
are not large enough to claim the evidence for energy dependent deficit.) 

The allowed oscillation parameter region was estimated using the num
ber of observed events and the reconstructed neutrino energy spectrum. 
The allowed parameter region is shown in Fig. 2. The beast fit oscilla
tion parameters were sin2 29 =1.00 and Am2=2.8xl0~3eV2 . The allowed 
region from K2K is consistent with those from the atmospheric neutrino 
experiments.. It should be noted that the allowed Am2 region from K2K is 
as small as that from Super-Kamiokande atmospheric neutrino data, while 
the statistics of the K2K data are less than 1% of the Super-Kamiokande 
atmospheric neutrino data. It was made possible, because the neutrino 
flight length is a single number in the K2K neutrino beam, while the flight 
length varies more than 3 orders of magnitude in the atmospheric neutrino 
beam. 

K2K has resumed the experiment in Jan., 2003. Between Jan. and 
April, 2003, 16 additional events were observed in Super-Kamiokande, while 
the expected number of events was 26.4^2 \. The event rate in the new data 
taking period is consistent with the previous rate. 

A new front detector with full active scintillator trackers was installed 
and the data taking with this detector was started in Oct., 2003. This 
detector will make it possible to better understand the of low energy (of 
less than 1 GeV) neutrino interactions. 

2.3. Limits on 0\s 

It is possible to get information on the other mixing angle (#13) using the 
currently available data. Within an approximation that Am2

2 is much 
smaller than A m ^ (i.e., A m ^ / A m ^ = 0), the neutrino oscillation prob-
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ability can be written; 

P(v ^ v ) - i .in2 90 sin2 fl-27Am?3(eV2)L(kmh 
P{ye ^ v e ) - l - sm 26»13 sin [ EJ&V) J' ( 2 ) 

. 2 . • 2 „ 2 /1.27Am?.(eV2)L(km)\ 
i > „ -> ^e) = sin2 023 sin2 2#13 sin2 ( E (GeY) ) • ^ 

The best limit is obtained by the CHOOZ n reactor experiment. In ad
dition, constraints are obtained from Super-Kamiokande atmospheric neu
trino experiment and the K2K experiment 12. No evidence for finite 6*13 has 
been observed. According to a combined analysis 13 of these results, the 
current upper limit on sin2 #13 is 0.067 (at 3<r). We note that the current 
limit on #13 is a little weaker than the previous one due to the new Am2 

value from Super-Kamiokande. 

3. Future neutrino oscillation experiments 

Although the atmospheric neutrino data together with the K2K results, 
give convincing evidence for neutrino oscillations, there are several open 
questions: The measurement of Am| 3 by the atmospheric neutrino experi
ments is not very accurate. The observed effect has been the zenith angle 
and energy dependent deficit of CC v^ events and the sinusoidal oscillation 
pattern has not been observed yet. The interactions of i/T, which must be 
generated by oscillations, have not been convincingly observed yet. Finally, 
#13, the CP phase 5 and the sign of Am2 are not known. Future long base
line neutrino oscillation experiments should address these issues and study 
further details of neutrino oscillations. Many of these experiments use ac
celerator generated neutrino beams. Since the typical neutrino energy is 
1 GeV or higher, and since Am2

3 is about 2.5x 10~3eV2, the baseline length 
must be at least a few hundred km. 

3.1. MINOS and CNGS 

As of this writing, the MINOS experiment 14 is in the preparation stage. 
This experiment is able to study neutrino oscillations with much higher 
statistics than those in K2K. To produce neutrinos, the MINOS experi
ment uses the 120 GeV proton beam from the Main Injector at Fermilab. 
The MINOS detector is an iron-scintillator sampling calorimeter, which is 
located 730 km away from the target. The MINOS far detector has the 
total mass of 5.4 kton. The installation of the MINOS far detector has 
been completed in the summer of 2003. Since then, it has been taking 



427 

atmospheric neutrino data . Because this detector is magnetized, it could 

give unique da ta on atmospheric neutrinos as well in the near future. The 

MINOS long baseline experiment is expected to start in early 2005. MINOS 

will improve our knowledge on Am2 significantly. Some improvement on 

the mixing angle measurements could also be expected. 

In Europe, CNGS (CERN Neutrino to Gran Sasso) project is in 

progress. 400 GeV proton beam from SPS at CERN produces high energy 

neutrinos whose mean energy is about 20 - 30 GeV. Neutrinos produced 

by this beam will be detected by detectors at Gran Sasso, which is 730 km 

away from the neutrino production point. O P E R A 15 is an experiment for 

the CNGS project. This experiment is aimed to study neutrino oscillations 

by looking at the appearance of vT in the beam. The O P E R A main detec

tor consists of a 1.8 kton lead-emulsion target. Since it is not possible to 

scan all the images recorded in the emulsion, there are electronic detectors 

after each emulsion module in order to locate the interaction point in the 

emulsion. Only a portion of the emulsion tha t are located by the electronic 

detectors will be scanned to search for r decay kinks. After 5 years of op

eration with 5 x l 0 1 9 p.o.t. per year, the expected number of identified CC 

vT events are 4.3, 10.1 and 26.3 for A m l 3 =0.0016, 0.0025, 0.004 eV2 , while 

the expected background is 0.65. The experiment will s tar t in 2006. 

The other experiment for the CNGS project will be ICARUS 16 . It is a 

liquid argon T P C detector. The total mass will be 3 ktons. The excellent 

imaging capability of the detector should make it possible to carry out 

various neutrino oscillation studies. 600 ton ICARUS detector has been 

tested on the ground successfully i r . The same detector will be installed 

at the Gran Sasso Laboratory soon. The sensitivity for vT appearance is 

very similar to tha t of OPERA. It has also a high sensitivity for the #13 

measurement. 

3.2 . JPARC-Kamioka neutrino project 

There are as-yet-unobserved quantities related to neutrino oscillations: 

#13, the sign of A m ^ and the CP phase in the neutrino sector. These 

questions can be addressed by the next generation neutrino oscillation 

experiments. One possible experiment is the JPARC-Kamioka neutrino 

project 18 . JPARC is a high intensity proton accelerator complex tha t is 

under construction at JAERI , Tokai, Japan. 50 GeV PS will be used to pro

duce the high intensity neutrino beam. The construction will be completed 

in the Japanese F Y 2007. At the end'of 2003 (about one month after this 
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meeting) this neutrino project was approved by the Japanese government. 
The experiment will start in late 2008 or early 2009. 

The main goals of the first phase of the project are the observation of 
non-zero sin2 2^13 and the precise measurement of sin2 2^23 and A m | . The 
50 GeV PS is designed to deliver 3.3xl01 4 protons every 3.4 seconds. The 
beam power is 0.75 MW. A future upgrade of the beam power to 4 MW 
is considered. The far detector is Super-Kamiokande. The baseline length 
of the experiment is 295 km. A 1 Mton water Cherenkov detector, Hyper-
Kamiokande, is seriously considered as the far detector in the second phase 
of this neutrino project. The main goal of the second phase of the project 
is the observation of the CP violation effect. 

A feature of this experiment is the use of a low-energy, narrow band, 
high-intensity neutrino beam. The neutrino energy will be tuned to the 
maximum oscillation energy. For Am| 3 = 3.0 x 10"3eV2, it is 715 MeV. 
To produce high intensity, narrow band beam, the off-axis beam technique 
will be used 19. The axis of the beam is displaced by a few degrees from the 
far detector direction. Due to the two body decay kinematics of pions, the 
energy of neutrinos that pass through the far detector is low and almost 
independent of the pion energy spectrum. The neutrino energy can be 
adjusted by choosing the angle between the pion beam direction and the 
direction to the detector (off-axis angle). 

Detailed Monte Carlo simulations have been carried out to estimate the 
expected neutrino spectrum and the number of events. If the off-axis angle 
is determined, the neutrino energy distribution is determined essentially. 
On the other hand, our present knowledge on A7n|3 is not precise enough 
to pre-determine the off-axis angle uniquely. Because of these conditions, 
the decay pipe is designed to accommodate off-axis angles between 2 and 3 
degrees. The expected total numbers of events per year, which is equivalent 
to 1021 protons on target, are 3200 and 1100 for 2 and 3 degree off-axis 
beams, respectively. Throughout the discussion of the JPARC-Kamioka 
neutrino project, we assume that the true A m ^ is 3.0 x 10~3eV2. We also 
assume the 2 degree off-axis beam. 

The neutrino energy can be reconstructed accurately for quasi-elastic 
interactions assuming that the target nucleon is at rest. Figure 4 shows 
the reconstructed energy spectrum with and without neutrino oscillations 
assuming sin22#23 =1-0 and Am2

3 = 3.0xlO~3eV2. Events with single 
/i-like Cherenkov ring are plotted. Since the peak of the neutrino energy 
distribution is tuned to the maximum oscillation energy, most of the muon 
neutrinos must be oscillated to tau neutrinos. From this figure it is possible 
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Figure 4. Upper: Reconstructed neutrino energy distribution for 5 year operation of the 
JPARC-Kamioka experiment with the 2 degree off-axis beam. Events with single /Li-like 
Cherenkov ring are plotted. The shaded histogram shows the contribution of non-quasi-
elastic events, sin2 2023 =1.0 and A m | 3 =3.0xlCr' : ieV2 are assumed. The maximum 
oscillation effect is expected to occur at the 0.6 to 0.8 GeV energy bin. Lower: Recon
structed Ev distributions after subtracting the non-quasi-elastic events. The histogram 
and the dots show the non-oscillation and oscillation cases, respectively. 

to estimate the sensitivities in sin226*23 and A m ^ . The expected accuracy is 
1% in sin22#23 and 1 x 10_4eV2 in Am2

3. As far as Am| 3 is concerned, the 
sensitivity is limited by systematic uncertainties, such as uncertainties in 
absolute energy calibration or in nuclear effects that affect lepton energies. 

The JPARC neutrino beam has a small ve contamination (0.2% at the 
energy of the peak flux). Furthermore, the ve appearance signal is maxi
mized by tuning the neutrino energy at its oscillation maximum. Thus, this 
experiment has a high sensitivity to 6*13. The signal should be searched for 
in the single-ring e-like events. The main background processes are contam
ination of ve in the beam, and NC (mostly 7r°) events. Special cuts have 
been developed to reject these NC events (See 18 for details). Figure 5 (left) 
shows the expected energy distribution for the signal and background. Fig
ure 5 (right) shows the expected sensitivity in sin226'/Ue (= sin2 #23 -sin2 2#i3 
and assumed to be 0.5 x sin2 2^13). The sensitivity of this experiment to 
sin226»i3 is about 0.006. 
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Figure 5. (Left) Expected electron appearance signal in the JPARC-Kamioka neutrino 
project. It is assumed that sin22#i3 =0.1 and 5 years of operation. (Right) 90% C.L. 
sensitivity in sin 

20Me(= 0.5 • sin2 20i3) after 5 years of operation. Present limit from 
reactor experiment ll is shown by a gray region. In these figures, effects due to the CP 
violation and the matter are neglected. 

3.3. Competing projects 

The neutrino beam produced by the Main Injector for the MINOS experi
ment can be used for an off-axis experiment. If a detector is located about 
10 or 20 km away from the beam center, the mean beam energy can be 
about 2 and 1 GeV, respectively. As a far detector, about 50 kton, low-Z 
detector is considered. This experiment will have a slightly better sensi
tivity in sin2 2#i3 than the JPARC-Kamioka neutrino project 23. Intensive 
R&Ds for the detector are in progress. 

It is also possible to study #13 using Ve from nuclear power reactors. 
Unlike accelerator experiments, the disappearance of Ve is almost a pure 
measurement of 6*13. Detailed studies have shown that it must be possible 
to improve the sin2 #13 limit by a factor of 5 to 10 (or more) with the present 
technology, if the systematic error is controlled to an accuracy of about 1%. 
(See, for example 24.) 

3.4. Toward the measurement of the CP violation 

There are now intense studies of designing experiments that detect CP 
violation effect. CP violation in the neutrino sector is considered to be 
the key to understand the baryon asymmetry of the Universe 25. The CP 
violating phase is currently unknown and is expected to be observable if 
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A m 2
2 and A m ^ are close enough so tha t both come into play in a single 

measurement and if the Jarlskog factor 26 J = c\2c\5C2zSi2SizS2i{,sin5) is 

large enough. Recent solar neutrino 2 1 , 2 0 and KamLAND 22 da ta confirm 

tha t #12 and A m 2
2 are large enough. 

One example for such experiments is the second stage of the JPARC-

Kamioka neutrino project. The C P violation phase can be measured by 

observing the difference in the neutrino oscillation probabilities between 

V\i ~* ve and Vp -^Ve. To observe the C P violation effect, a huge detector 

(1 Mton Hyper-Kamiokande detector), a very high intensity proton accel

erator (4 M W beam power) and about 8 years of operation will be required 
18 

Even more ambitious projects are under serious discussion and R&D. 

These discussions assume a very high intensity neutrino beam produced by 

muon storage rings (neutrino factories), see for example Ref. 2 7 . The basic 

idea is to build a muon storage ring with a long straight section where 

muons decay to produce a collimated neutrino beam. The muon decay 

is well understood and yields a very well defined beam spectrum. A \x+ 

decays to e + , V^ and ve. Therefore, if a yT is observed in a neutrino 

interaction, this event must be an oscillation signal (or a background due 

to an imperfect detector resolution). Therefore, experiments with muon 

storage rings are expected to be very sensitive to a very small #13 value. In 

addition, since the storage of positive and negative muons are possible, it 

is possible to s tudy the C P violation effect. Detailed studies have shown 

tha t the sensitivity of these experiments to the CP violation effect is high. 

Also, since the baseline is very long (typically longer than 1000 km), the 

sign of Am 2 ^ can be determined easily using the mat te r effect. 

4. S u m m a r y 

Data from various neutrino oscillation experiments to date already give 

fairly detailed information on the neutrino masses and mixing angles. Two 

mixing angles, #12 and #23 are large. A771I3 is significantly larger than 

Am 2
2 - However, our understanding of the neutrino masses and mixing 

angles is not complete. We do not know how small #13 is. We have no 

knowledge about the C P phase in the neutrino sector. Future long baseline 

experiments should address many of these important questions. It is likely 

tha t future neutrino oscillation experiments will continue to contribute to 

our understanding of the particle physics. 
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Low-energy nuclear weak-interaction processes play important roles in many astro-
physical contexts, and effective field theory is believed to be a highly useful frame
work for describing these processes in a model-independent manner. I present a 
brief account of the basic features of the nuclear effective theory approach, and 
some examples of actual calculations carried out in this method. 

1. Introduction 

Low-energy nuclear weak-interaction processes play important roles in 
many astrophysical phenomena and also in terrestrial experiments designed 
to detect the astrophysical neutrinos. Obviously, it is important to have 
reliable estimates of the cross sections for these processes. I wish to de
scribe here some of the recent developments in our endeavor to obtain 
such estimates.a My main emphasis will be placed on comparison between 
the traditional method, to be designated as the standard nuclear physics 
approach (SNPA), and the newly developed nuclear effective field theory 
(EFT) approach. I shall advocate the viewpoints that (i) nuclear EFT 
can indeed be a powerful framework for describing low-energy nuclear elec-
troweak processes and (ii) that, in practical applications, EFT and SNPA 
can play complementary roles. 

These points are nicely illustrated by the following three examples: (i) 
neutrino-deuteron reactions for solar neutrino energies; (ii) solar pp fusion; 
(hi) solar Hep fusion. Since the process (iii) and related topics will be 

*Work partially supported by the US National Science Foundation, Grant No. PHY-
0140214 
aThis talk has some overlap with the one I gave at NDM03 x. 

mailto:kubodera@sc.edu


434 

discussed in detail by Dr. Tae-Sun Park at this Symposium, I shall con
centrate on the first two reactions. Let me start with a brief explanation 
of why these processes are of particular current interest. 

At SNO (Sudbury Neutrino Observatory), a one-kiloton heavy water 
Cerenkov counter is used to detect the solar neutrinos. SNO can monitor 
the neutrino-deuteron reactions: 

ve + d—>e~+p + p, vx + d—>vx+p + n, 

i'e+d^e+ + n + n, Dx+d^Dx+p + n, (1) 

as well as the pure leptonic reaction vx + e~ —> vx + e~. Here x stands 
for a neutrino of any flavor (e, fi or r ) . The recent SNO experiments 2 

have established that the total solar neutrino flux (counting all neutrino 
flavors) agrees with the prediction of the standard solar model 3, whereas 
the electron neutrino flux from the sun is significantly smaller than the total 
solar neutrino flux. The amount of deficit in the electron neutrino flux was 
found to be consistent with what had been known as the solar neutrino 
problem. These results of the SNO experiments have given clear evidence 
for the transmutation of solar electron neutrinos into neutrinos of other 
flavors. Obviously, a precise knowledge of the v-d reaction cross sections is 
important for the in-depth interpretation of the existing and future SNO 
data. 

Meanwhile, the pp fusion reaction 

p + p - • d + e+ + ve (2) 

is the primary solar thermonuclear reaction that essentially controls the 
luminosity of the sun, and therefore the exact value of its cross section is a 
crucial input for any elaborate solar models. 

2. Calculational frameworks 

2.1. Standard nuclear physics approach (SNPA) 

The phenomenological potential picture has been highly successful in de
scribing a vast variety of nuclear phenomena. In this picture an A-nucleon 
system is described by a non-relativistic Hamiltonian of the form 

A A A 
H = Y1U + J1V» + E vHk + --, (3) 

i i<j i<j<k 

where tj is the kinetic energy of the i-th nucleon, Vij is a phenomenologi
cal two-body potential between the i-th and j - t h nucleons, Vijk is a phe
nomenological three-body potential, and so on. (Since potentials involving 
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three or more nucleons play much less important roles than the two-body 

interactions, we shall be concerned here mainly with Vij.) Once the model 

Hamiltonian H is specified, the nuclear wave function |\I/> is obtained by 

solving the Shrodinger equation 

H\^>= E\^> . (4) 

It is fortunate tha t the progress of numerical techniques for solving eq. (4) 

has reached such a level 4 tha t the wave functions of low-lying levels for 

light nuclei can now be obtained with essentially no approximation (once 

the validity of the model Hamiltonian eq.(3) is accepted). This liberates 

us from the "familar" nuclear physics complications that arise as a result 

of t runcat ing nuclear Hilbert space down to certain model space (such as 

shell-model configurations within a limited number of major shells, cluster-

model trial functions, etc.) 

We note tha t there is large freedom in selecting possible forms of Vij, 

apart from the well-established requirement tha t , for a large enough value 

of the inter-nucleon distance, Vij should agree with the one-pion exchange 

Yukawa potential. For the model-dependent short-range part of Vij, the 

best we could do is to assume certain functional forms and fix the param

eters contained in them by demanding tha t the solutions of eq.(4) for the 

A = 2 case reproduce the nucleon-nucleon scattering da ta (typically up to 

the pion-production threshold energy) as well as the deuteron properties. 

There are by now several so-called modern high-precision phenomenological 

N-N potential tha t can reproduce all the existing two-nucleon da ta with 

normalized x2 values close to 1. These potentials differ widely in the ways 

short-range physics is parametrized, and, as a consequence, they exhibit 

substantial difference in their off-shell behaviors. To what extent this arbi

trariness may affect the observables of our concern is an important question, 

to which I will come back later. 

In normal situataions, nuclear responses to external electroweak probes 

are given, to good approximation, by one-body terms, which are also called 

the impulse approximation (IA) terms. To obtain higher accuracy, however, 

we must include exchange current (EXC) terms, which represent nuclear 

responses involving two or more nucleons. These exchange currents (usu

ally taken to be two-body operators) are derived from one-boson exchange 

diagrams, and the vertices featuring in the relevant diagrams are deter

mined to satisfy the low-energy theorems and current algebra 5 . We refer 

to a formalism based on this picture as the standard nuclear physics ap

proach (SNPA). (This is also called a potential model in the literature.) 
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Schematically, the nuclear matrix element in SNPA is given by 

A A 

Ms
fi

pA = < *;NPA i J2 !̂NPA + J2 °sz™A i**NPA > ' (5) 
l £<m 

where the initial (final) nuclear wave function, \J)?NPA ($^NPA), is a solution 
of eq.(4); C|NPA and Of^PA are, respectively, the one-body and two-body 
transition operators for a given electroweak process. 

SNPA has been used extensively to describe nuclear electroweak pro
cesses in light nuclei, and generally good agreement between theory and 
experiment 4 gives a strong indication that SNPA essentially captures much 
of the physics involved. 

2.2. Effective field theory (EFT) 

Even though SNPA has been extremely successful in correlating and ex
plaining a wealth of nuclear phenomana, it is still important from a funda
mental point of view to raise the following issues. First, since the hadrons 
and hadronic systems (such as nuclei) are governed by quantum chromody-
namics (QCD), we should ultimately be able to relate nuclear phenomena 
with QCD, but SNPA is reticent about this relation. In particular, whereas 
chiral symmetry is known to be a fundamental symmetry of QCD, the 
SNPA is largely disjoint from this symmetry. Second, even for describing 
low-energy phenomena, SNPA starts with a "realistic" phenomenological 
potential which is tailored to encode short-range (high-momentum) and 
long-range (low-momentum) physics simultaneously. This mixing of the 
two different scales seems theoretically unsatisfactory. Third, as we write 
down a phenomenological Lagrangian for describing the nuclear interaction 
and nuclear responses to the electroweak currents, SNPA does not offer us 
a clear guiding principle; it is not obvious whether SNPA is equipped with 
any identifiable expansion parameter that helps us to control the possible 
forms of terms in the Lagrangian and that provides a general measure of 
errors in our calculation. To address these and other related issues, a new 
approach based on EFT was proposed 6 and it has been studied with great 
intensity; for reviews, see Refs. 7 ~ n . 

The intuitive picture of EFT is quite simple. In describing phenomena 
characterized by a typical energy-momentum scale Q, we may expect that 
our Lagrangian need not contain explicitly those degrees of freedom that 
belong to energy-momentum scales much higher than Q. This expectation 
motivates us to introduce a cut-off scale A that is sufficiently large compared 
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with Q and classify our fields (to be generically represented by 4>) into two 
groups: high-frequency fields </>H whose frequencies are higher than A, and 
low-frequency fields tpL with frequencies lower than A. By eliminating (or 
integrating out) </>H, we arrive at an effective Lagrangian that only involves 
</>L as explicit dynamical variables. In terms of path integrals, the effective 
Lagrangian £eff is related to the original Lagrangian C as 

/"[#] exp{ifd4xC[<j)}} = j[d^n] [d&J exp{i fdtxCy^, 0L]} (6) 

= /[#L] expji fd4xCeS [&.]} . (7) 

It can be shown that £eff defined by eq.(7) inherits the symmetries 
(and the patterns of symmetry breaking, if there are any) of the underlying 
Lagrangian C. It also follows that £eff should be the sum of all possible 
monomials of </>L and their derivatives that are consistent with the symme
try requirements of C. Because a term involving n derivatives scales like 
(Q/A)n, we can organize terms in Ces into a perturbative series in which 
Q/A serves as an expansion parameter. The coefficients of terms in this 
expansion scheme are called the low-energy constants (LECs). Provided all 
the LEC's up to a specified order n can be fixed either from theory or from 
fitting to the experimental values of relevant observables, £eff serves as a 
complete (and hence model-independent) Lagrangian to the given order of 
expansion. 

Having sketched the basic idea of EFT, we now discuss the specific as
pects of EFT as applied to nuclear physics. The underlying Lagrangian C 
in this case is the QCD Lagrangian CQCD, whereas, for a typical nuclear 
physics energy-momentum scale Q <C Ax ~ I GeV, the effective degrees of 
freedom that feature in £eff are the hadrons rather than the quarks and 
gluons. It is non-trivial to apply the formal definition in eq.(7) to derive 
£eff written in terms of hadrons starting from CQCD , because the hadrons 
cannot be simply identified with the low-frequency field 4>L in CQCD- To 
proceed, we choose to be guided solely by symmetry considerations and the 
above-mentioned expansion scheme. Chiral symmetry plays an important 
role here. Chiral symmetry is known to be spontaneously broken, leading 
to the generation of the pions as Nambu-Goldstone bosons. We can incor
porate this feature by assigning suitable chiral transformation properties to 
the Goldstone bosons and writing down all possible chiral-invariant terms 
up to a specified chiral order 12. It is to be noted that the above con
sideration presupposes exact chiral symmetry in CQCD- In reality, CQCD 
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contains small but finite quark mass terms, which violate chiral symmetry 
explicitly and lead to a non-vanishing value of the pion mass mv. Again, 
there is a well-defined framework to determine what terms are needed to 
represent the effect of explicit chiral symmetry breaking 12. These consid
erations lead to an EFT called chiral perturbation theory (xPT) 13'14. The 
successes of xPT in the meson sector are well known; see, e.g., Ref. 7. 

A difficulty we encounter in extending x ? T to the nucleon sector is that, 
because the nucleon mass mN is comparable to the cut-off scale Ax, a sim
ple application of expansion in Q/A does not work. We can surmount this 
obstacle with the use of heavy-baryon chiral perturbation theory (HBxPT), 
which essentially consists in shifting the reference point of the nucleon en
ergy from 0 to mN and integrating out the small component of the nucleon 
field as well as the anti-nucleon field. Thus an effective Lagrangian in 
HBxPT contains as explicit degrees of freedom the pions and the large 
components of the redefined nucleon field. HBxPT has as expansion pa
rameters Q/Ax, mn/'Ax and Q/mN. Since mN ~ Ax, it is convenient to 
combine chiral and heavy-baryon expansions and introduce the chiral in
dex v defined by v = d + (n/2) — 2. Here n is the number of fermion lines 
participating in a given vertex, and d is the number of derivatives (with mv 

counted as one derivative). A similar power counting scheme can be intro
duced for Feynman diagrams as well. According to Weinberg 6, a Feynman 
diagram that contains Nj\ nucleons, NE external fields, L loops and Nc 
disjoint parts scales like (Q/A)", where the chiral index v is defined as 

v = 2L + 2(NC -l) + 2-{NA + NE) + J2Di> (8) 
i 

with the summation running over all the vertices. 
Although HBxPT has been very successful in the one-nucleon sector 7, 

we cannot apply HBxPT in a straightforward manner to nuclei, which con
tain more than one nucleon. This is because nuclei allow very low-lying 
excited states, and the existence of this small energy scale invalidates chi
ral counting 6. Weinberg avoided this difficulty by classifying Feynman 
diagrams into two groups, irreducible and reducible diagrams. Irreducible 
diagrams are those in which every intermediate state has at least one meson 
in flight; all others are categorized as reducible diagrams. The chiral count
ing rules should only be applied to irreducible diagrams. The contribution 
of all the two-body irreducible diagrams (up to a specified chiral order) is 
treated as an effective potential (to be denoted by V^FT) that acts on nu
clear wave functions. Meanwhile, the contributions of reducible diagrams 
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can be incorporated 6 by solving the Schrodinger equation 

ffEFT|*EFT>= £ | * E F T > , (9) 

where 
A A 

ffEFT = E ^ + E^F T> (10) 
i i<j 

We refer to this two-step procedure as nuclear x?T, or, to be more specific, 
nuclear xPT in the Weinberg scheme. (This is often called the A-counting 
scheme 9.) 

To apply nuclear xPT to a process that involves (an) external current (s), 
we derive a nuclear transition operator T by calculating the contributions 
of all the irreducible diagrams (up to a given chiral order v) that involve 
the relevant external current (s). To maintain consistent chiral counting, 
the nuclear matrix element of T must be calculated with the use of nuclear 
wave functions which are governed by nuclear interactions that represent 
all the irreducible A-nucleon diagrams up to v-th order. Thus, a transition 
matrix in nuclear EFT is given by 

A A 

Mjr = < * r T i E °EFT + E °*™ i*EFT > - (n) 

where the superscript, "EFT", implies that the relevant quantities are ob
tained according to EFT as described above. If this program is carried 
out exactly, it would constitute an ab initio calculation. It is worth noting 
that EFT tells us exactly at what chiral order three-body operators start 
to contribute to T, and that, to chiral orders of our present concern, we do 
not need three-body operators. For this reason we have retained in eq.(ll) 
only one- and two-body operators. This type of unambiguous classification 
of transition operators according to their chiral orders is a great advantage 
of EFT, which is missing in eq.(5). 

I should mention that there exists an alternative form of nuclear EFT 
based on the power divergence subtraction (PDS) scheme. The PDS scheme 
proposed by Kaplan, Savage and Wise in their seminal papers 15 uses a 
counting scheme (often called Q-counting) that differs from the Weinberg 
scheme. An advantage of the PDS scheme is that it maintains formal chiral 
invariance, whereas the Weinberg scheme loses manifest chiral invariance. 
In many practical applications, however, this formal problem is not worri
some up to the chiral order under consideration, i.e., the chiral order up to 
which our irreducible diagrams are evaluated. Although the PDS scheme 
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has produced many important results (for a review, see e.g. Ref. 1 0) , I con
centrate here on the Weinberg scheme, because this is the framework in 
which our own work has been done. 

2.3. Hybrid EFT 

In the above I emphasized the formal merits of nuclear EFT. In actual 
calculations, however, we face the following two problems. First, it is still 
a great challenge to generate, strictly within the EFT framework, nuclear 
wave functions whose accuracy is comparable to that of SNPA wave func
tions. Second, as mentioned earlier, the chiral Lagrangian, £eff j is definite 
only when the values of all the relevant LECs are fixed, but there may be 
cases where this requirement cannot be readily met. A pragmatic solution 
to the first problem is to use in eq.(ll) wave functions obtained in SNPA; we 
refer to this eclectic approach as hybrid EFT. A nuclear transition matrix 
element in hybrid EFT is given by 

A A 

Mhyb-BFT = < fSNPA | J2 QJFT + J2 OZT |*?N PA > , (12) 
e Km 

Because, as mentioned, the NN interactions that generate SNPA wave func
tions reproduce accurately the entirety of the two-nucleon data, the adop
tion of eq.(12) is almost equivalent to using the empirical data themselves 
to control the initial and final nuclear wave functions. In the context of 
theoretically deriving the nuclear interactions based on EFT, hybrid EFT 
may look like "retrogression". But, if our goal is to obtain a transition 
matrix element as accurately as possible with the maximum help of avail
able empirical input, hybrid EFT is a justifiable approach insofar as the 
above-mentioned off-shell problem and the contributions of three-body (and 
higher-body) interactions are properly addressed. These points will be dis
cussed later on. 

The calculations reported in Refs. 19,2° seem to support hybrid EFT. 
There, the nuclear matrix elements in the A=2 systems for one-body opera
tors (or IA terms) calculated with the use of EFT-generated wave functions 
were found to be very close to those calculated with the SNPA wave func
tions. Thus EFT and hybrid EFT should give practically the same IA 
matrix elements. Meanwhile, we can generally expect that the ratio of the 
two-body EXC contributions to those of the IA operators should be much 
less sensitive to the details of the nuclear wave functions than the abso
lute values are. It therefore seems reasonable to rely on xPT for deriving 
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transition operators and evaluate their matrix elements using the realistic 
wave functions obtained in SNPA, and in this sense hybrid EFT is more 
than a mere expedient. 

The issue of possible unknown LECs will be discussed in the next sub
section. 

2.4. MEEFT or EFT* 

Hybrid EFT can be used for complex nuclei (A = 3, 4, ...) with essentially 
the same accuracy and ease as for the A=2 system. We should reemphasize 
in this connection that, in A-nucleon systems (A>3), the contributions 
of transition operators involving three or more nucleons are intrinsically 
suppressed according to chiral counting, and hence, up to a certain chiral 
order, a transition operator in an A-nucleon system consists of the same 
EFT-based 1-body and 2-body terms as used for the two-nucleon system. 
Then, since SNPA provides high-quality wave functions for the A-nucleon 
system, one can calculate M J! ~EFT vvith precision comparable to that for 
the corresponding two-nucleon case. 

Now, in most practical cases, the one-body operator, C | F T , is free from 
unknown LECs. So let us concentrate on the two-body operator, C|^T , 
and suppose that 0f^T under consideration contains an LEC (call it K) 
that cannot be determined with the use of A=2 data alone. It is possible 
that an observable (call it f2) in a A-body system (A>3) is sensitive to 
K and that the experimental value of f2 is known with sufficient accuracy. 
Then we can determine K by calculating M. *\ _ E F T responsible for fl and 
adjusting K to reproduce the empirical value of O. Once K is fixed this way, 
we can make predictions for any other observables for any other nuclear 
systems that are controlled by the same transition operators. When hybrid 
EFT is used in this manner, we refer to it as MEEFT (more effective EFT) 
or EFT*. 

MEEFT is the most efficient existing formalism for correlating various 
observables in different nuclei, using the transition operators controlled by 
EFT. A further notable advantage of MEEFT is that, since correlating 
the observables in neighboring nuclei is likely to serve as an additional 
renormalization, the possible effects of higher chiral order terms and/or off-
shell ambiguities can be significantly suppressed by the use of MEEFT.b I 

b M E E F T should be distinguished from an earlier naive hybrid E F T model in which 
the short-range terms were dropped altogether using an intuitive argument based on 
short-range NN repulsion. 
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will come back to this point later, when I discuss concrete examples. 
We need to recall here the important role of momentum cutoff in EFT. 

As emphasized before, the effective Lagrangian Ceff
 1S, by construction, 

valid only below the specified cutoff scale A. This basic constraint must 
be respected in our nuclear EFT calculations; we must ensure that nuclear 
intermediate states involved in the computation of eq.(ll) remain within 
this constrained regime. It is reasonable to implement this constraint by re
quiring that the two-nucleon relative momentum should be smaller than A. 
A possible choice of the cutoff function is the Gaussian form exp(— fj2/h.2). 
(The detailed form of the cutoff function should not be very important.) 
As a reasonable range of the value of A we may choose: 500 MeV < A < 
800 MeV, where the lower bound is dictated by the requirement that A 
should be sufficiently large compared with the pion mass (in order to ac
commodate pion physics), while the upper bound reflects the fact that our 
EFT is devoid of the p meson. 

3. Numerical results 

We now discuss the applications of the above-described calculational meth
ods to the two processes of our concern: pp fusion and the v-d reaction. 
These reactions share the common feature that a precise knowledge of the 
Gamow-Teller (GT) transition matrix elements is crucial in estimating their 
cross sections. We therefore concentrate on the GT transitions. We will 
show here, following Refs. 23 '24, that MEEFT can be used very profitably 
for these reactions. 

We can argue (see, e.g., Ref. 24) that f-body IA operators for the GT 
transition can be fixed unambiguously from the available 1-body data. As 
for the 2-body operators, to next-to-next-to-next-to-leading order (N3LO) 
in chiral counting, there appears one unknown LEC that cannot be at 
present determined from data for the A=2 systems. This unknown LEC, 
denoted by CLR in Ref. 18, parametrizes the strength of contact-type four-
nucleon coupling to the axial current. Park et al. 23 '24 noted that the same 
LEC, (LR, also appears as a single unknown parameter in the calculation of 
the tritium /3-decay rate Ft, and they used MEEFT to place a constraint 
on da from the experimental value of T i . Since Ti(exp) is known with 
high precision, and since the accurate wave functions of 3H and 3He are 
available from a well-developed SNPA calculation 25, we can determine dpi 
with sufficient accuracy for our purposes. Once the value of d,R is deter
mined this way, we can carry out parameter-free MEEFT calculations for 
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pp-fusion 23 '24 and the v-d reactions 27. I present here a brief summary of 
the results of these calculations. 

For a given value of A within the above-mentioned range (500 MeV 
< A < 800 MeV), dR is adjusted to reproduce T^(exp), and then the cross 

sections for pp-fusion and the vd reactions are calculated. The results indi
cate that, although the best-fit value of dn varies significantly as a function 
of A, the observables (in our case the above two reaction cross sections) 
exhibit a high degree of stability against the variation of A. This stability 
may be taken as an indication that the use of MEEFT for inter-correlating 
the observables in neighboring nuclei effectively renormalizes various effects, 
such as the contributions of higher-chiral order terms, mismatch between 
the SNPA and EFT wave functions, etc. This stability is essential in order 
for MEEFT to maintain its predictive power. 

Park et al. 23,24 used MEEFT to calculate the rate of pp fusion, pp^> 
e+ved. The result expressed in terms of the threshold S-factor is 

Spp(0) = 3.94 x ( l ± 0.005) x 10" 2 5MeVb. (13) 

It has been found that SPP(Q) changes only by ~0 .1% against changes in A, 
assuring thereby the robustness of the MEEFT prediction. The MEEFT 
result, eq.(13), is consistent with that obtained in SNPA by Schiavilla et 
al. 26. Meanwhile, the fact that MEEFT allows us to make an error estimate 
[as given in eq.(13)] is a notable advantage over SNPA. The details on how 
we arrive at this error estimate can be found in Refs. 23>24. Here I just 
remark that the error indicated in eq.(13) represents an improvement by a 
factor of ~10 over the previous results based on a naive hybrid EFT 18. 

We now move to the v-d reactions, eq.(l), and give a brief survey of 
all the recent results obtained in SNPA, EFT and MEEFT. Within SNPA 
a detailed calculation of the v-d cross sections, a(vd), was carried out by 
Nakamura, Sato, Gudkov and myself 28,c and this calculation has recently 
been updated by Nakamura et al. (NETAL) 30. As demonstrated in Ref.31, 
the SNPA exchange currents for the GT transition are dominated by the A-
particle excitation diagram, and the reliability of estimation of this diagram 
depends on the precision with which the coupling constant g^NA is known. 
NETAL fixed gVNA by fitting r^(exp), and proceeded to calculate a (yd). 
Meanwhile, Butler, Chen and Kong (BCK) 32 carried out an EFT calcu
lation of the v-d cross sections, using the PDS scheme 15. The results of 
BCK agree with those of NETAL in the following sense. BCK's calculation 

cFor a review of the earlier SNPA calculations, see Ref. 
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involves one unknown LEC (denoted by L I A ) , which like da in Ref.24, rep

resents the strength of a four-nucleon axial-current coupling term. BCK 

determined L\A by requiring tha t the vd cross sections of NETAL be re

produced by their E F T calculation. Wi th the value of L I A adjusted this 

way, a(vd)'s obtained by BCK show a perfect agreement with those of NE

TAL for all the four reactions in eq.( l) and for the entire solar neutrino 

energy range, Ev < 20 MeV. Moreover, the best-fit value, L I A = 5.6 fm3, 

found by BCK 32 is consistent with its magnitude expected from the nat

uralness argument (based on a dimensional analysis), | £ I A | < 6fm3 . The 

fact tha t an E F T calculation (with one parameter fine-tuned) reproduces 

the results of SNPA very well strongly suggests the robustness of the SNPA 

calculation of a(vd). 

Even though it is reassuring tha t the v-d cross sections calculated in 

SNPA and E F T agree with each other (in the above-explained sense), 

it is desirable to carry out an E F T calculation tha t is free from any 

adjustable LEC. Fortunately, M E E F T allows us to carry out an E F T -

controlled parameter-free calculation of the v-d cross sections, and such 

a calculation was carried out by Ando et al. 2 7 . The a(vd)'s obtained in 

Ref. 2 7 are found to agree within 1% with a(vd)'s obtained by NETAL 

using SNPA 3 0 . These results show tha t the v-d cross sections used in 

interpreting the SNO experiments 2 are reliable at the 1% precision level. 

We remark tha t , as PDS 15 is built on an expansion scheme for transition 

amplitudes themselves, it does not employ the concept of wave functions. 

This feature is an advantage in some contexts, but its disadvantage in 

the present context is tha t we cannot readily relate the transition matr ix 

elements for an A-nucleon system with those for the neighboring nuclei; in 

PDS, each nuclear system requires a separate parametrization. This feature 

underlies the fact tha t , in the work of BCK 3 2 , L\A remained undetermined, 

because no experimental da ta is available to fix L\A within the two-nucleon 

systems. 

4. D i s c u s s i o n 

In introducing hybrid E F T , we replace |^>EFT > for the initial and final 

nuclear states in eq . ( l l ) with the corresponding |>J/SNPA > ' s ; see eq.(12). 

This replacement may bring in a certain degree of model dependence, 

called the off-shell effect, because the phenomenological NN interactions are 
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constrained only by the on-shell two-nucleon observables.d This off-shell ef
fect, however, is expected to be small for the reactions under consideration, 
since they involve low momentum transfers and hence are not extremely sen
sitive to the short-range behavior of the nuclear wave functions. One way 
to quantify this expectation is to compare a two-nucleon relative wave func
tion generated by the phenomenological potential with that generated by an 
EFT-motivated potential. Phillips and Cohen 20 made such a comparison 
in their analysis of the 1-body operators responsible for electron-deuteron 
Compton scattering, and showed that a hybrid EFT works well up to mo
mentum transfer 700 MeV. A similar conclusion is expected to hold for a 
two-body operator, so long as its radial dependence has a "smeared-out" 
structure reflecting the finite momentum cutoff. We can therefore expect 
that hybrid EFT as applied to low energy should be practically free from 
the off-shell ambiguities. The off-shell effect should be even less significant 
in MEEFT, wherein an additional "effective" renormalization is likely to 
be at work (see subsection 2.4). 

Another indication of the stability of the MEEFT results comes from a 
recently proposed idea of the low-momentum nuclear potential 33. As men
tioned, a "realistic phenomenological" nuclear interaction, Vy in eq.(3), is 
determined by fitting to the full set of two-nucleon data up to the pion pro
duction threshold energy. So, physically, Vtj should reside in a momentum 
regime below a certain cutoff, Ac. In the conventional treatment, however, 
the existence of this cutoff scale is ignored, and eq.(4) is solved in such a 
manner that the entire momentum range is allowed to participate. Bogner 
et al. proposed to construct an effective low-momentum potential Viow-k 
by eliminating (or integrating out) from Vij the momentum components 
higher than Ac, and calculated Viow-kS corresponding to a number of well-
established of Vij's. It was found that all these Viow-kS lead to identical 
half-off-shell T-matrices, even though the ways short-range physics is en
coded in them are highly diverse. This implies that the Vi0W-kS are free 
from the off-shell ambiguities, and therefore the use of Vjolu_fc's is essentially 
equivalent to employing VyFT (appearing in eq.(10)), which by construction 
should be model-independent. Now, as mentioned, our MEEFT calculation 
has a momentum-cutoff regulator built in, and this essentially ensures that 

I n a fully consistent theory, physical observables are independent of field transforma
tions that lead to different off-shell behaviors, and therefore the so-called off-shell effect 
is not really a physical effect. In an approximate theory, observables may exhibit superfi
cial dependence on the off-shell behavior, and it is customary to refer to this dependence 
as an off-shell "effect". 
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the matr ix element, M.X _ E F T , in eq.(12) is only sensitive to the half-off-

shell T-matrices tha t are controlled by Viow-k instead of Vij. Therefore, we 

can expect tha t the M E E F T results reported here are essentially free from 

the off-shell ambiguities. 

5. S u m m a r y 

After giving a very limited survey of nuclear xPT, I must repeat my dis

claimer that I have left out many important topics belonging to nuclear 

xPT. Among others, I did not discuss very important studies by Epelbaum, 

Glockle and MeiBner 3 4 to construct a formally consistent framework for 

applying xPT to complex nuclei. It should be highly informative to apply 

this type of formalism to electroweak processes and compare the results 

with those of M E E F T . In this connection I find it noteworthy tha t the 

range of the cutoff parameter favored in Ref. 3 4 is consistent with the range 

used by Park et al. 2 3 ' 2 4 

Despite the highly limited scope of topics covered, I hope I have suc

ceeded in demonstrat ing tha t M E E F T is a powerful framework for comput

ing the transition amplitudes of low-energy electroweak processes in light 

nuclei. I also wish to emphasize tha t , in each of the cases for which both 

SNPA and M E E F T calculations have been performed, it has been found 

tha t the result of M E E F T supports and improves the SNPA result. 
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A general overview of the main physical processes driving the cooling of an isolated 
neutron star is presented. Among the most important ones are the various possible 
neutrino emission processes and the occurrence of baryon pairing. Special emphasis 
is also put on the importance of the chemical composition of the upper layers of the 
star. A detailed analysis of a Minimal Scenario, which explicitly postulates that no 
"exotic" form of matter be present, is summarized and compared with presently 
available observational data. No striking incompatibility of the data with the 
predictions of the Minimal Scenario is found but two, possibly three, conspicuous 
stars are identified which may, when better data are available, constitute strong 
astrophysical evidence for the occurrence of a new state of matter at high density. 

1. Introduction 

Among the various ways to search for new states of matter at high density 
the study of neutron stars is a privileged one. Many aspects of the very 
diverse phenomenology of these stars can provide us with indications of 
such "exotic" matter (see, e.g., Ref. [1]). In particular, the modeling of 
the thermal evolution of isolated neutron stars is an avenue along which 
much effort has been invested. Being born in a supernova at temperatures 
in excess of 3 x 1011 K, young neutron stars rapidly cool through neutrino 
emission and the cooling rate is a very sensitive function of the composition 
of matter at the most extreme densities present in its inner core. Different 
models predict central densities from around 4 x pnuci up to 15 to 20 times 
pnuci (Pnuci being the nuclear density), which may very probably be within 
the necessary range to see deconfmement of baryonic matter into quark 
matter. Less extreme models predict the occurrence of charged meson 
condensates and/or hyperons populations. Finally, the most extreme model 
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consider that neutron stars may convert into "Strange Stars" made entirely 
of deconfined quark matter which would have a completely different thermal 
evolution [2]. 

Evidence in favor of the presence of a new state of matter in the core of 
some neutron stars can only be obtained by finding some observed charac
teristics of these stars which cannot be understood without the assumption 
of the presence of such matter. Within this point of view I describe a "Min
imal Scenario" of neutron star cooling, proposed recently in Ref. [3], which 
precisely assumes that the neutron star interior is devoid of any form of 
matter beyond the standard composition consisting of only neutrons and 
protons, accompanied by the necessary amount of electrons and muon to 
keep the star charge neutral. This Minimal Scenario is a revised modern 
version of the "Standard Scenario" incorporating the essential effects of nu-
cleon pairing, i.e., neutron superfluidity and/or proton superconductivity, 
on the star's specific heat and neutrino emission, particularly the neutrino 
emission by the very formation, and breaking, of the Cooper pairs. Com
parison of the predictions of this Minimal Scenario with data may hence 
provide us with the long searched for evidence for "exotic" matter. 

Section 2 briefly summarizes the presently available data on tempera
ture and luminosity of isolated cooling neutron stars. Section 3 describes 
the most important input physics for the study of the Minimal Scenario. 
Section 4 compares the results with data and Section 5 offers conclusions. 

An extensive presentation of this work can be found in Ref. [3] to which 
the present summary could be considered as a, hopefully convenient, Trav
eler's Guide. 

2. Observational Data 

Numerical calculations of neutron star cooling give as a natural result the 
evolution of the star's photon thermal luminosity L as a function of time. 
This luminosity can equally well be described in terms of an effective tem
perature Te through the standard relation 

L = AirR2 • aSBT* or Lx = 47ri£, • ^ T ^ (1) 

(aSB being the Stefan-Boltzmann constant) where R is the star's radius and 
the subscripts oo indicate quantities as observed "at infinity". 

Observations of cooling neutron stars can provide us with data in the 
form of luminosity L^ and/or temperature T^ at infinity. The measured 
Too depends of course on the kind atmosphere assumed in the spectral fits, 
realistic neutron star atmosphere models giving generally lower values than 
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blackbodies. The measured Loo is obtained from the total observed flux, 
corrected for interstellar absorption, and the distance D. If D is known 
with sufficient accuracy Eq. 1 could be used to determine Roo [4] assuming 
that Te is also accurately known, i.e., that the correct atmosphere model 
has been used in the spectral fit. If the deduced Roo is too small or too 
large compared to the "canonical" 10 km expected for a neutron star it is a 
strong indication that the atmosphere model is not correct. Nevertheless, 
some exotic models of compact stars as "Strange Stars" may result in small 
radii and also some magnetic field configuration may be able to confine the 
detectable surface thermal emission to an area significantly smaller than 
the whole surface of the star [5]. 

The data I will use are shown in Fig. 1 and have been selected according 
to this self-consistency i?oo-criterium. Two type of spectra have been pref
erentially used in the spectral fits producing these data: blackbodies and 
magnetized hydrogen atmospheres. Only the second one has been success
ful in deducing acceptable values for Roo and this lead to the selection of 
Too and Loo of the objects plotted with thick lines in Fig. 1. For the objects 
plotted with thin lines the magnetized hydrogen atmosphere models require 
much too large radii while blackbodies seem more reasonable but usually 
on the low side of the expected range of Roo- Given this situation, for these 
objects it is difficult to decide which of Too or Loo is the more reliable value 
to use for comparison with the theoretical models and I hence prefer to use 
both, leaving the reader draw his/her own conclusions from the analysis. 
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Figure 1. Measured Too and Loo, for twelve isolated neutron stars, versus age. The 
age, and their error bars, are either from kinematical information when available or from 
the pulsar spin-down time scale, in which case an uncertainty of a factor three has been 
assumed. See [3] for references and more details. 
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Figure 2. The diflcrcut layers in a neutron star. [Drawing by the author.] 

3. The Physics of N e u t r o n Star Cooling 

The picture in Fig. 2 illustrates the most important layers in a neutron 
star: 

- Atmosphere : at most a few tens of centimeters thick, this is the visible 
surface of the star (it may actually be a solid surface instead of an atmo
sphere) where the thermal photons are emitted. It is of utmost importance 
for observations since it is where the energy distribution of the thermally 
emitted photons, i.e., the thermal spectrum, is determined. However, since 
all the heat flowing into it from the interior is reemitted at the surface, the 
atmosphere does not affect the thermal evolution of the star. 
- Envelope: this layer is several tens of meters thick and is, by definition, 
where a large temperature gradient is always present. It is a throttle which 
controls how much heat can leak out of the star and thus determines the 
relationship between the interior temperature and the effective temperature 
or, equivalently, the surface photon luminosity L7 . 
- Crus t : with a thickness of several hundreds meters, this layer is impor
tant only in the cooling of very young stars or in the study of transient 
phenomena as glitches. For our present purpose its only relevance is its 
(small) contribution to the specific heat. 
In both the envelope and the crust matter is made of nuclei immersed in a 
gas of electrons and, in the inner part of the crust, at densities higher than 
Pdrip — 4.3 x 1011 gm cm - 3 , a quantum liquid of dripped neutrons. 
- Oute r Core: region at densities higher than pcc ^ 1.6 x 1014 gm cm""3, 
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where matter is a quantum liquid predominantly composed of neutrons with 
a small fraction of protons, plus electrons and muons to maintain charge 
neutrality. 
- Inner Core: the mysterious part, which may or may not exist, and where 
"exotic" forms of matter may appear. In the Minimal Scenario this inner 
core is explicitly assumed to be non-existent. 

All calculations I will present here were performed with a wholly gen
eral relativistic Henyey-type stellar evolution code which solves exactly the 
equations of energy balance and heat transport inside a star whose struc
ture is calculated by solving the Tolman-Oppenheimer-Volkov equation of 
hydrostatic equilibrium. Nevertheless, the most important features can be 
understood from the (Newtonian) energy conservation equation 

- ^ = Cv— = -Lv-L1 + H (2) 

where Eth is the thermal energy content of the star, Lv the neutrino lumi
nosity, L1 the surface photon luminosity and H would give the contribution 
from "heating processes" as, e.g., friction within the differentially rotating 
neutron superfluid or magnetic field decay, and Cv is the total specific heat, 
T being the interior temperature. Solving the heat transport equation gives 
us the detailed temperature profile in the interior but within a few tens of 
years after its birth the star becomes isothermal and its evolution is then 
entirely controlled by (the GR version of) Eq. 2. At this time a significant 
temperature gradient is only present in the envelope. 

3.1. The envelope and the photon luminosity 

Once the star is isothermal its interior temperature is equal to the tempera
ture at the bottom of the envelope, Tj,, and the relationship between Tf, and 
the "surface", or effective, temperature is called the "Tj, - Te relationship", 
which then gives us L1 through Eq. 1. A useful approximation to it is [6] 

Te ~ y/T\, with Te RJ 106 K <—> Tb K 108 K. (3) 

which gives, very roughly, L1 ~ T2. Nevertheless, significant deviation 
from Eq. 3 can occur. This equation is based on models which assumed 
that no magnetic field is present and that the envelope is made of iron, and 
iron-like, nuclei, but in case light elements, e.g., H, He, C, or O, are present 
they strongly reduce the blanketing effect of the envelope. A magnetic field 
also increases the heat permeability of the envelope in the regions where 
it is pointing radially but strongly suppresses it in regions where it makes 
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small angles with the surface, thus inducing a highly non-uniform surface 
temperature distribution (see, e.g., Ref. [9]), and motivating the shaded 
surface in Fig. 2. Nevertheless the overall effect of the magnetic field is not 
as strong as the effect of the chemical composition. Figure 3 shows this Tf, -
Te relationship for various models of envelope with varying amounts of light 
elements and an envelope formed entirely of heavy iron-like elements with 
and without a magnetic field. Notice that an envelope with a significant 
amount of light elements results, for a given interior temperature Tb, in a 
luminosity L 7 which is more than one order of magnitude higher than an 
envelope made of heavy elements. 

6 7 8 9 10 

Log Tb [K] 

Figure 3. Relationship between the effective temperature Te and the interior temper
ature T(, at the bottom of the envelope assuming various amounts of light elements 
parameterized by 77 = < T ^ 1 4 A M L / M where A M L is the mass in light elements in the 
envelope and ga 14 the surface gravity in units of 1014 cm s - 1 , M being the total star's 
mass, in the absence of a magnetic field [7]. Also shown are the Tf, — Te relationships 
for an envelope of heavy elements with and without the presence of a dipolar field of 
strength of 1011 G following Ref. [8]. 

The chemical composition of this envelope is probably determined by 
poorly understood processes occurring during the first hours of the life of 
the star, including post-supernova fall-back, and also possible later accre
tion, bombardment by high energy 7-ray from the magnetosphere, ejection 
of light nuclei by the pulsar mechanism,... It is hence possibly totally un
related to the interior structure of the star and may vary from star to star 
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and /or evolve with time. We have no choice but consider it as a free pa

rameter which has to be varied independently of the internal s tructure of 

the star, i.e., within both the Minimal Scenario .and any other exotic one. 

Spectral fits to the thermal spectrum could determine the composition of 

the atmosphere: an iron atmosphere necessarily implies an heavy element 

envelope but a light element atmosphere unfortunately does not impose 

any restriction on the the chemical composition of the layers a few tens of 

centimeters beneath it. 

3.2 . The neutrino luminosity 

The second important term in Eq. 2 is Lv which is strongly dominated by 

the neutrino emission from the core. All significant processes are directly 

related to f3- and inverse /3-decay of neutrons with protons and several of 

them are listed in Table 1 with their emissivities qv. The simplest such 

process is the direct Urea ("DUrca") process. However, momentum conser

vation in this process requires proton fractions xp above 15% [10] while at 

nuclear density it is only of the order of 5%. Thus, in the outer core of the 

neutron star, and this is the definition of the outer core, neutrino emission 

is due to the modified Urea (MUrca) process in which a second "specta

tor" nucleon (a neutron for the neutron branch or a proton in the proton 

branch of MUrca) contributes by giving or absorbing the extra momentum 

needed. Being a five fermion process instead of a three fermion one, the 

MUrca process is much less efficient than the DUrca process. It acquires 

two extra Pauli blocking actors (T/Ep), EF being the Fermi energy of the 

extra nucleon: since EF ~ 100 MeV, with T = 109 • T9 K, the reduction 

of MUrca is of the order of 10~6 Tg compared to DUrca. Another pos

sibility which allows the DUrca process, bu t with a reduced efficiency, is 

the presence of a charged meson (ir~ or K~) condensate which can easily 

contributes to momentum conservation without introducing any dramatic 

phase space limitation as a nucleon does in the MUrca process. In case 

hyperons, or quarks, appear at high density they will also participate in 

DUrca processes and increase enormously Lv. 

In short, for the chemical composition expected at densities not too 

much higher than p„uci where the proton fraction is small the neutrino 

emission is due to the MUrca process while any change beyond this will 

increase the emissivity by many orders of magnitude. This MUrca process 

is the essence of the Standard Scenario for neutron star cooling but the 

occurrence of nucleon pairing and its proper t reatment makes the subject 

more complicated and leads to the Minimal Scenario. I refer the reader to 
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the two excellent reviews by Pethick [11] and Yakovlev et al. [12] for more 
details on neutrino emission processes. 

Table 1. Some core neutrino emission processes and their emissivities. 

Process Name Process Emissivity g„ 
(erg/sec/cm3) 

a) Modified Urea 

b) K-condensate 

c) 7r - condensate 

d) Direct Urea 

e) Quark Urea 

n + n' —> n' + p + e~ + X 
n' + p + e~ —> n' + n + i 

n + K~ —> n + e~ + Ve 

n + e~ —-> n + K~ + ve 

n + n~ —> n + e~ + V^ 
n + e~ —> n + 7r~ + ve 

n —> p + e~ + I7e 

p + e~ —> n + ve 

d —> u + e— + I7e 
u + e~ —> d + ^ e 

1021 

1024 

1 0 26 

1027 

1026o 

Ti 

Ti 
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19 

Ti 

C T | 

3.3. Baryon paring 

Pairing of baryons, either nucleons or hyperons and also quarks if present, 
is predicted to occur in most of the interior of a neutron star. At low 
Fermi momenta neutrons and protons are expected to pair in a 1 So angular 
momentum state while at higher momenta a ^Pi state is probably replacing 
it. The ^ o neutron gap has been extensively studied and is covering the 
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. . . 
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Figure 4. Predictions of critical temperatures Tc for pairing of protons in the 1So state 
and neutrons in the 3P2 state. The dotted vertical lines indicate the crust-core boundary. 
Values of kp at center of stars of masses 1.1, 1.2, 1.4, 1.6, 1.8, and 2.0 MQ are marked 
at the upper margin, for stars built with the EOS from [15]. See [3] for references. 
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inner part of the crust with some extension in the outermost layers of the 
core. The proton xSo gap is also certainly present in the outer core and may 
or may not reach the center of the star, depending on the specific pairing 
model considered and on the central density of the star. Figure 4 shows a 
representative sample of theoretical predictions for the associated critical 
temperature Tc. Neutron pairing in the 3P2 state is much more delicate and 
there is a very wide range of predictions as is illustrated by the examples 
shown in Figure 4. As shown by Baldo et al [13] the poor understanding of 
the nucleon-nucleon interaction in the 3P2 state in vacuum by itself results 
in a wide range of predictions for Tc, illustrated by the three curves labeled 
"a", "b", and "c" in Figure 4. Moreover, in medium effects were recently 
shown to have a dramatic effect on this gap [14] which may result to be 
vanishingly small. 

The dramatic effect of pairing on the cooling comes from the gap it in
troduces in the single particle excitation spectrum which results in a strong 
suppression of both the specific heat and the neutrino emissivity of the 
paired component. When T ^ Tc this suppression is similar to a Boltz-
mann factor exp(—A/kT) and in general it is taken into account accurately 
by multiplying the relevant c„'s and qv's by appropriate "control functions" 
(See Fig. 5). 

3.4. The Pair Breaking and Formation ("PBF") neutrino 
emission process 

The occurrence of pairing has a third effect, beside the suppression of cv 

and qu, which is the emission of v — v pairs at temperature below, but close 
to, Tc produced by the formation and breaking of Cooper pairs, the "PBF" 
process [16, 17]. This process leads to a sudden increase of the neutrino 
emission in a given layer, when T reaches Tc, which can largely dominates 
over the emission from the MUrca process. For example, in the case of the 
neutron 3i-2 pairing its emissivity is 

« , p - = « x i o » ( ^ ) " ' ( ^ ) x A p , ( r / r j ( ^ R ) 7 (4, 

The control functions F are plotted in Fig. 5 and describe the onset of the 
process when T reaches Tc and its suppression when T < T C . Comparing 
the emissivities given above with the MUrca process in Table 1 one sees 
that these PBF processes can dominate the neutrino emission and we will 
see in the next section that they are an essential ingredient of the Minimal 
Scenario. 
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TAC Log t [yrs] 

Figure 5. Left panel: control functions, for pairing in the 1So and 3P2 phases, of the 
specific heat (top), MUrca process (middle) and PBF process (bottom). Right panel: 
comparison of the neutrino luminosities from the two P B F processes due to neutron 3P2 
and proton 1 So gap (the neutron 1 SQ gap contribution is small and not shown here), and 
from the MUrca processes, with the total neutrino luminosity and the photon luminosity. 
(Neutron 3P2 gap from model "a" and proton 1So pairing from model AO, as labeled in 
Fig 4. 

3.5. The specific heat 

For normal (i.e., unpaired) degenerate spin A fermions of type "i", the 
specific heat (per unit volume) is 

ci,v = Ni(Q)^k%T=^p-ir2k%T (5) 
6 Pi,F 

Most of the specific heat of the star is provided by the core and, in absence of 
"exotic" matter, nucleons contribute about 90% of it while leptons (e and 
fi) share the remaining. Once neutrons and/or protons go into a paired 
state the specific heat is strongly altered: when T reaches Tc there is a 
discontinuity in cv which suddenly increases but when T <C Tc it becomes 
exponentially suppressed. This effect is also accurately taken into account 
by introducing a multiplicative "control function" plotted in Fig. 5. It is 
important to notice that even in case both neutrons and protons are paired 
in the whole core we still have the contribution of the leptons which remains 
untouched, i.e., pairing can reduce the total Cv by at most 90% while Lv 
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can be suppressed by many orders of magnitude in case baryons involved 
in all the important processes are paired. 

4. The Minimal Scenario 

The physical ingredients presented in the previous section constitute all the 
essential input for the Minimal Scenario. Since, by definition, this scenario 
does not admit any enhanced neutrino emission the cooling history of a 
neutron star has only a very weak dependence on its mass. Moreover, the 
supranuclear EOS is also well constrained within this scenario so that we 
can generally simply study the evolution of a "canonical" 1.4 MQ neutron 
star. All results presented here are based on the EOS from APR [15]. What 
is not constrained by the requirement of the Minimal Scenario is: 

A) the chemical composition of the envelope and 
B) the pairing state of the nucleons 
and the large uncertainties in these two physical ingredients are, by far, the 
most important sources of uncertainty in the theoretical predictions of the 
Minimal Scenario. 

The effect of the envelope is illustrated in the left panel of Fig. 6 for 
the two extreme cases of a star with an envelope consisting only of heavy 
elements (marked as "H") and with an envelope containing a maximum 
amount of light elements (marked as "L"). The important features to note 
are: 
A l ) first, at age inferior to 105 yrs, both stars have the same central temper
ature but the "L" model has a higher Te: this correspond to the neutrino 
cooling era where Lv drives the cooling, hence the same Tcenter for both 
stars, and the surface temperature simply follows the interior evolutions, 
hence a higher Te in presence of a less insulating light element envelope, 
and 
A2) later, during the photon cooling era when L1 3> L„, the cooling trajec
tories get inverted since the light element envelope results in a much larger 
photon luminosity and hence faster cooling. 
With an envelope containing a smaller amount of light elements we obtain 
an intermediate evolution and in case we allow for a time evolution of the 
amount of light elements the evolution can switch from one trajectory to 
the other. 

The overall effect of pairing is illustrated in the three cooling curves 
plotted in the right panel of Fig. 6. The two important features to note 
are: 
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B l ) comparing the model without pairing with the model with pairing 
but without the PBF process taken into account, one sees the effect of 
the suppression of the MUrca neutrino process resulting in a warmer star 
during the neutrino cooling era while during the photon cooling era the 
results are inverted because of the suppression of Cv from the pairing, and 
B2) once the neutrino emission from the PBF process is taken into account 
the cooling is strongly enhanced during the neutrino cooling era, confirming 
the results of Fig 5 (right panel) that this PBF process can be much more 
intense than the MUrca one, and finally during the photon cooling era the 
two paired models, with and without PBF, join once they have forgotten 
their previous neutrino cooling history. 

Of course the PBF process is always acting in presence of pairing and it 
has been artificially turned-off for this figure, but its efficiency depends on 
the actual size of the gap, i.e., the actual profile of Tc for either neutrons 
or protons, and the gaps used in Fig 5 have been chosen to maximalize the 
effect. 

Log t [yrs] Log t [yrs] 

Figure 6. Left panel: effect of the envelope chemical composition in the cooling. Right 
panel: effect of nucleon pairing on the cooling. (See text for description.) 

An extensive comparison of the predictions of the Minimal Scenario with 
the data presented in Sec. 2 is shown in Fig 7. For the reasons discussed 
in Sec. 2 results are plotted twice, as Te vs age (left panels) and L vs 
age (right panels). The uncertainties due to the exact extent of nucleon 
pairing are better assessed by classifying the possible models into three 
families depending on the size of the neutron 3P2 gaP since this is the most 
uncertain one: a vanishing gap and the schematic models "a" and "b" of 
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Fig. 4. For each of these three families variations of the neutron and proton 
15'o gaps generate a set of closely packed curves and, given the uncertainty 
about the envelope chemical composition each set is shown twice, assuming 
an envelope made of heavy elements and an envelope with a maximum 
amount of light elements. (For clarity only these two extreme cases of 
envelope are shown, but any trajectory inbetween is possible.) 

The overall agreement between theory and data is quite good, which 
I personally find in itself amazing considering that this is REAL THE
ORY: these calculations culminate several decades of works from hundreds 
of physicists and astrophysicists based essentially on only a handful of ob
servational facts (the very existence of "neutron stars", several mass mea
surements and their extreme compactness known from pulsar timing, ...). 

The three sets of models, for the three different neutron 3P2 gaps, are 
quite similar but do show some essential differences. When considering 
young stars, particularly J0205+6449 (in 3C58), PSR 0833-45 (in Vela) 
and PSR 1706-44, one sees that in the models with the 3P2 gap "a" are 
very close to the upper limits of Vela and 3C58 while the difference is 
larger with the other two gaps. The interpretation of the data of PSR 
1706-44 is more ambiguous due to the presently large uncertainty on both 
it temperature (or luminosity) and age. Since no thermal emission has been 
actually detected from 3C58 it is more prudent to consider it on a L-age 
plotted where the discrepancy with the theoretical predictions is actually 
the largest. 

Several of the older objects may have temperatures higher than some of 
the theoretical predictions of the Minimal Scenario. This may be attributed 
to an erroneous age, considering that the only information we have bout 
their possible age is the spin-down time scale which can be very misleading. 
Another possibility is that some "heating mechanism' is at work which 
converts rotational, or magnetic, energy into heat. 

5. Conclusions 

In the Quest for New States of Dense Matter we have performed an ex
tensive study of the thermal evolution of isolated neutron stars under the 
hypothesis that no new phase is present and tried to find some incompatibil
ity of the results of this assumption with the best presently available data on 
cooling neutron stars. The final results, presented in Fig. 7 show now strik
ing incompatibility with, nevertheless two objects, J0205+6449 (in 3C58) 
and PSR 0833-45, which are conspicuously lower than our predictions. 
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Figure 7. Comparison of predictions of the Minimal Scenario with data. Left panels: 
effective temperature at infinity T£° vs. age. Right panels: luminosity at infinity Loo 
vs age. The upper, middle, and lower panels correspond to three different assumption 
about the size of the neutron 3P2 gap as indicated in the panels. In each panel the two 
sets of curves correspond to the two extreme models of envelope chemical composition: 
light elements or heavy elements, as labeled in the upper left panel. For each set of 
curves, the different 15 curves correspond to different choices of the neutron (3 cases) 
and proton (5 cases) 1So gaps. 1.4 MQ star built with the EOS of APR. 

Given the capability of both Chandra and XMM-Newton one can have the 
hope that in the near future either more such objects will be find or that 
more data on these two conspicuous stars will permit more detailed studies 
and confirm them as star which encompass a new state of dense matter. 
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Recently we succeeded to make a reliable effective field theory (EFT) prediction in 
a totally parameter-free manner for the S-factor of the solar hep process, 3 H e + p —> 
"He + e+ + ve, Shep(0) = (8.6 ± 1.3) X lO" 2 0 keV-b. The strategy used in there 
is to embed a highly sophisticated and realistic nuclear potentials into an EFT 
framework. By applying the same method to the hen process, 3He + n —> 4He + 7, 
which has many features in common with the hep, we have also demonstrated the 
validity of the theory prediction; Our result, crhen = (60 ± 3 ± 1) fib, is in good 
agreement with the experimental values, (54 zt 6) fib and (55 ± 3) fib. 

1. Introduction 

In this talk, I wish to report our recent developments on making model-
independent theory predictions for the hep and hen processes,1,2'3 

hep : 3He + p ^ 4 H e + e+ + ve, (1) 

hen : 3He + n -> 4He + 7 , (2) 

where the former figures importantly in solar neutrino physics while the 
latter demonstrates the validity of the method used in making theory pre
diction for hep. 

The basic solar burning mechanism is converting four protons into an 
alpha particle, 4p —> 4He + 2e+ + 2ve, via a series of strong and electro-
weak nuclear reactions including the hep process. The neutrinos gener
ated in these reactions provide us direct information about the interior of 
the sun. Indeed the deficit of the solar neutrino flux measured in several 
experiments4'5'6'7'8'9 compared to the so called standard solar model (SSM) 
prediction10 has caused extensive study and finally brought us new physics 
beyond the Standard Model; the transmutation of neutrino flavor or neu
trino oscillation, which has been established by the recent experiment at 

mailto:tspark@kias.re.kr
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Sudbery Neutrino Observatory (SNO)9.a Now that the existence of neu
trino oscillations itself has been established, the next important challenge 
is to determine the accurate values of the mixing parameters and (5m2's. In 
this context the hep process figures importantly. 

Compared to other dominant solar neutrinos, the hep neutrino flux 
<pu(hep) is very small; seven orders of magnitude smaller than the pp-fusion 
neutrinos (p + p —• d + e+ + ve, Ev < 0.4 MeV) and three orders of magni
tude smaller than the 8B neutrinos (8B -> 8Be* + e+ + ue, Ev < 17 MeV). 
The hep reaction can however produce the highest-energy solar neutrinos 
with their spectrum extending beyond the maximum energy of the 8B neu
trinos, Eu(hep) < 18.8 MeV. Therefore, even though <fiu(hep) is small, there 
can be, at some level, a significant distortion of the higher end of the 8B 
neutrino spectrum due to the hep neutrinos. This change can influence the 
interpretation of the results of a recent Super-Kamiokande experiment that 
have generated many controversies related to neutrino oscillations13'14. On 
the other hand, theoretical estimation of the hep astrophysical S-factor, 
Shep, has suffered huge uncertainty. This may be appreciated by noting 
that theoretical estimates of Shep have varied by orders of magnitude in 
the literature. For example, Bahcall and Krastev15 made a detailed anal
ysis of experimental data considering various neutrino oscillation scenarios 
and treating Shep as an adjustable parameter; They reported that, by al
lowing Shep to be larger than 20 times of the "1998 standard value16", 
2.3 x 10~20 keV-b, one could improve significantly global fits to all the 
then available solar neutrino data for every case of the neutrino oscillation 
scenarios studied. The philosophy behind this treatment was that the eval
uation of Shep was so challanging that one could not present a reliable and 
robust upper limit17. 

Why Shep is so difficult to estimate ? The reason is multifold. We first 
recall that nuclear responses to external electroweak probes consist of 1-
body and meson-exchange-current (MEC) contribution, and the latter can 
be further decomposed into so/t-one-pion-exchange and the residual parts, 

M = M1B + MMEG = MlB + Msoft-lir + .M residual- (3) 

independent evidence for neutrino oscillations is known from the study of the atmo
spheric neutrinos at Super-Kamiokande11, and from the study of the reactor neutrinos 
at the KamLAND1 2 . 

The S'-factor is the cross section modulo overall factor which accounts the Coulomb 
repulsion between p and 3He, S(E) = Ea{E) exp(47ra/u rei), where E is the center-of-
mass energy, vle\ is the relative velocity, and a is the fine structure constant. S(E) is a 
smooth function of E that remains finite as E —> 0. 
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MIB and M80ft-iir are easy to evaluate with little uncertainty, while we 
have a poor control on -Mresiduai which includes the contributions from mas
sive degrees of freedom. In EFT, . M I B , -Msoft-iTr and .Mresiduai correspond 
to leading order (LO), next-to-leading order (NLO) and next-next-next-
to-leading order (N3LO), respectively. In normal circumstances, we thus 
expect M1B » Msoft-iTr > Mresiduai, and the poorly known -MreSidUai play 
only minor role. For the hep process, however, M I B is strongly suppressed 
due to the symmetries of the initial and final state wave functions. The 
4He wavefunction is dominated by a maximum orbital symmetry compo
nent characterized by the Young tableau notation [4]. On the other hand, 
the dominant component of the p + 3He system has [31]-symmetry, the sec
ond most symmetric state. Thus the leading order one-body Gamow-Teller 
(GT) operator of the form g^ X^T^CTJ can not mediate the transition be
tween the dominant components. Furthermore, M.soft-i-w — 0, which is 
a generic feature of Gamow-Teller (GT) operators (space components of 
axial-vector current). To make it worse, the two-body corrections to the 
"leading" one-body GT term generically come with opposite sign causing a 
large cancellation, . M I B — —-MMEC- Therefore, it is necessary to calculate 
both M\B and .MMEC with great accuracy, even for a rough estimate. 

How can we make a theory prediction for Shep ? The traditional method 
is based on accurate but phenomenological nuclear potentials, with the 
Chemtob-Rho type of current operators which are derived from the tree-
level resonance-exchange diagrams18. We refer this picture to as "standard 
nuclear physics approach (SNPA)". So far SNPA has scored an enormous 
success in wide areas of nuclear physics, achieving in some cases an accuracy 
that defies the existing experimental precision. There are by now a number 
of so-called high-precision phenomenological potentials that can reproduce 
all the existing 2-nucleon data with normalized x2 values close to unity. 
Furthermore, recent progress in numerical techniques for obtaining A-body 
wave functions for a given potential has reached such a level19 that the wave 
functions of low-lying levels for light nuclei can now be obtained practically 
with no approximation. 

The first SNPA calculation with realistic wave functions was done by 
Carlson et al.20: Using variational Monte-Carlo with Argonne t>i4 two-
nucleon and and Urbana-VII three-nucleon potential, they obtained Shep — 
1.3 x 10~20 keV-b. Schiavilla et al.16 performed a similar calculation but 
with the explicit A degree of freedom and obtained S = (1.4 — 3.2) x 10~20 

keV-b, whose central value is the above mentioned "1998 standard value". 
The latest SNPA calculation of Shep is made by Marcucci et al.21,22; 
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they obtained 4-body wave functions using the correlated-hyperspherical-
harmonics method with the Argonne wis two-nucleon23 and Urbana-IX 
three-nucleon24 interactions. The resulting Shep a t threshold is 

SgNPA = 9.64 x 10"20 keV-b, (4) 

which is 4 times bigger than the "1998 standard value". SNPA suffers how
ever model-dependence and lack of systematic expansion scheme, especially 
for short-distance physics which plays a crucial role in hep. 

As mentioned, for accurate and robust estimation of Shep, it is imper
ative to have good theoretical control of short-distance physics. A first-
principle approach based on effective field theory (EFT) should provide a 
valuable insight in this regard. However, fully consistent EFT wave func
tions for (bound and 1 + 3 scattering) four-body systems are not available, 
as of now. How can we evaluate an EFT matrix element without EFT wave 
functions ? We have recently addressed this issue by building a formalism 
where electroweak transition operators are systematically constructed using 
heavy-baryon chiral perturbation theory (HB^PT), and the corresponding 
nuclear matrix elements are evaluated with the use of wave functions gener
ated by a state-of-the-art SNPA calculation. Here one may worry the mis
match between the treatments of transition operators and wave functions 
as well as the model-dependence of SNPA wave functions. We implement 
in our formalism a feature that allows us to remove the mismatch/model-
depndence order by order. Thus our formalism is an EFT that inherits the 
systematic and consistent expansion scheme in a model-independent way 
but flexible enough to be applied to the the complicated processes includ
ing the hep. To emphasize this feature, we refer to our present approach 
as more-effective effective-field theory (MEEFT). 

The starting point of MEEFT is the observation that, to high accuracy, 
the leading-order IB operators in SNPA and EFT (HB^PT) are identical, 
and that their matrix elements can be reliably estimated with the use of 
realistic SNPA wave functions for the initial and final nuclear states. Next 
we note25 that 2B transition operators in HB%PT are uniquely given by 
irreducible diagrams in Weinberg's counting scheme26.0 The long-range 2B 
contributions are in fact identical for both SNPA and EFT, as they are 
strongly constrained by chiral symmetry. It is short-range contributions 
that introduce model dependence in SNPA. EFT allows us to write down, 

cAlthough the same approach can be applied to n-body currents (n > 2), we concentrate 
here on the dominant 2B currents. 
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for a given chiral order, the most general set of operators tha t govern short-
distance physics as 

N 

oshort = J2Ci°» (5) 

where Oi is a zero-range operator (which may involve a derivative operator) , 

and d is the corresponding low-energy constant (LEC); TV is a finite num

ber tha t depends on the chiral order under consideration. The Cj's, which 

should in principle be derivable from QCD, are in practice determined by 

fitting empirical data. Now, a nuclear matr ix element in M E E F T is ob

tained by sandwiching the EFT-controlled transition operator between the 

relevant SNPA wave functions. This means tha t , if two (or more) observ-

ables belonging to the same nucleus or to neighboring nuclei are sensitive to 

Cshort, they can be related via M E E F T . If the experimental value of one of 

those observables is known, the other(s) can be predicted. Correlating two 

(or more) observables in this manner is expected to significantly reduce the 

practical consequences of the afore-mentioned "mismatch problem". The 

basic soundness of this approach has been proven for the n + p —+ d + 7 

process2 7 , 2 8 and several other processes29 . We emphasize that M E E F T , 

which takes into account short-distance physics consistently, should be dis

tinguished from naive hybrid models, which lack this feature. 

Our M E E F T prediction for Shep, s e e eq-(9), turns out to be consistent 

with the latest SNPA prediction, (4). However it could not be confirmed 

by experiment, due to the Coulomb repulsion between proton and 3 He at a 

relevant energy for the interior of the sun. This motivates us to study the 

hen process, (2), at threshold; hen is a four-body process tha t has close sim

ilarity to hep in tha t the pseudo-orthogonality of the initial and final wave 

functions strongly suppresses the leading-order one-body contribution. In 

fact, the degree of suppression for hen is such tha t the exchange current 

"corrections" become dominant terms. Meanwhile, since the experimen

tal value of the threshold hen process is known with reasonable accuracy: 

&exP = (54 ± 6) fib30 and aexp — (55 ± 3) fib31, hen provides a good testing 

ground for the validity of M E E F T . It is to be noted that these experimen

tal values have never been explained satisfactorily before. We remark, in 

particular, tha t very elaborate SNPA calculations by Carlson et a/.32 and 

by Schiavilla et al.16 give cr= 112 fib and cr = 86 fib, respectively. 
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2. T h e o r y 

The primary amplitudes for the hep and hen processes are of the Gamow-

Teller (GT) and M l types, respectively. Since the single-particle GT and 

M l operators are well known at low energy, a major theoretical task is the 

accurate estimation of the meson-exchange current (MEC) contributions. 

In getting the current operators, we rely on the heavy-baryon chiral pertur

bation theory (HBxPT) with the Weinberg's power counting rule, which 

is a well-studied E F T tha t has been proven to be quite powerful and suc

cessful in describing low-energy nuclear systems. In H B x P T , we have pions 

and nucleons as pertinent degrees of freedom, with all other massive degrees 

of freedom integrated out. The expansion parameter in H B x P T is Q/Ax, 

where Q s tands for the pion mass and/or the typical momentum scale of 

the system, and A x ~ 1 GeV. In our studies, we have calculated the MEC 

up to N 3 LO, where N"LO stands for the order of (Q/Kx)
u compared to 

the leading order (LO) one-body operator. Up to this order, MEC con

sists of one-pion-ranged, two-pion-ranged and contact-term (CT) two-body 

currents, 

A2B = A l 7 r (N 3 LO) + A C T ( N 3 L O ) , 

V2B = V l 7 r (NLO) + V l 7 r (N 3 LO) + F 2 7 r (N 3 LO) + F C T ( N 3 L O ) , (6) 

where we have indicated the chiral order of each contributions. Three-body 

and many-body operators appear only in higher orders. As mentioned, the 

NLO soft-lir appears only in GT, while two-pion contributions do only in 

M l . Here we note tha t all the operators except but the delta-ranged con

tributions can be determined unambiguously, thanks to available accurate 

irN scattering data. The contact-term contributions however contain one 

(dR) and two {g^s and g^v) unknown parameters for A and V, respectively, 

ACT «dR j > - T3y-a{cr3 x <rX3) (»•«). (?) 
i<j 

VCT cc^iqx [g±s{<Ti + (TJ) + gw(ji x Tjf{(Ti x <7j)]<43)(r), (8) 
i<j 

where A is the cutoff (which we introduce in the procedure of Fourier trans-

formation from momentum space to coordinate space), and SA (r) is the 

smeared delta-function with the radius ~ 1/A. The LECs, dR and <?4S)4„, 

represent all the heavy degrees of freedom integrated out, and chiral sym

metry (or any other symmetry) does not tell us the value of it. We can 

however fix them by studying other processes which are sensitive on them. 
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In other words, we adjust the value of LECs to reproduce the experimen
tal data of those other processes, a procedure which is the renormalization 
condition of dR and g4S,4v This procedure is closely analogous to the EFT 
approach to effective nuclear potential backed by renormalization group 
equations as explained in Ref. [33]. The power of the approach is that the 
constant dR appears in tritium /3-decay, //-capture on a deuteron, and v-d 
scattering, as well as in pp and hep processes and hence is completely fixed. 
Among them, accurate experimental data is available for the tritium-beta 
decay rate, F l , which we use to fix dR. Similarly we fix g4S and g^v by 
demanding the experimental values of the magnetic moments of triton and 
3He, /u(3H) and /t(3He), should be reproduced. 

3. Results 

3.1. The hep process 

To determine dR from Ti , we calculate Tfa from the matrix elements of 
the current operators evaluated for accurate A=3 nuclear wave functions. 
We employ here the wave functions obtained in Refs. [22, 21] using the 
correlated-hyperspherical-harmonics (CHH) method34. It is obviously im
portant to maintain consistency between the treatments of the A=2, 3 and 
4 systems. We shall use here the same Argonne vis (AV18) potential23 for 
all these nuclei. For the A > 3 systems we add the Urbana-IX (AV18/UIX) 
three-nucleon potential24. Furthermore, we apply the same regularization 
method to all the systems in order to control short-range physics in a con
sistent manner. 

The values of dR that reproduce the experimental value of r l for A = 
500, 600 and 800 MeV are found to be 1.00±0.07, 1.78±0.08 and 3.90±0.10, 
respectively. 

In Table 1, we have listed results for the ratio of the matrix element 
of 2-body current compared to that of 1-body, r = (2B)/(1B), for the 
hep processes. We see from the table that the variation of the two-body 

Table 1. The ratio r = (2B)/(1B>, for the 
hep processes. 

A (MeV) 

r (without dR) 
r (with dR) 

500 600 800 

-1.67 -2.17 -2.94 

-0.60 -0.64 -0.73 

GT amplitude (row labelled "r (with dR)") is - 1 0 % for the ranee of A 
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under study. It is also noteworthy tha t the variation of the 2B amplitude 

as a function of A is reduced by a factor of ~ 7 by introducing the dR-

term contributions. The resulting S-factor (adding the contributions from 

non-GT channels) reads 

S W O ) = (8.6 ± 1.3) x 10" 2 0 keV-b, (9) 

where the "error" spans the range of the A-dependence for A=500-800 

MeV. This result should be compared to the SNPA prediction, (4). 

The latest analysis of the Super-Kamiokande da ta 3 5 gives an upper limit 

of the solar hep neutrino flux, (f>u(hep)SK < 4 0 x l 0 3 c m ~ 2 s _ 1 . The s tandard 

solar model3 6 using the hep 5-factor of MSVKRB 2 2 predicts ipu(hep)SSM = 

9.4 x 103 c m _ 2 s _ 1 . The use of the central value of our estimate, Eq.(9), of 

the hep 5-factor would slightly lower <p„(hep)SSM but with the upper limit 

compatible with 0„( / iep) S S M in Ref. [36]. A significantly improved estimate 

of SheP(0) in Eq.(9) is expected to be useful for further discussion of the 

solar hep problem. 

3 .2 . The hen process 

We use realistic variational Monte-Carlo wave functions obtained for 

the Argonne v l 4 two-nucleon interaction and the Urbana VIII trinu-

cleon interactions; these are the potentials used in the previous SNPA 

calculation32 . The asymptotic behavior of the 3 He + n system has been 

taken into account by means of the Woods-Saxon (WS) potential, Vws(r) = 

VQ ( l + e^r~R°^do) . We can determine the parameters in the WS poten

tial so as to reproduce the experimental da ta for the scattering length3 7 

and the low-energy phase shifts38; the results are VQ = 8.63637 MeV, 

Ro = 4.14371 fm and d0 = 0.8 fm. It should be pointed out 3 2 tha t a 

small difference an can affect the hen cross section significantly. For this 

reason the experimental da ta are directly encoded into theory. The result

ing phase shifts are shown in figure 1. The precise measurement of the 
3 He + n scattering length enables us to limit the uncertainty associated 

with the scattering length to < 1% in the matr ix elements. The nuclear 

matr ix elements of the currents are evaluated by taking 1 million samplings 

in the Metropolis algorithm. 

For each value of A, we adjust the values of the two independent 

LECs (denoted by g4S and g^v) so as to reproduce the experimental val

ues of the 3 H and 3He magnetic moments. The results are {g±s, c/4„} = 

{1.079(9), 2.029(6)}, {1.277(12), 0.981(7)} and {1.856(22), -0 .235(12)} for 
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Figure 1. The He + n S-wave phase shift in degrees as a function of the center-of-mass 
energy in MeV. The solid line gives our results obtained with the Woods-Saxon potential, 
while the full dots represent the experimental data obtained from an ij-matrix analysis. 

A = 500, 600 and 800 MeV, respectively. Once the values of gis^v are fixed, 
we can predict the M l transition amplitude for hen without any unknown 
parameters. 

In Table 2, we list the ratio r = (2B)/(IB) without and with the CT, 
and the corresponding cross sections, with respect to the cut-off. It is note-

Table 2. The cutoff dependence of the matrix 
elements (in 1 0 - 3 mi 3 / 2 ) and the corresponding 
total cross sections for A = 500, 600 and 800 MeV. 

A(MeV) 
r (w/o CT) 
r (with CT) 
a{^b) 

500 
-2.98(2) 
-4.00(2) 

56.9(3) 

600 
-3.86(2) 
-4.06(2) 

59.2(5) 

800 
-4.72(3) 
-4.16(3) 
63.2(10) 

worthy that the cutoff dependence seen in the hen case is quite similar 
to that seen in the hep case. While the individual contributions of the 
contact and non-contact terms vary strongly as functions of A, their sum 
shows a greatly reduced A-dependence. This can be interpreted as a man
ifestation (albeit approximate) of the renormalization group invariance of 
physical observables. The smallness of the cutoff dependence, ~ 3%, seen 
in Table 2 indirectly indicates that our MEEFT scheme allows us to control 
short-range dynamics to a satisfactory degree. The remaining small cutoff 
dependence may be attributed to the contributions of terms ignored in this 
calculation, e.g., the "fixed" terms, n-body currents for n > 2, other higher 
chiral order terms, etc. Our final value for the threshold hen cross section 
is a — (60.1 ± 3.2 ± 1.0) fib, where the first error comes from the cutoff 
dependence and the second from the statistical errors. Errors arising from 
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the uncertainties in the n- 3He scattering length are estimated to be ~ 1% 

in the matr ix element. 

A highly significant feature is tha t the ratio r for hen is about —4, 

which is much larger in magnitude than the corresponding ratio hep, which 

is about —0.6. This large difference can be understood by recalling the 

"chiral filter mechanism" argument [39] according to which the N 1 LO 

contribution is non-vanishing for hen, while the 2B correction in hep only 

starts at N 3 LO. It is remarkable tha t , despite this difference, exactly the 

same M E E F T strategy works for bo th hep and hen. 

4. D i s c u s s i o n 

We have already mentioned tha t the existing SNPA calculations for hen 

cannot explain aexp. A comment is in order on this point since, for all 

the other cases so far studied in bo th SNPA and M E E F T (pp fusion, hep, 

v — d scattering, radiative np-capture etc), the numerical results exhibit a 

close resemblance (except tha t the M E E F T results come with systematic 

error estimates.) As mentioned, one of the most important ingredients of 

M E E F T is a "renormalization" procedure in which the relevant unknown 

LECs are fixed using the experimental values of observables in neighboring 

nuclei. A similar procedure has been done in the SNPA calculations of the 

above-quoted cases. However, the existing SNPA calculation of hen32'16, 

lacks this "renormalization", and this explains why the "existing" SNPA 

calculation of (Then disagrees with ae^. 
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Neutrino processes in semi-transparent supernova matter, opaque to semi-
transparent protoneutron star matter, and catalyzed neutron stars are discussed. 

1. Introduction 

In recent years, the study of neutrino emission, scattering, and absorption in 
matter at high density and/or temperature has gained prominence largely 
due to its importance in a wide range of astrophysical phenomena. Energy 
loss in degenerate helium cores of red giant stars,1 '2 cooling in pre-white 
dwarf interiors,3 the short- and long-term cooling of neutron stars,4'5 the 
deflagration stages of white dwarfs which may lead to type la supernovae,6,7 

explosive stages of type II (core-collapse) supernovae,8 and thermal emis
sion in accretion disks of gamma-ray bursters,9'10 are examples in which 
neutral and charged current weak interaction processes that involve neu
trinos play a significant role. Since this is a vast subject, we will highlight 
some recent developments in the context of core-collapse supernovae and 
neutron stars from their birth to old age. 

2. Supernovae 

In unravelling the mechanism by which a type-II supernova explodes, the 
implementation of accurate neutrino transport has been realized to be 
critical.11 The basic microphysical inputs of accurate neutrino transport 

*Friends who have helped and contributed significantly; see the Acknowledgements. 
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coupled in hydrodynamical situations are the differential neutrino produc
tion and absorption rates and their associated emissivities. The processes 
and precise forms in which such inputs are required for multienergy treat
ment of neutrinos for both sub-nuclear and super-nuclear densities (nuclear 
density p0 ~ 2.65 x 1014 g cm - 3 ) are detailed in Refs. [12, 13]. 

At sub-nuclear densities, the relevant processes are: 

pair production : e+ + e~ —> v + v , (1) 

the photo — neutrino process : e + 7* —> e + v + v, (2) 

the plasma process : 7* —> v + v , (3) 

nucleon — nucleon bremsstrahlung : (n,p) —> (n,p) + v + v , and (4) 

v — flavor production : Vi + i>i —> Vj + i>j . (5) 

The relative importance of these processes depends on the temperature and 
density of ambient matter and is sketched in Figure 1. 

log l Q (p B Y e [g cm" ] ) 

Figure 1. Regions of temperature and density in which the various neutrino emitting 
processes are operative. 
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Additional neutrino processes in the supernova environment include 

p + e~^n + ve, (A,Z)+e~ -> {A,Z-l) + ve, (6) 

v+(A,Z)-^v+(A,Z), (7) 

v + e~->v + e-, v+{A,Z)^v+{A,Z)*, (8) 

(A,Z)* - • (A,Z) + v + v. (9) 

Reactions (6) begin the process of neutronization and decrease of lepton 
number per baryon YL, whose value after ^-trapping determines the masses 
of the homologous core and initial PNS, and thus the available energy for 
the shock and subsequent neutrino emissions. The equation of state also 
influences these quantities, most importantly through the nuclear symmetry 
energy. In the subnuclear density regime, the coherent scattering reaction 
(7) from nuclei in a lattice is the most important opacity source. The 
reactions (8) are important in changing the neutrino energy and in achieving 
thermodynamic equilibrium. The reactions (1) and (9) are also important in 
achieving thermodynamic equilibrium. The bremsstrahlung and modified 
Urea (n+p —> n+n+e++v+D) processes dominate in many circumstances. 
For example, the production and thermalization of \x and r neutrinos, which 
receives contributions from reactions (1) through (5), and (9), is dominated 
by nucleon bremsstrahlung (4) for number density n > 0.005 fm~ and 
temperature T < 15 MeV. The modified Urea process dominates the cooling 
of protoneutron stars if direct Urea processes involving nucleons, hyperons 
or other strange particles do not occur. 

3. Kernels for Neutrino Transport Calculations 

The evolution of the neutrino distribution function / , generally described 
by the Boltzmann transport equation in conjunction with hydrodynamical 
equations of motion together with baryon and lepton number conservation 
equations, is 

% + v%% + ^T = B E A U ) + BNES{I) + B»N{f) + B r p ( / ) • ( 1 0 ) 

Here, Fl is the force acting on the particle and we have ignored general 
relativistic effects for simplicity (see, for example, Ref. [12] for full details). 
The right hand side of the above equation is the neutrino source term in 
which, BEA(I) incorporates neutrino emission and absorption processes, 
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/ 

BNES(I) accounts for the neutrino-electron scattering process, BVN{I) in
cludes scattering of neutrinos off nucleons and nuclei, and BTP{J) considers 
the thermal production and absorption of neutrino-antineutrino pairs. 

Till recently, detailed differential information was not available for the 
plasma and photoneutrino processes. In prior works in which the total 
rates and emissivities for these processes were computed, the energy and 
angular dependences of the emitted neutrinos with 4-momenta q and q' 
were eliminated by using Lenard's identity: 

| | ~ < 5 4 f e ^ Q ~ 9 ' W = ^ 6 ( ^ ( 2 9 ^ + g t V ) . (11) 

Although the use of this identity simplifies considerably the calculation of 
the total emissivity, differential information about the neutrinos is entirely 
lost. On the other hand, calculations of differential rates and emissivities, 
such as 

<Pr a n d d3Q 
dEq dEqi d(cos 6qq>) dEq dEq, d(cos 6qq,) ' 

where 6qqi is the angle between the neutrino pairs, entail the calculation 
of the relevant squared matrix elements hitherto bypassed in obtaining the 
total rates and emissivities. Realizing this, the squared matrix elements for 
the plasma and photoneutrino processes were computed in Refs. [16, 17]. 
Some results from these recent works are highlighted below. 

3.1. The Plasma Process 

As is well known, e+e~ pairs in a plasma cause the photon to acquire an 
effective mass, which arises from electromagnetic interactions (cf. Refs. 
[16, 18] and references therein). Therefore, we can consider the photon to 
be a massive spin-1 particle that couples to the vv pair through the two 
one-loop diagrams shown in Figure 2. 

Suppressing the dependencies on (r, t) for notational simplicity, the 
source term for the plasma process can be written as 

B(f) = I1 - / 1 ? ^ 3 / E* dE* / d^ / d & RP(Ei,E2,cos0) [1 - /] 
{Z7r) Jo J-i Jo 

_ / ( 2 ^ y EldEij dfi2j d4>2R
a(EuE2,cos8)f: (13) 

where the first and the second terms correspond to the source (neutrino 
gain) and sink (neutrino loss) terms, respectively. E\ and E2 are the en
ergies of the neutrino and antineutrino, respectively. Angular variables 
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r 

V 

r o z 
v 

Figure 2. Leading order Feynman diagrams describing the emission of a neutrino pair 
from the plasma process. The charged current process in which the M/-boson is exchanged 
produces only vev£, while that in which the neutral Z-boson is exchanged results in pairs 
of all three neutrino (e, fi, and r ) flavors. 

Hi = cos#i and fa (i = 1,2) are defined with respect to the z-axis tha t is 

locally set parallel to the outgoing radial vector r. The angle 9 between the 

neutrino and antineutrino pair is related to 9\ and 92 through 

cos# M1M2 + i / ( l ~ M?)(l - M2) cos(<Pi ~ <h) • ( 1 4 ) 

Notice that / = f(Ei,fj,i) and / = f{E2,n2)- The production and absorp
tion kernels are given by 

R"(E1,E2,cost 
d3k ( ZnB(to,T) 

3ZY(k) 
(2TT 

1 

SLOE\FJ2 

l + nB(u;,T) 

5\K-Q1-Q2){2T,f(\M\2), (15) 

where the subscript Y s tands for T-" t ransverse" or L-"longitudinal". The 

factor £ accounts for the spin avaraging; £ = 2 for the transverse, axial and 

mixed cases, while for the longidudinal case £ = 1. 

The angular dependences in the kernels R<> (Ei,E2,cos9) are often ex

pressed in terms of Legendre polynomials as 

R»(E1,E2,cost 
00 9 / 1 1 

(16) 
1=0 

where the Legendre coefficients $/" (E\,E2) depend exclusively on energies. 

From Eq. (15), it is evident that the kernels are related to the neu

trino rates and emissivities. We first consider the production kernel 

Rp(Ei,E2,cos9). The corresponding analysis for the absorption kernel 

Ra(E\,E2, cos9) can be made along the same lines, but with the difference 
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that us is replaced by 1 + UB • The neutrino production rate is given by 

(2TT)32W r y ' (2TT)32£;1 (2TT)32£2 

x nB(u, T) 5\K - Q1 - Q2){2vf (\M\2) 

wr^RP{El>E2>cose)> (17) 

which defines the kernel RP(E\,E2, cos 9) and is to be identified with that 
in Eq. (15). The emissivity Q can also be cast in terms of RP using 

Q = J ^ 3 ^ {Ei + E2)RP(E1, E2, cos 9). (18) 

The Legendre coefficients <&p for the transverse part of the production 
kernels are shown in Figure 3 for I = 0 through 3. The longitudinal compo
nent becomes comparable to the transverse component only in the strongly 
degenerate regime (see Figure 4), while the axial and mixed components 
(the latter contributes only to the differential rates and emissivities but not 
to the total, since it is anti-symmteric in E\ and E2) are negligibly small. 
Notice that the first few Legendre coefficients are all comparable in mag
nitude. Moreover, the emission process is anisotropic (see also Figure 7 of 
Ref. 16). "Light" photon (LOP <S T) decays result in neutrino pairs with 
small outgoing angles between them, whereas "massive" photons {LOP ^> T) 
yield back-to-back neutrino emission. 

Figure 4 shows the individual contributions to the total emissivity 
from the transverse, longitudinal, and axial channels at T — 10 n K and 
T = 109K, respectively. The curves show results from expressions derived 
by exploiting the Lenard identity.16,18 The symbols "x" and "+" show re
sults obtained by integrations of the differential emissivities. At all densities 
and temperatures, the contribution of the axial channel to the total emis
sivity is negligible. For each temperature, the emissivity in the transverse 
channel dominates over that of the longitudinal channel at low densities. 
However, the peak values in these two channels are attained at nearly the 
same density; thereafter their individual contributions coincide. 

In terms of the density and temperature dependencies of the plasma fre
quency u>p and the electron chemical potential /j,e (see Figure 4 of Ref. [16]), 
a detailed qualitative and quantitative analyses of the basic features of Fig
ure 4 are provided in Ref. [16]. Consider the case of QT first. At a fixed 
temperature, the basic features to note are: 
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Figure 3. The transverse part of the production kernels for T = 8.62 MeV and pBYe < 
1010 g cm™3. The Legendre coefficients # f are shown for I = 0 through 3. The neutrino 
energies E\ and E2 are in MeV and the Legendre coefficients are in units of 101 2 9 h6 

e r g - 6 cm3 s - 7 . 

(1) QT is independent of the density pBYe until a turn-on density (pB^e)to 
is reached, 

(2) For densities larger than this turn-on density, QT exhibits a power-law 
rise until a maximum is reached at (pB^)peak, and 
(3) For pBYe > (pBYe)peak, the fall-off with density is exponential 

In the case of T > DP (non-degenerate plasma), the main contribution 
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Figure 4. Individual contributions from the transverse, longitudinal, and axial channels 
to the neutrino emissivity. The mass density of protons in the plasma, p sY e = mpne, 
where mp is the proton mass, Ye = ne/ng is the net electron fraction (ng is the baryon 
number density) , and ne is net electron number density. 

to QT comes from high photon momenta. To a very good approximation,1 

_, 2E/(CV) X ^ m 6 r 3 
(19) 

where £(3) ~ 1.202 is Riemann's Zeta function and m j is the transverse 
photon mass. 

For T <^ Lop (degenerate plasma), QT takes the form18 

~<f\ ni 
^ E / (Cy) GF fn i5/2T3/2 -*P/T (20) 

The analyses of the longitudinal and axial emissivities can be carried out 
along the same lines as that for the transverse emissivity.16 
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3.2. The Photoneutrino Process 

The leading order diagrams for the photoproduction of neutrino pairs, e^ + 
7* —> e^ + ^eiAiiT +ve,iJ.,T, are shown in Figure 5. The kernels of the collision 
integral for the photoneutrino process can be calculated along the same 
lines as for the plasma process and are detailed in Ref. 17. 

rx 
7* ve 

7* e 7* e 

Figure 5. Leading order Feynman diagrams describing the emission of a neutrino pair 
from the photoneutrino process. The charged current W - exchange channel produces 
only v eP e , whereas the neutral Z - exchange results in pairs of all three neutrino 
(e, /J,, and r ) flavors. Contributions from positrons are obtained by the replacement 
e— —>e+. 

Numerical results for the symmetric and anti-symmetric components of 
<&Q{Eq,Eqi) and $^(Eq,Eq/) are shown in Figure 6 for the case T = 1011 

K= 8.62 MeV and psYe = 1 g cm - 3 . The results explicitly show the ex
pected symmetry properties in neutrino energies Eq and Eqi. A comparison 
of the relative magnitudes <&\{Eq, Eqt) (not shown here, but see Figure 6 
of Ref. [17]) and $g ( s y m ) (£ g , Eq>) shows that the / = 0 term is the domi
nant term. The magnitude of $Q (asym' amounts to only 10% of the leading 
$g ( s y m ) contribution. The contributions of <^ ( s y m ) and $^asym> are 6% 
and 3%, respectively. In physical terms, this means that neutrino-pair emis
sion from the photo-neutrino process is dominantly isotropic. Therefore, 
depending on the required accuracy, $g<-sym-) might be adequate in practi
cal applications. Note also that that the production kernels are negligible 
for energies Eq and Eqi > 10T. 
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Figure 6. Symmetric and anti-symmetric parts of the Legendre coefficients # Q {syIU) and 

<1>Q ^asym^ i n the production kernels for the transverse case. The ^-energies Eq and Eqt 

are in MeV and the Legendre coefficients are in units of 101 2 9 hQ erg~6 cm3 s - 7 . 

Contributions of the transverse and longitudinal components to the total 
emissivity are shown in Figure 7. For all temperatures at sufficiently high 
net electron densities ne (i.e., a degenerate plasma), the inequalities 

/xe > T, fie > rae, 

WP > T, o;P > m e (21) 

are satisfied. In this case, 

Qi 
AaG2

F{Cl + C\) 
'T6e P/T (22) 

3 (2TT)6 

The nondegenerate situation occurs at sufficiently low densities for 
which fie — me <C T. In this case, both Q T and QL exhibit a plateau 
for temperatures T > 109 K. The emissivity and rate can be expressed in 
terms of the simple expressions 

'QT\ ___ 20aG | (C^ + Cj ) / T 9 x 775.54> 
\ T 8 x 136.50; 

T 

3 ( 2 T T ) 6 
(23) 

The significance of the detailed differential rates and emissivities of neu
trino emission and absorption processes in calculations of core-collapse su-
pernovae in which neutrino transport is strongly coupled with hydrody
namics remains to be explored. 

4. Protoneutron Stars 

A protoneutron star (PNS) is born in the aftermath of the gravitational 
collapse of the core of a massive star accompanying a successful supernova 
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(PRYJgcm ]) 

Figure 7. Individual contributions from the transverse and longitudinal channels to the 
neutrino emissivity as a function of baryon density at the indicated temperatures. The 
error bars show the variance of the Monte Carlo integration. For densities in excess 
of nuclear density shown by the dotted vertical line, neutrino production from strongly 
interacting particles dominate over QED-plasma processes. 

explosion. During the first tens of seconds of evolution, nearly all (~ 
99%) of the remnant's binding energy is radiated away in neutrinos of all 
flavors.19'22,23'24'25'26 The neutrino luminosities and the emission timescale 
are controlled by several factors, such as the total mass of the PNS and 
the opacity at supranuclear density, which depends on the composition 
and dense matter equation of state (EOS). One of the chief objectives in 
modeling PNS's is to infer their internal compositions from neutrino sig
nals detected from future supernovae by SuperK, SNO and others under 
consideration, including UNO.27 
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4 .1 . The Evolution of a Protoneutron Star 

The evolution of a PNS proceeds through several distinct stages19,20 and 
with various outcomes,21 as shown schematically in Figure 8. Immediately 
following core bounce and the passage of a shock through the outer PNS's 
mantle, the star contains an unshocked, low entropy core of mass ĉ  0.7 
M 0 in which neutrinos are trapped (stage 1 in the figure). The core Is 
surrounded by a low density, high entropy (5 < s < 10) mantle that is both 
accreting matter from the outer iron core falling through the shock and 
also rapidly losing energy due to electron captures and thermal neutrino 
emission. The mantle extends up to the shock, which Is temporarily stalled 
about 200 km from the center prior to an eventual explosion. 
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Figure 8. The main stages of evolution of a protoneutron star. Shading approximately 
indicates relative temperatures. 

After a few seconds (stage 2), accretion becomes less important if the 
supernova is successful and the shock has ejected the stellar envelope. 
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Extensive neutrino losses and deleptonization will have led to a loss of 
lepton pressure and the collapse of the mantle. If enough accretion has oc
curred, however, the star's mass could increase beyond the maximum mass 
capable of being supported by the hot, lepton-rich matter. If this occurs, 
the remnant collapses to form a black hole and its neutrino emission is 
believed to quickly cease.28 

Neutrino diffusion deleptonizes the core on time scales of 10-15 s (stage 
3). Diffusion time scales are proportional to i?2(cA„) -1, where R is the 
star's radius and A„ is the effective neutrino mean free path. This generic 
relation illustrates how both the EOS and the composition influence evolu
tionary time scales. The diffusion of high-energy (200-300 MeV) z/'s from 
the core to the surface where they escape as low-energy (10-20 MeV) z/'s 
generates heat (a process akin to joule heating). The core's entropy ap
proximately doubles, producing temperatures in the range of 30-60 MeV 
during this time, even as neutrinos continue to be prodiguously emitted 
from the star's effective surface, or v—sphere. 

Strange matter, in the form of hyperons, a Bose condensate, or quark 
matter, suppressed when neutrinos are trapped, could appear at the end of 
the deleptonization. Its appearance would lead to a decrease in the maxi
mum mass that matter is capable of supporting, implying metastability of 
the neutron star and another chance for black hole formation.21 This would 
occur if the PNS's mass, which must be less than the maximum mass of 
hot, lepton-rich matter (or else a black hole would already have formed), 
is greater than the maximum mass of hot, lepton-poor matter. However, if 
strangeness does not appear, the maximum mass instead increases during 
deleptonization and the appearance of a black hole would be unlikely unless 
accretion in this stage remains significant. 

The PNS is now lepton-poor, but it is still hot. While the star has 
zero net neutrino number, thermally produced neutrino pairs of all flavors 
dominate the emission. The average neutrino energy slowly decreases, and 
the neutrino mean free path increases. After approximately 50 seconds 
(stage 4), A ~ i?, and the star finally becomes transparent to neutrinos. 
Since the threshold density for the appearance of strange matter decreases 
with decreasing temperature, a delayed collapse to a black hole is still 
possible during this epoch. 

Following the onset of neutrino transparency, the core continues to cool 
by neutrino emission, but the star's crust remains warm and cools less 
quickly. The crust is an insulating blanket which prevents the star from 
coming to complete thermal equilibrium and keeps the surface relatively 



489 

warm (T « 3 x 106 K) for up to 100 years (stage 5). The temperature 
of the surface after the interior of the star becomes isothermal (stage 6) 
is determined by the rate of neutrino emission in the star's core and the 
composition of the surface. 

4.2. Neutrino Signals in Terrestrial Detectors 

time (s) 

Figure 9. The evolution of the total neutrino luminosity for npQ PNS's. Shaded bands 
illustrate the limiting luminosities corresponding to a count rate of 0.2 Hz, assuming a 
supernova distance of 50 kpc for 1MB and Kamioka, and 8.5 kpc for SNO and SuperK. 
The widths of the shaded regions represent uncertainties in the average neutrino energy 
from the use of a diffusion scheme for neutrino transport. 

A comparison of the signals observable with different detectors is shown 
in Figure 9, which displays Lv as a function of baryon mass MB for stars 
containing quarks in their cores. In the absence of accretion, MB remains 
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constant during the evolution, while the gravitational mass MQ decreases. 
The two upper shaded bands correspond to estimated SN 1987A (50 kpc dis
tance) detection limits with KII and 1MB, and the lower bands correspond 
to estimated detection limits in SNO, SuperK, and UNO, for a Galactic 
supernova (8.5 kpc distance). The detection limits have been set to a count 
rate dN/dt = 0.2 Hz.25 It is possible that this limit is too conservative 
and could be lowered with identifiable backgrounds and knowledge of the 
direction of the signal. The width of the bands represents the uncertainty 
in < Ene > due to the diffusion approximation.24'25'26 It is possible to dis
tinguish between stable and metastable stars, since the luminosities when 
metastability is reached are always above conservative detection limits. 

4.3. Metastable Protoneutron Stars 

Protoneutron stars in which strangeness appears following deleptonization 
can be metastable if their masses are large enough. One interesting diagnos
tic that could shed light on the internal composition of neutron stars would 
be the abrupt cessation of the neutrino signal. This would be in contrast 
to a normal star of similar mass for which the signal continues to fall until 
it is obscured by the background. In Figure 10 the lifetimes for stars con
taining hyperons (npH), kaons (npK) and quarks (npQ) are compared.25 

In all cases, the larger the mass, the shorter the lifetime. For the kaon and 
quark PNSs, however, the collapse is delayed until the final stage of the 
Kelvin-Helmholtz epoch, while this is not necessarily the case for hyperon-
rich stars. In addition, there is a much stronger mass dependence of the 
lifetimes for the hyperon case. 

Clearly, the observation of a single case of metastability, and the deter
mination of the metastability time alone, will not necessarily permit one to 
distinguish among the various possibilities. Only if the metastability time is 
less than 10-15 s, could one decide on this basis that the star's composition 
was that of npH matter. However, as in the case of SN 1987A, independent 
estimates of MB might be available.29 In addition, the observation of two 
or more metastable neutron stars might permit one to differentiate among 
these models. 

5. Neutron Stars in Their Old Age 

See the contribution from Dany Page to this symposium. 
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Figure 10. Lifetimes of metastable stars versus the PNS baryon mass M g . Thick lines 
denote cases in which the maximum gravitational masses of cold, catalyzed stars are 
near 1.45 M Q , which minimizes the metastability lifetimes. The thin lines for the npQ 
and npH cases are for EOSs with larger maximum gravitational masses (1.85 and 1.55 
M Q , respectively.) 

6. Outlook 

The advent of new-generation neutrino detectors such as Super-
Kamiokande and the Sudbury Neutrino Observatory promises thousands of 
neutrino events in the next Galactic supernova. These will provide crucial 
diagnostics for the supernova mechanism, important limits on the released 
binding energy and the remnant mass, and critical clues concerning the 
composition of high density matter. Research in this area will ascertain 
the extent to which neutrino transport is instrumental in making a super
nova explode. Other bonuses include the elucidation of the possible role of 
supernovae and neutrinos in r—process nucleosynthesis. 
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The main issues that emerge from PNS studies concern the metasta-
bility and subsequent collapse to a black hole of a PNS containing quark 
matter, or other types of matter including hyperons or a Bose condensate, 
which could be observable in the v signal. However, discriminating among 
various compositions may require more than one such observation. This 
highlights the need for breakthroughs in lattice simulations of QCD at finite 
baryon density in order to unambiguously determine the EOS of high den
sity matter. In the meantime, intriguing possible extensions of supernova 
and PNS simulations with npQ and npK matter include the consideration 
of heterogenoeus structures and quark matter superfluidity.30 See also the 
contribution from Sanjay Reddy to this symposium. 

7. Conclusions 
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THE MICRO-PHYSICS OF NEUTRINO TRANSPORT AT 
EXTREME DENSITY* 
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Production and propagation of neutrinos in hot and dense matter plays an im
portant role in the thermal evolution of neutron stars. In this article we review 
the micro-physics that influences weak interaction rates in dense matter contain
ing nucleons, leptons and or quarks. We show that these rates depend sensitively 
on the strong and electromagnetic correlations between baryons. We present new 
results, obtained using molecular dynamics, for the response of dense plasma of 
heavy ions. Neutrino rates are also shown to be sensitive to the phase structure 
of matter at extreme density. We highlight recent calculations of neutrino rates in 
dense color superconducting phases of quark matter. We present a brief discussion 
of how these differences may affect the early evolution of a neutron star. 

1. Introduction 

Neutrinos play an important role in stellar evolution. By virtue of their 
weak interactions with matter neutrinos provide a mechanism for energy 
loss from the dense stellar interiors. In neutron stars, neutrino emission 
is the dominant cooling mechanism from their birth in a supernova explo
sion until several thousand years of subsequent evolution. The calculation 
of these rates are of current interest since several research groups are em
barking on large scale numerical simulations of supernova and neutron star 
evolution 1. Even moderate changes in the nuclear microphysics associated 
with the weak interaction rates at high density can impact macroscopic 
features that are observable. An understanding of the response of strongly 
interacting nuclear medium to neutrinos and its impact on neutron star 
evolution promises to provide a means to probe the properties of the dense 
medium itself. 

*This work is supported by dept. of energy contract w7405-eng-36 

mailto:reddy@lanl.gov
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In §2, we present a brief introduction to the macroscopic aspects of 
neutrino transport in a newly born neutron star. The discussion relating 
to neutrino-matter interactions is organized into two sections: (i) neutrino 
interactions in dense matter containing nuclei , nucleons and leptons (§3) 
and (ii) neutrino interactions in exotic new phases that are likely to occur 
in the dense inner core of the neutron star (§4). 

2. Early evolution of the proto-neutron star 

The illustration in Fig.l, shows the important stages of core-collapse su
pernova and the birth of a proto-neutron stars. Successive nuclear burning 
from lighter to heavier elements, which fuels stellar evolution, inevitably re
sults in the formation of a iron core in massive stars (M > 8M©). Since iron 
is the most stable nucleus, further energy release through nuclear burning 
is not possible. The Fe-core is supported against gravitational collapse by 
the electron degeneracy pressure. When the mass of the Fe-core exceeds the 
Chandrashekar mass (Mch ~ 1 .4MQ), it becomes unstable to gravitational 
collapse. Detailed numerical simulations indicate that the core collapses, 
from its initial radius Rln ~ 1500 km to a final radius i?;n ~ 100 km, on a 
time-scale similar to the free-fall time-scale Tfree-faii — 100 ms. Soon after 
the onset of collapse, the core density exceeds 1012 g/cm3 and the mat
ter temperature T ~ 5 MeV. Under these conditions, thermal neutrinos 
become trapped on the dynamical time-scale of collapse. Consequently, 
collapse is nearly adiabatic. The enormous gravitational binding energy 
B.E.QTav, ~ GMNS/-RNS — 3 x 1053 ergs, is stored inside the star as inter
nal thermal energy of the matter components, and thermal and degeneracy 
energy of neutrinos. The newly born neutron star looses this energy on a 
time-scale determined by the rate of diffusion of neutrinos 2 '3. Neutrinos 
emitted from the proto-neutron star can be detected in terrestrial detectors 
such as Super Kamiokande and SNO. Current estimates indicate that we 
should see ~ 10,000 events in Super Kamiokande and ~ 1000 events in 
SNO from a supernova at the center of our galaxy4 (distance=8.5 kpc) . 
Understanding the micro and macro-physics that affects the spectral and 
temporal features of the neutrino emission is primarily motivated by this 
prospect. Supernova neutrinos are the only direct probes of both the dy
namics of gravitational collapse and the properties of dense matter inside 
the newly born neutron star. Since the neutrino emission time scale is 
set by neutrino diffusion, the duration over which we should expect to see 
neutrinos in terrestrial detectors is intimately connected with the neutrino 
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Figure 1. Schematic showing the various stages of a core-collapse supernova explosion. 

opacity of mat ter inside the neutron star. We now turn to address micro-

physical aspects of neutrino cross sections in dense mat ter . 

3 . N e u t r i n o In terac t ions in N u c l e o n i c M a t t e r 

It was realized over a decade ago tha t the effects due to degeneracy and 

strong interactions significantly alter the neutrino mean free paths and 

neutrino emissivities in dense mat ter 5 '6 , it is only recently tha t detailed 

calculations have become available 7>8>9.10. The scattering and absorption 

reactions tha t contribute to the neutrino opacity are 

ue + n —> e + p, • n , 

vx + n{p) ~*vx
Jr n(p), vx + e" vx 

where n,p,e±,A represent neutrons, protons, positrons, electrons and 

heavy Fe-like nuclei, respectively. At low temperature (T <̂  3 —5 MeV) and 

relatively low density (p ~ 1012 — 101 3 g /cm 3 , heavy nuclei are present and 

dominate the neutrino opacity due to coherent scattering. When the den

sity is higher, p ~ 101 3 — f 0 1 4 g /cm 3 , novel heterogeneous phases of matter , 

called the "pasta" phases have been predicted to occur, where nuclei be

come extended and deformed progressively from spherical to rod-like and 

slab-like configurations11. For densities greater than 1014 g /cm 3 , mat ter is 
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expected to be a homogenous nuclear liquid. In what follows, we discuss 
the neutrino opacity in these different physical settings. 

3.1. p ~ 10 1 2 g/cm3: 

At low temperature (T < 5 MeV), matter at these densities comprises of 
heavy nuclei (fully ionized), nucleons and degenerate electrons. The typical 
inter-particle distance, d ~ 20 — 40fm. At these large distances, the nuclear 
force is small and the correlations between particles is dominated by the 
coulomb interaction. Since nuclei carry a large charge {Z ~ 25) , the 
coulomb force between nuclei .Fcouiomb — Z2e2/d dominates the non-ideal 
behavior of the plasma. Further, for low energy neutrinos which couple 
coherently to the total weak charge Qw 25 — 40 of the nucleus, neutrino 
scattering off nuclei is far more important than processes involving free 
nucleons and electrons 12. 

The elastic cross-section for low energy coherent scattering off a nucleus 
(A,Z) with weak charge Qw = A — Z + Z sin2 9w, where 9w is the weak 
mixing angle, is given by12 

^ ^ Q ^ a + c o s . ) a) 
When neutrinos scattering off nuclei in a plasma we must properly account 
for the presence of other nuclei since scattering from these different sources 
can interfere. In the language of many-body theory, this screening is en
coded in the density-density correlation function 5 '6. To make concrete, 
the relation to the density-density correlation function we begin by noting 
that the effective lagrangian describing the neutral current interaction of 
low energy neutrinos with nuclei is given by 

LNC=HiQw I»f (2) 

where ZM = ^7^(1 — 75)^ is the neutrino neutral current. Nuclei are heavy, 
their thermal velocities are small, v <C c, and it is good approximation to 
write the neutral current carried by the nuclei as j M = ijj^ip 6Q. For sim
plicity, we will assume that nuclei are bosons characterized only by their 
charge and baryon number. Using Fermi's golden rule, we can calculate the 
neutrino cross sections from Eq.2. In matter, it is appropriate to define a 
cross section per unit volume rather than cross section off a single target 
particle since more than one target particle contributes to the response. We 
can write the differential cross section per unit volume in terms of the den
sity operator in momentum space p(q,t) = ip^ip = 5Zi=i...jv exP(*(f" ^(£))> 
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where i = 1 • • • N is the particle index. The cross section for scattering of 
a neutrino with energy transfer u> and momentum transfer q is given by 

da _ G2 

~ 167T 
1 

V du dcos9 

where S(\q\,co) 

fwO-

2TT N 

cosQ) S(\q\,u>) 

dt exp(iuit)(p(q,t)p(—q,0)). 

(3) 

(4) 

The function S(\q\,ijj) is called the dynamic form factor and embodies 
all spatial and temporal correlations between target particles arising from 
strong or electromagnetic interactions. To calculate the dynamic struc
ture function we need to solve for the dynamics (f(t)) of the ions as they 
move in the each others presence, interacting via the two body ion-ion 
interaction potential. The electrons are relativistic and degenerate, the 
time-scales associated with changes in their density distribution are rapid 
compared to the slow changes we expect in the density field of the heavy 
ions. The leading effect of the electrons is therefore to screen the Coulomb 
potential. Consequently, the ions interact through the potential V(r) = 
Z2e2 exp(—r/\e)/(Airr), where Ae is the electron Debye screening length. 
At 1012 g/cm3, where the inter-ion distance d < 30 fm and Ae > 80 fm, the 
typical ion-ion interaction energy, Epot ~ Z2e2/(Aitd) is large. For temper
ature in the range 1 — 5 MeV, the ratio of the potential energy to the kinetic 
energy, which is characterized by Y = Z2e2/(4ird kT) 3> 1. The dynamics 
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Figure 2. Dynamic structure function of a plasma of ions interacting as a function of 
energy transfer CJ (measured in units of the plasma frequency LOP = 0 . 2 MeV) and fixed 
momentum transfer |g| = 6n/L = 18.6 MeV. 

of a strongly coupled plasma is not amenable to analytic methods of per
turbation theory, nor are they tractable in approximate non-perturbative 
methods such as mean field theory or the Random Phase Approximation 
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(RPA). For a classical system of point particles interacting via a 2-body 

potential it is possible to simulate the real system. Such numerical simu

lations confine N particles to a box with periodic boundary conditions and 

calculate the force on each particle at any t ime and evolve the particles 

by using their equations of motion (Force = Mass x Acceleration). This 

method, which goes by the name molecular dynamics (MD), has been used 

extensively in condensed mat ter physics, plasma physics and chemistry 14. 

For T > 1 MeV, the De-Broglie wavelength KJJ < d SO the ionic gas is 

classical and we can use MD to calculate S(\q\, u>). Fig.2 , shows the results 

of such a calculation. We chose to simulate 54 ions (A=50,Z=25) in a box 

of length L = 200 fm. The background electron density was chosen so as to 

make the system electrically neutral. For the classical simulations, a single, 

dimensionless, number characterizes T = Z2e2/(4ird kT) characterizes the 

system. For kT = 1 MeV, r ~ 35 for our system - corresponding to a 

strongly coupled plasma. The results in Fig.2 show a comparison between 

results obtained by MD simulations (dots with error bars) , free (Boltz-

mann) gas response (dashed-line) and response obtained using Random 

Phase Approximation (RPA). Details regarding the RPA will be discussed 

in more detail in the subsequent sections. For now, we simply note that 

in RPA, Coulomb interactions are accounted for by selective re-summation 

of bubble graphs involving free excitations which interact via the Coulomb 

interaction. In particular, RPA is able to correctly predict the presence 

of well defined collective mode, corresponding to a phonon in the weak 

coupling regime ( r < 1) and is often expected to provide a fair descrip

tion of the long-wavelength response of correlated systems. However, as 

the comparison in Fig.2 indicates, both RPA and the free gas response do 

poorly compared to MD. MD is exact in the classical limit and corrections 

to the classical evolution are small and expected to scale as Xo/d. These 

results clearly illustrate tha t correlations can greatly affect the shape of the 

response and tha t approximate many-body methods such as RPA can fail 

when the coupling is strong, even at long-wavelengths. 

3 .2 . p ~ 1 0 1 3 g/cm3: 

With increasing density, the nuclei get bigger and the inter-nuclear dis

tance become smaller. Under these conditions, the nuclear surface and 

coulomb contributions to the Free energy of the system become important . 

It becomes energetically favorable for nuclei to become very deformed and 

assume novel, non-spherical, shapes such as rods and slabs n . Further, the 
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energy differences between these various shapes are small AE ~ 10 — 100 
keV. The dynamics of such an exotic heterogeneous phase is a complex 
problem involving several scales and forces. For temperatures of interest, 
T < 5 MeV, the De-Broglie wavelength and the inter-particle distance are 
comparable and quantum effects cannot be neglected. Recently, there have 
been attempts to model the behavior of these pasta phases using quantum 
molecular dynamics15 and also find rod and slab like configurations. 

How does the heterogeneity and existence of several low energy exci
tations involving shape fluctuations influence the response of this phase 
to neutrinos ? In the simplest description, the structure size (r) and the 
inter-structure (R) distance characterize the system. We can expect that 
neutrinos with wavelength large compared to the structure size but small 
compared to the inter-structure distance can couple coherently to the total 
weak charge (excess) of the structure, much like the coherence we discussed 
in the previous section. The effects of this coherent enhancement in the neu
trino cross-sections has recently been investigated 16. In agreement with 
our naive expectation, this study finds that the neutrino cross sections are 
enhanced by as much as an order of magnitude for neutrinos with energy 
1/r > Ev > 1/R. In §4.1, we discuss similar effects in a higher density het
erogeneous mixed phase composed of nuclear matter and novel high density 
phases such as quark matter. 

3.3. p ~ 10 1 4 g/cm?: 

With increasing density, the novel structures discussed previously merge 
to form a homogeneous liquid of neutrons, protons and electrons. The re
sponse of such a Fermi-liquid has been investigated by several authors7 '9 '10. 
The general expression for the differential cross section 7'9 

1 d6a _ G2
F E3 

V d2Cl3dE3 ~ ~ 128TT2 E\ 
1 — exp 

-<70 ~ (j»2 ~ Hi) 

T 

x (1 - f3(E3)) Im ( L Q / 3 n ^ ) , (5) 

where the incoming neutrino energy is E\ and the outgoing electron en
ergy is E3. The factor [1 — exp((—q0 — ^2 + fi^/T)]-1 maintains detailed 
balance, for particles labeled '2' and '4' which are in thermal equilibrium 
at temperature T and in chemical equilibrium with chemical potentials \ii 
and fj,4, respectively. The final state blocking of the outgoing lepton is ac
counted for by the Pauli blocking factor (1 — f3(E3)). The lepton tensor 
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LQ/gand the target particle retarded polarization tensor IIQ/3 is given by9 

nQ/3 = -if ^ T r {T(G2(p)JaG4(p + q)Jp)}. (6) 

Above, k^ is the incoming neutrino four-momentum and q^ is the four-
momentum transfer. The Greens' functions Gi{p) (the index i labels par
ticle species) describe the propagation of free baryons at finite density and 
temperature. J^ is 7M for the vector current and 7^75 for the axial current. 

To account for the effects of strong and electromagnetic correlations 
between target neutrons, protons and electrons we must find ways to im
prove Ha,p- This involves improving the Greens functions for the particles 
and the associated vertex corrections that modify the current operators. In 
strongly coupled systems, these improvements are notoriously difficult and 
no exact analytic methods exist. One usually resorts to using mean-field 
theory to improve the Greens functions. Dressing the single particle Greens 
functions must be accompanied by corresponding corrections to the neu
trino - dressed-particle vertex function. The random-phase approximation 
(RPA) can be thought of as such a vertex correction. Within RPA, the 
polarization tensor7,9 

n R P A = nMF + nRPADuMF, (7) 
where D denotes the interaction matrix and IIMF is the polarization tensor 
in Eq.6 but with the Green's functions computed in the mean-field ap
proximation. Model calculations indicate that neutrino mean free paths 
computed in RPA tend to roughly a factor 2-3 times larger than in the 
uncorrelated system9. This is primarily because of repulsive forces in the 
spin-isospin channel, that suppress the axial response at low energies. 

4. Neutrino Interactions in Novel Phases at High Density 

In this section we explore how phase transitions impact the weak interaction 
rates. Novel phases of baryonic matter are expected to occur at densities 
accessible in neutron stars. These new phases include pion condensates, 
kaon condensates, hyperons and quark matter. An understanding of how 
these phases might influence neutrino propagation and emission is neces
sary to enquire if these phase transitions occur inside neutron stars. We 
consider three specific examples of phase transitions: (i) generic first order 
transitions; (2) superconducting quark matter and (3) color-flavor locked 
superconducting quark matter to explore and illustrate the modification of 
neutrino rates in the novel high density phases of matter. 
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4.1. Heterogeneous Phases: Effects of First Order 
Transitions 

First order phase transitions in neutron stars can result in the formation of 
heterogeneous phases in which a positively charged nuclear phase coexists 
with a negatively charged new phase which is favored at higher densities 
17. This is a generic possibility for first order transitions in matter with 
two conserved charges. In the neutron star context, these correspond to 
baryon number and electric charge. The pasta phase at sub-nuclear density, 
which was discussed earlier, where positively charged nuclei coexist with 
negatively charged neutron rich matter containing electrons is a familiar 
example of such a transition region. This mixed, heterogeneous, phase 
exists over a finite interval of pressure, unlike a mixed phase for a system 
with one conserved charge. Consequently, mixed phases in neutron stars 
occupy a finite spatial extent and understanding how neutrinos propagate 
through them becomes a relevant and interesting question. 

Reddy, Bertsch and Prakash 18 have studied the effects of heterogeneous 
phases on ^-matter interactions. Based on simple estimates of the surface 
tension between nuclear matter and the exotic phase, typical droplet sizes 
range from 5 — 15 fm, and inter-droplet spacings range up to several times 
larger. The propagation of neutrinos whose wavelength is greater than the 
typical droplet size and less than the inter-droplet spacing, i.e., 2 MeV < 
Eu < 40 MeV, will be greatly affected by the heterogeneity of the mixed 
phase, as a consequence of the coherent scattering of neutrinos from the 
matter in the droplet. 

The Lagrangian that describes the neutral current coupling of neutrinos 
to the droplet is 

GF 

Cw = -j= Qw ^7/x(l - 75 V JD , (8) 

where J^ is the neutral current carried by the droplet and the total weak 
charge enclosed in a droplet of radius rj is Qw For non-relativistic 
droplets, J ^ = p{x) 5^° has only a time like component. Here, p 
is the density operator for the droplet and the form factor is F(q) = 
(l/Qw) Jo" d3x p(x) sinqx/qx. 

The differential cross section for neutrinos scattering from an isolated 
droplet is then 

rln F1^ 
^ ^ ^ ( 1 + c o s * ) ^ ) . (9) 
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In the above equation, Ev is the neutrino energy and 9 is the scatter
ing angle. To properly account for the presence of the other droplets in 
the medium we must calculate the droplet-droplet correlation function or 
S(q,ui) as was described in §3.1. However, such a calculation is yet to be 
done for this complex system. In what follows, we adopt a simple mean-field 
prescription to account for screening due to multiple droplet scattering18. 
This amounts to replacing the form factor as follows 

sin qRw — (qRw) c o s qRw 
F{q) - F(q) = F(q) - 3 (10) 

(qRw)3 

The neutrino-droplet differential cross section per unit volume then follows: 

1 da „ El 

V dcosO 
ND -^G2

FQiv(l+cos0)F2(q). 
J.D7T 

(11) 

Note that even for small droplet density ND , the factor Q"^ acts to enhance 
the droplet scattering. Models of first order phase transitions in dense mat-
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Figure 3. Neutrino mean free path as a function of neutrino energy in a quark - hadron 
mixed phase. For comparison, the mean free path in uniform neutron matter at the same 
temperature and density are shown by dashed curve. 

ter provide the weak charge and form factors of the droplets and permit the 
evaluation of //-droplet scattering contributions to the opacity of the mixed 
phase. For the results shown in Fig.3, the quark droplets are characterized 
by rd ~ 5 fm and inter-droplet spacing 2Rw ~ 22 fm, and an enclosed weak 
charge Qw ~ 850. For comparison, the neutrino mean free path in uniform 
neutron matter at the same n^ and T are also shown. It is apparent that 
there is a large coherent scattering-induced reduction in the mean free path 
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for the typical energy Ev ~ TTT. At much lower energies, the inter-droplet 
correlations tend to screen the weak charge of the droplet, and at higher 
energies the coherence is attenuated by the droplet form factor. 

4.2. Effects of Quark Superconductivity 

Although the idea of quark pairing in dense matter is not new 19, but it is 
only recently that its role in the context of the phase diagram of QCD 20 has 
been appreciated. Model calculations, mostly based on four-quark effective 
interactions, predict the restoration of spontaneously broken chiral symme
try through the onset of color superconductivity at low temperatures. They 
predict an energy gap of A ~ 100 MeV for a typical quark chemical poten
tial of [iq ~ 400 MeV. In this section, we address how neutrinos propagate 
in superconducting and superfluid quark matter. 

As discussed earlier, the main task will be to compute the equivalent of 
the current-current correlation function defined in Eq.6 for the supercon
ducting quark phase. This was addressed by Carter and Reddy 21. The free 
quark propagators are naturally modified in a superconducting medium. As 
first pointed out by Bardeen, Cooper, and Schrieffer several decades ago, the 
quasi-particle dispersion relation is modified due to the presence of a gap 
in the excitation spectrum. In calculating these effects, we will consider 
the simplified case of QCD with two quark flavors which obey SU(2)/,x 
S U ( 2 ) A flavor symmetry, given that the light u and d quarks dominate 
low-energy phenomena. Furthermore we will assume that, through some 
unspecified effective interaction which is attractive in the color antisymmet
ric channel, quarks pair in a manner analogous to the BCS mechanism. In 
this two flavor, spin zero superconductor (2SC) the anomalous (or Gorkov) 
propagator20 

F(p)abfg = -ieab3efgA ( £ & + £ & ) 7 5 C. (12) 
yro Sp Po SpJ 

Here, a, b are color indices, / , g are flavor indices, eabc is the usual anti
symmetric tensor and we have conventionally chosen 3 to be the condensate 
color. This propagator is also antisymmetric in flavor and spin, with C = 
—*7o72 being the charge conjugation operator. The normal quasi-particle 
propagators are given as 

5 <P)» = ^ / (^T2 + £ Q ) (PM7" " M7o) • (13) 
y-Fo Sp Po Sp J 
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This is written in terms of the particle and anti-particle projection oper
ators A+(p) and A~(p) respectively, where A±(p) — (1 ± 707 • p)/2. The 
quasi-particle energy is £p V (|p| — //)2 + A2, and for the anti-particle 

A2. The appearance of an anomalous propagator in the 

1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 
M.=400 MeV , T=30 MeV 

0 1 2 3 4 5 

A 
T 

7 8 9 10 

Figure 4. Ratio of the neutrino mean-free path in the superconducting phase to that 
in the normal phase as function of A / T . 

superconducting phase indicates that the polarization tensor gets contribu
tions from both normal quasi-particle propagators Eq. 13 and anomalous 
propagator Eq.12 and is given by 

d4p 
n«/?(g) 

" * / (M 
rTr [S(p)TaS(p + q)Vp + F(p)TaF(p + q)Tp]. (14) 

Fig.4 shows the results for neutrino mean free paths in the 2 flavor supercon
ducting quark phase. The ratio of mean free path in the superconducting 
phase to that in the normal phase is shown in the right panel. With in
creasing A, the gap in the quasi-particle excitation spectrum results in an 
exponential attenuation of the scattering response, resulting in the observed 
exponential enhancement in the mean free paths. 

4.3. Neutrino Interactions with Goldstone bosons 

The discussion in the preceeding section assumed that there were no low en
ergy collective excitations to which the neutrinos could couple. This is true 
in the 2 flavor superconducting phase of quark matter. For three flavors 
and when the strange quark mass is negligible compared to the chemical 
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potential the ground state is characterized by pairing that involves all nine 
quarks in a pattern that locks flavor and color 22. Diquark condensation 
in the CFL phase breaks both baryon number and chiral symmetries. The 
Goldstone bosons that arise as consequence introduce a low lying collective 
excitations to the otherwise rigid state. Thus, unlike in the normal phase 
where quark excitations near the Fermi surfac'e provide the dominant con
tribution to the weak interaction rates, in the CFL phase, it is the dynamics 
of the low energy collective states— the Goldstone bosons that are relevant 
23,24,25 

The massless Goldstone boson associated with spontaneous breaking of 
U(1)B couples to the weak neutral current. This is because the weak isospin 
current contains a flavor singlet component. We should expect this mode to 
dominate the response because the psuedo-Goldstone modes arising from 
chiral symmetry breaking have non-zero masses. The amplitude for pro
cesses involving the U{\)B Goldstone boson H and the neutrino neutral 
current is given by 

4 
AHvu = -y=GFfH Pp, Jz , (15) 

where p^ = (E, v2p) is the modified four momentum of the Goldstone 
boson. The decay constant for the U{\)B Goldstone boson has also been 
computed in earlier work and is given by fjj = 3^2/(87r2). Neutrinos of 

0 I 0 5 10 15 20 25 30 

T (MeV) 

Figure 5. Neutrino mean free path in a CFL meson plasma as a function of temperature. 
The neutrino energy Ev = %T and is characteristic of a thermal neutrino. 

all energies can absorb a thermal meson and scatter into either a final 
state neutrino by neutral current processes like v + H —> v and v + n° —> 
v or via the charged current reaction into a final state electron by the 
process ve + TT~ —• e~. They can also emit mesons through processes 
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like v —> H + v and v —> n° + u, since the Goldstone modes have space
like dispersion relations. Mean free path due to these processes, which 
we collectively refer to as Cherenkov processes can be computed23 and are 
shown in Fig.5. In contrast to processes involving the emission or absorption 
of mesons by neutrinos, the usual scattering process involves the coupling of 
the neutrino current to two mesons is suppressed by the factor p/fv where p 
is the meson momentum. The neutrino mean free paths in the CFL phase 
are very similar to those in the normal quark phase - both numerically 
and parametrically 23. It is interesting to note that the existence of one 
massless mode compensates for the large gap in the particle-hole excitations 
spectrum. The contrast between the findings of the previous section, where 
we found a large enhancement in the mean free paths, is striking. 

5. Discussion 

In the simplest scenario, where rotation, magnetic fields and convection are 
ignored, the temporal structure of the neutrino emission is directly related 
to the neutrino mean free path in the inner core of the newly born neutron 
star. The detection of neutrinos from a galactic supernova in terrestrial 
detectors such as Super Kamiokande will provide detailed information re
garding the temporal structure and motivates theory to address neutrino 
propagation in hot and dense matter. While there has been some progress 
in understanding the qualitative aspects of the response of dense matter to 
neutrinos, reliable quantitative calculations of neutrino mean free paths in 
dense nuclear and other novel phases of matter are yet to be performed. 
First principles calculations of the linear response of strongly correlated 
systems is a difficult problem, with limited success, and a long history in 
condensed matter, nuclear and particle physics. However, the prospect of 
probing the phase structure of matter at the most extreme densities through 
neutrinos from the next galactic supernova is compelling motivation to pur
sue these efforts. I hope this article has provided a glimpse of the promise 
and difficulties associated with this enterprise. 
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Supernovae are the most luminous souce of neutrinos in the universe. It was shown 
that neutrinos have finite masses and convert each other from the solar and atmo
spheric neutrino observations. The time profile and energy spectrum of neutrino 
burst from supernovae should be greatly modified by this effect. We review how 
this conversion happens in a supernova mantle and how the burst will be detected 
by SK (Super-Kamiokande) and SNO (Sudbury Neutrino Observatory). We show 
that implications for neutrino parameters (mass hierarchy and the mixing angle 
between mass eigenstate v\,v$), are obtained if a supernova appears at Galac
tic Center. We also discuss effects of neutrino oscillation on the supernova relic 
neutrino observations. In the end, we discuss the anisotropic neutrino radiation 
from the rotating stellar cores, which will be important to clarify the explosion 
mechanism of core collapse supernovae. 

1. Introduction 

Neutrino mixing and mass spectrum are the keys to probe new physics 
beyond the standard model of particle physics. Some of the neutrino os
cillation parameters have been revealed dramatically by the observation of 
the atmospheric neutrino 1 and the solar neutrino 2 '3. Recently the first 
results of the KamLAND experiment have confirmed the Large Mixing An
gle (LMA) solution of the solar neutrino problem 4. An upper bound on 
013 has also been obtained from CHOOZ experiment 5 and a lower bound 
is expected to obtained from single and double beta decay experiments 6. 
But there still remain some ambiguities in the properties of neutrinos: the 
mass hierarchy, i.e., normal or inverted and the magnitude of $13. Current 
status is reviewed by many authors r '8 . 

In such present situation, much attention have been paid to another 

http://ac.jp
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neutrino source, supernova. This is a completely different system from sun, 
atmosphere, accelerator, and reactor in regard to neutrino energy, flavor 
of produced neutrinos, propagation length and so forth. Then neutrino 
emission from a supernova is expected to give valuable information that 
can not be obtained from neutrinos from other sources. In fact, pioneering 
observations of neutrinos from SN1987A 9 '10 contributed significantly to 
our knowledge of the fundamental properties of neutrinos 11>12. Especially 
there have been many studies about the implication for the mass hierarchy 
from the observed neutrino events and the inverted hierarchy is disfavored 
if sin2 #13 is rather large (> 10~4) 13>14'15. Here, normal and inverted mass 
hierarchies are the mass pattern 7713 3> m-i > mi and m-i > mi > 771,3, 
respectively. In our notation Am2- = m2 — ra?, Am2

2 and Am2
3 ~ Am| 3 

are the mass squared differences which are related with the solutions of 
the solar and atmospheric neutrino problems, respectively. There have also 
been studies to try to extract the unknown neutrino properties from future 
supernova 16>17. 

In this contribution, we review the neutrino oscillation of supernova neu
trino and its implication for neutrino parameters 18>19>20>21 and supernova 
relic neutrino 22>23. 

2. Supernova Neutrino 

Here we summarize the properties of supernova neutrino. Almost all of the 

binding energy of the neutron star, 

is radiated away as neutrinos. Here G, MNS and i?Ns are the gravitational 
constant, the mass and radius of the neutron star, respectively. Due to the 
difference of interaction strength, average energies are different between 
flavors. Although quantitative estimate of the difference is difficult, it is 
qualitatively true that (EUe) < (EVe) < {EVx). Here vx means vil,vr and 
their antineutrinos. These differences are essential in this paper. 

We use a realistic model of a collapse-driven supernova by the Lawrence 
Livermore group24 to calculate the neutrino luminosities and energy spec
tra. The average energy of each flavor is: 

( ^ e ) ~ 1 3 M e V , (SP ( !)~16MeV, (EVx) ~ 23MeV. (2) 

Details of this original neutrino spectra are discussed by Totani et al. 25 

These neutrinos, which are produced in the high dense region of the iron 
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core, interact with matter before emerging from the supernova. Due to the 
nonzero masses and the mixing in vacuum among various neutrino flavors, 
flavor conversions can occur in supernova. When the mixing angle is small, 
these conversions occur mainly in the resonance layer, where the density is 

, 6 „ ^ A m 2 \ flOMeV\ (0.5 
pres ~ 1.4 x 10bg/cc -—a —= h H cos 20, (3) 

where Am2 is the mass squared difference, 0 is the mixing angle, Ev is the 
neutrino energy, and Ye is the mean number of electrons per baryon. Since 
the supernova core is dense enough, there are two resonance points in su
pernova envelope. One that occurs at higher density is called H-resonance 
and another is called L-resonance. If the mass hierarchy is normal, both 
resonances occur in neutrino sector. On the other hand, if the mass hierar
chy is inverted, H-resonance occurs in antineutrino sector and L-resonance 
occurs in neutrino sector. 

The dynamics of conversions including large mixing case is determined 
by the adiabaticity parameter 7, which depend on the mixing angle and 
the mass-squared difference between involved flavors: #13 and Am2

3 at H-
resonance, 6*12 and Am2

2 at L-resonance. When ) > 1 , the resonance is 
called 'adiabatic resonance' and the fluxes of the two involved mass eigen-
state are completely exchanged. On the contrary, when 7 < 1, the reso
nance is called 'nonadiabatic resonance' and the conversion does not occur. 
The dynamics of the resonance in supernova is studied in detail by Dighe 
and Smirnov 26. 

3. Implication for neutrino parameters from supernova 
neutrino 

3.1. Neutrino oscillation in supernova 

In the framework of three-flavor neutrino oscillation, the time evolution 
equation of the neutrino wave functions can be written as follows: 

H(t) U M , (4) 

'0 0 0 \ (A{t) 00' 
H{t) = U ( 0 Am2

12/2E„ 0 [ T 1 + 0 0 0 ) , (5) 
,0 0 Am2

13/2E„J V 0 00, 
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where A(t) = v/2C?Fi-e(t), GF is Fermi constant, ne(t) is the electron num
ber density, and Am2,- is the mass squared differences. In case of antineu-
trino, the sign of A(t) changes. Here U is the Cabibbo-Kobayashi-Maskawa 
(CKM) matrix: 

( C12C13 S12C13 S13 \ 

- S 1 2 C 2 3 - C12S23S13 C12C23 - S12S23S13 S23C13 , ( 6 ) 

S12S23 - C i 2 C 2 3 S i 3 - C 1 2 S 2 3 - S12C23S13 C23C13 / 

where Sij = sin 6 ij,Cij = cos8ij for i,j = l ,2,3(i < j ) . We have here put 
the CP phase equal to zero in the CKM matrix. 

By solving numerically these equations along the density profile of pro
genitor, which is calculated by Woosley and Weaver27, we obtain conversion 
probabilities P(a —> /?), i.e., probability that va at the center of the super
nova becomes vp at the surface of the progenitor star. 

Here we take the following values: 

sin2 26»i2 = 0.84, Am2
2 = 7 x 10_5eV2, 

sin2 26*23 = 1.0, Arriba = 3.2 x 10~3eV2. (7) 
Values of 6*12 and Am2

2 are taken from the global analysis of the solar 
neutrino observations and the KamLAND experiment28 and correspond 
to the LMA solution of the solar neutrino problem while those of #23 and 
Am| 3 are taken from the analysis of the atmospheric neutrino observation1. 
As to #13, we take two fiducial values sin 26»i3 = 0.043, 1CT6. Later we 
will discuss the case of the other values. Furthermore, we consider both 
normal and inverted hierarchy. Consequently, there are four models and we 
call them normal-LMA-L, normal-LMA-S, inverted-LMA-L and inverted-
LMA-S. The last character (L or S) represents the magnitude of 6*13 (large 
or small). 

After obtaining the conversion probabilities, the neutrino fluxes at the 
Earth are calculated by multiplying the conversion probabilities by the orig
inal spectra and the distance factor l/47r<i2. Here we take 10 kpc for the 
distance d between the Earth and the supernova. Further, by multiplying 
these fluxes by the cross sections of the detection interactions, the detector 
volume and the detector efficiency, we obtain the event rates at the detec
tors. Here we consider two detectors: SuperKamiokande (SK) and SNO. 
Properties of these detectors and cross sections used to calculate event rates 
are described in Ref. 18. Unfortunate accident at SK lessened the detection 
efficiency at low energy (< 8 MeV) but this cause negligible effect in the 
subsequent analysis. 
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Fig. 1 - 3 show the time-integrated energy spectra (left) and the time 
evolution of the number of neutrino events (right) at SK and SNO (ye 

charged current (CC) events and ve CC events), respectively. In Fig. 1, 
only uep CC interaction is taken into account. 
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Figure 1. The time-integrated energy spectra (left) and the time evolution of the num
ber of neutrino events (right) at SK. In these figures, only uep CC interaction is taken 
into account. 
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Figure 2. The time-integrated energy spectra (left) and the time evolution of the num
ber of neutrino events (right) at SNO. In these figures, only i/ed CC interaction is taken 
into account. 

3.2. Distinction between models 

In general neutrino oscillation makes the ve and Pe spectra harder, since the 
original average energies of ve and ve are smaller than that of vx. In other 
words neutrino oscillation produces high energy ve and ve from vx. As a 
result, the high-energy events increase and the low-energy events decrease. 
The boundary between high energy and low energy is around 20 MeV. Note 
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Figure 3. The time-integrated energy spectra (left) and the time evolution of the num
ber of neutrino events (right) at SNO. In these figures, only ved CC interaction is taken 
into account. 

that how much these increase and decrease are depends on the adiabaticity 
parameters, and then the neutrino oscillation parameters, as can be seen in 
Fig. 1, 2 and 3. This feature can be used as a criterion of the magnitude of 
the neutrino oscillation effects. We define the following ratios of high-energy 
to low-energy events at both detectors: 

number of events at 20 < E < 70MeV 
RSK 

number of events at 5 < E < 20MeV 
(8) 

-RSNO 
number of events at 20 < E < 70MeV 

(9) 
number of events at 5 < E < 20MeV 

The plots of RSK vs -RSNO are shown in Fig. 4. In the left figure, we 
consider only ved CC events at SNO for .RSNO assuming ved CC event 
and ved CC event can be distinguished completely. On the other hand, in 
the right figure we assume that ved CC event and ved CC event can not 
be distinguished at all and we sum ved CC events and ved CC events for 
-RSNO- The error bars represent the statistical errors. 

Note that ve flux and ve flux have essentially different information about 
the neutrino oscillation parameters. For example, inverted-LMA-L and 
inverted-LMA-S are distinguishable from ve events but are not from ve 

events. So it is more effective to distinguish between models if ved CC 
events and ved CC events at SNO can be distinguished perfectly. This can 
be clearly seen in Fig. 4. In the left figure it is easier to distinguish be
tween normal-LMA-L and (normal-LMA-S and inverted-LMA-S) than in 
the right figure. But even in the left figure, it may be difficult to distin
guish between normal-LMA-L and (normal-LMA-S and inverted-LMA-S) 
considering some ambiguities discussed in the following sections. 
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3.3. Uncertainty of the progenitor star 

It affects the mass of the iron core, which affects the neutrino spectra 
30,3i,32_ study including the mass uncertainty is now in progress but the 
preliminary result is that the mass uncertainty is not important in our 
analysis 33. Fig. 5 shows the progenitor mass dependence of the event 
ratio at SNO and SK. Here events only 0.2 sec after bounce are considered. 
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Figure 5. Progenitor mass dependence of the event ratio at SNO and SK. Events only 
0.2 sec after bounce are considered. 
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4. S u p e r n o v a R e l i c N e u t r i n o s and N e u t r i n o Osc i l la t ion 

4 . 1 . The detectability 

It is generally believed tha t the core-collapse supernova explosions have 

traced the star formation history in the universe and have emitted a great 

number of neutrinos, which should make a diffuse background. This super

nova relic neutrino (SRN) background is one of the targets of the currently 

working large neutrino detectors, SK and SNO. Comparing the predicted 

SRN spectrum with the observations by these detectors provides us poten

tially valuable information on the nature of neutrinos as well as the star 

formation history in the universe. This SRN background has been discussed 

in a number of previous papers.34 '35>36-37 '38 '39>40 '41 '42>43.22>23 

Ando et al.2 2 calculated SRN flux and the event ra te at SK, and dis

cussed the detectability of SRN, with the following new aspects compared 

with previous studies: (1) Realistic neutrino oscillation parameters are in

corporated based on the recent solar and atmospheric neutrino experiments, 

(2) a realistic neutrino spectrum from one supernova explosion is used, 

which is obtained from a numerical simulation by the Lawrence Livermore 

group, 2 5 and (3) we have examined other contaminating background events 

against the detection of SRN, in more detail than previous studies. 

The SRN flux can be calculated by the formula 

dF ^„ax dNJE'„),_, N d i , 

where E'v = (1 + z)El/, RSTSI(Z) is supernova rate per comoving volume 

at redshift z, dNv/dEv energy spectrum of emitted neutrinos, zmax the 

redshift when the gravitational collapses began, which we assumed to be 

5. As supernova rate, we use the most reasonable model to date, which 

is based on the rest-frame UV observation of star formation history in the 

universe by Hubble Space Telescope (model "SF1" in Ref. 4 4 ) . 

In Fig. 6, we show the calculated SRN flux for no oscillation model, and 

in Fig. 7 the expected event ra te at SK detector for both no oscillation and 

LMA model. Above ~ 10 MeV, we expect more event rate for the LMA 

model, because ^ , T ' S which have higher average energy a t production have 

more changed into ve's. We show in Table 1, the integrated flux over the 

entire neutrino energy range and event rate at SK integrated for detection 

energy range 17 < (T e /MeV) < 25 (the reason why this range is selected 

for detection is given below). 

There are several background events which hinder the detection of SRN. 

These includes atmospheric and solar neutrinos, anti-neutrinos from nuclear 
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Model Flux Event rate for 17 < (Te/MeV) < 25 

No oscillation 
LMA 

11.9 cm 2 s 1 

11.2 c m ' 2 s"1 
0.44 yr"1 

0.73 yr"1 

reactors, spallation products, and decay electrons from invisible muons. We 
should find the energy region which is not contaminated by these back
ground events and then calculate the detectable event rate of SRN. By 
careful examination of these events, we found that there is a narrow energy 
window from 19 MeV to 27 MeV, which is free from solar, atmospheric, 
and reactor neutrinos (see Fig. 6). (Although the solar neutrino events 
can be avoided owing to the directional analysis are,there are also another 
serious background due to spallation products below 16 MeV. See Ref. 22 

for details.) 
However, it is known that, for water Cherenkov detector, electrons or 

positrons from invisible muons are the largest background in the energy 
window. This invisible muon event is illustrated as follows. The atmo
spheric neutrinos produce muons by interaction with the nucleons (both 
free and bound) in the fiducial volume. If these muons are produced with 
energies below Cherenkov radiation threshold (kinetic energy less than 53 
MeV), then they will not be detected ("invisible muons"), but their decay-
produced electrons and positrons will be. Since the muon decay signal will 
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mimic the vep —> ne+ process in SK, it is difficult to distinguish SRN from 
these events. In Fig. 7, SRN event rate is compared with the invisible 
muon events. 

Thus, it appears there is no energy window of SRN, but still we can 
detect the SRN events by statistical analysis with the other background 
events. Consider the energy range 17 < (Te/MeV) < 25. This range 
corresponds to 19 < (-Epe/MeV) < 27 by a simple relation, E^ = Te + 
1.8MeV. There are two advantages in using this energy region. First, SRN 
event rate is rather large, and second, the background (invisible muon) 
event rate is fairly well known by SK observation. The SRN event rate at 
SK in this energy range is 0.4 — 0.7 yr _ 1 (Table 1), in contrast, the event 
rate of the invisible muon over the same energy range is 3.4 yr_ 1 . When 
SRN event rate is larger than the statistical error of background event rate, 
we can conclude that the SRN is detectable as a distortion of the expected 
invisible muon background event. Unfortunately, only one year observation 
does not provide any useful information about SRN, however, we can expect 
that ten-year observation provides several statistically meaningful results. 
The statistical error of invisible muon events in ten years is V34 = 5.8, 
which is smaller than the event rate of the LMA model. In consequence, 
although there is no energy window, in which the SRN signal is the largest, 
the statistically meaningful SRN signals might be detected using the data 
for ten years or so. 

4.2. Implications of recent observational results 

Recently (September 2002), SK collaboration set very severe constraint on 
the SRN flux,45 which is only factor three larger than typical theoretical 
predictions. For example, while Ando et al.22 predicted that the total SRN 
flux integrated over entire energy was 11 cm - 2 s_ 1 , the corresponding SK 
limit is 31 cm~2 s"1. Since the theoretical calculations contain many am
biguities such as the supernova rate in the universe and neutrino spectrum 
from each supernova, this severe observational SRN limit can provide a 
number of valuable information on the various fields in astrophysics and 
cosmology. Further, in the near future, it is expected that the upper limit 
will be much lower (about factor 3) when the current SK data of 1496 days 
are reanalyzed using some technique to reduce invisible muon background. 
46 

Thus, it is obviously important and very urgent to give a prediction 
for the SRN flux with the oscillation parameters, which has not been 
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considered; while in the previous subsection we gave the prediction with 
LMA parameters in the case of normal mass hierarchy, here we also include 
the case of inverted mass hierarchy, which is not ruled out at all. Note that 
in that case, the resonance also occurs in antineutrino sector, and it is ex
pected that the SRN spectrum would be quite different from that in the case 
of normal mass hierarchy. From this point on, we use four parameter sets, 
named as NOR-S, NOR-L, INV-S, and INV-L, where NOR and INV repre
sent the normal and inverted mass hierarchy respectively, and the suffixes 
-L and -S attached to NOR and INV stand for large (0.04) and small (10~6) 
values for sin 2#i3, respectively. Further, when we calculate the neutrino 
conversion probability in supernova, we adopt the realistic time-dependent 
density and Ye profiles, which are calculated by the Lawrence Livermore 
group. 47 This is because during the neutrino burst (~ 10 sec), the shock 
wave propagating the supernova matter changes density profile dramati
cally, and it is expected to affect the adiabaticity of resonance points. In 
addition, we also include the Earth matter effect, which was neglected in 
almost all the past publications including Ref. 22. 

Figure 8 shows SRN flux for the various oscillation models; the case of no 
oscillation is also shown for comparison. We also repeated discussions given 
in the SK paper45 and obtained the 90% C.L. upper limit for the various 
SRN fluxes; the results of the calculation is summarized in Table 2. The 
upper limit is more severe for the INV-L model. However, since theoretical 
predictions contain many uncertainties, we cannot trust the values given in 
Table 2 without any doubt. More detailed discussions are given in Ref. 23. 

Model 
NOR-S 
NOR-L 
INV-S 
INV-L 

No oscillation 

Predicted flux 
12 cm~2 s _ 1 

11 c m - 2 s _ 1 

11 c m _ i s"1 

9.0 c m - 2 s"1 

12 cm~2 s _ 1 

SK limit (90% C.L.) 
< 35 c m - 2 s _ 1 

< 34 c m - 2 s _ 1 

< 34 c m - 2 s _ 1 

< 12 cm - 2 s _ 1 

< 73 cm"2 s _ 1 

Prediction/Limit 
0.34 
0.33 
0.33 
0.74 
0.17 

5. Anisotropic neutrino radiation in rotational core collapse 

The study of core collapse supernovae is important not only for itself but 
also for the understanding of astrophysical relevance, such as radiations of 
neutrinos, as we have stated in the preceding sections, and gravitational 
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Figure 8. Number flux of SRN for various neutrino oscillation models. The spectra for 
NOR-S, NOR-L, and INV-S are degenerated, while that for INV-L is the hardest one. 
The flux of atmospheric Ve is also shown. 

waves 4 8 ' 4 9
) nucleosynthesis of heavy elements and chemical evolutions in 

the universe, and possibly gamma-ray bursts as well as hypernovae 5 0 . In 

spite of its importance and extensive investigations done so far, the explo

sion mechanism has not been clarified yet. 

Except for special cases, the shock wave generated by core bounce stalls 

and becomes an accreting shock in the core. Although neutrino heatings 

are expected to revive the shock wave and lead to successful explosions, 

recent theoretical studies with elaborate neutrino t ransport methods and 

detailed microphysics and /o r general relativity failed to produce explosions 

51,52,53,54_ j j o w e v e r ) it should be noted tha t most of them assume spherical 

symmetry (see, however, 5 4 ) . 

On the other hand, there are convincing observations, which require 

the revision of the spherically symmetric stellar collapse. Rather common 

correlation between the asymmetry and the collapse-driven supernovae has 

been reported by the observation of polarization 5 5 . It is also well known 

tha t SN 1987A is globally asymmetric 5 6 , 5 7 , which is directly confirmed by 

images of Hubble Space Telescope (HST) 5 8 . Provided the facts tha t the 

progenitors of collapse-driven supernovae are a rapid rotator on the main 

sequence 59 and tha t the recent theoretical studies suggest a fast rotating 

core prior to the collapse 6 0 , it is important to incorporate rotations in 

simulations of core collapse. So far there have been some works devoted to 
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the understanding of the effect of rotation upon the supernova explosion 

mechanism 6 3 . It seems clear tha t the rotation does not good to the prompt 

shock propagation. This is simply because the centrifugal force tends to 

halt the core collapse, which then reduces the conversion of the gravitational 

energy to the kinetic energy. Here we pay at tention to the effect of rotation 

on the neutrino heating mechanism. Shimizu et al. 6 2 demonstrated tha t 

anisotropic neutrino radiations induced by rotation may be able to enhance 

local heating rates near the rotational axis and trigger globally asymmetric 

explosions. The required anisotropy of neutrino luminosity appears to be 

not very large (~ 3%). It is important to note tha t this mechanism is 

effective only when the explosion does not occur in spherical symmetry. 

Fryer & Heger 6 1 found in their two-dimensional SPH simulations little 

effect of neutrino anisotropy on the explosions. This is probably because 

their models explode even without rotation. 

In the work of Shimizu et al. 6 2 , the anisotropy of neutrino heatings 

was given just by hand and the rotation was not taken into account either. 

Recently Kotake et al 6 6 investigated how large the anisotropy of neutrino 

radiation could be, based on the rotational core collapse simulations from 

the onset of gravitational collapse of the core through the core bounce to 

the shock-stall. 

In the left panel of Figure 9, the neutrino spheres for the spherical and 

rotating model are shown. It is clearly seen from the comparison with the 

spherical model tha t the the neutrino spheres are indeed deformed. For the 

rotat ing model, it is found tha t the neutrino sphere forms deeper inside at 

the pole than in the spherical model. This is a result of the fact tha t the 

density is lower on the rotational axis in the rotation models than in the 

spherical model because the mat ter tends to move away from the axis due 

to the centrifugal force. The above features are also t rue for the slow and 

rapid rotat ion models. Furthermore, the configurations are more deformed 

from slow to rapid rotation models due to stronger centrifugal forces. 

The neutrino temperature profile on the neutrino sphere for the mod

erate rotation models are presented in the right panel Figure 9. Here it is 

assumed tha t the neutrino tempera ture is identical to tha t of the matter . 

It is seen from the figure tha t the temperature varies with the polar angle. 

The neutrino temperature is higher at the pole for the rotat ing model than 

for the spherical model. This can be understood from the fact tha t the 

neutrino sphere is formed deeper inside for rotational models than for the 

spherical case, as already mentioned. 

From the above facts, it is a natural consequence tha t the neutrino 

radiation becomes anisotropic. 
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Figure 9. Shapes of neutrino sphere (left panel), neutrino temperature vs. polar angle 
on the neutrino sphere (right panel) in the rotating model and the spherical model. 

In Figure 10, we show the contour plots of the heating rate for the 

spherical (left panel) and the rotat ing model (right panel). It is clearly 

seen from the right panel of the figure (the rotat ing model) tha t the neu

trino heating occurs anisotropically and is strong along the rotational axis. 

This is mainly because the neutrino temperatures at the rotational axis are 

higher than on the equatorial plane. It should be mentioned tha t in the 

vicinity of the neutrino sphere, the heating rate around the rotational axis 

are enhanced up to about one order of magnitude in the rotat ing model 

from tha t in the spherical model (see Figure 10), which will help launch 

the jet in tha t direction further. The outcome will be a jet-like explosion 

considered in 6 2 . It should be mentioned tha t the jet like explosion plays 

important roles in the nucleosynthesis of heavy elements 64>65. Note, how

ever, too fast a rotation might lead to a very quick stagnation of the shock 

wave near the rotational axis and the net heating region may not emerge 

in the first place. Then the outcome will be a rotat ing black hole and yield 

gamma-ray bursts later. In order to confirm the above scenarios, it is nec

essary to include more elaborate t ransport for all neutrino species in our 

calculations, which is currently undertaken 6 7 . 
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