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Binary systems of stars are as common as single stars. Stars evolve primarily by nuclear
reactions in their interiors, but a star with a binary companion can also have its evolution
influenced by the companion. Multiple star systems can exist stably for millions of years,
but can ultimately become unstable as one star grows in radius until it engulfs another.

This volume discusses the statistics of binary stars; the evolution of single stars;
and several of the most important kinds of interaction between two (and even three or
more) stars. Some of the interactions discussed are Roche-lobe overflow, tidal friction,
gravitational radiation, magnetic activity driven by rapid rotation, stellar winds, magnetic
braking and the influence of a distant third body on a close binary orbit. A series of
mathematical appendices gives a concise but full account of the mathematics of these
processes.

Peter Eggleton is a physicist at the Lawrence Livermore National Laboratory in
California. Following his education in Edinburgh, he obtained his Ph.D. in Astrophysics
from the University of Cambridge in 1965. He lectured for a short period at York Uni-
versity before returning to the University of Cambridge to conduct research from 1967
to 2000 as a Fellow of Corpus Christi College. In 2000, he took up his current position at
LLNL. He is well known throughout the community as one of the most knowledgeable
experts in binary star evolution.
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Preface

This book is intended for those people, perhaps final-year undergraduates and research stu-
dents, who are already familiar with the terminology of stellar astrophysics (spectral types,
magnitudes, etc.) and would like to explore the fascinating world of binary stars. I hope it
will also be useful to those whose main astrophysical interests are in planets, galaxies or
cosmology, but who wish to inform themselves about some of the basic blocks on which
much astronomical knowledge is built. I have endeavoured to put into one book a number of
concepts and derivations that are to be found scattered widely in the literature; I have also
included a chapter on the internal evolution of single stars.

In the interest of keeping this volume short, I have been brief, some might say cursory,
in surveying the enormous literature on observed binary stars. It is almost a truism that
theoretical ideas stand or fall by comparison with observation. My intention is to produce a
second volume, with my colleagues Dr Ludmila Kiseleva-Eggleton and Dr Zhanwen Han,
in which individual binary and triple stars that rate less than a line in this volume will be
discussed in the paragraph or two each, at least, which they deserve. In addition, the synthesis
of large theoretical populations of binary stars will be discussed. Some individual binaries
can be seen as flying entirely in the face of the theoretical ideas outlined here – see OW Gem,
Section 2.3.5. If I took at face value the notion that one well-measured counter-example is
all that is needed to demolish a theory, then I would have given up long ago. Rather, I think,
it is necessary to persevere: not be paralysed by disagreement with observation, but also not
to sweep disagreement under the carpet.

A number of problems that have to be considered may well be capable of being answered
only by detailed numerical modelling, constructing three-dimensional models of a whole
star, or of a pair of stars in a binary. Massive computer resources will be needed for such
investigations; for that reason I moved from Cambridge University to the Lawrence Livermore
National Laboratory, California, where such resources are being developed. This Laboratory
has started the ‘Djehuty Project’ – named after the Egyptian god of astronomy – to pursue this
long-term goal. We hope that this project will supplement, though it cannot entirely replace,
the simple ideas which this book discusses.

I am very grateful to many colleagues who have been generous of their time in discussing
the issues of binary-star evolution. Drs Zhanwen Han, Onno Pols, Klaus-Peter Schröder,
Chris Tout and Ludmila Kiseleva-Eggleton have kindly supplied some figures, as well as
much insight. I particularly wish to thank Prof. Piet Hut for his careful and critical reading
of the manuscript, and suggestions for improvement, and Drs Kem Cook and Dave Dearborn
for their patience in allowing me to pursue this topic.

vii
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This work was performed under the auspices of the US Department of Energy, National
Nuclear Security Administration by the University of California, Lawrence Livermore
National Laboratory under contract No W-7405-Eng-48; and much use was made of the
archive at the Centre de Données astronomiques de Strasbourg.
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Introduction

1.1 Background
Because gravity is a long-range force, it is difficult to define precisely the concept of

an ‘isolated star’ – and consequently also the concept of a binary or triple star. Nevertheless,

many stars are found whose closest neighbouring star is a hundred, a thousand or even a

million times closer than the average separation among stars in the general neighbourhood.

Such pairings of stars are expected to be very long lived. There also exist occasional local

clusterings of perhaps a thousand to a million stars, occupying a volume of space which would

much more typically contain only a handful of stars. These clusters can also be expected to be

long lived – although not as long lived as an ‘isolated’ binary, since the combined motion of

stars in a large cluster causes a slow evaporation of the less massive members of the cluster,

which gain kinetic energy on average from close gravitational encounters with the more

massive members. Intermediate between binaries and clusters are to be found small multiple

systems containing three to six members, and loose associations containing somewhat larger

numbers. Starting from the other end, some clusters may contain sub-clusters, and perhaps

sub-sub-clusters, down to the scale of binaries and triples.

Even with the naked eye, a handful of the 5000 stars visible can be seen to be double;

and in the northern hemisphere two clusters of stars, the Hyades and the Pleiades, are quite

recognisable. But some 2000 naked-eye stars are known to be binary (or triple, quadruple,

etc.) by more detailed measurement – astrometric, spectroscopic or photometric. Observation

in other wavelength ranges, such as radio, infrared, ultraviolet and X-rays, reveal further and

more exotic binary companions, not so many in number, but of unusual interest. The naked-

eye stars are only a tiny fraction of all the stars in our Galaxy (∼1011), but are reasonably

representative as far as the incidence of binarity is concerned.

Sometimes the two components are so close together as to be virtually touching; sometimes

they are so far apart as to be virtually independent. Measured orbital periods range from hours

(or even minutes) up to centuries. Many must have longer periods still, not yet determined

but up to millions of years. The evolution of the two components of such pairs has attracted

increasing interest over the last fifty years. The presence of a binary companion, if the orbital

period is a few years or less, may make the evolution of a star very different from what

it would have been if the star were effectively isolated. A number of these differences are

now fairly well understood, but although some evolutionary problems which used to trouble

astrophysicists, such as the ‘Algol paradox’, have been largely resolved, several still remain.

New observations add new problems considerably faster than they confirm the resolution of

older problems. It should be kept in mind that even single stars present many evolutionary

problems, and so it is not surprising that many binary stars do.
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2 Introduction

Questions about binary stars can be divided very loosely into two categories, ‘structural’

and ‘evolutionary’. For a particular type of binary star one can ask what physical processes

are currently going on, that give this type of star its particular characteristics. In cataclysmic

variables such as novae, for instance, there is little doubt that a fairly normal main sequence

star of rather low mass is being slowly torn apart by the gravitational field of a very close

white dwarf companion. But one can also ask how such binaries started, and subsequently

evolved, so that these processes can currently take place. This evolutionary question can be

harder to answer, because most evolutionary processes are very slow. An obvious further

evolutionary question is: ‘What will the future evolution of such systems be, up to some

long-lived final state?’ This book attempts to summarise progress in understanding the kind

of long-term evolutionary processes involved. In the interest of brevity it will be necessary

to quote, and to take for granted rather than to discuss, most of the much more substantial

literature on structural problems. However, one aspect of binary stars that might be labelled

‘structural’, but which is certainly of vital importance for evolutionary discussions, is the

determination of such fundamental parameters as masses, radii, etc.

1.2 Determination of binary parameters
If we are interested in determining the masses and radii of stars, then we have to

turn almost right away to binary stars, since it is only by measuring orbital motion under

gravity, and by measuring the shape and depth of eclipses, that we are able to determine

these quantities to a good accuracy – one or two per cent in favourable cases; see Hilditch

(2001). Analysis of the spectrum of an isolated star can determine such useful quantities as the

star’s surface temperature, gravity and composition. This is done by comparing the observed

spectrum, preferably not just in the visible region of wavelengths but also in the ultraviolet

(UV) and infrared (IR), with a grid of computed spectra for a range of temperatures, gravities

and compositions. However, we do not get a mass from this process, or a radius, only the

combination that gives the gravity – except in the special case of white dwarfs, where there

is expected to be a tight radius–mass relation (Section 2.3.2) so that both mass and radius are

functions only of gravity.

If we have an accurate parallax, as from the Hipparcos satellite, we can get closer to

determining the mass of an isolated star, because the distance, the temperature (from spectral

analysis), and the apparent brightness give us the radius; and hence the gravity (also from

spectral fitting) gives us the mass. However, even if the parallax is good to ∼1%, the gravity

is much less accurate, because spectra are usually nothing like so sensitive to gravity as they

are to temperature. Perhaps an accuracy of ∼25% is achievable.

The parameters of binary systems are generally obtained from astrometric, or spectro-

scopic, or photometric observations, and in favourable cases by a combination of two, or

even all three, of these methods. Note that terms such as ‘astrometric’ and ‘photometric’,

coined originally to refer to observations in the visible portion of the electromagnetic spec-

trum, are now generally used to cover all parts of the spectrum, for instance radio and X-rays.

If the two components of a binary are so far apart in the sky as to be resolvable from each

other, which means at visual wavelengths more than ∼0.1′′ (0.5 μrad) apart, then the system

is a ‘visual binary’ or ‘VB’, and careful astrometry, sometimes over a century or more, can

reveal the orbit. Visual binaries tend to have long periods because short-period orbits are gen-

erally not resolvable. Only for systems within ∼5 pc of the Sun (about 50 in number) could

a separation of 0.2′′ correspond to a period of <∼1 year. The upper limit of well-determined
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Figure 1.1 (a) The orbit of HR 3579 (F5V+G5V) from visual (dots) and speckle (square)
measurements of relative position. The scatter of speckle points about the best-fit curve
(P = 21.8 yr, e = 0.15, a/D = 0.66′′, i = 130◦) is much less than for the visual points. From
Hartkopf et al. (1989). (b) The UV spectrum of the G8III stars ε Vir (bottom panel) and ξ 1

Cet (top panel, with ε Vir repeated). For 0.18–0.7 μm (not all shown here) the spectra are
very similar. The UV excess evident in ξ 1 Cet for 0.13–0.17 μm is attributable to a white
dwarf companion. From Böhm-Vitense and Johnson (1985).

visual orbital periods is about 100 years, because good accuracy is only achievable if the VB

has consistently been followed for at least two full orbits. There are many orbits in the liter-

ature with periods up to 1000 years, or even longer, but these must be considered tentative –

extremely tentative if the period is greater than 200 years.

Visual orbits are usually relative orbits, the position of one component being measured

relative to the other (Fig. 1.1a). Visual orbits have been catalogued by Worley and Douglas

(1984), and speckle measurements by McAlister and Hartkopf (1988). These and many other

relevant catalogues can be found on the website of the Centre des Données astronomique

de Strasbourg (http://cdsweb.u strasbg.fr). From visual orbits one can determine the period

(P), the eccentricity (e), the inclination (i) of the orbit to the line of sight, and the angular
semimajor axis, i.e. the ratio of the semimajor axis a to the distance D. One can then determine

M/D3, where M is the total mass, from Kepler’s law:

G M

a3
=

(
2π

P

)2

, so
G M

D3
=

(
2π

P

)2 ( a

D

)3

. (1.1)

If the VB is near enough, D may be obtainable from the parallax. For Earth-based measure-

ments, parallaxes of less than 0.1′′ are not reliable, but this has been improved by more than

an order of magnitude with space-based measurements from the Hipparcos satellite. If the

orbits of both the components of a visual binary can be measured absolutely, i.e. each orbit

relative to a background of distant and approximately ‘fixed’ stars, then the mass ratio of
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the two components can further be determined. We still do not obtain the individual masses,

however, unless D is separately determinable.

Even if only one component of a binary is visible at all, an astrometric orbit may in

favourable cases be found by observing that the position of a star has a cyclic oscillation

superimposed on the combination of its parallactic motion and its linear proper motion

relative to the ‘fixed’ stars, i.e. faint stars most of which do not move measurably and so

can be assumed to be distant. Such astrometric binaries can yield P, e and i , but information

on masses is convolved with the unknown mass ratio, and also with the parallax which may

or may not be measurable even if the astrometric orbit is measurable.

Some VBs can be recognised even when neither component shows measurable orbital

motion. If two stars, not necessarily very close together on the sky, show the same substantial

linear proper motion relative to the ‘fixed’ background, it is likely that (a) they are physically

related, and (b) fairly nearby, with measurable parallaxes. Usually these parallaxes agree,

confirming the reality of the pair. Such pairs are called ‘common proper motion’ (CPM)

pairs. The two nearest stars to the Sun, V645 Cen (Proxima Cen) and α Cen, are over 2◦

apart, but have the same rapid proper motion and large parallax. To be pedantic, (a) they are

so near the Sun, and so far apart on the sky, that actually their proper motions and parallaxes

are measurably different at the 1% level, and (b) α Cen is itself a VB of two Solar-type stars,

with semimajor axis 17.5′′ and period 80 years, so that the proper motion of V645 Cen has

to be compared with the proper motion of the centre of gravity (CG) of the α Cen pair. The

period of the orbit of V645 Cen about the CG of the triple system can be expected to be about

1 megayear.

Common proper motion pairs are usually sufficiently wide that they might appear to be

of little relevance to this book, which deals with pairs sufficiently close together that one

component can influence the other’s evolution. However the presence of a CPM companion

can often reveal information on both components that would not be available if they were not

paired. Several close pairs have a distant CPM companion; and if for example this companion

has a character that suggests that it is fairly old, then one can reasonably conclude that the

close binary is also fairly old. This may not be evident from the close binary alone, since the

components in it may have interacted in ways that disguise the age of the system.

Modern techniques such as speckle interferometry (Labeyrie 1970, McAlister 1985), can

resolve components with substantially smaller angular separations than conventional astrom-

etry, and thus determine visual orbits of shorter period. The major limitation on resolving

close components astrometrically is atmospheric ‘seeing’, the blurring effect of turbulence

in the Earth’s atmosphere. This distorts the image on a timescale of ∼0.05 s. In the speckle

technique the image is recorded many times a second, and so the time variation of the point-

spread function can be followed and allowed for in a Fourier deconvolution. The technique

of adaptive optics (Babcock 1953, Beckers 1993) is an alternative way of eliminating seeing,

by continuously adapting the shape of the mirror in response to the deformation of the image

of a reference point source, either a nearby single star or the back-scattered light of a laser

beam pointing along the telescope. Both techniques can give resolution down to the limit of

diffraction, ∼0.01′′ at visual wavelengths on a modern 8 m class telescope. By combining the

light from two or more separate telescopes, the technique of ‘aperture synthesis’, long used

in radio astronomy, can nowadays be applied to optical wavelengths (Burns et al. 1997), and

should be capable of sub-milliarcsecond resolution, so that one might hope to see directly

both components of nearby short-period binaries.
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Figure 1.2 (a) The radial velocity curve of the K giant star HD20214. The rms scatter about
the mean curve is only ∼ 0.2 km/s. Orbital parameters are P = 407 days, e = 0.41,
f = 0.040 M�. From Griffin (1988). (b) The light curve of a contact binary TV Mus
(P = 0.446 days, e = 0, i = 78.9◦, R1/a = 0.59, R2/a = 0.27, M1/M2 = 7.2, T1/T2 = 0.98).
A slight variation in brightness over two years, and a small distortion in the secondary
eclipse, may be due to starspots. From Hilditch et al. (1989).

Systems may be recognisable as spectroscopic binaries (SBs) either because the spectrum

is composite (Fig. 1.1b), or because it shows radial velocity variations (Fig. 1.2a), or both.

In a composite spectrum, one might see for instance a combination of the relatively broad

lines of H and He characteristic of a B dwarf with the narrow lines of Fe and other metals

characteristic of a G or K giant. Alternatively, a star whose spectrum at visual wavelengths

may seem like a K giant may be found, at UV wavelengths, to have an excess flux that can

be attributed to a hot companion, sometimes even a white dwarf (Fig. 1.1b). It is not easy

to disentangle composite spectra reliably, since things other than a stellar companion (for

example a corona, a circumstellar disc or a dust shell) may contribute to an excess either in

the UV or the IR. Even if the spectrum seems definitely a composite of two stellar spectra,

we learn only that the star is a binary; we do not obtain information about the orbit unless

one spectrum at least shows a variable radial velocity, consistent with Doppler shift due to

motion in a Keplerian orbit.

Orbits of 1469 SBs have been catalogued in the important compilation of Batten, Fletcher

and McCarthy (1989). The number of orbits is increasing rapidly, perhaps already at a rate of

one or two hundred a year, and no doubt with greater rapidity in the future, partly because of

cross-correlation techniques and partly because of the much-increased sensitivity of detec-

tors. Commonly SBs are single-lined (‘SB1’), but the radial velocity variation of the single

spectrum seen (as in Fig. 1.2a) allows P and e to be obtained and also the amplitude K of

the radial velocity variation, or equivalently (as is usual for radio pulsars) the projected semi-

major axis (a sin i ∝ K P
√

1 − e2). Information on masses is contained in a single function,

the mass function f , convolving both of the masses with the unknown orbital inclination i :

f1 = M3
2 sin3 i

(M1 + M2)2
= K 3

1 P(1 − e2)3/2

2πG
= 1.0385 × 10−7 K 3

1 P(1 − e2)3/2

= 1.0737 × 10−3 (a1 sin i)3

P2
, (1.2)

where ∗1 (pronounced ‘star 1’) is the observed star and ∗2 the unseen component. Units are:

K1 in km/s, P in days, a1 sin i in light-seconds and masses in Solar units. The inclination

is not measurable for spectroscopic orbits because we have information on the motion in
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Figure 1.3 Radial velocity curves of both components of the massive X-ray binary Vela
X-1 (GP Vel). (a) Doppler shift of the pulses of the X-ray pulsar: note the accurate fit to the
Keplerian curve (P = 8.964 days, e = 0.126, f1 = 18.5 M�). Small dots near the axis are the
residuals multiplied by 2. (b) Doppler shift of absorption lines in the visible spectrum: note
the larger scatter, due to irregular pulsations. From these lines f2 ∼ 0.013. The ratio f2/ f1 is
the cube of the mass ratio q (∼ 0.09). (a) is from Rappaport et al. (1976), (b) from van
Kerkwijk et al. (1995b).

only one dimension, the line of sight, whereas in visual binaries we have information in two

dimensions, both perpendicular to the line of sight. In fact the red giant in ξ 1 Cet (Fig. 1.1b)

does show orbital motion (P = 1642 days, e = 0, f = 0.035 M�, Griffin and Herbig 1981)

in addition to being a composite-spectrum binary.

The mass function represents the minimum possible mass for the unseen star, which would

be achieved in the somewhat improbable case M1 = 0, i = 90◦. Slightly more realistically,

we might replace sin3 i by its average value 3π/16 ∼ 0.59 if i is distributed uniformly over

solid angle. However the value 0.59 is likely to be an underestimate, because the mere fact that

a variation in radial velocity is seen implies that the lowest inclinations can be rejected. For a

large ensemble of binaries we might make statistical estimates using a maximum-likelihood

procedure. However, for an isolated system, with little else to guide us, we will commonly

assume that a reasonable estimate of the reciprocal of sin3 i is 1.25. We then take

M1 ∼ 1.25q(1 + q)2 f1, (1.3a)

M2 ∼ 1.25(1 + q)2 f1, (1.3b)

where q ≡ M1/M2 is the mass ratio. Sometimes we can estimate M1 directly from the spec-

trum of the star, which may be similar to stars whose masses are already known from more

favourable binaries (see below); then from Eq. (1.3a) q can be estimated and hence M2.

Alternatively one can often infer that q > 1 simply from the probability that the unseen star

is less massive than the visible one. In either case both masses could be considerably greater

than the mass function.

If the system is ‘double lined’ (‘SB2’), and both components have measurable radial

velocity variations (Fig. 1.3), we can further obtain the mass ratio, and hence the two quantities

M1 sin3 i and M2 sin3 i ; but we still have no information on i . However, some SBs with

P >∼ 1 year are also VBs, and in favourable cases all four of M1, M2, i and D can be separately

measured, D in such cases being independent of parallax (which may be too small to be

measurable).
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Figure 1.4 (a) The radial velocity curves and (b) the light curve of the eclipsing SB2 system
V760 Sco (P = 1.73 days). The two components are nearly but not quite identical: in (a), ∗2
has a slightly greater velocity amplitude, and in (b) the second eclipse is slightly shallower
than the first. An ‘ellipsoidal variation’ is seen in the nearly flat portions between eclipses.
From Andersen et al. (1985).

Among SBs we can include both radio and X-ray pulsars, because the rapid pulsations of

these objects, due to rapid rotation of an obliquely-magnetised neutron star, are often very

stable and so can reveal a variable Doppler shift due to Keplerian orbital motion. Commonly,

pulsar orbits are much more accurate than SB orbits based on spectral lines, so that even

companions of terrestrial planetary mass can be detected (Wolszczan and Frail 1992). The

much greater accuracy of radio pulsar orbits means that a number of relativistic corrections

to Keplerian orbits can be measured (Taylor and Weisberg 1989, Backer and Hellings 1986).

Two of these are (a) the rate ZGR of advance of periastron in an eccentric orbit due to general

relativity – Appendix C(a):

ZGR = 3G(M1 + M2)

c2a(1 − e2)

2π

P
, (1.4)

and (b) a combination γ of gravitational redshift and transverse Doppler shift:

γ = G(M1 + 2M2)e

c2(M1 + M2)

P

2π
. (1.5)

Along with the mass function Eq. (1.2), these two quantities allow one to determine all three

of M1, M2 and i , even although the orbit is ‘single lined’.

X-ray pulsar orbits, though commonly more accurate than radial-velocity orbits from

spectral lines (Fig. 1.3), are also commonly less accurate than radio pulsar orbits, because

the X-rays come from accretion of gas lost by the companion. The gas flow is normally not

steady, and so the neutron star’s spin rate is erratically variable by a small amount.

Photometric binaries are stars whose light output varies periodically, and in a manner

consistent with orbital motion. Usually they show eclipses, but in some cases where the

inclination does not permit an eclipse one may nevertheless recognise ‘ellipsoidal variation’

or the ‘reflection effect’ (see below). A light curve (Figs. 1.2b, 1.4b) can yield, in favourable

circumstances, P , e and i , the ratios R1/a, R2/a of stellar radii to orbital semimajor axis,

and the temperature T2 provided that T1 is known already, from a spectroscopic analysis

of the brighter component. The radius ratios and i come primarily from the duration and
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shape of the total and partial segments of the eclipse, and the temperature from the relative

depths of the deeper and shallower eclipse in each cycle. Although some light curves can be

analysed crudely by assuming that both stars are spheres, the majority of eclipsers need more

sophisticated modelling, usually assuming that both components fill equipotential surfaces

of the combined gravitational and centrifugal field of two orbiting point masses (the Roche

potential, Chapter 3). Such light curve analysis was pioneered by Lucy (1968), Rucinski

(1969, 1973), and Wilson and Devinney (1971). Information on 3546 eclipsing binary stars

is given in the catalogue of Wood et al. (1980). A catalogue by Budding (1984) gives light

curve solutions for 414 eclipsers.

An eclipsing binary is also usually a spectroscopic binary, but not conversely. This is

because eclipses are only probable in systems where one star’s radius is >∼10% of the separa-

tion, whereas there is no such limit on radial-velocity variations. In the best cases, where the

system has eclipses and is also double lined (‘ESB2’, as in Fig. 1.4), we can hope to obtain

all of the following fundamental data: P, e, i, a, M1, M2, R1, R2, T1, T2 and D (independent

of parallax). The last three of these quantities depend not only on good orbital data but also

on reliable modelling of stellar atmospheres, so that the effective temperature of at least one

component (presumably the brighter) can be determined directly from its spectrum. This is

probably reasonable for the majority of stars, but for extremes of effective temperature and

luminosity (O and M stars; supergiants and subdwarfs), spectra may be affected by such

difficulties as mass loss, instability, convection and metallicity, all of which are not yet well

understood. A comprehensive review of data for ESB2 binary stars in the main-sequence

band has been given by Andersen (1991); an earlier review by Popper (1980) also gave data

for some post-main-sequence binaries. Accuracies of <∼2% for all quantities are achievable

in favourable cases.

Binaries involving evolved stars (giants, supergiants, hot subdwarfs, white dwarfs, etc.) are

relatively rare, especially ESB2 systems. Although the photometric and spectroscopic data

may be of the same quality, or even better, it is difficult to achieve the same accuracy in the

estimation of radii. This is because the two radii are of course very different in giant/dwarf

binaries. The information on relative radii, as well as on inclination, is contained in the shape

of the ingress/egress portions of eclipses. If one star is so much larger than the other that

its occulting edge is virtually a straight line, then the inclination and hence also the ratio of

radii are indeterminate. Nevertheless supplementary information from model atmospheres,

and from spectrophotometry, the measurement of intensity in several wavebands that may

extend from UV to IR, can reduce the indeterminacy. Recent work on such ‘ζ Aur’ systems

(Schröder et al. 1997) gives parameters with sufficient accuracy that theoretical models of

stellar evolution are seriously tested.

The fact that ESB2 binaries can in principle give a distance measurement that is independent

of parallax implies that they could be good yardsticks for measuring distances to external

galaxies. Current and developing technology means that at least OB-type binaries may be

accessible in fairly nearby galaxies. Of course one does need an estimate of the metallicity in

order to relate measured colours to the effective temperature of at least the hotter component.

Because stars in close binaries can be distorted from a spherical shape by the combined

gravitational and centrifugal effect of an orbiting close companion, they may show a mea-

surable light variation even when they do not eclipse. This is called ‘ellipsoidal variation’ –

although the stars are only approximately ellipsoidal. Figure 1.4b shows this variation. The

system illustrated is in fact at an inclination which also allows eclipses: the ellipsoidal
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Figure 1.5 (a) The light curve of UU Sge (P = 0.465 days), the central star of the planetary
nebula Abell 63. The hump centred on the secondary eclipse is due to a ‘reflection effect’.
The fainter, cooler companion shines partly by reprocessed UV light from the very hot
companion; thus it is brightest just before and after it is eclipsed, and is rather faint for half
the orbit. From Bond et al. (1978). (b) The light curve of Z Cha, an ultra-short-period
binary containing a white dwarf and a red dwarf (P = 0.0745 days). The hump before the
eclipse, the double-stepped nature of the eclipse, and the erratic variation are all due to
streams of gas flowing from the red dwarf towards, and round, the white dwarf. From Wood
et al. (1986).

variation is the slight curvature visible between the eclipses. Such variation even in the

absence of eclipses may allow at least P to be determined. Further, if ∗1 (say) is much

hotter than ∗2, the hemisphere of ∗2 facing ∗1 may be substantially brighter than the other

hemisphere, leading to an orbital variation (Fig. 1.5a) that also does not necessarily involve

an eclipse. This is called the ‘reflection effect’ – although the light (or X-radiation, in some

cases) is absorbed, thermalised and reemitted, rather than reflected.

However, not all eclipse light curves, even with high signal-to-noise ratios and with modern

light-curve synthesis techniques, lend themselves to accurate measurement of fundamental

data (masses, radii, etc.). Neither do all radial velocity curves, even when a non-uniform

temperature distribution over the stellar surfaces due for example to the reflection effect is

allowed for. This is because stars which are close enough together to have a reasonable proba-

bility of eclipse (typically, R1 + R2
>∼ 0.2a) are also quite likely to interact hydrodynamically

and hydromagnetically, introducing the complications of gas streams, and of starspots, which

are hard to model in any but an ad hoc manner. Figure 1.2b shows a light curve of a con-

tact binary that changed appreciably over time. The changes, and slight asymmetry, can be

attributed to transient starspots. Figure 1.5b shows the light curve of a dwarf nova: an eclipse

of sorts is clearly recognisable, but the light variation outside the eclipse is due to gas which

streams from one component into a ring or disc about the other. Modern methods of analysis

such as eclipse mapping (Horne 1985, Wood et al. 1986) and Doppler tomography (Marsh

and Horne 1988, Richards et al. 1995) use image-processing techniques based on maximum-

entropy algorithms (Skilling and Bryan 1984). The object of eclipse mapping is to reconstruct

the distribution of light intensity over (in the case of Z Cha, Fig. 1.5b) a hypothesised flat,

rotating disc of gas around one star that is fed by a stream that comes from the other star. The

eclipsing edge of one star as it moves across the disc and stream helps to locate the hotter and
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Figure 1.6 Observed times of eclipse, minus computed times obtained by assuming a
constant period, plotted against cycle number (epoch) along the bottom and date along the
top. (a) U Cep (G8III + B7V; 2.5 days), from Batten (1976). (b) β Per (G8III + B8V;
2.9 days), from Söderhjelm (1980). U Cep shows small erratic variations superimposed on a
long term trend of increasing period; β Per also shows erratic fluctuations, but with no clear
long-term trend.

cooler parts of the flow. In Doppler tomography, high wavelength resolution across a spectral

line, combined with high time resolution, gives a map of intensity on a two-dimensional space

of wavelength and orbital phase. This can in principle be Fourier-inverted to map intensity

onto a two-dimensional velocity space, and from there one can go via some hypothesised

model to a distribution in two-dimensional coordinate space. This might be either a disc-like

structure, as in Z Cha, or a distribution of spots over a spherical surface, or even of spots over

the joint surface of two stars that are so close as to be in contact (Bradstreet 1985). In this

way one can hope to remove the distorting effect of spots and streams from the observational

data, and thus be left with accurate fundamental data. But the hypothetical models of spots

and streams are not in practice very strongly constrained – for example some systems may

contain hot spots as well as cool spots – and so there remains considerable uncertainty in the

fundamental data for many, indeed most, interacting systems.

Much information on the statistics of eclipsing binaries (and other types of variable star)

comes, as a by-product, from gravitational microlensing experiments (Paczyński 1986). If

a relatively nearby star happens to pass very close to the line of sight of a distant star, the

apparent brightness of the distant star is temporarily increased by gravitational focusing in

the field of the nearby lensing star. Such events are rare, but have been detected by several

astronomical groups who monitor photometrically a large number of stars (∼106) in a small

area of sky at frequent intervals (e.g. nightly) over several years. The light curve of a lensing

event is recognisably different from the light curves of pulsators, eclipsers, novae etc.; but a

large number of normal eclipsers shows up as well, and this gives a valuable database from

which the statistics of orbital periods can be improved (Udalski et al. 1995, Alcock et al.
1997, Rucinski 1998). A very few lensing events also exhibit binarity directly: if the lensing

object is binary it can produce a marked characteristic distortion on the light curve of a lensing

event (Rhie et al. 1999).

Some binaries, particularly eclipsing binaries, show a measurable change of period over

substantial intervals of time. Period changes are usually demonstrated by ‘O − C diagrams’

(Fig. 1.6). The difference between the observed time of eclipse, and the computed time based

on the assumption of constant period, is plotted as a function of time (or of epoch, i.e. cycle



1.2 Determination of binary parameters 11

number). One can hope by this method to determine the rates of evolution due to mass transfer

or angular momentum loss.

Sometimes the change is periodic. Two possible causes of periodicity (apsidal motion, and

a third body) are discussed briefly below. After subtracting such periodic motion if necessary,

remaining changes might be an important indication of long-term evolution in the system. But

often the long-term behaviour is contaminated by, or even completely obscured by, short-term

irregular changes. Figure 1.6a shows the O − C curve for U Cep over the period 1880–1972.

If the period were constant we would expect a straight line, and if the period were changing

at a constant rate we would expect a parabola as shown. It can be seen that the overall

behaviour is roughly parabolic, but with fluctuations of ∼1–2% of the period (∼0.05 days)

that are not attributable solely to measuring uncertainty. From the parabolic trend we infer

tP ≡ P/Ṗ ∼ 1.3 megayears. The fluctuations are probably due to changes in the distribution

of hot luminous gas in this unusually active Algol-like system (Olson 1985). Figure 1.6b

shows the same diagram for Algol (β Per) itself over the last 200 years. Unlike U Cep, there

is no clear underlying trend: only fluctuations, with possibly the same origin as for U Cep,

superimposed on what appears to be a rather sudden period decrease (	P/P ∼ −2 × 10−5)

around 1845, and a subsequent rather smaller and less sudden period increase around 1920.

O − C curves ought to be an important tool for the investigation of the slow changes

expected as a result of evolution. One does not have to wait a million years in order to measure

a tP of say 108 years quite accurately. If the trend is clearly parabolic, and if individual eclipse

timings are accurate to ±δt , then we only need observations over a time interval 	t where

	t ∼ 10

√
|tP|δt

X
, (1.6)

to determine tP to ∼X%. If the eclipses can be timed to one-minute accuracy, then in a century

we can hope to determine an evolutionary timescale of ∼108 years reasonably accurately.

Unfortunately, rather few binaries show anything like a consistent parabolic trend; we are

not helped by the fact that a portion of a parabola can also look like a portion of a periodic

third-body effect. If we had observed it only over the last century, β Per might have seemed

to show a reasonable parabolic trend. However, the previous century showed quite different

behaviour.

Some O − C curves show a clear periodic behaviour that can be attributed to the presence

of a distant third body. AS Cam, Fig. 1.7a, is an example, although in this case somewhat

marginal. The variable light-travel time due to motion round the third body causes a periodic

advance/delay in the eclipse, much as the pulsar orbit in GP Vel (Fig. 1.3a) causes a periodic

advance/delay in the arrival time of X-ray pulses. However, orbits of third bodies found

by O − C curves are usually very long: an amplitude of 0.1 days translates into an orbital

size of about 0.1 light-days or 20 AU, and so a period of ∼100 years. Such orbits should

not be considered reliable unless at least two full orbits have been followed; of course the

same qualification applies to any radial-velocity orbit, except for some radio-pulsar orbits

where timing can be extraordinarily accurate. In fact Algol itself has a third body in a 1.86 year

orbit, but this would not show up in the noise of Fig. 1.6b, even if plotted on a finer scale.

The timing of eclipses is also affected by ‘apsidal motion’. The gravitational force between

the stars may not be a pure inverse-square law, because (a) general relativity gives a slightly

different force and (b) stars can be distorted from the spherical, partly through rotation and

partly through the gravitational field of the companion. The line of apses (i.e. major axis)
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Figure 1.7 (a) O − C curves for the eclipsing binary AS Cam, as a function of date (upper
panel) and of phase (lower panel). It shows a roughly periodic variation which may be due
to the presence of a third body, in an orbit with P = 805 days, e ∼ 0.5, f ∼ 0.03 M�. The
inner orbit has P1 = 3.43 days, e1 = 0.17, (M11, M12) = (3.3, 2.5) M�. After Kozyreva and
Khalliulin (1999). (b) The radial velocity curves for the inner and outer orbits of
HD109648. Parameters are P1 = 5.48 days, e1 = 0.01, (M11, M12) sin3 i1 = (0.67,
0.60) M� for the inner orbit (upper panel) and P = 120.5 days, e = 0.24, (M1 ≡ M11 + M12,
M2) sin3 i = (1.09, 0.54) M� for the outer (lower panel). From Jha et al. (2000).

of a Keplerian orbit is only fixed in space if the force is exactly inverse square. Departures

make it rotate, and if the orbit is eccentric this means that the eclipses will vary periodically,

particularly in the orbital phase of one eclipse relative to the other. The rate of rotation of the

line of apses can be measured, and used to check models of internal structure. The rate has

also been perceived as a test of GR, but since GR has been verified (see below) to very great

accuracy any explanation of discrepancies has to be sought elsewhere.

For example, AS Cam (Fig. 1.7a) shows apsidal motion at a rate inconsistent with GR.

Probably this is due to the third body, which affects the apsidal motion as well as introducing a

periodic delay (Kozyreva and Khalliulin 1999). Apsidal motion shows up as a slight difference

in the period, depending on whether one follows the primary (deeper) eclipse or the secondary.

This is because as the major axis rotates slowly the interval between the primary and secondary

eclipse changes. Ultimately, the behaviour should be cyclic, with an estimated period (for

AS Cam) of ∼2400 years. The difference in period has however already been allowed for

in Fig. 1.7a, where primary eclipses are denoted by heavy dots and secondary eclipses by

circles. What remains is not quite constant, but shows (marginally) a periodic fluctuation

with an amplitude of ∼0.002 days and a period of ∼2 years. This is arguably the ‘light-time

effect’ of a third body, which like a radial-velocity curve (also a Doppler effect) gives a mass

function as well as period and eccentricity as listed in the figure caption.
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The inconsistency noted above between the measured and theoretically estimated apsidal

motion may be due to this third body. Such a body can inject additional apsidal motion (of

either sign) into the system, which – somewhat coincidentally – could be of the same order

of magnitude (Appendix C).

Figure 1.7b illustrates the radial velocity curves that can be obtained in favourable cir-

cumstances from a triple system, HD109648. The spectrum is composed of three separate

F stars, two of which show rapid cyclic variations and the third a slower cyclic variation.

Not just three but four radial velocity curves can be determined: one is the motion of the

centre of gravity of the short-period pair, and mirrors the motion of the third, slowly-moving,

spectrum. This gives four mass functions, but unfortunately there are five unknowns: three

masses and two inclinations.

Radio pulsars allow enormously greater accuracy to be achieved (Taylor and Weisberg

1989). Some with P <∼ 0.4 days demonstrate the very slow period decrease expected from GR,

on a timescale of>∼108 years (Section 4.1). For PSR 1913 + 16, the theoretical rate agrees with

the observed rate to within one per cent, which is the observational uncertainty. Pulsars near

the centre of a globular cluster even show acceleration due to the cluster’s gravitational field,

and not just a binary companion. What a pity that most stars do not have a pulsar companion!

1.3 Stellar multiplicity
Although only a few thousand stars are well established as binary, with known orbital

periods, the incidence of binarity among the most thoroughly observed stars (generally the

brightest, but also the nearest) is very high. Conceivably all stars are binary, or of even higher

multiplicity. We normally think of the Sun at least as being single, but if there is a continuum

of objects from small planets like the Earth (∼3 × 10−6 M�), through massive planets like

Jupiter (0.001 M�), to small stars, then perhaps the distinction between single and binary is

artificial. Recently detection sensitivity and strategy have improved to the point that three

Earth-mass companions to a pulsar (PSR 1257 + 12; Wolszczan and Frail 1992) have been

found, and Jupiter-mass companions to about 100 nearby stars, mostly of Solar spectral type

(Mayor and Queloz 1995, Marcy and Butler 1998).

A common definition of the term ‘star’ is that it is an object with mass greater than

∼0.08 M�, because this is the minimum mass for a self-gravitating hydrostatic spherical

gaseous body that can support its radiant energy loss by hydrogen fusion. However, this is a

somewhat artificial boundary, because stars in the process of forming will not ‘know’ that they

may come up against this distinction. Low-mass dwarfs are known whose masses are only

just above the limit, for example UV Cet (Gl 65AB), a VB where both components are late M

dwarfs of ∼0.11 M� (Popper 1980). Objects below the critical mass but well above Jupiter’s

mass are referred to as ‘brown dwarfs’. Some are known to exist, but they are hard to detect.

An example of a binary containing a star so cool and faint that it is almost certainly below the

critical mass is Gl 229AB (Nakajima et al. 1995). Some recent low-amplitude orbits of Solar

type stars (e.g. HD140913, Mazeh et al. 1996) point to companions of <∼0.05 M�, though

of course with the ambiguity that the inclination can only be guessed, i.e. assumed not to be

improbably small. Observations in the IR (Rebolo et al. 1995) have recently been turning up

a wealth of probable brown dwarfs in, for instance, the Pleiades cluster.

Recent SB1 detections of companions down to about a Jupiter mass suggest a bimodal

distribution, with a fairly rapid drop in numbers to lower mass in the range 0.3–0.07 M�, a low

plateau in the brown-dwarf region 0.07–0.01 M�, and then a peak for major planetary masses
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below ∼0.01 M� (Marcy and Butler 1998). This is consistent with the likely hypothesis that

the formation mechanism of binary stars is very different from that of planetary systems. The

two processes are not exclusive, however. Some systems are known to have both a planetary

companion and a stellar companion: τ Boo (Butler et al. 1997, Hale 1994), 16 Cyg (Cochran

et al. 1997) and υ And (Lowrance et al. 2002). The last has three massive planets and a

distant M-dwarf companion.

Most stars are members of binaries. Petrie (1960) showed that 52% of a sample of 1752

stars, independent of spectral type, have variable radial velocities. Since not all short-period

binaries can be detected due to finite measuring accuracy, it follows that substantially more

than 50% of stars are in relatively short-period binaries. After considering unseen companions,

Poveda et al. (1982) concluded that nearly 100% of stars are in binaries, including long as

well as short periods.

For the sake of terminology, we assume here that there are such things as single stars,

distinct from binary stars. In other words, we accept the presently-known multiplicity of

a particular system, not withstanding the possibility, even probability, that more detailed

measurement will mean that small or distant companions will be detected. Thus if a star is

not presently known to have a companion, we will speak of it as single. Furthermore, if there

is a binary companion but it is too far away ever to have an effect on the evolution of the

target star, we shall often use the term ‘effectively single’.

Many systems once thought to be binary turn out to contain three or more stars. According

to Batten (1973), double-star systems are roughly twice as common as single-star systems,

but for 2 < n ≤ 6 the number of systems containing n stars falls off very roughly as 4−n .

This means that ∼25% of all systems, and ∼15% of all stars, are single, while ∼20% of all

systems (∼30% of stars) are in triples or higher multiples; the average system contains about

two stars. Duquennoy and Mayor (1991) found a slightly lower incidence of multiplicity in

a sample of 161 F/G-type systems: 92 single, 61 binary, 6 triple and 2 quadruple, but with a

proviso that 18 components in this sample showed significant radial velocity variations that

might indicate further multiplicity. Tokovinin (1997) has catalogued 612 triple and higher-

multiple systems. In this book we will make the assumption, when illustrative numbers are

necessary, that ∼30% of systems are single to present levels of accuracy, ∼60% are binary

and ∼10% are at least triple.

The incidence of multiplicity is probably not independent of the kind of star being sampled.

The 42 nearest stellar systems (within ∼5 pc; excluding the Sun itself) are mostly M dwarfs,

with less than half the mass of the Sun. They contain at least 14 multiples – 10 binary and

4 triple. They also contain at least one massive planet, around an M dwarf star. On the other

hand, the 48 brightest systems (V ≤ 2.0; from Hoffleit and Jaschek 1983 and Batten et al.
1989) are mostly B and A stars, typically more than twice the mass of the Sun. They contain

at least 22 multiples – 14 binary, 3 triple, 4 quadruple and 1 sextuple. The statistics are

not compelling, of course, but seem to imply that more massive systems are more highly

multiple. For both these samples, small as they are, the data are far from complete, and the

actual multiplicity could well be higher.

It is always difficult to compare distance-limited samples of stars with magnitude-limited

samples, because binaries are inherently brighter than single stars, although not by much

unless the masses are fairly closely equal. Obviously the first kind of sample is to be preferred

where possible, but distances are much harder to measure than magnitudes. In the above two

samples the effect is probably quite small.
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Multiple (n > 2) systems tend to be ‘hierarchical’ (Evans 1968, 1977), i.e. they consist

for example of two close ‘binaries’ whose centres of gravity rotate around each other in a

wide ‘binary’. Such a configuration is expected to be stable on a long timescale, provided

that the period of the wide ‘binary’ is several times greater than the period of either close

‘binary’. Just how much greater the longer period must be for stability depends strongly on

the eccentricities, and also the inclination of the outer orbit to the inner orbit, but for orbits

which are nearly circular and coplanar it is typically in the range 3–6, assuming that all the

masses are comparable. Observed systems usually have a much greater period ratio than this

(102–104, and even more), and are therefore likely to be extremely stable even allowing for

orbital eccentricity and non-coplanarity. Figure 1.7b shows the inner and outer orbits of the

triple system HD 109648 (Jha et al. 2000). This system of three rather similar F dwarfs has

an unusually small period ratio of about 22. One of the two velocity curves in the lower panel

of Fig. 1.7b is the velocity of the centre of gravity (CG) of the inner pair.

The well-known sextuple system α Gem is a microcosm which contains within itself two

VBs, two SB1s and an ESB2. Its components are organised as follows, using a notation of

nested parentheses to emphasise the hierarchical nature:

(((A1V + ?; 9.2 d, e = 0.5) + (A2 : m + ?; 2.9 d); 500 : yr, e = 0.36; 7′′)

+ (M1Ve + M1Ve; 0.8 d); 70′′).

The outermost orbit of the α Gem system is too slow to be measurable, but there is no doubt

that the M dwarf pair is related to the other four components, by virtue of the fact that they

have a common proper motion – more precisely, the M dwarf pair has almost the same proper

motion as the centre of gravity of the pair of A stars. The outermost orbital period can be

expected to be of the order of 104 years. Each A star is an SB1, one of which has a fairly

eccentric orbit. The unseen companion in each SB1 is likely to be a red dwarf, although in

principle it could be some other faint object such as a white dwarf. The mass functions are

known (0.0013 and 0.01 M� respectively), but do not rule out a substantial range of masses

and inclinations. The M dwarf pair is an ESB2 – with a separate variable-star name, YY

Gem – and is one of the very few systems from which M dwarf masses and radii can be

determined directly.

A few multiple systems are ‘non-hierarchical’: three or more stars are seen which are all

at comparable distances from each other. This could be simply a projection effect, but the

probability is not large. If it is not due to projection, then such systems cannot be stable in the

long run, and indeed the few that are known are groups of young stars, such as the Trapezium

cluster in Orion, that have simply not yet had time to break up. If N stars of total mass M
are fairly uniformly distributed in a volume of radius R, we expect the system to break up

in a time comparable to the ‘crossing time’
√

R3/G M . The final product will typically be a

series of ejected single stars, and a remaining close binary; but we might have one or more

binaries ejected or a hierarchical triple left over. Usually the stars ejected will be the less

massive members, and the remaining binary is likely to contain the two most massive stars.

Although most of this book is concerned with systems of only two components, there are

many triple systems and a few quadruple systems known where all the components are close

enough to interact at some stage. For the most part, when we mention a binary we are thinking

of only those binaries at the bottom of the hierarchical pyramid: three binaries in the case of

α Gem.
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1.4 Nomenclature
In discussions of binary and (necessarily) more highly multiple stars, we should

probably be careful to use the word ‘system’ rather than ‘star’, since the latter term is often

ambiguous – commonly used to mean either the individual components, or alternatively the

whole ensemble of components. We should also be cautious about using the words ‘primary’

and ‘secondary’: some authors use ‘primary’ to mean the more luminous star (at least in

a particular wavelength range), others to mean the hotter star, and others still to mean the

component that has the lowest right ascension.

When discussing the behaviour of a binary, it will often be convenient to refer to the

components as ∗1 and ∗2 – to be pronounced ‘star 1’ and ‘star 2’. I will use two somewhat

contradictory conventions throughout this book, depending on context. Sometimes, for exam-

ple when discussing an SB1 binary, ∗1 will mean the star we see and ∗2 the star we do not

see, as in Eq. (1.2). At other times, for instance when discussing an SB2 binary, I will take ∗1

to be the component which we infer to have been initially the more massive, and ∗2 to have

been initially the less massive. For example, in Fig. 1.1a ∗1 would be the F5V star and ∗2

would be the G5V star; in Fig. 1.1b ∗1 would be the white dwarf and ∗2 the G8III star. When

I am discussing the theoretical behaviour of one component of a binary, in Chapter 3 and

later, I will usually call that component ∗1, often considering, for illustrative purposes, that

∗2 is just a point mass with no structure. But when I am discussing the long-term evolution

of both components of a binary, I will adhere again to the principle that ∗1 is the initially

more massive component. I do this because any discussion of the evolution demands that

we identify the same component as ∗1 throughout several substantial changes in mass ratio,

luminosity ratio, etc. I do not apologise for possible confusion because I consider that there

is no convention which (a) I could adhere to rigorously and (b) would not cause confusion at

some point.

It may appear that we are bound to have even less information on initial masses than on

current (measurable) masses. However, this is really not so, given the rather clear theoretical

understanding (Chapter 2) that the rate of evolution of a star is principally determined by its

initial mass, rather than its current mass, provided only that mass loss or gain did not begin at

a very early stage in the life of the star. If we see a combination of white dwarf and red giant

we can be reasonably sure that the white dwarf is ∗1 in the second sense defined above, even

though we may have little or no information on the current masses. Only a modest fraction

of binaries poses any real challenge to this assumption.

A further convention that I will impose throughout most of this book is that the mass ratio

q is M1/M2, rather than its reciprocal. Thus, in the second convention above, q ≥ 1 at zero

age – but at a later stage of evolution q may drop below unity because of evolutionary changes

of mass in one or other (or both) components. However, in this chapter alone, I will use Q
defined as 1/q. In this preliminary discussion I concentrate mainly on unevolved binaries,

where the brighter and hotter component can be reasonably assumed to be ∗1. In such systems

the mass ratio M2/M1 is usually what is discussed in the literature, and this is Q, not q. In

Chapter 3 and later, however, Q is a dimensionless quadrupole moment of a distorted star.

In a hierarchical triple system logic demands that I refer to the outermost pair as ∗1, ∗2,

and the inner pair (if it is ∗1 that is binary) as ∗11, ∗12. The periods would be P for the outer

pair and P1 for the inner pair. By extension, in α Gem above the unseen close companion to

the A2:m star is ∗122, for example, and P12 = 2.9 d. However, logic does not quite dictate

which of the two A-type SB1s is ∗11 and which is ∗12:
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(a) the more massive pair?

(b) the pair that has the most massive component?

(c) the more highly multiple (supposing that the multiplicities were different)?

I shall duck this issue in its fullest generality. For triples, I shall

(a) attempt to identify the originally most massive of the three components, as argued above

for binaries, and

(b) name the subsystem that contains it as ∗1, which might be either single or binary.

I have used this convention in the caption of Fig. 1.7, regarding the two triple systems AS

Cam and HD109648. The data given there for the second system show that the two orbits

within it are not parallel to each other: sin i1 = 1.06 sin i . Unfortunately even if sin i1∼ sin i
we cannot assume that the orbits are parallel. In the system β Per referred to previously both

the inner (eclipsing) orbit and the outer (visual) orbit are inclined at nearly 90◦ to the line

of sight. But radio interferometry with a very long baseline (VLBI) shows that the orbits are

actually inclined to each other at ∼100◦ (Lestrade et al. 1993). Nature appears to be playing

a rather cruel joke, since the probability that the two orbital axes and the line-of-sight axis

are all (nearly) mutually orthogonal must be rather small.

Although Nature is probably logical most of the time, the human perception of it is often

influenced by customs that are historical and cultural rather than logical. Consequently, we

shall in practice refer quite often to ‘∗3’ and even ‘∗4’, as distant companions to some binary

of interest, or as recently-discovered close companions to components of a wide binary. It

is unfortunate but unavoidable that whenever a new component is discovered the names of

some at least of the previous components will have to change.

1.5 Statistics of binary parameters
The statistical distributions of masses, orbital periods, mass ratios and eccentricities

are not well known: see for example discussions by Heintz (1969), Griffin (1983, 1985),

Zinnecker (1984), Trimble (1987), Halbwachs (1983, 1986), Hogeveen (1990), Duquennoy

and Mayor (1991) and Halbwachs et al. (2003). That many systems (perhaps >∼10%) are at

least triple makes it even harder to arrive at a firmly-based distribution of these parameters.

I concentrate in this book primarily on systems whose periods are short enough to allow for

some kind of binary interaction.

1.5.1 Binary interaction
Although most stars are as small as the Sun, or smaller, they are capable of growing

in radius by a factor of ∼1000 during their evolution (Chapter 2; Table 3.2). The Sun may

well fill the orbit of Mars or even Jupiter before collapsing to a white dwarf. A substantially

more massive star than the Sun could grow to an even larger radius, before exploding as

a supernova. Only if the period is longer than ∼104 days (∼30 year) is there a reasonable

probability that the two components go through their entire evolution almost independently

(Plavec 1968, Paczyński 1971). However, some interaction (in addition, of course, to the

basic gravitational one) can take place in even wider systems. The prototype Mira variable

o Cet has a white-dwarf component (VZ Cet, ∗1) in a roughly 400 year orbit about the M

supergiant pulsating variable (∗2). The white dwarf flickers rapidly, unlike normal single

white dwarfs, and this is probably because it is interacting with the copious wind that is being
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ejected by the Mira. It may be accreting only a small fraction of this wind, but that could be

enough to affect the white dwarf’s future evolution.

Although stars in systems with orbital periods substantially in excess of 100 years are not

likely to undergo very much mutual interaction, this is not to say that their orbits remain

uninterestingly constant for all time. A supernova explosion, or the ejection of large amounts

of gas by a blue or red supergiant, may change or even disrupt the orbit. So also can the

random perturbations imposed by interaction with nearby systems. This last effect imposes

a loose upper bound on the orbital separation of individual systems. The orbital separation

can hardly be larger than the mean distance between independent systems, ∼1 pc in the Solar

neighbourhood, and this translates by Kepler’s law into an upper limit on orbital period of

∼1010 days for a system of mass ∼1 M�. In practice the upper limit is likely to be at least an

order of magnitude less, since many near collisions of such a system with adjacent systems

can be expected in the course of the Galaxy’s lifetime.

Within a dense cluster of stars, such as a globular cluster, and also near the Galactic centre,

it is possible for binaries of shorter period to be disrupted by near collisions. It is even possible

in such an environment for binary stars to be formed, for example by tidal capture. This can

happen if, in a close approach of two single stars, large tides are raised on at least one. Such

tides can dissipate energy, and so allow the stars to move from a hyperbolic to an elliptical

orbit (Fabian et al. 1975). Thus some interesting binaries in globular clusters need not be

the products of long-term evolution of a primordial binary. In a dense stellar environment

binaries can also, and in fact more easily, be modified by ‘exchange’ interactions, where one

star in a near collision with a pre-existing binary may eject one component and replace it,

perhaps in a much closer orbit. In the bulk of our Galaxy, however, such interactions are not

likely because of the low stellar density, and so it is reasonable to suppose that a star which

is presently binary has always been binary.

Several mechanisms are identified in Chapters 3–6 that can result in ‘mergers’, two com-

ponents of a binary becoming merged into one. Thus the mere fact that an observed star

presently appears to be single does not exclude the possibility that formerly it was binary.

By extension, a system which is now a binary (but presumably a fairly wide one) may be a

former triple. Mergers can be the result either of slow evolution or of some rapid dynamical

event.

Returning briefly to the issue of nomenclature, it is unfortunate that the terms ‘close binary’

and ‘wide binary’ can have very different meanings depending on context. To someone, say,

using speckle techniques to resolve binaries in a star-forming region at a distance of 500 pc,

a binary with a separation of 0.05′′ is close, if not very close. But the linear separation

is ∼25 AU, which for present purposes makes it a rather wide, if not very wide, binary –

probably too wide to interact. In this book we will generally use ‘close’ to mean a period

of a few days, and ‘wide’ to mean a few years; ‘very wide’ will mean too wide to interact

seriously, i.e. a period in excess of ∼30–300 years.

Recently it has become clear that the evolution of a binary can be seriously modified by the

presence of a third body, even if that body is in a wide orbit – perhaps 104 years – and even

if the third body is of quite low mass so that it is hard or impossible (at present) to observe.

The main requirement for important interaction (‘Kozai cycles’; Kozai (1962); Section 4.8)

is only that the outer orbit be substantially inclined to the inner (≥39◦). In a Kozai cycle

the inner orbit’s eccentricity fluctuates cyclically between a small and a large value, while

the period remains roughly constant. The cycle time is ∼P2
outer/Pinner, multiplied by a factor
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Figure 1.8 (a) The distribution of initial mass from Scalo (1986), and (dotted) the
approximation of Eq. (1.10). The latter is displaced slightly upwards for clarity.
(b) Histograms of the period distribution, from Heintz (1969) (solid line), Duquennoy and
Mayor (1991) (dashed line) and the approximation of Eq. (1.14) (dotted line) all normalised
to the same total area.

(total mass)/(third-body mass). If the periods were 102 and 104 years, and the masses all

comparable, the Kozai time would be ∼106 years; and if the mutual inclination were 70◦

then the inner eccentricity would peak at 0.9, if it were zero to start with. Thus the periastron
separation at this peak would be equivalent to a circular binary with a period of only ∼3 years.

If the inner and outer orbits have a random inclination, a reasonable but by no means certain

hypothesis for fairly wide orbits, the average inclination would be 60◦, and 70◦ would be by

no means unusual (cf. β Per, 100◦, in Section 1.4). This increases substantially the scope for

‘binary’ interaction.

1.5.2 Masses
Stellar masses show a distribution which (per unit volume of the Galaxy) favours

low masses; although, because massive stars are very much brighter than low-mass stars,

the distribution down to a given apparent brightness favours higher masses. The Salpeter

IMF (i.e. initial mass function) is the following approximation to the distribution N (M) of

zero-age masses as a function of mass (Salpeter 1955):

N dM ∝ M−2.35 dM (M ≥ M0 ∼ 0.1 M�),

= 0 (M < M0). (1.7)

This distribution has to be truncated at a low mass (say ∼0.1 M�), to keep the number finite.

More recent IMFs (Miller and Scalo 1979, Scalo 1986, Basu and Rana 1992) show a turnover

at a mass of about 0.3 M�, as shown in Fig. 1.8a. Whether, for binary stars, a Salpeter-like
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IMF is thought of as applying to primary mass or total mass is not very important, given

the steepness of the IMF over most of its range. However, a careful determination of the

IMF from observation ought to take into account the fact that many stars are actually at

least binary (Kroupa et al. 1991). For the present, we suppose that so far as binaries are

concerned the IMF is equivalent to the distribution of M1, the more massive component.

The main uncertainty in the IMF comes from transforming stellar apparent magnitudes and

colours to absolute luminosities, and thence to masses, particularly at low mass where there

is only sparse observational data from binaries on the mass–luminosity relation. But in any

event an IMF contains a fair amount of theoretical input, to allow for the lifetimes of stars

as a function of their masses. O stars, say 20–50 M�, are much less abundant relative to G

dwarfs (∼1 M�) than Eq. (1.7) seems to suggest, because they have lifetimes a thousand

times shorter.

It is often helpful to be able to generate a distribution of some parameter by a Monte Carlo

process, i.e. by use of a random number generator. Consider, for example, the Salpeter distri-

bution of masses, Eq. (1.7). Let X be a random number chosen from a uniform distribution

in the range [0, 1]. Then if we determine the mass M1 by

M1 = M0

(1 − X )0.75
, (1.8)

we generate the Salpeter distribution. We require M0 = 0.1 if the distribution is to be truncated

at 0.1 M�, as suggested for distribution (1.7).

The physical significance of the inverse function X (M1) is that it is the fraction of all stars

that have mass less than M1, i.e. it is the cumulative distribution function. It may be helpful

to spell out this relationship. Let us integrate and normalise the distribution (1.7):

X (M1)≡
∫ M1

0
N (M)dM∫ ∞

0
N (M)dM

= 1 −
(

M0

M1

)1.35

, M1 > M0. (1.9)

This X (M1) relation is just the inverse of the M1(X ) relation (1.8), to the extent that 0.75 is

approximately the reciprocal of 1.35. The mass spectrum N (M1) (normalised) is therefore

just N (M1) = dX/dM1 = 1/(dM1/dX ). A small but important point, often overlooked, is

that it is better, in order to approximate an observed distribution, to start by approximating the

cumulative distribution X (M1), or equivalently the inverse function M1(X ), than by approx-

imating the differential distribution N (M1). Coincidentally, it is also much more convenient

numerically: it is usually easier to differentiate a function than to integrate it.

Believing that the Scalo (1986) distribution of Fig. 1.8a is a more accurate distribution

than Salpeter’s (1955), we attempt to approximate it with

M1 = 0.3

(
X

1 − X

)0.55

. (1.10)

This mass distribution is Salpeter-like at M1 
 0.3 M�, but with exponent 2.82 rather than

2.35. The distribution of masses generated by this formula is shown in Fig. 1.8a. It is somewhat

coincidental that the slope of the mass distribution below the peak is much the same, but with

opposite sign, as the slope above the peak. This allows us to use a single exponent (0.55) in
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the distribution (1.10). If the two slopes were markedly different one might choose

M1 ∝ Xα

(1 − X )β
, (1.11)

but for the observational distribution illustrated this refinement seems unnecessary.

Recent work on very low-mass stars (Jameson et al. 2002), including spectral types L and T

beyond M, suggests, although not yet with complete conviction, that the IMF continues to rise,

but more slowly, below the peak of Eq. (1.10) at M1 = 0.3 M�. Values of α ∼ 1.5, β ∼ 0.55

in Eq. (1.12) might be somewhat better. This value of α implies that N (M1) ∼ M−0.33
1 at low

M1, i.e. at low X .

1.5.3 Orbital periods
For spectroscopic binaries, mainly of spectral type G or K, giant or dwarf, Griffin

(1985) found an increasing distribution of number N versus log P; so that, very crudely,

NdP ∝ P−0.7dP ∝ P0.3d log P, (P <∼ 30 years) (1.12)

over a range of periods P from days to decades, the only upper limit to period being set by

the patience of spectroscopic observers (i.e. about 30 years; but one hopes this will increase).

Heintz (1969) and Duquennoy and Mayor (1991) found something similar, and also found

that for still longer periods, in visual rather than spectroscopic binaries, the number per decade

of log P falls off again (Fig. 1.8b); the peak in the distribution occurs at roughly 200 years.

For systems whose orbital periods are too long to have been measured directly, an order-of-

magnitude estimate of the period can be obtained from the observed angular separation α,

the distance D based on either a directly measured parallax or on spectral type and apparent

magnitude (a ‘spectroscopic parallax’), and Kepler’s law, Eq. (1.1). Assuming that the sum of

the masses is roughly Solar (because the observed masses range over only about two orders

of magnitude while periods range over about ten), we can translate crudely but directly from

separation and distance to period. The falling-off in number at longer P found by Heintz

(1969) and Duquennoy and Mayor (1991) can be represented roughly by

NdP ∝ P−1.3 dP ∝ P−0.3 d log P. (P>∼ 300 years) (1.13)

Figure 1.8b also shows the period distribution found by Duquennoy and Mayor (1991) for 79

binary periods from 161 systems that are within 22 pc of the Sun, that have an F4-G9 IV-V

primary, and are north of −15◦; the median period is at about 180 years.

Both the Heintz and the Duquennoy–Mayor distributions in Fig. 1.8b are fitted well, in the

same spirit as Eq. (1.10), by

P(days) = 5.104

(
X

1 − X

)3.3

, (F/G dwarfs) (1.14)

where X is a second, independent, random variable distributed uniformly over the range [0, 1].

This distribution is also shown in Fig. 1.8b. As with the mass distribution in the previous

subsection, a single exponent (3.3) seems in practice to be adequate, since the slopes at short

and long periods appear to be much the same but of opposite sign.

We should not assume, however, that the same distribution would be found for binaries

with say OB, or M dwarf, primaries as for those with F/G dwarf primaries. In fact, the balance

of short to long period systems depends markedly on primary mass. Among the 42 nearest
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systems, mostly M dwarfs, two have P < 100 days (excluding a massive planet in a 61 day

orbit). On the other hand, among the 48 brightest systems (by apparent magnitude), mostly

A/B dwarfs or G/K giants substantially more massive than the Sun, 10 have P < 100 days –

although three of these are within the same sextuple system α Gem. Somewhat greater bias

still towards shorter periods is shown by the 227 O-type stars with V ≤ 8.0 (Mason et al.
1998). These contain 52 SB orbits (23%) with P ≤ 0.1 years. This is hardly consistent with

the Solar-dwarf sample of Duquennoy and Mayor (1991), where only 13 out of 161, or 8%,

of systems have periods <100 days.

However, the O-star sample of Mason et al. (1998) shows a strongly bimodal distribu-

tion with a second, even larger, accumulation (80, or 36%) of visual binaries at estimated

P ∼ 104–106 years. This is also many more than in the G-dwarf sample. Correspondingly,

there is a marked shortage of systems (37, or 16%) in the considerable intermediate range

0.1–104 years. It can be argued that this is the most difficult range for detection of binarity:

firstly, O stars are much more distant than G stars, so they have to be further apart to be

recognisable as VBs; and secondly, O stars tend to show erratically variable radial veloci-

ties at the level of ∼20 km/s, which can obscure the lower radial-velocity amplitudes in the

longer-period spectroscopic orbits. Recent advances in interferometry have already increased

the numbers in the ‘gap’, to the percentage quoted above. About 100 systems would have to

be found if the gap is to be levelling off, and about 250 if it is to be turned into a modest

peak as in the G-dwarf sample. These numbers are not quite as ridiculous as they sound

because the high multiplicity typical of massive systems may well mean that ‘200% of stars

are binaries’.

Nevertheless, I adopt here a relatively cautious position. Spectroscopic orbits with periods

of 0.1–1 year should not be much harder to detect than those in the range 0.01–0.1 year. Their

velocity amplitudes will be down by a factor of about 2.2, but still well above the noise

level: yet only 5 are known against 33 in the shorter-period bin. The apparent shortfall might

also be related to the distribution of mass ratios, which I discuss shortly. Perhaps low-mass

companions are relatively more likely at longer than shorter periods, but a rather drastic

change in the distribution of mass ratios at about 0.1 year would be required. Let us content

ourselves with a distribution that peaks at about 15 days, and drops off fairly rapidly on both

sides; say

P(days) = 15

(
X

1 − X

)1.3

(O stars). (1.15)

I do not suggest that this distribution can be used to include the visual binaries at very long

periods, but it roughly represents the presently-known binarity among potentially interactive

binaries, i.e. those with periods up to 102 years, giving some allowance for possible new

discoveries in the period range 0.1–102 years. Specifically, it predicts that 50% of systems

have periods over 15 days, whereas at present only 30% (of SBs) do. Our prescription also

predicts that 10% of O star binaries would have periods less than 1 day, which is hardly

possible given the estimated sizes of O stars; but several O stars are found with periods in

the range 1.4–2.5 days. Somewhat simplistically, we will treat binaries of improbably short

period from such distributions as ‘merged binaries’, or in other words single stars.

At the other end of the mass spectrum, for ∼200 G9–M3 dwarfs Tokovinin (1992) found

an even smaller proportion (3%) of short periods than among the G/K dwarfs, let alone the

O stars. It appears to be reasonable to suppose that the median period of the distribution shifts
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fairly continuously from short to long periods as mass decreases, and that the distribution also

becomes wider and shallower. In my tentative model of Section 1.6, I suggest a distribution

like Eqs. (1.14) or (1.15) but with a coefficient, and also an exponent, that is a function of

mass.

The distribution of pairs of periods within triple systems is, of course, much more uncertain.

I have already suggested that as a first approximation we assume that ∼10% of systems are

at least triple. In most of these, the outer orbit will be much too wide for serious interaction

as described in Section 1.5.1; but I estimate even more provisionally that ∼20% of triples,

and thus ∼2% of systems, may have both periods shorter than ∼30 yr, and thus be potentially

capable of two distinct interactions.

1.5.4 Mass ratios
The distribution of mass ratios is less well known than either of the distributions

over period or mass. This is because substantially more orbital data are required for a mass

ratio than for a mass or a period (Section 1.2). We need an SB2, rather than an SB1, for a

mass ratio, and in many systems ∗2 is too faint relative to ∗1 to be measured reliably.

A common ad hoc model is made by assuming that both of the component masses are

given by the same distribution, for example distribution (1.11). This is equivalent to saying

that the two components have uncorrelated masses. Duquennoy and Mayor (1991) found

this to be an adequate approximation for their sample of binaries whose primaries were all

F/G dwarfs like the Sun. However, it cannot be an adequate approximation for massive stars,

since these are intrinsically rare and yet are frequently paired with a comparably massive star.

Furthermore, Lucy and Ricco (1979) found that among short-period binaries (P <∼ 25 days)

there is a much higher proportion of systems with nearly equal masses than can be accounted

for by selection effects, strong as these are. Almost certainly the degree of correlation of the

two masses is a function of both orbital period and mass, and it appears that there is more

correlation at short periods or high masses.

Specifically, Lucy and Ricco (1979) found that among F2–M1 dwarfs with P < 7.5 days

the number in the range Q = 0.94–1 was 50% of the number in the range 0.6–1. The Monte

Carlo distribution generated by

Q = 1 − Xγ , γ ∼ 3, (1.16)

with X yet another random number uniformly distributed in [0, 1], has approximately this

property. On the other hand, they found for OB stars the smaller fraction 21%, which corre-

sponds to γ ∼ 1.2 instead of 3.

Mazeh et al. (1992) analysed more closely the Q-distribution for the 23 short-period

(P < 3000 days) SB2 and SB1 members of the Duquennoy/Mayor sample, using a maximum-

likelihood algorithm. They found a mild concentration to equal masses, with about 60% of

systems having 0.5 < Q < 1, which corresponds to γ ∼ 1.4 in the distribution (1.16). They

also suggested that this is significantly different from the distribution in wider orbits still,

which favours more extreme mass ratios.

Tokovinin (1992) looked at spectroscopic orbital data for ∼200 G9–M3 dwarfs, out of

which 13 were SB2 and 9 SB1 with P ≤ 3000 days. Using a maximum-likelihood method,

he found a bimodal distribution of secondary masses: 10% of his systems have secondaries in

the range 0.32–0.64 M�, 3% in the range 0.08–0.16 M�, and the remainder have no (spectro-

scopic) secondaries. The first peak more-or-less corresponds to Q ∼ 0.5–1, suggesting that
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Figure 1.9 The distribution of (a) mass-function and (b) eccentricity against period for
268 G/K giants. In (a), SB1s are shown as circles and SB2s as asterisks. Five triples, the
companion being itself a close binary, are shown as squares. Unrecognised triple
companions may cause some of the other large values. The sloping line corresponds to a
radial velocity amplitude of K1∼2 km/s, roughly the limit of observational detection; the
vertical line at P = 104 days represents an empirical upper limit to period, since longer
periods are hard to determine. In (b), all systems are represented by asterisks. The sloping
upper boundary and the modest concentration at e = 0 probably reflect evolutionary effects
rather than primordial properties.

there is still a preference for near-equal masses at moderately short periods. However, the

numbers are too few to say if there is a significant departure from distribution (1.16).

The O-star sample of Mason et al. (1998) gave a rather different picture from the (much

smaller) OB sample of Lucy and Ricco (1979), with about as many systems in the range

Q = 0.4–0.6 as in the range 0.6–1. In the distribution (1.16) this corresponds to γ ∼ 0.8.

We should emphasise that distributions like (1.16), with just one free parameter (the expo-

nent), can easily be made to fit any statement of the character that a certain percentage of

SB2s has Q > Q1, and the remainder have Q < Q1. However it then implies an extrapolation

to the smallest mass ratios that may not be warranted, but is very hard to check.

A study of B-type binaries by van Rensbergen (2001), using the catalogue by Batten et al.
(1989), found distributions slightly biased towards low Q, as in the more complete sample

of O stars from Mason et al. (1998). His distributions are roughly equivalent to γ ∼ 0.8 and

0.7 for late B and early B systems respectively.

The distinction between distance-limited and magnitude-limited samples is particularly

important for mass ratios, since two equal-mass stars can be expected to be twice as bright,

and therefore visible over 2.83 times the volume, as systems with a small mass ratio. But for

O stars, distances are so great as to be very uncertain. We probably do best to establish the

distribution iteratively, using a magnitude-limited sample and then making due allowance for

the over-representation of equal-masses down to a given magnitude limit.

Even with data only (or mainly) on single-lined binaries, i.e. a determination only of

the mass function and not of the mass ratio, some information can be gleaned about the

distribution of mass ratios. Figure 1.9a shows the distribution of measured mass functions –

Eq. (1.1) – from a compilation of published data for 268 red giant SBs (G/K, II–IV). SB1s

are shown by circles and SB2s by asterisks, but in SB2s only the mass function of the giant

is plotted (or the more massive giant, in a few cases where both components are giants).

By SB2 in this context we mean stars in which two spectra are seen, even though in many
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Figure 1.10 A sample of 500 hypothetical binaries from the distributions (1.17)–(1.20), for
M1 = 1.2−4 M�. Log mass function ( M�) is plotted against log period (days). SB2s are
indicated by asterisk, SB1s by a circle. Rough observational limits are indicated by straight
lines, as in Fig. 1.9a. Those of too long a period or too small a velocity amplitude to be
readily measurable are indicated by a cross. The stars might be late B/A/F dwarfs, or, if
evolved, G/K giants as in Fig. 1.9a. Unlike in Fig. 1.9a, no triples were included.

cases only the G/K giant has had its radial velocity curve measured. The fact that ∗2 is

seen at all suggests that it is only moderately less massive than ∗1. It is probably reasonable

to assume that most G/K giants of luminosity class II–IV are in the fairly limited mass

range 1.2–4 M�.

We believe that a slight trend can be seen in Fig. 1.9a: most systems with P<∼ 102.5 are

above f ∼ 0.05 M�, and most with P>∼ 102.5 are below it. In spite of the fact that f depends

on both M1 and M2, as well as the inclination, a reasonable interpretation of the trend is that

at longer periods there is a greater spread of secondary masses than at shorter periods. The

relative shortage of small f at short P is not entirely due to the difficulty of measuring small

velocity amplitudes, as is shown by the expected cutoff of observations near the sloping line

K1 = 2 km/s. This line slopes in the opposite direction to the observed (but rather marginal)

trend. The ‘missing’ systems of low f and short P should be quite measurable, although no

doubt somewhat under-represented.

Several G/K giants with known or suspected white dwarf companions, in particular barium-

rich stars (Section 6.3), have been excluded, because the mass of at least one component,

and perhaps also the period, will have been modified by evolution. Other binaries, such as

Algols, have also been excluded on the basis that their masses are likely to have been much

modified by evolutionary interaction.

Figure 1.9a contains five systems (squares) which are known to be triple, the companion

to the giant being itself a close pair of stars. Such systems can be expected to have large mass

functions, and they do indeed give four of the eleven largest values in the figure. It is quite

likely that more SBs, particularly at the upper margin of f , are in fact triple, but have not

been recognised as such.

Figure 1.10 is a similar plot to Fig. 1.9a, but based on a theoretical model – Section 1.6 –

sampled in a way somewhat similar to the way in which real stars are sampled. Random

inclinations were also included. We believe that the best way to assess the reliability of a

model of the distribution of Q, which can be expected to depend on P and M1, is to compare a

theoretical figure like Fig. 1.10 with an observational figure like Fig. 1.9a, for various ranges

of P and M1. But we still have the problem of what to do about systems where the period is

too long or the velocity too small to be measured.
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The O star sample of Mason et al. (1998), referred to previously, gave information on mass

ratios for 49 SBs, with P <∼ 10 years, and a similar number of VBs with P >∼ 104 years. The

two distributions are at first sight very different: 90% of the SBs have Q>∼ 0.4, while 85%

of the second group have Q <∼ 0.4. However, a lot hinges on whether the SB sample is very

deficient in small-Q systems, as may be suspected on the grounds that they are harder to

observe. More importantly, the VB sample excluded all cases where one component was also

an SB, and this eliminates many VBs with near-equal masses. But even 50 or 100 small-Q
SBs, combined with 20 or 30 O SBs + O VBs, would hardly bring the two distributions into

agreement. It seems likely that here as elsewhere there is a trend to a greater range of mass

ratios at long periods than at short. In a distribution such as (1.16) the exponent γ may have

to range from about 2–3 at short periods and low masses to about 0.7–1 at long periods or

high masses.

A recent analysis (Halbwachs et al. 2003) of a substantially larger sample of F7–K7 dwarfs

than that of Duquennoy and Mayor (1991) suggests modest changes to the discussion here

of the distributions in period and mass ratio. Halbwachs et al. (2003) analysed 456 stars,

61 of which have orbits with P < 10 years. If these are binned as in Fig. 1.8b, they show

little change in the upward slope; but in detail, they suggest a slight deficit at P ∼ 200 days

and a slight excess at P ∼ 500 days. There is substantially more information regarding mass

ratios, both from SB2 orbits and from SB1 combined with astrometric (VB) orbits. A total

of 45 mass ratios were obtained. These display a rather flat distribution in Q over the range

0.2 ≤ Q ≤ 0.7, but with an unexpected deficit at 0.7–0.8. This is followed by an excess at

0.8–1.0, which is due mainly to short-period systems (P ≤ 50 days). Both the deficit and the

excess are by about a factor of 2.

1.5.5 Eccentricities
The distribution of orbital eccentricities appears to be roughly uniform in the range

from zero to unity, at least for those binaries whose components are sufficiently well sep-

arated that they can have had little chance yet to interact with each other, even at periastron.

Figure 1.9b shows a plot of e against P for the same collection of spectroscopic binaries as

Fig. 1.9a. The absence of eccentric orbits (e >∼ 0.05) at periods shorter than ∼10 days prob-

ably reflects the fact that the components in these systems are close enough to interact by

tidal friction (Section 4.2), a process which should tend to make orbits more circular. Binary

interaction may also account for (a) the sloping upper envelope, since eccentric binaries of

fairly short period will have small separations at periastron, and so should suffer particularly

from tidal friction, and (b) a concentration of systems at e = 0, some or all of which may

well be the result of considerable binary interaction. Known barium-rich red giants fall into

this category, and were excluded, but the systems in Fig. 1.9a with P >∼ 102.5 days and e = 0

may, like barium stars, contain a white dwarf, although unlike them they show little or no

barium enrichment.

If binary orbits were randomly distributed in phase space we would expect that e2 rather

than e would have uniform probability. Possibly this is the case at periods substantially greater

than 30 years, since very few of these have measured eccentricities. But although the sample

in Fig. 1.9b is not large, and is far from being a complete distance-limited sample, it does not

show the marked concentration to e ∼ 1 that this argument would imply. It may be that some

aspect of the formation process for binaries tends to weigh against high eccentricities.
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1.6 A Monte Carlo model
Our preferred model, for the time being, of a population of unevolved binary systems

has a mass distribution (for ∗1)

M1 = 0.3

(
X1

1 − X1

)0.55

, (1.17)

a period distribution

P = 5 × 104

M2
1

(
X2

1 − X2

)α

, α = 3.5 + 1.3α′

1 + α′ , α′ = 0.1 M1.5
1 , (1.18)

a mass-ratio distribution

1

q
≡ Q = 1 − Xβ

3 , β = 2.5 + 0.7β ′

1 + β ′ , β ′ = 0.1 P0.5(M1 + 0.5), (1.19)

and an eccentricity distribution

e = X4, (1.20)

where X1 . . . X4 are independent random variables uniformly distributed in [0, 1]. The mass

dependence in the period distribution, and the mass/period dependence in the mass-ratio

distribution, are crude attempts to quantify the discussion of the previous sub-sections. I

noted in Section 1.5.3 that the distribution of periods among O stars is strongly bimodal, and

I emphasise that the peak at long periods (∼104–106 yr) has been ignored.

Table 1.1 shows a distribution obtained by generating 106 binaries using Eqs. (1.17)–(1.19);

eccentricity was ignored. I have not truncated at low mass, so that quite a high proportion

of primaries, and an even higher proportion of secondaries, are presumably brown dwarfs.

Binaries with P > 109 days are treated as two single stars, and binaries of such short period

that the stars would overlap are treated as one single star with the combined mass; and all

‘singles’ are listed as if q > 9.99. No doubt coincidentally, the proportion of singles to binaries

that I generate is not in practice very different from what observation suggests.

Figure 1.10 is, like Fig. 1.9a, a plot of mass function against period, containing 500

theoretical systems with M1 = 1.2–4 M�, a range probably comparable (when evolved) to

the observed G/K-giant sample of Fig. 1.9. The distribution was convolved with a random

distribution of inclinations, to simulate the observational selection criterion for SBs that the

velocity amplitude should be above some threshold (K1
>∼ 2 km/s, for G/K giants, which have

relatively narrow lines and correspondingly high accuracy). Systems below that threshold, or

whose period is longer than the loose practical limit of ∼30 years (104 days), are shown with

a cross; asterisks are ‘theoretical SB2s’, defined by 0.7 < Q < 1, and circles are ‘theoretical

SB1s’, with Q < 0.7. Theoretical SB2s seem to be under-represented, particularly at shorter

periods, but this may well be a selection effect in the observed sample, since systems that are

seen in the first instance to be double-lined are more likely to be investigated further.

The density of stars in the Solar neighbourhood, projected on to the plane of the Galaxy, is

∼50 pc−2, and the effective area of the Galaxy is ∼109 pc2, so that the number of stars in the

Galaxy is ∼5 × 1010. The lifetime of the Galaxy is about 10 gigayears, and so we should gen-

erate stars from the distributions (1.17)–(1.20) at a rate of about 5 pc−2 gigayear−1. We might

also generate some single stars, from Eq. (1.17) alone, except that the ‘singles’ in Table 1.1

(arising from either merged very close binaries or disrupted very wide binaries) may be
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Table 1.1. An estimate of the frequency of binary parameters among 106 systems

M1 q P < 1 1–3.2 3.2–10 10–102 102–103 103–104 104–109 ‘single’

< 0.5 1.00–1.41 1 441 2 999 4 817 15 450 21 884 25 402 1 06 627 0

1.41–3.00 624 1 403 2 215 8 554 17 722 31 600 2 19 339 0

3.00–9.99 348 627 1 097 4 147 9 860 19 971 1 63 776 0

> 9.99 134 252 422 1 634 3 962 8 382 75 797 2 74 648

0.5–1 1.00–1.41 63 386 688 2 038 2 659 2 694 6 903 0

1.41–3.00 47 182 349 1 437 2 820 4 158 14 487 0

3.00–9.99 23 104 184 795 1 742 2 826 11 039 0

> 9.99 17 42 74 316 713 1 320 5 097 9 914

1–2 1.00–1.41 9 96 246 749 895 923 1 792 0

1.41–3.00 5 53 127 606 1 227 1 591 3 761 0

3.00–9.99 6 35 58 340 745 1 126 3 030 0

> 9.99 1 11 29 150 346 558 1 301 3 451

2–4 1.00–1.41 0 20 68 226 315 295 358 0

1.41–3.00 0 19 53 293 515 630 762 0

3.00–9.99 0 8 34 180 394 451 611 0

> 9.99 0 5 12 62 158 189 284 1 228

4–8 1.00–1.41 0 5 25 89 116 64 52 0

1.41–3.00 0 5 24 103 193 173 97 0

3.00–9.99 0 2 11 67 135 123 74 0

> 9.99 0 0 4 43 79 64 46 355

8–16 1.00–1.41 0 0 4 39 35 16 7 0

1.41–3.00 0 1 7 43 59 29 7 0

3.00–9.99 0 1 8 33 64 27 12 0

> 9.99 0 1 1 19 16 9 3 176

16–32 1.00–1.41 0 0 2 7 3 0 0 0

1.41–3.00 0 0 1 16 15 6 2 0

3.00–9.99 0 0 3 18 15 4 1 0

> 9.99 0 0 1 4 7 2 0 84

> 32 1.00–1.41 0 0 0 1 0 0 0 0

1.41–3.00 0 0 0 5 1 1 1 0

3.00–9.99 0 0 2 5 0 1 0 0

> 9.99 0 0 1 0 0 0 0 74

Period is in days, primary mass in Solar units

sufficient in number already. In fact we should also add a population of triples and quadru-

ples, at least, at about a tenth of the rate or more; but the statistical distribution of triples over

three masses and two periods is completely uncertain. We think of the distribution of binaries

in Table 1.1 as representing only those binaries which are furthest down the hierarchical pyra-

mid. Several of the shorter-period systems, say with P <∼ 104 days, will be resident in wider

triples.

The surface density of massive stars is, of course, to be modified according to their short

lifetimes (Chapter 2). Stars above a mass ∼5 M� only live for <∼100 megayears, so that their

abundance is reduced to ∼1% of what is predicted above. The remaining 99% will now be
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white dwarfs, neutron stars or black holes, but they may nevertheless have companions of

initially lower mass that are still normal stars.

We should not suppose that all parts of the Galaxy, including its collection of satellite

globular clusters, would conform to a single distribution. In particular, the distribution in

globular clusters is likely to be truncated at periods of ∼104 days. A simple criterion is that

‘soft’ binaries, whose orbital velocities are less than the velocity dispersion in the cluster, are

likely to be destroyed.

Although the mean rate of star formation suggested above may be a reasonable average over

a long time, evidence mainly from other galaxies suggests that there are short periods of rapid

star formation (‘starbursts’) presumably separated by long periods of relative quiescence. For

present purposes however it is probably good enough to assume a fairly steady rate.

1.7 Conclusion
A substantial proportion of stellar systems have periods short enough (P <∼ 104 days)

for future interaction. Low-mass systems (M1
<∼ M�) might be supposed incapable of serious

interaction, because their evolutionary lifetimes are longer than the age of the Universe. But

this is illusory since, at least at periods of a few days, they can interact by magnetic braking

and tidal friction (Chapter 4) to produce contact binaries and (probably) merged single stars.

Given that low-mass stars are much more common than high-mass stars, there is arguably

more interaction of this sort than of any other.

In an ideal world, we would have at least half-a-dozen distance-limited samples each

containing about 2000 unevolved systems – including single stars as ‘systems’ – covering

perhaps the following ranges of spectral type: O, early B, late B, A, F/G, K/M. They should

be unbiased towards binarity, i.e. they should not be selected on the basis of known radial-

velocity variation or other potential binarity indicators. In addition, some evolved samples of

similar size, e.g. G/K giants, F/G/K supergiants and M giants would be added, but we should

be wary that some members of these will have already undergone evolutionary interactions

and so have parameters differing from their values at age zero. In fact we must be wary

even for the ‘unevolved’ sample, since a proportion of unevolved stars will be coupled with

white dwarfs, neutron stars and black holes that are not always easy to identify. These samples

would have to be examined spectroscopically, photometrically and astrometrically for at least

30 years, and preferably 60 years, to determine the appropriate distributions. Many will turn

out to have multiplicity higher than two, but we might hope with samples of this size to get

some significant statistics on multiplicity as well as on binary orbits.

We would attempt to model these samples in an iterative manner. Having an a-priori

estimate from these samples of the distributions discussed above, we would construct an

ensemble of at least 106 (and preferably 1011) theoretical systems. We might need somewhat

more sophisticated distributions than the ones used here with only one or two parameters,

but the size of the samples would still not justify more than three parameters. We would

attempt to model the evolution of M1, P, q in individual systems according to our present

understanding, as outlined in Chapters 3–6. We can ‘observe’ the theoretical samples at a

variety of ages, allowing theoretically for such selection effects as we think we can quantify.

In the course of evolving such a theoretical ensemble we should find ourselves populating a

zoo of exotic binaries – and indeed of possibly exotic single stars that come from binaries that

are either disrupted or merged according to some of the processes modelled. We need further

observational sets of these exotic stars – cataclysmic binaries, X-ray binaries, contact binaries,
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symbiotic stars, barium stars, double-white-dwarf binaries, B-sub-dwarf stars, neutron stars,

double-black-hole binaries, etc. – for comparison with the theory. We would hope that after

one or two iterations we might get some degree of convergence. Even 106 theoretical systems

would not be enough to produce samples of some of these species of a size adequate for

statistical analysis.

In the real world, we will certainly not get complete convergence. Already some well-

determined binaries, of by no means exotic character, exist which cannot possibly be explained

on the basis of our present understanding of binary stars – see Section 2.3.5. This might be

seen to mean that we should throw the present understanding out of the window. But there

also exist some, in fact many, that seem to accord very well with present understanding;

what is one to make of that? Some difficult binaries may be explicable as triple or formerly

triple systems; others may require exotic processes not yet determined. Do we need a major

paradigm shift, as from Ptolemaic to Copernican orbits, or can we cope by tinkering about

the edges? Do we have to invoke magnetic fields, as the last refuge of the charlatan? At any

rate further iterations will be required.

But an important preliminary is to attempt to model evolution in systems on a one-by-one

basis, since this will test at least some of the evolutionary processes that we expect. After

discussing evolution of effectively single stars in Chapter 2, I describe what I believe to be

the main binary-interactive processes in Chapter 3 and later.
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Evolution of single stars

2.1 Background
The evolution of single stars, and of those stars which are in binaries sufficiently

wide that the effect of a companion can be ignored, has been much studied, especially with

the aid of increasingly powerful computers over the last 50 years. This is not to say, however,

that every problem has been solved: in the final section of this chapter I emphasise some of

the outstanding problems.

Figure 2.1 shows a comparison between recently computed models, and data obtained by

observation. They are shown in a Hertzsprung–Russell diagram (HRD) where luminosity, i.e.

the total energy output of the star, is plotted against surface temperature; the latter is plotted

backwards, for traditional reasons. Our theoretical understanding of the internal structure

and evolution of single stars is based on the concepts of hydrostatic equilibrium, thermo-

dynamic equilibrium and the consumption of nuclear fuel, mainly hydrogen. In hydrostatic

equilibrium, the inward force of gravity is balanced by the outward push of a pressure gradi-

ent. In thermodynamic equilibrium, the heating or cooling of a spherical layer of material is

determined by the balance of heat production in nuclear reactions, at temperatures of about

10 MK (megakelvin) and upwards in the deep interior, against heat loss as heat flows down the

considerable temperature gradient until it can be radiated into space from the photosphere at

temperatures observed to be about 2–100 kK. The heat flux is carried either wholly by radia-

tion, or by a combination of convection and radiation, depending on whether the temperature

gradient that would be required to carry the heat entirely by radiation is less than or greater

than the critical (i.e. adiabatic) temperature gradient at which convective instability sets in.

Most stars contain some region or regions that are predominantly convective and some that

are wholly radiative.

The nuclear reactions that provide the heat also change the nuclear composition of the

star on a slow time scale, megayears at least; although in stars substantially less massive

than the Sun the time scale can be longer than the Hubble time (∼15 gigayears), which is

presumed to be about the age of the Universe, so that little nuclear evolution is to be expected

in such stars. The nuclear reactions principally burn hydrogen to helium, with subsidiary

reactions that modify the abundances of carbon, nitrogen and oxygen, and also of deuterium,
3He, lithium and beryllium, for instance. In later stages much of the helium is itself burnt to

form a mixture of carbon and oxygen. In very late stages a large number of nuclear reactions

can take place, involving all the elements from carbon upwards. Provided the products of

these reactions can be returned to the interstellar medium via stellar winds, for instance, or

via the outbursts of novae and supernovae, stars appear to be able in principle to produce

all known nuclear species, apart from hydrogen and most helium, which is thought to be

31



32 Evolution of single stars

Figure 2.1 Observed stars (symbols) and theoretical models (lines) in the HRD. Bolometric
luminosity is plotted against surface temperature; equivalent spectral types for the main
sequence (Popper 1980) are shown along the top. Different symbols represent stars with
observed masses in the ranges 0.125–0.25, 0.25–0.5, . . . , 16–32 M�; different tracks are
1, 2, . . . , 128 M� (more precisely, log M = 0.0, 0.3, . . . , 2.1). The observational data are
from ESB2 systems (Andersen 1991, Pols et al. 1997, Schröder et al. 1997) and low-mass
VBs (Popper 1980). Theoretical models, with indicated masses, are by Drs O. R. Pols, K.-P.
Schröder, C. A. Tout, and the author. The zero-age main sequence, terminal main sequence,
Hertzsprung gap and beginning of the giant branch (see text) are indicated as ZAMS, TMS,
HG and BGB. For the higher masses, large circles indicate where He ignited. For the
lower-mass stars, large open squares indicate where the evolution is likely to terminate due
to mass loss, which was not included in these calculations. Kinks in the tracks near these
squares are due to the coarseness of the opacity grid at low temperature.

‘primordial’. It is by no means yet clear, however, what are the detailed stellar evolutionary

mechanisms by which nuclear species are produced in the abundances observed. Certainly

it is necessary to have an equally detailed understanding of Galactic evolution before the

problems of nucleosynthesis can be considered solved.

Important as Galactic evolution is, it is outside the scope of this book. For present purposes

it will, we hope, be sufficient to suppose that all stars have an initial ‘zero-age’ composition,
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which is described by just two parameters X and Z . X is the fraction by mass of hydrogen, and

Z the fraction by mass of all elements together (‘metals’) apart from hydrogen and helium:

the abundance of helium is then Y = 1 − X − Z . X varies little from star to star and is about

0.7–0.75. Z ranges from about 0.0001 in old stars (‘Population II’, found in globular clusters,

in the Galactic halo, and in nearby high-velocity stars) to about 0.02 in stars like the Sun and

younger (‘Population I’, found in the thin Galactic disc). Within the metallicity parameter Z it

is possible for the balance of, say, heavy metals to light metals or of oxygen to carbon to vary

with age, but for the time being we ignore this possibility. Probably X correlates with Z to

some extent, older stars having somewhat more hydrogen and substantially less metals: say,

X ∼ 0.76 − 3Z . It is commonly hypothesised that the earliest-formed stars (‘Population III’)

should have had virtually zero metals, but there is no observational evidence at present for

such a population.

Before a star can settle into the state of hydrostatic and thermal equilibrium described

above, it first has to condense out of a pre-stellar gas cloud. The star-formation process

is much less well understood than the later evolution – partly because of the absence of

equilibrium in condensing protostars (the more absent the earlier the phase), and partly also

because formation takes place, hardly surprisingly, in relatively dense gas clouds whose very

density obscures our direct view of what is going on. One of the most dramatic advances of

instrumental astronomy in the last quarter of the 20th century has been in the infrared region

of the spectrum, about 0.7–100 μm, where radiation is much better able than visible light to

penetrate through these gas clouds. This has already enormously improved the quality and

quantity of information on star formation. But it has still not given us an understanding of the

formation process as compelling as our understanding of later processes, even though these

later processes are themselves not definitively understood. In Section 2.2.7, we return briefly

to star formation.

A set of partial differential equations, outlined in Appendix A, can be written down to

model the physical processes that occur within stars that have settled into near-equilibrium.

These equations are not as definitive as one might reasonably suppose; for example, in circum-

stances where the heat content of material is changing simultaneously with the composition

(as a result either of nuclear reactions or of convective mixing) one is liable to find differ-

ent formulations in different computer codes, and even in different published accounts. The

least definitive part of the stellar evolution equations is probably the treatment of convection

(Section 2.2.3), and the next least definitive is mass loss by stellar wind (Sections 2.3, 2.4). The

problem of turbulent compressible convection is both extremely important and extremely dif-

ficult; it includes the problems of semiconvection, and of convective overshooting. We would

not expect it to be solved on a timescale of less than decades. But even if one sets aside

this difficulty, by using a very simple treatment of convection such as the mixing-length

theory of Böhm-Vitense (1958), and of semiconvection with a simplistic diffusion ap-

proach (Eggleton 1972, 1983b), solving the equations computationally remains a sub-

stantial problem.

Figure 2.2 illustrates, in the temperature/density plane, regions where different physical

processes dominate the equation of state (EoS) of stellar material. Although a considerable

variety of processes have to be included in a definitive equation of state, it is fortunate that

in most stars, at most stages of evolution, the main contributions to pressure come just from

radiation pressure, the perfect gas law and degenerate electron pressure. On most of the main

sequence (Section 2.2) even the third of these can usually be ignored. A very efficient equation
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Figure 2.2 Plot of log T (K) versus log ρ (kg/m3, showing dominant effects in the equation
of state: RP – radiation pressure; PG – perfect gas; HI – hydrogen and helium partial
ionisation; MH – molecular hydrogen; PD – pressure dissociation; ND – non-relativistic
electron degeneracy; RD – relativistic electron degeneracy; IB – inverse β-decay
(neutronisation); PN – photo-dissociation of nuclei; PP – pair production. Dotted lines are a
2 M� star on the main sequence (M), a 4 M� star in a highly evolved late supergiant state
(S), and a 0.6 M� white dwarf (W).

of state was used here, based on the model of Eggleton, Faulkner and Flannery (1973) but

updated (Pols et al. 1995) to include electron screening and an improved treatment of pressure

dissociation. A brief description is given in Appendix A.

For the computed models used here (Fig. 2.1; see also Table 3.2), the opacity coefficient

was taken from the work of Rogers and Iglesias (1992) and (for low temperatures at which

molecules contribute importantly) from Alexander and Ferguson (1994). Nuclear reaction

rates were taken from Caughlan et al. (1985) and Caughlan and Fowler (1988), and neutrino

energy-loss rates come from Itoh et al. (1989, 1992). A degree of convective overshooting

(Section 2.2.4) was used as suggested by the analysis of Schröder et al. (1997) and Pols

et al. (1997).

An ‘implicit, adaptive’ distribution of meshpoints (Eggleton 1971) was used in the

numerical scheme, since this gives great numerical stability and allows the models to be

computed with only 200 meshpoints between the centre and the photosphere. This pro-

cedure for distributing meshpoints works as follows. Instead of deciding in advance where

the meshpoints should go in the next timestep, which is difficult to do since the regions that

need the most meshpoints will move with time at a rate that is not easy to predict, we require

that the meshpoints in the next timestep satisfy the condition that the root-mean-square change

in the variables is the same from one space-like interval to the next. This means that an extra

implicit second-order equation has to be solved, along with the four first-order equations of

structure.
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In fact the number of equations becomes larger still, because it is important to treat the

composition variables in the same implicit manner as the structure and mesh variables; the

optimal position of meshpoints depends as much or more on the composition distribution

as on the distribution of structure variables (density, temperature, luminosity and radius).

Fortunately only a handful of composition variables are really important in determining the

structure (hydrogen, helium, carbon, oxygen and neon). The equations for the abundances

include convective mixing, which is treated as a diffusion process (Eggleton 1983b) with

a rather simple estimate of the convective diffusion rate that is based on the mixing-length

approximation to convection; consequently the composition equations are all second order.

Thus we end up with four first-order and six second-order equations to be solved implicitly

and simultaneously. The code used has a powerful and general difference-equation solution

package, which can handle a general mixture of first and second-order equations. All the

difference equations are differentiated numerically, in order to set up a Newton–Raphson

iteration.

The resulting code can evolve a star from the zero-age main sequence to the onset of

carbon burning in less than a thousand timesteps, although modern computation is so fast

that we can comfortably allow three or four thousand timesteps, which probably gives slightly

greater accuracy. However the accuracy of evolved stellar models is much more affected by

approximations for convective heat transport, convective and semiconvective mixing and

mass loss than by discretisation.

A further advantage of an implicit adaptive mesh is that it becomes easy, even trivial, to

include both mass loss by stellar wind in single stars (Section 2.4) and mass transfer between

components in a close binary (Chapter 3). Unfortunately our knowledge of what these rates

(especially of stellar wind) should be is not commensurate with the ease of including them. In

the models of Fig. 2.1 no winds were included, but they are included in some later discussions

and in Fig. 2.17, which is otherwise similar.

2.2 Main sequence evolution
Theory, that is to say computed models, and observation (e.g. Popper 1980, Andersen

1991) agree that many stars should be in a hydrogen-burning main-sequence (MS) band that

crosses the HRD from top left to bottom right (Fig. 2.1). Within the band, such bulk parameters

as the radius and the luminosity are determined mainly by the mass of the star, but also partly

by its age and initial composition. As the star depletes its hydrogen fuel in and near the centre,

it crosses the MS band, from the zero-age main sequence (ZAMS, Fig. 2.1) to the terminal

main sequence (TMS), increasing its radius and luminosity by about a factor of about 2.5–3

on a slow nuclear-burning timescale. Once the fuel runs out at the centre, and also in a central

core containing about 10% of the star’s mass, evolution usually becomes rapid until the star

has increased its radius by a larger factor. We can define the main-sequence band loosely

as terminating when this rapid phase of evolution begins. However, for stars of initial mass

about 1–2 M� the evolution slows again significantly before accelerating again, and as a

consequence the TMS becomes hard to define except in a somewhat arbitrary way. We return

to this point in Section 2.2.8.

2.2.1 Approximate formulae for main-sequence (MS) stars
There is reasonable agreement with observed masses (M), radii (R), surface tem-

peratures (T ) and luminosities (L) for MS stars, as seen in the HRD of Fig. 2.1. Approximate
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formulae relating these quantities, for stars on the theoretical ZAMS with a near-Solar com-

position of 70% hydrogen by mass, 28% helium and 2% ‘metals’ (everything else) are (Tout

et al. 1996)

L = 0.397M5.5 + 8.53M11

2.55 × 10−4 + M3 + 5.43M5 + 5.56M7 + 0.789M8 + 5.87 × 10−3 M9.5
, (2.1)

R = 1.715M2.5 + 6.60M6.5 + 10.09M11 + 1.0125M19 + 0.0749M19.5

0.01077 + 3.082M2 + 17.85M8.5 + M18.5 + 2.26 × 10−4 M19.5
, (2.2)

and

T = 5.77L0.25 R−0.5. (2.3)

The range of validity of the first two equations is 0.1 <∼M <∼100 M�. Here, and throughout,

L , R and M are in Solar units, with L� = 3.84 × 1026 W, R� = 6.96 × 108 m, and M� =
1.99 × 1030 kg, to sufficient accuracy for present purposes. The temperature T is in units of

kilokelvins or kK (i.e. 103 K). Equation (2.3) is simply the Stefan–Boltzmann law, which can

be used as a definition of the ‘surface temperature’ of a star. Stellar surfaces radiate, to a fair

degree of accuracy, like black bodies, so that although the photons that we see were emitted

by several different layers of stellar material with a modest range of local temperatures, the

surface temperature defined as above represents the best mean of this range. Tout et al. (1996)

give generalisations of Eqs (2.1) and (2.2) for a range of metallicities from Z = 0.0001 to

0.03.

The luminosity L is dictated mainly by the opacity in the outer layers, and itself dictates

the rate of consumption of nuclear fuel: see Section 2.2.2. The available reservoir of fuel is

roughly proportional to mass M . Hence the lifetime (in megayears) of a star within the main

sequence band is roughly proportional to M/L , and can be approximated in the same spirit

as Eqs (2.1), (2.2) by

tMS = 1532 + 2740M4 + 146M5.5 + M7

0.0397M2 + 0.3432M7
, 0.25 <∼ M <∼ 50. (2.4)

Formulae (2.1) to (2.3) fit the results of computed models to better than 1.2% over the mass

range 0.1 to 100 M�; Eq. (2.4) fits to better than 3.3% over the mass range 0.25 to 50 M� (J.

Hurley, private communication). The computations assume that the composition of a ZAMS

star is uniform, and is approximately the same as the present day Solar surface, except that

certain light elements (D, Li, Be, C) that burn rather easily at the prevailing core temperatures

are assumed to have already burnt to exhaustion or to equilibrium in the core. Equations (2.1)

and (2.2) do not give L = 1, R = 1 for M = 1, because the Sun is not a ZAMS star: it is

about halfway through its main sequence life.

Equation (2.1) gives the bolometric luminosity of the star, i.e. the energy output integrated

over all wavelengths. Since, even today, most investigations are carried out in the visual

waveband (∼0.5–0.6 μm), it is often desirable to correct for the fraction of energy released

in the visual waveband. This fraction depends mainly on surface temperature T , although

there is also a weak dependence on gravity and on composition, because stellar surfaces are

not perfect black bodies. But Eq. (2.2) shows that gravity (∝ M/R2) varies little on the main

sequence anyway. Consequently we can start by using an approximation depending only
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on T , viz.

LV

L
= 1 + 5 × 10−8T 10

4 × 104T −7 + 4 × 10−4T 5 + 3 × 10−10T 12.3
. (2.5)

Where T is in kK as before. Equation (2.5) reproduces, to about 10%, the tabulation of Popper

(1980), over the temperature range 3–40 kK. A similar formula for the more limited range

4–40 kK corrects for fractional luminosity in the ‘blue’ waveband (∼0.4–0.5 μm):

L B

L
= 1 + 3 × 10−5T 5

6 × 107T −12 + 125T −2.5 + 0.8 + 3 × 10−7T 7.1
. (2.6)

Beyond the main-sequence band these formulae are less reliable, and equivalent formulae

for atmospheres at lower gravity are not yet well determined. These formulae also assume a

metallicity Z comparable to the Sun, which is commonly but not universally true.

Observations are generally plotted as log LV against log(L B/LV ), except that a factor of 2.5

multiplies each of these, for traditional reasons. The latter is a function of temperature only,

in the above approximation, but in reality depends (moderately) on gravity and metallicity.

It is also affected by distance, since the interstellar medium imposes differential absorption

and scattering, which is stronger at shorter than longer wavelengths. The former (log LV ) is

of course strongly affected by distance, which is often not well known, but a great deal of

information comes from compact clusters of stars, where it is generally reasonable to assume

that all members are at the same distance. Two observational cluster HRDs are shown in

Fig. 2.10 (Section 2.3.1). For stars in the Solar neighbourhood distances are now relatively

well known thanks to the Hipparcos astrometric satellite. Their HRD is shown in Fig. 2.11

(Section 2.3.1).

Computed models of MS stars show that stars with M >∼ 1.25 M� have convective cores

and predominantly radiative envelopes, while stars with 1.1 M� >∼ M >∼ 0.3 M� have radiative

cores and convective envelopes. Less massive stars still are wholly convective. In the narrow

range of masses about 1.1–1.25 M�, the core starts in radiative equilibrium and becomes

convective as the star evolves across the main-sequence band. Convection is discussed in

Section 2.2.3 and convective mixing in Section 2.2.4. The presence or absence of central

convection, and the fraction of the star’s mass that is convective when the hydrogen fuel

is exhausted at the centre, affects the way in which one can sensibly define the TMS: see

Section 2.2.8.

2.2.2 Polytropic approximations
Although the stellar structure equations of Appendix A do not look amenable to

elementary solutions, stars in the main sequence band are in fact remarkably well approxi-

mated by polytropes, i.e. by gas spheres in which the pressure is proportional to a power of

density. This relation can be written parametrically as ρ = ρcθ
n, p = pcθ

n+1, or equivalently

p ∝ ρ1+1/n , with n constant, and ρc, pc being central values. Combining this with hydrostatic

equilibrium and self-gravity gives the Lane–Emden equation

1

r2

d

dr
r2 dθ

dr
= − θn, (2.7)

provided that we scale the radius r by a factor {(n + 1)pc/4πGρ2
c }1/2. Equation (2.7) has

‘Emden solutions’ which start from θ = 1 at the centre and reach θ = 0 at a dimensionless
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radius and mass which can readily be computed, provided n ≤ 5; for larger n the radius and

mass are unbounded. For a general discussion of polytropes see Chandrasekhar (1939).

The polytropic index n is not, in practice, dictated by the equation of state of the gas

(although, exceptionally, it is in the case of a white dwarf; see Section 2.3.1), but rather by

the temperature distribution and hence by the heat transport process – in particular, by the way

in which the radiative opacity of the material depends on density and temperature. Radiative

equilibrium dictates that a value of n ∼ 3 is not far wrong, in practice, over the whole of the

main sequence above M ∼ 0.5 M�.

This is illustrated by the fact that Eq. (2.1) agrees quite closely with a result that can be

obtained analytically, subject to certain approximations that may seem drastic but that must

clearly be reasonable in practice. Let us assume the following:

(a) Pressure is a combination of perfect gas and radiation pressure only, i.e.

p = �ρT

μ
+ 1

3
aT 4 ≡ �ρT

μ
(1 + ζ ), say. (2.8)

Eddington (1926) took the gas pressure to be a fraction β, and radiation pressure the

remaining fraction 1 − β, of the total pressure, but we prefer to use the closely related

ratio ζ of radiation pressure to gas pressure: β ≡ 1/(1 + ζ ).

(b) The opacity κ(ρ, T , composition) has the form

κ = κTh + κKr

3�ρ

aT 3
= κTh + μκKr

ζ
. (2.9)

Here κTh is the Thomson-scattering opacity, a constant. The second term (with κKr

constant) is a rough replacement for Kramers’ opacity law κ ∝ ρ/T 3.5, which crudely

approximates the absorption of photons by bound–free electronic transitions in highly

ionised gas. For material with composition similar to the Sun’s, κTh � 0.034 m2/kg and

κKr � 0.015κTh.

(c) The nuclear energy generation rate is uniform throughout the entire stellar interior, rather

than concentrated towards the centre as in a realistic model.

Under these assumptions, the equations of hydrostatic and of radiative thermal equi-

librium lead to the following consequences:

(d) The star is exactly an n = 3 polytrope, with p ∝ T 4, ρ ∝ T 3 throughout.

(e) Eddington’s quartic equation applies, which in terms of ζ above is

ζ (1 + ζ )3 = μ4 M2

M2
Edd

, (2.10)

where ζ by (d) and (a) is a constant throughout the star, and where μ is the mean

molecular weight (μ ∼ 0.62 for Solar material). The Eddington mass MEdd is a mass

whose value is determined solely by fundamental constants, including the dimensionless

mass (2.01824) of the n = 3 polytrope:

MEdd ≡ 2.01824
�2

G

(
48

πaG

)1/2

= 2.01824
12

√
5

π3/2
mU

(
Gm2

U

h̄c

)−3/2

� 18.3 M�, (2.11)
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Figure 2.3 The variation of the local polytropic index n (in the form of the softness index
s ≡ n/n + 1, pluses), and of L(r )/m(r ) (asterisks) in arbitrary units, as functions of pressure
(N/m2), in ZAMS stars of 1 M� (a) and 0.25 M� (b). The left-hand star is convective from
the surface down to log p ∼ 13; the right-hand star is fully convective. Departures from
s ∼ 0.6 in the convective regions are due to ionisation, molecular dissociation, or inefficient
convection very near the surface. The dotted line in each panel is n = 5; cf. Fig. 2.8.

where mU is the atomic mass unit (for most purposes the mass of a baryon). The Edding-

ton mass is closely related to the Chandrasekhar mass, Section 2.3.2: they differ by a

factor of 32
√

15/π2.

(f) The star’s luminosity is given by

L = 4πacG MT 4

3κp
= 4πcG Mζ 2

(ζκTh + μκKr)(1 + ζ )
. (2.12)

Equations (2.10–2.12) imply a unique L(M) relation, which can easily be compared

numerically with the ‘empirical’ relation (2.1), and will be found to be within a factor of

two for all masses in the range 0.5 to 400 M�; over this range log L ranges from −1.5

to 7. The maximum error in this range is at about 10 M�, where Eq. (2.12) is too large

by a factor of 2.

For the highest masses, with M 
 MEdd/μ
2, Eq. (2.10) gives ζ >∼ 1 and then Eq. (2.12)

gives L ∝ M . For lower masses the relation becomes steeper: L ∝ M3 provided

1 >∼ ζ>∼ μκKr/κTh. It is steeper still, L ∝ M5, at even lower masses where ζ <∼ μκKr/κTh.

Only for M <∼ 0.5 M� does Eq. (2.1), giving L ∝ M2.5, begin to deviate significantly

from the analytic result, giving L ∝ M5. This departure is due to the fact that convective

rather than radiative equilibrium is dominant at low masses, and the analytic approach

based on the dominance of radiative transport breaks down. We discuss the reasons for

convection in Section 2.2.3.

Figure 2.3 shows how the effective local polytropic index n, defined in terms of the slope

of the curve followed by the star in the log p, log ρ plane, varies in zero-age stars of 1 M� and

0.25 M�. This slope, which we define as the ‘softness index’ s, relates to n by n/n + 1 ≡ s.

In the 1 M� star, although n is hardly constant it varies in a fairly limited range with a

minimum of about 1.5 (apart from a very narrow region near the surface) and a maximum of
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about 4; equivalently 0.6 <∼ s <∼ 0.8. A value of about n ∼ 3, s ∼ 0.75 is a surprisingly good

approximation to the overall structure.

Note that in the regime where the radiative postulate approximately works the mass-

luminosity law (2.10) to (2.12) is independent of any nuclear physical input, although for a

more realistic opacity formula than Eq. (2.9) a slight dependence on nuclear physics would

intrude. It is mainly the opacity which determines the luminosity, and that in turn determines

the rate of nuclear burning, and hence the central temperature and density. The following

three equations determine the radius R and the values Tc, ρc of central temperature and

density in the n = 3 polytropic model above, for a given M from which ζ , L are determined

by Eqs (2.10) to (2.12):

RTc = 0.8543
μG M

�(1 + ζ )
, (2.13)

ρc = aμ

3�
T 3

c

ζ
, (2.14)

and

L = Mεc

(2 + η/3)3/2
= AMρcT η

c

(2 + η/3)3/2
. (2.15)

The first two equations are exact (for n = 3 polytropes). In the third, there are two

approximations. Firstly, the factor AρcT η
c is an estimate, of a type commonly used in

back-of-the-envelope analyses of stellar structure, for the rate ε of generation of energy by

nuclear reactions at the stellar centre. For a given nuclear reaction, η is taken to be constant,

although more realistically the effective η is a function of temperature that diminishes slowly

as the temperature increases. The physics of nuclear reactions in the context of astrophysics

is developed in detail by Clayton (1968); tables of reaction rates can be found in Caughlan

and Fowler (1988). On the upper MS, i.e. M >∼ M�, hydrogen burning by the CNO cycle

dominates, and we can take for illustration η ∼ 16.5, A ∼ 3.6 × 10−19 X Z (Tc in MK); for the

lower main sequence the p–p chain dominates, and we can take η ∼ 3.85, A ∼ 9.6 × 10−5 X2.

Secondly, the factor (2 + η/3)3/2 in Eq. (2.15) is an approximation to allow for the fact that

the energy generation rate is not uniform through the star, as was assumed in (c) above, but

is peaked more sharply at the centre the larger η is. To justify the η-dependent factor in

Eq. (2.15), let us model the temperature distribution, and consequential ρ and ε distribution,

by a Gaussian:

T ∝ e−r2/a2

, ρ ∝ e−3r2/a2

, ε ∝ e−(3+η)r2/a2

. (2.16)

Then by integrating ρ and ρε over the star, we find that the ratio of the central value of

L/m to its surface value is just (2 + η/3)3/2. We would get a similar result if we assumed

alternatively that T ∝ (1 + r2/a2)−1. Equations (2.12) and (2.15) require that the centre of

an MS star should lie approximately on the following curve in the (ρ, T ) plane:

3pκε

T 4
= 4πacG(2 + η/3)3/2. (2.17)

Figure 2.4 is a plot of contours of constant pκ/T 4 in the (ρ, T ) plane. Opacities κ have

not been determined for a substantial portion of this plane in the lower right, where the

physics of cool dense gas is very difficult. At the upper left both κ and p/T 4 are constant, the
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Figure 2.4 Contours of constant pκ/T 4 in the temperature (K)/density (kg/m3) plane.
Contours are in decades, with high values towards the lower middle. Radiative portions of a
star follow these curves fairly closely; convective portions follow adiabats which are usually
steeper, but may be shallower in ionisation zones near the surface. ZAMS stars of 1 and
6 M� are plotted as circles (lower and upper, respectively), and a highly-evolved 4 M�
model as pluses. The last two stars have much the same value of L/m outside their main
energy-producing regions. The solid line is Eq. (2.17), an approximate locus on which the
centres of ZAMS stars should lie.

former because of Thomson scattering and the latter because of radiation pressure. Our very

simplistic model above would make these contours straight lines, and would put a (main-

sequence) stellar interior on one of these contours. In fact for the 6 M� model illustrated in

Fig. 2.4 this is quite closely the case: the contour is not quite straight, but the stellar model

keeps quite close to it all the same, and the centre of the model falls almost exactly on the

plotted curve (2.17).

We show in the next section that we should have pκ/T 4∼ constant in any part of the star

that is in radiative equilibrium. In Fig. 2.4 each of the three stars plotted does follow such a

contour in at least a part of the star; where it departs from such a contour is either in a surface

convection zone, a central convective core, or below the main energy-producing region, as

we discuss shortly.

Mathematically, a polytrope has a surface at p = T = ρ = 0, but physically the surface is

at finite p, T and ρ, determined by the condition that the mean free path λ of a photon should

be comparable to the pressure scale height Hp at the surface:

λ ≡ 1

κρ
∼ Hp, where Hp≡ − dr

d log p
= p

gρ
, hence pκ ∼ g. (2.18)

A slightly better estimate, based on a Milne–Eddington radiative atmosphere with con-

stant opacity, is pκ = 2
3
g. Along with the boundary condition L = πacR2T 4 – effectively

Eq. (2.3) – this gives surface p and T typically smaller than central values by at least about

1012 and about 103 respectively, so that a complete polytrope (out to T = 0) is in fact a very

good approximation.
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Fully convective stars, although not covered by the above analysis, can nevertheless also be

represented approximately as polytropes, this time of index n ∼ 3/2. This value of n comes

from thermodynamics of gas, rather than from radiative heat transport, since convective

stellar interiors tend to be completely adiabatic (p ∝ T 5/2, ρ ∝ T 3/2) except perhaps for

a small region near the photosphere. An analytic model can be set up which is similar in

plausibility to the above radiative approximation, but somewhat more messy because here

it is the surface opacity which is important. It determines which adiabat the star lies on.

The opacity coefficient near the surface is less convincingly expressible as a power-law

approximation than in the interior; it is dominated by the degree of ionisation of hydrogen,

which drops dramatically with temperature below ∼10 kK, and which itself determines the

(small) abundance of the negative hydrogen ion (H−; binding energy 0.75 eV). This loosely

bound ion is the major contributor to opacity in the temperature range 5–9 kK, as the number of

free electrons, and their contribution by Thomson scattering, drops off. A further complication

is that the equilibrium between molecular hydrogen and atomic hydrogen is progressively

more important as the mass goes below about 0.5 M�. This has only a minor effect on the

mean polytropic index, but a major effect on the adiabatic constant in the relation p = constant

T 5/2 that prevails throughout most of the interior. The right-hand panel of Fig. 2.3 shows

how n varies in practice in a fully convective star (0.25 M�). There are two major bumps

that are due to molecular dissociation near the surface, and partial ionisation further in. A dip

and bump at log p ∼ 11–13 is due to pressure dissociation, a highly non-perfect-gas effect

at high density and low temperature. The physics in this region is particularly hard to model

accurately.

A useful model of lower main sequence stars can be made by constructing an n = 3/2

polytropic envelope around an n = 3 core (Rappaport et al. 1983). Such models can be

scaled to agree with results of detailed computations. The latter show that below M ∼ M�
the convective n ∼ 3/2 envelope grows strongly at the expense of the n ∼ 3 radiative core,

until the whole star becomes convective below about 0.3 M�. This critical value may be

rather dependent on the opacity coefficient, both at the surface and near the centre. It is not,

however, very accurate to think of lower MS stars as n = 3/2 polytropes, since n is quite

considerably increased, over quite a substantial region, by ionisation and by the dissociation

of molecular hydrogen (Fig. 2.3(b)).

The main sequence as usually defined terminates at about 0.08 M�. In fact there is a

bifurcation, with two sequences at higher masses; the second sequence being thermally

unstable and having degenerate cores along with nuclear burning. Although there are no

solutions below ∼0.08 M� that are in thermal equilibrium, objects that form below this mass

can be in hydrostatic equilibrium while cooling indefinitely, as ‘brown dwarfs’, towards a

third equilibrium series at zero temperature which is essentially the white dwarf sequence

continued to low mass (Section 2.2.6).

2.2.3 Convection
There are very few stellar models which do not contain a convective region some-

where. In fact this is something of a coincidence: upper MS stars have convective cores, and

lower MS stars have convective envelopes, and although the physics dictating these two facts

is quite different, the latter begins at almost exactly the same point on the MS where the

former ends. The result is a very small region (about 1.1–1.25 M�) where there is significant

surface convection as well as core convection.
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Classically, three important temperature gradients are definable at any layer within a star:

∇ ≡ d log T

d log p
≡ ∂ log T/∂r

∂ log p/∂r
, (2.19)

which is the actual gradient of log T with respect to log p as one travels through the star;

∇r ≡ 3κpL

16πacGmT 4
, (2.20)

which is the gradient which would be necessary to carry all the local heat flux by radiative

transport alone; and

∇a ≡
(

∂ log T

∂ log p

)
S,composition

, (2.21)

the adiabatic gradient. If ∇r < ∇a in a certain layer, then that layer is stable against convection,

and so ∇ = ∇r; all the heat is carried by radiation. If ∇r > ∇a in another layer, then that

layer is unstable to convection, and to a reasonable level of approximation ∇ = ∇a, because

convective heat transport is so efficient (see below) that a very small excess of temperature

gradient over adiabatic will allow convection to carry many times as much heat as the radiative

flux. In the lowest level of approximation we can therefore say that

∇ ≈ min (∇r, ∇a). (2.22)

In a radiative region, since ∇ = ∇r we can differentiate Eq. (2.20) logarithmically with

respect to log p, to obtain

d log ∇
d log p

= (4 − κT )(∇0 − ∇) + ∇L/m, (2.23)

with the definitions

∇0 ≡ 1 + κp

4 − κT
, ∇L/m ≡ d log(L/m)

d log p
(2.24)

and

κp ≡
(

∂ log κ

∂ log p

)
T

, κT ≡
(

∂ log κ

∂ log T

)
p

. (2.25)

The opacity derivatives κp, κT have, for example, the values 1, –4.5, if the opacity is Kramers’

(κ ∝ ρ/T 3.5) and the pressure is perfect gas (p ∝ ρT ); and they are both zero for Thomson

scattering (κ = constant). To a reasonable approximation therefore, all of κp, κT and ∇0

can be thought of as given constants. The quantity ∇L/m is gratifyingly small throughout

main-sequence stars. Whereas pressure decreases by a factor of at least 1012 from its central

value to its surface value, L/m decreases by a factor of only about 5–100: this factor is

approximated as (2 + η/3)3/2 in Eq. (2.15). Only in the innermost two decades of pressure

(in a main sequence star) does L/m begin to depart at all from its surface value: Fig. 2.3.

Thus ∇L/m can be neglected everywhere except within four or five pressure scale heights of

the centre, where it is positive and of order unity.

If ∇L/m is neglected in Eq. (2.23), if κT , ∇0 are taken as constant, and if κT < 4 (which it

usually is by a wide margin), then the equation is readily solved to show that ∇ → ∇0 as p
increases. The value that ∇ starts from at the surface is almost irrelevant, since convergence
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is quite rapid. But the fact that the photosphere has to be radiative means that ∇ must start

with a small value: a simple plane-parallel radiative atmosphere with negligible radiation

pressure has ∇ = 0 at p = 0. Even if there is convection in a surface envelope (for reasons

indicated below), the radiative zone below this envelope will tend rapidly to ∇ = ∇0. We

have ∇0 = 0.235 or 0.25 in the above two cases of Kramers’ opacity and Thomson scattering.

For a perfect-gas equation of state, these imply polytropic indices of 3.25 and 3 respectively.

Then returning to Eq. (2.20), we see that in a radiative portion of a star κp/T 4 = constant,

except within four or five pressure scale heights of the centre where L/m can increase. It

is this increase in L/m (going inwards) which can push ∇ above ∇a and so drive central

convection, in stars where η is moderately large.

We can estimate analytically a minimum value for η that is necessary (but not sufficient)

for the star to have an infinitesimal convective core (Tayler 1952, Naur and Osterbrock 1952).

In such a star Eq. (2.23) must hold just outside the core (but effectively at the centre, since

the core is infinitesimal). Furthermore the right-hand side of the equation must be positive

there, since ∇ = ∇r < ∇a just outside, and must increase to ∇ = ∇a just inside. But ∇L/m

can be calculated at the centre by expanding quantities there (T, ρ, L , m) to first order in r2,

and using the fact that (for a perfect gas) ∂ log ρ/∂r = (∇−1 − 1)∂ log T/∂r then:

∇L/m = 3

5
(∇ + η − η∇) = 3

25
(2 + 3η), if ∇ = ∇a = 2

5
. (2.26)

Then the right-hand side of Eq. (2.23) is positive if

η > 1 − 5

9
(5κp + 2κT ) = 29

9
(Kramers’ opacity). (2.27)

This, as we said, is necessary but not sufficient; numerical modelling shows that η >∼ 5 is

sufficient.

Figure 2.4 shows ‘radiative’ contours of constant κp/T 4 in the (ρ, T ) plane. These are

intersected by adiabats (not shown) which are usually steeper (ρ ∝ T 1.5), although in the

surface layers with T ∼ 104–104.7 the ionisation of hydrogen and helium make them less

steep. Travelling inwards from the surface, the interior must follow whichever of the two

curves is shallower in slope (negative slope counting as steep). A major feature of Fig. 2.4

is a ‘knee’ in the radiative curves, at T ∼ 104 K; it is caused by the fact that κT is strongly

positive in the region where hydrogen is partially ionised. If the photosphere is below this

knee, then the structure curve must start off along an adiabat, and will only reach the radiative

curve again (the same curve that passes through the photospheric point) some distance above

the knee. But if the photosphere is itself above the knee, then the entire envelope can follow

the radiative curve, at least until near the centre where convection tends to be driven by the

∇L/m term, if η >∼ 5 (but depending slightly on the opacity law). A small departure from this

simple picture is caused by the fact that in the very outermost layers convection is not fully

efficient at carrying heat, and so ∇ may exceed ∇a by a modest amount within one or two

pressure scale heights of the photosphere.

The 6 M� star in Fig. 2.4, starting from a photosphere which is above the knee, follows

a contour of pκ/T 4 almost exactly, until very near the centre where the increase in L/m
drives the gradient up to the convective value. On the other hand the 1 M� model starts

below the knee, and so cannot follow the contour. Instead it follows an adiabat, but finally

when the adiabat recrosses the same contour the interior becomes radiative again and follows
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the contour until L/m increases close to the centre. The centre does not, in fact, reach the

convective slope of another adiabat, but almost does.

In a convective region we can estimate the excess of ∇ over ∇a a little more seriously, using

the ‘mixing-length theory’ (MLT; Böhm-Vitense 1958), which I describe here in a rather sim-

plified version. This estimates the mean velocity of convective eddies, w , from the difference

between the total luminosity (obtained by integrating the nuclear energy generation over

the interior) and the luminosity that can be carried by radiation within the convective layer,

supposing that convection is so efficient that the temperature gradient ∇ can be approximated

(Appendix A) as the adiabatic gradient ∇a:

L = L rad + Lcon, L rad ≈ 16πacGmT 4∇a

3κp
, Lcon ≈ 4πr2 ρw3

α
, (2.28)

and so, using Eq. (2.20)

w3 ≈ 4acT 4gα

3κpρ
(∇r − ∇a). (2.29)

The constant α is the ‘mixing-length ratio’, a fudge parameter which carries all the uncertainty

in the physics, and is assumed to be of order unity. It is normally taken to be the ratio of the

supposed typical mean free path l of an eddy to the local pressure scale height Hp = p/gρ,

Eq. (2.18). However, since this definition of HP is infinite at the centre, which is inconvenient

and probably also unphysical, we use here a definition

l = α min

(
p

gρ
,

√
p

Gρ2

)
. (2.30)

The convective heat flux comes from the proposition that the heat energy carried in an eddy

is comparable to its kinetic energy. This in turn comes from the proposition that the kinetic

energy acquired by the eddy is equal to the work done by buoyancy over the mean free

path. Assuming that the velocity of the eddy is strongly subsonic, it should be in pressure

equilibrium with the ambient material, so that an upward-rising eddy is both hotter and less

dense than its surroundings. It carries thermal energy because it is hotter, and gains mechanical

energy because it is less dense. Thermodynamics ensures that the relative temperature excess

and density deficit are comparable.

The excess of actual over adiabatic gradient, which relates to the entropy gradient, is

estimated from

p

gρ Cp

∂S

∂r
= ∇ − ∇a ≈ w2

v2
soundα

2
, (2.31)

where v2
sound ∼ p/ρ is roughly the sound speed squared and Cp is the specific heat at constant

pressure. This assumes that buoyancy accelerates the eddy until, after a mean free path, it

dissolves back into the ambient fluid. Normally the Mach number w/vsound is indeed much

less than unity, as it ought to be for the validity of the model. However it can approach unity

in the photospheric layers.

By convention, standard mixing-length theory has certain specific coefficients of order

unity within it, leaving α as the only free parameter. Appendix A includes the standard

prescription, which leads to a slightly more elaborate cubic equation for w and hence ∇ − ∇a.

Stars earlier than F are not much affected by α, because they have little convection in their
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envelopes, and in their cores the Mach number is barely different from zero. For a whole

range of cooler stars with convective envelopes, from G/K/M dwarfs through the Sun to

G/K/M giants, a value for α of 2.0, used in the models of Fig. 2.1, gives adequately good

agreement with observation. This does not mean that mixing-length theory is right, but it does

help to make it at least very useful. It is much the simplest recipe available, being entirely

‘local’: the actual temperature gradient at a point is determined only by values of quantities

at that point, such as L , r, m, T and ρ.

The quantity l/w defines a local convective timescale, and leads to an estimate of the

convective envelope turnover time tET. This timescale is important in investigations of tidal

friction (Section 4.2) and magnetic dynamo activity (Section 4.4). In the latter, the Rossby

number, or ratio of rotation period to convective turnover time, is considered important.

Several different estimates of tET can be made, depending on how one averages l or w . A

fairly unbiased estimate is
∫

dr/w , taking the integral over the whole convective zone. This is

the time it would take fluid to rise from bottom to top; it is ∼35 days for the Sun. Although the

integrand diverges at both ends, the integral is finite since, from Eq. (2.29), w ∼ |r − r0|1/3

near a boundary at r0. However, the integral is probably an overestimate, since it is likely to be

the larger eddies near the base which contribute most to dynamo action. A more conventional

estimate is the value of l/w at a height one half of a mixing length (l/2) above the base of

the convection zone. In the case of the Sun, this gives a value of ∼15 days (Rucinski and

Vandenberg 1986), i.e. 3/7 of the integrated value. We take this ratio as ‘canonical’, and so

define

tET ∼ 0.43

∫
CZ

dr

w
. (2.32)

At a cruder level, it is convenient to define a global turbulent velocity wG and global convective

time scale tG thus:

L = 4π R2 ρ wG
3, M = 4π

3
R3 ρ, tG = R

wG

=
(

3M R2

L

)1/3

, (2.33)

L , R and M being surface values in SI, not Solar, units. This gives wG ∼ 36 m/s and

tG ∼ 250 days for the Sun. The envelope turnover time tET is less than tG for the Sun because

w is somewhat larger at the lower-than-mean density in the envelope and the scale height is

substantially less than the overall radius. For fully convective stars, at the bottom of the main

sequence, we expect tET ∼ tG. For less-than-fully convective stars, an empirical estimate can

be made in terms of the actual radius R and the ‘Hayashi Track’ radius RHT, discussed in

more detail below (Section 2.3.1). RHT is the largest radius that a star of given luminosity and

mass can have (in hydrostatic equilibrium, but not necessarily in thermal equilibrium), and

is reached if the star is fully, or at least very largely, convective. R/RHT is also a function –

Eq. (2.49) – of only global quantities L , R and M . R < RHT if the star is partly radiative:

R ∼ 0.55 RHT for the Sun. A rough empirical fit to both low-mass ZAMS stars and to red

giants, as well as to the Sun, is

tET ∼ 0.33 tG

(
R

RHT

)2.7

. (2.34)
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2.2.4 Convective mixing, entrainment, semiconvection and overshooting
The convective motion not only transports heat but also mixes the composition of

the star. In a first approximation, convective mixing is assumed to be confined to those regions

of a star where the temperature gradient is steep enough to cause convective instability. But

it seems likely that turbulent motion starting within an unstable region may continue under

its momentum into at least the edges of an adjacent stable region, so that convective mixing

of composition takes place over a larger region than we at first expect. Before discussing this

‘convective overshooting’, however, it is helpful to consider briefly the classical model of

convective mixing, which necessarily involves also the concepts of ‘convective entrainment’

and of ‘semiconvection’.

Classical convective mixing, along with entrainment and semiconvective mixing, can be

modelled by a diffusive transport equation. We imagine convective eddies which move with

typical speed w for a typical mean free path l (which we take for illustration to be the pressure

scale height, i.e. α ∼ 1) before losing their identity by merging with other eddies. Then the

appropriate diffusion coefficient is approximately wl, which can be estimated from Eqs (2.29

and 2.30) as

wl = σ (∇r − ∇a)1/3 , σ = p

gρ

(
4acT 4g

3κpρ

)1/3

. (2.35)

We can now write the composition equation, for a nuclear species with abundance X , as

1

ρr2

∂

∂r

[
r2ρσ (∇r − ∇a)1/3 ∂ X

∂r

]
= DX

Dt
+ R, (2.36)

where D/Dt represents a Lagrangian time derivative and R(X, ρ, T ) is the rate of nuclear

burning. Of course, in regions stable to convection (∇r < ∇a), we must put σ = w = 0. It is

important to note that ∇r is itself a function of the abundance X , via κ in Eq. (2.20). Thus

Eq. (2.36) for X is much more non-linear than it appears to be. The nuclear evolution of a star

is actually governed by a whole set of equations like Eq. (2.36), one for each nuclear species;

but in practice there are only a few species sufficiently important that their abundances can

themselves modify the structure to a significant extent.

Normally σ/ l2, an estimate of the convective mixing rate – comparable to t−1
G , Eq. (2.33) –

is so large in comparison with R, the nuclear burning rate (or, more significantly, R averaged

over the stellar interior), that we can take ∂ X/∂r � 0 as a good approximation to the solution

of Eq. (2.36). This is the usual assumption of convective-mixing algorithms, that the compo-

sition is uniform within an unstable region. Then the rate of change in time of this uniform

composition is obtained by integrating Eq. (2.36) over an entire unstable region. However,

making the composition gradient nearly vanish is not the only way in which Eq. (2.36) can

be balanced for very large σ/ l2: an alternative possibility is that ∇r − ∇a may be very small,

but still positive and not zero, in which case ∂ X/∂r need not be small. This latter kind of

solution is ‘semiconvective’. There is not actually an ambiguity in Eq. (2.36) as to which

kind of solution is achieved. A typical evolutionary calculation in which the set of composi-

tion Eqs (2.36) is solved simultaneously with the structure and mesh-spacing equations that

determine such other variables as p, T, r, L , m will automatically ensure (a) that ∂ X/∂r � 0

in some part of an unstable region, (b) that ∇r − ∇a � 0 in the remaining part of the unstable

region and (c) that σ = 0, and hence DX/Dt + R = 0, in stable regions. Figures 2.5 and 2.6
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Figure 2.5 The movement of boundaries of radiative, convective (shaded; ∇r − ∇a > 0.01)
and semiconvective or weakly convective (dotted; 0 ≤ ∇r − ∇a ≤ 0.01) regions, with mass
coordinate plotted vertically against age as a fraction of the total life of the star. Also shown
are lines where hydrogen (pluses) and helium (heavy dots) have been depleted by burning to
10% by mass. (a) 16 M� star; (b) 4 M� star. In (a), a large semiconvection zone develops
during the main-sequence evolution: its apparently ragged edge mainly reflects the
coarseness of the mesh used. In addition, hidden in the spike at somewhat less than 90% of
the lifetime, there is a convection/semiconvection zone, which is shown in more detail in
Fig. 2.6. In (b), there is a substantial semiconvection zone outside the convective helium-
burning core, which is also shown in more detail in Fig. 2.6. During the last 1% of the star’s
lifetime, the two burning shells and the base of the convective zone are indistinguishable on
this scale, although they are separated by several pressure scale heights.

illustrate the way in which convection or semiconvection zones can grow or disappear in the

course of evolution of a 16 M� and a 4 M� star.

At any boundary between a convective region and a stable region there will be at least a

thin layer where the turbulent velocity is very small. If the composition is different between

the stable and unstable regions there will necessarily be a transition layer where there is a

composition gradient. Whether this layer is very thin, or on the other hand quite substantial,

depends on how the opacity varies with the composition. Only if the layer turns out to

be substantial would we bother to call it ‘semiconvective’, although in principle thin as

well as thick layers are semiconvective. This is illustrated in the upper panels of Fig. 2.6,

discussed shortly. For purposes of illustration, any zone which has 0 ≤ ∇r − ∇a ≤ 0.01 is

treated as semiconvective, so that a normal convective zone appears to be bounded by a

‘semiconvective’ region.

When solving the structure along with the composition equations, it is naturally found

that the boundary between an unstable and a stable region moves in time with respect to the

mass coordinate. If the movement is such that the boundary encroaches on the stable region,

we have the phenomenon which we refer to here as ‘convective entrainment’. Whether the

convective region shrinks, or grows by entrainment, in the course of evolution, and whether

some part of the unstable region is semiconvective or not, is not easy to predict a priori.

Experience shows that most main-sequence models have convective cores which shrink, and

which avoid semiconvection. An exception is the range of models of about 1–1.5 M�, where

the convective core grows during the first half of the main-sequence evolution because the

dominant hydrogen-burning reaction gradually switches from the p-p chain to the CNO cycle.

In the lower part of this mass range the core is radiative to start with, developing convection
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Figure 2.6 The growth of a semiconvective region at the edge of a convective region, in
(upper panels) a TMS star of 16 M�, and (lower panels) a helium-burning core of 0.4 M�. In
each case both the composition (pluses) and the convective parameter ∇r − ∇a (continuous
curve) are plotted against mass coordinate, at an early stage (left) and a late stage (right) in
the development of the semiconvective region. All of the action in the upper panels takes
place inside the vertical spike in Fig. 2.5a located at just before the 90% fractional lifetime,
i.e. in the rapid transition between core hydrogen burning and core helium burning.

as the CNO cycle grows in importance. In massive stars, >∼15 M�, a semiconvection zone

may appear somewhat beyond the outer edge of the convective core, at an intermediate stage

in the star’s evolution across the main-sequence band, as illustrated in Fig. 2.5a.

Figure 2.6 illustrates two of the more common situations in which semiconvection is

found to occur. The first is the situation referred to above in massive stars towards the end

of main sequence evolution. The second is the situation found in a helium-burning core.

Whereas hydrogen-burning convective cores on the main sequence tend to shrink as the star

evolves, mainly because the opacity decreases as the helium abundance rises, helium-burning

convective cores tend to grow, mainly because the opacity increases as the carbon abundance

rises. The increase may become so great at the outer boundary of the convective core that a

semiconvection zone is forced to develop beyond it.
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The top panels of Fig. 2.6 show two profiles of hydrogen abundance X against mass

coordinate m, for two models during evolution of a 16 M� star. They occur during the rapid

(thermal timescale) evolution at the end of the main sequence – both models are hidden in

the spike in Fig. 2.5a located at just before 90% fractional age. In the earlier model (left)

X rises steadily from zero in a central core to 0.7 in the surface layers. The corresponding

run of the parameter ∇r − ∇a is also shown. It is negative, implying no convective mixing,

everywhere except (by a very slight margin) at four points near 6 M� which have just become

unstable. They have barely begun to affect the composition profile. In the later model (right),

the convection has spread over a much greater region, from about 3.4 to 8.5 M�. The inner

part of this region is fully convective, with ∇r − ∇a well above zero and the composition

profile almost flat, except for one point at the inner boundary which is still moving inwards.

Entrainment is going on at this lower boundary. The outer part has ∇r − ∇a very small,

so that mixing is slow and the composition profile rises smoothly; this is a semiconvective

region.

The lower panels of Fig. 2.6 similarly show the growth, by a combination of convective

entrainment and semiconvection, of the helium-burning core of a 0.4 M� helium star. Between

the models the outer boundary of the convective carbon-enriched core has moved outwards

by roughly 0.09 M�; this growth is driven mainly by the fact that carbon opacity is higher

than helium opacity at the same pressure and temperature, so that a temperature gradient

that would be stable if helium alone were present becomes unstable once carbon is mixed in.

However, in this case the growth of the core in effect dilutes the carbon as the boundary moves

out, so that part of the entrained region becomes semiconvective rather than fully convective.

Most of the extra core is semiconvective, as seen by the fact that there is a considerable

gradient of composition along with a very small but positive value of ∇r − ∇a.

Standard linear analyses of stability against convection are done on the assumption that

there is no composition gradient. The situation where there is a composition gradient requires a

more detailed analysis, but its results are quite straightforward (Kato 1966, Eggleton 1983b,

Spruit 1992). They tell us, firstly, that if ∇r < ∇a, the ‘Schwarzschild criterion’, then the

situation is stable; secondly, if ∇r lies in an intermediate regime

∇a < ∇r < ∇a +
(

∂ log T

∂μ

)
p,ρ

dμ

d log p
, (2.37)

then the situation is ‘overstable’, by which is meant that the motion is oscillatory on a short

(dynamical) timescale, but with an amplitude that grows on a longer (thermal) timescale.

However, the linear overstability in this regime is not in fact the predominant instability,

since in the same regime a non-linear mode, involving the successive overturning of a large

number of thin layers, is more favoured energetically. The consequence of the instability is

that mixing (possibly very slow mixing) will take place as long as ∇r exceeds ∇a. This mixing

need not proceed to completion, i.e. until the composition gradient has been reduced to zero,

but only until ∇r has been reduced to fractionally above ∇a, since the mixing then becomes

slow. Thirdly, if ∇r is larger still, outside the range indicated on the right in expression (2.37),

the situation is dynamically unstable to much the same degree that it would be without the

composition gradient. This is the ‘Ledoux criterion’ for dynamical instability. However, one

does not expect this criterion to be interesting in practice, because before the gradient has

grown large enough for dynamical instability it would have already been large enough for the

non-linear mode of successive overturning to have taken place, and so would be prevented
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from rising much further. The upshot is that we should use equations like (2.35) and (2.36)

whether there is or is not a gradient of composition. An exact value for the coefficient σ in

wl is not necessary, provided that wl contains a factor with the property that it goes to zero

with ∇r − ∇a; but see Eq. (2.38) below.

All the above behaviour takes place within the classical model of convective mixing, where

it is an axiom that mixing does not take place in regions where ∇r < ∇a. But it is unlikely that

the motion of convective eddies will actually fall exactly to zero at the boundary ∇r = ∇a.

Eddies which move on the unstable side of the boundary will be accelerated by the buoyancy

force right up to the boundary. Of course, they will also be subject to the decelerative force of

turbulent viscosity. But although the forces may (somewhat naively) vanish at the boundary,

the velocity presumably does not, and so the eddies may be expected to overshoot somewhat

into the stable region.

In addition to such a process, called ‘convective overshooting’, there are other possible

reasons why uniformly-mixed cores might be larger than the ones determined by current

models with the ‘standard’ assumptions. For example, stellar rotation can cause circulation

currents (Section 3.2.1), and these can be expected to be particularly strong at a boundary

between a convective and a radiative region. They may therefore cause mixing across the

classical boundary, and thus contribute to overshooting. Waves perturbed in the stable region

by motions in the unstable region can lead to mixing. Dynamo generation of magnetic field

in the convective core might lead to buoyant toroidal flux loops which float up through the

stable envelope and cause mixing. ‘Convective overshooting’ will be used here in a very

general sense, to mean any process that produces mixing beyond the classical boundaries

of convective and semiconvective mixing. Possibly the term ‘enhanced mixing’ would be

better, because less specific, but convective overshooting is the process most commonly

discussed. Unfortunately, in some literature the term ‘convective overshooting’ is also used,

confusingly, to describe the process by which a classical convective region may grow in the

course of stellar evolution; this is the process which in this book is referred to as ‘convective

entrainment’.

We would not, of course, be discussing possible mechanisms for convective overshooting if

there were not rather clear reasons, coming from the comparison of observed with computed

stars (Andersen 1991), for believing that stars have larger mixed cores than the standard

models produce. The observational evidence suggests that the main-sequence band is broader

than is indicated by models without overshooting, at least for masses above ∼1.8 M�; and also

that core-helium-burning giants are more luminous at a given mass than the standard models.

Figure 2.1 shows a small group of stars that are quite far above the ZAMS, at about spectral

type A. Standard models would evolve very rapidly through this area, so that such stars should

be rare. But the assumption of convective overshooting broadens the main-sequence band,

and allows the observed area to be more heavily populated.

The effect of overshooting is to prolong main-sequence evolution (because a greater amount

of nuclear fuel is accessible to the central nuclear furnace), to broaden the MS band, and

to make later evolutionary stages more luminous because their He cores are more massive.

Let’s model convective overshooting here by using a modified formula (cf. Eq. 2.35) for the

diffusion coefficient of turbulent mixing:

wl = Cσ (∇r − ∇a + ∇os)
2, ∇os ≡ δos

2.5 + 20ζ + 16ζ 2
, (2.38)
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where ζ , as in Eq. (2.8), is the ratio of radiation pressure to gas pressure. We find (Schröder

et al. 1997, Pols et al. 1997) that a value δos = 0.12 ± 0.04 for the overshooting parameter

is necessary, by comparison of computed models with certain highly evolved binaries which

have well-determined masses, luminosities, temperatures and radii.

The ζ -dependence of (2.38) is an ad hoc modification to ensure that very massive stars,

where ∇r ∼ 0.25 because Thomson scattering dominates, and where also ∇a ∼ 0.25 because

radiation pressure dominates, do not become wholly convective. The ζ -dependent factor is

equivalent to saying that mixing takes place in a band where the entropy drops by a fixed

amount from its constant value in the adiabatic core.

Equation (2.38) differs in two other ways from Eq. (2.35). Both changes are for numerical

convenience, and have no physical basis. The exponent 2 replaces 1/3, because differenti-

ation – necessary in the iterative solution of the equations – would give a singularity at the

boundary ∇r = ∇a − ∇os. The constant C , which should be unity, is weakened to 10−2 or

10−4 because even in double precision the composition gradient is so slight that it is poorly

defined numerically. We would hope to be able to report that the changes make little dif-

ference in practice, since it matters little whether the composition changes by one part in

106 or in 1010 within a convective region. However, in the 8 M� star of Fig. 2.1, the ‘blue

loop’ (see later), where the star after having reached the giant branch retreats temporarily into

the Hertzsprung gap, is quite significantly shortened in length as one goes from C = 10−2

to C = 10−4. Apparently minor changes in the helium composition profile can change blue

loops rather significantly.

It appears to be necessary for overshooting to disappear rather abruptly when the convective

core is itself small below about 1.8 M�, since some old Galactic star clusters such as M67

appear to contain a turn-off region which is better modelled without overshooting (Morgan

and Eggleton 1979, Pols et al. 1997, 1998). By contrast, younger clusters such as IC 4651

are in better agreement with models containing overshooting. It seems possible that a model

of overshooting adequate to describe both older and younger clusters will need two fitting

parameters in it, which is an unfortunate complexity. An ad hoc prescription that does this is

∇os ≡ δos

2.5 + 20ζ + 16ζ 2

U

U0 + U
, U = Gm2

4πr4 p
, (2.39)

U being a homology invariant (i.e. a dimensionless quantity) that vanishes at the centre but

increases strongly outwards in the core. Along with δos = 0.12, the constant U0 is taken as

0.1, which crudely ensures that the overshoot disappears when the core is suitably small.

Theoretical estimates of the amount of overshooting are very uncertain, for the present.

We may have to wait until three-dimensional hydrodynamical codes have enough spatial

resolution, as well as numerical reliability, to solve this problem convincingly – but even then

we should probably include rotation and magnetic fields, as a minimum. It is also possible that

yet more detailed calculations of the opacity coefficient will change the size of the ‘standard’

convective core, and hence the size of the overshoot region needed to give agreement with

observation. It is not so much the magnitude of the opacity as the rate of change of opacity

with temperature and pressure – the quantities κT , κp of Eq. (2.25) – which determines the

size of a core. These could change significantly even if the mean opacity level is about right.

Probably the most stringent test at present of models of stellar evolution, but so far only for

the Sun, comes from helioseismology, the study of the very rich spectrum of low-amplitude

oscillations at ∼1–5 mHz that are observed on the Sun (Claverie et al. 1979, Isaak 1986,
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Figure 2.7 (a) The difference between measured and computed sound speed (squared), as a
function of radius, for a Solar model. Errors are largest (∼0.4%) near the base of the
convection zone at ∼0.7 R�. From Christensen-Dalsgaard and Däppen (1996). (b) Contour
plot of the rate of rotation as a function of latitude and depth in the Sun. The base of the
convection zone is shown as a dashed line. Rotation is rapid near the equator, and slower
towards the poles. It is indeterminate in the blank region to the left. From Schou et al.
(1999).

Schou et al. 1999). These oscillations are driven by the random perturbing motion of con-

vective eddies near the surface, but like earthquakes the waves can penetrate quite deeply

(more deeply, the longer the period), be refracted back to the surface, and thus yield infor-

mation about the deeper layers. Figure 2.7a shows the close but not perfect agreement of the

observed spectrum with a theoretical model (model S of Christensen-Dalsgaard and Däppen,

1996). Agreement is best when it is assumed that there is a slight diffusion (Proffitt and

Michaud 1991) of helium towards the centre within the radiative core (∼70% of the Sun by

radius).

Selective diffusion (Chapman and Cowling 1958) takes place in stars, in those regions

which are not mixed to uniformity by convection or other processes, because the usual

structure equations (Appendix A) do not include the fact that different nuclear species (and

even different atomic states of the same species) are acted on by different forces. Hydrostatic

equilibrium (Eq. A1) is an accurate average over all species, but a particular species of particle

experiences a particular extra force relative to the mean force. This extra force is (loosely) a

linear combination of the pressure gradients of all species (including photons), with different

linear combinations for each species. Some species experience a net outward force, some a

net inward force. The selective force translates to a selective velocity, via atomic collisions –

much as in conduction by electrons in a wire. The fact that photons diffuse outwards relative

to the mean fluid can be seen as an example of selective diffusion, and is due to their extremely

low (i.e. zero) mass relative to the other species, mainly H. He atoms are heavier than H,

and so diffuse inwards; except that the problem is actually much more complicated, as all
the partial pressures, including that of radiation, are involved, for all species. If a massive

species has an unusually high cross-section to photons, it may be dragged outwards by the

photon flux even though otherwise it would tend to settle inwards.

In a non-rotating star there would be considerable degeneracy among the normal modes of

oscillation, but this is lifted by rotation. The observed spectrum of the Sun is so rich that the
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internal rotation can be determined as a function of position over most of the interior except

for a small central core which is not significantly penetrated by those modes measured so far.

Figure 2.7b shows the angular velocity determined. There is a strong variation on the surface,

that was already known from the rotation rates of sunspots; but the helioseismological analysis

shows that the surface variation persists with depth down to the base of the convection zone,

and then rather abruptly disappears to give a rather uniformly rotating radiative core, at least

to the depth which is measurable. The peak angular velocity is ∼8% greater than the mean

interior value.

Another test of models of the Sun is from measurements of its neutrino output (Bahcall

1964, Kuzmin 1966, Davis et al. 1968, Haxton 1995). Neutrinos are side-products of the

chain of nuclear reactions that converts hydrogen to helium. Some come from the basic p-p

reaction (or rather its pep variant), others from β-decays of 7Be and 8B. Although two

neutrinos are always produced for each He nucleus generated by the fusion of four H nuclei,

the energy spectrum of the neutrinos is a strong function of temperature as different parts of the

nuclear-reaction network contribute at different temperatures. There is a marked disagreement

here with theory. The shortfall is of about 40% in detectors based on 71Ga and about 70%

for the detector based on 37Cl (Haxton 1995; Bahcall 2000); the shortfall depends on the

parameters chosen for the theoretical model as well on the nature of the detector. Before

we throw out stellar models, however, we have to ask whether the theory of the neutrino is

more complex than at first supposed: ‘flavour oscillations’, where the neutrinos (supposing

their rest mass is not exactly zero) oscillate between e, μ and τ states as they travel through

matter, or magnetic field, may possibly be the cause of the discrepancy (Wolfenstein 1978,

Mikheyev and Smirnov 1985, Hata and Langacker 1995). We shall adopt the point of view

that helioseismology largely vindicates stellar modelling, and that therefore the neutrino

problem requires better neutrino physics.

2.2.5 Anomalous main sequence stars
If the standard equations of stellar structure, involving strict hydrostatic equilibrium

of spherical objects with Solar composition at age zero, were literally true, there would

be no main-sequence stars showing (a) emission lines, (b) peculiar (i.e. strongly non-Solar)

composition, (c) short-term variability, e.g. pulsation, flares, rotational asymmetry, (d) excess

radiation, relative to the visual, in XR, UV, IR, radio or other wavebands or (e) magnetic fields.

In fact many MS stars show one or more of these properties. Some of these anomalies may

well be related to binarity. But it will be convenient to summarise here, very briefly, some

of the main types of anomaly that require explanation. In approximate order of decreasing

luminosity down the main sequence, we find the following:

(a) Of stars. These are O stars which show emission lines, both in the visual and the UV.

The lines have a ‘P Cygni’ shape (red-shifted emission bordering a broad blue-shifted

absorption line), which is indicative of a roughly spherical wind flowing outward with

high terminal velocity and substantial mass-flux (Section 2.4).

(b) WR (Wolf–Rayet) stars. These show very strong emission lines, especially of ionised

He, N, C; as for Of stars the lines have a P Cygni shape, but are so much stronger

that they actually dominate the visual spectrum. WR atmospheres are so affected by

wind that it is difficult to locate the stars with certainty in the HR diagram, but they

appear to be in the top left corner, with L >∼ 105 L�. Their masses, determined with

some reliability from spectroscopic orbits, are about 30–70% of what is expected from
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their luminosities (>∼30–50 M�, Fig. 2.1). The enhancement of nitrogen seen in the WN

subset of WR stars is roughly consistent with mass loss, if the star has been stripped

down to a core where nuclear burning formerly took place (Gamow 1943). The WC

subset (carbon-enriched) presumably represent a later phase where products of helium

burning are revealed, and it may be that WC stars, and perhaps the hotter (‘earlier’) WNs,

are actually post-MS objects. Possibly all stars of high enough luminosity are subject

to such winds, perhaps as a result of some major instability triggered by high radiation

pressure at the Humphreys–Davidson limit (HDL; Section 2.3.4), but the physics of the

mass-loss process is not yet well understood.

(c) OBN stars. Some late O and early B stars show anomalously strong nitrogen. This

could be due to mass loss, as in WN stars, but the winds observed are by no means as

strong. It could more probably be due to unusually strong mixing of the outer layers with

the nuclearly-processed interior, perhaps driven by rotation (Paczyński 1973). There is

evidence that binarity is involved (Walborn 1976).

(d) β Cep, 53 Per and SPB stars. These show pulsation in radial or non-radial modes. Most

or all stars in a limited range of spectral type (B0.5–B2 II–IV) are radial β Cep pulsators.

The pulsations appear to be driven by a mechanism which derives from an enhancement

of opacity in a limited region of the density–temperature plane near the surface, due

to partially ionised Fe and other heavy elements (Cox et al. 1992, Dziembowski and

Pamyatnykh 1993, Dziembowski et al. 1993). They relate to the bump seen in Fig. 2.4 at

about 105 K and low density. The 53 Per stars (Smith 1977) occupy a larger region of the

HR diagram roughly centred on the β Cep region, extending to mid-B, and perhaps are a

less extreme form of the same mechanism. They exhibit periodic changes in line shape,

attributable to non-radial pulsation. Slowly pulsating B (SPB) stars (Waelkens 1991),

in the range B3–B8, have low-amplitude multi-periodic pulsations of period ∼1.5–

4 days, which may be high-order non-radial gravity modes, driven by some destabilising

mechanism in the energy-producing core. The β Cep pulsators are not to be confused

with δ Cep pulsators; the latter are not main-sequence stars and so are not discussed

here, except tangentially in (h) below.

(e) Be (B-emission), λ Eri, ζ Oph stars. Although Be stars range from late O to late B they

are most common (about 20%) at early B. The emission, unlike in WR stars, is usually

double peaked and roughly centred at rest. It appears to be due to a rotating equatorial

ring or disc of gas. The emission is often episodic, on a timescale of about a decade, as

if occasionally shells of gas are thrown off at or near the equator. Infall is sometimes

seen, as well as outflow, but circulatory motion dominates. Be stars are all in very rapid

rotation, so that equatorial gravity is strongly reduced though not to zero. An excitation

in the outer layers near the equator, perhaps due to magnetic activity or pulsational

instability (or both), may be intermittently overcoming the rather weak gravity there.

Some Be stars are λ Eri variables (Balona 1990), whose variability appears to be due to

the rotation of a starspotted surface, as in the cooler α CVn and much cooler BY Dra

stars (below). ζ Oph stars appear to show non-radial pulsation (as do 53 Per stars) as

well as Be characteristics (Kambe et al. 1993).

(f) Bp (B-peculiar), α CVn, roAp stars. These chemically peculiar stars are quite common

(∼10%) at late B, but range from early B to A and even early F. Different elements show

marked overabundances (by about 103–1010), roughly correlating with mean surface

temperature. Helium, and sometimes specifically 3He, can be anomalous at early B,

and a range of metals (Sr, Eu, Cr, Ho) at later types. The overabundances are usually

concentrated at strong magnetic poles, and since the magnetic field is normally oblique
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to the rotation axis the peculiar abundances as well as the magnetic field appear to

vary periodically as the star rotates. The poles may also be so large and cool that the

light output is rotationally modulated, in α CVn variables. The overabundances are

also presumably concentrated very much to the outermost layers; they are not thought to

represent an overall overabundance of the element. Selective diffusion of elements in the

local temperature and pressure gradients of the photosphere (Section 2.2.4), particularly

as modified by very large magnetic fields in starspots, is thought to be the cause (Michaud

1970). Bp stars are often called Ap stars, because the excess of metals gives a first

impression that the spectrum is later, and the surface cooler, than is actually the case –

but there is a minority of such stars to be found genuinely at spectral type A. Some of

the cooler Bp/Ap stars show rapid oscillations (‘roAp stars’ – Kurtz 1990), with periods

of about 10–20 min. They may be ‘oblique pulsators’, with the pulsation and magnetic

axes aligned. The roAp stars are in the δ Sct instability region (see below) and so the

pulsations are presumably driven by helium ionisation, but in a surface whose behaviour

is dominated by strong starspots.

(g) Hg/Mn, Am (A-metallic) stars. From late B to early F there is a high proportion of

stars (∼20%) showing overabundances (by about 10–102) of elements like Y, Ga, Hg,

Mn, and also underabundances of He, Ca. Unlike the Bp stars, there is no evidence of

magnetic fields, and the abundance anomalies appear to be distributed isotropically, not

patchily. Selective diffusion is probably also the cause here, but without the extra effect

of starspots. Selective diffusion might be suppressed by rotationally driven mixing, but

presumably in these stars this mixing is ineffective because these stars have slower-than-

average rotation – see (h). Am stars are usually in binaries with 2.5 days <∼ P <∼ 100 days

(Abt 1983), which suggests that tidal friction (Section 4.2) is involved.

(h) δ Sct, AI Vel, δ Del, γ Dor stars. Most A stars that are not Am stars are δ Sct pulsators.

The pulsations are akin to the δ Cep pulsations of evolved stars, and are driven by the

zone some way below the photosphere where helium is undergoing second ionisation

(T ∼ 50 kK). The pulsation is presumably absent in Am stars because selective diffusion

has largely drained the helium from this zone. The δ Sct stars probably counter this

selective diffusion with rotationally-driven mixing, being faster-than-average rotators.

AI Vel variables appear to be δ Sct stars that are at the upper edge of the MS band. A

few stars (δ Del stars) show both Am and δ Sct characteristics. Balona et al. (1994) have

identified a γ Dor class of variable at or just beyond the cool edge of the δ Sct instability

strip. They are early F stars apparently pulsating non-radially, but probably related to

δ Sct stars.

(i) β Pic stars. These show a considerable excess IR flux, which can be interpreted as a cool

disc some hundreds of AU across (Aumann 1985). Such discs are presumably left over

from the formation process, and indicate a fairly young star. They may be sites for the

formation of planetary systems.

(j) Blue stragglers. These stars are not especially anomalous in themselves, but are anoma-

lous in relation to those star clusters in which they are found. In principle they can be

any spectral type earlier than about Solar, but most are of types late B to F. They lie on a

cluster main sequence above the turn-off point, where normal stars should have evolved

into giants or white dwarfs (Fig. 2.10b). Apart from binary mechanisms, two suggested

explanations are (a) recently-born stars, younger than the bulk of stars in the cluster,

and (b) anomalously mixed stars, whose MS lives have been extended through large-

scale mixing of the envelope with the core. Neither single-star mechanism is especially

satisfactory.
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(k) λ Boo stars. These are mildly anomalous stars of spectral type A, which are fairly normal

in C, N, O and S, but depleted in many metals. They may be related to β Pic stars (above)

in having cool discs around them, and the abundance anomalies may be due to depletion

of metals in the disc by selective condensation into grains. These grains are driven out

of the system by radiation pressure, and accretion of the remaining disc material on

to the photosphere gives the anomaly. They may represent <∼1% of main-sequence A

stars.

(l) Strong λ4077 stars. These are mildly anomalous F (and some A) stars showing overabun-

dances of Zr, Ba and other elements possibly related to the s-process of nucleosynthesis

(Section 2.3.2). They may be main-sequence analogues of the classical red-giant barium

stars, for which a binary-star mass-transfer mechanism is strongly indicated (Section

6.4). If the same mechanism applies to λ4077 stars, we would expect them all to be

binaries with a white-dwarf companion.

(m) FGKM ‘subdwarfs’. These are Population II main-sequence stars, and ‘anomalous’ in

our definition only because, being old, they formed with substantially lower metallicity

than the Sun. They are hotter and smaller than ‘normal’, i.e. Solar-composition, main-

sequence dwarfs, and so on a Hertzsprung–Russell diagram appear below the normal

main sequence, but by no means as far below as white dwarfs.

(n) BY Dra, AB Dor stars. Some K dwarfs, but also F–M, show a quasi-periodic variation

due to the rotation of one or two large starspots or starspot clusters into and out of the

line of sight. Individual spots persist for months. Such stars tend to rotate rapidly (∼0.5–

5 days), and also to show flaring activity. Rapid rotation is probably the cause of dynamo

activity, in turn causing the flares and spots. Binarity is sometimes the cause of the rapid

rotation, as for evolved RS CVn red subgiants (Section 4.6), but rapid rotation may also

be simply an indication of youth. We use BY Dra as a prototype of such behaviour as

produced by binarity, and AB Dor as a prototype of such behaviour in single stars (or at

least stars with no close companion).

(o) Flare stars. A proportion, increasing to about 50% at latest types, of K/M dwarfs have

3–5 magnitude outbursts of a few seconds duration, at intervals of weeks or months.

These outbursts are typically more energetic than Solar flares, and seen against the

background of a star that may be about 1000 times fainter. The flares are due to magnetic

activity, which is probably related to more rapid rotation than average; but not all flare

stars show the rotational modulation characteristic of BY Dra stars (above). Mass loss

due to flaring, combined with the magnetic field, will lead to ‘magnetic braking’ of the

rotation; so the rotation and all the activity consequent on it should diminish with age.

This suggests that flare stars are simply younger-than-average M dwarfs.

Almost all of the above types of anomalous behaviour have been attributed at some time to

the influence of a binary companion, but the case has not always been sustainable. The best

cases for the importance of binarity can probably be made for classes (c), (g), (h), ( j), (l) and

(n), and will be discussed later; while for classes (d), (f), (m) and (o) there is little or no case

to be made.

2.2.6 Brown and black dwarfs
Towards the lower end of the MS, where stellar interior conditions involve sub-

stantially lower temperatures and higher densities than in the Sun, the equation of state

(EoS) becomes rather complicated. It is high density rather than high temperature that causes

material near the centre to be ionised (‘pressure ionisation’), and the electron gas may be
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substantially degenerate. The effect of degeneracy can be to allow the star to support itself in

hydrostatic equilibrium without the help, necessary in more massive stars, of a temperature

gradient due to nuclear reactions. Thus models are possible in which the heat flux derives

only from cooling of the interior. Such stars are called ‘brown dwarfs’; they are expected at

M <∼ 0.08 M�, the exact value depending on what approximation is used for the EoS. In prin-

ciple such a star can continue cooling to zero temperature, since either degenerate electron

pressure, or else the pressure of the liquid or solid state (as in planets), can support the star

against gravity at arbitrarily low temperature. If the temperature is so low as to contribute

negligibly to pressure support the object is sometimes called a ‘black dwarf’. The radius

of a black dwarf will be determined purely by its mass and chemical composition; a brown

dwarf can be somewhat larger, since the internal temperature also contributes to the pressure

support.

Zapolsky and Salpeter (1969) constructed black-dwarf models using a relatively simple

EoS. They obtained a radius–mass relation which can be approximated, for M >∼ 10−5 M�,

thus:

R = Rch

[(
Mch

M

)2/3

−
(

M

Mch

)2/3
]1/2 [

1 + 3.5

(
Mpl

M

)2/3

+ Mpl

M

]−2/3

. (2.40)

The characteristic radius Rch and masses Mch and Mpl are given in terms of the composition

by

Rch = 0.0228 〈Z/A〉 R�, Mch = 5.83 〈Z/A〉2 M�,

Mpl = 0.0016 〈Z/A〉3/2 〈Z2/A〉3/4 M�, (2.41)

where Z , A are the atomic number and atomic weight of the chemical constituents, and

angular brackets mean that the quantities are averaged over the different constituents, by

weight. Thus material consisting of 70% hydrogen and 30% helium by weight has 〈Z/A〉 =
0.85, 〈Z2/A〉= 1.0. Equation (2.40) gives R ∝ M1/3 for low (planetary) masses (M <∼ Mpl),

where the EoS gives virtually an incompressible liquid. For higher masses, approaching

stellar, where electron degeneracy pressure dominates, Eq. (2.40) gives R ∝ M−1/3; except

that the radius goes to zero as M → Mch, the Chandrasekhar limit (see Section 2.3.2). A

maximum radius of about 0.1 R� is attained at about the mass of Jupiter (∼0.001 M�).

Brown dwarfs, being hot enough for the internal temperature to increase the pressure, will

have somewhat larger radii than is given by Eq. (2.40) for black dwarfs.

Although brown dwarfs have been postulated for a considerable time, it is only relatively

recently that, thanks to better detectors in the IR, they have been found in substantial numbers.

An early clear candidate was Gl 229B (Nakajima et al. 1995), but recent advances in IR

detection show them to be common (Rebolo et al. 1995, Jameson et al. 2002). Objects

of brown-dwarf mass are sometimes to be found as companions of white dwarfs in some

cataclysmic or related binaries of very short period (Tables 5.1 and 6.3). Some of these may

be remnants of initially more massive main-sequence stars, which have lost substantial mass

by binary interaction, but others may be primordial.

Objects of major planetary mass (∼1–50 Mpl), or equivalently of low brown-dwarf mass,

have been detected around a number of nearby Solar-type stars (Mayor and Queloz 1995,

Butler et al. 1997) by very accurate measurement of radial velocities; and objects of terrestrial
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planetary mass by the even more accurate process of pulsar timing (Wolszczan and Frail 1992).

In practice, Eq. (2.40) extrapolates reasonably well to terrestrial planetary masses.

2.2.7 Star formation
One blessing of stellar astrophysics is that, although it is very difficult to arrive at a

clear understanding of how stars form, remarkably little of the later evolution of stars appears

to depend on the details of their formation process. Throughout most of this book we shall

assume that stars ‘start’ on the ZAMS. Although purists might feel that we should start with a

star-forming gas cloud, they should acknowledge that such clouds show many signs of having

been processed by earlier generations of stars, so that we have a chicken/egg situation. We

choose to start with the chicken, but in this sub-section briefly refer to the egg.

The formation of stars (Lada 1985, Shu et al. 1987, Pringle 1989, Matthieu 1994) is

probably less well understood than any other portion of stellar evolution. This is partly because

the expected lifetimes of pre-main-sequence stars are short – <∼0.001 tMS, Eq. (2.4) – so that

such stars should be, and are, relatively uncommon; partly because many pre-main-sequence

stars tend to show complicated spectra, and erratic variability, e.g. Herbig Ae/Be stars and

T Tau stars (Herbig 1960), which makes them harder to quantify than main sequence stars;

and also partly because star formation takes place predominantly, even almost exclusively,

in gaseous and dusty ‘star-forming regions’ (SFRs) where the protostellar gas cloud itself

blocks most of the radiation from the stars, at least at visual and shorter wavelengths. The

1980s and 1990s have, however, produced a vast improvement in the quality and quantity

of information on star formation, mainly thanks to observational work in the infrared and

millimetre wavelength ranges.

Many SFRs are very massive collections of gas and stars called giant molecular clouds

(GMCs), of which the Orion SFR, at a distance of ∼500 pc, is an example. This SFR fills

much of the constellation of Orion, but with a concentration to the central part of Orion’s

sword, where the visible star is in fact a collection of about a dozen massive newly-formed

stars. On a more modest scale is the SFR in Taurus-Auriga, at ∼140 pc. This consists largely

of low-mass T Tau stars.

Perhaps the most basic problem for theorists of star formation is the absence of any sensible

‘initial conditions’. There is no particular moment in the life of a star-forming region at which

one can, for example, assume that it is spherical with a given density/temperature distribution,

and thus investigate its stability to fragmentation on various lengthscales. In contrast, there are

reasonably good ‘final conditions’, i.e. stars on the ZAMS, so that theories of star formation

will have to be tested primarily by their ability to produce the right distributions of masses,

and of binary (and triple, etc.) parameters. Unfortunately this is not likely to be a powerful

restriction. Different SFRs, or different regions in the same SFR, may produce different

IMFs and different period distributions, which merge ultimately to give some more global

properties as in the Solar neighbourhood.

Within an SFR there are many ‘cores’, which appear to be the actual sites of star formation.

If there were rough spherical symmetry near a core, the centre of the core should collapse

first to a low-mass protostar, with infall of material further out subsequently increasing the

mass, often by a substantial factor. But typically there will be considerable rotation, which

requires stars to solve the ‘angular momentum problem’ (Bodenheimer 1978, 1991; Boss

1991, 1993). A cloud of gas should spin up, on contraction, because of conservation of

angular momentum, and the ratio of centrifugal to gravitational force at the equator (loosely
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defined) should increase roughly as 1/r , where r is the equatorial radius of the cloud. The

apparently trivial amount of rotation in an initial cloud that would be due to galactic rotation

should make it impossible for the cloud to contract to stellar radii by the necessary factor of

107–108. Even contraction to fairly close binaries, those with periods of ∼1–104 days, would

be difficult, and yet these constitute ∼10% of low-mass stars, and >∼30% of massive stars.

We appear to need a dissipative process, i.e. viscosity, to allow some regions to transfer their

angular momentum outwards, and thus contract further inwards. The viscosity presumably

has a magnetohydrodynamic (MHD) or turbulent basis, since molecular viscosity is too weak

to have much effect.

The transition from a gas cloud of say 106 M�, a few parsecs across, to a group of newly-

formed stars and systems, and from there to a broad distribution of stars and systems as seen

in the Solar neighbourhood, along with some remaining older clusters, probably involves a

considerable number of processes, some acting at an early stage and some at later stages. We

identify something like six steps, overlapping in time:

(a) contraction of the gas cloud, and fragmentation into several (say ∼100) smaller, denser

accumulations – proto-sub-clusters

(b) viscous (primarily MHD-driven) interaction within the fragments, allowing substan-

tial contraction within proto-sub-clusters which further fragment into proto-sub-sub-

clusters, and so on iteratively to individual multiple systems with ∼2–10 protostellar

components

(c) slowing down of contraction locally when central material becomes opaque enough to

establish a temperature gradient sufficient for hydrostatic equilibrium

(d) gravitational interaction, leading to the concentration of the more massive fragments

towards the centre, to mergers (collisions) of some close pairs of proto-sub-clusters, etc.

and to ejection of some of the lighter members, at each hierarchical level

(e) ejection of the remaining ambient gas

(f) dissipative-tidal and evolutionary interaction of close pairs and triples.

Process (a) might divide the initial gas into a non-hierarchical assembly of fragments which

would not yet be on a stellar scale but rather on a sub-cluster scale of say 103–104 M� each.

Presumably the regions which are particularly poor in angular momentum would be prone

to contract farthest. They would not be able to contract very far, in the first instance, before

reaching the centrifugal barrier.

However, process (b) allows further angular momentum to be extracted from some already

denser regions, permitting further contraction, of a more hierarchical character, down to the

scale of sub-sub-clusters of perhaps 10–102 M�, and by iteration on a smaller scale still to

fairly hierarchical multiple systems of perhaps 2–10 protostars. It is necessary that we have

some kind of unstable process that depletes angular momentum in regions that are already

somewhat low in it, and transfers it to ambient regions. This allows regions which are capable

of more substantial contraction to continue contracting farther. It is also necessary that this

takes place on a considerably smaller length-scale than the entire cloud, so that what we get

is 106 condensations rather than one large condensation.

We believe that MHD ‘viscosity’, i.e. process (b), is likely to be the most effective means of

the necessary redistribution of angular momentum. Gravitation has the property that low angu-

lar momentum goes along with high angular velocity: a close binary has less angular momen-

tum but more angular velocity than a wide binary. Gravitational contraction and spin-up
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therefore encourages differential rotation, which will rapidly amplify locally any pre-existing

magnetic field. Then MHD interaction can lead to an effective viscosity (Shakura and

Sunyaev 1973; see Appendix F) and a further loss of angular momentum from regions

already short of it, and so lead to further contraction. At a fairly late stage in the formation

process the angular momentum loss may take place primarily in disc-like structures (see

below), but in the earlier stages the process is likely to be more unstructured, yet general

enough to cause local instabilities where angular momentum is siphoned out of regions that

are already somewhat low in it, and so where greater contraction is possible.

Provided that angular momentum can be extracted fairly efficiently from local condensa-

tions, the process of hierarchical fragmentation will stop, or at any rate slow down, only as

protostars reach hydrostatic equilibrium – process (c). At early stages this does not happen

because the gas is fairly transparent to the low-temperature radiation released by gravitational

contraction (although it is highly opaque to visible radiation). Isothermal spheres cannot reach

hydrostatic equilibrium; but as the opacity goes up, more heat is retained and a temperature

gradient grows which can allow hydrostatic equilibrium to develop.

Although the angular momentum problem means that it is difficult for a local blob of gas

to contract radially by a large factor, the blob is not inhibited in principle from contracting

by a large factor parallel to the local angular momentum vector, to form a disc. We then need

viscosity within the disc to allow material to spiral inwards, on to the hydrostatically supported

central protostar, while the angular momentum is transported outwards. As discussed in

Section 6.2, the main agent for producing viscosity in a disc is likely to be MHD. However, we

are not thinking of MHD viscosity as taking place exclusively in thin discs around protostars

that are already in hydrostatic equilibrium: it will probably already be contributing to the

solution of the angular momentum problem as soon as there is any marked local differential

rotation, and it contributes by unstably taking angular momentum out of those regions which

are already low in angular momentum, but high in angular velocity and differential rotation.

Infrared observations have shown that some stars are surrounded by cool equatorial discs

of ∼100 AU in radius. The disc absorbs part of the radiation of the star and reradiates it

at longer wavelengths. Such discs are particularly in evidence around pre-main-sequence

stars, although they can persist to the main-sequence stage (e.g. β Pic, Aumann 1985). A

typical ‘core’ in a star-forming region probably consists of (a) several protostellar nuclei

(perhaps ∼102–104 AU apart) that are already of roughly stellar density, and supported in

hydrostatic equilibrium, (b) accretion discs around each nucleus (∼10–102 AU in radius), and

(c) a roughly spherical envelope of >∼104 AU around the whole system. Material is accreted

from the envelope on to the disc or discs, and viscosity within these discs allows material to

spiral in and be accreted by the nuclei. At a fairly late stage in this process, it is possible that

the remaining disc is capable of condensing into planets.

We anticipate that something analogous to common-envelope evolution in evolved binaries

(Section 5.2) may be at work, to produce the closest young binaries. Common-envelope

evolution is invoked to explain how in a highly evolved binary, containing an AGB star in

an orbit of a few years, there can be interaction with a companion to produce the very close

white dwarf / M dwarf pairs with period less than a day that are quite often found in planetary

nebulae and elsewhere. The interaction can be perceived as two small objects spiralling in

towards each other within an envelope that is ∼10 AU across and contains ∼1 M� of gas.

Dynamical friction may be sufficient, but there must be some dissipative agent, which could

also involve MHD-driven turbulence, to achieve the transport of angular momentum from the
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stellar pair to the envelope. A somewhat similar situation may arise if two protostars have a

near-collision (at ∼1–10 AU), while their surrounding discs interact to provide the common

envelope. This might similarly lead to spiralling-in, and the formation of a close pair with a

period of a day or so. The analogy cannot be very close, since common-envelope evolution

in evolved stars appears always to lead to a circular orbit whereas close pairs of young stars

are often eccentric. But the situation with protostars may be more chaotic than with evolved

stars, and inhomogeneities may allow eccentricity to survive, or even be amplified.

Purely gravitational interactions – process (d) – between clumps of protostars (and their

surrounding gas), at the sub-cluster and deeper levels, is probably not effective at encouraging

highly hierarchical contraction, but may nevertheless cause substantial evolutionary progress.

More massive concentrations will tend to settle towards the centre, and less massive ones to be

ejected. This will happen at all levels of hierarchy, such as sub-sub-clusters. Of course there

is not in practice a sharp distinction between sub-clusters and sub-sub-clusters; rather there

will simply be a range of scales, perhaps of a fractal character, which we divide artificially

into quantised sizes for the sake of exposition. At the deepest levels, actual collisions of stars,

or at least protostars, might occur: not so much direct collisions of previously independent

stars, but rather situations where a binary has an interaction with another star or binary, and

the binary orbit is perturbed to a high eccentricity, that could lead to a collision at periastron

(Section 5.4). In places where the protostellar density is unusually high, we might even have

runaway mergers (Portegies Zwart and McMillan 2002). Stars that have just collided will

probably puff up temporarily to rather large radii, and may therefore be more likely to have

a further collision.

At some stage the remaining ambient gas is likely to be driven out as a result of stellar activ-

ity and evolution – process (e). Massive stars create strong winds, and also lead to supernovae

within 3–4 megayears of formation; less massive stars may contribute to gas ejection through

such energetic phenomena as bipolar jets from Herbig–Haro objects (Schwartz 1983). The

overall efficiency of star formation – whether say 10% or 90% of the gas condenses into stars

before the remaining gas is expelled – is not clear, and may vary from region to region. But

on the whole we expect that more than half of the original gas is expelled, since this will

help to unbind the overall cluster, and to ensure that the population of stars is mostly spread

through the Galactic disc rather than left in the clusters where they originated.

Process (e) will obviously terminate process (b) but not process (d). Strongly hierarchical

systems will be harder to form once the gas is expelled – but see the discussion of process

(f) below. However, those formed already will interact gravitationally with others, the more

massive concentrations on any scale tending to drift to the centre and the less massive ones

tending to be ejected into the general Galactic field. In some clusters and sub-clusters this

process may mean that the entire cluster has dissolved in a few megayears, but evidently

some clusters survive for a few gigayears, and globular clusters for many gigayears. This

may be mainly a function of the initial mass, but may also depend on the orbit of the cluster

relative to the Galaxy. Some clusters are tidally stripped of their outer layers (by what can be

seen as a version of Roche-lobe overflow – Chapter 3 – on a Galactic scale), and others will

lose some further members by gravitational interaction with the stars of the Galactic plane

on occasional passages through it.

There do however remain processes, under (f), which can increase the hierarchical depth

of some multiples. We note in Section 4.8 that within triple systems the combination of Kozai

cycles and tidal friction can cause the inner binary to shrink, transferring much of its orbital
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angular momentum to the outer orbit. This requires, as we now expect, a dissipative agency,

but it is no longer necessary at this level that MHD play a major role. Ordinary tidal friction –

Section 4.2 – may be enough. For Kozai cycles to work, we require only that the inner binary

be quite highly inclined to the outer binary.

Since SFRs are themselves gravitationally bound clouds of gas, it may seem at first glance

that they would only produce gravitationally bound clusters of stars such as Galactic or

globular clusters, but not field stars as in the Solar neighbourhood. However, the disintegration

of a cluster as it condenses out of a star-forming region can be understood as the result of

much of the gas being expelled from the cloud by processes involving newly-formed stars:

for example massive stars with strong winds, or supernova explosions. Low-mass stars can

also have strong winds at an early stage in their lives, producing such energetic phenomena as

Herbig–Haro objects. Provided such processes occur while still only a fraction (say 10–20%)

of the SFR’s mass has been condensed into stars, they may be able to put in enough energy

to eject a considerable fraction of the remaining gas in the SFR. If a cluster (gas plus stars)

is in roughly virial equilibrium, i.e. its gravitational energy is twice its kinetic energy (with

opposite sign, so that the total energy is negative), and if subsequently the cluster has half

its mass, presumably gas rather than stars, expelled on a short timescale, with the energy

for this coming from internal stellar processes rather than from the kinetic or gravitational

energy of the cluster, then the cluster will become gravitationally unbound. This is because

gravitational energy goes roughly as the square of the mass, while kinetic energy goes linearly

with the mass. This is much the same as the reason (Section 5.3) why a binary is disrupted if

more than half of the mass is expelled in a supernova explosion. Expanding OB associations

such as III Cen, I Ori and Sco-Cen (Blaauw 1964) probably represent intermediate stages in

the unbinding process.

Another process which might help to unbind small clusters (N <∼ 100 stars) is two-body

gravitational relaxation, i.e. the gravitational scattering of less massive members into escape

orbits by simple two-body encounters with more massive members. However, the persistence

of some large clusters, such as globular clusters, shows that this process is less effective for

large clusters.

2.2.8 The terminal main sequence (TMS)
The point at which the main sequence life of a star terminates is not as easy to define

as might be supposed. For most stars with M >∼ 1.1 M� evolution abruptly becomes rapid

once hydrogen is exhausted more-or-less instantaneously throughout the convective core.

However, for M <∼ 2 M� the evolution slows again temporarily while hydrogen burns in a

thick shell around the helium core. During this phase the star is only moderately larger and

more luminous than in the first slow phase. But when the core reaches about 11% of the star’s

mass (see Eq. (2.42) below and Table 3.2) the evolution accelerates again. Unfortunately

this acceleration is not very abrupt, and thus it is difficult to assign its position on the HRD

unambiguously. This second acceleration continues, as discussed in more detail in the next

section, until either (a) the envelope becomes substantially convective, at a point which is

fairly clearly identified by a local minimum of luminosity on the cool side of the HRD

(Fig. 2.1), or (b) helium ignites at the centre as its temperature reaches about 120 MK. Option

(b) may happen either before or after (a), but either way it is also relatively easy to locate

unambiguously.



64 Evolution of single stars

In this book we adopt, for the sake of argument, the following definition of the TMS. Let

t be the time, measured from the ZAMS, at which either (a) or (b) above, whichever is first,

occurs. Then the TMS is taken to be at age tMS ≡ 0.99t (Eq. 2.4). Although there is of course

an element of arbitrariness in this, the definition can be applied uniformly to all masses down

to about 1 M�, despite the fact that the degree to which central convection is important or not

changes markedly, particularly in the range 1–2 M�. Unfortunately, when the influence of a

binary companion is included (Chapter 3) it is once again difficult to formulate a sensible

definition of the TMS.

2.2.9 Rotation and magnetic fields
Rotation in stars is inferred both from the broadening of lines by Doppler shift, and

(in a subset of stars) by periodic variation of light output, or spectral line shape, that can be

attributed to some anisotropy that rotates into and out of the line of sight. Such anisotropy

can in fact be due to magnetic fields, which may also show up as Zeeman splitting of certain

lines.

For a star in uniform rotation – just an assumption, for the moment – there is an upper

limit to rotation, such that centrifugal acceleration at the equator balances gravity (Fig. 3.1d).

Roughly, for zero-age main-sequence stars, the shortest possible period of rotation varies

over ∼0.1–2 days from the lowest to the highest masses. By the end of the main sequence

the range is roughly 0.6–30 days also depending on mass. Few, if any, stars are known to be

rotating at very close to break-up, but some, particularly Be stars, are rotating at up to 70%

of break-up. However, many stars, such as the Sun, are rotating much more slowly, at only

∼1%.

Surface magnetic fields on main sequence stars are found as large as ∼1–3 T, which is

probably an upper limit dictated by the balance of gas pressure near the surface with magnetic

pressure. The distribution of magnetic field within the interior is hard to guess at: some stars

may have a roughly dipolar magnetic field, but many have higher-order fields. On the Sun,

there is both a weak dipolar field, roughly parallel to the rotation axis and reversing every

∼11 years, but also many small transient spots coming and going on a timescale of days to

weeks, where the field may reach its pressure-equilibrium limit, more or less.

Rotation and magnetic fields are almost certainly related, but the relationship is very

complicated. We discuss some aspects of this in a little more detail in Chapter 4. The reason

for deferring this discussion is that probably, though not certainly, these processes are more

significant for the long-term evolution of binaries than for single stars. It is not yet clear how

important these processes are for single stars, but a great deal of stellar modelling ignores

both processes, and seems to reach reasonable agreement with observation. For example,

Fig. 2.1 ignores them, and yet seems to get reasonable agreement between observed and

computed masses, temperatures and luminosities.

It is probably futile to attempt to deal with either process in isolation from the other:

they must couple very strongly, particularly since the hot ionised gas of a star is a very

good conductor, and therefore the magnetic field can be expected to be ‘frozen in’ to the

gas it threads. But what makes the joint problem particularly difficult is that both pro-

cesses appear to be much influenced by turbulent convection, which is itself very difficult to

model.

Perhaps the best reasons for ignoring them in the first instance are the following:
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(a) The magnetic field tends to be buoyant and thus to float to the surface. It might reach

pressure equilibrium at the surface, but it is difficult to imagine that flux tubes could

stay deep in the interior with the much stronger fields that would be necessary for

equilibrium at the much higher pressures there. A strong flux tube in the interior would

expand or contract on a dynamical timescale towards pressure equilibrium, and since

heat conduction will tend (more slowly) to keep the internal temperature near to the

ambient temperature the density, according to the perfect gas law, would be less and so

the tube would rise.

(b) Stability analysis of differentially rotating stars suggests that there is stability on a thermal

timescale only if the rotation is constant on cylinders and the angular momentum per

unit mass increases outwards.

(c) Internal magnetic fields, even of trivial strength initially, would be rapidly amplified by

differential rotation, to the extent where magnetic torque would inhibit the differential

rotation.

None of these reasons is entirely convincing on its own, but they all seem to argue against

the nightmare scenario of a star which seems normal on the surface but whose interior is

a seething mass of huge magnetic and velocity fields for which the simple non-magnetic

non-rotating models are completely invalid.

Spruit (1998) has argued that point (c) above may be the reason why the Sun (Fig. 2.7b)

shows little sign of differential rotation in the core, despite the fact that evolution should have

caused the inner part of the core to contract and the envelope to expand. He argues cogently

for what might seem a rather extreme position, that magnetic torque may enforce uniform

rotation even in the much later evolutionary stages (discussed later in this chapter) when the

core may have contracted in radius by two or more orders of magnitude, and the envelope

expanded by a similar amount.

But although magnetic stress may suppress differential rotation within the radiative core

of the Sun, it patently does not suppress it within the convective envelope (Fig. 2.7b). One

of the odder features of convection is that it apparently generates differential rotation (at the

level of ∼10% in the Sun) – whereas one might expect that turbulence, acting like viscosity,

would suppress it.

Since we discuss this, and develop a very tentative model of convective dynamo activity,

in Section 4.5, we will not pursue it further here. We accept provisionally the view of Spruit

(1998) that stars will evolve in a state of near-uniform rotation for much of their lives, and as a

result rotation is likely to have little effect on their overall evolution. Uniform rotation can in

fact, somewhat surprisingly, be incorporated into a code for spherical models – Appendix B

and Section 3.2.1 – and can be shown to be rather unimportant. Further, from point (a) above,

it is likely that magnetic field plays an important role only in the surface layers, which

are themselves not very important for the nuclear evolution going on deep in the interior.

We therefore continue our discussion on the assumption that the evolution of stars can be

reasonably well understood in the non-rotating, non-magnetic approximation.

2.2.10 Examples from observed binaries
Table 2.1 gives a small selection of binary and multiple systems which are on or still

approaching the main sequence. T Tau, the prototypical pre-main-sequence star, is itself in

a multiple system, which appears recently to have been in the process of breaking up. There

is a cool infrared companion (T Tau S), probably dominated by an accretion disc rather than
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Table 2.1. Some binaries before and on the main sequence

Name Spectra P e M1 M2 R1 R2 Reference

T Tau K0Ve + (IR + . . . ) 0.72′′ Ghez et al. 1991

T Tau S (IR + IR?) + M1 20:yearsa 0.8: Loinard et al. 2003

T Tau Sa IR + IR? 2:years Loinard et al. 2003

TY CrAb B9Ve + K0IV: 2.89 3.16 1.64 1.80 2.08 Casey et al. 1998

TY CrAb (B + K) + ? 270: 0.5: 4.8 1.3: Beust et al. 1997

BM Ori B3V + A7IV 6.47 5.9 1.8 2.9 4.7c Popper and Plavec 1976

EK Cep A1.5V + G: 4.43 0.11 2.02 1.12 1.58 1.32 Popper 1987

XY UMa G0V + K5Ve 0.48 0 1.0 0.6 1.15 0.65 Hilditch and Bell 1994

V624 Her A7m + A8m 3.90 0 2.28 1.88 3.0 2.2 Andersen 1991

RR Lyn A7m + F0 9.95 0.08 2.00 1.55 2.50 1.93 Popper 1980

δ Cap F2m + G/K: 1.02 0.01 0.038d Lloyd and Wonnacott 1994

EN Lac B2IV + F6-7 12.1 0.04 10 1.3 5.3 1.3 Garrido et al. 1983

DI Her B4 + B5 10.6 0.49 5.18 4.53 2.7 2.5 Guinan et al. 1994

SZ Cen A7 + A7 4.11 0 2.32 2.28 4.55 3.62 Grønbech et al. 1977

GG Lup B7V + B9V 1.85 0.15 4.12 2.51 2.38 1.73 Andersen et al. 1993

SS Lacb A2V + A2V 14.4 0.14 2.93 2.85 3.4 3.2 Torres and Stefanik 2000

SS Lacb (A + A) + ? 679 0.16 5.78 0.80 Torres and Stefanik 2000

η Orib B1 + B2e 7.99 0 11 10.6 6.3 5.2 De May et al. 1996

η Orib (B1 + B2e) + B 3500: 0.4: 1.4:a Waelkens and Lampens 1988

A period may be replaced by a separation (′′) in visual systems
a recently destroyed; see text
b close triple system
c polar, equatorial radii
d mass function

a star, 0.7′′ to the south of the main K0V component. T Tau S is at least two components,

one of which (T Tau Sb) appears to have been in an eccentric ‘visual’ (actually, radio VLBI)

orbit of period ∼20 years around the other, but to have been ejected around 1996 into a

hyperbolic orbit with velocity ∼20 km/s towards the east. This suggests that T Tau Sa is itself

a closer binary, with estimated period ∼2 years, and that an interaction at the periastron of

the eccentric outer orbit between Sb and the binary Sa led to an ejection, as is commonly

seen in N-body gravitational simulations of non-hierarchical systems (Anosova 1986). It is

likely that the entire Solar neighbourhood has been populated by stars or systems ejected in

a somewhat similar manner from star-forming regions. We are very fortunate to see, before

our very eyes, an instance of dynamical breakup during star formation.

TY CrA is an eclipsing double-lined system, and so gives rather precise fundamental data.

Qualitatively, there is agreement with evolution of pre-main-sequence stars, but there is a

problem: ∗1 is significantly cooler and less luminous (by ∼10% and ∼40% respectively) than

expected for its mass, whether on the ZAMS or still approaching it (Casey et al. 1998). This

may perhaps be broadly accounted for with a higher metallicity than Solar; but it is difficult

to match both stars with the same isochrone, and we may need to entertain the possibility

that while ∗2 is as young as 3 megayears, ∗1 is as old as 10 megayears or even older. This

need not be surprising if the current binary was created by a dynamical encounter among

more primordial binaries. The system is triple, with a low-mass companion in an orbit (but

a very tentative orbit, so far) of less than a year. Although the outer orbit is tentative – Beust
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et al. (1997) suggest four possible periods, ranging from 126 to 270 days – it is double-lined

in the sense that the CG of the close pair, and Li lines in the third body, give complementary

orbits.

BM Ori is a somewhat enigmatic system in which the fainter, less massive, but larger

component can be interpreted (Popper and Plavec l976) as a flattened differential rotator

which has not yet reached the main sequence. Its apparent ratio of equatorial to polar radius,

as determined from its eclipse light curve, seems more extreme than is permissible for a

star in uniform rotation, and may imply that the core is rotating substantially more rapidly

than the envelope. This ought to be unstable on a thermal timescale (Section 3.2.1). On this

picture, the age of the system should be <∼1 megayear, and so it is not surprising that thermal

instability or tidal friction have had little effect on the less massive component. What does

seem surprising is that the more massive component is not rotating about equally rapidly.

BM Ori (θ1 Ori B) is a member of the Trapezium Cluster (M42), the central concentration

of young stars in the Orion Nebula cluster, at ∼470 pc distance. The Trapezium can be viewed

as a multiple system, but of a non-hierarchical character, i.e. several stars are at comparable

distances from each other. Such systems are gravitationally unstable. Almost all components

will be ejected and will ultimately escape, leaving one system behind that is likely to be a

hierarchical multiple; but several of the escapers may themselves be binaries or hierarchical

multiples. Such breakup is a process of which T Tau above seems to be an actual example. The

timescale for the cluster to break up is roughly the dynamical crossing time of the system, i.e.

∼2π
√

a3/G M where a is the linear size of the cluster and M the total mass. The timescale

is typically <∼1 megayear, even for quite wide multiples.

The Trapezium Cluster is about a dozen OB stars, and several hundred lesser members.

Specifically (Preibisch et al. 2001), there are 13 OB stars, which between them have at least

14 companions closer than ∼1′′. Four of them have spectroscopic orbits, with periods in

the range 6.5–65 days. The principal members are ∼10–100′′ apart. BM Ori is in fact in a

non-hierarchical sub-multiple of the Trapezium: five components are grouped in two binaries

and a single, and these three sub-sub-systems are all ∼0.5–1′′ apart. Probably most of the star

formation in the Trapezium has taken place in the last ∼1 megayear (Herbig and Terndrup

1986), but I shall argue (Section 5.4) that some distant, high-velocity stars escaped from it

2.5 megayears ago, and of these one is about 10 megayears old.

EK Cep is a rather less surprising system than BM Ori. Here, the main evidence that ∗2

at least is pre-main-sequence comes from the fact that it is significantly larger than a ZAMS

star of its mass.

The remaining systems in the table appear to be on the main sequence and in some cases

significantly evolved across the MS band. XY UMa is a low-mass, very close, system in

which the stars are very active presumably because of their rapid rotation – Section 2.2.5 (n).

V624 Her and RR Lyn contain Am stars – Section 2.2.5 (g) – and δ Cap is an interesting

combination of activity in the cooler component and metallic lines in the hotter component.

EN Lac is a combination of a β Cep pulsator – Section 2.2.5 (d) – and a much less massive

companion. Among close binaries with components that have not yet interacted, EN Lac

appears to have the largest mass ratio known so far.

In the range 1 − 4 M� the TMS, or equivalently the blue edge of the Hertzsprung gap, is

not clearly defined. The evolutionary tracks make a ‘hook’ at the TMS in the HR diagram

(Fig. 2.1), during which evolution is rather rapid as central hydrogen is exhausted; but stars

can spend a significant fraction of their main sequence life in a shell-burning phase which
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is somewhat beyond the ‘hook’ , while not far advanced into the Hertzsprung gap. Whether

such stars are to be considered as late main-sequence stars or early Hertzsprung-gap stars

is a semantic question. I prefer to include them as main sequence stars, particularly since

in the range ∼2–1 M� the hook progressively disappears, and the distinction between stars

before it and stars after it becomes progressively less relevant. However, the issue is further

complicated by the fact that in the same mass range the Hertzsprung gap itself progressively

disappears. By ∼1 M�, a star evolves on something like a nuclear timescale from a dwarf

to a sub-giant to a giant, with only a mild temporary acceleration in the sub-giant region.

As indicated in Section 2.2.7, I will take the term ‘main sequence’ to include any star in

a long-lived hydrogen-burning state, but exclude those with deep convective envelopes, i.e.

stars on the first giant branch (GB). The triangular region between the main sequence thus

defined and the giant branch is then to be defined as the HG. But it is still inevitable that

the MS/HG/GB boundaries are rather indeterminate, especially around ∼1–1.5 M� (and still

more especially if ∗1 has lost a considerable amount of mass through Roche-lobe overflow,

Section 3.3).

Andersen (1991) has drawn attention to a handful of eclipsing binaries at spectral type

∼A, which appear to be well above the main sequence (Fig. 2.1). SZ Cen is an example,

where ∗1 is ∼3 times as large as a ZAMS star; ∗2, of almost the same mass, is ∼2.5 times

as large. The mere fact that there are ∼4 such systems, out of 45 well-determined systems

tabulated by Andersen (1991), suggests that they are in a relatively slow stage of evolution,

rather than in the Hertzsprung gap. If classical stellar models are to be believed, then it is

difficult to account for these stars even as post-hook, but still slowly evolving, objects, let

alone as pre-hook stars. Andersen has therefore suggested that they support the existence of

convective overshooting (Maeder 1975, 1976; Section 2.2.4). The theoretical models shown

in Fig. 2.1 contain a degree of convective overshooting.

Pols et al. (1997) compared theoretical models with 49 ESB2 systems having relatively

well-determined data, and found better agreement with models incorporating overshooting

than with ‘classical’ models. Twelve systems out of 49 were in rather poor (χ2 > 5) or very

poor (χ2 > 8) agreement with either kind of model; V624 Her is an example of very poor

agreement, with ∗2 too large by about 8%. On the other hand 30 systems gave χ2 < 2, for the

overshooting models. The six systems of lowest mass (M1 ≤ 1.24 M�) were all problematic in

some regard, usually because ∗2 was larger than the models allowed. Possibly this is because

they have not fully contracted to the main sequence; several are active BY Dra-like objects

such as XY UMa. Three examples of good agreement, DI Her, SZ Cen and GG Lup are in

Table 2.1. The last two are relatively stringent tests of models, because either the components

are quite evolved (SZ Cen) or the mass ratio is quite severe (GG Lup, q ∼ 1.6). For the

many systems in which both components are quite closely equal in radius and temperature

as well as mass, the constraint on modelling is not severe: one can usually adjust the two

unknowns, metallicity and age, to give the two data, radius and temperature, at a given

mass. But if the masses are very different one has to fit four data values with the same two

unknowns. A high degree of evolution can mean that even a small difference in mass can

make a substantial difference in radius and temperature, and thus we again have to fit four

data with two unknowns.

It is not quite clear what conclusion to draw from the balance of agreement and disagree-

ment; perhaps other parameters than age, mass and metallicity can influence the structure of

some stars, but not all, at the ∼5–10% level. It is encouraging for a theorist to note that over
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the last 30 years agreement has become substantially better, without the theoretical models

changing by as much as the observational data.

SS Lac is an interesting system that used to eclipse until about 1950, but then stopped.

This is well explained by the recent discovery of a third body, which must be in an inclined

orbit and thus causes the close pair’s orbital axis to precess (Section 4.2).

η Ori is an interesting multiple system with at least five and possibly six components:

η Ori : ((((B1 + B2e; 8 days) + B; 0.05′′, 9.5 years, e = 0.4 :) + B; 1.65′′) + faint; 115′′)

The innermost pair (∗111 in the notation of Section 1.4) is an ESB2 system with rather

good data leading to the masses and radii in the table; ∗11 has been resolved by speckle

interferometry, and is also an SB1 by virtue of the motion of the CG of ∗111. The very

similar luminosities for all three components of ∗11 suggest similar masses. The fourth B

star (∗12), similar to the previous three, can be expected to orbit in ∼1000 years. One of

the four B stars, but not one of the eclipsing pair (Waelkens and Lampens 1988), varies

photometrically with an amplitude of 0.3 magnitudes and a period of 0.43 or 0.86 days: this

may mean that ∗12 or ∗112 is a close binary, probably with an inclination a good deal less

than 90◦; but several other interpretations (pulsation, rotational modulation) are possible.

Star 1112 (B2e) is a rapid rotator, from its rotationally broadened lines, with period

∼2 days; hence it is supersynchronous by a factor of four. It is also a non-radial pulsator –

Section 2.2.5 (d) – with line-profile variations on a period of 0.133 days. By contrast, ∗1111

is sub-synchronous by a factor of two, and shows no detectable pulsation. It is puzzling that

two such similar stars have such different rotational and pulsational properties. This may

may be linked to the existence of the relatively close third body (∗112). A somewhat similar

phenomenon – very different rotation rates within the same close pair – is in fact also seen

in TY CrA.

2.3 Beyond the main sequence
Once a star of mass M >∼ 0.8 M� reaches the terminal main sequence (Fig. 2.1,

Table 3.2), the mass Mc of the hydrogen-exhausted helium core is roughly

Mc � 0.11M1.2 + 0.0022M2 + 9.6 × 10−5 M4

1 + 0.0018M2 + 1.75 × 10−4 M3
(M <∼ 100 M�), (2.42)

in models with convective overshooting as given by Eq. (2.39). Some details of evolved stars,

including Mc at various evolutionary stages, are given in the next chapter (Table 3.2), in the

context of the influence of a binary companion.

2.3.1 The Hertzsprung gap and Hayashi track
Beyond the terminal main sequence, computed models show a progressive contrac-

tion of the helium core, along with an expansion of the envelope. The contraction of the core

once it has burnt up all its hydrogen is fairly easy to explain qualitatively. Nuclear burning

in the deep interior demands a substantial temperature gradient over the whole star, so that

the heat released can flow outwards, and this temperature gradient contributes strongly to

the pressure gradient which supports the star against its own gravity. Removing the energy

source therefore weakens the pressure gradient and allows gravitational contraction to gain

the upper hand – though only by a narrow margin, since the contraction of the core will

itself release (gravitational) energy, which largely but temporarily compensates for the loss
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of nuclear energy. The contraction is liable to be rapid at first, taking place on the thermal or

Kelvin–Helmholtz timescale of the core, which is related to the main-sequence lifetime tMS

of Eq. (2.4) by

tKH ∼ G M2
c /Rc

L
∼ 10−3 Enuc Mc

L
∼ 10−3tMS. (2.43)

The factor 10−3 is roughly the ratio of thermal or gravitational energy to nuclear energy.

Thermal and gravitational energy per unit mass are usually comparable, thanks to hydrostatic

equilibrium, and have values �Tc/μ ∼ G Mc/Rc ∼ 2 × 1011 J/kg. The nuclear energy Enuc

from hydrogen as it burns to helium is Enuc ∼ 0.007Xc2 ∼ 4.5 × 1014 J/kg.

The rapid contraction of the core can be either slowed down, if the core density increases

sufficiently for electron degeneracy to become important (low-mass stars, Section 2.3.2),

or even reversed temporarily, though only by a small amount, if the core temperature rises

sufficiently to ignite helium before the core density has increased to degeneracy (intermediate

and high mass stars, Sections 2.3.3, 2.3.4). Figure 2.9a illustrates the way in which density

and temperature at the centre vary with evolution, for a range of stellar masses.

The considerable expansion of the outer envelope, which takes place at the same time as

the contraction of the core, is much less easy to account for in back-of-the-envelope terms,

despite the fact that it is a near-universal feature of computed stellar evolution. It is easier, in

fact, to say what it is not due to (Eggleton and Faulkner 1981): for example, it is not due to:

(a) the onset of degeneracy in the core

(b) the onset of convection in the envelope

(c) the release of gravitational energy by the contracting core

(d) a thermal instability of the envelope

(e) the fact that the polytropic index n tends to have the value n ∼ 3 in the radiative part of

the envelope.

Nor is large expansion an inevitable concomitant of core contraction: in helium ‘MS’ stars

(Section 2.5) of <∼0.7 M� the core also contracts by a substantial factor, but the envelope

only expands by a factor of two or three.

In essence, there are two main reasons for the envelope’s considerable expansion. Firstly, a

gradient in mean molecular weight μ develops as the hydrogen burns: μ rises by about a factor

of two in a zone between the wholly unburnt outer envelope and the burnt-out core. Secondly

the nuclear burning zone, previously at the centre of the star, shifts outwards to the base

of the envelope where the fuel is not exhausted, allowing a nearly isothermal and (in some

circumstances) non-degenerate layer to develop at the outer edge of the core. Neither reason

is an obvious reason, however, but some insight can be gained by the following argument.

What mainly distinguishes an evolved giant structure from a dwarf-like main-sequence

structure is the degree of ‘central condensation’ C , defined as

C ≡ ρc

〈ρ〉 ≡ 4π R3ρc

3M
, (2.44)

where ρc is the central density, and 〈ρ〉 is the mean density derived from the surface radius and

mass. Typically C ∼ 50 for ZAMS dwarfs, whereas C ∼ 108–1015 for red giants and super-

giants. For simple polytropes C is listed along with other polytropic constants in Table 3.4.

Eggleton and Cannon (1991) have proved the following result (see Appendix A):
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(a) Define n(r ), the local polytropic index, and s(r ) the local ‘softness’ index, as before

(Section 2.2.2) by

s ≡ n

n + 1
≡ ∂ log ρ/∂r

∂ log p/∂r
. (2.45)

Although the polytropic index n is more familiar, the softness index s turns out to be

more significant. Further define Cpoly(s) as the readily calculable central condensation

of a complete polytrope of softness index s: a complete polytrope is an entity where n
and s are constant throughout the star. A reasonable approximation to numerical values

is

Cpoly(s) ∼ 0.025

(5/6 − s)3
+ 0.86

5/6 − s
, for 0 ≤ s < 5/6. (2.46)

Only the first term, which dominates as s → 5/6, is important for the present discussion.

The singularity at s = 5/6 (n = 5) is due to the fact that the n = 5 polytrope or ‘Plummer

sphere’ has a finite mass but infinite radius.

(b) Then if smax is the largest value of s within a star, and if smax < 5/6, we can prove that

the star must be less centrally condensed than a polytrope of constant softness smax:

C[s(r )] ≤ Cpoly(smax), if 0 < s(r ) ≤ smax < 5/6 for all r. (2.47)

The proof is given in Appendix A.

For ZAMS stars, with n ∼ 3 (s ∼ 0.75), this is consistent with C ∼ 50. But for a structure

with (say) C ∼ 7 × 1014, we must have s >∼ 0.83333 (n >∼ 4.99988) somewhere in the interior.

Such a high value can usually only be obtained, and then only in a fairly narrow region, as

a result of either (a) a μ-gradient, or (b) a nearly isothermal, non-degenerate (n ∼ ∞, s ∼ 1)

zone immediately below the nuclear-burning shell (Fig. 2.8), as indicated above. Only pro-

cesses that contribute to a ‘softening’ of the effective equation of state, i.e. to increasing n
or s beyond the typical n ∼ 3, s ∼ 0.75 of a ZAMS star, push a star towards a very centrally

condensed structure, and then only if they push n very close to or preferably beyond the value

n = 5, over a sufficiently significant part of the star.

The fact that a μ-gradient ‘softens’ the star is not obvious at first, but comes from the

specific definition (2.45) of softness. ‘Softness’ does not have the intuitive meaning that

material is ‘soft’ if pressure is only weakly dependent on density at constant temperature,

or at constant entropy. It means that as the density increases going inwards, the pressure

increases slowly rather than rapidly. To illustrate this, suppose that the molecular weight

increases inwards at exactly the same rate (logarithmically) as the temperature, over a region

where the temperature increases by say a factor of two. Then μ/T is independent of r locally,

and so, in a perfect gas where P ∝ ρT/μ, we have just P ∝ ρ. From this s is unity (and n
infinite). Softness in our context is not an inherent property of material, but is a quantity that

is only known a posteriori in a model that has been constructed in hydrostatic equilibrium.

Nevertheless we can make some predictions about its behaviour without actually solving a

model: the statement that a molecular weight gradient in some region softens that region is

such a prediction: see Eq. (2.48) below.

I prefer to talk in terms of s rather than n because it is quite possible to have a region where

s > 1, a very soft region, but this actually implies a negative n. A discontinuity in molecular

weight (decreasing outwards) counts as ‘infinitely soft’, but corresponds to n = −1. Although

loosely the statements n > 5 and s > 5/6 appear to be equivalent, actually they are not.
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Figure 2.8 The behaviour of L(r )/m(r ) in arbitrary units (asterisks) and the softness index
s ≡ n/n + 1 (pluses) in a star of 1 M�, at the beginning of the giant branch (a) where the
degree of central condensation C ∼ 105, and the top of the giant branch, i.e. at degenerate
helium ignition (b) where C ∼ 1013. The fact that both models have condensed cores and
extended envelopes is partly explained by the fact that s >∼ 5/6 in regions near the burning
shell, where L/m drops and μ rises abruptly. The value s = 5/6 (n = 5) is shown by the
dotted line. Compare with Fig. 2.3 for two ZAMS stars.

Figures 2.3 and 2.8 show the very different behaviour of s = n/n + 1 in a main sequence

star and in red giant. In the former, s never gets substantially above the value 5/6, shown by

a dotted line; but in the latter there is a region well above this value at the hydrogen/helium

boundary (log p ∼ 16 − 17). The sharpest part of this spike is due to the molecular weight

gradient, but there is a substantial shoulder to the right which is in the isothermal but non-

degenerate outer layers of the helium core. This shoulder is due to the fact that L/m has

become small, so that the region is nearly isothermal while also non-degenerate (s ∼ 1). But

deeper still the core, though still nearly isothermal, becomes degenerate (s = 3/5).

In Section 2.2.3 we saw how Eq. (2.23) can be used to infer that (a) going inwards from the

surface, ∇ tends rapidly to a constant, ∇0, that depends only on the temperature and pressure

dependence of the opacity, and (b) as we approach the central burning core ∇ rises further,

possibly to the convective value ∇a, because of an increase in L/m there. Approaching a

burning shell, on the other hand, (a) remains true, but at the shell L/m decreases, very sharply

and indeed more or less like a step-function. Thus ∇L/m is like a negative delta function, and

the effect on ∇ is to decrease it, rather than increase it.

For a perfect gas, but allowing the molecular weight to be a function of position,

s ≡ n

n + 1
= 1 − ∇ + ∇μ, (2.48)

where ∇μ is the logarithmic gradient of molecular weight relative to pressure. In the shell, ∇
drops and at the same time ∇μ rises, so that both effects increase the ‘softness’, quite possibly

to well above unity (Fig. 2.8).

Generally, to understand why a particular model is very centrally condensed, we need only

locate the region or regions where n (or more precisely s) is largest. This largest value of s
must be close to or above 5, or the model could not in fact be very centrally condensed; and
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then whatever causes that large s can reasonably be said to be the ‘cause’ of the giant-like

structure.

A piece of pedantry that we reluctantly bring forward is that we must not assume that all

red giants are very centrally condensed. A pre-main-sequence Hayashi-track star can be a

red giant, but although its mean density is low so is its central density. It is in fact mostly an

n = 3/2 polytrope. We often use the terms ‘giant-like’ and ‘centrally condensed’ as if they

are equivalent, but actually they are not.

Although we can prove that if n is never greater than, say, four the star cannot be more

centrally condensed than a polytrope of index n = 4; unfortunately we cannot make a converse

claim that, for instance, if n > 5 somewhere the star must be very centrally condensed. A small
region in which n > 5 by a small amount will not necessarily produce a large degree of central

condensation. For a star with C ∼ 7 × 1014 the condition that s exceeds 0.83333 somewhere

is necessary, but not sufficient. It is not difficult to construct stellar models which have s >∼ 1

somewhere but are not especially centrally condensed (though they are usually more centrally

condensed than main-sequence stars). These do not violate the theorem, but they limit its

usefulness. For example, the two cases in Fig. 2.8, though both strongly centrally condensed

compared with main-sequence stars, have widely different degrees of central condensation

despite apparently similar distributions of s at least so far as the regions with s ≥ 5/6 are

concerned. Empirically, it seems as though a peak has less effect when near either the centre

or the surface than when somewhere near the middle (in terms of mass): perhaps there is a

further theorem to be developed here.

As the star crosses the Hertzsprung gap (Fig. 2.1), the surface temperature drops. Once it

drops significantly below about 10 kK, the corresponding drop in opacity (Fig. 2.4) as the

free electrons recombine causes the surface to become convective, just as for main-sequence

stars. According to the analysis of Hayashi et al. (1962), the convective envelope deepens

until the atmospheric structure converges to a nearly unique radius for a given luminosity and

mass (whereas if the envelope remained radiative there might be a wide range of possible

radii). For different luminosities and a given mass, the star must lie on a locus in the HRD, the

Hayashi track, and this is found to agree very well with the observation that cool giants lie on

a well-defined track, the giant branch (GB, Figs. 2.1, 2.10). Although the theoretical location

of the GB is uncertain because it depends on the convection theory, and on poorly-known

low-temperature opacities and bolometric corrections, the existence, observationally, of a

well-defined giant branch confirms the general concept of deep convective envelopes.

For massive stars the expansion from the terminal main sequence to the Hayashi track is

by a factor of >∼100 in the radius, but for low-mass stars it may only be a factor of less than

two. The Hayashi track is the locus for stars that are cool enough to have deep convective

envelopes; properly, they should be fully convective to the centre, but in practice the track

is little different provided the envelope is deep. The radius on the Hayashi track can be

approximated, in the same spirit as Eqs (2.1)–(2.5), by

RHT = (1.65L0.47 + 0.17L0.8)M−0.31, (2.49)

with RHT, L and M still in Solar units. This formula is a reasonably good empirical fit to

computed giants, but agrees reasonably well also with low-mass dwarfs – Eqs (2.1) and (2.2) –

for M <∼ 0.5 M�; these are also largely or wholly convective. The luminosity L of a star when

it first reaches the Hayashi limit is only perhaps a factor of about 1–3 above what it was on

the ZAMS (Eq. 2.1), although in subsequent evolution it may increase very considerably.
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Figure 2.9 (a) The density–temperature plane, showing the evolution of central conditions
in stars of various masses, with steps of 0.1 in log M . Stars of mass 0.5–2 M� converge to a
locus for He white-dwarf cores: evolution was terminated at the He flash. In the mass range
2.5–6.3 M� they converge to a C/O white-dwarf locus: mass loss was ignored, and
evolution was terminated at degenerate C ignition. More massive stars ultimately ignite C in
(nearly) non-degenerate conditions. (b)–(d) Luminosity as a function of mass Mc at the
boundary of the helium core (continuous line) and of the C/O core (dotted line), for (b)
low-mass, (c) intermediate-mass and (d) high-mass stars. In (b), the steeply sloping
asymptote to which the cores converge for Mc

<∼ 0.45 M�, if joined smoothly to the
shallower asymptote for Mc

>∼ 0.7 M�, is well approximated by Eq. (2.50). In (c) and (d),
for some masses the He core may shrink temporarily, because surface convection eats into
it. No mass loss was included in any of these models.

The surface temperature may still be estimated from Eq. (2.3). In Fig. 2.1 the locus where

stars of various initial masses first develop substantial convective envelopes is marked BGB

(beginning of giant branch). The position of this locus depends on the detailed approximation

to turbulent convection that is used, but mixing-length theory with α ∼ 2 seems adequate at

present.

2.3.2 Low-mass stars (M <∼ 2 M�)

For stars with M <∼ 2 M� electron degeneracy becomes important in the helium

core at an early stage, soon after the hydrogen is exhausted (Fig. 2.9a). It stabilises the

core, preventing any rapid further contraction. This happens, somewhat fortuitously, at about

the same time that the Hayashi limit starts to prevent substantial further expansion of the
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envelope. But the star still evolves by slow core contraction, and envelope expansion, on a

nuclear rather than a thermal timescale. Since the Hayashi limit approaches close to the main

sequence at about 1 M�, the ‘Hertzsprung gap’ between the terminal main sequence and the

Hayashi limit is much less marked than at high masses. It is almost non-existent at and below

about 1.2 M�.

Once degeneracy sets in, the star’s core is virtually a white dwarf, with an ‘initial’ mass at

the base of the giant branch of 0.12–0.2 M�, Eq. (2.42). It is fed by hydrogen burning which

continues at the core’s surface. As the core mass Mc grows, the burning shell gets thinner

but also hotter, allowing the nuclear luminosity to increase quite strongly, though on a slow

(nuclear) timescale. Conditions in the burning shell are dictated almost entirely by Mc. The

total mass M is barely relevant to the shell, although it does of course affect the outer radius

of the star: see Eq. (2.49). The luminosity L of the burning shell, and the time scale tRG of

red giant evolution, defined by tRG ≡ Mc/Ṁc are roughly (Fig. 2.9b)

dMc

dt
= Mc

tRG

� 10−5L � 2.2M6
c

1 + 6.7M5
c

, (2.50)

with L , M in Solar units and t in megayears as usual. This formula is crudely justified below.

The core radius Rc is not very different from the radius of a cold white dwarf (Chan-

drasekhar 1931), which is well approximated (Nauenberg 1972) by

Rc = Rch

[(
Mch

Mc

)2/3

−
(

Mc

Mch

)2/3
]1/2

,

Rch = 0.0114

(
2

μe

)
R�,

Mch = 1.457

(
2

μe

)2

M�, (2.51)

also in Solar units; μ−1
e ≡ 〈Z/A〉 is the mean molecular weight per free electron.

Equation (2.51) is the same as Eqs (2.40) and (2.41) for black dwarfs, with M 
 Mpl. Clearly

as M → Mch (the Chandrasekhar limit) the radius goes to zero; hence the core’s mass cannot

grow without limit. The Chandrasekhar mass, like the Eddington mass (Eq. 2.11), depends

only on fundamental constants. Because both masses are determined by special-relativistic

effects, related to photons and to electrons respectively, both involve n = 3 polytropes, and

so their ratio is just 32
√

15/π2. That this factor is not unity reflects the fact that photons are

bosons, while electrons are fermions. Most white dwarfs are expected to be made of He, C,

O, Ne, Mg or Si, for which μe = 2, but cores of 56Fe, which can be expected to develop in a

late evolutionary stage in massive stars (see below), will have μe larger and so a significantly

smaller limiting mass (1.256 M�). In practice the Chandrasekhar limit is about 4% smaller

than the value above because of a number of physical effects such as inverse β-decay and

general relativity. The physics of white dwarfs has been thoroughly reviewed by Koester and

Chanmugan (1990).

The relation (2.51) is a good empirical approximation to detailed models; but it is also

obtainable by a surprisingly elementary argument. The Fermi–Dirac integrals which give

the relation between pressure and density for a degenerate gas (Chandrasekhar 1939) can be
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approximated as

ρ = ρ0x3, p = p0

∫ x

0

y4√
1 + y2

dy � p0

x5

(25 + 16x2)1/2
, (2.52)

with

ρ0 ≡ 8π

3

μemU

λ3
c

, p0 ≡ 8π

3

mec2

λ3
c

, λc ≡ mec

h
. (2.53)

The constants p0, ρ0 are determined by atomic physics: ρ0 is the density at which the exclusion

principle for electrons demands relativistic momenta (about 3 × 109 kg/m3). The quantity λc

is the Compton wavelength. Let us approximate hydrostatic equilibrium crudely by

G Mρ

R2
∼ Gmρ

r2
= −dp

dr
∼ p

R
, (2.54)

and estimate the mass by

M � 4π

3
R3ρ. (2.55)

Eliminating p, ρ and x between Eqs (2.52)–(2.55), we get an R(M) relation of exactly the

same functional form as Eq. (2.51), although the numerical constants are not quite correct.

We can set up a simple model of the evolution of a red giant interior comparable in plausi-

bility to the main-sequence model of Section 2.2.2. As for the MS model, the justification

is not that it can be demonstrated from first principles to be correct, but rather that it can

be shown to agree reasonably well with computed models. The latter are found to contain

five different zones: (1) a degenerate, possibly partly relativistic, nearly isothermal helium

core; (2) a non-degenerate nearly isothermal helium shell; (3) a hydrogen-burning shell;

(4) a radiative zone covering several pressure scale heights and (5) a convective zone reaching

to the surface, and containing most of the mass that is not in the degenerate core. Zones (2)

to (4) all contain rather little mass. Apart from the burning zone (3), the zones are all closely

polytropic, with n ∼ 3
2
, ∞, 3, and 3

2
, respectively. This analytical model is obtained by fitting

an exactly n = 3 radiative zone (with pressure and opacity given by Eqs (2.8) and (2.9), and

therefore with ζ, κ constant as for the MS model) directly on to a degenerate core, Eq. (2.51).

All the nuclear energy is approximated as coming from the base of the radiative region, within

about one pressure scale height of the core boundary. Further out, the luminosity and mass

are almost constant for several pressure scale heights. The luminosity in this n = 3 zone is

therefore given – cf. Eq. (2.12) for main-sequence stars – by

L = 4πacG McT 4

3κp
= 4πcG Mcζ

2

(ζκTh + μκKr)(1 + ζ )
. (2.56)

Hydrostatic equilibrium in this zone, where m ∼ Mc = constant and p ∝ T 4, ρ ∝ T 3, gives,

to a similar level of approximation,

T = μG Mc

4�r (1 + ζ )
= Tsh Rc

r
, ρ = aμT 3

3�ζ
= ρsh R3

c

r3
, (2.57)

throughout the radiative zone, ρsh and Tsh being values at the shell, i.e. where r = Rc. We

can now crudely integrate the nuclear energy generation rate ε = AρT η over the radiative
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zone to get

L = 4πρsh R3
c . AρshT η

sh

η + 3
. (2.58)

Equations (2.51), (2.56) and (2.58), along with Eqs (2.57) evaluated at r = Rc, T = Tsh for

Tsh and ρsh, are now five equations from which the five unknowns Rc, Tsh, ρsh, ζ and L can

be determined as functions of the independent variable Mc. The L(Mc) relation in particular

can be compared with the ‘empirical’ relation (2.50).

Realistic cores of red giants have somewhat larger radii than Eq. (2.51) gives, because of

zone (2) above. This zone grows significantly as the degenerate core shrinks, keeping Rc

nearly constant at

Rc ∼ 0.03 R�. (2.59)

Using this value instead of Eq. (2.51) improves the agreement between the analytical and

numerical values of L(Mc). Adopting η ∼ 13, a somewhat lower value than is appropriate

for the main sequence because shell-burning tends to take place at higher temperatures, we

find that for successively lower regimes of Mc (below the Chandrasekhar limit) we get L ∝
Mc, L ∝ M6

c and L ∝ M8.5
c . In practice Mc is never small enough for the last approximation

to be valid. The ‘empirical’ Eq. (2.50) agrees with the first two of these three power laws.

Equations (2.56) to (2.59) tell us that a burning shell should be located approximately on

the following curve in the (ρ, T ) plane:

κρ2ε

T 4
= 4ac

3R2
c

(η + 3) � constant. (2.60)

So the fact that Rc empirically is nearly constant means that burning shells should lie on a

unique locus – cf. Eq. (2.17) for ZAMS stars where burning occurs at the centre.

Equation (2.50) shows that the star’s luminosity should increase strongly with Mc, and

hence with time. Since the envelope remains close to the Hayashi limit, the star ascends the

‘giant branch’ (GB) of the HR diagram (Figs. 2.1, 2.9b). Early in the star’s climb up the GB,

the convective envelope deepens to the point where it begins to entrain material that was partly

burnt during MS evolution (Fig. 2.5a). This is the ‘first dredge-up’ phase, the first opportunity

for material processed by nuclear reactions near the centre to be observed at the surface. In

particular, 13C and 14N are enhanced, the latter at the expense of 12C and 16O. Once the

burning shell moves out close to the base of the convective envelope, however, the deepening

of the envelope is reversed. There is always a radiative buffer between the burning shell and

the convective envelope, which may contain very little mass but covers several pressure scale

heights. Consequently no further dredge-up should occur. There is, however, observational

evidence to suggest that 14N is progressively enhanced beyond this point (Sneden et al.
1991). This appears to mean that some slow or perhaps intermittent mixing can occur in the

convectively stable zone, as is also suggested by the existence of OBN stars (Section 2.2.5).

Possibly such mixing is driven by the interaction of rotation, especially differential rotation,

and magnetic field. We would expect the core to spin up as it shrinks, and the envelope to spin

down as it expands, but on the other hand we also expect even a rather weak internal magnetic

field to preserve uniform rotation. The resulting redistribution of angular momentum perhaps

can mean a certain degree of mixing across the stable radiative mantle separating the burning

shell from the convective envelope. An alternative might be that thin H-burning shells could
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be subject to a mild form (Bolton and Eggleton 1973) of the shell flashes which occur in thin

He-burning shells at a later stage of evolution – see below.

Although rotationally driven mixing seems an attractive possibility, we should note the

argument of Spruit (1998) that it would take very little magnetic field to enforce uniform

rotation. Evolution in the Sun, with the core contracting and the envelope expanding, has

long been supposed to produce non-uniform rotation in the Solar core, and yet helioseis-

mology (Fig. 2.7b), while showing non-uniform rotation in the convective envelope, shows

remarkably little in the radiative core. This is plausibly due to magnetic field. Differential

rotation in the core at the level of one part in a million would roughly double the magnetic

field every million rotations, or in ∼105 years. This is very short compared with the age of

the Sun. Taking this concept to its logical conclusion, even red giants would fail to generate

differential rotation by core contraction and envelope expansion.

Well before the helium white dwarf core can reach the Chandrasekhar limit, however,

it reaches temperatures of about 100 MK (when Mc ∼ 0.47 M� and L ∼ 2500 L�) at which

helium can ignite. This ignition, in contrast to the more massive stars (M >∼ 2 M�, see below),

is explosive (Mestel 1952), because the degeneracy of the electrons means that the pressure

in the core is insensitive to temperature and therefore the temperature can run away. However,

once the temperature has risen in the explosion by a factor of about three, the degeneracy

begins to lift and the core ‘flash’ is brought under control; the core begins to expand because

the pressure increases, and the nuclear energy release is channelled into expansion against

gravity rather than further heating. The core then settles down in a steady helium-burning

configuration, which is non-degenerate by a narrow margin. This configuration is rather

independent of the star’s initial mass (in the range M <∼ 2 M�) because of the convergence,

illustrated by Eq. (2.50) and Fig. 2.9a,b, of degenerate cores to a unique evolutionary track.

During core helium burning, the star’s luminosity is about 50 L�, with about 20% coming

from helium burning in the core and the rest from hydrogen burning in a shell surrounding

the core. Helium burning in its initial phases produces mainly carbon, through the triple-α

reaction, but at a late stage, when the abundance of helium is reduced to <∼15% by mass,

the reaction 12C(α, γ )16O comes to dominate, and the abundance of 16O can eventually

exceed 12C.

Provided that the star has not lost substantial amounts of mass during its first journey up the

giant branch, the star remains close to the Hayashi limit after the He flash, with radius given by

Eq. (2.49), or perhaps about 10–20% smaller. It will be little different in outward appearance

from a star ascending the giant branch in the previous evolutionary phase, although there

may be some subtle changes in surface composition. Some HRDs of Galactic clusters and

the Solar neighbourhood show a ‘clump’ of stars at about the right level on the giant branch

(Fig. 2.11), which can reasonably be identified with the core He-burning phase. The He fuel

in the core lasts about 102 megayears, after which the core lapses back into degeneracy as a

C/O white dwarf of about 0.3 M�. He burning continues in a shell whose luminosity rises

rapidly while the shell moves out, but then decreases again when it has nearly caught up with

the H-burning shell; by this time both have moved out to about 0.55 M�.

Many globular clusters contain a horizontal branch (HB) at a luminosity of about 50 L�
(Fig. 2.10b). This must be the region occupied by core He-burning stars, but whereas theor-

etical models ought to be close to the GB – even for the lower-than-Solar metallicities that

are typical of globular clusters – observation shows that the HB can extend a long way to

the blue side of the GB. The best explanation of this is mass loss, as a result of stellar wind,
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Figure 2.10 Hertzsprung–Russell diagrams. (a) Main sequence of the Hyades, a Galactic
cluster: open triangles are known spectroscopic binaries, which can be up to twice as
luminous at the same colour as single stars; filled circles are single stars, or at least SBs
below the detection threshold; from Griffin et al. (1988). (b) The globular cluster 47 Tuc;
from Hesser et al. (1987). The main sequence (MS), turn-off (TO) from the MS, first
giant branch (FGB), horizontal branch (HB) and asymptotic giant branch (AGB) are
indicated.

most probably on the GB prior to the helium flash (Faulkner 1966). The mass of envelope

above the shell at this point, expected to be about 0.35–0.5 M� (depending mainly on initial

metallicity) if there were no mass loss, has to be reduced to about 0.05–0.2 M�, to explain

the blue extent of some observed HBs. This is not unreasonable with empirical estimates

of mass loss rates from red giants, as given in Section 2.4. Those HB stars which achieve

the lowest masses of envelope and so populate the extreme horizontal branch (EHB stars)

are probably little different from helium stars (Section 2.5), and will evolve fairly directly to

white dwarfs without a further transition back to red giants. It is even possible for a star to

lose its entire envelope on the first giant branch and yet manage to ignite He as an EHB star,

provided that it is quite near to the He flash when all the envelope is lost (d’Cruz et al. 1996).

But probably the great majority of HB stars, and certainly their ‘clump giant’ analogues in

Galactic clusters and in the Solar neighbourhood (Fig. 2.11), should return to and re-ascend

the GB once central He has been exhausted.

There are several sub-dwarf B (SDB) stars in the Solar neighbourhood rather than in

clusters. These are small hot stars that are probably much the same as EHB stars. It has been

shown recently (Maxted et al. 2001) that they are commonly, and arguably always, in binaries:

and so it may be that the action of a binary companion, rather than just greater-than-average

stellar wind, is responsible for removing almost the entire envelope.
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Figure 2.11 Hertzsprung–Russell diagrams. (a) The nearby stars (within 50 pc of the Sun),
from Hipparcos data. Only stars not known to be binary have been plotted. (b) A theoretical
model of the nearby stars, which uses an IMF with N ∝ M−2.8, uniform space density, and
a birth-rate that decreases exponentially on a timescale of 6.3 gigayears. In several regions
demarcated by dashed lines in (a), including the Hertzsprung gap, lower giant branch, GK
giant clump (core He burning) and cool wind (AGB) stars, the numbers can be compared
with (b) and are found to agree to ∼10% or better. The greater spread on the observed LGB
is probably due to a range of metallicity in the oldest stars. From Schröder et al. (2000).

On the horizontal branch is a fairly narrow range of colour or temperature in which the

atmosphere is unstable to radial pulsations. The RR Lyr pulsating variables are found there,

with pulsation periods of ∼0.25–0.75 days. The pulsation is a relaxation cycle driven pri-

marily by the second ionisation of He. The zone in the interior where this occurs is at about

105 K. In hot stars, this zone is too near the surface to contain sufficient mass to drive the

pulsation. In cool stars, the atmosphere may already be convective down to this depth, and

the convective instability appears to overwhelm the radial pulsational instability. Thus the

instability strip has rather well-defined blue and red edges. Stars may cross this strip once

(blue to red), or twice (red to blue, and later blue to red) during their evolution on the HB.

One might hope to observe this evolution by determining rates of period change; as noted in

Section 1.2 one does not need to wait for a substantial change before the rate of change is

measurable. However, rates of change are found to be one or two orders of magnitude larger

than expected, and of either sign, and may be due to some chaotic influence on the relaxation

cycle rather than to underlying nuclear evolution.

At a late stage during the He depletion of a convective He-burning core in stars below about

4 M�, an instability sometimes occurs in which the convective core abruptly grows larger,

mixing in fresh He from further out. The convective core may almost double its mass briefly,

before shrinking again, and may (in a 1 or 2 M� star) repeat this process (called ‘breathing’)

two or three times. This is in marked contrast to the depletion of H in an H-burning core,

which appears to proceed very steadily. However, whether ‘breathing’ occurs or not appears

to depend on the details of the opacity and nuclear-reaction data used; the models used in

this book did not usually display such behaviour, in contrast to models with the same code

but using previous data. However some ‘breathing’ behaviour can be seen in the low-mass

HeMS models of Fig. 2.15 (Section 2.4).

The usual outcome of core H burning, central H exhaustion, core He burning and central

He exhaustion in low-mass stars is a degenerate C/O core with a mass of about 0.55 M�,

surrounded by a shell of much less mass containing mainly He and no H, and then an envelope
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of giant proportions (about 30–50 R�) consisting of material that has been largely though not

entirely unprocessed by nuclear reactions. The star contains two burning shells which, after

some transient adjustment, begin to march outwards together through the star, increasing

the core mass until it can, in principle, approach the Chandrasekhar mass (Fig. 2.8b). The

evolution of the luminosity as a function of core mass returns fairly closely to Eq. (2.50),

and the surface and core radii are again given by Eqs (2.49) and (2.51). The star re-ascends

the Hayashi track, to greater luminosities than it reached on the first ascent (the FGB). This

continuation is called the ‘asymptotic giant branch’ or AGB.

When the helium-burning shell has almost caught up with the hydrogen-burning shell, at

Mc ∼ 0.6 M� (or perhaps earlier, see below), the inner of the two shells becomes thermally

unstable (Schwarzschild and Härm 1965), and drives a series of ‘He shell flashes’, not to be

confused with the He core flash above. A complex mixture of minor nuclear reactions can

be set in train by the episodic mixing of material between the comparatively cool (∼70 MK)

base of the hydrogen envelope and the hot (∼250 MK) outer edge of the C/O core, which can

produce neutrons and so convert some of the normally inert Fe nuclei into traces of Zr, Tc, Ba

and other heavy metals (the s-process). The main reactions are probably 12C(p, γβ+)13C in

the H burning region, and 13C(α, n)16O in the He burning region. The details are not yet well

understood, but it is difficult to avoid the conclusion that some such process must take place.

The He shell flash instability is driven mainly by the steep dependence of the He-burning

reaction on temperature (ε ∼ ρ2T 50), which allows the temperature, and hence the nuclear

luminosity, to run away temporarily. This initiates convection, which mixes outwards material

with a high concentration of 12C, the primary product of He burning. It is only at a late stage

of He burning, or equivalently only at the bottom of the He-burning shell, when the He is

already reduced to <∼15% by mass, that the production of 16O becomes dominant. To produce

an enhancement of carbon and s-processed material as is observed (see below) the 12C-rich

layers have to mix with the base of the H-burning shell, where the H-abundance is low. This

combination of high 12C and low 1H allows burning, which ensures that the major product is
13C. Less 12C and more 1H would favour the production of 14N, which not only reduces the

amount of 13C available for producing neutrons, but also introduces a ‘neutron poison’ since
14N is particularly good at absorbing neutrons and so preventing them from interacting with

Fe, etc. Thus rather delicate circumstances have to prevail, but apparently they do. Once the

the 12C material has been enriched by the H reaction to be 13C rich, the convection due to

the flash must carry the material back down for the further 13C(α, n) reaction, liberating one

neutron for each H atom absorbed further up. Although Fe is not the most abundant species

of potential neutron absorber, it has the highest value of cross-section times abundance, and

so it, and the successively heavier elements it produces, tend to absorb most of the neutron

flux. Provided there are more than about 80 neutrons produced per Fe atom, the Fe can be

transformed to Ba and beyond, but with abundance peaks at Zr and Ba because these elements

have ‘magic’ numbers of neutrons and hence local minima of neutron capture cross-section.

The convection in the outer envelope extends intermittently down into the region which

is occupied by C-rich and s-processed material from a slightly earlier episode of shell flash

and deeper mixing, and so can bring the heavy elements, and accompanying carbon, to the

surface. Such elements are observed to be enhanced in a proportion of red supergiants (main

sequence stars, S stars, C stars). Although C stars as a fraction of all giants amount to only

about 1% in our own Galaxy, they are common in the Large Magellanic Cloud (∼60%) and

very common in the Small Magellanic Cloud (96%, Blanco and McCarthy 1981). Since the
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LMC is deficient in metals, relative to our own Galaxy, by about a factor of two, and the SMC

by about a factor of four, it is clear that the late stages of evolution of stars are very sensitive

to the metallicity.

The difference between the various spectral classes M, MS, S and C is primarily due to the

ratio of C to O (which is about 1/3 in normal, i.e. Solar surface, material). This is because

the CO molecule is especially tightly bound. If C/O < 1, all the C is locked up in CO and

only O is left to form molecules, such as TiO which is the characteristic molecule producing

bands in the spectrum of M stars. However, if C/O > 1, it is the O which is all locked up,

and C is left to show such molecules as C2, SiC, which are characteristic of C stars. MS and

S stars are intermediate, but presumably still have C/O ≤ 1.

Enhancement of C and of s-process elements (notably Ba) is also seen in a class of G/K

giants, the ‘Ba stars’. However Ba stars are usually of too low luminosity to be AGB stars,

and hence cannot have produced their s-process enrichment themselves; they appear to be

the product of binary interaction (Section 6.4), having accreted s-processed material from a

companion that was once an AGB star and is now a nearly invisible WD.

If a star on the AGB evolves without mass loss, then either (a) when the core mass

approaches the Chandrasekhar mass, we would expect the core to ignite C in a degener-

ate thermonuclear explosion, similar to, but much more dramatic than, the He core flash – a

thermonuclear supernova explosion (SNEX) – or (b) for lower mass, the star would end up

as a C/O WD once the last of its envelope was burnt. However, it is very likely that in fact the

star loses substantial mass, which means that possibility (a) is excluded (for initial masses
<∼2 M�, as considered in this section).

At some point on the AGB, stars become unstable to radial pulsations – they become Mira

variables. These pulsations appear to be driven mainly by hydrogen ionisation; unlike in

RR Lyr pulsations, the fact that the envelope is already unstable to convection is apparently

not a barrier to pulsational instability. Such stars are capable of driving copious low-velocity

winds, which can manifest themselves as cool dust shells in the infrared. At a late stage the

star may be obscured by the shell to such an extent that it is only visible in the IR. In this

stage the object may be conspicuous as an OH/H2O/SiO maser source. In the next major

stage the star is stripped down to an extremely hot UV-bright core, illuminating and heating

the remnant shell so that the shell appears as a planetary nebula (PN). Such planetary nebulae

often have a bipolar morphology, which suggests that the material ejected in the slow but

copious AGB wind is concentrated to an equatorial ring or disc (perhaps as a result of having

a binary companion), and then a very fast but relatively meagre wind from the very hot post-

AGB remnant punches out more readily in the polar directions. In addition, many planetary

nebulae show a series of rings, suggestive of episodic AGB mass loss. Finally, the core cools

down to become a white dwarf, while the envelope dissipates itself.

In at least two stages during the final cooling-down process the star may be pulsationally

unstable again, this time at short periods (∼10 min) that allow for the possibility of astero-

seismology. Early in the cooling (T ∼ 100 kK, L ∼ 10 L�) there are the GW Vir variables.

For example, BB Psc (Vauclair et al. 1995, O’Brien et al. 1998) shows nine modes (l = 1 g-

modes) with P ∼ 336–612 s. These are consistent with a fairly uniform spacing of �P ∼ 21 s

(not all such modes are seen), leading to an estimate M ∼ 0.7 M�, L ∼ 5 L�. The driving

mechanism of these modes is not yet understood. Much later in the cooling (T ∼ 13 kK,

L ∼ 10−3 L�), WDs cross the high-gravity extension of the δ Cep/δ Sct instability strip and

become ZZ Cet pulsators. ZZ Psc (G29-38; Kleinman et al. 1998) shows 20 l = 1 g-modes
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Figure 2.12 (a) Relations between initial (ZAMS) and final (WD) mass, from Eq. (2.62):
diamonds – Pop I; filled squares – Pop II; dashed lines – upper and lower limits to the
observational distribution of Weidemann and Koester (1983). (b) Convolving the results in
Fig. 2.12a with the IMF of Eq. (1.17) gives a distribution of masses for planetary-nebula
nuclei (thick curve) similar to the observed distribution of Zhang and Kwok (1993).

with P ∼ 110–1240 s. These are consistent with a spacing of �P ∼ 47 s, which may imply

M ∼ 0.5–0.7 M�. In both types of pulsators the modes depend fairly sensitively on the struc-

ture of the outer shell or shells of hydrogen or helium, but one can hope to determine this

structure by sufficient astroseismological data. Long-term monitoring of both types may

also determine rates of period change that should strongly constrain models of cooling in

WDs.

The loss of mass that terminates a star’s AGB evolution is probably a compound of two

processes: (a) a fairly steady stellar wind, increasing in strength as the star grows in luminosity

and radius (Section 2.4), both on the first GB and on the AGB; and (b) a more drastic

‘superwind’, in which the remaining envelope is driven away very rapidly, possibly quite

early on the AGB. Weidemann and Koester (1983) plotted a semi-empirical relation between

initial (ZAMS) mass Mi and final (WD) mass Mf, based largely on observations of WDs

in a number of galactic clusters of reasonably well-known age. Weidemann and Koester’s

graphical relation (Fig. 2.12a) can be rendered approximately as

Mf ∼ 0.4 + 0.05Mi + 0.00015M4
i , 1 <∼ Mi

<∼ 8. (2.61)

The masses are in Solar units. There is considerable scatter in the semi-empirical data however,

and an uncertainty of ±0.2 M� in Mf at given Mi would be fairly conservative. It is not

impossible that some scatter is quite real: perhaps there is something chaotic about the mass-

loss process, which makes initially similar stars lose their envelopes at significantly different

points on the AGB.

One white dwarf (40 Eri B) appears to have well-determined parameters of 0.50 ±
0.011 M� and 0.0136 ± 0.00024 R� (Shipman et al. 1997), using the Hipparcos parallax

and an orbit by Heintz (1974). These values fit well with Eq. (2.51), which applies equally

for He and for C/O WDs. They also agree reasonably well with the gravitational redshift.

Nevertheless, the mass is uncomfortable: evolutionary models suggest that there should be a

gap in white-dwarf masses between about ∼0.46 and about ∼0.55 M�, because stars leave

the first GB at the former core mass, and return to much the same point in the HR diagram

only when the core mass has increased to the latter value. However, the uncertainties quoted
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above for the parameters of 40 Eri B seem optimistic in view of the fact that the orbit of

∼250 years has only been observed for slightly more than half of one orbit. A more cautious

view is that any orbit, spectroscopic or astrometric, should be seen round twice before accu-

racies of <∼1% can be claimed (with an exception only for pulsar orbits, where the accuracies

can be enormously greater). The mass of 40 Eri B has crept up from 0.43 ± 0.02 in 1974 to

0.50 ± 0.01 in 1997, and may not yet have settled down.

White-dwarf masses of <∼0.4 M� are known, and are demonstrated to be products of binary

evolution (Marsh et al. 1995). However, binary interaction fails to explain a mass in the gap,

and the mass of 40 Eri B remains something of a problem. If we take it at face value we

would say that the progenitor must have reduced its mass by stellar wind to about 0.5 M�
on the FGB, ignited helium and settled as an EHB star, and then evolved to a white dwarf

without returning to the AGB. This is probably at the extreme of single-star mass-loss rates

(Section 2.4), but might happen occasionally.

Paczyński and Ziól�kowski (1968) suggested that a star’s progress up the AGB might

terminate at the point where the binding energy EB of the envelope (i.e. the integral of the sum

of gravitational and thermal energy, the latter including ionisation) becomes negative. This

happens because as the envelope expands the gravitational contribution becomes smaller, but

the ionisation energy, with the opposite sign, remains substantial. We shall see (next section)

that intermediate mass stars converge to much the same evolution from this point on, and

so for the remainder of this section we consider stars in the wider mass range 1–8 M�. The

prescription of Paczyński and Ziól�kowski gives an Mf, Mi relation in an implicit form as

EB ≡
∫ Mi

Mf

(
Gm

r
− U

)
dm = 0, (2.62)

where we identify Mf with Mc, the mass of the degenerate core. This algorithm gives (Han

et al. 1994) a slightly more linear relationship than Eq. (2.61), which can be approximated

as follows:

Mf ∼ max(0.51 + 0.049Mi, min(0.35 + 0.11Mi, 0.60 + 0.06Mi)),

0.8 <∼ Mi
<∼ 7.5 M�. (2.63)

Equation (2.62) also gives, for Mi
<∼ 1 M�, a solution on the first GB, with Mf ∼ 0.47 M�.

When convolved with a reasonable IMF (e.g. Eq. 1.17), Eq. (2.63) gives a distribution of PNN

masses that is strongly peaked at about 0.60 M�, roughly in accordance with the observational

data of Zhang and Kwok (1993) – see Fig. 2.12b. Note that the models used by Han et al.
(1994) did not include convective overshooting, and so differ from the models used here; but

the tendency of giants to converge to a unique evolutionary locus – Fig. 2.9a,b – as the core

evolves means that the difference should not be large.

There is no guarantee that mass loss is sufficiently deterministic that any narrow Mf/Mi

relationship is to be expected. Especially if magnetic fields are involved for G/K/M giants,

as they certainly are for the Sun, the process may well be chaotic, and one can imagine that

chaotically different mass-loss rates might lead to both He and C/O WDs, and to a substantial

range of masses, from initially very similar stars.

A substantial difficulty in using the recipe (2.62) is deciding where in a supergiant star is

the boundary between ‘core’ and ‘envelope’, because the integral, viewed as a function of Mf,

is quite sensitive to Mf once Mf approaches close to the degenerate core mass. Because the
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Table 2.2. Final mass and maximum luminosity and radius, in Solar units

Mi 1 2 3 4 5 6 7

Mf 0.56 0.61 0.68 0.79 0.90 0.96 1.02

Lmax 4915 7139 11020 17500 23600 26650 29500

Rmax 290 365 476 628 747 799 843

issue of envelope binding energy is perceived as being particularly important in the evolution

of binaries containing red supergiants, I discuss this in some detail in Section 5.2; I also

return to mass loss in Section 2.4. Provisionally, let us define the base of the envelope, i.e.

Mf in Eq. (2.62), as the place where the hydrogen abundance is 0.15.

From the point of view of binary-star evolution, it is particularly important to be able to

estimate the maximum radius Rmax that a star can achieve, which is the radius on the AGB just

before the envelope is lost. For a given initial mass Mi, Eq. (2.63) gives Mf, then Eq. (2.50)

gives the corresponding Lmax (using Mc = Mf), and finally Eq. (2.49) gives the radius. We

ought to make allowance for the fact that the maximum radius occurs shortly before the stellar

mass is reduced to Mf, but in practice using Eq. (2.49) with M = Mf appears to be good

enough. We obtain the results in Table 2.2.

It is however something of a problem that, in stars with initial mass 1–2.5 M�, the He-shell

instability referred to earlier is only just beginning when the core mass reaches the value of

about 0.6 M� at which envelope ejection apparently occurs. This means that it is difficult

to see how the nuclear enrichment brought about by shell flashing is as common as it is.

This may be an indication that shell flashing in reality starts at a somewhat earlier stage

than current numerical modelling implies, so that a star can already have quite an enriched

envelope when the C/O core mass exceeds, say, 0.5 M�.

I have already referred (Section 2.2.9) to Spruit’s (1998) suggestion that interior magnetic

field, even if quite weak, is liable to keep stars in nearly uniform rotation, even red super-

giants where the core has contracted by a factor of nearly 100 in radius while the envelope

has expanded by an even larger factor. This has the apparent difficulty that it should lead

exclusively to very slowly rotating white dwarfs; yet many isolated white dwarfs are rotating

with periods of ∼1 day. This can be explained (Spruit 1998) as a result of the fact that the

ejection of the envelope is not a perfectly spherically symmetrical process. The tiny moment

of inertia of a white dwarf means that small random anisotropies in the superwind phase can

generate a net rotation rate of the right order.

2.3.3 Intermediate-mass stars (M ∼ 2–8 M�)

The expansion of a star as it crosses the Hertzsprung gap between the main sequence

and the Hayashi limit is confined to the outer layers. The core contracts, in response to the

partial loss of pressure gradient that was formerly provided, in the form of a temperature

gradient, by central H burning. Contraction stops when either degeneracy removes the need

for a temperature gradient, as in the previous subsection (M <∼ 2 M�), or else (M >∼ 2 M�)

when the hydrogen-exhausted helium core contracts and heats up from hydrogen-burning

temperatures of 15–50 MK (depending on stellar mass) to temperatures of about 150 MK at

which helium can itself burn. This initiates a period of steady core helium burning, which

is not unlike the core helium-burning phase of the less massive stars except that the core
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can be smaller in mass, at least in the range 2–3 M�, since the core did not have to grow

slowly on the FGB to attain a critical mass for the helium flash. Usually the envelope has

reached the Hayashi track shortly before the core ignites helium, and so the star starts its core

helium-burning as a red giant; but at some higher masses the helium may ignite while the

star is still in the Hertzsprung gap.

For stars with masses in the range 5–15 M� helium burning may temporarily drive the star

back to substantially smaller radii than at the Hayashi limit, though still much larger than

main sequence radii. This excursion or ‘blue loop’ towards the blue side of the Hertzsprung–

Russell diagram, seen particularly in the 8 M� star of Fig. 2.1, takes the star on a fairly slow

(i.e. nuclear) timescale through a narrow range of temperatures, the Cepheid strip (roughly

6.5–7.5 kK), in which the surface layers are unstable to pulsation of the δ Cep type. The

basic destabilising mechanism here, as for δ Sct stars (Section 2.2.4) and RR Lyr stars

(Section 2.3.2), is the second ionisation of helium, which can lower the adiabatic exponent

considerably in the outer envelope. The strip is terminated on the hot side by the fact that

the second ionisation of helium occurs too near the surface to affect a sufficiently substantial

mass of envelope material; and the cooler side is presumably bounded by the fact that tur-

bulent convection becomes much more important than radiative heat transfer in the surface

layers.

Once a significant amount of central helium is burnt the star returns from its blue loop

in the Hertzsprung gap to the Hayashi limit. The duration of the blue-loop phase might be

expected to be about 10% of tMS (Eq. 2.4), because the nuclear binding energy of helium

is about 10% of hydrogen, while the star maintains about the same luminosity as on the

MS and burns most of the helium that was produced there. However, in a range of masses

(∼2–6 M�) the fraction can be as large as 25–40%, because in these stars the He luminosity

is actually quite small compared with the luminosity from the H-burning shell, and remains

so for most of the core-He-burning phase. For ∼2–5 M�, there is hardly a blue loop, but

central He burning is presumably responsible for the more luminous members of the K-giant

clump (Fig. 2.11), the less luminous members having arrived there after the He flash (previous

section).

The core contracts slowly during, and rapidly after, core helium burning. If the initial

mass of the star is <∼7 M� the C/O core has less than the Chandrasekhar mass, and will

reach densities at which electrons become degenerate (Fig. 2.9a). Further evolution, with a

growing degenerate core surrounded by two burning shells, and mass loss from the envelope,

should be similar to the AGB stars of the previous section, leading also to a shrouded red

supergiant, a planetary nebula, and then a white dwarf. If the C/O core does not become

degenerate before it ignites (i.e. if the core has more than the Chandrasekhar mass at the time

that it forms) then we consider the star to be ‘massive’: see next section.

Figure 2.9c shows the relations between luminosity and both the C/O and the He core

masses. The former is much the same as for the low-mass regime, assuming as in Figure 2.9b

that the low-mass stars do not lose mass. The latter is rather more complicated, because the

He core mass can decrease temporarily, as the surface convection zone eats into it (‘second

dredge-up’).

The most likely agent for terminating the double-shell-source evolution of intermediate-

mass stars is thought to be mass loss, as for low-mass stars, so that the outcome is a C/O

white dwarf rather than a thermonuclear supernova explosion. The analysis of Weidemann

and Koester (1983), on which the approximation of Eq. (2.61) is based, extended to young
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clusters (such as the Pleiades, and NGC 2516) with turn-off masses >∼5 M�, in which white

dwarfs have been found with masses approaching 1 M�. The uncertainties are very large,

however. It is commonly assumed that stars near the upper limit of ‘intermediate mass’, i.e.

about 7 M�, will produce white dwarfs near the Chandrasekhar limit, although this is not

well supported either by observation or theory.

If mass loss does not terminate the evolution of intermediate-mass stars, by reducing the

stellar mass below the Chandrasekhar mass, then the degenerate C/O core can in principle

undergo a ‘carbon flash’ similar at least at its inception to the helium core flash of stars with

initial mass below about 2 M�, once the temperature or density gets high enough (Tc ∼ 1 GK,

or ρc ∼ 1013 kg/m3). This requires that the C/O core mass approach fairly close to the Chan-

drasekhar limit. Possibly some stars less massive than about 7 M� undergo degenerate carbon

ignition because they are unable to lose enough mass to prevent it. This ignition will certainly

be much more violent than the helium core flash, since the core is much more degenerate: if

it takes place, it is expected to be a supernova explosion (Höflich et al. 1998).

Supernovae within our own Galaxy are rare (6 in the last 1000 years, Hill 1993), but

several tens per year are observed altogether in external galaxies. Broadly, they fall into two

spectroscopic classes: Type I, which do not show hydrogen in their spectra, and Type II,

which do. Both types are further sub-divided, mainly on the shapes of their light curves. Type

Ia supernovae are considered good candidates for explosions driven by carbon detonation.

However there are strong reasons for thinking that Type Ia SNe are products of binary

evolution rather than single stars, and might for example be due to accretion of mass by a

C/O white dwarf from a companion in a novalike binary, or to the merger at a late stage of

binary evolution of two C/O white dwarfs of about 0.7 M� each. The reasons for rejecting

a single-star origin are that (a) Type Ia supernovae contain no hydrogen in their spectra,

by definition of Type I, but a single star of intermediate mass which retained its envelope

long enough for the core to reach the Chandrasekhar limit would presumably still have some

of its envelope left; and (b) Type Ia supernovae are found in elliptical galaxies and other

environments where the stellar population is seen to consist predominantly of old low-mass

stars rather than young stars of upper intermediate mass. Some binary scenarios can, in

principle, lead to carbon detonation at great age, but not single-star scenarios.

The detonation of a C/O white dwarf, whatever its origin, should lead to the production of

large amounts of Ni/Fe – perhaps >∼50% of the original mass. Relatively little energy would

be released as neutrinos, and the whole white dwarf would be dispersed, leaving no compact

(neutron star or black hole) remnant. These features are all in contrast to supernovae driven

by core collapse (next section). Although early theoretical work on supernova explosions

assumed spherical symmetry for simplicity, much recent work emphasises the role of insta-

bilities, in particular the Rayleigh–Taylor instability due to an inverted molecular weight

gradient, which can lead to complicated two-dimensional or three-dimensional behaviour

(Falk and Arnett 1973, Nagataki et al. 1998).

2.3.4 High-mass stars (M >∼ 8 M�)

For stars more massive than about 8 M� an explosive fate is more certain, but is

delayed by the fact that the C/O core does not become degenerate before carbon ignition.

Thus the carbon can ignite reasonably quietly and then burn hydrostatically at a temperature

of about 1 GK. Most of the energy from nuclear reactions at such high temperatures gets
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converted almost directly into neutrinos, via the weak interactions

γ + γ ↔ e+ + e− → ν + ν̄ (pair production) (2.64)

and

p + e− → n + ν, n → p + e− + ν̄ (Urca process). (2.65)

The protons and neutrons participating in reaction (2.65) are in practice embedded in heavy

nuclei, rather than free particles. Neutrino losses accelerate the evolution in a vicious spiral,

so that in a few hundred years at most the C/O mixture burns to a mixture of O, Ne and

Mg. In a narrow range of initial masses, perhaps about 6–8 M�, it is possible that the core’s

evolution will terminate here, provided that stellar wind or a binary companion removes the

remaining envelope in this short time. Such a core can in principle cool down and become

an O/Ne/Mg white dwarf with a mass quite close to but below the Chandrasekhar limit

(Nomoto 1984). There is observational evidence that some white dwarfs in classical nova

eruptions are of such a character.

For greater initial masses it is difficult for the core to avoid going on to a further stage

of nuclear burning (the α-process) in which (γ, α) and (α, γ ) reactions come nearly into

equilibrium, turning the lighter α-nuclei (O, Ne, Mg) into heavier and more tightly-bound

α-nuclei (Si, S), and these in turn to ‘iron peak’ elements, principally Fe, Ni. These last

elements, being more tightly bound than either lighter or heavier nuclei, cannot continue

the chain of energy production. Core collapse must happen at this stage. However, it is not

clear whether, and in what circumstances, we should expect a black hole or a neutron star

remnant and an ejected supernova envelope. We do expect some compact remnant since,

unlike in the case of degenerate carbon ignition (Section 2.3.3), there is not enough available

nuclear energy in the core material to blow the core out of its much deeper gravitational

potential well. The approach to a supernova explosion (SNEX) is reviewed, from theoretical

and observational directions, by Mazurek and Wheeler (1980), and Woosley and Weaver

(1995).

For some purposes later it will be convenient to restrict the term ‘high mass’ to those stars

with 8 <∼ M <∼ 35 M�, and introduce a further category of ‘very high mass’ for still higher

masses. Partly this is intended to distinguish between stars that produce neutron-star remnants

and those that produce black-hole remnants; and partly to distinguish between those where

mass loss by stellar wind is not very important until a late stage of evolution, and those

where mass loss may be important earlier, even on the main sequence. Obviously these two

boundaries need not coincide, but since both are very uncertain, and yet both probably seem

to be of the same order, we will ignore this.

Figure 2.9d shows that there is a somewhat tighter correlation between L and Mc than

for the intermediate-mass stars. However, this is mainly because neither the core mass nor

the luminosity changes very much during evolution, and both are largely determined by the

Eddington limit.

A major problem with our theoretical understanding of supernova explosions is to deter-

mine the mechanism whereby the outer envelope is ejected, while the core collapses. It is not

difficult to see why the core should collapse once it has exhausted all its available nuclear

energy. But it has been difficult, indeed impossible so far, to determine clearly the mechanism

which will prevent much or all of the outer envelope from following the core into collapse.
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A large amount of energy is available; the gravitational energy released by the collapsing

core. But this energy comes out almost entirely in neutrinos, which interact rather weakly

with matter farther out. It is not clear whether they can deposit enough energy sufficiently

rapidly to turn the inflow round into an outflow. Nevertheless, observation makes clear that

considerable amounts of matter are ejected at very high speed (∼0.1c) in supernova remnants.

It may be that instabilities and asymmetries in the explosion are the key, and that fully 3D

modelling of the process is necessary.

Timmes et al. (1996) estimated the remnant masses to be expected from ZAMS stars in

the mass range 8–40 M�. They evolved stars up to the point of core collapse, and then, by

imposing a piston-like outward impulse to material just outside the iron core, the envelopes

were exploded outwards. Not all of the envelope escaped, however: a proportion was slowed

hydrodynamically, failed to reach escape velocity, and fell back into the core. With a ZAMS

mass of 35 M�, the amount falling back on to the ∼2 M� iron core ranged from almost zero

to over 5 M� as the piston energy ranged over 1.2–2.2 × 1044 J. But for models at ZAMS

masses 11–28 M�, the lowest piston energy in this range was enough to eject most of the

material except for part of the silicon shell immediately outside the iron core. Baryonic

masses of the remnants ranged over 1.3–2 M�. In the small but important range 8–11 M�,

cores, although they ignite carbon non-degenerately, are degenerate for later burning stages

and tend to produce remnants fairly close to the Chandrasekhar limit, at baryonic masses

of ∼1.39 M�.

A baryonic mass has to be translated into a final gravitational mass, i.e. the mass that would

be determined by observation of a body in orbit around it. The gravitational mass is smaller

because the mass equivalent of the (negative) gravitational energy of the collapsed core has

to be added. This gives approximately a quadratic relationship

Mg ∼ Mb − G M2
g

2c2 R
∼ Mb − 0.075M2

g , (2.66)

in Solar units (Lattimer and Yahil 1989), assuming a reasonable average for R. The remnant

baryonic mass was a very non-monotonic function of ZAMS mass because convective zones

in the carbon-burning core, and later in the carbon-burning shell, would appear and disappear

somewhat chaotically, and influence the remnant mass significantly. ZAMS masses above

19 M� were little influenced by carbon burning and tended to be higher.

By convolving the ZAMS masses with a Salpeter IMF, Eq. (1.8), Timmes et al. (1996)

estimated that the distribution of gravitational masses would be bimodal, with peaks at 1.27

and 1.76 M�. The latter peak comes from ZAMS masses >∼19 M�. Arguably the remnants in

the higher peak may be black holes rather than neutron stars; certainly they would be if the

equation of state of neutron-rich material sets an upper limit to neutron-star masses at, say,

1.7 M�.

It is not yet clear whether it is simply the initial mass of the progenitor star, or some more

complicated criterion, that determines whether the remnant of a supernova explosion is a

neutron star or a black hole. Nor should one assume that the process is monotonic, with all

black-hole progenitors initially more massive than all neutron-star progenitors. Both kinds

of remnant are observed. Many neutron stars are known: about 100 of them are members of

close binaries with normal stars and show up as X-ray pulsars, but many more (∼1000) show

up as radio pulsars, of which only a small proportion are in binaries. A few radio pulsars
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are in binaries where the companion is another neutron star, though presumably too old to

be still pulsing, and have extremely well-determined orbits from which both masses can be

determined (Section 1.2). All such yield masses in the range 1.39 ± 0.06 M� (Brown et al.
1996). This is somewhat above the lower peak of Timmes et al. (1996).

The best way to distinguish observationally between a neutron star and a black hole is to

determine its mass, as can sometimes be done from a binary orbit; although a mass function

gives only a lower limit, several lower limits are already clearly in excess of plausible neutron-

star masses. No radio pulsar has yet been found with a black-hole-mass companion, but

several faint and presumably compact objects with low-mass stellar companions have very

large orbital velocities that at least give a mass function. Bailyn et al. (1998) show that six

out of seven black-hole candidates in low-mass X-ray binaries have mass functions which,

with plausible inclinations and mass ratios, are consistent with a narrow range about 7 M�;

the seventh requires ∼11 M�. Isolated black holes must surely exist, but will be very hard to

detect.

Evidence coming from the consideration of X-ray binaries can be expected to cast light

on the propositions that (a) neutron stars can be obtained from massive stars, say >∼35 M�,

and (b) black holes can be obtained from lower-mass stars, say <∼20 M� (Ergma and van den

Heuvel 1998). If this is true, it appears to imply that some property other than total mass

is important: for example, magnetic field or rotation. However, we feel that the evidence is

unclear, and for the present we will stick to the simple view that there is a unique critical

mass, probably in the range 35–40 M�, below which neutron stars are formed and above

which black holes are formed.

Not only is the nature of the ultimate type of remnant uncertain, but so is the prior evolu-

tionary track taken in the HRD. This is because, although it is clear that mass loss by stellar

wind (next section) is an important process, it is not by any means clear how this affects the

evolutionary track. Empirically, there is evidence that stars of >∼30 M� initially do not evolve

into red supergiants, as would be expected if they evolved without mass loss. Evolutionary

tracks of the most massive stars tend to be almost horizontal in the HRD (Fig. 2.13a). Helium

burning may begin not long after the TMS, but (for Pop I theoretical models, if there is no

mass loss) most of the core helium-burning phase is spent as a red supergiant. Observa-

tionally, however, there is an almost complete absence of red supergiants with bolometric

luminosities >∼3 × 105 L� (Humphreys and Davidson 1979), for which appropriate masses

are >∼30 M� – see Fig. 2.13a. There is no corresponding shortage of blue supergiants at

luminosities up to about 3 × 106 L�, whose masses must range up to about 100 M�. The

sloping line in Fig. 2.13a, above which there are no stars, is called the Humphreys–Davidson

limit (HDL).

Mass loss may be capable of explaining the HDL, since there is a tendency for stars that

lose a good deal of mass on or shortly after the main sequence to remain relatively blue during

core helium burning, rather than to make a complete excursion to the red supergiant domain.

Indeed, a star that contrives to blow off all of its hydrogen-rich outer layers at the end of its MS

life will, in effect evolve, as a helium star (Section 2.5), which is always hot and small if its

mass is >∼2.7 M�. Some O stars, the Of sub-type, show strong winds. However, the empirical

mass-loss rate for O stars in the next section, Fig. 2.15 and Eq. (2.71), is not large enough to

achieve a stripping down to the core, except perhaps at >∼100 M�. What is needed is something

like the much higher rate attributed to P Cyg stars, and to the related class of luminous blue

variables (LBVs), which are indeed found near the Humphreys–Davidson limit.
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Figure 2.13 (a) HRD of the brightest supergiants of the LMC. The Humphreys–Davidson
Limit (HDL) is the upper envelope of the observed stars (dots); the lower envelope is simply
an observational cut-off. Some evolutionary tracks from Fig. 2.1 are reproduced; these
tracks do not include mass loss. Several hundred M supergiants are subsumed in the shaded
region. The theoretical tracks need a larger mixing-length ratio (α ∼ 2.5) to get there. The
gap between log Teff ∼ 3.7 and 3.55 appears to be real. From Fitzpatrick and Garmany
(1990). (b) Magnetic field, estimated by Eq. (2.70), plotted against pulsar rotation period,
for ∼550 radio pulsars in the Galaxy and the Magellanic Clouds. Single pulsars are dots,
binary pulsars are circles or ellipses. Heavily-circled pulsars at the top centre are in
supernova remnants. From Phinney and Kulkarni (1994).

We can hypothesise that as a very massive star evolves horizontally across the Hertzsprung

gap its envelope becomes unstable when it reaches the HDL. This may be because the

luminosity in the interior becomes very close to the Eddington limit – the limit given by

Eq. (2.12) as ζ → ∞, i.e.

LEdd = 4πcG M

κTh

, (2.67)

which is the maximum luminosity that a star can transmit while still in hydrostatic and

radiative equilibrium. This may trigger mass loss at a rate in excess of 102 M�/megayear,

which continues (erratically on a timescale of decades to centuries, as in η Car, S Dor in the

LMC and P Cyg itself) until the mass is so reduced that the instability is largely removed. This

apparently happens when the star is stripped down to its helium core. Some Wolf–Rayet (WR)

stars appear to be such stripped-down stars. Many, though not all, appear to have little or no

hydrogen in their spectra. Several are in binaries from which masses can be determined, and

their masses are low for a main-sequence star of their luminosity, but not for a stripped-down

remnant of a star formerly two or three times more massive.

Wolf–Rayet stars are normally divided into two main classes, the WNs, which show nitro-

gen apparently enhanced relative to carbon and oxygen, and the WCs, which show enhanced

carbon (and there is also a very small class of WOs, showing enhanced oxygen). The WCs

normally show no hydrogen, which at least is consistent with the view that mass loss has

stripped them down right to the carbon-enriched helium burning core. The WN subclass can

be further subdivided, somewhat loosely, into ‘late’ (WNL) and ‘early’ (WNE), i.e. cooler and

hotter, with the former showing some hydrogen in the spectrum and not the latter. Naively,

therefore, they may represent two earlier steps on the road to WC stars.
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The evolution of the interior of a WR star is probably not much different qualitatively

from what it would be if it remained as the core of a more massive star. Helium burning,

lasting about 105 years, will be followed by C-burning and later nuclear stages on a much

shorter timescale (∼103 years), the evolution being accelerated because neutrino losses take

away 99% of the nuclear energy. Mass loss does not cease, but arguably slows down by about

a factor of 10, which may mean that in the limited time available they only lose a modest

fraction of their remaining mass. A supernova explosion still seems inevitable.

Wolf–Rayet stars are famous for their strong stellar winds, which completely dominate

the visible spectrum and make it very difficult to determine stellar surface parameters: the

photosphere is somewhere in the wind itself, perhaps at several times the radius of the

underlying star. But the above scenario requires that mass loss be substantially stronger

during the preceding P Cyg/LBV phase, while the star is located fairly centrally in the

Hertzsprung gap, than in the later WR phase when the underlying star is a more compact,

hotter object masked by an expanding envelope. We can hypothesise that the most massive

stars follow a route that can be abbreviated as

Of → WNL → PCyg, LBV → WNL → WNE → WC → SNEX. (2.68)

The star gets to its furthest right-hand position in the HRD during the LBV/P Cyg phase, on

the HDL. However, for masses of <∼30 M� the mass loss is not so important at any stage,

and the star evolves from the TMS across the Hertzsprung gap to the Hayashi track. The

supernova explosion is expected when the star is a red supergiant.

Single stars with initial masses of about 7–30 M� are expected to be red supergiants when

their cores collapse, and to have substantial hydrogen-rich envelopes even if they have lost

some mass by stellar wind. They should therefore produce Type II supernovae. But a star

might lose all of its H-rich envelope if either it was very massive initially and passed through a

substantial P Cyg stage as above, or if it lost its envelope to a binary companion. In this case it

can be Type I. However Type Ia is found in elliptical galaxies, and so may represent a specific

kind of binary interaction peculiar to low-mass stars (such as the merger of two white dwarfs in

a very close binary). By contrast, Types Ib and Ic are mainly found in spiral arms, as are Type II,

where there are young massive stars, and so may be the result of envelope stripping either by

P Cyg wind or by binary interaction. However, Hill (1993) warns that five of the six Galactic

supernovae, for whose remnants we have more detail than most extragalactic supernovae, do

not fit particularly comfortably into the usual classification scheme. In addition, SN 1987A

in the LMC, although spectacularly confirming the importance of neutrinos (Bratton et al.
1988, Hirata et al. 1988, Arnett et al. 1989), was a very atypical supernova in most respects.

At spectral type B3II before the supernova explosion, it was also at an unexpected place in

the HRD; neither a red supergiant, LBV, nor a WR-like object. This could be the result of

binary interaction.

Once again, note Spruit’s (1998) hypothesis that internal magnetic field enforces slow

uniform rotation even within stars whose cores have contracted by large factors while their

envelopes expanded by comparably large factors. It may, therefore, seem difficult to explain

why neutron stars at birth are rotating rapidly (Fig. 2.13b). However, there is evidence,

principally from the rapid space motions of pulsars, that supernova explosions are asymmetric,

and result in a ‘kick’ of typically 300 km/s in a random direction. Such asymmetry will

presumably give an impulsive couple in addition to an impulsive force, and the tiny moment

of inertia of a neutron star means that it could easily acquire its angular velocity in this way.
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Of course, once the core starts to implode on a hydrodynamic timescale it will no longer be

prevented by magnetic coupling from spinning up.

Pfahl et al. (2002) have suggested a modification of the above picture. Possibly when the

core is contracting on a thermal timescale immediately prior to the supernova it is able to spin

up substantially, and the explosion may be more symmetrical as a result. There is evidence

from binaries that some neutron stars receive a substantial kick and others do not. Possibly the

difference is due to the amount of rotation in the core at the onset of the supernova explosion.

A qualitative picture of the evolution of single massive stars as a function of their initial

mass, but without a definitive basis either in observation or theory, may run something like

this:

(a) Stars with initial mass >∼50 M� may lose substantial mass (say 10–30%) while crossing

the main sequence band, which will be broader as a result, and then lose considerably

more mass (perhaps a further 40–60%) much more rapidly as a P Cyg star at the HDL, so

that at some point in the left-hand Hertzsprung gap the evolutionary direction reverses

towards a smaller, hotter WR configuration. After core helium burning there is rapid

evolution towards a supernova explosion (Type I); at no stage is the star a red, or even a

yellow, supergiant. The remnant may be a black hole rather than a neutron star.

(b) Stars with initial mass in a range about 30–50 M� lose mass more slowly (relative to their

nuclear time scale, which anyway is slower), so that the star is able to evolve some way

across the HRD, perhaps to types AI–KI, before rapid mass loss as a P Cyg star pushes

it back to the blue. The star becomes a WR object, and then experiences a supernova

explosion, perhaps also Type I as in (a) although more probably Type II, but having lost

a rather smaller proportion of initial mass. The remnant may be a neutron star or a black

hole.

(c) Stars with initial mass in a range about 15–30 M� are able, with relatively slower mass

loss still, to evolve to the red supergiant region and spend significant time there. Probably

the mass loss does not move the star back to the blue before the supernova explosion

(Type II); the total amount of mass lost might only be about 10–20%. A neutron-star

remnant is expected.

(d) Stars with initial mass in a range of about 7–15 M� may perform a ‘blue loop’ during

core helium burning, bringing the star back from spectral type about MI at He ignition to

BI/AI, before returning to type MI at supernova explosion. Alternatively, they may either

ignite helium, and burn it, entirely as red supergiants; or at some masses they may ignite

helium and burn some of it while still blue, and then complete the burning while red. The

behaviour can be quite sensitive to input physics, and perhaps also to the computational

procedure. This may be due to the importance of radiation pressure, which means that

much of the star is rather close to convective or semiconvective instability. In any event,

the amount of mass lost might be no more than about 10% altogether (apart from the

final supernova explosion, Type II), and may not have a significant effect on the star’s

location in the HRD. The remnant should be a neutron star.

Although in many contexts a neutron star can be seen as a stationary (i.e. non-evolving)

end-point of evolution, neutron stars that are observed as pulsars do in fact evolve at least to

the extent that their rotation rates, and arguably magnetic fields, evolve. Direct observation

reveals spin-down timescales that are typically ∼1 megayears. These rates can be used to

estimate the magnetic field, assuming that the loss of rotational energy is due principally to
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the radiation rate of a rotating magnetic dipole in vacuo:

d

dt

1

2
I�2 = − μ0

6πc3
|m̈|2, |m̈| = �2m, m = 4π

μ0

B R3, (2.69)

where R, I, � are the radius, moment of inertia and rotation rate of the neutron star, m is the

magnetic dipole moment, and B is the magnetic field on the surface at the magnetic equator.

It is assumed here that the dipole axis is through the centre of the star and perpendicular to the

rotation axis. Using reference values R = 10 km, I = 1038 kg m2, and putting � = 2π/P ,

this gives

B2 ≈ 1031 P Ṗ, (2.70)

with B in tesla (104 gauss) and time in seconds.

Figure 2.13b shows the ‘pulsar HR diagram’ of B plotted against P , for radio pulsars. The

great majority of pulsars are in the top right quarter, and are almost all isolated, i.e. not in

binaries. About 5% lie in the bottom left-hand corner and are almost all in binaries. Both

groups lie to the left of a sloping ‘death line’, where the combination of period and magnetic

field is too weak to support the radio emission that makes them detectable. This radiation

comes from electron–positron pairs generated by the rotating magnetic field above but fairly

near the pulsar surface. Although this is the radiation that is detected, it is presumably a small

fraction of the energy flux emitted directly by the rotating dipole – Eq. (2.69).

Two things are reasonably clear: (a) since a high proportion of massive stars are in binaries,

and since few radio pulsars are, binaries must typically be disrupted by a supernova explosion

(Section 5.3); and (b) many of those that do remain in binaries are spun up to short periods,

presumably by accretion from the companion.

Two important aspects are not so clear: (c) the equation of state (EoS), and (d) the evolution

(if any) of the magnetic field. Although the equation of state is much simplified by the fact

that temperature is almost irrelevant, and hence p = p(ρ), the strong interaction is not yet

sufficiently well-known to determine an R(M) relation analogous to the relatively simple one

for white dwarfs (Eq. 2.51). Equations of state range from ‘hard’, where p depends strongly

on ρ, to ‘soft’, where the dependence is relatively weak. The latter will, at a given mass,

produce a neutron star that is smaller and more centrally condensed than the former, but both

will have an upper limit to the possible mass, analogous to the Chandrasekhar limit. The

softest hypothetical equations of state can be ruled out on the basis that the upper mass limit

is less than some well-determined NS masses (1.33–1.45 M�). Too hard an equation of state

would give relatively large radii at such masses, and could be rotationally unstable at the

shortest rotational period observed (1.6 ms); this constraint is weaker, however, because the

fastest pulsars do not (yet) have well-determined masses, and might in principle be 2–3 M�.

Whether the magnetic field evolves or not is a matter of considerable debate. One might

suppose, a priori, that the field could change (a) its strength, (b) its orientation, relative to the

rotation axis and (c) its topology, e.g. a dipole component decaying slower or faster than a

quadrupole component. Any or all of these might happen in isolated pulsars, and they might

also happen for different physical reasons during accretion in a binary.

Several neutron stars and black holes are detectable as X-ray sources rather than as radio

pulsars, their X-radiation coming from accretion of gas donated by a close companion. Some

(neutron stars, but not black holes) show pulsed radiation, the accretion being funnelled by

the magnetic field on to the magnetic poles. Rates of rotation are often much slower than in
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Table 2.3. Some binaries with red giant components

Name Spectra P e M1 M2 R1 R2 q Y a Reference

RZ Eri K2III + F5m 39.3 0.35 1.62 1.68 7.0 2.8 0.96 1.9 Popper 1988b

HR2030 K0IIb + B8IV 66.5 0.02 4.0 4.0 41 5.9 1.00 2.5 Griffin and Griffin 2000

RS CVn K0IV + F4IV–V 4.80 1.44 1.41 4.0 2.0 1.02 1.45 Popper 1988a

TZ For G8III + F7III 75.7 2.05 1.95 8.3 4.0 1.05 2.5 Andersen et al. 1991

α Aur G8III + G0III 104 2.61 2.49 11.4 8.8 1.05 4.9 Barlow et al. 1993

η And G8II-III + do. 116 0.006 2.39 2.26 10.5 8.5 1.06 5.0 Hummel et al. 1993,

Schröder et al. 1997

93 Leo G7III + A7IV 71.7 2.2 2.0 8.7 2.7 1.09 1.68 Griffin and Griffin 2004

α Equ G7III + A4Vm 98.8 2.3 2.0 9.2 2.6 1.15 1.67 Griffin and Griffin 2002

δ Sge M2Ib-II + B9V 3720 0.40 3.4 2.7 157 3.3 1.26 1.77 Schröder et al. 1997

ζ Aur K4Iab + B6.5IV–V 972 0.41 6.6 5.2 151 5.1 1.27 1.89 Schröder et al. 1997

V2291 Oph G9II + B8-9V 385 0.31 3.86 2.95 32.9 3.0 1.31 1.53 Schröder et al. 1997

V695 Cyg K4Ib + B4V 3784 0.22 7.2 5.5 170 4.0 1.31 1.44 Schröder et al. 1997

γ Per G8III + A3V 5350 0.79 2.5 1.86 21: 4: 1.34 2.6 Pourbaix 1999

τ Per G8IIIa + A2V 1516 0.73 2.8 2.0 15.8 2.2 1.40 1.37 Griffin et al. 1992

OW Gem F2Ib-II + G8IIb 1259 0.52 5.8 3.9 30 32 1.49 14 Terrell et al. 2003

V415 Car G6II + A1V 195 3.1 2.0 31 1.9 1.55 1.16 Brown et al. 2001

QS Vul G5Ib-II + B8V 249 5.4 3.4 77 3.3 1.59 1.56 Griffin et al. 1993

V1488 Cyg K5Iab + B7V 1145 0.30 7.2 4.1 170 3.1 1.76 1.32 Schröder et al. 1997

a Ratio of R2 to ZAMS radius for same mass M2.

isolated pulsars, at any rate in the wider binaries, and there is indirect evidence to suggest

that rotation is much faster in short-period low-mass binaries. It can be seen in Fig. 2.13b that

the small proportion of pulsar binaries with very short (∼millisecond) periods are almost all

in binaries. These are also the pulsars with the weakest fields, and so it is plausible that the

same mechanism that speeds them up encourages their fields to decay.

Pulsar physics is beyond the competence of the author, and therefore outside the scope of

this book. But some relatively simple aspects important to an understanding of the evolution

of binaries are mentioned briefly later.

2.3.5 Some observed binaries with evolved components
Table 2.3 lists 18 binaries containing substantially evolved stars (red giants and

supergiants), with rather well-determined parameters; they are ordered by increasing mass

ratio. They potentially provide a quite stringent test of stellar evolution models, and it cannot

be said that the results are satisfactory. R. E. M. Griffin (private communication 2002) has

noted that in many of these systems the secondary is significantly oversized.

The lifetime of a star as a red giant is substantially shorter than its lifetime as a main

sequence star; less than, and at high mass much less than, ∼40%. Since evolutionary lifetime

is a strong function of mass, in a binary where a red giant has, say, 1.5 times the mass of its

main sequence companion the latter should be very little evolved from the ZAMS. In fact

for a given mass ratio q the ratio, Y say, of R2 to the ZAMS radius corresponding to M2

should be constrained between two values: the lower value applies if ∗1 is just beginning

its red-giant evolution, and the higher value if it is at the end of its evolution. In Fig. 2.14a,

two solid lines give the two limits if M1 = 2.8, and two broken lines apply to M1 = 6.3. The

lower solid and broken lines almost coincide, but the upper lines differ fairly substantially.
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Figure 2.14 (a) Binaries with at least one red giant component, plotted with radius R2

(relative to ZAMS radius) upwards and mass ratio horizontally. Circles – M1 > 4 M�;
asterisks – M1 < 4 M�. Also plotted are the theoretical minimum and maximum Y . The
minimum is when ∗1 is at the beginning of its giant life, and the maximum when it is at the
end. These curves are plotted for two values of M1: 2.8 and 6.3 M�. The two minimum
curves are almost the same, but the maximum curve is usually lower for the more massive
∗1. (b) The lifetime of the post-main-sequence phase has been artificially increased by a
factor of 2.5 relative to the main sequence life, raising the maximum Y but leaving the
minimum unchanged.

The systems in Table 2.3 are all plotted in the (q, Y ) plane in Fig. 2.14a, except for

OW Gem, which is far off the scale. Asterisks correspond to M1 ∼ 2–4 M�, and should lie

roughly in the area between the two solid lines and the vertical at q = 1; circles correspond

to M1 ∼ 4–8 M� and should lie roughly between the two broken lines and the vertical. It

can be seen that only ten of the eighteen systems lie in the expected regions; two lie below

and six above. Four of the last six (including OW Gem) lie far further than can be plausibly

attributed to measuring uncertainty, which might possibly be as large as 10%.

At least the two systems below the expected region can be reasonably accounted for. The

two giants have probably lost mass as a result of stellar wind, this wind being enhanced

substantially over that expected for single giants by the fact that the binary giants are being

forced to rotate perhaps ten times more rapidly than would be expected in single giants. I will

discuss this ‘enhanced wind’ in Section 4.6. This must surely be the case in RZ Eri, where

the giant is slightly the less massive component; and it is quite reasonable for RS CVn, even

though the giant is fractionally the more massive. The other binaries (except HR 2030) are

generally considerably wider. If there were significant enhanced wind in these systems, it

would make the disagreement worse.

HR 2030 is interesting in that it is probably the only giant that is (a) still not at helium

ignition, and (b) evolving redwards on a thermal timescale. A giant of this mass would not

ignite central helium until substantially larger than the binary system allows. Although it

may also be suffering from ‘enhanced wind’, on something like the nuclear timescale as in

RZ Eri and RS CVn, its rapid evolution may mean that its integrated mass loss is not yet

significant.

In Section 4.6 I argue that OW Gem is a former triple. The F2 component, I suggest, is

the merged remnant of a former close binary. While direct evidence for this is not strong,
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there do exist many known triples with something like the right parameters. In Section 3.5

I show that many close binaries, in particular those with an initial mass ratio q0
>∼ 2, are

likely to merge as a result of evolutionary processes. If OW Gem started with param-

eters ((4 + 1.8 M�; 2 days) + 3.9 M�; 1250 days), it might reasonably end up as presently

observed.

A possibility to be considered for the remaining five discrepant systems is that the lifetime

of a giant in the core helium-burning phase is substantially larger than present modelling sug-

gests. Perhaps the core’s helium-burning luminosity, relative to the hydrogen-burning shell,

should be less, and this might in turn be due to greater opacity in the core. Alternatively, per-

haps core overshooting is much more substantial in helium-burning cores than in hydrogen-

burning cores. This is crudely explored in Fig. 2.14b: the lifetime of the giant stage has

been artificially assumed to be 2.5 times larger than the models implied. But even this very

substantial change only brings two of the defaulters, δ Sge and ζ Aur, within the compass of

the theory; γ Per, QS Vul, V1488 Cyg and OW Gem remain well outside.

Another possibility that we might consider is that the components are non-coeval. Within

a dense star-forming region, or a somewhat less dense expanding OB association, dynamical

encounters can take place (Section 5.4) in which, for example, an older single star might

eject and replace one component of a younger binary. But such encounters are probably

limited to perhaps the first 10–20 megayears of a star’s life, when the stellar density is still

high, and so should result in no larger age discrepancies than this. Only ζ Aur looks like

a reasonable candidate: the ages of the two components considered separately may be ∼65

and 80 megayears.

We do not have a persuasive answer to this problem. We emphasise that such a problem is

only recognisable because of (a) the high quality of the observational data for these systems,

and (b) the likelihood that the components have evolved without interaction so far. Most

binaries (apart from ESB2 binaries that have well-detached main sequence components)

have data of substantially lower quality, or else have undergone a major interaction that

has altered the masses or period, and so problems such as ‘oversized secondaries’ can be

overlooked.

2.4 Stellar winds and mass loss
Many stars show some evidence of loss of mass from the surface by way of a wind.

For most stars, such as the Sun, this wind is rather meagre in evolutionary terms. The Sun

is losing mass at a rate of about 10−7.6 M�/megayear, and so is expected to lose <∼10−4

of its mass in the remainder of its main sequence life (about 5 gigayears). But some stars

show evidence of much more copious winds, especially stars of high luminosity. Winds from

cool supergiants can affect evolution strongly, as described in Section 2.3, by allowing white

dwarfs to be remnants of stars whose initial masses may have been up to five times the

Chandrasekhar limit. Winds can also be important in hot, blue, massive stars. Most stars with

surface temperatures above about 25 kK or luminosities above 105 L� have spectroscopic

indications (P Cyg line profiles) of a roughly radial outflowing wind, of sufficient density

and speed in some cases to be significant on evolutionary time scales.

Mass loss rates for OB stars, which are probably best derived from radio or infrared

measurements of the expanding gas cloud, have been estimated by many workers, for instance

Olson and Castor (1981), Garmany et al. (1981), Abbott et al. (1981), Lamers (1981) and
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Figure 2.15 Rates of mass loss ( M�/megayear) by stellar wind, from (a) OB and
Wolf–Rayet stars (after Conti 1982), and (b) red giants and supergiants (after Judge and
Stencel 1991). The mean lines are given by Eqs (2.71) and (2.75).

Chlebowski and Garmany (1991). They are roughly consistent (Fig. 2.15a) with

Ṁ ∼ −2 × 10−11L1.9 (4 × 104 <∼ L <∼ 5 × 106), (2.71)

with time in megayears and M, L in Solar units. There appears to be a real spread about this

rate, on top of any systematic and measuring errors: stars with quite similar photospheres may

differ in Ṁ by more than an order of magnitude. Comparing Eq. (2.71) with Eqs (2.1) and

(2.4), and allowing for the considerable spread seen in Fig. 2.15a, it is possible that the most

mass-lossy stars of over about 60 M� can have their masses halved in their main-sequence life-

times. Unfortunately theoretical evolutionary tracks of massive MS and post-MS stars depend

quite sensitively on the assumed relation between Ṁ and variables such as L in Eq. (2.71),

or R, as well as on other mass loss rates that have been proposed. A convincing theoretical

model of winds, capable of predicting Ṁ as a function of surface quantities (which probably

should include rotation rate and magnetic field, for instance), does not yet exist. But great

strides have been made in modelling hot atmospheres with spherically-symmetrical steady

winds (Lucy and Solomon 1970, Pauldrach et al. 2001). These have to include the driving

effect of radiation pressure on a multitude of spectral lines, and the fact that abundances of

ionised species are not necessarily in local thermodynamic equilibrium. Such models can

predict the rate of mass loss (and also the terminal velocity of the wind), and agree to within

an order of magnitude with Eq. (2.71).

An interpolation formula, based on observed mass-loss rates from the literature, was given

by de Jager et al. (1988). They found that in the upper part of the HRD (log L ≥ 2.5) log |Ṁ |
is mainly a function of L and T only, given in terms of Chebyshev polynomials

Ti (x) ≡ cos(i cos−1 x), −1 ≤ x ≤ 1, (2.72)

by

− log |Ṁ | ≈
5∑

i=0

5−i∑
j=0

ai j Ti

(
log T − 4.05

0.75

)
Tj

(
log L − 4.6

2.1

)
, (2.73)
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Table 2.4. Coefficients for the mass-loss rate of de Jager et al. (1988)

j = 0 1 2 3 4 5

i = 0 6.349 16 −5.042 40 −0.834 26 −1.139 25 −0.122 02 0.0

1 3.416 78 0.156 29 2.962 44 0.336 59 0.575 76

2 −1.086 83 0.419 52 −1.372 72 −1.074 93

3 0.130 95 −0.098 25 0.130 25

4 0.224 27 0.465 91

5 0.119 68

log T

log 
L

Figure 2.16 Contours of constant mass-loss rate, according to de Jager et al. (1988).
Contours are in decades, with heavy lines for 10−6 M�/megayear (lower left) and
1 M�/megayear (centre and right).

with L in Solar units, T in kelvins and log |Ṁ | in Solar masses per megayear. The coefficients

ai j are given in Table 2.4; de Jager et al. (1988) do not list a value for a05, but the value zero

appears to be adequate. The scatter between observed and computed values is about ±0.5.

Much of this scatter is, no doubt, real. A contour plot of this mass-loss rate is given in

Fig. 2.16.

For luminous stars that are cool, i.e. red giants and supergiants ranging in luminosity

102–104 L�, and radii 10–100 R�, mass loss rates were estimated by Reimers (1975) and

are roughly consistent with

Ṁ ∼ −10−6.4 ηL R

M
, (2.74)

in megayears and Solar units as before. The parameter η is a fudge factor, which we choose in

order to reach reasonable final core masses. Judge and Stencel (1991) give a slightly different

formula, also based on observational data (Fig. 2.15b):

Ṁ ∼ −10−7.6

(
R2

M

)1.43

. (2.75)
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In practice, this differs little from the previous formula, since L relates to R, M on the RG

branch via Eq. (2.49). Curiously, Eq. (2.75) extrapolates successfully to the Sun. Just as for

massive hot stars, there is considerable spread, some of which is probably intrinsic.

In Section 4.5 I develop a model for mass loss as a result of dynamo activity in cool rotating

stars. I obtain a result – Eq. (4.84) – that is very like Eq. (2.74), but contains two extra factors.

One is a factor (R/RHT)2, which is unity on the Hayashi Track – Eq. (2.49) – and decreases

rather rapidly going into the Hertzsprung gap. The other depends on the Rossby number,

the ratio of the rotational period to the convective envelope turnover time – Eq. (2.34).

There is something of a dichotomy in cool stars between those that have hot chromospheres,

coronae not unlike the Sun, and hot, fast (300–500 km/s), low-density winds, and those where

high-temperature gas is absent, and that have cool, slow (20–30 km/s), high-density winds

(Linsky and Haisch 1979). At least for stars with atmospheres like the Sun’s, it is probable

that dynamo activity in the surface convection zone, and the dissipation of this magnetic

energy in flaring activity above the photosphere, is a major cause of mass loss; although the

mass loss itself is a relatively minor influence on evolution at that stage.

For the more luminous red giants, radiation pressure acting on the grains that are able to

form at low temperatures may be the dominant mechanism for driving the wind, although

some deposition of mechanical or magnetic energy in the superphotospheric layers would

seem to be necessary to start the wind. Extreme red supergiants, many of which are Mira

variables, may enter a phase of ‘superwind’, with winds of order 10–100 M�/megayear,

which rapidly strip the envelope down to the hot core (Section 2.3.2).

I argued in Section 2.3.2 that asymptotic giant branch stars terminate their evolution roughly

at the point where the integrated binding energy – Eq. (2.62) – of the envelope changes sign.

Naively one might well suppose that as soon as the binding energy becomes negative the

envelope will be lost. The physics however must be more complex than that; it is not clear

how efficiently the available (un)binding energy can be converted into outflowing motion. It

seems more plausible that it may start to drive some relaxation cycle, during part of which the

energy is converted to heat and radiated away. This may be at least a contribution to the onset

of Mira oscillations. But the oscillations become strong enough to drive an increasing cool

wind, with grains forming and with radiation pressure on grains contributing to the strength

of the wind.

The form of Reimers’ law – Eq. (2.74) – suggests that a constant fraction of the stellar

luminosity is used to provide the gravitational energy necessary for escape (∼G M/R, per

unit mass). This fraction is 1.3 × 10−5, if we convert Eq. (2.74) into SI units. Let us generalise

by using the binding energy rather than just the gravitational energy; then we might try

−Ṁ = 1.3 × 10−5 ηM L∫ M
Mc

(
Gm

r − U
)

dm
, (2.76)

in SI units. We find that η ∼ 0.2–0.5 gives reasonable remnant core masses. Equation (2.76)

will clearly lead to rapid mass loss as the denominator approaches zero on the AGB, but the

denominator will never actually reach zero (at least until M is reduced to Mc) because the

binding energy per unit mass increases again as the envelope is stripped down to a small hot

core. Equation (2.76) can be seen as combining the concept of slowly increasing wind on the

giant branch with rapidly increasing ‘superwind’ at a late stage on the AGB.

An issue left unclear, however, is what value of Mc to use as the lower limit in the integral.

The integral in Equation (2.76) only represents a physically meaningful binding energy if the
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region interior to Mc is completely unaffected, in its distribution of r (m) and U (m), by the

progressive loss of the layers above Mc. There is no value apart from Mc = 0 for which this

is literally true. However, we suggest that it is reasonable to take as Mc the mass coordinate

where, say, the hydrogen abundance has been reduced to 15% by mass, since the core inside

this is compact and largely degenerate, at least in the highly evolved red giants considered

here. Some crude experimentation suggests that the fraction 15% is not very critical. I will

return to this point, in some detail, in Section 5.2.

Similar rates of mass loss are seen in WR stars, but the underlying physical regime is

quite different, since temperatures are at least ten times higher. Perhaps more significantly,

the velocity with which the material is ejected is ∼100 times greater. This WR mass loss

presents a considerable challenge to theorists. With a mass flux of >∼30 M�/megayear (Willis

1982), and ejection velocity ∼2000km/s, the kinetic energy flux in the wind may be as much

as 5% of the total energy flux of the star. The momentum flux is relatively even larger, at

several times the momentum flux of the radiation field, which makes it difficult to understand

how radiation pressure alone drives the wind. It is not yet clear how even binary interaction, let

alone a single-star process, can cause such winds. Pulsational instability or strong turbulent

motion in the outer layers, perhaps combined with dissipation of magnetic energy produced

by dynamo activity, might help, but these would have to tap the nuclear energy of the star

rather than just, say, the rotational energy, since the latter is too feeble. De Jager et al. (1988)

note that WR stars have mass-loss rates enhanced over their formula – Eq. (2.73) – by an

average of 102.2.

The momentum problem referred to above may, in fact, be solved by ‘multiple scattering’:

photons trying to escape may be scattered several times before actually escaping, and so

contribute more to the momentum flux. Lucy and Abbott (1993) show that such multiple

scattering can take place if there is a sufficient stratification of different degrees of ionisation;

de Koter et al. (1997) argue that mass-loss rates of some very massive stars in the LMC can be

modelled in this way. They conclude that mass-loss rates normally thought of as characteristic

of WR stars can be maintained in the earliest main sequence stars, whose spectra may be

characterised as O3f/WN.

Here we adhere to the view (Conti et al. 1983) that WRs are evolved stars, most of which

have lost a great deal of mass. Underhill (1983, 1984) has argued that (a) the underabun-

dance of hydrogen, and overabundances of nitrogen and carbon (assumed to be evidence of

late hydrogen burning, or helium burning) are not real, but are artefacts of the very crude

abundance analyses; (b) the very high mass-loss rates inferred, especially from radio and

infrared observations, are also not real; and (c) WRs are analogous to the Herbig Be/Ae

objects (Herbig 1960), which appear to be young or pre-main-sequence stars. However, the

crucial evidence is that WRs are much too luminous, relative to their masses, and much too

common, relative to O stars, to be either fairly normal (though young) main sequence stars,

or pre-main sequence stars. In many binaries the WR luminosity is comparable to, or greater

than, that of the O-star companion, while the mass is often a half to a quarter of the com-

panion’s mass. And since pre-main-sequence contraction must be ∼1000 times more rapid

than main sequence evolution (at the same luminosity), the proportion of WRs to O stars

(∼10%, Conti et al. 1983) is too high for a pre-main-sequence picture to be sustained.

However, we must acknowledge that analyses of WR atmospheres to date may well be mis-

leadingly oversimplified. They tend to assume a steady, spherically symmetrical gas outflow,

driven primarily by radiation pressure, where the reality may well be a fairly turbulent,
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Figure 2.17 A theoretical Hertzsprung–Russell diagram for stars including mass loss
according to the larger of Eqs (2.73) and (2.76). The masses are, from the bottom,
1, 2, 4, 8, 16, 32 and 64 M�. Alternate masses are thin or thick lines. The tracks were
terminated when the timestep dropped below 0.1 year. Although the most massive star
evolved well to the cool side of the Humphreys–Davidson limit – Fig. 2.13a – its visit there
was very rapid and short-lived.

non-steady flow, driven at least in part by hydromagnetic stresses and energy release. If

dynamo activity does play a part, producing a magnetic field that perhaps influences the flow

out to several stellar radii, and that may initiate the flow even if radiation pressure is important

in accelerating it, it would not be surprising if binarity is also significant, as it is for example

in RS CVn stars.

Figure 2.17 shows an HRD that includes mass loss according to the combination of

Eq. (2.73) for luminous stars and Eq. (2.76) for cool stars; for stars that are both lumi-

nous and cool we used the larger of these two rates. For the three lowest masses the cores at

the tip of the AGB were 0.58, 0.67 and 1.01 M�. For the two highest masses the remnants at

the end of the plotted tracks (where the timestep became uncomfortably short) were 14 and

29 M�. The two intermediate masses (8, 16 M�) were changed by only a modest amount.

Some details at various stages are given in Table 3.2. The 64 M� star was found to evolve

briefly into the red supergiant region, but spent only 1% of its life redder than 10 kK. The

32 M� star oscillated several times, rapidly, across the top of the diagram.
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We find that the evolution of massive stars is very sensitive to the assumed mass loss rate. It

is probably also very sensitive to (a) metallicity and (b) the numerical procedure, particularly

for convective and semiconvective mixing. The latter may be important because in massive

stars both ∇r and ∇a are very close to 0.25, so that convective and semiconvective zones can

appear, move or disappear in an apparently capricious way. In my models this is probably

exacerbated by the fact that I discretise the star with only 200 meshpoints, at all stages of

evolution. We cannot take the detailed behaviour of the most massive models very seriously,

but it seems clear that the mass loss rate (2.73) can account reasonably well for the observed

shortage of stars in the uppermost right-hand corner of the HRD.

Over the whole of the HR diagram we can recognise something like nine types of mass

loss, where we distinguish in particular whether the wind is ‘copious’ or ‘meagre’:

(a) a fast, hot, meagre, Solar-like wind in cool (GKM) dwarfs and in some GK giants

(b) a slow, cool, meagre wind in M giants and some GK giants

(c) a slow, cool, copious wind (superwind) in late M giant (AGB) stars

(d) a very fast, hot, meagre wind in PN nuclei (post-AGB, pre-WD)

(e) an episodic, meagre, rotating wind in Be stars

(f) a fast, meagre wind in Of stars

(g) a fast, copious, episodic wind in LBVs (P Cygs)

(h) a very fast, somewhat less copious wind in WRs

(i) an almost instantaneous, copious wind in a supernova explosion.

Probably (c), (g) and (i) are the most important for overall evolution; they can change the

mass significantly in less, even much less, than the nuclear lifetime of the star. Process (b) is

probably very important in old clusters where it may determine the distribution of stars on

the HB subsequent to the helium flash. Processes (f) and (h) may be marginal, affecting the

evolution to some extent, but perhaps not crucially, except for very massive Of stars. Processes

(a), (d) and (e) probably have little effect on the evolution, though they can be conspicuous

observationally. Processes (d) and (h) may, in practice, be much the same in physical origin,

but WR stars are typically several times more massive and several times more luminous than

PN nuclei. I would like to emphasise, however, as in Section 4.5 and subsequently, that the

presence of a close binary companion may enhance some of these winds, and make them

copious where they would be meagre in a single star.

A comprehensive theory of mass loss would have to link together such properties of a

star as its stability, rotation, magnetic field generation and dissipation, differential rotation

(which is especially effective at assisting dynamo activity), turbulent convection and radiative

driving. These processes cannot properly be modelled in isolation from each other, since each

influences the others. Furthermore, the wind produced will itself influence the other processes;

wind interacting with magnetic field will carry off angular momentum (‘magnetic braking’),

which will influence both the rotation and the differential rotation of the star. Binarity is almost

certainly an extra factor, affecting (by way of ‘tidal friction’) both rotation and differential

rotation, and so presumably activity and mass loss. Consequently a solution to the overall

problem appears to be still a long way off, and so we have to content ourselves for the time

being with very empirical and approximate formulae like (2.71) to (2.76), possibly modified –

presumably enhanced – by a binary companion.

The situation may be rather better, paradoxically, for the more drastic mass loss episodes:

(c), (g) and (i). It should only be necessary to know (a) the stage in evolution where the
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episode occurs and (b) the amount of mass to be lost; the details of the mechanism by which

it is lost might to some extent be secondary. For example, with AGB stars one might postulate

that the envelope becomes unstable when the core reaches a certain mass that depends only

on the initial mass, perhaps using an empirical relation, or else a theoretical relation like

Eq. (2.62). The amount of mass lost will be (almost) all the difference between the core mass

and the initial mass. With LBVs, one might postulate that the envelope becomes unstable

when the star crosses or attempts to cross a line (the HD limit) in the HRD; very rapid mass

loss continues until it retreats back across that line. For a supernova explosion, one might

postulate an initial/final mass relationship, as for AGB stars, and so proceed in a similar

manner.

2.5 Helium stars
There appear to be stars whose surface layers show a complete, or almost complete,

absence of hydrogen. Such stars would be hard to understand in terms of ‘normal’ stellar

evolution, but they can be understood, at least qualitatively, in terms of mass loss, whether by

means of stellar winds as in the previous section, or of mass transfer between components of

a binary as in the remaining chapters. Wolf–Rayet stars, at least of the WNE and WC types,

show little or no hydrogen in their spectra.

There is a rather different kind of star, the ‘hydrogen-deficient carbon star’ or HdC star,

which also appears to consist principally of helium, but often with an excess of C (relative

to N, O) as well. An important group of these are R CrB variables, stars which at intervals

of a few years show an abrupt decrease in luminosity, followed by a more gradual return to

normal luminosity. Such stars are typically yellow supergiants when they are in quiescence.

The variability appears to be due to erratic episodes of mass ejection, during which the ejected

mass, rich in carbon, expands and cools until carbon-based dust forms, which temporarily

obscures the star, at least at visual wavelengths. The HdC stars are not associated with

young, massive stars, unlike WRs; they appear, rather, to be associated with the older, low-

to-intermediate mass, population of the Galaxy. This makes them harder to understand, since

significant mass loss in such stars is thought to take place only at such a late (AGB) stage that

the remaining core should evolve directly to the white dwarf region, with little time spent in

the region where HdC stars are actually found. For this reason, a binary-star mechanism for

forming them – the merger of a C/O white dwarf and a He white dwarf – is attractive.

A kind of He star is expected, and indeed found, in some binary stars where one star has

had its hydrogen-rich envelope stripped off by its companion. This does not appear to be a

general explanation of either WR or HdC stars, however, since some of the former and most

of the latter are not known to have binary companions. Such companions ought to be fairly

easily visible.

Ideally, we might construct models of helium stars by starting with normal hydrogen-rich

stars, and following their evolution subject to mass loss. Since, however, we do not have

an a priori understanding of the mass-loss history of such stars, it is helpful to consider

instead the evolution of stars starting from a hypothetical zero-age helium main sequence.

The simple approximations (Eqs 2.16–17) of Section 2.2.2 apply equally to such stars, the

only differences being that (a) μ is larger, and κ smaller, by about a factor of two from their

values in Solar-mixture stars, and (b) the nuclear reaction rate formula in Eq. (2.15) involves

a factor A which is a great deal smaller for helium burning than for hydrogen burning, and

an η which is substantially larger (η ∼ 50). Equations (2.10) and (2.12) say that we will have
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the same ζ , and therefore about half the luminosity, for a He star one quarter of the mass

of a hydrogen MS star. Since luminosity depends steeply on mass, ZAHeMS stars are much

more luminous than ZAMS stars of the same mass. The fact that the nuclear constant A in

Eq. (2.15) is very much smaller, while L/M is larger, makes the central temperature hotter

by about 3–5, and the radius smaller by a comparable factor from Eq. (2.13).

Although the central temperature is higher, the central density is higher still (from Eq. 2.14):

cores are nearer to electron degeneracy, because this depends on the ratio ρ/T 3/2. The helium

main sequence, like the hydrogen MS, terminates at low masses because electron degeneracy

becomes important. Consequently the helium main sequence terminates at about 0.3 M�,

instead of about 0.08 M� for Solar composition.

Empirical fits, accurate to a few per cent, for the luminosity, radius and ‘main sequence’

lifetime of helium stars (cf. Eqs 2.1–2.4) over the range 0.32 <∼ M <∼ 20 are

L = M10

1.2 × 10−6 + 1.08 × 10−3 M5 + 2.63 × 10−3 M7 + 1.42 × 10−4 M8.5
, (2.77)

R = M2 + 0.1M3

0.36 + 3.24M + 1.75M2
, (2.78)

and

tHeMS = 2.985 + 51.88M6 + 43.95M7.5 + M9

0.3597M4 + 6.217M9.5
, (2.79)

with L , R, M in Solar units and t in megayears, as usual (Z. Han, private communication

1998).

We can evolve helium stars with the same numerical procedure as hydrogen stars. Their

evolution is very similar in principle to the evolution of the helium core of an originally

hydrogen-rich star, except that in the latter case the core is likely to increase its mass by

20–50% as a result of the H shell-burning which takes place at the same time as the He

core-burning (Fig. 2.5b). There is also similarity between the evolution of He stars and of H

stars, at least for an intermediate range of masses of the former, about 0.9–2.7 M�. These stars

evolve from the helium main sequence to a red supergiant region which is hotter, but not by

much, than the AGB of ordinary H-rich stars (Figs. 2.1, 2.17). In the lowest part of this mass

range stars can evolve to C/O white dwarfs, even without mass loss. Stars of moderate to

high mass (>∼2.4 M�) ignite carbon non-degenerately, and go on presumably to a supernova

explosion; while those in between develop degenerate C/O white dwarf cores which will be

forced to C detonation if there is no mass loss, but which may settle down as white dwarfs if

there is in fact sufficient mass loss from the cool supergiant envelope.

In an interesting contrast with H-rich stars, however, He stars outside the range of about

0.9–2.7 M� do not expand to red giant dimensions. They remain always small and hot.

Low-mass He stars expand by a modest factor up to central He exhaustion, but then as the

He-burning shell eats its way outwards the star evolves steadily towards the white dwarf

region. The reason for this, so far as the low-mass (<∼0.9 M�) helium stars are concerned, is

probably a combination of two things: firstly, the increase in molecular weight from He to

C/O is more modest than from Solar mixture to He; and secondly, the C/O core is degenerate

all the way to the He-burning shell (which is usually on the borderline of degeneracy in these

low-mass stars), so that the degenerate core is not separated from the burning shell by an

isothermal non-degenerate zone as in H-rich stars on the first GB. There is therefore no
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Figure 2.18 The theoretical HR diagram for He stars. Low-mass stars (M <∼ 0.63 M�)
evolve to white dwarfs without going to the red-giant region. Those of intermediate mass
(0.8–2.0 M�) evolve to red giants, and those of M >∼ 2.5 M� reach a supernova explosion
while still very blue (Courtesy of Z. Han).

substantial ‘soft’ region in the star, i.e. one with s >∼ 5/6 (crudely n >∼ 5); such a soft region

is necessary, though not sufficient, for an evolved star to become very centrally condensed,

as outlined in Section 2.3.1.

He stars above about 2.2 M� also avoid expanding to the red supergiant region. They

evolve from the ZAHeMS to dimensions that are comparable (by coincidence) to the H-rich

MS, but not larger (Fig. 2.18). The lack of drastic expansion may be due to the fact that the

C-burning core produces a luminosity comparable to the He-burning shell, so that the shell

does not dominate the overall structure as it tends to in the intermediate-mass He stars, and

in H-rich stars of all masses. A shell which is weak, either because of too slight a change in

molecular weight, or too small a contribution to the total luminosity, or both, will not lead to

a substantial soft region, such as could cause a star to become giant-like in structure.

2.6 Unsolved problems
An ideal stellar evolution code would (a) implement a believable set of

mathematical–physical propositions and (b) give good agreement with observed stars. We

are some way from this at present, but apparently not a very long way. To accommodate (b),

several ad hoc recipes have to be incorporated that may violate (a). They are:
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(i) a model of convective heat transport – the mixing-length theory with only one parameter

does surprisingly well, but cannot be given much theoretical weight

(ii) a model of convective overshooting – although we would suppose that a reliable model of

convective heat transport would automatically include the right amount of overshooting

(iii) a model of semiconvective mixing – although this may not be separate from the first

two. If one had a mathematical–physical model of convection with no free parameters,

and satisfying (b), a model for semiconvection would probably be implicit within it

(iv) a model for the diffusive separation of elements, starting with the gravitational settling

of helium but ultimately including all species; such a model exists (Richer, Michaud

and Turcotte 2000), but I have not incorporated it here

(v) a model for mass loss, including the very different regimes of hot and cool, luminous

and faint, in the Hertzsprung–Russell diagram

(vi) a model for rotation, and its redistribution within a star in response to evolutionary

changes

(vii) a model for dynamo activity

(viii) a model for photo spheres, including wind effects.

Most or all of these processes are interdependent, although I may have, of necessity, to treat

them separately for the time being.

Two aspects of stars that I have barely touched are their rotation and their magnetic fields.

It is not clear to what extent these may actually influence the long-term evolution. It seems

reasonable to suppose in the first instance that their long-term importance is small, at least

in the context of (effectively) single stars. One or other or both are implicated in most of the

‘meagre’ types of mass loss described in Section 2.4. But they may be substantially more

important in the context of binaries. I will therefore discuss them in Section 4.4. In single

stars, one possible long-term effect of a magnetic field (coupled with rotation, as it usually is)

might arise in supernovae. Whether the entire envelope gets ejected, leaving a neutron-star

remnant, or whether, alternatively, much of the envelope follows the core’s implosion into a

black hole, may be dictated by the field strength and the rapidity of the core’s rotation as it

collapses. Thus it could be the case that two stars of similar initial mass, say 30 M�, could

leave very different compact remnants, even if their evolution before core collapse was rather

similar (Ergma and van den Heuvel 1998). The same reservation applies to AGB stars that

become white dwarfs: it is possible that the rotational/magnetic history of the star plays a

role in deciding at what core mass the envelope is finally stripped off.

The significance of photospheres – point (vii) – is that although the usual model of a

plane-parallel Milne–Eddington atmosphere is probably good for most stars it becomes very

unreliable for really distended stars, such as red supergiants. The region above optical depth

unity may be more than 20% of the stellar radius in simplistic models, and may contain half

the envelope mass. It is not clear that any spherically symmetrical, let alone plane-parallel,

model will do: the atmosphere of a red supergiant may more closely resemble the flames

from a log fire than the surface of an electric hot-plate. Any conclusions that we draw from

stellar models are particularly uncertain in this area.

I would like to draw particular attention to the problem described in Section 2.3.5, which

contrasts surprisingly with the results quoted in Section 2.2.10. Although non-interacting

binaries with high-quality data accord reasonably well with theoretical models when both

components are on the main sequence (provided that ‘convective overshooting’ of a judicious

amount is included), the substantially fewer non-interactive binaries with data of almost
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equally high quality that contain evolved components (red giants and supergiants) give rather

poor agreement, at least in five out of eighteen systems. We can invoke a merger in a former

triple system to explain a sixth defaulter, but it is hard to believe that this can be the explanation

of five more. I must emphasise here the importance of high-quality data. Any theory can cope

with the observations if the uncertainties are of order 50%, which is quite common. But when

data have an accuracy of order 5% or better it is not so easy to wriggle out of discrepancies.

One line of investigation that needs to be carried out in the future is direct three-dimensional

numerical simulation of stellar interiors and envelopes. It should include magnetohydro-

dynamic effects. This is beginning to be within the range of modern hardware, but the

software is a very challenging problem. Even with say 1010 meshpoints, which is about the

minimum necessary to resolve a relatively simple star like the Sun, it will be necessary to

have algorithms that efficiently move meshpoints to the regions where they are necessary. It

is not always easy to to say a priori where these are. Of course three-dimensional simulations

would be a supplement to, rather than a replacement of, one-dimensional simulations. In prin-

ciple we might learn from three-dimensional modelling how to approximate a mixing-length

parameter, a mass-loss parameter, a magnetic activity parameter or a rotational parameter in

a simple one-dimensional formulation.
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Binary interaction: conservative

processes

3.1 The Roche potential
Interactions in close binaries are generally discussed in terms of the ‘Roche potential’

(Roche 1873, Kopal 1959, Kruszewski 1966). Suppose that two point masses M1 and M2, or

equivalently two spherically symmetrical masses, orbit their centre of gravity (CG) in circles,

their constant separation being the semimajor axis a. Then the angular velocity of the system

is ωω, and the orbital period is P , where

ω2 = G M

a3
=

(
2π

P

)2

, M = M1 + M2. (3.1)

In a frame that rotates with the same angular velocity ωω as the binary, a stationary free particle

feels an effective force per unit mass (i.e. acceleration) f, which is given by

f = −∇φR, −φR = G M1

|s − d1| + G M2

|s − d2| + 1

2
|ωω × s|2. (3.2)

Here, d1 and d2 are the positions of the centres of the two stars, with

d1/M2 = −d2/M1 = d/M, ωω · d = 0, (3.3)

d being the vectorial separation of the two stellar centres of gravity (d ≡ d1 − d2), which is

constant in the rotating frame. A non-stationary particle in the same frame will, in addition,

experience a Coriolis acceleration −2ωω × ṡ.

Note that:

(a) the gradient operator differentiates with respect to s. I am using the symbol s rather than

r because I will use r later to represent the position vector within a star, relative to the

centre of the star. The origin of s is at the centre of gravity of the binary.

(b) |d| = a. I use this notation because in non-circular orbits (see later) d , i.e. |d|, varies

with time while a, the semimajor axis, is constant.

In the same vein, but in contrast, I will always use ω to mean 2π/P , even though in eccentric

orbits (again, later) ωω and |ωω| are time-varying. The excuse, apart from the shortage of

appropriate letters, is that d × ḋ/d2 is equal to and more useful than ωω, in an eccentric orbit:

see for example Eq. (4.7) below.

If the fluid of which either star is made is in hydrostatic equilibrium, then it must fill up a

volume that is bounded by a closed equipotential surface of φR. It is easy to see that the nature
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Figure 3.1 Some equipotential surfaces of the Roche potential – Eq. (3.2). For each of four
different mass ratios (q = 1, 2, 4, ∞, ∗1 being to the right) the critical equipotentials
passing through the inner and outer neutral points are indicated; some other equipotentials
are also sketched. The case q = ∞ (d) has a neutral point all round the equator. A star can
be in hydrostatic equilibrium only if it fills a closed equipotential surface, as in (a), (b) and
(d). The left-hand star in (c) is unstable, and material flows towards the companion, being
deflected by the Coriolis force. In (d), the rotation axis is in the plane of the paper, but in
(a)–(c) it is perpendicular to the plane of the paper, in an anticlockwise sense.

of this system of equipotentials depends only on the mass ratio, since by virtue of Eqs (3.1),

φR = G M

a
f (s/a, q), q = M1/M2. (3.4)

Some examples are sketched in Fig. 3.1. For all finite q > 0, there exists a critical equipotential

which is figure-of-eight shaped. The neutral point where this equipotential crosses itself (a

saddle point) is called the ‘inner Lagrangian point’, L1, and the two lobes of the surface it

encloses are the ‘Roche lobes’. If both stars are sufficiently small, relative to a, that they

can fit into closed equipotentials wholly within their respective lobes (Fig. 3.1a) we have

a situation that can be expected to be stable. There are, however, two more neutral saddle

points (L2, L3) collinear with L1 and the stellar centres, and a family of closed equipotentials

exists, which surrounds both centres and also L1. Thus, we can expect a kind of star that is

shaped like a peanut, as illustrated in Fig. 3.1b, where L2 is to the left. L3, which is of little

physical significance, is beyond the surface through L2, and to the right (not shown).

If one star is too large to fit inside its Roche lobe, but the other is substantially smaller, as

would happen in Fig. 3.1a if the left-hand star tried to evolve to substantially larger radius,

then the envelope of the oversized star cannot be dynamically stable, and is liable to lose mass.

This mass will fall through or near L1 into the potential well of the companion (Fig. 3.1c),

being deflected by Coriolis force as it gains velocity.

These three situations are apparently all found among observed binaries. They are called

‘detached’, ‘contact’ and ‘semidetached’ configurations respectively (Kopal 1959), or D, C

and S.
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Strictly speaking, I might distinguish ‘contact’ and ‘overcontact’ systems (Wilson 2001):

in the former, the stars exactly fill their lobes, and in the latter they overfill them, up to the

same potential surface if they are indeed in hydrostatic equilibrium. However, the former is

likely to be very rare, and so I will follow common practice in using the term ‘contact’ to

cover both possibilities.

To start with, let us assume that although material may be transferred from one component

to the other in the semidetached and contact cases, there is no net loss of material from the

system; and also that no angular momentum is lost either. This is called the ‘conservative’

model. I will discuss a number of non-conservative processes in Chapters 4–6.

A single star that is rotating uniformly (i.e. all parts having the same angular velocity) can

also be described by the Roche potential, using the limit q = ∞ (or 0), as in Fig. 3.1d. In

this limit, L1, L2 and L3 degenerate into a single equatorial ring. Effectively this means that

there is an upper limit to the possible rotation rate of a single, uniformly rotating star of given

volume: with a greater rate of rotation the star would begin to shed matter at its equator. This

matter would not necessarily flow away, despite the downhill slope of the Roche potential

outside the critical surface; for the Roche potential assumes that all the material corotates,

and there is no reason why the ‘loose’ matter shed at the equator should continue to corotate,

even if it is pushed slightly further out on to the apparent downward slope.

For completeness, note briefly that there are two other neutral points, L4 and L5, which –

somewhat remarkably – for all finite q make equilateral triangles with the stellar centres in

the equatorial plane. These neutral points are minima, and so might be expected to be stable.

However linear stability analysis in the rotating frame demands a Coriolis term in addition

to the potential force, and a detailed analysis shows that L4 and L5 can be stable only if the

mass ratio is fairly extreme: q + 1/q > 25. This is probably not commonly satisfied in stellar

systems, but can be easily satisfied in star–planet systems. In the Solar System, the Trojan

asteroids are located near the L4 and L5 points of the Sun–Jupiter binary.

The discussion of Chapter 2 was based on spherical (i.e. single, non-rotating) stars, but

it can be applied fairly accurately to the distorted models required by Roche geometry. For

each closed equipotential up to and including the Roche lobe, let us define an effective radius

which is the radius of a sphere of the same volume as the interior of the equipotential. We then

suppose as a first approximation that the structure of the star is the same at a given effective

radius as if it were spherical, and that in particular the effective surface radius is the same –

see Section 3.2.1 for a second approximation. For the critical equipotential, i.e. the Roche

lobe, the effective radius RL is given (Eggleton 1983a) by

RL

a
≡ xL(q) ≈ 0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, 0 < q < ∞, (3.5)

≈ 0.44q0.33

(1 + q)0.2
, 0.1 <∼ q <∼ 10. (3.6)

The first approximation is accurate to better than 1% for all q. The second approximation is

rather less accurate, but more convenient. It gives the ratio of the two lobe radii as

RL1/RL2 ≈ q0.46, 0.1 <∼ q <∼ 10. (3.7)
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Table 3.1. Roche-lobe radii and related functions

q RL/a Pcr

√
ρ̄ R′

L q RL/a Pcr

√
ρ̄ R′

L a/amin P/Pmin

∞ 0.8149 0.157 ∞ 0 0 0.336 −1.67 ∞ ∞
50.0 0.6857 0.202 102 0.020 0.1259 0.363 −1.64 169 2200

20.0 0.6308 0.226 40.3 0.050 0.1670 0.370 −1.58 30.4 168

10.0 0.5803 0.250 19.5 0.100 0.2054 0.375 −1.48 9.15 29.7

8.00 0.5626 0.259 15.3 0.125 0.2192 0.376 −1.43 6.41 16.2

6.25 0.5423 0.269 11.6 0.160 0.2353 0.377 −1.35 4.42 9.29

5.00 0.5233 0.279 8.99 0.200 0.2506 0.377 −1.27 3.24 5.83

4.00 0.5039 0.290 6.87 0.250 0.2667 0.376 −1.16 2.44 3.81

2.50 0.4621 0.312 3.68 0.400 0.3036 0.372 −0.839 1.50 1.84

2.00 0.4420 0.322 2.61 0.500 0.3207 0.368 −0.623 1.27 1.42

1.60 0.4218 0.332 1.75 0.625 0.3392 0.364 −0.353 1.12 1.18

1.25 0.3997 0.342 0.996 0.800 0.3604 0.357 +0.025 1.03 1.04

1.00 0.3799 0.350 0.457 1.000 0.3799 0.350 +0.457 1.00 1.00

RL/a from numerical integration, and critical period Pcr in days; mean density ρ̄ in Solar units. Pcr

√
ρ̄

is from Eq. (3.10); a/amin and P/Pmin from Eqs (3.13) and (3.14); R′
L, i.e. d log RL/d log M1, from

Eqs (3.5), (3.13) and (3.16). The first four columns refer to q ≥ 1, the next four to q ≤ 1, and the last

two to either.

At the limit q = ∞ the volume can be integrated analytically:

x3
L(∞)

3
=

√
3 − 4

3
− ln

2 + √
3

3
, xL(∞) = 0.814 885 7. (3.8)

The values of RL/a given in Table 3.1 were all computed by direct integration; they can

readily be compared with the approximations (3.5) and (3.6).

Over the whole range of q , the sum of the two radii, xL(q) + xL(1/q), is within 5% of

0.78. This number illustrates the fact that while Roche lobes are not very spherical – which

would give a value unity – they are also not very aspherical.

In several semidetached binaries, it may be the case that q cannot be determined directly

from the radial velocity curves of both stars, because ∗2, the ‘gainer’ (of mass from the lobe-

filling ∗1), may be surrounded by gas streams that distort or obscure its spectrum. Sometimes

an estimate for q can, nevertheless, be made on the basis that the ‘loser’ (∗1) not only fills its

Roche lobe but also corotates with the binary. It may be possible to measure the rotational

broadening of the relatively uncontaminated lines of ∗1, i.e. Vrot sin i , i being the inclination

of the rotation axis to the line of sight. The ratio of Vrot sin i to the orbital velocity amplitude

K – which also contains a factor sin i , and which also may be relatively uncontaminated – is

a direct function of q:

Vrot sin i

K
= ωRL

ωa1

= (1 + q) xL(q), (3.9)

a1 being the radius of the orbit of the loser about the centre of gravity. From Table 3.1 it can

be seen that the right-hand side is a fairly rapidly varying function of q, ranging from 0.23

at q = 0.1 to 0.76 at q = 1. Thus q may be estimated in the absence of clearly measurable

motion of ∗2.
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Either of formulae (3.5) or (3.6), with the aid of (3.1), gives a useful relation between the

mean density ρ of a star that just fills its Roche lobe (so that M1 = 4π R3
Lρ /3), and a critical

orbital period Pcr:

Pcr =
(

3π

Gρ

)1/2 (
q

1 + q

)1/2

x−3/2
L ∼ 0.35

√
R3

M1

(
2

1 + q

)0.2

. (3.10)

The quantities RL/a and Pcr

√
ρ are tabulated as functions of q in Table 3.1. Pcr is in days

if ρ is in Solar units (i.e. ρ = M1/R3, M1 and R being in Solar units). Pcr is the shortest

period possible for a binary of given mass ratio into which a star of given mean density ρ

can be fitted without overflowing its Roche lobe. In the approximate version of Eq. (3.10)

we will usually take q ∼ 1, since the q-dependence is very weak.

Throughout this chapter I will write the radius and luminosity of ∗1 for brevity as R, L
rather than R1, L1, because I shall consider only ∗1 to have any internal structure; ∗2 can for

most analytical purposes be treated as a point mass. Anything I derive for ∗1 can of course

be generalised to ∗2 if ∗2 does have structure. However, I still have to distinguish M1, M2,

and I will use M for the total mass.

The fact that Pcr (for a particular star of mean density ρ ) varies by less than a factor of 2.4

over the entire range of q , and by no more than a factor of 1.5 over the more restricted but

realistic range 0.1 < q < 8, makes Eq. (3.10) very useful. For example, the Sun (at its present

radius) cannot fit into a binary with P < 0.157 days without overflowing its Roche lobe, and

it cannot overflow its Roche lobe in a binary with P > 0.377 days; a value of 0.35 days,

appropriate to q = 1, is wrong by less than 10% over the range 0 <∼ q <∼ 2.

In Chapter 2 we noted that the radius normally increases, and so the mean density decreases,

with age, and rather drastically in the Hertzsprung Gap and red giant stage. Thus we gain a

little information on the evolutionary status of a star simply by knowing that it is in a binary

of a particular period. For a binary of period P containing a star of radius R, the ratio P/Pcr

is related directly to R/RL: (
R

RL

)3

=
(

Pcr

P

)2

. (3.11)

Table 3.2 gives data regarding (theoretical) stars at up to seven significant points in their

evolution. These are the stars whose Hertzsprung–Russell diagram is shown in Fig. 2.17.

Core masses, ages (in megayears), radii, luminosities, temperatures and spectral types are

indicated, and also the period Pcr in days: this is the orbital period such that the star would

just fill its Roche lobe at the corresponding stage in evolution. The stages are the beginning

(ZAMS) and end (TMS) of the main sequence, the beginning (BGB) of the giant branch,

where the atmosphere switches from mainly radiative to mainly convective, and central helium

ignition (HeIgn). The stellar radius usually then shrinks to a temporary minimum during core

helium burning (CHeB), increases again but passes through another temporary minimum on

the early asymptotic giant branch (EAGB), and then increases to a final maximum (RMAX)

before the star collapses to a white dwarf (1–4 M�), or explodes as a supernova (≥8 M�).

These models include an estimate of mass-loss rate, as described in Section 2.4. The stellar

mass at the last stage tabulated is shown at the foot of the table; it will decrease further in the

post-AGB evolution of masses 1–4 M�, and presumably also in the WR and post-WR stages

of masses 32–128 M�, but perhaps not much further for the 8, 16 M� stars.
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Table 3.2. Critical binary periods for stars of various masses and evolutionary stages

Mass 0.25 0.50 1.00 2.00 4.00 8.00 16.0 32.0 64.0 128

ZAMS: Mc,conv – – – 0.293 0.906 2.360 6.48 18.2 47 109

log R −0.571 −0.340 −0.051 0.210 0.376 0.555 0.726 0.894 1.07 1.27

log L −2.023 −1.411 −0.148 1.258 2.378 3.440 4.372 5.146 5.77 6.28

log T 3.542 3.579 3.750 3.971 4.168 4.344 4.492 4.602 4.67 4.70

spectrum M3V M0.5V G6V A0V B5.5V B1.5V O9.5V O5.5V O3V O3V

log Pcr −1.012 −0.815 −0.532 −0.296 −0.192 −0.075 0.030 0.132 0.24 0.40

TMS: Mc,He – – 0.117 0.254 0.634 1.640 4.70 12.9 31.3 59.5

age – – 11 000 1 128 172.3 35.44 11.27 5.432 3.442 2.727

log R – – 0.231 0.683 0.782 0.962 1.182 1.505 2.335 1.714

log L – – 0.351 1.544 2.732 3.859 4.774 5.467 5.989 6.332

log T – – 3.734 3.806 4.054 4.246 4.364 4.377 4.091 4.488

spectrum – – G8IV F5III B8III B2.5II B0.5Iab B0.5Ia B6Ia+ B0Ia+
log Pcr – – −0.110 0.418 0.417 0.535 0.720 1.067 2.201 1.22

BGB: Mc,He – – 0.124 0.260 0.638 1.645 4.06 10.24 33.2 –

age – – 11 110 1 140 174.2 35.79 11.39 5.487 3.474 –

log R – – 0.251 0.736 1.409 2.081 2.720 3.045 3.236 –

log L – – 0.351 1.308 2.541 3.678 4.761 5.448 5.979 –

log T – – 3.724 3.721 3.693 3.641 3.592 3.601 3.639 –

spectrum – – G9IV G2III G2II K0Ib K4Iab K3Ia K2Ia+ –

log Pcr – – −0.079 0.498 1.355 2.214 3.028 3.378 3.562 –

HeIgn: Mc,He – – 0.469 0.390 0.639 1.644 4.06 10.3 32.8 –

age – – 11 990 1 177 174.8 35.86 11.38 5.486 3.477 –

log R – – 2.266 1.788 1.845 2.424 2.014 2.956 3.402 –

log L – – 3.425 2.908 3.139 4.126 4.856 5.482 6.059 –

log T – – 3.485 3.595 3.624 3.581 3.969 3.654 3.575 –

spectrum – – M3.5III K3III K2II K4Ib A2Ia G8Ia K7Ia+ –

log Pcr – – 3.003 2.078 2.010 2.729 1.969 3.245 3.818 –

CHeB: Mc,He – – 0.519 0.411 0.800 2.053 4.79 12.7 16.9 –

age – – 12 080 1 190 190.5 38.05 11.95 5.792 3.512 –

log R – – 1.056 1.037 1.493 1.738 2.853 1.765 2.334 –

log L – – 1.772 1.785 2.685 3.038 4.904 5.559 6.047 –

log T – – 3.677 3.690 3.687 3.902 3.562 4.269 4.104 –

spectrum – – G5III G3III G2II A8Iab M0Iab B0Ia B6Ia+ –

log Pcr – – 1.189 0.953 1.483 1.703 3.237 1.612 2.323 –

EAGB: Mc,He – – 0.536 0.544 0.885 2.249 – – – –

Mc,CO – – 0.296 0.311 0.515 1.347 – – – –

age – – 12 140 1 365 209.9 40.40 – – – –

log R – – 1.469 1.447 1.843 2.424 – – – –

log L – – 2.354 2.421 3.145 4.132 – – – –

log T – – 3.616 3.644 3.626 3.583 – – – –

spectrum – – K2.5III G9III K0II K5Iab – – – –

log Pcr – – 1.811 1.571 2.010 2.736 – – – –

RMAX: Mc,He – – 0.575 0.669 1.010 2.235 5.58 – – –

Mc,CO – – 0.551 0.660 1.009 1.445 3.91 – – –

age – – 12 250 1 372 211.3 40.48 12.75 – – –

log R – – 2.317 2.624 2.865 2.674 3.019 – – –

log L – – 3.591 3.978 4.488 4.486 5.126 – – –

log T – – 3.501 3.444 3.451 3.546 3.534 – – –

spectrum – – M3III M6II M6II M1Iab M1Ia – – –

log Pcr – – 3.119 3.497 3.749 3.111 3.508 – – –

M – – 0.629 0.928 1.77 7.74 13.5 13.7a 28.5a 61a

Masses, radii, luminosities in Solar units; critical orbital period in days; age in megayears; abbreviations defined in

the text.
a Mass at last evolutionary state tabulated.
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Figure 3.1b shows that stars can be larger than their Roche lobes, and still in hydrostatic

equilibrium, provided that both components fill the same equipotential. But there is an ‘outer

critical lobe’ which cannot be exceeded even in this case, as shown by the outermost of the

three curves in Fig. 3.1b. If this outer surface is divided (somewhat crudely) into two by a

plane through the inner Lagrangian point perpendicular to the line of centres, the effective

radius of each of its two portions can also be defined and computed, as a function of q. It is,

to better than 2%,

ROL

a
≡ xOL(q) ≈ 0.49q2/3 + 0.27q − 0.12q4/3

0.6q2/3 + ln(1 + q1/3)
, q ≤ 1,

(3.12)

≈ 0.49q2/3 + 0.15

0.6q2/3 + ln(1 + q1/3)
, q ≥ 1.

The discontinuity of gradient at q = 1 is real, not an artefact of the approximation. However,

the outer lobe is of much less practical significance than the inner lobe, i.e. the Roche lobe,

even for contact binaries (Section 5.4).

Mass transfer from one component to the other by ‘Roche-lobe overflow’, or RLOF, is

going to be an inevitable consequence of the evolutionary expansion of a star, for orbital

period P <∼ 1000 days (Table 3.2). For massive stars the limit is substantially larger. When

the more massive star, which evolves faster, reaches its Roche lobe it will begin to shed its

surface layers. As a first approximation, which we will have to reconsider subsequently, we

suppose this mass transfer is slow, steady and ‘conservative’, i.e. that no mass or angular

momentum leaves the system altogether. The mass lost by ∗1 (the loser) is assumed to be

accreted by ∗2 (the gainer). Note that in this chapter we take ∗1 to be the star which is nearer

to filling, or perhaps already fills, its Roche lobe, rather than to be the initially more massive

star, although quite often they are the same. We also assume for the time being that the orbit

remains circular; this, in fact, follows from the other assumptions since the eccentricity is an

adiabatic invariant. Then using the basic Keplerian Eq. (3.1), the separation a and the period

P are given in terms of the constant orbital angular momentum Ho, the constant total mass

M = M1 + M2, and the varying mass ratio q by

a = H 2
o M

G M2
1 M2

2

= amin

(1 + q)4

16q2
= amin

(
M2

4M1 M2

)2

, (3.13)

P = 2π

ω
= 2π H 3

o M

G2 M3
1 M3

2

= Pmin

(1 + q)6

64q3
= Pmin

(
M2

4M1 M2

)3

. (3.14)

The variation of a and P with q , relative to their minimum values amin, Pmin at q = 1, is

also shown in Table 3.1. We normally define q as greater than unity initially, so that as q
decreases through unity the separation at first decreases and subsequently increases. Thus

for conservative RLOF, the separation and period reach their minima as the two masses pass

through equality.

For a few semidetached binaries, a rate of period change can be measured. If this is roughly

constant over decades or, better, centuries then it may allow us to estimate the rate of mass

transfer during RLOF:

Ṁ1

M
= − Ṁ2

M
= Ṗ

P

q

3(q2 − 1)
. (3.15)
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Unfortunately, there are rather few systems in which the period changes at a steady rate for

a long time (Fig. 1.6); and even when it does, there may be non-conservative processes at

work (stellar winds, magnetic braking, gravitational radiation; Chapter 4) on something like

the same timescale.

We should note in addition that the Keplerian relation (3.1), and consequential re-

lations (3.13, 3.14), are not correct for stars which are distorted from spherical. A correction

is necessary – Eq. (3.51) below – which depends on the quadrupole moment of each star,

to lowest order. Thus a small variation of P with time might be due to varying quadrupole

moment rather than varying mass. This might result from variation of the internal magnetic

field during a Solar-like cycle (Applegate and Patterson 1987). Such cycles can be decades

long, and possibly centuries long. A further effect is that the spin of the stars affects the

orbital angular momentum. If the moments of inertia fluctuate, perhaps for the same reason,

then the period could fluctuate slightly.

An important quantity is the rate R′
L at which the Roche-lobe radius responds to the mass

M1 (∝ q / 1 + q) of the star within the lobe, at constant Ho and M . We define R′
L as the

logarithmic derivative, a convenient dimensionless expression obtainable from Eqs (3.13)

and either (3.5) or (3.6):

R′
L ≡ d log RL

d log M1

= (1 + q) ·
(

d log RL/a

d log q
+ d log a

d log q

)
, (3.16)

≈ 2.13q − 1.67, 0 < q <∼ 50; (3.17)

R′
L is also given in Table 3.1. Note that R′

L = 0, i.e. the Roche-lobe radius is a minimum, at

q ≈ 0.788, using the more accurate expression (3.5).

The significance of R′
L is that it can be compared with R′, the equivalent (logarithmic)

response of a star’s radius to its mass as determined by its internal structure. For example,

Eqs (2.2) and (2.51) give R(M) for a ZAMS star and for a WD respectively, and when dif-

ferentiated logarithmically yield corresponding values for R′. As we shall see in Section 3.3,

the rate, and the stability, of the mass-transfer process depends importantly on a comparison

of R′
L with R′.

We shall see later that the simple picture of Roche geometry outlined above is hardly

adequate in some cases, though it may well be adequate in most cases. I will therefore

emphasise the assumptions on which it is based:

(a) The stars are treated as spherically symmetrical masses, so far as their gravity in Eq. (3.2)

is concerned, despite the fact that they may fill, or even overfill, their Roche lobes.

However, this is probably the least worrying assumption. Between 70% (on the lower

main sequence) and 90% (on the upper main sequence) of a star’s mass is within the

inner 50% of its radius, and the equipotentials (3.2) become rapidly nearly spherical

as one goes inwards from the Roche lobe. In fact a rather simple correction, based on

hydrostatic and thermal equilibrium in a non-spherical potential field, can be applied

(Section 3.2.1), and can be shown to be rather small in relation to other uncertainties.

(b) The stars are assumed to rotate uniformly, and with the same angular velocity as the

system, i.e. all the material of the system is assumed at rest in the corotating frame.

Tidal friction, which I will discuss briefly below (Section 4.2), is likely to enforce

this, at least for the outer layers, but only in relatively close binaries. However, tidal

friction, especially in fluid as distinct from solid bodies, is by no means well understood
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yet. Internal magnetic fields might also play an important role in enforcing solid-body

rotation, since even a slight amount of differential rotation will lead to rapid amplification

of any internal magnetic field.

(c) The orbit is taken to be circular, although it might be a Keplerian ellipse. Tidal friction

can also be expected to circularise orbits; for tidal friction is a dissipative process, and

two bodies in Keplerian orbits about their centre of gravity have the least energy, for a

given angular momentum, if their orbits are circular. Most observed systems where one

star is near to filling its Roche lobe are found to have circular orbits within the limits of

observational accuracy (which may be rather wide, however).

(d) In Eqs (3.13) and (3.14) the intrinsic angular momentum of the stars is ignored compared

with the orbital angular momentum. Once again, the fact that stellar mass is concentrated

towards the centre makes this reasonable. We noted in Section 2.2.2 that main sequence

stars are well approximated by polytropic gas spheres with n ∼ 3. The radius of gyration

k of ∗1 is

k2

R2
≡ I

M1 R2

≡ 2

3M1 R2

∫ M1

0

r2dm � 0.4
(

1 − n

5

)1.734

e−0.0133n−0.0182n2+0.0041n3

∼0.076 for n ∼ 3, (3.18)

if we use a polytropic approximation (requiring n < 5); see Table 3.4. Comparing the

value for n = 3 with the value 0.4 for a uniform sphere (n = 0), we see that an n =
3 polytrope is quite centrally condensed. It is only when (i) the mass ratio is rather

extreme, and (ii) the more massive component is close to its Roche lobe, that spin

angular momentum can become comparable to orbital angular momentum. This is further

discussed in Sections 4.2 and 5.1.

(e) Eqs (3.13) and (3.14) are true even if Ho and M are not constant, provided the eccentricity

remains zero. Nevertheless the entries of Table 3.1 assume constancy. However, several

processes, outlined below (Chapter 4), may work to remove mass or angular momentum

(or both) from the binary. Some of these processes are likely to reduce Ho relatively

faster than M , causing the orbit to shrink and speed up; but some may expand the orbit,

or even disrupt it entirely.

3.2 Modifications to structure and orbit
3.2.1 Effect on structure of a non-spherical potential

There is a convenient semi-analytical model for a star that is distorted from the

spherical by (a) supposedly uniform rotation, and (b) a binary companion. The model suffers

from a number of disadvantages, outlined below, and cannot be considered as anything

more than a recipe that yields a plausible but by no means definitive estimate of the first

order consequences of such distorting effects. Nevertheless, the model has the advantage of

surprising simplicity that may even outweigh its disadvantages, and so I will present its basis

and its conclusions here, with the analysis relegated to Appendix B.

We suppose here that one of the two stellar components, ∗2 say, is a point mass, while

only ∗1, whose internal structure is being considered, is an extended body. We work in a

frame which rotates with ∗1, noting that this is not necessarily the same as a frame which

rotates with the binary (although corotation was assumed in the previous section). We take ��,
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the rotation of ∗1, to be a constant, or at any rate to vary slowly compared with the orbital

timescale (unlike the instantaneous orbital angular velocity, if the orbit is eccentric). We

also assume, rather less convincingly, that we can in the first instance neglect the velocity of

material relative to the rotating frame, so that we take ∗1 to be in hydrostatic equilibrium.

If the orbit is in fact eccentric, or if ∗1 is not corotating with the binary, the velocity cannot

be strictly zero since there will be a time-dependent tidal distortion; its velocity field is

determined in Appendix B, and given below – Eq. (3.36). However, the degree of distortion

is really quite small even in the extreme when a star is close to filling its Roche lobe, and so it

is not unreasonable to neglect it and assume that the star is always in hydrostatic equilibrium,

even with a time-dependent potential due to the change of relative position of ∗2.

To maintain thermal equilibrium in a distorted star that is in hydrostatic equilibrium, it is

necessary to introduce a meridional velocity field, v, say – Eq. (3.39) below – in addition to

the tidal velocity field. Fortunately v can be estimated to be very small over the bulk of the

star, and so we can reasonably assume that the star is still in hydrostatic equilibrium:

∇ p = −ρ∇φ, (3.19)

∇2φ = 4πGρ − 2�2. (3.20)

Here φ is a combined gravitational–centrifugal potential, which includes the potential of the

companion star (a point mass outside the object star), the centrifugal potential 1
2
|�� × r|2, as

well as the self-gravity of the object star. This φ is not the same as φR in Eq. (3.2): firstly, ∗1

(say) is no longer being treated as a point mass; secondly, the origin is now at the centre of

gravity of ∗1 rather than of the binary; thirdly, we are working in a frame which rotates with

∗1, and not necessarily with the orbit.

Equation (3.19) has the rather powerful consequence that both p and ρ must be constant

on surfaces of constant φ. If, to start with, we think only about stars of uniform composition

(e.g. ZAMS stars), then the molecular weight μ is constant and hence T, s are also constant

on equipotential surfaces. In a radiative (i.e. non-convective) zone this means that the heat

flux F is given by

F = χrad∇φ, χrad(φ) ≡ −4acT 3

3κρ

dT

dφ
, (3.21)

with χ being constant on equipotentials, as are ρ, T, dT/dφ, and also κ , since we assume

uniform composition.

In a convective zone the heat flux vector is not so straightforward. However, by compound-

ing the simple but unjustifiable mixing-length theory (Section 2.2.3) with an equally simple

and unjustifiable generalisation to distorted stars (Appendix B), we can approximate the heat

flux by

F = (χrad(φ) + χcon(φ))∇φ ≡ χ (φ)∇φ. (3.22)

The details of χ do not matter, as shown in Appendix B, but what does matter – from the

point of view of being able to get simple results – is that χ , as with other variables, should

be constant on equipotentials.

The equation of heat production and transport in a steady state is then

∇ · χ∇T = ρε − ρT v · ∇S = ρε − ρT
dS

dφ
|∇φ|v⊥, (3.23)
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where ε is the nuclear reaction rate and v the meridional velocity field. The left-hand side

is not constant on equipotentials, whereas ρε is, and so Eq. (3.23) gives the component v⊥
of v normal to the equipotential that is necessary to balance the two sides; the tangential

component is then given by continuity:

∇ · ρv = 0. (3.24)

An explicit expression for v⊥ is given below – Eq. (3.40).

Let us define the ‘volume-radius’ r∗(φ) of an equipotential surface by

4π

3
r3
∗ = V (φ), (3.25)

where V (φ) is the volume contained within the equipotential. Then following the analysis of

Appendix B our simple model gives the structure of a distorted star by

dp

dr∗
≈ −ρ

Gm

r2∗

(
1 − 2�2r3

∗
3Gm

)
, (3.26)

dm

dr∗
= 4πr2

∗ρ, (3.27)

dL

dr∗
= 4πr2

∗ρε, (3.28)

d log T

d log p
∼ min(∇a, ∇r), ∇r = 3κpL

16πacGmT 4

(
1 − 2�2r3

∗
3Gm

)−1

. (3.29)

L , m are the nuclear luminosity and the mass contained within an equipotential. Equations

(3.26)–(3.29) are seen to be virtually independent of the fact that the star is distorted. Only

one factor, omitted in Eq. (3.26) but included in Eq. (B8) of Appendix B, depends on a

detailed knowledge of φ(r); and it is clear that the factor differs from unity in second order

if φ differs from spherical in first order. Taking this factor to be unity, therefore, the only

effect of binarity on internal structure turns out to be a weakening of gravity by way of the

rotation of the star: the factor 4πGm needs only to be replaced by 4πGm − 2�2V in the

two places where it occurs. This is very easily incorporated into a stellar evolution code

making the conventional assumption of spherical symmetry. Note that although Eq. (3.29) is

written with only the lowest-order approximation to the temperature gradient d log T/d log p,

the usual more elaborate mixing-length approximation can be used instead (Appendix A),

provided ∇r is modified as above to include rotation. Note also that the distorting effect of

the gravitational field of ∗2 does not enter into Eqs (3.26)–(3.29) at all: this is because

∇2φ for that effect is zero within ∗1, whereas for the centrifugal part of the potential

∇2φ = −2�2.

Table 3.3 shows that the effect on the star of including the rotational modification is not

large, even if the star exactly fills its Roche lobe. The table lists some ZAMS models – cf.

Table 3.2. Equal masses are assumed. The critical period is increased by nearly ∼4% for most

masses, but for the lowest-mass stars, which are largely or wholly convective, it is decreased
by ∼1.5%. The effect would be larger at higher mass ratio, and also for single stars rotating

at break-up (equivalent to infinite mass ratio).

The degree to which an internal equipotential of mean radius r – dropping the asterisk –

departs from spherical can be represented by a function α(r ), such that the radius in direction
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Table 3.3. Critical period on the ZAMS modified by including rotation: equal masses

M 0.125 0.25 0.5 1 2 4 8 16 32

log Pcr −1.1998 −1.0118 −0.8158 −0.5314 −0.3039 −0.2183 −0.1139 −0.0099 0.0902

log P ′
cr −1.2052 −1.0153 −0.8225 −0.5236 −0.2838 −0.1997 −0.0959 0.0078 0.1091

Pcr is the critical period for Roche-lobe overflow on the ZAMS as obtained when the effect of rotation

on the structure is ignored – Table 3.2; P ′
cr is the value when rotation is included according to Eqs (3.26)

and (3.29). Periods are in days and masses are in Solar units.

n
n

n
n

Figure 3.2 The variation of 0.1 log(ρ/ρc) + 1 (pluses), and α(r )/α1 (asterisks), which
measures the degree of distortion of equipotential surfaces. Also shown are n/n + 1 (line),
where n is the local polytropic index, β(r ) (circles), which determines the amplitude of the
tidal velocity field – Eq. (3.36) – and 0.1 log γ (r ) + 0.5 (crosses), which determines the
tidal dissipation rate – Eq. (4.31). The models are (a) n = 3 polytrope, (b) 1 M� ZAMS
star.

θ from the symmetry axis is a factor 1 − α(r )P2(cos θ ) times the mean radius. As shown in

Appendix B, α satisfies Clairault’s equation

d2α

dr2
− 6α

r2
+ 8πr3ρ

m

(
1

r

dα

dr
+ α

r2

)
= 0. (3.30)

Thus α depends only on the zero-order (spherical) distribution of mass, apart from a constant

multiplicative factor, which is determined by the strength of the perturbation: see Eq. (3.33)

below. For polytropes, α(r ) is easily computed, and it can also be computed from tabulated

stellar models. Two cases are shown in Fig. 3.2. The first-order aspherical mass distribution

can then be allowed for, and generates a quadrupole moment that is best expressed in tensor

form, since it consists of two contributions with different axes of symmetry: rotation (��),
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and the companion (d). The quadrupole tensor is

qi j = q rot
i j + qcomp

i j , q rot
i j = − A

6G
(3�i� j − �2δi j ),

qcomp
i j = M2 A

2d5
(3di d j − d2δi j ), A = R5 Q

1 − Q
, (3.31)

where R is the mean surface radius of ∗1 and Q is a structure constant determined from α:

Q = 1

5M1 R2 α(R)

∫ M1

0

(
5α + r

dα

dr

)
r2dm. (3.32)

This Q is clearly independent of a constant factor in α, so that Eq. (3.30) for α need only be

integrated with the initial conditions α = 1 (say) and α′ = 0 at r = 0. Then α can be scaled

so that its surface value is dictated by the strength of the perturbing effect, either rotation or

the companion or both:

αrot(R) = �2 R3

3G M1

1

1 − Q
, αcomp(R) = − M2 R3

M1d3

1

1 − Q
. (3.33)

For a polytrope of index n, 0 ≤ n ≤ 4.95,

Q ≈ 3

5

(
1 − n

5

)2.215

e0.0245n−0.096n2−0.0084n3 ± 1.5% rms. (3.34)

Q ∼ 0.028 for an n = 3 polytrope, and 0.223 for n = 3/2. Q relates to the conventional

‘apsidal motion constant’ kAM by

kAM = 1

2

Q

1 − Q
. (3.35)

In much of the literature, kAM is called k2, but here I will reserve suffix 2 for the other star

(even if it has rather little structure).

In the frame that rotates with ∗1, the rotational contribution to the tidal distortion is constant

(like the Earth’s equatorial bulge) and the companion’s contribution is time-varying (like the

Earth’s lunar tidal bulge). The time-varying part contributes a tidal velocity field u say, which,

like the meridional field v of Eq. (3.23), has to be assumed to be small to justify hydrostatic

equilibrium. It is shown in Appendix B to have the quadrupolar form

ui = −3

2

M2 R3

M1(1 − Q)d3
β(r )si j (t)x j , (3.36)

where

si j = 1

d3

∂d

∂t
(5di d j − d2δi j ) − 1

d2

(
di

∂d j

∂t
+ d j

∂di

∂t

)
, (3.37)

and

β = 1

ρ

(
ρ(R) +

∫ r

R

α

α(R)

dρ

dr
dr

)
. (3.38)

Figure 3.2 also shows β(r ) for a polytropic model and a ZAMS model. Contrary to its

superficial appearance, Eq. (3.38) satisfies its necessary boundary condition β = 1 at the

surface, even if the surface is approximated as polytropic with ρ(R) = 0. Table 3.4 gives a

number of constants computed for polytropic models.
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Table 3.4. Various constants for polytropes

n 0 1 1.5 3 3.5 4

C 1.00 3.29 5.99 53.6 146.9 543

k2/R2 0.400 0.261 0.205 0.0759 0.0468 0.0247

Q 0.600 0.342 0.223 0.0285 0.01041 0.00300

βc 1.00 0.763 0.560 0.1008 0.0402 0.01170

γ 1.00 0.610 0.339 0.0122 0.0020 0.00018

Darwin qD 2.78 4.01 4.98 11.82 18.05 32.6

C is the central condensation, or central density over mean density – Eq. (2.44);

k is the radius of gyration – Eq. (3.18); Q is the dimensionless quadrupole

moment – Eq. (3.32); βc is the tidal velocity coefficient at the centre, relative

to unity at the surface – Eqs (3.36, 3.38); γ is the average dimensionless

dissipation amplitude in the inner 25% of mass – Eq. (4.31); qD is the critical

mass ratio for the Darwin instability – Eq. (5.3).

If a star were a perfect (dissipationless) oscillator, its first-order tidal motion would consist

of (a) a particular integral, the ‘equilibrium tide’ of Eq. (3.36), and (b) a collection of normal

modes, determined by some initial conditions. Dissipation, i.e. viscosity, even if slight, will

tend to remove the normal modes, leaving the equilibrium tide as the dominant motion. But

even the equilibrium tide will be subject to dissipation. In most cases (see Section 4.2) this

will lead ultimately to uniform corotation of the star with a circular orbit: tidal friction will

stop dissipating mechanical energy only if and when the orbit is circular and the star rotates

with the orbit. In Section 3.4.2, I will compute the rate of dissipation of the tidal velocity

field (3.36).

Returning now to the meridional velocity field v of Eq. (3.23), the normal component v⊥
is given – Eqs (B21) and (B52) – by

ρT
dS

dφ
v⊥ =

(
1

|∇φ|
∫

|∇φ| d� − |∇φ|
∫

d�

|∇φ|
)

d

dV

L

4πGm − 2�2V
, (3.39)

≈ −8π

3

R3�2

G M1(1 − Q)

r2

α(R)

d(rα)

dr
P2(cos θ)

d

dV

L

4πGm − 2�2V
, (3.40)

where d� is an element of area on the equipotential surface. The distortion due to the

companion leads to an additional velocity field of similar mathematical form, but with the first
�2 in Eq. (3.40) replaced by −3G M2/d3 and with the polar angle θ measured from the line

of centres rather than the rotation axis. The tangential component v‖ of the velocity field

comes from Eq. (3.24), i.e. continuity.

In the bulk of the star, outside the core, L is constant, and so the V -derivative which is the

final term of Eq. (3.40) has a factor 4πGρ − 2�2. This will usually vanish somewhere inside

the star, unless the rotation is very slow, and so will divide the circulation into two distinct

parts (Fig. 3.3). The factor 2πG M − 2�2V does not vanish within or on the Roche lobe –

Eq. (3.44).

A close look at v⊥ shows some of the weaknesses of the model, however. Firstly, the

model predicts that v⊥ tends to infinity at the surface, and not to zero, as ρ → 0. Presumably

an infinite ‘surface current sheet’ must flow there, to close off the streamlines. If we are
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(a) (b)

Figure 3.3 Patterns of circulation to be expected in a rotating star, on the basis of Eqs (3.40)
and (3.43): (a) massive, with convective core and radiative envelope; (b) low-mass, with
radiative core and convective envelope. Heavy lines with double arrows are surface current
sheets. The rotation axis is the right-hand edge of each panel.

determined to try to believe the essence of the model, we can argue that (a) the photospheric

density is not really zero, but small and given by the surface boundary condition (2.17); and

(b) there is a turbulent surface layer of finite speed and thickness (perhaps as thick as the

photosphere), the turbulence being driven by the shear that must be relatively large in the

surface layers. Secondly, and more importantly, we also see that v⊥ → ∞ at any boundary

between a radiative and a convective zone, since dS/dφ = 0 there. Thus, there must also be

a surface current sheet at such layers to close the streamlines. Once again, we might imagine

that in reality there is a turbulent boundary layer of finite thickness and speed rather than a

surface current sheet.

Figure 3.3 gives an artist’s impression of the circulation patterns that might be expected

for a massive star (convective core, radiative envelope) and a low-mass star (radiative core,

convective envelope) in uniform rotation. Note that the factor in parentheses in Eq. (3.39)

is positive near the equator and negative near the poles, while the factor to the right of the

parentheses is negative near the centre, positive near the surface, and vanishes on the surface

4πGρ = 2�2, provided that this is sufficiently far from the centre that L ∼ constant there.

From Eq. (3.40) we can estimate the order of magnitude of v⊥. In the central regions we

obtain

v⊥ ∼
(

vrot

vcr

)2 w3
G

v2
cr

1

|∇ − ∇a| , (3.41)

where wG (∼0.035 km/s for the Sun) is the global convective velocity of the star as defined

by Eq. (2.28), vrot = �R (∼2 km/s for the Sun) is the surface equatorial rotation velocity, and

v2
cr = G M1/R (∼450 km/s for the Sun) is the surface circular velocity. In the outer layers the

corresponding estimate is

v⊥ ∼ ρ

ρ

(
vrot

vcr

)4 w3
G

v2
cr

1

|∇ − ∇a| , (3.42)
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where ρ is the mean density of the star. The maximum value of vrot/vcr is ∼1, when the star

is rotating at break-up. For massive main-sequence stars wG could be an order of magnitude

larger than for the Sun, but vcr will only be larger by <∼2. Thus v⊥ is very small in the interior.

However, ρ/ρ ∼ 107 at the surface. Near the surface of a very rapidly rotating G dwarf

we might have v⊥ ∼ 0.03 km/s. Somewhat larger values could prevail on the upper main

sequence. But for a slow rotator like the Sun the value is less by ten orders of magnitude.

If either the core or the surface is convective (and usually at least one is), then from

Eq. (2.28) |∇ − ∇a| ∼ w2
G/vsound

2. In the interior, wG � vsound and vsound ∼ vcr, and so the

predicted v⊥ is of the order of the global convective velocity wG if the star is rotating near

break-up. Throughout most of a surface convection zone we also have a small value of

|∇ − ∇a|, and so the predicted circulation speed is also larger there.

Since v⊥ is approximately radial and v‖ is approximately tangential, the former easily

gives a stream function from which the latter can then be determined: if, from Eq. (3.40), we

write v⊥ ≡ f (r )P2(cos θ ), then we obtain

v‖ ∼ − 1

2ρr

d(r2ρ f )

dr
sin θ cos θ, (3.43)

so that v‖ ∼ v⊥ in the interior, but in the surface layers v‖/v⊥ ∼ r/HP.

Apart from the somewhat awkward fact that the predicted circulation pattern is singular

at the boundaries of convective regions, and at the surface, there are potentially two other

problems with the model described here (and in Appendix B). Firstly, the rotation is assumed

to be uniform. But the circulation current must itself redistribute angular velocity, even if it

was uniform to start with. At least in a binary component, tidal friction can be perceived as

an agency that would lead to uniformity from a previous non-uniform state, but it does not

necessarily dissipate non-uniform rotation so rapidly that we can always rely on it. Instability

on a thermal timescale should occur for any rotation distribution if � is not constant on

cylinders, or if �r2 sin2 θ increases inwards (Goldreich and Schubert 1967, Fricke 1968), but

it is not clear that this instability will tend to redistribute angular velocity towards uniformity.

Evolution, leading to contraction of the core and expansion of the envelope, could produce

differential rotation; it is often suggested that the evolved cores of massive red-supergiant

stars must be rotating much more rapidly than their surfaces, since neutron stars are typically

rotating very rapidly at ‘birth’. Furthermore, the Sun and the gaseous massive planets are

all seen to have non-uniform rotation on their surfaces. However, even if stars are typically

rotating non-uniformly, the degree of non-uniformity need not be so drastic that the model

is completely irrelevant. Since it is the surface layers that are most distorted by rotation, it is

only necessary for the model’s approximate validity that in the outer, say, 30% of the star’s

radius the rotation be uniform to, say, 20%.

Spruit (1998) has suggested that even a very weak magnetic field that permeates the entire

star might be sufficient to enforce corotation, including the core. A very small poloidal

magnetic field threading the interior would generate a toroidal field quite rapidly if wound up

by even a very modest differential rotation. These toroidal loops should become buoyant and

float to the surface, where they might rest if the surface is largely radiative or dissipate if it

is largely convective. This process could erode the energy of differential rotation on a fairly

short timescale. In that case the above problem might be insignificant. Of course, some other

mechanism (Spruit 1998) is then needed to explain the rapid rotation of ‘young’ neutron

stars, and some white dwarfs – see Sections 2.3.2 and 2.3.4.
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Secondly, the model assumes uniform composition. Obviously this is violated by nuclear

evolution. We can argue that, if we assume that μ as well as ρ, p is constant on equipotentials,

then so is T from the equation of state, and hence also the nuclear burning rate; therefore

the composition change is also constant, thus justifying in a circular manner the assumption

about μ. However, this supposes that the circulation currents do nothing to redistribute the

composition, which can only be a crude approximation – especially since the circulation is

technically singular at the boundary of a convection zone. Perhaps convective overshooting,

combined with rotationally driven mixing, does, in practice, keep the composition more or

less constant on equipotentials, but this does not seem to be guaranteed. However, as above,

we might argue that it is only the outer layers where the distortion is significant, and these

outer layers are not normally much affected by mixing; if they are, perhaps they are mixed

more or less to uniformity.

Almost certainly for a slow rotator like the Sun the model above of rotationally driven

circulation is a complete irrelevance. There does exist an apparently meridional circulation,

as shown by the fact that sunspot pairs tend to drift towards the poles (while rotating, and

decaying) at a rate of ∼15 m/s (Wang 1998). This is several orders of magnitude larger than

expected from Eq. (3.43). Presumably this circulation has its origin in the hydrodynamics of

turbulent convection subject to rotation. There is nothing in the standard model of rotationally

driven circulation to explain the marked variation of angular velocity with latitude and depth

that is observed in sunspot motions, and by helioseismology (Fig. 2.6b); this variation is

presumably also a consequence of the combination of turbulence and rotation, particularly

the Coriolis term. This term has been neglected, although it is more important than the included

centrifugal term at least in regions that are convective. However, for rapid rotators, which are

usually upper main-sequence stars with predominantly radiative envelopes, I believe that the

standard model, in particular the two �-dependent modifications in Eqs (3.26) and (3.29),

may be reasonable for determining the overall structure, and may even give a reasonable

estimate of meridional circulation in the outer layers. It is unlikely to give useful insight into

the effect of rotation on the central convective core.

The parameter αrot(R) of Eq. (3.33) is a convenient measure of the departure of the

simple rotating model from a standard non-rotating single-star configuration. If � = ω

(i.e. corotation), the value of αrot(R) for a Roche-lobe-filling component is

�2V

4πG M
= (1 − Q) αrot(R) = 1 + q

3q
x3

L(q) ∼ 0.028(1 + q)0.4 (q <∼ 20), (3.44)

from Eqs (3.1) and (3.6). We see that αrot(R) <∼ 0.05, for q between 0 and 2 and Q <∼ 0.2. For

larger q it rises, reaching 0.2 at q = ∞ (Table 3.1). From Fig. 3.2 we see that α(r ) decreases

inwards, and so α(R) is the maximum value for α(r ). The factor α(0)/α(R) ranges from 0.45

in an n = 1.5 polytrope to 0.07 in an n = 3 polytrope. It is much smaller still in the cores of

highly evolved stars. Thus for all q , αrot is rather small at the centre. Only for quite large q,

and then only near the surface, is α not very small. Even then, it is hardly ever as large as

∼0.1. The effect of ∗2 can similarly be estimated to be never more than moderate: according

to Eq. (3.34), the perturbation differs by a factor 3/(1 + q) if corotation is assumed. It is

therefore more significant, but still not large, if q is small (M1 � M2), and substantially less

significant when q is large.

The convenient simplicity of the model with uniform rotation (with or without a binary

companion) should not blind us to the possibility that some stars are in non-uniform rotation.
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There is indirect evidence that, for example, the cool component of BM Ori (Popper and

Plavec 1976), and the more massive but largely invisible component of β Lyr (Wilson 1974)

are in non-uniform rotation. I have mentioned above analyses that suggest that such rotation

is unstable on a thermal timescale, but some stars, including these two, may be evolving on

a thermal timescale.

It may be possible to extend the analysis sketched here to include the case that ��(r) is

constant on cylinders, since in that case the centrifugal term �� × (�� × r) is still derivable

from a potential; but to have �� constant on spheres, or on other surfaces, such as ellipsoids,

is more difficult. However, it is not clear that this would be a significant advance on the

relatively simple case of uniform rotation.

3.2.2 Perturbations to Keplerian orbits
A number of processes can modify a binary orbit slightly from the Keplerian model.

Examples are:

(a) A distorted star has a quadrupole moment, so that its gravity is not quite that of a point

mass. This leads to apsidal motion, i.e. rotation of the semimajor axis about the orbital

axis. Distortion can be due both to the mutual gravity of the stars and to their rotation.

If the rotation is oblique to the orbital axis, it can also cause precession, both of the spin

axes and of the orbital axis.

(b) General relativity modifies the Newtonian gravitation, also leading to apsidal motion –

Eq. (1.4).

(c) General relativity also leads to gravitational radiation, which progressively shrinks and

circularises the orbit (Section 4.1).

(d) Tidal friction usually leads to circularisation of the orbit (Section 4.2), and also to paral-

lelisation and synchronism of the spins with the orbit; but it can, in some circumstances,

decircularise the orbit.

(e) Mass loss, in the form of winds presumed to be spherically symmetrical, from either or

both stars, and mass transfer between the stars, whether through Roche-lobe overflow or

through accretion by one star of part of the wind from the other, can expand or contract

the orbit (Sections 4.3 and 4.6) and might change the eccentricity if the rate of mass loss

or transfer depends on orbital phase (Section 6.5).

(f) A third body orbiting the binary, even at some considerable distance, can cause preces-

sion, apsidal motion, and also periodic or aperiodic fluctuations in the eccentricity and

inclination (Section 4.8).

Most of these phenomena can be modelled fairly simply using a procedure outlined in

Appendix C. Provided the perturbation is sufficiently weak that it makes only a small change

to the orbit in the course of one orbit, its effect can be estimated by averaging the perturbative

force over exactly one Keplerian orbit.

A Keplerian orbit can be described compactly by a scalar, the energy E ≡ 1/2 (ḋ · ḋ ) −
G M/d, and by two vectors, the angular momentum h ≡ d × ḋ , and the Laplace–Runge–

Lenz (LRL) vector e which is given by G Me ≡ ḋ × h − G Md/d. Both E and h are per unit

reduced mass μ. The LRL vector is a vector parallel to the semimajor axis and of length e, the

eccentricity. There is some redundancy: the seven components of E, h, e satisfy two identities,

Eqs (C5). Appendix C shows how to calculate the rates of change of E , h and e, averaged
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over an orbit, for a given force f(d,ḋ ) in addition to the usual Newtonian gravitational force.

In the case of problem (f) above, it is necessary to average over both the inner and then the

outer orbit.

The LRL vector deserves to be better known than it appears to be, at least in the context

of binary orbits. Its rate of change due to a perturbative force is quite readily calculated,

and leads very directly to the rates of apsidal motion, of precession, and of circularisation

(or decircularisation) of the Keplerian orbit. The vector triad e, q, h, including a third vector

q ≡ h × e, forms a very useful right-handed orthogonal triad fixed in the orbital frame but

(possibly) rotating in an inertial frame; we refer to it as the ‘orbital frame’. We write the unit

vectors of the orbital frame as e, q, h.

When we allow for the quadrupole distortion of ∗1 – Eq. (3.31) – due to its rotation and to

the tidal effect of ∗2, the force F on ∗1 is derivable – Appendix B(x) – from a new potential

�(d):

F = −∇d�(d), �(d) = −G M1 M2

d
− G M2di d j

(
q rot

i j (��) + 1
2
qcomp

i j (d)
)

d5
, (3.45)

where qi j is the quadrupole tensor of Eq. (3.31). Note that � is different from both φR of

Eq. (3.2) and φ of Eq. (3.20), partly because � is in an inertial frame whereas the others are

in a frame that rotates with the binary, or with ∗1, and partly because φR only includes the

monopole gravitational term for ∗1.

The perturbation F leads to a couple which has the effect – Appendix C(b) – of making

the e, q, h frame rotate with an angular velocity U:

ė = U × e, q̇ = U × q, ḣ = U × h,

U ≡ Xe + Y q + Zh = M2 A

2μωa5(1 − e2)2
(3.46)

[
�h h × (h × ��) +

{
�2 − 3

2

(
�2

e + �2
q

)}
h + 15G M2

a3

1 + 3
2
e2 + 1

8
e4

(1 − e2)3
h

]
. (3.47)

�e, �q , �h are the components of �� in the orbital frame, and A ∝ R5 is given by Eq. (3.31).

The effect on e of Z alone – the component of U in the h direction, i.e. the last two of the

three terms in brackets in Eq. (3.46) – is to produce what is usually called ‘apsidal motion’.

The line of apses, in other words the major axis, parallel to e, turns about the h vector at rate

Z (rad/s), provided terms in U perpendicular to h are ignored:

ė = Zh × e,

Z = M2 A

2μωa5(1 − e2)2

[
�2 − 3

2

(
�2

e + �2
q

) + 15G M2

a3

1 + 3
2
e2 + 1

8
e4

(1 − e2)3

]
. (3.48)

In a close binary, normally �� ∼ ωω as a result of tidal friction. Then �e, �q ∼ 0; and if

M1 ∼ M2 the third term (due to the distortion by the companion) dominates the first (due to

rotation) by a modest factor. But in binaries with P >∼ 5 days (and shorter periods for very

young binaries), non-corotation is possible, and the first two terms may dominate if the star

rotates rapidly. The second term gives a negative contribution to apsidal motion, unless the

spin is parallel to the orbit. If, in fact, the spin is oriented randomly relative to the orbit, as

arguably it might be at age zero, the expectation value of the first two terms together is zero.
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If both stars are extended objects, Z will be the sum of two similar terms, one for each star

(as will also X and Y ). We must also add in the apsidal motion due to GR, Appendix C(a),

ZGR = 3G Mω

ac2(1 − e2)
. (3.49)

This is by no means negligible, even for orbital periods of a few days, and since it drops

much more slowly with separation than any term of Eq. (3.48) it dominates for periods over

∼10 days, provided that both components are still on the main sequence.

The term in U that is perpendicular to h, i.e. the first term in the brackets in Eq. (3.47), or

equivalently the combination of X and Y terms in Eq. (3.47), produces precession. The total

angular momentum, H ≡ μh + I��, is conserved, and so H is a vector fixed in an inertial

frame. Hence we can write

ḣ =
[

M2 AH�h

2μωI a5(1 − e2)2

]
H × h, (3.50)

which shows that h precesses about the fixed direction H at a rate given by the expression in

brackets.

There appears to be a common mistake in the literature regarding apsidal motion, in

circumstances where there is or may also be precession. The rate of turning of the line of

apses is often directly measurable, and is generally compared to the quantity Z , which is the

sum of Eqs (3.48) and (3.49). However, as shown in Section 4.8, the observed rate of apsidal

motion depends on X and Y , as well as Z . There are not many known binaries where there

is clear evidence of non-parallel rotation as well as measurable apsidal motion, but I shall

briefly discuss one example in Section 4.2.

Processes (c) to (e) above are non-conservative, and so I shall leave the details to Chapter 4

and Appendices B, C. I will also leave process (f) to there, although it is conservative. It is

sufficient for the present to note that process (d), the frictional dissipation of tidal motion,

will tend to (i) make the intrinsic spin align itself parallel to the orbit, (ii) bring the spin into

‘pseudo-synchronisation’ with the initially eccentric orbit, and (iii) on a slower timescale,

reduce the eccentricity of the orbit to zero. Consequently, it is reasonable to start by assuming

that close binaries have circular orbits and corotating components, as is commonly (though

not universally) observed.

The force (3.45) leads to a revision of the basic Keplerian relation (3.1) between period

and separation. If we assume that stellar spin is parallel to orbital spin, and if in addition we

add in GR (Appendix C), we obtain for circular orbits

ω2 = G M

a3

[
1 + A�2

2G M1a2
+ 3AM2

M1a5
+ 3G M

c2a

]
. (3.51)

The present accuracy of most orbital determinations does not make this correction worth

while – except for radio pulsars where, in fact, several more corrections are necessary – but

it will no doubt be more important in the future.

3.3 Conservative Roche-lobe overflow
When a star in a circular orbit expands to fill, and then overfill, its Roche lobe –

Fig. 3.1c – it will start to lose mass to its companion. For the time being we make the

‘conservative’ assumption that total mass and orbital angular momentum are constant.
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Figure 3.4 Schematic behaviour of Roche-lobe radius and stellar radius as functions of
primary mass during evolution governed by the simplistic relation (3.52). Units are
arbitrary, except that the total mass is 2 units. The curves are (i) the ZAMS radius, (ii) the
Roche-lobe radius, (iii) the radius at time t = tNE log 2. The star starts on curve (i), at point
A or A′, and evolves vertically until it reaches curve (ii) at B or B′. From B in either panel, it
can proceed to evolve along curve (ii) to C, losing mass while still evolving on a nuclear
timescale. In (b) it cannot do this from point B′, since curve (ii) is steeper than curve
(iii) there.

Whether or not the mass transfer can proceed in a steady stable manner depends largely

on the relative rates of change of stellar radius, and of Roche-lobe radius, with respect to

changes of the loser’s mass.

3.3.1 Effect of RLOF on the loser
Let us consider first a simple hypothetical case where ∗2, the ‘gainer’, is just a point

mass, and where the internal structure and evolution of ∗1 imposes a radius-mass-age relation

log R = log R0 + R′
TE log

M1

M0

+ t

tNE

. (3.52)

Here R0 and M0 are the initial mass and radius of ∗1, and tNE is a constant nuclear-evolution

timescale, on which the star’s radius increases with age t . The ZAMS expression for R is a

power law with constant slope R′ = R′
TE (using a prime to denote a logarithmic derivative);

the suffix TE stands for ‘thermal equilibrium’. If the star’s mass is changed at any non-zero

age the (log R, log M) relation has the same slope (for simplicity) as at zero age. Figure 3.4a

shows, in the (log M1, log R) plane, a (very unrealistic) case where R′
TE = 4. The star starts at

t = 0 from point A with a radius equal to half its Roche-lobe radius, so that when t = tNE log 2

it just fills its Roche lobe at point B. Curve (i) is the ZAMS, curve (ii) is the Roche-lobe

radius relation, and curve (iii) is the stellar radius–mass relation at t = tNE log 2.

Table 3.1 shows that R′
L = 2.61 at q = 2. The fact that R′

L < R′
TE = 4 at B in Fig. 3.4a

means that it is possible for ∗1 to evolve along (but actually very slightly above) the curve

R = RL from B to C, decreasing M1, i.e. transferring mass, on roughly the nuclear timescale

tNE. The mass-loss rate at time t > tN log 2 is found by solving the implicit equation

log RL(M1) = log R(M1, t) , (3.53)
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obtained by equating the lobe radius – Eqs (3.5 and 3.11) – to the stellar radius as approximated

by Eq. (3.52). Differentiating this equation wrt time, we obtain

d log M1

dt
= − 1

tNE

· 1

R′
TE − R′

L

. (3.54)

This has a physically acceptable solution, i.e. one with Ṁ1 < 0, provided that R′
TE > R′

L,

which is just the condition that curve (ii) has a shallower slope than curve (iii).

Figure 3.4b shows two (more realistic) cases with R′
TE = 1. In each case the star starts

(A or A′) with half its Roche-lobe radius, but with q ∼ 0.8 at A or q ∼ 1.5 at A′. In the first

case we have R′
L < 0 < R′

TE at B, and so evolution can proceed A → B → C entirely on a

nuclear timescale. However, in the second case the star reaches point B′ where R′
L ∼ 2.61,

which is steeper than curve (iii) with R′ = R′
TE = 1, and so there is no solution in which the

star subsequently evolves along curve (ii) on a nuclear timescale. Equivalently, Eq. (3.54)

implies that Ṁ1 > 0, which is unphysical.

For R′
TE = 1 the condition R′

L < R′
TE will be satisfied for any q <∼ 1.25 (see Table 3.1), but

for R′
TE

<∼ 0.46 the condition cannot be satisfied for any q >∼ 1. In fact, on a realistic ZAMS –

Eq. (2.2) – R′
TE ∼ 0.5 for M >∼ M�, and increases to ∼1 for 0.1 M� <∼ M <∼ M�. Thus, there is

only a rather restricted range of initial masses and mass ratios in which Roche-lobe overflow

(RLOF) starts, and continues, on a nuclear timescale. However, it does not follow that in

all other cases something catastrophic must happen; it only follows that mass transfer must

accelerate beyond the nuclear timescale.

Such a simplistic approximation as Eq. (3.52) does not allow for the fact that once the

timescale of mass loss approaches the thermal timescale, which is ∼1000 times shorter than

the nuclear timescale – Eq. (2.43) – the luminosity and radius of the star can be significantly

altered (Crawford 1955, Morton 1960). Equation (3.52) can be seen as giving the ‘thermal

equilibrium’ radius of a star; but this must be modified if a star is out of thermal equilibrium.

The material of the star expands and cools off as it rises to the surface from deep within the

gravitational potential well of the star, and this process will absorb or release heat that would

otherwise diffuse down the internal temperature gradient. Since most of the temperature and

pressure gradient is concentrated near to the surface of the star, it is reasonable to use a

‘steady, thin-shell’ approximation (Paczyński 1967) for the rate of energy release ε. If the

star changes its mass M1 at the rate Ṁ1, there is an effective thermal-energy source of strength

εth = −T

(
∂S

∂t

)
m

≡ T

(
∂S

∂m

)
t

(
∂m

∂t

)
S

(3.55)

≈ T
∂S

∂m
Ṁ1 (3.56)

= −CPT Gm

4πr4 p
(∇ − ∇a)Ṁ1, (3.57)

from Eq. (2.28), to be added on top of other energy sources, i.e. nuclear reactions.

Equation (3.57) assumes a uniform composition, which is usually the case in the outer layers

where most of the thermal energy release takes place (Fig. 3.5).

The quantity m in Eq. (3.55) is a Lagrangian mass coordinate, specifically the mass con-

tained within an equipotential surface of the family (3.2). Clearly if we think of mass as

flowing steadily through an (almost) constant entropy profile that is very steep in the outer
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k k

Figure 3.5 Dots: the luminosity L in a star losing mass at a slow, steady rate. Pluses: εth, the
thermal energy generation rate from Eq. (3.55). Circles: the thermal luminosity L th. The
abscissa is k, the number of the mesh zone in the discretised model, k = 0 at the centre,
k = 200 at the photosphere. Only alternate meshpoints are plotted. (a) 4 M�, with radiative
envelope and convective core; the negative contribution from the radiative envelope
(k >∼ 100) ultimately dominates. (b) 0.4 M�, with radiative core and convective envelope;
the thermal term is positive throughout, the convective boundary being at k ∼ 108. The
vertical scales are quasi-logarithmic (actually, arcsinh), and allow positive and negative
values to be distinguished; L , L th are not on the same scale. In (a), some erratic behaviour
near the surface is due to the presence of two narrow convection zones.

layers of the star, then we can expect that (∂m/∂t)S ∼ Ṁ1. As a first approximation it is help-

ful to think of T (M1 − m) and S(M1 − m) as given, having the values of the undisturbed,

or mass-constant, star, provided that the ratio of the rate of energy release, Eq. (3.55) inte-

grated over the star, to the unperturbed nuclear luminosity LN is not large. This ratio can be

estimated with the approximation (3.57), particularly if, for illustrative purposes, we assume

that ∇ − ∇a and CPTρ/p are constants in the outer layers (where most of the contribution

comes from):

L th

LN

≈ − Ṁ1

LN

CPTρ

p
(∇ − ∇a)

∫
∗1

Gm

r2
dr

∼ −5

2
(∇ − ∇a)

G M1 Ṁ1

RLN

. (3.58)

The last term on the right is the ratio of gravitational to nuclear luminosity, but it is also the

ratio of the Kelvin–Helmholtz timescale,

tKH = G M2
1

RLN

, (3.59)

to the mass-loss timescale |M1/Ṁ1|. For main-sequence stars we can, from hydrostatic

equilibrium, say that G M1/R ∼ �T/μ – cf. Eq. (2.13) – i.e. that the thermal and gravitational

energies are comparable, and we refer to both timescales as the Kelvin–Helmholtz timescale

tKH ∼ �T M1/μLN.

The sign of L th is important. Stars with outer layers that are stable to convection necessarily

have ∇ < ∇a, and so the outer layers absorb energy as the star loses mass; the star’s luminosity

is decreased. Stars with convective outer layers have ∇ > ∇a, and so in such stars mass loss

will increase the luminosity (Paczyński 1967). The importance of the sign of L th is that

it is found in practice that the star’s radius tends usually to vary in the same way as its



132 Binary interaction: conservative processes

luminosity, so that a star with a substantial radiative envelope shrinks when subjected to mass

loss while one with a substantial convective envelope expands. This effect will then interact

with the expansion or contraction of the Roche-lobe radius, which also varies because of

mass transfer but in an independent way dictated by Eqs (3.5) and (3.13). For the purpose of

deciding whether a star expands or contracts on thermal-timescale mass transfer, the transition

between substantially radiative and substantially convective envelopes is found empirically

to be roughly when 50% of the star’s radius is in the convective envelope, which generally

occurs at surface temperatures of ∼5 kK. On the ZAMS, stars below ∼0.75 M� have such

deep convective envelopes.

Figure 3.5 shows the distribution of thermal energy liberation in two stars subjected to mass

loss, one a star of 4 M� with a deep radiative envelope and a convective core, the other of

0.4 M� with a deep convective envelope and a radiative core. Because the quantities plotted

can vary by large factors, and also change sign, they are shown on a quasi-logarithmic scale

which nevertheless preserves sign; the units are arbitrary. In the 4 M� star there is energy

release in the convective core (out to k ∼ 100), and indeed some way beyond it (to k ∼ 125),

but the energy absorption in layers further out (k ∼ 125–170) makes for a negative total

contribution to the star’s luminosity. Beyond k ∼ 170 there is so little mass that although the

energy generation rate is large, and fluctuating in sign because of two small convection zones,

it contributes little to the luminosity. That the rate is positive in the radiative core, when one

might expect it to be negative from Eq. (3.57), is because the steady thin-shell approximation

only works in the surface layers.

In the other star (Fig. 3.5b) the energy generation rate is positive throughout. Although the

rate is largest near the surface there is little mass there, and most of the thermal luminosity

comes from k ∼ 80 − 130, straddling the radiative/convective boundary at k ∼ 108.

We can now generalise the simplistic example of Eq. (3.52) to include a term with a

coefficient R′
TD, which allows for thermal disequilibrium:

log R ∼ log R0 + R′
TE log

M1

M0

+ t

tNE

+ R′
TD tKH

d log M1

dt
, (3.60)

where R′
TD is a coefficient of order unity and is positive for largely radiative stars and negative

for largely convective stars. The apparent problem in Fig. 3.4b, that ∗1 wants to increase its

radius as a result of nuclear evolution, but also wants to decrease it if it is to keep to its

Roche-lobe radius, is solved, at least provisionally, by the introduction of the R′
TD term in

Eq. (3.60), provided that R′
TD > 0. For as |Ṁ1| increases, the extra term is negative and so

can allow the star to have a radius less than its thermal-equilibrium radius. This shrinkage

gives a degree of negative feedback, allowing the star to remain close to, but just above, its

lobe radius, i.e. with 0 < �R � RL. In Section 3.3.2 we analyse the stability a little more

closely, and find a rather more general condition than the provisional one here, R′
TD > 0.

We can estimate the degree of overfill necessary by considering the hydrodynamics of

the compressible flow near the L1 neutral point (Fig. 3.1c). The flow must pass through

a transition, and this allows us to estimate the mass-loss rate from Bernoulli’s equation

(Jedrzejec, quoted by Paczyński and Sienkiewicz 1972). As usual, in such analyses we have

to make a geometrical approximation, taking the flow to be nearly parallel to an axis (the

z-axis in cylindrical polars, Fig. 3.6a). This is somewhat in conflict with the reality that the

critical Roche equipotential through the L1 point crosses itself at an angle in excess of 60◦.

Nevertheless, the kind of estimate that emerges is usually wrong only by factors of order unity.
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Figure 3.6 (a) Roche-lobe overflow approximated as a cylindrical stream of slowly varying
cross-section. Equipotentials are shown by pluses, flow lines are solid. The radius of the
outermost streamline is Rs(z). To justify the approximation that the velocity is mainly in the
z direction we have enlarged the z scale by a factor of 10, i.e. we have taken ε = 0.1 in
Eq. (3.61). (b) Solutions of Eq. (3.68), in units where F = K = ω = 1, for various values
of the upstream potential φs . We take n = 3/2. The only solution which has large Rs at the
left and small Rs at the right is one which passes through the singular point, and has
φs = 1.2(2.5)1/6, Rs(0) = (2.5)1/6.

We assume that the potential near the L1 point can be approximated, apart from an additive

constant, by

φ ≈ ω2(R2 − ε2z2), (3.61)

where ω is comparable to the orbital frequency, and ε is small (but actually ε2 > 2). We then

assume that v is approximately in the z direction and a function only of z, i.e. v ≈ (0, 0, v(z)),

so that the motion is irrotational (∇ × v = 0). We further assume that the fluid is isentropic

and adiabatic, so that the pressure is directly related to the density:

P = C

n + 1
ρ1+1/n,

1

ρ
∇ P = C∇ρ1/n. (3.62)

Bernoulli’s equation then says that throughout the flow

Cρ1/n + 1

2
v2 + φ = constant = φs, say, (3.63)

where φs is the potential on the free surface far upstream (v ∼ 0, ρ = 0); φs is a measure of

the extent to which the star overfills its lobe. Then at a general z, both within the fluid and

on the free surface R = Rs(z),

Cρ1/n + 1

2
v2(z) + ω2{R2 − ε2z2} = φs = 1

2
v2(z) + ω2

{
R2

s (z) − ε2z2
}
. (3.64)

Hence

ρ = ω2n

Cn

{
R2

s (z) − R2
}n

. (3.65)
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The mass flux F , independent of z by continuity, is

F =
∫ Rs (z)

0

v(z)ρ 2π R dR

= v(z)

∫ Rs (z)

0

ω2n

Cn

{
R2

s (z) − R2
}

2π R dR (3.66)

= π

n + 1

ω2n

Cn
v(z){Rs(z)}2n+2 ≡ K v R2n+2

s , say. (3.67)

Eliminating v from Bernoulli’s equation on the free surface, we obtain

B(Rs, z) ≡ 1

2

F2

K 2

1

R4n+4
s

+ ω2
(
R2

s − ε2z2
) = φs . (3.68)

This relation gives Rs as a function of z for any φs . Some curves of constant φs are plotted

in Fig. 3.6b, in dimensionless form (F = K = ω = 1).

As usual in such problems, all the solution curves except two are symmetrical about

z = 0, i.e. they give the same solution downstream as upstream, which is not what we

require. We are therefore restricted to a solution that passes through the singular point where

∂ B/∂ Rs = 0 = ∂ B/∂z, from which we obtain

(n + 1) v2(0) = ω2 R2
s (0) = 2n + 2

2n + 3
φs . (3.69)

Thus the relation between flux, or mass-loss rate, and the upstream potential excess φs is

−Ṁ1 = Ṁ2 = F = π

(n + 1)3/2ω2Cn

(
2n + 2

2n + 3
φs

)n+3/2

∼ (G M)2 ρ

vsound
3

(
�R

RL

)3

≡ M1

tHD

(
�R

RL

)3

, say (�R ≥ 0), (3.70)

= 0 (�R ≤ 0).

We have taken n = 3/2, used φs ∼ G M�R/RL
2, ω2 ∼ G M/a3, and eliminated C in terms

of ρ and vsound. �R is the excess of stellar radius over lobe radius. Several factors of order

unity, including RL/a, are ignored.

This approximation can easily be used as a boundary condition in stellar evolution com-

putations, if the model is discretised using an implicit adaptive non-Lagrangian mesh as set

out in Appendix A. Equation (3.70) can be expected to be better for convective envelopes,

which may be fairly closely isentropic (although n may be increased considerably above 3/2

by hydrogen ionisation), than for radiative envelopes, which have a steep entropy gradient.

However, for radiative stars we expect only a slight degree of overfill, because of the nega-

tive feedback described earlier, and so the variation of entropy with depth may not be very

significant.

The hydrodynamical timescale tHD defined in Eq. (3.70) is quite short, of much the same

order as the usual dynamical or pulsational timescale (R3/G M1)1/2; although if we take seri-

ously several dimensionless factors that we have ignored above the result might be two orders

of magnitude longer. In circumstances where Ṁ1 is on a thermal timescale, say 1 megayear,

we can estimate from Eq. (3.70) that �R/RL
<∼ 0.01. However, if mass loss is on the nuclear

timescale, ∼103 slower, the corresponding degree of overfill would be <∼0.001.
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A convective star, on the other hand, will suffer from positive feedback in similar circum-

stances, and we can expect the overfill to grow until �R/RL ∼ 1 ultimately, giving mass

transfer on the timescale tHD; although most of our assumptions will have broken down

before such rates are reached. It is important to note, however, that these high rates are not
demanded, even if the loser’s atmosphere is convective, unless the mass ratio is such as to

require the Roche lobe either to shrink, or to expand less rapidly than the star, as the mass

transfer proceeds.

A fully convective star responds to rapid mass loss almost adiabatically. This means that

it is approximately an n = 3/2 polytrope, with an effective equation of state p = Kρ5/3, K
being a constant that is given by the constant entropy in the star. Homology shows that such

a star has R ∝ M−1/3. So we see that R′
TD is −0.33 in the limit of a fully convective star

subject to very rapid mass loss. Note that whereas white dwarfs have R′
TE = R′

TD = −0.33

(in the low-mass, non-relativistic regime), low-mass largely convective main-sequence stars

have R′
TE ∼ 1, R′

TD = −0.33. White dwarves all have the same entropy (zero, apart from

the modest contribution of the non-degenerate ions), whereas the entropy of a red dwarf

is a function of its mass unless it is gaining or losing mass so rapidly that the process is

approximately adiabatic.

3.3.2 Modes 1, 2 and 3; cases A, B, C and D
We find it convenient to define three ‘modes’ of mass transfer during RLOF, accord-

ing to the three timescales expected so far: nuclear – mode 1; thermal – mode 2; and hydro-

dynamic – mode 3. In fact there is at least a fourth timescale that can be important, namely

the timescale of angular momentum loss. Since this is of course non-conservative, I will

defer a discussion till Section 4.3. But it is usually a slow process, and so we will include

it under mode 1. Which mode will operate is determined principally by (a) the mass ratio,

(b) the response of thermal-equilibrium models to loss of mass, and (c) the response of

thermal-disequilibrium models to loss of mass. The last two are summed up, in our simplistic

model (3.60), by the coefficients R′
TE and R′

TD. In Section (3.3.3) I present a simple linearised

model which may help to clarify the nature of the onset of RLOF, but for the present we

continue with a more qualitative analysis.

By the ‘thermal-equilibrium’ models for a potentially mass-losing star, at an arbitrary stage

of evolution, we mean the sequence of models that would be obtained if the rate of mass loss

is fast compared with the nuclear timescale, but slow compared with the thermal timescale.

For a ZAMS star, the thermal-equilibrium model sequence is simply the ZAMS itself, and

so the quantity R′
TE used above is simply the slope of the ZAMS in the log M–log R plane.

We have already argued that since 0.5 <∼ R′
TE

<∼ 1 on the ZAMS, there is only a rather limited

range of mass and mass ratio where mode 1 can prevail at the onset of RLOF. So for most

systems the mass loss has to speed up, and we might anticipate in the first instance that it

would speed up on the short timescale tHD – Eq. (3.70). But in mode 2, where the back

reaction of the mass-loss rate on the star’s structure can no longer be neglected, the situation

is mitigated provided that the star has a predominantly radiative envelope (R′
TD > 0; but see

Section 3.3.3). The timescale for growth becomes tKH rather than tHD. This will continue until

and unless the Roche-lobe radius, after decreasing and then increasing with continued mass

transfer, gets back to the thermal-equilibrium radius at a smaller value of the mass ratio. Thus

in Fig. 3.4b, the true evolution of a radiative star which first fills its Roche lobe at point B′

is along but slightly above curve (ii) between B′ and B, losing mass on a thermal timescale,
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and then from B to C and beyond on a nuclear timescale. But if the loser at point B′ were

predominantly convective (R′
TD < 0), the star would expand faster, up to the hydrodynamic

timescale, beyond B′.
The amount of mass transfer that must proceed in mode 2, before ∗1 can stabilise in thermal

equilibrium, clearly depends on the initial mass ratio q0. In Fig. 3.4b, the initial detached

evolution A′B′ will be further to the right for larger q0, and so the point B where the thermal-

equilibrium curve (iii) intersects the Roche-lobe radius curve (ii) again will be further to the

left. There is a very approximate symmetry about q ∼ 1, suggesting that at B q ∼ 1/q0, i.e.

the mass ratio is approximately reversed; further decrease of q takes place in mode 1 rather

than mode 2. A slightly more precise condition for this transition is given below – Eq. (3.71).

For red giants, it is clear that changes rapid compared with nuclear evolution leave the

core mass Mc constant, and hence from Eq. (2.50) the nuclear luminosity is also constant

since this is almost entirely dictated by the core mass. So Eq. (2.47), describing the location

of the Hayashi track as a function of total mass, simply tells us that R′
TE = −0.31. This only

breaks down at a late evolutionary phase when the star turns a corner at the top right of the

HRD and starts to shrink rapidly towards a white dwarf, and R′
TE becomes positive. The

adiabatic response rate R′
TD for red giants was estimated by Hjellming and Webbink (1987),

using semi-analytical models with an n = 3/2, γ = 5/3 envelope and a point-mass core. An

interpolation formula that fits their tabular values reasonably well is

R′
TD = −1

3
+ 14M1

8M1 + 13Mc

Mc

M1 − Mc

. (3.71)

This starts at −0.33 for a negligible core, but becomes positive once the core mass grows

above ∼0.2M1.

The situation for red giants is rather like Fig. 3.4b, except that line (iii), the thermal-

equilibrium line, will actually slope up to the left. Curve (ii) has slope −0.31 at q ∼ 0.66

(Table 3.1), so that mode 1 evolution is still possible in a situation that starts at a point like A

with q < 0.66. But if the star starts at a point like A′, mode 3 is expected. In mode 3 the mass

transfer is so rapid that probably our conservative assumptions break down. I will consider

this further in Section 5.2.

A relatively easy situation to analyse, though one which may at first sight seem academic,

is the case of a white dwarf filling its Roche lobe. For this to be feasible, the companion must

be an even smaller entity, such as a more massive white dwarf, or a neutron star or black

hole. The orbital period must be very short, ∼1 min. Since white dwarfs are basically inert,

there is no nuclear evolution to drive the white dwarf towards its Roche lobe; but instead,

angular momentum loss by gravitational radiation (Section 4.1) will drive the Roche lobe

towards the white dwarf. The radius–mass relation, Eq. (2.51), of a white dwarf is almost

entirely determined by the degenerate equation of state, and depends very little on the thermal

structure. Hence, for low-mass white dwarfs with R′
TE ∼ −0.33, if q >∼ 0.63 the situation is

unstable, requiring mass transfer on a hydrodynamical timescale. This is the value of q at

which R′
L ∼ R′

TE (Table 3.1, Eq. 3.16). For more massive white dwarfs R′
TE is more negative,

and the situation is unstable at still lower q . But if the ‘initial’ q is low enough, mode 3 can

be avoided, and the evolution can in principle continue on the same timescale as the angular

momentum loss (which however is likely to be very rapid at the short periods required).

Evolution driven by angular momentum loss (AML), either GR or a combination of mag-

netic braking and tidal friction (MB), as in Chapter 4, is probably important in many other
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types of binary – novae, low-mass X-ray binaries, and W UMa binaries for example. We can

still determine the rate of mass transfer from Eq. (3.53), bearing in mind that RL will also

have an explicit time-dependence via the orbital angular momentum Ho – Eqs (3.6 and 3.11).

For semidetached systems this gives, analogously to Eq. (3.54),

d log M1

dt
= −

(
1

tNE

+ 2

tAML

)
1

R′
TE − R′

L

,

1

tAML

≡ |Ḣ o|
Ho

= 1

tGR

+ 1

tMB

. (3.72)

The GR timescale, and an estimate of the MB timescale, are given by Eqs (4.1) and (4.30) in

Chapter 4. Although tAML is not related to tNE it is usually much longer than tKH, and so it is

reasonable (in the case R′
TE > R′

L) to consider this as an extension of mode 1.

Modes 1–3 are different from the more traditional cases A, B, C of Kippenhahn and Weigert

(1967). The definition of the latter relates to the state of evolution of the interior: in case A,

the loser is still in the main sequence band, in case B it is beyond the main sequence but

before helium ignition, and in case C it is beyond helium ignition. But the behaviour of the

mass-losing primary is more closely related to whether the envelope is radiative or convective

than to whether helium has ignited (case C) or not (case B). The refinements ‘early case B’

and ‘early case C’ make this distinction: they are much the same as mode 2 followed by

mode 1, and the alternatives ‘late case B’ and ‘late case C’ are much the same as mode 3.

Case A should probably also be divided into ‘early’ and ‘late’, since low-mass main-sequence

stars (<∼ 0.75 M�) are likely to give mode 3 RLOF as a result of angular momentum loss rather

than nuclear evolution (Section 4.5). We see in Section 3.5 that when we consider not just

the onset but also the continuation of RLOF, there are at least eight subtypes just within

conservative early case A.

To emphasise the significance of radiative or convective envelopes, we will in effect redefine

the cases: case B and case C. Case B is the situation where the loser is in the Hertzsprung

gap, and therefore has a mainly radiative envelope, at the onset of RLOF, and case C is

the situation where the loser is on the giant branch, and therefore has a mainly convective

envelope. Furthermore, because massive stars increase their radii by a large factor while

crossing the Hertzsprung gap, and because we perceive in later discussion some potentially

significant differences depending on whether a star is in the left-hand or right-hand portion of

the Hertzsprung gap at the onset of RLOF, in case B we will sometimes wish to distinguish

case B1 and case B2. Anticipating later discussion, we place the boundary provisionally at a

period of ∼100 days. Stars less massive than ∼8 M� will not encounter case B2 (Table 3.2).

We also find it convenient to define case D, the situation where the binary is too wide for

RLOF to occur at all. In the conservative approximation here, this is of little interest; except

that the conservative approximation obviously cannot hold, since most stars lose considerable

mass at a late stage in evolution, and some very massive ones at a relatively early stage. I will

return to this in Chapter 4.

3.3.3 A simple linearised model for the onset of RLOF
It is possible to write down a simple linearised model for the onset of RLOF, that

is surprisingly helpful in explaining why RLOF develops at different speeds in different
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circumstances. This model is a generalisation of Eqs (3.52)–(3.54) and (3.60) and (3.72). It

consists of four parts:

(a) The thermal equilibrium radius RTE and luminosity LTE of ∗1 are approximated as

functions of the current mass M1 and the mass Mc of burnt fuel. We write

d log RTE

dt
= ∂ log RTE

∂ log M1

d log M1

dt
+ ∂ log RTE

∂ Mc

dMc

dt

≡ R′
TE

d log M1

dt
+ 1

tNE

, (3.73)

where R′
TE and tNE are generalisations of the corresponding quantities in Eq. (3.52).

(b) The radius of a perturbed star relaxes on a timescale tKH to the thermal-equilibrium

radius, but departs from that radius as a result of mass loss. We write

log R + tKH

d log R

dt
= log RTE + R′

TDtKH

d log M1

dt
. (3.74)

This is an improvement on Eq. (3.60), because it says that if, for example, mass transfer

abruptly ceases R does not abruptly return to RTE, but approaches it on a timescale which

we in effect define as the Kelvin–Helmholtz timescale. It says, as before, that mass loss

affects R significantly only if it happens on a timescale comparable to, or faster than, this

timescale. The coefficient R′
TD is positive for radiative stars and negative for convective.

Fully convective stars, and also white dwarfs, respond to rapid mass loss as n = 3/2

polytropes, and so R′
TD ∼ −0.33 in these cases.

(c) A star whose radius exceeds its Roche-lobe radius RL by some fraction f , where we

take

f ≡ log(R/RL), (3.75)

loses mass at a rate proportional to f . We write

d log M1

dt
= − f

tHD

, f ≥ 0, (3.76)

where tHD is the dynamical timescale estimated in Eq. (3.70). Note that, for simplicity, we

take a linear dependence on f rather than a cubic dependence as implied by Eq. (3.70).

(d) The radius of the Roche lobe changes in response to mass transfer, or to angular momen-

tum loss, at a rate

d log RL

dt
= ∂ log RL

∂ log M1

d log M1

dt
+ ∂ log RL

∂ log H

d log H

dt

≡ R′
L

d log M1

dt
− 2

tAML

, (3.77)

where R′
L is the coefficient of Eq. (3.16) and Table 3.1, and tAML is the timescale on

which angular momentum is lost from the system.

Equations (3.74)–(3.76) combine to give a first-order differential equation for f:

f + tKH ḟ = log
RTE

RL

+ (R′
L − R′

TD)
tKH

tHD

f. (3.78)

Differentiating this wrt time, on the assumption that the dimensionless parameters R′
TD, R′

L

and the timescales tHD, tKH are all constants, and using Eqs (3.73) and (3.77), we derive a
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second-order inhomogeneous linear differential equation for f:

f̈ +
(

R′
TD − R′

L

tHD

+ 1

tKH

)
ḟ + R′

TE − R′
L

tKHtHD

f = 1

tKH

(
1

tNE

+ 2

tAML

)
. (3.79)

Bearing in mind that the hierarchy of timescales is normally tHD � tKH � tNE, tAML, we can

solve the corresponding characteristic equation to obtain, for the complementary function:

f ∝ eλt , λ ≈ − R′
TD − RL

′

tHD

or − R′
TE − R′

L

R′
TD − R′

L

1

tKH

. (3.80)

We see that

(a) if R′
L < R′

TD and R′
L < R′

TE both roots are negative

(b) if R′
TE < R′

L < R′
TD the only positive root is on the Kelvin–Helmholtz timescale

(c) if R′
TD < R′

L the larger root is positive and on the hydrodynamic timescale.

So we obtain the following conditions:

mode 1 : R′
L < R′

TD , R′
L < R′

TE; mode 2 : R′
TE < R′

L < R′
TD;

mode 3 : R′
TD < R′

L. (3.81)

In the case that the solution is stable (mode 1), it tends to the particular integral

f = tHD

R′
TE − R′

L

(
1

tNE

+ 2

tAML

)
, (3.82)

which is just Eq. (3.72), combined with Eq. (3.76). Thus the star overfills its Roche lobe by

a very small amount; this would actually be somewhat larger if we kept in the more realistic

cubic dependence of Eq. (3.70), but not so large as to be measurable.

The condition for mode 2 is normally satisfied for a star with a radiative envelope, and

with mass larger but not considerably larger than the companion. The condition for mode 3

is normally satisfied if the star has a convective envelope (R′
TD < 0). But it should be noted

firstly that mode 3 can also apply to mainly radiative stars if q is large enough initially, and

secondly that mode 1 can still apply to convective stars if R′
L is sufficiently negative, i.e. if

the loser is substantially less massive than the gainer. Firstly, even if R′
TD ∼ 4, which is not

untypical of radiative envelopes, we can have R′
L
>∼ R′

TD when q >∼ 2.5 (Table 3.1, Eq. 3.16).

Secondly, even if R′
TE ∼ −0.31, as is typical for red giant losers, R′

L is less than this if q < 0.65

(Table 3.1).

Although I suggested provisionally, in Section 3.3.1, that for mass transfer to be stabilised

on the thermal timescale it was desirable to have R′
TD positive, closer examination shows that

the condition is rather more complex: R′
TD can be negative if R′

L is more negative, and R′
TD

positive is not enough if R′
L is more positive.

This discussion of modes 1–3 can be summarised as follows. During various long-lived

stages of a star’s life (e.g. MS, RG, WD) there is a parameter R′
TE that measures the (logar-

ithmic) sensitivity of the radius to the mass when the mass is thought of as varying slowly

compared with the thermal timescale but rapidly compared with the evolutionary timescale.

There is also a parameter R′
TD which measures the sensitivity of radius to mass when mass is

added (or subtracted) rapidly, on or about the thermal timescale. From R′
TE we get a critical
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mass ratio qcr(R′
TE) by solving for q the Roche-lobe radius relations (3.5), (3.13) and (3.17):

R′
TE = R′

L(qcr) ≈ 2.13qcr − 1.67. (3.83)

Similarly we get a qcr(R′
TD) from R′

TD. Then the mass ratio qb at the beginning of Roche-lobe

overflow determines the initial mode of mass transfer thus:

mode 1 – if qb < qcr(R′
TE) , qcr(R′

TD)

mode 2 – if qcr(R′
TE) < qb < qcr(R′

TD)

mode 3 – if qb > qcr(R′
TD).

If mode 2 is what is indicated, it continues until a transition mass ratio qt , say, is reached,

and then settles into mode 1. A rough estimate of qt , based on the approximate symmetry

of the Roche-lobe-radius curve and the thermal-equilibrium-radius curve about the point

q = qcr(R′
TE) where they have the same gradient, is

qt ∼ q2
cr/qb. (3.84)

For the upper ZAMS, where R′
TE ∼ 0.5 and so qcr ∼ 1, this means that the mass ratio is

approximately reversed (qt ∼ 1/qb), but for terminal-MS and post-MS stars we usually find

R′
TE ∼ 0 to −0.33, so that qcr ∼ 0.8 to 0.65. The mass ratio therefore is substantially more-

than-reversed before mode 2 gives way to mode 1.

However, these conditions are based on the assumption that RLOF, at least at its onset (i.e.

before it becomes rapid, if that is what is indicated), is approximately conservative of both

mass and angular momentum. In fact some angular momentum can be transferred from orbit

to stellar spin, and so in effect ‘lost’: the Roche lobe will shrink faster for a given amount

of mass transferred, making the process more unstable. This is a modest correction if qb is

not large. At a rather extreme mass ratio (qb >∼ 12), however, it is possible for the loser’s

spin angular momentum to be comparable to that of the orbit. We must expect the Darwin

instability (Section 5.1), in which the orbit may rapidly shrink and ∗2 crashes into ∗1.

It might be supposed that qb will always be greater than unity, since the more massive

star initially is always the one to fill its Roche lobe first. However, mass loss by stellar wind,

accelerated by rotation, may cause ∗1 to lose significant mass, i.e. on a nuclear timescale,

before ∗1 fills its lobe (Sections 4.4–6), so that it is not impossible that a convective loser will

experience relatively mild mode 1 RLOF. I will argue in later chapters that some observed

systems support this possibility.

3.3.4 Effect of RLOF on the gainer
Figure 3.4 did not include the behaviour of the gainer, which I will now discuss.

As a first approximation, we can expect that the response of a star to the gain of mass is the

inverse of its response to loss: a star with a predominantly radiative envelope expands, while

one with a predominantly convective envelope contracts. However, the situation is not quite

symmetrical. Material leaving the surface of the loser can reasonably be assumed to have

little velocity, and the same temperature and density as the photosphere, but material added

to the gainer will have different kinetic and thermal energy from the gainer’s surface, so that

some extra energy (positive or negative) may have to be allowed for.

The main point to note at present is that the gainer may well swell up in response to accre-

tion, and in fairly close binaries this can easily lead it to fill its own Roche lobe (Yungelson

1973, Webbink 1976). This is all the more likely because the thermal timescale of the gainer,
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Figure 3.7 Schematic behaviour of radius and mass for both loser and gainer, in situations
(a) where the gainer does not expand to fill its own lobe, and (b) where it does. Curve (i) –
ZAMS; curve (ii) – Roche-lobe radius; curve (iii) – thermal-equilibrium radius. Primed
letters indicated ∗2’s position corresponding to the unprimed letter for ∗1. In (a), after
Pennington (1986), the transition from mode 2 to mode 1 was interrupted at point C by a
brief detached phase (see text). In (b), after Robertson and Eggleton (1977), evolution
beyond contact was followed using a prescription like Eqs (3.85) and (3.86).

which is normally the less massive and luminous component at the beginning of Roche-lobe

overflow, will be substantially longer than for the loser. Thus supposing that both components

have radiative envelopes, the gainer’s increase in radius in response to a given |Ṁ | will be

proportionately larger than the loser’s decrease. The situation is illustrated in Fig. 3.7, where

the left-hand panel shows a situation in which contact was avoided and the right-hand panel

shows contact being reached.

Contact can be avoided with some choices of initial mass ratios and periods (Section 3.5).

In Fig. 3.7a, ∗1 starts at A and evolves with no loss of mass to point B, at which it fills its

Roche lobe. Curve (iii) is the path along which ∗1 would evolve if it lost mass but somehow

remained in thermal equilibrium. This line is no longer parallel to the ZAMS, curve (i),

but instead, if continued indefinitely to higher masses, would approach (i) asymptotically.

In effect, ∗1 has a core of given mass, developed during the phase AB. The effect of this

core diminishes if the envelope becomes more and more massive, but makes the structure

rather red-giant-like as the envelope decreases so that the radius increases relative to the

ZAMS radius. If the core is substantial enough the radius might even increase absolutely
as the envelope loses mass, although the situation in Fig. 3.7a is not envisaged as quite that

extreme.

However, as indicated in the previous section, the star does not in fact follow curve (iii),

because this requires a large degree of overfill and, therefore, rapid mass loss. When mass

loss reaches the thermal timescale the envelope shrinks below curve (iii), and instead follows

curve (ii), the Roche-lobe curve. Strictly speaking, the path lies very slightly above curve

(ii). This continues until curves (ii) and (iii) intersect again, at which point it is possible for

the star to return to thermal equilibrium. Ignoring for the moment the small spur at C, ∗1 can

now continue to lose mass on a nuclear timescale. It grows absolutely because of nuclear
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evolution, trying to become a red giant as it would if it were single; but it continues to lose

mass because it is trying to get above curve (ii).

As the core grows and the envelope decreases in mass, but still increases in radius, we

reach a point where there is hardly any envelope left (point D), and then the envelope shrinks

abruptly – much as a single star climbs the giant branch but then abruptly turns towards the

white-dwarf region as it runs out of envelope. Then ∗1 follows the path DE. Realistically,

this may be terminated by the ignition of helium at point E, and the star may settle as a small

He main-sequence star (Section 2.5). There will in fact be further evolution beyond this, but

we ignore it for the time being.

During the AB phase, ∗2 also evolves, but more slowly and therefore by a smaller amount

from A′ to B′. Curve (iii)′ is analogous to curve (iii), approaching (i) asymptotically if

continued to high enough mass. But now ∗2 is swollen by accretion on a thermal timescale,

and follows the dotted curve B′C′. This can approach curve (ii) very closely (and in Fig. 3.7b

actually reaches it). But as ∗1 returns towards thermal equilibrium so does ∗2. Ignoring once

again the spur at C and C′, ∗2’s further evolution is on a nuclear timescale, but is now quite

rapid since ∗2 is substantially more massive than ∗1 was originally. It therefore traces C′D′

while ∗1 traces CD. Once ∗1 shrinks away from its Roche lobe at D, ∗2 evolves upwards

rather rapidly (D′E′).
The spur at C during which the binary returns to being detached sometimes occurs, for

one of two reasons. Firstly, ∗1 may exhaust hydrogen in its core. If single, it could shrink

temporarily as is normal at the end of the main sequence (Fig. 2.1), leading to a short, detached

phase. Secondly, it may happen as the star approaches thermal equilibrium, because the centre

of the star and its envelope respond not only at different rates but also in different directions.

The core, being convective, may actually expand while the envelope shrinks, and when the

mass loss slows down first the envelope expands rapidly back to thermal equilibrium and

then the core contracts less rapidly back to thermal equilibrium. This last phase may cause

temporary detachment from the lobe, as at C, with a small corresponding spur in ∗2’s evolution

at C′.
There are two places in the evolution of Fig. 3.7a where, with slightly different parameters,

contact might be reached. One is on the stretch B′C′, and the other on the stretch C′D′. The

first possibility is shown in Fig. 3.7b. I have not illustrated the second, but it is easy to see

that if C′D′ in Fig. 3.7a slopes up more steeply, and extends further, it may reach curve (ii)

before ∗1 becomes detached at D.

In Fig. 3.7b, contact occurs at points C and C′. For the present, it is not at all clear what

the outcome should be, although in the calculation on which Fig. 3.7b is based a particular

model for mass and energy transport was used, which predicted that the contact would become

deeper, temporarily, but that the direction of mass transfer would reverse. I discuss various

evolutionary possibilities in Section 3.4. But there certainly exist binaries with ‘contact’

geometry (Fig. 3.1b), and in sufficient numbers that it is unlikely that they are all evolving

on a thermal timescale (unless the evolution is somehow cyclic). Thus some consideration

of how stars evolve once contact is established has to be undertaken (Section 3.3.5).

In binaries that are not particularly close, where ∗1 has to expand to well beyond its MS

radius before filling its Roche lobe, ∗2 will usually be much smaller than its own Roche

lobe. Then material falling into ∗2’s lobe can be sufficiently deflected by the Coriolis force

that, instead of impacting nearly directly on to ∗2 (as implied in Fig. 3.1c), it settles into

a ring around ∗2. In the absence of a dissipative agency such as viscosity, this ring would
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simply accumulate all the transferred mass. But dissipation can, at least in principle, lead to

something like a steady state, with gas flowing from L1 to the outer edge of a disc around ∗2,

working its way through the disc, and finally flowing from the inner edge of the disc through

some boundary layer on to the surface of ∗2. Provided that ∗1 loses mass in modes 1 or 2

(but not the very rapid mode 3), and that all or at least most of the mass lost by ∗1 is gained

by ∗2, the behaviour of the gainer may still be more-or-less the inverse of the behaviour of

the loser. But it becomes more likely, of course, that contact will be avoided, the larger is the

lobe around ∗2 relative to the unperturbed radius of ∗2.

In some observed systems the gainer is a strongly magnetic star, and in that case the

accretion flow may be dominated by magnetic forces, rather than by viscosity. Magnetically

dominated accretion appears to be in the form of a stream of gas down the magnetic field

lines on to a magnetic polar cap. This may still, however, have the net result that most or all

of the material lost by ∗1 is accreted by ∗2. In Chapter 6 we discuss further the viscous and

magnetic accretion processes.

I will discuss later some computational results obtained by converting the single-star evol-

ution code of Appendix A into a ‘conservative’ binary-star code. At a first level of approx-

imation this is very easily done. Firstly, ∗1 is evolved with the boundary condition (3.70)

instead of the usual condition M1 = constant. The only information about ∗2 that is needed

during this calculation is its mass, and that is known from the conservative hypothesis. This

evolution gives the mass-loss history M1(t), among other things. Subsequently, ∗2 is evolved

with the boundary condition that its mass at time t is M − M1(t), M being the constant

total mass. This procedure generally works well, until either (a) ∗2 evolves to fill its own

Roche lobe, or (b) ∗1 or ∗2 goes supernova. In principle, if (a) happens, we might follow the

reverse RLOF by reversing the above procedure, but in practice, either (a1) ∗1 is still filling

its lobe, so that we have a contact system, with the possibility of luminosity transfer – see

next section – or (a2) the mass ratio is very extreme at this point because of previous mass

transfer, and so dynamical-timescale reverse mass transfer is expected. A simple hydrostatic

code will not do: see Section 5.2.

The above procedure can in fact be generalised to include some non-conservative processes,

at least at a simplistic level. However, throughout much of this book we are seeking to learn

about non-conservative processes by comparing observed stars with conservative expecta-

tions. Unfortunately there are sufficiently many unknown factors in most non-conservative

models that it is difficult to constrain them by computer models. Common sense is probably

more helpful at present.

Three effects of accretion on the gainer which we have not discussed at any length are

(a) the fact that material about to be accreted has a different temperature and density

from the material on the surface of the gainer

(b) the accreted material may also have a different composition, if the gainer has been

stripped down as far as its core

(c) the accreted material may also have a different angular momentum, especially if it has

passed through an accretion disc instead of travelling by a fairly direct trajectory from

the L1 point.

It is somewhat difficult to come up with an unequivocal model of the first process, but one

could add some ad hoc term to the energy equation of the gainer in the photospheric layer.

The second process is likely to lead to mixing in the surface layers, because the newly added
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material will usually have a higher molecular weight than the average in the outer layers.

This will lead to Rayleigh–Taylor instability; but mixing with the deeper layers will rapidly

dilute the adverse molecular weight gradient so that it is unlikely to have a major effect.

The third process can probably be modelled fairly easily, provided that one’s stellar models

incorporate a model for the rate of rotation of the star. One would of course have to incor-

porate several other processes that should influence the distribution of angular momentum

in a star: tidal friction, for example, and magnetic fields. The last is likely to be the most

problematic. I will adhere in this book to the argument by Spruit (1998) that even a very weak

magnetic field is likely to enforce a fairly uniform angular velocity, at least in layers stable to

convection.

3.4 Evolution in contact
Figure 3.7b illustrated a situation where ∗2 expanded to fill its own Roche lobe (at

point C′) shortly after ∗1 had begun RLOF at point B. This is a rather common situation,

particularly for short-period binaries with markedly unequal initial masses. The result will

be a ‘contact binary’. I have also mentioned that contact may alternatively be reached on the

stretch C′D′ in Fig. 3.7a, supposing the parameters are slightly different. In either case we

expect a contact binary to be formed, but in the first case it is likely that contact is reached at

a quite early stage of evolution, with little prior exchange of mass, while in the second case

it happens quite late in evolution (though still usually within the main-sequence band) and

after considerable exchange of mass.

When both stars overfill their Roche lobes simultaneously, i.e. are in contact, it is evident

that not only can mass flow in either direction (in principle, at least) between them, but also

that energy can flow between the components, even without a net flow of mass. Furthermore,

although we leave most of our discussion of observational material till later (Section 5.3),

observation appears to be telling us quite unequivocally that heat is somehow being trans-

ported between the components, leading to surface temperatures that are equal to within two

or three per cent even when the masses, in some cases, are different by as much as a factor

of ten.

Briefly, the salient observational facts that a theoretical model has to explain are:

(a) Contact systems are quite common, and rather stable in the sense that the orbital periods

do not change significantly on timescales less than ∼1 megayear. Recall (Section 1.2) that

we do not have to wait a megayear to determine a rate of period change on this timescale.

Thus mass transfer has to be slow: possibly on a thermal timescale but certainly not on

a dynamical timescale.

(b) Periods, and the masses, radii and luminosities of the more massive component, are

roughly consistent with a main-sequence structure.

(c) Mass ratios are typically >∼2, and can be as extreme as 10 or more. This is very differ-

ent from short-period detached binaries (Section 1.5.4), where even after allowing for

selection effects, which favour near-equal masses, mass ratios <∼ 2 preponderate.

(d) The temperatures of the two components differ typically by <∼ 2–3%, so that the lower-

mass component is considerably overluminous for its mass. This suggests that a sub-

stantial fraction of the luminosity of the more massive component is being transferred,

presumably within the contact envelope, and radiated from the surface of the less massive

component.
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A mathematical prescription for the rates of mass and heat flow is required in order to have

a closed set of equations capable of solution. No such prescription has been widely accepted,

but most attempts rely on the concept that mass and energy flow will be related to (a) the

difference in surface Roche potential and (b) the difference in temperature or entropy or

enthalpy between the surface layers of the two components. Guided mainly by dimensional

arguments, and an attempt to generalise Eq. (3.70), we might try to approximate both Ṁ and

�L as functions of the mass coordinate m as it varies through the outer (contact envelope)

layers:

dṀ

dm
= ±v

r
, v2 ∼ 2|φs2 − φs1|, (3.85)

d�L

dm
= λ(m) (h2 − h1), (3.86)

with an inner boundary condition that both are zero on (as well as below) the L1 surface. The

φs are the surface potentials of the two stars, the h are the enthalpies. The relative thickness

of the contact envelope appears to be typically ∼2% in radius, or ∼10−5 in mass. Both Ṁ
and �L will have opposite signs in ∗2 and ∗1. The velocity v is from analogy with Eq. (3.69)

for Bernoulli flow, but with a sign determined presumably by which surface potential is the

higher; r is some mean radius, the same for both components. The coefficient v/r , dimensions

(time)−1, must be quite small, since the orbital period, and so the stellar masses, do not change

appreciably on timescales of less than ∼1 megayear. This suggests that v/r <∼ 10−6 s−1. In

the heat-transfer equation we suggest that the heat flux is proportional to the difference in

enthalpies h; the factor λ, also with dimensions (time)−1, might also be of order v/r , but we

believe that a model which gives as much heat transfer as observation suggests, combined

with the rather small difference in temperatures observed, would need a considerably larger

value of λ, say 10−4 s−1.

One way to achieve a higher value of λ than of v/r is to postulate a closed circulation

pattern in the outer layers, so that λ has one sign deep in the contact envelope and the opposite

sign further up. But attempts to achieve this tend to fall short of the amount of heat transfer

that seems to be required by observation.

One possible model that has not yet been considered in detail is that the main agency

for transferring heat is differential rotation, of the same character that is observed in the

equatorial region of the Sun’s convective envelope (Section 2.2.4). We have already noted

that the origin of this differential rotation is by no means clear, although it is difficult

to see what else it can be, other than the interaction of the Coriolis force with turbu-

lent convection. But it is clear that the equatorial region of the Sun is travelling about

10% faster than the main body. If such a flow with the same relative difference were

travelling round the entire envelope of a contact binary, with an orbital period 100 times

shorter than the Sun’s rotation period, it might just be capable of transferring the amount of

energy required. The parameter λ in this case would be ∼��. It is to be hoped that three-

dimensional simulations, such as are just becoming feasible, might cast light on this or other

possibilities.

It seems likely that Eqs (3.85) and (3.86), whatever values within reason are assigned

to v/r and λ, usually provide some degree of negative feedback, as does Eq. (3.70) for

a semidetached system, so that φs1 ≈ φs2 and h1 ≈ h2. However, although Eq. (3.70) will

clearly give negative feedback in the semidetached evolution of, for instance, mode 2 of
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Fig. 3.4 (and positive feedback in mode 3), it is by no means clear what circumstances, if any,

would do the same in contact evolution. Consequently we will confine ourselves throughout

the later chapters to two very basic types of binary evolution in contact, viz:

(a) mass flows from ∗1 to ∗2 : forward mass transfer in contact (mode CF)

(b) mass flows from ∗2 to ∗1 : reverse mass transfer in contact (mode CR).

The letter C in CF distinguishes contact mass transfer from semidetached RLOF, which can

also be forward or reverse: modes SF and SR. But whereas in the semidetached case it will

be obvious which of ∗1 and ∗2 is the loser, it is by no means obvious in the contact case

and we will hve to rely on a posteriori arguments rather than a priori arguments. Note that

we return here to our more general definition of ∗1 as the component that was initially more

massive (Section 1.4). In the present chapter, up to this point, ∗1 has meant the star that is

under discussion, usually the star that is filling, or about to fill, its Roche lobe.

We can further qualify the mode of mass transfer, in contact as well as semidetached

geometry, by the numbers 1–3, representing successively faster timescales. However, for

the contact modes the rate as well as the direction is more a matter of speculation than of

calculation. We hope that in the not too distant future it will be possible to model binary stars

in a fully three-dimensional way, including both the thermodynamics and the hydrodynamics,

and this should lead to a clarification of the direction and rate of mass transfer in contact

geometry. Whatever the mass flow, we assume here that the heat flow will be whatever is

required to almost equalise the two surface temperatures.

We believe it is likely that, as in Fig. 3.7b, if a system evolves rapidly to contact its direction

of mass transfer will reverse. However, if it does then the binary will widen, which should

lead quickly to the breaking of contact. We can expect a cyclic behaviour, ‘thermal relaxation

oscillations’ or TROs: a limit cycle about an unstable equilibrium in which the system is

slightly in contact and transferring less luminosity than would be enough to equalise the

temperatures as observed. This unstable equilibrium will itself evolve slowly, in response to

nuclear evolution or (more probably) magnetic braking – Section 4.5 – moving presumably

towards more unequal masses since very few contact systems are known with nearly equal

masses and very many are known with strongly unequal masses.

In some circumstances there is the possibility that after two stars come into contact they

will merge into a single star. If after contact is reached rapidly, as in Fig. 3.7b, the direction

of mass transfer reverses while the rate decreases to a low value (mode SF2 → mode CR1),

we would have a possible explanation for the facts (a) and (c) above. Continuation of this

evolution will obviously lead to an end-point where ∗2 is entirely entirely eaten up by ∗1.

Many binaries of short period can be expected to evolve into contact; in fact if RLOF

begins while ∗1 is still in the main sequence band (case A) there is only a small region in the

space of initial period and initial mass ratio where it does not happen. It is very unfortunate

that evolution during this important phase is poorly understood. Those systems that do avoid

contact will normally evolve through a semidetached forward phase (mode SF2 → mode SF1)

until at a late stage ∗2 expands to fill its Roche lobe and initiate reverse mass transfer, which

is probably mode SR3 because the mass ratio is typically quite extreme at this stage.

How contact binaries evolve is one of the most important unsolved problems of stellar

astrophysics. That it is not yet solved may be a consequence largely of the numerical difficulty

of implementing physical models in computer codes, but is also because of the difficulty in

understanding what physical processes are most important.
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Table 3.5. Abbreviations for evolutionary states

Evolutionary state Sub-type

P pre-main-sequence T T T Tau

Be/Ae Herbig emission-line stars

B D Brown dwarf ∼0.01–0.08 M�
J M P Jupiter-mass planet <∼0.01 M�

M main sequence U M S Upper main sequence >∼8 M�
I M S Intermediate main sequence ∼2–8 M�
L M S Lower main sequence ∼0.08–2 M�

H Hertzsprung gap H G He not yet ignited; star expanding on thermal timescale

C HeB Core He-burning

H B Horizontal branch

BL Blue loop

δC Cepheid

G K GC G/K-giant clump: core He-burning, shallow convective

envelope

post-AG B post-asymptotic-giant-branch

G red giant FG B First giant branch: non-burning He core, deep convective

envelope

S red supergiant G K GC G/K-giant clump: core He-burning, deep convective

envelope

AG B Asymptotic giant branch

T P-AG B Thermally-pulsating AGB

T Z O Thorne–Żytkow object, red supergiant with NS/BH core

R hot remnant W R Wolf–Rayet (WN, WC, WO)

U HeM S Upper He main sequence (M >∼ 1.4 M�)

C hot core SDB pre-He-WD

SDO pre-C/O-WD

P N N Planetary nebula nucleus

E He-burning star L HeM S Lower He main sequence (M <∼ 1.4 M�)

E H B Extreme horizontal branch

SDO B Sub-dwarf OB

SDB Possibly the same as E H B or SDO B
W white dwarf HeW D He white dwarf

C OW D C/O white dwarf

NeW D Ne white dwarf

N neutron star N S normally-rotating neutron star

X R P X-Ray pulsar

M S P Millisecond pulsar; rapidly-rotating neutron star

B black hole B H Black hole

3.5 Evolutionary routes
I will summarise this chapter using a compact notation defined in Tables 3.5–3.7.

I define eleven broad evolutionary states for each component, and four geometrical states

for a pair of components. Thus M M D means a basic binary where each component is on the

main sequence and the system is detached; G M S means an Algol-like system where ∗1 is a

red giant, ∗2 is still on the main sequence, and the system is semidetached. The evolution of
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Table 3.6. Abbreviations for geometrical states

Type Sub-type Geometrical state

D Detached; circular orbit; at least one star not much smaller than Roche lobe

S SF, SR Semidetached; mass transfer in forward (∗1 → ∗2) or reverse (∗2 → ∗1)

direction

C
E

CF, CR Contact, both stars exceed Roche radii; forward or reverse; includes common

envelope detached in eccentric orbit; typically wider than D, but we do not

always discriminate

Table 3.7. Some major modes of evolution

0 – NE – Nuclear evolution

1 – F1, R1 – RLOF: mass transfer, forward (F) or reverse (R), slow (Nuclear or MB) timescale;

Section 3.3

2 – F2, R2 – RLOF: ditto, fast (thermal) timescale; Section 3.3

3 – F3, R3 – RLOF: ditto, very fast (dynamical) timescale; Section 3.3

All six modes above apply to semidetached evolution (SF, SR) and also to evolution in contact

(CF, CR).

The following modes are non-conservative: see later

4 – GR – gravitational radiation; Section 4.1

5 – TF – tidal friction; Section 4.2

6 – NW, PC, SW – normal (single-star) wind; Sections 2.4, 4.3: copious subtypes P Cyg,

superwind

7 – MB – orbital angular momentum loss by stellar wind, magnetic braking and tidal friction;

Section 4.5

8 – PA – partial accretion from stellar wind; Sections 4.3, 6.4

9 – EW – companion-enhanced stellar wind; Section 4.6

10 – BP – bi-polar re-emission; Section 4.7

11 – TB – influence of a third body; Section 4.8

12 – DI – tidal friction with Darwin instability; Section 5.1

13 – CE – common envelope evolution with spiral-in; Section 5.2

14 – EJ – rapid envelope ejection, common envelope without spiral-in; Section 5.2

15 – SN – supernova explosion; Section 5.3

16 – DE – dynamical encounters in dense clusters; Section 5.4

17 – IR – irradiation of the loser by accretion luminosity from the gainer; Section 6.2

We sometimes use 1, 2, 3 to qualify Modes GR–DE, indicating roughly the timescale, e.g. TF1,

PC2, CE3.

a system can be written as something resembling a Markov chain:

M M D → M M S → H M S → G M S → SM S → E M D → E H D → EG D → EGS R → . . . (3.87)

The extra R in the last step emphasises reverse RLOF; I might have said M M SF at an earlier

step, to emphasise forward RLOF, but I take that as the default option. The above route

may be roughly appropriate to initial parameters (4 + 3 M�, 2.5 days). The route is still far

from complete, but what follows from the EGS R state probably involves non-conservative

evolution, as discussed in the next three chapters.
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Table 3.7 lists a number of modes of evolution, of which only the first three are actually

conservative; the others will be discussed in more detail later. In our notation we sometimes

append these to states such as G M S. For example, G M S; N E, M B is an Algol in which it is

claimed that magnetic braking (mode MB) is about as significant in modifying the binary as

nuclear evolution (mode NE).

For case A, experience (Nelson and Eggleton 2001) suggests at least eight fairly distinct

routes, depending on starting parameters. We call them sub-cases AD, AR, AS, AN, AB, AG,

AE and AL. We shall have to add some non-conservative sub-cases later. Their definitions

are as follows, where X is the ratio of the initial orbital period to the period such that ∗1

would exactly fill its Roche lobe while on the ZAMS:

(AD) ‘dynamic RLOF’: when ∗1 is low on the main sequence and so possesses a largely

convective envelope, or when the mass ratio is fairly extreme, we can expect ∗1

virtually to explode very shortly after it overfills its Roche lobe, and engulf ∗2 – route

(3.88).

(AR) ‘rapid to contact’: the stars come into contact very rapidly, before much mass is

exchanged. This happens when q0 is roughly in excess of 1.5 to 2 but not large enough

for case AD. It also depends on X and can happen at low q0, q0 ∼ 1–1.5, if X <∼ 1.2.

We anticipate thermal relaxation oscillations, Section 3.4 – route (3.89).

(AS) ‘slow to contact’: the stars come into contact slowly, on a nuclear timescale, after

a considerable exchange of mass. This happens for q0 between 1 and ∼1.5, and for

X ∼ 1.2–2 – route (3.90).

(AN) ‘normal’:∗2 never fills its Roche lobe, at least until∗1 has reached a long-lived com-

pact remnant, white dwarf, neutron star or black hole. This can happen for q0
<∼ 1.5–2,

and X ∼ 2–4 – route (3.91).

(AB): in a limited range of M1, ∼5–12 M�, ∗1 has two distinct episodes of RLOF. The

first leaves a helium-burning core of 0.8–2 M�, but this is able to expand back to

supergiant size (Fig. 2.18) and lose further mass, ending as either a C/O white dwarf

or a supernova and neutron star – route (3.92).

Note that in AR and AS ‘rapid’ and ‘slow’ refer to the evolution, before contact, and not

necessarily to evolution during contact. It is not clear how fast is evolution in contact, but it

can hardly be a great deal faster than mode NE or we would not see many such systems.

Sandwiched between cases AS and AN are three further alternatives:

(AG) ‘(sub)giant contact’: for low-mass stars, it is possible for one or both components

to develop a deep convective envelope before coming into contact; ∗1 or ∗2 may still

be a main-sequence star in terms of central hydrogen – route (3.93).

(AE) ‘early overtaking’: ∗2 gains so much mass that its evolution is accelerated beyond

that of ∗1. It may reach the Hertzsprung gap first, and evolve into contact fairly soon

afterwards, perhaps after ‘reverse’ mass transfer, with ∗1 shrunk temporarily inside

its lobe and ∗2 filling its lobe – route (3.94).

(AL) ‘late overtaking’: ∗2 gains enough mass to catch up with and overtake ∗1, before ∗1

becomes a compact remnant, but after it has detached from its Roche lobe; for example,

when it is a helium-burning star. For massive stars, it may be ∗2 that supernovas first

(Pols 1992), in a rather limited range of initial conditions, because the helium core in

∗2 is much more massive than the helium-star remnant of ∗1, and so evolves much

faster – route (3.95).
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These three options, along with sub-case AS, are consequences of the fact that if ∗1 loses

mass while it is still on the main sequence its evolution can be substantially slowed down,

while the evolution of ∗2 subject to mass gain can be substantially speeded up. But the nearer

∗1 is to the TMS when it begins RLOF, i.e. the larger X is, the harder it is for ∗2 to catch up,

let alone overtake.

Within the framework of conservative RLOF, the number of case B options is probably

smaller than for case A. This is because the evolution of ∗1 speeds up considerably after

the TMS, and so even if ∗2 gains considerable mass it is less likely to catch up with or

overtake ∗1. We can however identify the following sub-cases: BN, BL, BB, BR and BD.

These are analogous to sub-cases AN, AL, AB, AR and AD. For case C, there is, in principle,

only one conservative option, sub-case CD, since in the conservative paradigm ∗1 would

expand, not contract, on the onset of RLOF, and the rate of mass transfer would rapidly

become catastrophic. It is something of a strain to call this, and also sub-cases AD and BD,

conservative, because they can be expected to evolve very rapidly into a situation (‘common

envelope’ evolution, Section 5.2) where conservative assumptions are no longer realistic.

In our concise notation, the case A options are

AD: M M D → M M S; F3 → M MC → (M MC ; C E → M → H → G → . . . → W ) (3.88)

AR: M M D → M M S; F2 → M MC → (M MC ; R2 ↔ M M S; F2 → H M S; F2 ↔

↔ H MC ; R2 → H MC ; DI → H MC ; C E → H → G → ... → W ) (3.89)

AS: M M D → M M S; F2 → M M S; F1 → M MC → (M MC ; F1 → M HC ; F2 →

→ M HC ; F1 → M HC ; DI → M HC ; C E → H → G → ... → W ) (3.90)

AN: M M D → M M S; F2 → M M S; F1 → M M D → H M D → H M S; F2 → H M D →

→ RM D → RM D; SN → (N M E → N H E ; T F → N H D →

→ N H D; DI → N HC ; C E → N R D → N RD; SN → N N E) (3.91)

AB: M M D → M M S; F2 → M M S; F1 → M M D → H M D → H M S; F2 → H M D →

→ E M D → H M D → SM S; F1 → H M D → C M D → W M D →

→ W H D → (W H S; R3 → W HC ; C E → W RD → W RD; SN → W N E) (3.92)

AG: M M D → M M S; F1 → G M S; F1 → GGS; F1 → GGC → (G → . . . → W ) (3.93)

AE: M M D → M M S; F2 → M M S; F1 → M H S; F1 → M HC → (3.94)

→ (M HC ; F2 → H → . . . → N )

AL: M M D → M M S; F2 → M M D → M M S; F1 → M M D → H M D → H M S; F2 →

→ H M D → RM D → R H D → R H S; R3 → (RHC ; C E → RH D →

→ R R D → R R D; SN → RN E → RN E ; SN → N N E) (3.95)

Portions of these routes in parentheses are speculative concluding stages, often involving

non-conservative modes to be discussed later (but defined briefly in Table 3.7). The earlier

portions are drawn from computed conservative models. These models were computed until

either (a) ∗2 reached (reverse) RLOF – which often happened while ∗1 still filled its own
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Roche lobe, so that the two stars came into contact – or (b) ∗1 reached an immediately

pre-supernova state, defined as carbon burning reaching 100 L�.

There is a presumption in routes AN and AL as described above that ∗1 is massive enough

to explode and leave a neutron star (and not to disrupt the binary – see Section 5.3). Lower

mass systems would tend to have evolutionary states E,W instead of R,N , but are otherwise

fairly similar. In fact there are ranges of M10 and q0 where the the final products might be

two white dwarfs, two neutron stars, or one of each (with the neutron star descended from

either ∗1 or ∗2). We continue to use cases AN and AL to describe these lower-mass variants.

We also do not discriminate between neutron stars and black holes, for the moment.

In addition to such variants, there are also minor variations to be found if we compute a

large number of conservative models. Occasionally there is a detached portion of evolution

interrupting a semidetached stage: M M S; F1 → M M D → M M S; F1. Among about 50 computed

pairs with a range of masses and periods, at least 25 tracks were found that could be dis-

tinguished in minor ways, but only the above eight seemed importantly different. Of these

eight, only three seem reliably to avoid ending up as a merged single star (AN, AB, AL),

although it must be borne in mind that the progress within parentheses above is very tentative.

The reason for these several possibilities AD–AL is partly the acceleration of ∗2’s evol-

ution by its accretion from ∗1, along with the deceleration of ∗1’s evolution, and partly the

possibility of a wide range of initial mass ratios. If q0 is larger than ∼2, not only is the

evolution rapid (thermal) because of the initially decreasing Roche lobe around ∗1, but there

is also the possibility that as ∗2 becomes less luminous and cooler because of thermal RLOF

its surface develops a deep convection zone which can then result in even faster (dynamic)

RLOF.

Figure 3.8 shows, on the basis of several computed evolutionary runs, the expected sub-case

as a function of initial parameters. The initial period is implied by X : X = 3, for instance,

means that the initial period was three times longer than the period at which the system would

have experienced RLOF at zero age. Conservative evolution implies some constraints on the

current mass ratio as a function of X . For example, systems which evolve by case AS usually

reach contact before q is reduced below ∼0.35; and thus a system with a current q < 0.3,

say, cannot be case AS, even though its X might lie in the right range in Fig. 3.8. If a system

is found that appears to violate this, we would look for some non-conservative process that

might explain it.

Of course Fig. 3.8 ought really to be three-dimensional, since all three initial parameters

M10, q0 and X0 influence the outcome. I have illustrated the entire space with only two

two-dimensional cuts through it.

I will have occasion later to introduce four non-conservative sub-cases: AA, AM, AW and

AU. The first involves substantial angular momentum loss and the second substantial mass

loss, as a result of rotation-enhanced dynamo activity on the lower main sequence. The last

two involve substantial mass loss in massive OB stars. I will also have to introduce some

non-conservative analogues in case B (BA, BW and BU) and in case C (CW and CU).

Table 3.8 collates data for a number of systems that might be supposed a priori to fit

within case A. The two quantities X and Y (columns 9 and 10) are intended to help with

classification. For interacting, or by hypothesis formerly interacting, binaries, X is the ratio

of the present period of the system to the period that the system would have had initially, if

(a) it has evolved conservatively, (b) the initial mass ratio was q0 = 4/3, and (c) ∗1 just filled

its Roche lobe on the ZAMS. The reference value q0 is an arbitrary choice, but in fact X is
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Figure 3.8 (a) Schematic division of the X versus q0 plane, for fixed initial M10 (16 M�). X
is the ratio of the period to the period PZAMS at which ∗1 would fill its Roche lobe on the
ZAMS, and q0 is the initial mass ratio. X ∼ 1–4 for case A RLOF. Regions are shown in
which the sub-cases AD–AN, routes (3.88)–(3.94), can be expected to take place; see text.
The location of these boundaries is only qualitative. They depend quite strongly on M10.
Contact is likely to be avoided only in the regions AL, AN. Adapted from Pols (1994).
(b) Schematic division of the X versus M10 plane, for fixed q0 (1.33). AD – dynamic RLOF;
AR – rapid to contact; AS – slow to contact; AE and AG – early catch-up; AL – late
catch-up; AN – normal, no catch-up. Panels (a) and (b) intersect roughly along the dotted
line; but both figures are only qualitative.

not very sensitive to q0 provided 1 < q0 < 1.5. For detached binaries X is just the ratio of

present period to the period where ∗1 would fill its Roche lobe at the ZAMS. Y is the ratio

of the radius of ∗2 to the radius of a ZAMS star of the same mass. Both X and Y ought to be

greater than unity, and for case A evolution X ought to be less than ∼4.

Among the more massive systems in the upper part of Table 3.8, it is possible to assign

plausible sub-cases to the majority (column 11). Table 3.9 shows the result of a least-squares

fit for five of these ‘hot Algols’ to the grid of theoretical models by Nelson and Eggleton

(2001). For those systems without an assignment in Table 3.8, I have the following comments:

LY Aur: X is too large for case AS, and yet ∗2 is so large that it is almost in contact

(or perhaps has already reached it). As a long shot, I suggest that the components are

non-coeval, and ended up in the same binary because of dynamical interaction in a

young, dense cluster. Such a model is fairly convincing for ι Ori, Section 5.4.

λ Tau, DM Per: q is too small for case AS, and more appropriate to cases AL or AN;

yet X is too small for cases AL or AN, and more appropriate to case AS. I suspect

that in both examples the influence of an unusually close third body is significant; the

periods are 33 days and 100 days. The close third body may have removed a modest

amount of angular momentum from the inner orbit (Section 4.8), so that the initial X
was large enough for case AL.

AF Gem–HU Tau: the same problem as with λ Tau and DM Per. But here it might

be magnetic braking, in cool systems with G-type components and relatively deep

convective envelopes, that has removed a modest fraction of the original angular

momentum (Section 4.5).
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Table 3.9. Best-fit conservative models for five hot algols

Name/age/χ2 log P log M1 log q log T1 log T2 log R1 log R2 log L1 log L2

V Pup 0.163 0.954 −0.277 4.360 4.420 0.724 0.799 3.850 4.200

10 megayears 0.185 0.927 −0.223 4.345 4.451 0.724 0.793 3.784 4.344

1.311 0.117 1.100 0.100 4.444 4.395 0.668 0.610 4.065 3.755

TT Aur 0.124 0.732 −0.175 4.255 4.395 0.623 0.591 3.210 3.710

16 megayears 0.149 0.769 −0.201 4.242 2.384 0.650 0.615 3.220 3.720

1.775 0.119 0.950 0.150 4.369 4.287 0.581 0.493 3.593 3.088

u Her 0.312 0.462 −0.409 4.064 4.300 0.643 0.763 2.490 3.680

64 megayears 0.330 0.497 −0.386 4.054 4.286 0.673 0.757 2.516 3.612

0.949 0.120 0.800 0.150 4.287 4.200 0.493 0.402 3.088 2.554

Z Vul 0.391 0.362 −0.367 3.955 4.255 0.653 0.672 2.070 3.300

107 megayears 0.387 0.375 −0.417 3.949 4.245 0.670 0.668 2.088 3.268

0.776 0.137 0.700 0.150 4.229 4.138 0.432 0.341 2.735 2.185

U CrB 0.538 0.164 −0.420 3.767 4.170 0.694 0.436 1.430 2.510

218 megayears 0.547 0.158 −0.481 3.761 4.187 0.703 0.433 1.403 2.567

1.604 0.235 0.550 0.200 4.137 4.003 0.341 0.227 2.185 1.417

For each star the first line gives observational data, the second gives the best-fit conservative model from

the grid of Nelson and Eggleton (2001), and the third gives the corresponding zero-age parameters.

Age and χ2 are in the LH column.

Note that X ∝ P ∝ H 3, i.e. a 10% loss of angular momentum allows X at age zero to have

been 30% larger.

Among the systems in the bottom lines of Table 3.8, evidence of mass loss or angular

momentum loss is overwhelming. V640 Mon (Plaskett’s star) is arguably the most massive

binary known. It is too wide for RLOF, and yet the larger, presumably more evolved, com-

ponent is significantly the less massive. We attribute this to stellar wind (Section 4.3), probably

enhanced above what it would have been if ∗1 were single. Among the remaining low-mass

systems, ε CrA has X ∼ 0.08, which requires that the angular momentum has more than

halved since age zero. W UMa, the prototype contact binary and AH Vir, are not quite so

extreme. V361 Lyr is a semidetached system arguably in sub-case AR, but it also has too little

angular momentum. AS Eri has much too little angular momentum to have evolved through

the state of equal masses that obviously ought to be passed through by any semidetached

system; it would have overflowed its outer Roche lobe by a substantial factor at that stage,

if it evolved conservatively. R CMa is not quite so extreme in regard to angular momentum,

but its total mass is so low that it cannot have started evolution except with a rather extreme

mass ratio in the opposite sense. Then we would expect case AD, and dramatic evolution into

a rapid merger.

Although there exist low-mass detached systems like RT And with X > 1, there is no point

in assuming that they have not lost angular momentum and mass when many similarly cool

systems clearly have. I will discuss magnetic braking and binary-enhanced stellar wind at

some length in the next chapter.

Table 3.10 gives observed parameters for a small selection of systems arguably related to

case B. The sub-cases of case B that are analogous to AD, AR, AN, AB and AL start with
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M M D → H M D → H M S → . . . V356 Sgr is reasonably well modelled with starting parameters

(9.4 + 7.4 M�; 5 days). However, RZ Sct is much more difficult. The large size of its gainer,

3.7 times its ZAMS radius, argues for something like case AS, but the long period, charac-

terised by X ∼ 3.9, argues for case AN or its analogue case BN, in which ∗2 does not grow

to anything like its Roche lobe size until well after ∗1 has detached itself. We do not have a

good model for this system; nor is it obvious how some of the non-conservative processes of

the next two chapters would help. Perhaps the least implausible suggestion is that the gainer

has been so much spun up in the accretion process that it is in a state of differential rotation,

and largely centrifugally supported (Section 6.2).

On the other hand RZ Oph and φ Per agree reasonably with conservative case B. The FI

spectrum seen in RZ Oph is interpreted as the accretion cloud around ∗2. There is not much

scope for mass loss in either system. The minimum initial mass for ∗1 is half the present total
mass, and a maximum is given by requiring that the current mass of ∗1 is greater than (or

equal to, in the case of φ Per) the core mass at the terminal main sequence. These estimates

do not conflict, and in fact agree rather well. We can model RZ Oph with starting parameters

(3.4 + 3.0 M�; 16.5 days; case BN), and φ Per with (5.9 + 4.6 M�; 8 days; case BB). The

latter system is part way between its first episode of RLOF and its second, when ∗1 will

reexpand back to its Roche lobe as a helium red giant.

3 Pup and HD51956 are A/F supergiants in single-lined orbits, with very small mass

functions. In one of them a hot companion, sub-luminous for a main sequence star of its

early type, is detected. They are probably similar to φ Per except that (a) ∗1 was less massive

originally, and so its remaining core is less luminous, and (b) ∗2 has evolved further, and is

approaching reverse RLOF.

It is very unlikely that the reverse RLOF will be conservative, given the extreme mass

ratios to be expected, and seen in both φ Per and RZ Oph. There do, however, exist a few

binaries that are arguably in the next stage: we look at υ Sgr and V379 Cep. In both of these

∗1 can be interpreted as either a helium star or a star with a substantial helium core and

hydrogen-rich envelope. In both, ∗2 is severely undermassive compared with what we would

expect as a result of conservative RLOF. We suggest (Section 5.2) that ∗2 in V379 Cep and ∗1

in υ Sgr have lost substantial envelopes (perhaps 10 M�), but without any substantial orbital

shrinkage and without any substantial transfer to the companion. I identify this process later

as mode EJ, leading (in case B) to sub-case BU. The ESB2 system δ Ori A is somewhat

similar to V379 Cyg. Each component is undermassive by a factor of ∼2–3 relative to what

would be expected.

Chochol and Mayer (2002) suggest that something similar may happen rather generally

if the initial period is several tens of days. They point to V505 Mon and V2174 Cyg (and

several others) as systems where, because the mass function is very large, the companion

should be of high mass, and yet in fact is not seen (except that in V505 Mon an envelope

around it gives eclipses). This suggests rather that M1 is now rather small because of mass

loss, despite the BI spectrum, and that the unseen star did not accrete much of this lost mass.

We believe a case can be made that (a) if ∗1 is in the Hertzsprung gap but to the hot side of

roughly BI when it fills its Roche lobe, then RLOF may be reasonably conservative, but (b) if

∗1 is to the cool side of this boundary – without yet being at the Hayashi track – then RLOF,

if that is the right term, may be largely or wholly non-conservative of mass, although the

orbital period does not shrink by a large factor. In the case of V379 Cep we are talking about
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reverse RLOF, and so (a) hardly applies – to ∗2 – because an earlier conservative forward
phase tends to lengthen the period so that only (b) applies.

It is difficult to identify any example of a binary that contains a fairly massive component

(>∼10 M�), has a period (∼50–500 days) corresponding to the onset of RLOF in the right-

hand half of the Hertzsprung gap, and that can be reasonably accounted for by conservative
RLOF. This is the reason why I feel that such systems need the non-conservative model of

Section 5.2.

Broadly, I conclude that conservative RLOF gives a reasonable model of case A binary

evolution for systems both of whose components are (and always have been) in the range late

O to F. Cooler systems seem to be subject to significant magnetic braking, or mass loss. Early,

massive systems, often containing Wolf–Rayet components, generally show clear evidence

of mass loss, and are discussed in Section 4.3. Case B presents a more complex picture,

with possibly conservative behaviour for the shorter periods and highly non-conservative

behaviour for the longer periods. The transition may occur near the middle of the Hertzsprung

gap, roughly on a sloping line that corresponds to initial periods of ∼50–100 days.



4

Slow non-conservative processes

I now consider a number of processes by which either angular momentum or mass, or

both, may be lost from the system. Such ‘non-conservative’ processes can modify the orbit

very substantially. Some operate on a long timescale, and some on a short – indeed, very

short – timescale. I will deal with the latter in the next chapter. Firstly I consider some slow

processes.

4.1 Gravitational radiation: mode GR
One slow but inevitable process is gravitational radiation, a general relativistic effect

which can become significant in binaries with P<∼ 0.6 days. Formulae for this (Peters 1964,

Shapiro and Teukolsky 1983) are obtained – Appendix C(d) – by averaging the rates of energy

loss and angular momentum loss over the approximately Keplerian orbit:

ḣ

h
= − 1

tGR

1 + 7
8
e2

(1 − e2)5/2
, (4.1)

Ṗ

P
= 3

2

ȧ

a
= −3

2

Ė
E = − 3

tGR

1 + 73
24

e2 + 37
96

e4

(1 − e2)7/2
, (4.2)

and

ė

e
= − 1

tGR

19
6

+ 121
96

e2

(1 − e2)5/2
, (4.3)

where

tGR(P) = 5

32

c5a4

G3 M2μ
= 5

32

M2

M1 M2

(
cP

2πa

)5 P

2π

= 376.8
(1 + q)2

q
P8/3 M−5/3 (gigayears). (4.4)

M , as usual, is the total mass (in Solar units) and P is the period in days. For a circular

orbit of initial period P0, the period decreases to zero in a time tGR(P0)/8. At q = 1 and

M = 2.8 M� (two neutron stars), this time is less than ∼10 gigayears if P<∼ 0.63 days. For

two white dwarfs of ∼0.6 M� the period required is 0.37 days, and for two black holes of

10 M� it is 2.1 days.

Gravitational radiation tends to circularise the orbit, on much the same timescale as the

orbital shrinkage. We can integrate the ratio of Eqs (4.2) and (4.3) to obtain period as a

158
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function of eccentricity:

log P = 18

19
log e − 3

2
log(1 − e2) + 1305

2299
log

(
19

6
+ 121

96
e2

)
+ constant, (4.5)

where the arbitrary constant is determined by the initial P0, e0. The time TGR(P0, e0) taken

to shrink to zero can then be found by integrating Eq. (4.3), with P in the factor tGR taken

from Eq. (4.5). The resulting function of e can be integrated numerically from an initial e0

to zero. We can approximate the result by the interpolation formula

TGR(P0, e0) = 1

8
tGR(P0)X (e0) , where X (e) ≈ (1 − e2)3.689−0.243e−0.058e2

, (4.6)

which is accurate to about 1% for e ≤ 0.99. Thus if the initial eccentricity is 0.7 the time

taken to shrink to zero is about 10% of the time required if the initial eccentricity were zero,

for the same initial period.

Pulsar J1915 + 1606 has parameters (1.387 + 1.441 M�, 0.323 days, e = 0.617; Thorsett

and Chakrabarty 1999). The present timescale of period change, from Eq. (4.2), is

0.368 gigayears, which is in good agreement the measured value 0.364 gigayears (Taylor and

Weisberg 1989). The time until the two components merge, from Eq. (4.6), is 0.302 gigayears.

Since pulsars ‘die’, i.e. stop pulsing detectably, in perhaps 3 megayears, the system cannot

have been ‘born’ (in its present form) with e in excess of about 0.62. A recently discov-

ered pair of pulsars (J0737-3039; Lyne et al. 2004) has P = 0.102 days, e = 0.088. One of

the pulsars is of very short spin period, 0.022 s, and is presumably the older pulsar, which

has been spun up by accretion during an earlier phase as a massive X-ray binary with an

OB or WR companion. The other pulsar has spin period 2.7 s, and is presumably the rem-

nant of the companion which exploded within the last few megayears. Although the GR

merger timescale for this system is substantially shorter (70 megayears), this system also

cannot have been much different when it ‘started’ from what it is now. It would have taken

about 12 megayears to reduce its eccentricity from 0.085 to 0.08. The precursor system could

have been like V1521 Cyg (Cyg X-3; Table 5.3), where a neutron star is accreting from a

Wolf–Rayet-like star in a 0.2 day orbit (van Kerkwijk et al. 1996b). Although such an orbit

is small, it is quite large enough to contain a helium ZAMS star of 2.5 M� or somewhat

more – Section 2.5 – which could evolve to a supernova without overflowing its Roche lobe

and totally engulfing the NS companion. The helium main sequence component is presum-

ably the remnant of an OB star from an earlier wider binary which may have undergone

mode CE – Section 5.2.

The binary of shortest known period so far is RX J0806 + 15, with a period of 321.5 s

(Hakala et al. 2003). It appears to consist of two white dwarfs. There is a measured period

decrease on a timescale P/Ṗ = −0.16 megayears. This may be due entirely to GR, and

suggests masses (if q = 1) of 0.51 M� each.

4.2 Tidal friction: mode TF
Tidal friction is a process which operates in the Earth–Moon system, slowing down

the Earth’s rotation and (to conserve angular momentum) driving the Moon outwards; most

of this friction is due to the turbulent dissipation of tidal motion in shallow parts of the oceans

(Taylor 1919). Tidal friction is also what keeps Jupiter’s moon Io in a permanently molten

volcanic state, while Jupiter’s other moons are cold; although in Jupiter’s satellite system
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the other moons near Io, and not just Jupiter itself, help provide the time-dependent tidal

distortion that generates the heat released. Tidal friction is a dissipative process converting the

kinetic energy of time-dependent distortions into heat, while conserving angular momentum.

I mentioned in Section 3.1 that it can be expected to drive a binary towards a state of uniform

rotation, implying both a circular orbit, and corotation of both stars with the orbit.

When a body is solid, as is the Earth (approximately), it is reasonable to assume that it is

in uniform rotation that can be represented by an angular velocity ��. For gaseous bodies,

this seems a rather bold assumption, but let us make it nevertheless. We consider the case

where ∗2 is a point mass rather than an extended body, so that its own angular velocity

can be ignored. The effect of tidal friction on the orbit, and on the rotation of ∗1, can be

modelled by a dissipative force (Darwin 1880, Kopal 1959, Jeffreys 1959, Alexander 1973,

Hut 1981), in addition to the gravitational force (itself a combination of point-mass gravity

plus a quadrupole term). The dissipative force can be determined – Appendices B and C(c);

Eggleton et al. (1998) – by the assumption that the rate of dissipation of energy is proportional

to the square of the time rate of change of the quadrupole tensor of ∗1, viewed in the frame

that rotates with the star. Evidently this is zero if and only if (a) the orbit is circular, (b) the

stellar rotation is parallel to the orbital rotation, and (c) the star corotates with the orbit. The

model leads to a perturbative acceleration

f = −9σ M2
2 A2

2μd10
[3 d (d · ḋ ) + (d × ḋ − ��d2) × d]. (4.7)

As usual μ is the reduced mass; A is the same as in Eq. (3.31), and depends only on the

radius R and an internal structure constant Q – Section 3.2.1. The dissipation coefficient

σ (dimensions m−1l−2t−1) can be related to the turbulent viscosity within ∗1 – Eqs (B72),

(B73), (C54) and (C55) – by

σ = 2

M2
1 R4 Q2

∫ M1

0

wl γ (r ) dm ≡ 2

M1 R2 Q2tvisc

, say, (4.8)

where w, l are estimates of the mean velocity and mean free path of turbulent eddies and

γ (r ), of order unity in the outer layers and dropping to ∼0.002–0.01 in the core of an MS

star, is a dimensionless function of position in the star that depends only on its zero-order

structure – Appendix B(xi), Eqs (B65), (B69). The quantity tvisc is a dissipative timescale

intrinsic to the star: see Eq. (4.32) below. The behaviour of γ (r ) in some models was shown

in Fig. 3.2.

To conserve total angular momentum H ≡ Ho + I�� = μd × ḋ + I��, there must be a

corresponding couple on the star, so that

d

dt
I�� = −μd × f, (4.9)

where I is the moment of inertia of ∗1.

Let us define a tidal-friction timescale tTF by

tTF = 2μa8

9σ M2
2 A2

= tvisc

9

( a

R

)8 M2
1

M2 M
(1 − Q)2. (4.10)
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Equation (4.7) leads, by averaging over the zero-order Keplerian orbit – Hut 1981, and

Appendix C(c) – to

ω̇

ω
= −3ȧ

2a
= 3Ė

2E

= 3

tTF

[
1 + 31

2
e2 + 255

8
e4 + 185

16
e6 + 25

64
e8

(1 − e2)15/2
− �

ω

1 + 15
2

e2 + 45
8

e4 + 5
16

e6

(1 − e2)6

]
, (4.11)

where ω is the mean orbital angular velocity, i.e. 2π/P , rather than the variable instantaneous

angular velocity, and � is the spin, assumed for the time being to be parallel to the orbit,

i.e. to h = d × ḋ . We similarly obtain rates of change of eccentricity and of orbital angular

momentum (per unit reduced mass):

ė = − 9e

tTF

[
1 + 15

4
e2 + 15

8
e4 + 5

64
e6

(1 − e2)13/2
− 11�

18ω

1 + 3
2
e2 + 1

8
e4

(1 − e2)5

]
, (4.12)

ḣ = − h

tTF

[
1 + 15

2
e2 + 45

8
e4 + 5

16
e6

(1 − e2)13/2
− �

ω

1 + 3e2 + 3
8
e4

(1 − e2)5

]
. (4.13)

For the intrinsic spin, we obtain

�̇

�
= − ḣ

λh
, (4.14)

where

λ ≡ I�

μh
= Mk2

M2 R2

R2�

a2ω
. (4.15)

The factor λ is the ratio of spin to orbital angular momentum, with k the radius of gyration

of ∗1, as in Eq. (3.18).

Each of Eqs (4.11)–(4.13) can be written in the form

ẋ

x
= ± 1

tTF

[
fx1(e) − �

ω
fx2(e)

]
, (4.16)

where x is ω, e or h; plus applies to ω, and minus to e, h. The functions fx1, fx2 are tabulated

in Table 4.1. It can be seen that even for a modest e, for example 0.4, the rates of variation

of a, h and e are considerably larger than for a nearly circular orbit of the same period (or

equivalently of the same semimajor axis).

By subtracting ω̇/ω – Eq. (4.11) – from �̇/� – Eq. (4.14) – in the case that �� ‖ h, we

obtain

d

dt
log �/ω = 1

λtTF

[
fh1(e) − λ fω1(e) − �

ω
{ fh2(e) − λ fω2(e)}

]
. (4.17)

Since λ is normally small, we see that even if � is initially several times greater or smaller

than ω, ∗1 spins down or up rather rapidly at first towards ‘pseudo-synchronism’ (Hut 1981),

i.e. towards a value

�

ω
= f (e, λ) ≡ fh1(e) − λ fω1(e)

fh2(e) − λ fω2(e)
≈ fh1(e)

fh2(e)
if λ 	 1, (4.18)
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Table 4.1. Functions of eccentricity involved in tidal friction

�/ω �/ω λ

e fω1(e) fω2(e) fe1(e) fe2(e) fh1(e) fh2(e) PS e-stable D-stable

0.0 3.000 3.000 9.000 5.500 1.000 1.000 1.000 1.636 0.333

0.1 3.747 3.427 9.970 5.870 1.148 1.083 1.060 1.698 0.309

0.2 6.812 5.017 13.53 7.152 1.707 1.374 1.242 1.892 0.248

0.3 16.20 9.091 22.47 10.01 3.177 2.040 1.557 2.245 0.171

0.4 48.18 20.03 46.08 16.35 7.284 3.562 2.045 2.818 0.102

0.5 182.9 54.47 120.0 32.05 20.97 7.473 2.805 3.746 0.052

0.6 959.8 194.0 425.1 79.71 80.83 19.82 4.077 5.333 0.0210

0.7 8253 1034 2361 281.4 482.4 74.20 6.502 8.392 0.0063

0.8 1.73 × 105 11282 28862 1829 6268 508.3 12.33 15.78 0.0011

0.9 3.14 × 107 6.97 × 105 2.33 × 106 51022 5.33 × 105 14846 35.91 45.67 5×10−5

Columns 2 and 3 relate to dω/dt , Eq. (4.11); columns 4 and 5 to de/dt , Eq. (4.12); columns 6 and 7 to

dh/dt , and also d�/dt , Eqs (4.13) and (4.14).

Of the last three columns two are �/ω ratios for pseudo-synchronism (PS) taking λ 	 1, and for

e-stability; and finally λ for D-stability, Eq. (4.21).

where f (e, λ) is determined by the vanishing of the term in square brackets of Eq. (4.17).

Subsequently e, Eq. (4.12), and ω, Eq. (4.11), decrease on a slower timescale, �/ω being in

transient equilibrium with e (i.e. pseudo-synchronised) until the orbit is circularised. Both

timescales, synchronisation and circularisation, depend strongly on the ratio of stellar radius

to orbital semimajor axis. From Eqs (4.10), (4.14) and (4.15), the timescale of synchronisation

(λtTF) depends on the sixth power and of circularisation (tTF) on the eighth power of a/R.

From Table 4.1, we see how the pseudo-synchronous spin rate departs quite rapidly from

the synchronous rate: at e = 0.4, and small λ, the ratio is ∼2.04. This, is of course, because

much the greatest part of the effect comes from near periastron.

From Eq. (4.12) for e-evolution, if the star is spinning faster than a certain amount e
increases, so that we have a kind of instability that we call the ‘e-instability’: the condition,

also given in Table 4.1, is that

�

ω
>

fe1(e)

fe2(e)
≥ 18

11
. (4.19)

However, if λ is not small another instability, the Darwin or ‘D instability’ can come into

play. When e = 0, Eq. (4.17) gives

d log(�/ω)

dt
= 1 − 3λ

λtTF

(
1 − �

ω

)
, (4.20)

and for λ ≥ 1/3, if �/ω departs slightly from unity the departure grows. When e > 0 the

critical λ is smaller: the condition for D instability is

λ >
fh2(e)

fω2(e)
, (4.21)

also shown in Table 4.1. I will discuss the D instability, starting from a more elementary

viewpoint, in Section 5.1.
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Figure 4.1 Orbital and spin evolution in a generic massive X-ray binary, with a B
supergiant of 24 M�, 30 R� and a neutron-star companion in an orbit with P = 9 days,
e = 0.1 initially. The initial stellar rotation rate is (a) supersynchronous (×1.8), or
(b) sub-synchronous (×0.6). Eccentricity (pluses), orbital frequency ω relative to its initial
value (circles), the degree of asynchronism log(�/ω) (asterisks), and the ratio of spin to
orbital angular momentum log(I�/μh) (crosses) are plotted against time. In (a) the orbit
starts both D unstable and e unstable. It decircularises at first (e instability). Once the orbit
has widened slightly it becomes stable to both processes, and settles down as a much wider
binary (P ∼ 45 days). However, nuclear evolution (neglected) would cause problems well
before 10 megayears. In (b) the orbit is e stable and slightly D stable to start with. The
Darwin instability occurs after a small degree of spin-up. This causes the orbit to shrink
catastrophically in ∼1 kiloyears.

It is not difficult to integrate Eqs (4.10)–(4.15) numerically, to investigate the variation of

the orbit under tidal friction in more detail. We must, of course, remember that λ is itself a

function of ω and �, and tTF of a, or equivalently of ω. Some illustrations of these processes

are given in Fig. 4.1. They are loosely based on the massive X-ray binary GP Vel, and

start with a neutron-star companion in a 9 days, slightly eccentric, orbit with a massive OB

supergiant. Because the mass ratio is very different from unity, the synchronisation timescale

is not necessarily shorter than the circularisation timescale. We therefore suppose that the

rotation rate of the OB star is somewhat different from pseudo-synchronous, and is either

larger (Fig. 4.1a) or smaller (Fig. 4.1b). The orbital evolution is interestingly different in the

two cases.

We now consider the more general case, where both stars are extended objects that may be

rotating in independent directions non-parallel to h. The equations governing the four vectors

e, h, ��1, ��2 are

ė = U × e − V e, (4.22)

ḣ = U × h − W h, (4.23)

I1�̇�1 = −μU1 × h + W1h, (4.24)

I2�̇�2 = −μU2 × h + W2h. (4.25)
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U, as in Section 3.2.2, is the angular velocity of the e, q, h frame relative to an inertial frame,

but now thanks to tidal friction there are changes of e, h parallel to themselves as well as

perpendicular. We find that U = U1 + U2 + ZGRh, with U1 = X1e + Y1q + Z1h (see below)

and a similar expression for U2. V = V1 + V2, and similarly for W . ZGR is the contribution

of GR to apsidal motion – Eq. (3.50). It can be seen that μh + I1��1 + I2��2 is a constant, as

expected.

The dissipative terms V1, W1 are virtually the same as in the parallel case above –

Eqs (4.12 and 4.13):

V1 = 9

tTF1

[
1 + 15

4
e2 + 15

8
e4 + 5

64
e6

(1 − e2)13/2
− 11�1h

18ω

1 + 3
2
e2 + 1

8
e4

(1 − e2)5

]
, (4.26)

W1 = 1

tTF1

[
1 + 15

2
e2 + 45

8
e4 + 5

16
e6

(1 − e2)13/2
− �1h

ω

1 + 3e2 + 3
8
e4

(1 − e2)5

]
. (4.27)

The contributions X1, Y1, Z1 to the rotation of the axes caused by rotational and tidal distortion

of ∗1 (including the small contribution of tidal friction), are given by

X1 = − M2 A1

2μωa5

�1h �1e

(1 − e2)2
− �1q

2ωtTF1

1 + 9
2
e2 + 5

8
e4

(1 − e2)5
, (4.28)

Y1 = − M2 A1

2μωa5

�1h �1q

(1 − e2)2
+ �1e

2ωtTF1

1 + 3
2
e2 + 1

8
e4

(1 − e2)5
, (4.29)

Z1 = M2 A1

2μωa5

[
2�2

1h − �2
1e − �2

1q

2(1 − e2)2
+ 15G M2

a3

1 + 3
2
e2 + 1

8
e4

(1 − e2)5

]
. (4.30)

V2 . . . Z2 are the same, with suffices 1,2 interchanged. �e, �q , �h are the components of the

appropriate �� in the orbital frame (Section 3.2.2). X, Y , apart from the terms due to tidal

friction, give the same precession rate as in Section 3.2.2. Z is the same as in Section 3.2.2:

tidal friction does not contribute to apsidal motion. The tidal friction terms in X, Y tend to

parallelise the spins on much the same timescale as synchronisation.

In Appendices B and C(c) I derive the force law due to tidal friction – Eq. (4.7) – in two

apparently different ways: in B, we determine the tidal velocity field and work out its rate

of dissipation if turbulent viscosity is the main dissipative agent; and in C, we start from the

more general principle that the rate of dissipation should be a positive semidefinite function

of the rate of change (as seen in the frame that rotates with the star) of the quadrupole tensor.

That the two approaches lead to the same dependence on d,ḋ is presumably confirmation that

the tidal velocity field of Eqs (B63)–(B65) is correct, at least in its d dependence. Identifying

Eq. (B71) with Eq. (C53) gives the otherwise indeterminate coefficient σ of Appendix C in

terms of the specific dissipative model of Appendix B. The result is Eq. (4.8); but this in turn

has a coefficient tvisc which is a dissipative timescale intrinsic to the star – Eq. (4.31) below.

However, it is gratifying that the more general approach of Appendix C leads unequivocally to

a specific dependence on d of the frictional force, and we might hope that observation might

ultimately pin down the value of the coefficient σ , or equivalently tvisc, even if theoretical

models are discordant.

The rate of dissipation can be estimated from the tidal velocity field u of Eq. (3.36) by (a)

calculating its shear, (b) squaring it and (c) multiplying by the viscosity and integrating over
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the star. This is done in Appendix B(xi). We assume that the main viscosity is due to turbulent

convection, with a coefficient of viscosity ∼wl, where w and l (Section 2.2.3) are the mean

turbulent velocity and mixing length. For the velocity field of Eq. (3.36) the dissipation has

a timescale tvisc where

1

tvisc

≡ 1

M1 R2
1

∫ M1

0

wl γ (r ) dm, γ (r ) ≡ β2 + 2

3
rββ ′ + 7

30
r2β ′2. (4.31)

The factor γ (r ), along with α, β, is illustrated in Fig. 3.2.

To estimate this rate of dissipation in a star, Table 3.4 lists γ , which is γ averaged over

the inner 25% of the mass of a polytrope. Typically this fraction is convective in upper main

sequence stars. The core-averaged γ is ∼0.01 for near-main-sequence stars (roughly, n ∼ 3

polytropes), but starts to drop rapidly as stars become more centrally condensed. A first

estimate for wl/R2
1 is that it is roughly the reciprocal of the global convective timescale tG

of Eq. (2.32), and so

1

tvisc

∼ γ

tG
= γ

(
L

3M1 R2

)1/3

. (4.32)

If M, R, L are in Solar units, tG is approximately in years.

In principle γ can be computed by solving Clairault’s equation – Eq. (3.30) – for the

factor α(r ) which measures the departure from sphericity throughout a stellar interior, and

then summing up two integrals, Eqs (3.38) and (4.31). However, weighing the computational

effort against the uncertainty, particularly in the rate of turbulent dissipation, let us settle here

for a rough interpolation formula. On the main sequence and in the Hertzsprung gap, this

relates the quantity γ of Table 3.4 to k2/R2, the dimensionless gyration radius (squared) for

simple polytropes with different degrees of central condensation; while on the Hayashi track

with its fully convective envelopes (R ∼ RHT) the formula gives γ ∼ 1:

γ ∼ 2

2R2/5k2 + (2R2/5k2)3.2
+

(
R

RHT

)8

. (4.33)

This only requires in our stellar evolution code that the moment of inertia (I = Mk2) be

integrated along with the structure equations; I is also needed in other equations for orbital

change.

I believe that in the past the factor which we call γ has been substantially underestimated.

Early estimates were based on the assumption that the velocity field of time-dependent tidal

motion was either incompressible or irrotational, and appeared to lead to γ ∼ (r/R)7. For

a convective core with r ∼ 0.3R, this implies γ ∼ 10−3.5. However, the tidal velocity field

determined in Appendix B, the exact solution of the conservation equation to first order, is

neither incompressible nor irrotational, and leads to a finite value of v/r even at the centre

(Fig. 3.2), which is at least an order of magnitude greater. The value of tvisc arrived at will be

found, at several points in later discussion, to be reasonably in accord with the rather weak

constraints that observation imposes.

In the SMC there is a radio pulsar, 0045-7319, which has a very eccentric orbit (e = 0.808)

and period 51.2 days (Kaspi et al. 1994a). The companion is an early B star. Unusually, there

appears to be negligible stellar wind from the B star (which is presumably not in rapid

rotation), and consequently the pulsar rotates unusually steadily, without erratic spin-up or

spin-down due to accretion from a stellar wind. As a result, the measured slow spin-up of
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Figure 4.2 A model of tidal friction in 0045-7319. An obliquely counter-rotating B star has
an NS companion in a wide eccentric orbit. (a) Circles – orbital period relative to initial
value (51 days); pluses – eccentricity; asterisks – cosine of the angle between spin and orbit.
The rotation was assumed retrograde initially wrt the orbit, perhaps as a result of a
supernova kick. The rotation becomes aligned in about 1 megayears. (b) The component of
stellar spin in the direction of the orbital major axis (horizontal) plotted against the
component in the direction of the latus rectum (vertical). Starting near the upper left, the
spin axis precessed counter-clockwise around the orbital axis, until the third component of
spin (not shown) passed through zero. Then the precession reversed, the spin axis rotating
clockwise about the orbital axis while both components plotted here gradually decrease to
zero. The coefficient of viscosity used in (b) was artificially large relative to (a), so that the
spiral pattern is less tightly wound by about a factor of 220 than it would really be.

the orbit, on a timescale of 0.45 megayears, can reasonably be attributed to the influence

of tidal friction alone. Figure 4.2a shows the expected long-term behaviour of the orbit if

we start, somewhat arbitrarily, with the B star’s rotation axis inclined at 135◦ to the pulsar

orbit. The rotation is parallelised and synchronised in about 1 megayear, and the orbital

eccentricity is reduced from 0.8 to 0.4 in about 3 megayears. Figure 4.2b shows the two

components of the B star’s rotation perpendicular to the orbit, plotted against each other.

There is counter-clockwise precession until the inclination is reduced from 135◦ to 90◦, and

then clockwise precession until parallelism is reached. In Fig. 4.2b (but not in 4.2a) viscosity

was increased artificially by 220, so that the spiral is less tightly wound than it would normally

be.

There are several different and sometimes strongly conflicting estimates of, in effect, the

parameter tvisc: Alexander (1973), Campbell and Papaloizou (1983), Savonije and Papaloizou

(1984), Scharlemann (1982), Tassoul and Tassoul (1992), Zahn (1977), Zahn and Bouchet

(1989). This no doubt partly reflects the inherent difficulty of dealing with fluid (as compared

with solid but elastic or slightly inelastic) bodies, where the interior motions may in principle

be very complex. In the Sun, for example, one might imagine that the ‘turbulent viscosity’ in

the surface convection zone (the outer ∼30% by radius) would enforce rigid-body rotation

there, and yet there is a >∼25% increase in rotational angular velocity between the poles and

the equator (Fig. 2.7b). It is unlikely that the fluid-dynamical and MHD problems inherent in

modelling the interior motion in general and tidal friction in particular will be solved soon.

They will presumably require fully three-dimensional modelling.
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Figure 4.3 Timescale for orbital period change, as a function of time, for a 10 M� star in a
binary orbit with a neutron star: initial period 55 days, initial eccentricity 0.81. There are
changes in either direction, but the overall trend is decay, and the orbit spins up. After Witte
and Savonije (1999).

Witte and Savonije (1999) have modelled ‘dynamic tides’, and their effect on the orbit

of a non-corotating star of 10 M� in an eccentric orbit. For a perturbing ∗2 in a Keplerian

orbit, the perturbing potential within ∗1 can be decomposed, by classical procedures, into a

sum of products of Legendre polynomials in polar angle, Fourier terms in azimuthal angle,

and functions of radial distance from the stellar centre. For moderate to large eccentricity

there is a considerable number of terms that contribute comparably strongly. For each term

in the decomposition, Witte and Savonije (1999) calculate the rate of dissipation within the

star, using an implicit two-dimensional (r, θ ) numerical hydrodynamics code which includes

the Coriolis term. There is a rich spectrum of normal modes, whose frequencies gradually

change as the star evolves; the lines of the spectrum have widths determined by the rate of

dissipation. Some of these lines, as they move, will pass through resonances with the tidal

forcing terms, so that the rate of dissipation can fluctuate considerably. Figure 4.3 shows

how the period-change timescale |P/Ṗ| varies with evolution in a particular case: a rapidly

counter-rotating B star within an NS companion, an initial orbital period of 55 days, and an

initial eccentricity of 0.81. It is, therefore, a candidate to evolve into the the pulsar 0045-7319

discussed above. The decay timescale of the orbital period fluctuates by over two orders

of magnitude, but averages, over an interval of ∼0.25 megayears, to ∼0.6 megayears. For

the same star (R ∼ 7 R�, L ∼ 104 L�), and much the same binary (P = 51 days, e = 0.8,

Prot = −3.1 days), Eq. (4.32) gives tvisc ∼ 17 years, Eq. (4.10) gives tTF ∼ 160 gigayears and

Eq. (4.11) gives |P/Ṗ| ∼ 0.45 megayears.

Clearly an approximation as bland as the equilibrium-tide model cannot be relied on for

highly eccentric orbits. Equation (4.7) is based on the concept that the bodies are continually



168 Slow non-conservative processes

adapting their shapes to be in near equilibrium, while they rotate relative to this equilibrium

tide (if they are not already synchronised). This is fairly close to what happens on Earth, as

a result of the Moon’s tidal influence: but the Earth is small compared to its Roche lobe, and

the Moon’s orbit is only slightly eccentric. In the much more extreme situation modelled by

Witte and Savonije (1999) there is a very strong, and strongly time-dependent, perturbation

which stimulates a range of normal modes of differing periods: after a brief intense periastron

passage the stars would be very far from equilibrium. Mardling (1995) has found that the

oscillations, rather than dissipating quickly, may persist till the next periastron passage, when

they are just as likely to increase as decrease the eccentricity and asynchronicity. The result

may be chaotic in some circumstances. A purely dissipative model like Eq. (4.7) is unlikely

to apply to markedly eccentric orbits with close encounters at periastron, but it still seems

to be a reasonable first-order dissipative correction to the conservative zero-order purely

gravitational problem.

4.3 Wind processes: modes NW, MB, EW, PA, BP
Let us now consider a simple model for the effect on orbital period and separation

of the following processes:

(a) normal single-star winds (NW)

(b) magnetic braking with tidal friction (MB)

(c) binary-enhanced stellar wind (EW)

(d) partial accretion of stellar wind (PA)

(e) bipolar re-emission (BP).

All of these have to do with stellar winds, which can remove mass and angular momentum

from the system, as well as transfer mass from one component to the other. In this section we

ignore GR, but it is not difficult in principle to add it as well.

Single stars can lose mass by stellar wind. In a binary, some of this wind may be accreted

by a companion and some may be lost to infinity. The latter portion can be expected to carry

angular momentum from the system. The general problem may be quite complicated, and

requires a detailed treatment of the flow of gas between and around the stars. For example, in

detached as well as semidetached binaries, the portion of the wind recently captured by the

gainer may accumulate in a disc around the gainer before being accreted by the star itself;

and some of the material in the disc may be expelled in jets rather than accreted at all. Some

aspects of this are discussed further in Chapters 5 and 6.

In Appendix C(e), a formulation is given for the effect on the orbit of the combination

of (a) isotropic wind from either or both components and (b) the transfer of mass, either by

accretion from the wind or RLOF, from one star to the other. This formulation treats the loss

and the transfer of momentum and angular momentum in a consistent way, and can be applied

to situations where either the loss and transfer rates are steady, i.e. do not change significantly

in the course of one orbit, or where they depend on orbital phase, perhaps quite strongly. To

start with, we content ourselves with a more intuitive approach. If the wind is isotropic, and

fast compared with the orbital speed, a preliminary expectation is that it carries off the same

angular momentum per unit mass as resides in the orbital motion of the mass-losing star, i.e.

Ho M2/M M1, where Ho is the orbital angular momentum. If all the wind from ∗1 goes to
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infinity, we can model the effect on the orbit by

− 1

Ho

dHo

dt
= M2

M M1

ζ,
dM

dt
= dM1

dt
= −ζ,

dM2

dt
= 0. (4.34)

The mass-loss rate ζ might be given by Eq. (2.73) for a massive OB component, and by

Eq. (2.74), or the theoretical estimate of Eq. (4.84) below, for a red giant. We do not (yet)

include the additional loss of angular momentum due to magnetic braking in Section 4.4. The

above system of equations is easily solved analytically, at least if we are only interested in the

way that the period changes with the masses. In that case, we can cancel ζ ; we only need a

numerical value for ζ if we want to know period or masses as a function of time. The solutions

of Eq. (4.34) for Ho, a and P , using Eqs (3.13) and (3.14) for the last two, are easily found to be

Ho ∝ M1

M
, a ∝ 1

M
, P ∝ 1

M2
. (4.35)

Thus the period increases as the mass and mass ratio decrease, in contrast to RLOF where the

period first decreases and only increases again once the mass ratio has passed through unity.

Our assumptions about wind ensure that it does not change the velocities of the stars (instan-

taneously), but it weakens the gravity of the remaining mass, thus causing the stars to spiral

out.

We now consider a more general model for the influence on orbital period of stellar winds,

which might originate from either component and which might be magnetically linked to that

component (magnetic braking, mode MB). The winds might be either ‘normal’ (mode NW),

i.e. what the component would experience even if single, or ‘enhanced’, i.e. larger than normal

by virtue of the tidal disturbance due to the other component (enhanced wind, mode EW): the

present model does not distinguish these possibilities. We also include the possibility that a

fraction of the wind lost by ∗1 may be accreted by the companion (partial accretion, mode PA).

We further include the possibility that a portion of the material from ∗1, temporarily

accreted by ∗2, is expelled from the neighbourhood of ∗2; so that in effect some of the wind

escaping from ∗1 and leaving the system carries with it the specific angular momentum of

the orbit of ∗2 rather than of ∗1 (bipolar reemission, mode BP). Such a process may be

particularly important in those semidetached systems where the gainer is a compact star

(white dwarf, neutron star or black hole). There is clear evidence in some such systems of

outflowing bipolar jets that originate near the compact gainer, and that are presumably fuelled

by the energy released in the accretion process.

Suppose that

(a) ∗1 loses mass isotropically to infinity at a rate ζ1

(b) ∗2 does the same at rate ζ2

(c) ∗1 also loses mass to ∗2, either by RLOF, or by accretion of a portion of the wind from

∗1, or both, at a rate ξ

(d) the wind to infinity from ∗1 carries specific angular momentum K1 times the specific

orbital angular momentum of ∗1; we expect K1 ∼ 1 if there is no magnetic linkage of

the wind to the star, but otherwise we might have K1 > 1

(e) a similar factor K2 applies for the wind escaping from ∗2.

To be pedantic, it is difficult to see how a star can lose mass isotropically while simultaneously

accreting from a companion. However, we can think of accretion as confined to a plane, and
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perhaps even to a point, with the mass loss being nearly isotropic in the remaining solid

angle, or in a cone with axis perpendicular to the orbital plane (‘bipolar’).

Then we can write

Ṁ1 = −ξ − ζ1, Ṁ2 = ξ − ζ2, Ṁ = −ζ1 − ζ2, (4.36)

and the model for angular momentum loss has

1

Ho

dHo

dt
= −K1

M2

M M1

ζ1 − K2

M1

M M2

ζ2. (4.37)

Equation (4.34) was just the special case of this, which has ξ = ζ2 = K2 = 0, K1 = 1. Note

that Eq. (4.37) with K1 = K2 = 1 is also what is obtained from a slightly more rigorous

treatment in Appendix C(e), where h = Ho/μ is the orbital angular momentum per unit

reduced mass. That treatment also shows that the eccentricity remains constant, even if

non-zero, provided that the wind – including the fraction ξ/(ξ + ζ1) accreted by ∗2 – is

independent of orbital phase.

We consider later some more detailed expressions for K1, K2. For the present, we take

the K s to be constants, and also the ratios ξ : ζ1 : ζ2. There are therefore four independent

constant parameters in the model; in Table 4.2 we normalise ξ and the ζ s by taking the largest

to be unity. Then integration of Eqs (4.36), (4.37) gives

log Ho = constant + ζ1 K1

ζ1 + ξ
log M1 + ζ2 K2

ζ2 − ξ
log M2 − ζ1 K1 + ζ2 K2

ζ1 + ζ2

log M. (4.38)

This determines how a and P will vary as the masses vary, using Eqs (3.13) and (3.14)

respectively. The assumption that the four parameters are constant is not in fact a very good

one, but is made simply because it allows the elementary integral (4.38) to be extracted.

In Section 3.3 we saw that the nature of RLOF at its onset (nuclear, thermal or dynamic

timescale) depends largely on a comparison of R′
L, the logarithmic rate of change of lobe

radius against mass of loser, with various coefficients intrinsic to the star itself. We can also

calculate R′
L in our simplistic non-conservative model here. Using Eq. (3.13) for the orbital

radius a as a function of Ho and the masses, and Eq. (3.6) for the lobe radius as a function of

a and mass ratio q , we obtain, after some manipulation

R′
L ≡ d log RL

d log M1

= (0.33 + 0.13q){ξ (1 + q) + ζ1} + 2ξ (q2 − 1) + ζ1{2K1 − 2 − q}
(ξ + ζ1)(1 + q)

.

(4.39)

Equation (3.81) shows that large positive values of R′
L contribute to instability, and negative

values to stability. Of course the above result neglects the usually small contribution of spin

to the total angular momentum; also we have ignored ζ2 for simplicity, but it can be included

with a little extra difficulty.

Table 4.2 shows the variation of P , M and R′
L (including ζ2 �= 0) with mass-ratio q, for

various values of ξ, ζ1, ζ2, K1 and K2. The solutions are normalised so that P = 1, M = 2

at q = 1. Note that although Eq. (4.38) is formally undefined when any of the linear combina-

tions of ξ, ζ1, ζ2, that appear in the denominators vanish, the singularities are removable: we

need only vary some of the parameters by tiny amounts from their singular values to obtain

sufficiently accurate answers, as was done for certain rows in Table 4.2. Equation (4.39) does

not depend on the constancy of these parameters, since it comes directly from the differential
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Table 4.2. Period, total mass, and stability factor R′
L as functions of mass-ratio in some

non-conservative models

Row ξ ζ1 ζ2 K1 K2 q = 4 2 1.33 0.5 0.25 0.125

1 1 0.001 0.001 1 1 3.81 1.42 1.06 1.43 3.82 16.2

RLOF 2.00 2.00 2.00 2.00 2.00 2.00

6.84 2.59 1.17 −0.61 −1.14 −1.40

2 1 0.1 0.001 3 1 3.83 1.46 1.08 1.26 2.62 7.66

RLOF, 2.06 2.03 2.01 1.97 1.94 1.93

EW, MB 6.24 2.43 1.19 −0.31 −0.74 −0.94

3 0.001 1 0.001 1 1 0.161 0.445 0.735 1.78 2.56 3.17

NW 5.00 3.00 2.33 1.50 1.25 1.13

−0.624 −0.468 −0.355 −0.071 0.089 0.195

4 0.001 1 0.001 1.5 1 0.325 0.685 0.898 0.969 0.650 0.331

NW, MB 5.00 3.00 2.33 1.50 1.25 1.13

−0.424 −0.135 0.073 0.595 0.888 1.08

5 0.2 1 0.001 2 1 1.39 1.17 1.09 0.676 0.332 0.125

NW, PA, 3.50 2.63 2.23 1.61 1.40 1.28

MB 0.949 0.595 0.612 0.952 1.22 1.41

6 0.05 1 0.001 2 1 0.865 1.09 1.09 0.569 0.203 0.051

NW, PA, 4.41 2.87 2.30 1.53 1.29 1.17

MB 0.106 0.310 0.533 1.17 1.56 1.81

7 1 1 0.001 1 1 1.81 1.02 0.946 1.54 3.16 7.61

NW, PA 2.51 2.25 2.10 1.80 1.66 1.58

3.10 1.05 0.402 −0.340 −0.525 −0.604

8 1 0.1 0.001 15 1 6.90 2.22 1.34 0.559 0.328 0.183

RLOF, 2.06 2.03 2.01 1.97 1.94 1.93

EW, MB 6.68 3.16 2.12 1.14 1.01 1.00

9 1 0.1 1 15 1 79.0 3.09 1.39 0.644 0.435 0.278

RLOF, 5.00 3.00 2.33 1.50 1.25 1.13

BP, MB 5.33 2.20 1.34 0.718 0.763 0.869

10 0.5 1 0.001 1 1 1.15 0.848 0.891 1.60 2.95 5.75

RLOF, 2.86 2.40 2.15 1.71 1.54 1.44

NW, PA 1.86 0.550 0.153 −0.25 −0.32 −0.34

11 1 0.001 0.5 1 1 5.11 1.31 0.988 1.91 6.91 36.4

RLOF, 2.50 2.25 2.10 1.80 1.67 1.59

BP 6.10 2.06 0.739 −0.834 −1.27 −1.48

For each combination of parameters, periods are on the first row, total mass on the second, and R′
L,

Eq. (4.39), on the third; periods are normalised to 1 and total mass to 2, for q = 1. The principal modes

involved are indicated at the left; modes NW and EW are not distinguished in these models.
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form of Eqs (4.36) and (4.37), rather than the integrated form Eq. (4.38). We should also

note that the spin angular momenta of the components have been ignored in comparison with

the orbit; but they can be included by using a more complicated K1, K2, as indicated below.

It can be seen that there are choices for the parameters that can keep the period constant to

within a factor of 3 as q varies all the way from 4 to 0.125 (e.g. row 4), as well as choices

that allow P either to increase or to decrease by substantial factors.

The above model is essentially the same as that of Soberman et al. (1997), with the

proviso that they reversed the roles of ∗1, ∗2, i.e. their model has ξ < 0. This does not affect

the mathematics, but it slightly complicates the comparison. Subject to this proviso, our

ζ1/(ξ + ζ1), ζ2/(ξ + ζ1) and K1 are equivalent to their parameters α, β and A respectively,

and they adopt K2 = 1.

The estimate K1 ∼ 1 assumes that ∗1 is small compared with the binary separation, and

also that magnetic linkage of the wind to the star is negligible. We can estimate K1 a little

better by allowing for ∗1’s finite radius, while still assuming that ∗1 is locked into corotation

with the orbit as a result of tidal friction; and we can also allow for the possibility that the

wind is forced magnetically to corotate out to an Alfvén radius RA – Eqs (4.56) and (4.85)

below. Simplifying to the case where ξ = ζ2 = 0, we can write

d

dt
(Ho + Iω) = −ζ1

[
M2

M M1

Ho +
(

R2
A + 2

3
R2

)
ω

]
,

ω = G2 M3
1 M3

2

H 3
o M

= Ho M

M1 M2a2
, (4.40)

using Eq. (3.14) for ω as a function of Ho. After some manipulation, this can be written in

the form of Eq. (4.37) – still with ζ2 = 0 – provided that

K1 ∼
[

1 + M2

M2
2

R2
A + 2

3
R2

a2
− λ

(
2M

M2

+ 1

)]
(1 − 3λ)−1, λ = M

M2

k2

a2
, (4.41)

λ being the usual ratio I�/Ho of spin to orbital angular momentum. The denominator of K1 is

usually not much different from unity; nevertheless, it will approach zero at fairly large mass

ratios for nearly lobe-filling components as we approach the Darwin instability (Sections 4.2

and 5.1). Take q ∼ 1, RA ∼ 0, R ∼ RL ∼ 0.38a, and k2 ∼ 0.075 from Eq. (3.18). Then we

have K1 ∼ 1.4. If q is moderately large, say 2, and if RA is still zero while R ∼ RL , then

K1 ∼ 2; thus we should not assume that only magnetic braking will increase K1 significantly

above unity. However, as q drops below unity, the effect becomes fairly insignificant. A minor

term, involving the change of moment of inertia of the star as the mass changes, has been

ignored.

Returning to the case where both stars may have winds, but assuming that λ, and hence

Iω, can be neglected, we can see from Eq. (4.40) that the rate of change of period (2π/ω) is

Ṗ

P
= 2(ζ1 + ζ2)

M
+ 3ξ

M

(
1

q
− q

)
− 3M

M1 M2

(
ζ1

RA
2
1 + 2

3
R2

1

a2
+ ζ2

RA
2
2 + 2

3
R2

2

a2

)
. (4.42)

In Sections 4.4 and 4.5 I outline a procedure for estimating RA, which can be incorporated

into Eqs (4.40) and (4.41). Magnetic linkage of ∗1 to its wind, possibly enforcing corotation

of the wind out to an Alfvén radius several times the stellar radius, may amplify K1 very

considerably (Table 4.4 below), and allow, for example, a significant value of K1ζ1 even
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when ζ1 	 ξ , as expected in semidetached binaries. In Chapter 6 I will consider a simple

model for ξ/(ζ1 + ξ ), the fraction of wind from ∗1 that is accreted by ∗2, in detached

binaries.

If mass transfer is by accretion of a part of the wind from one star by the other, rather than

by RLOF, there is no reason to suppose that the orbit will be circular, and in that case ξ may

well depend on the phase in the orbit. Appendix C(e) and Section 6.5 show how, nevertheless,

the effect of such a variable ξ on the parameters of the orbit can be determined by averaging

over a Keplerian orbit.

In some circumstances, the gainer may use part of the accretion energy to blow off a

fraction of the transferred mass. If the nuclear energy of the transferred gas can be so used,

as in classical novae, then possibly all, or even more than all, of the transferred mass may be

ejected (episodically). This process of ‘bipolar reemission’ or mode BP can also be modelled

crudely by the above formulation, taking ζ2 ≥ ξ , along with ζ1 ≈ 0 and K2 = 1. We assume

that the material leaves ∗2 isotropically, or at any rate with bipolar symmetry, and with the

specific angular momentum of the orbit of ∗2. Rows 9 and 11 of Table 4.2 give such models,

with row 9 also having some magnetic braking from its wind. Possibly the bipolar flow from

∗2 might be linked magnetically to ∗2, or its accretion disc, and this might increase K2 above

unity.

Equation (4.39) can be read in an alternative way, as giving the rate of mass transfer ξ

when the wind parameters ζ1, K1 are known. Suppose that

(a) ∗1 fills its Roche lobe, transferring mass, while also losing mass to infinity by stellar

wind

(b) its radius R relates to M in some definite way, as on the ZAMS – Eq. (2.2) – so that R′

is known

(c) ζ2 = 0, and so K2 is irrelevant.

Then by equating R′
L to the known R′, Eq. (4.39) at a given q determines the ratio

ξ/ζ1, i.e. the ratio of mass transfer to mass loss by wind. In row 8 of Table 4.2, for

example, we see that R′
L ∼ 1 for q ∼ 0.5–0.125. On the lower main sequence, R ∝ M1

is a reasonable approximation to the ZAMS relation, and so for the assumed K1 = 15,

we see that ξ ∼ 10ζ1. This particular case has a small non-zero ζ2, allowing a moderate

amount of bipolar reemission.

Clearly for serious study of long-term evolution of systems subject to a combination

of winds, RLOF, MB, etc., it would be necessary to formulate credible expressions for

ζ1, ζ2, ξ, K1 and K2, rather than treat them (or their ratios) as constants. The equations for

Ho, M1 and M2 can then be integrated specifically. In such a calculation we could also

include GR. With a little further elaboration we could also include the synchronisation and

circularisation of Section 4.2. But the values in Table 4.2 give an impression of how the

evolution might go in a reasonably representative variety of cases, and are easily calcu-

lated.

Massive binaries seem particularly prone to stellar wind; not surprisingly, since massive

single stars are (Section 2.4). Table 4.3 gives parameters for a few massive binaries. I have as

usual attempted to nominate as ∗1 the component which I believe was initially the more

massive. For V640 Mon this is not the currently more massive; it seems more likely to be

the larger component. Although the components are large, neither is close to its Roche lobe.

V729 Cyg is much more extreme, but there it seems reasonable to suppose that RLOF is
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Table 4.4. Possible starting conditions for 11 massive binaries

Initial parameters Current parameters

No. Name Case masses; period masses; period ξ ζ1 ζ2

1 V640 Mon AU 72 + 66; 6.7 days to 43 + 51; 14 days 0 2 1

2 V429 Car BW 84 + 21; 42 days to 55 + 21; 80 days 0 1 0

3 0534-69 AUR 41 + 27; 1.4 days

4 V729 Cyg AUS 43 + 39; 1.4 days to 11 + 39; 6.6 days 1 2 1

5 CQ Cep AUN 58 + 15; 2.1 days to 30 + 24; 1.6 days 1 2 0

6 CV Ser BU 33 + 22; 11 days to 11 + 22; 30 days 0 1 0

7 V398 Car AUN 29 + 17; 5.4 days to 13 + 25; 8.3 days 1 1 0

8 V444 Cyg AUN 33 + 16; 1.9 days to 9 + 28; 4.2 days 1 1 0

9 V348 Car AUN 35 + 35; 5.6 days

10 V448 Cyg AN 24 + 16; 5.7 days to 14 + 25; 6.5 days 1 0 0

11 V382 Cyg AS 25 + 21; 1.8 days to 19 + 26; 1.9 days 1 0 0

going on, in addition to wind from both components. Several of these systems seem to be in

the awkward situation that both winds and RLOF have shaped their history.

If components lose enough mass by stellar wind they may avoid RLOF altogether, partly

because the orbit gets wider as the total mass drops, and partly because one or more com-

ponents may be stripped down to their helium cores, which are normally quite small. Alter-

natively, if they do not avoid RLOF altogether, the effect of RLOF may, nevertheless, be

substantially modified from the conservative picture described in Section 3.5. To supplement

our evolutionary notation (cases AR, . . . , AN) there, we add two more cases, AW and AU.

In case AW we suppose that the normal single-star stellar wind is enough to prevent RLOF.

It is not clear that there is any system in the Galaxy that qualifies, but two components of

∼100 M�, in a 20 -day orbit, might do. In case AU, we suppose that the normal wind is not

enough, but the wind is enhanced by binarity so that there is enough wind from one or both

components to modify the outcome severely. We can expect analogues of cases AR, AS, AN,

but with a somewhat different outcome. We refer to these analogues as cases AUR, AUS and

AUN, and attempt to describe their expected evolutionary progress in an extension of the

notation of Section 3.5:

AW: M M E ; T F1,N W → M M D; N W 1 → M M D; PC2 → RM D; N W 1 → RM D; SN → . . . (4.43)

AU: M M E ; T F1 → M M D → M M D; EW 1 → M M D; E J2 → RM D; N W 1 → . . . (4.44)

AUN: ” ” ” → M M S; F1,EW 1 → M M S; E J2 → RM D; N W 1 → . . . (4.45)

AUS: ” ” ” → M M S; F1,EW 1 → M MC ; E J2 → RM D; N W 1 → . . . (4.46)

AUR: ” ” ” → M M S; F2,EW ↔ M MC ; R2,EW → M → . . . (4.47)

We hypothesise that there are case B alternatives at high mass similar to the above:

BW: M M E → H M E → H M E ; PC2 → RM E ; N W 1 → RM E ; SN → . . . (4.48)

BU: M M E → H M E ; T F2 → H M D; EW 2 → H M D; E J2 → RM D; N W 1 → . . . (4.49)

BUN: ” ” ” → H M S; F1,EW 2 → H M S; E J2 → . . . (4.50)

BUR: ” ” ” → H M S; F2 → H MC ; E J2 → . . . (4.51)
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Figure 4.4 The P0/M10 plane, with schematic boundaries between different routes; q0 is
assumed to be in the range ∼1–1.5. Dashed lines indicate, approximately, (a) the ZAMS
lower boundary, (b) the TMS boundary between case A and case B, (c) the beginning of the
giant branch, i.e. the boundary between cases B and C, and (d) the lower boundary of case D
(no RLOF, and no mass loss). Dash-dotted lines are some of the boundaries within case A
(Fig. 3.8); a number of cases (AD, AG, AE, AB, BB) have been ignored. Estimated initial
models (asterisks) for 11 massive systems are taken from Table 4.4: some have q0 outside
the range hypothesised for this diagram. Dotted boundaries are particularly uncertain.
Several features of this diagram are not discussed till later.

We might note that if mass loss does prevent a binary from reaching RLOF, then the distinction

between case A and case B becomes meaningless; but rather than labour this point we

will continue to think of case A as fairly short initial periods and case B as longer initial

periods.

In Table 4.4, we make very tentative estimates of starting parameters, and of the non-

conservative coefficients ζ1 and ζ2 (noting that only their ratios, to each other or to the

conservative coefficient ξ , matter). Two systems have probably not evolved enough to have

lost or transferred much mass. One is a very massive contact binary in the LMC. The other,

V348 Car, is a system of surprisingly high total mass yet with rather little evidence of

either current or former mass loss. Presumably this is because (a) the mass is very evenly

split between two almost equal components and (b) 35 M� may be more-or-less the upper

limit below which winds are unimportant, at least within the main-sequence band, and at

least until some outer layers have already been removed by RLOF. Guided partly by this

very tentative insight, partly also by the probability that the initial period should not have

been uncomfortably small, and further that a Wolf–Rayet remnant of known mass implies

a precursor massive enough to have contained it within its He rich core, we will attempt to

determine plausible initial parameters.
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In Fig. 4.4 I attempt to locate some provisional boundaries in the plane of initial period

and initial mass of ∗1. Of course, initial mass ratio must also play a part, but I have

assumed here that initial mass ratios are not large, or do not matter in the case that RLOF is

avoided.

The term ‘partial accretion’ might be used to describe two rather different physical pro-

cesses: (a) while ∗1 loses mass by stellar wind, ∗2 is able to accrete a portion of it, or

(b) during RLOF only some of the matter lost by ∗1 ends up on ∗2, while the remainder

is somehow driven from the system. However, here we distinguish between these, calling

the second ‘bipolar reemission’ (mode BP) and only the first ‘partial accretion’ (mode PA).

They have in common that both may involve non-zero ξ and ζ1, but they are likely to differ

mainly in the amount of angular momentum that is carried to infinity by the escaping gas. We

assume as a starting point that mass lost to the system in mode BP first changes its specific

angular momentum from the orbital value of ∗1 to the orbital value of ∗2, while in mode PA

it does not. These can lead to very different behaviours of the orbit, since if the mass ratio is

well away from unity the specific angular momenta of the two stars are fairly different. This

difference is seen in rows 7 and 11 of Table 4.2, where in both cases half the gas lost by ∗1

is accreted by ∗2.

Although something like mode BP is seen in several mass-transferring binaries, it is hard to

judge what fraction is expelled and what retained. Equally, there is no doubt observationally

that something like mode PA takes place, but with great uncertainty about the fraction of

wind that is accreted.

Suppose that ∗1 is subject to a wind of strength ζ ′
1, and at the same time to RLOF of

strength ξ ′. Say that ∗2 accretes (temporarily) the stream ξ ′ as well as a fraction α2 of ζ ′
1; but

then reemits, from the near neighbourhood of ∗2, a fraction β2 of all the matter temporarily

accreted. We can continue to model the effect on the masses, and on the orbit, by Eqs (4.36)

and (4.37), provided that we write

ζ1 = (1 − α2) ζ ′
1, ζ2 = β2 (ξ ′ + α2 ζ ′

1), ξ = ξ ′ + α2 ζ ′
1. (4.52)

We will return to these processes in Sections 6.3 and 6.4. Note that in Eq. (4.52) we have

ignored any intrinsic wind ζ ′
2 from ∗2, but this can in fact easily be added into ζ2.

If we attempt to follow the evolution of a binary in some detail, with a non-conservative

model for orbital evolution, and using a stellar evolution code for the interiors, it is difficult

to avoid the necessity for solving for both components simultaneously. This is because the

behaviour of ∗1 may be influenced not just by M2, as in the conservative case, but also by

such parameters as α2 and β2, which themselves will at the least depend on R2, L2 as well

as M2. Of course, at a very crude level of approximation, we might start by assuming α2, β2

to be given constants, in which case we can still evolve ∗1 without direct knowledge of the

structure of ∗2.

A process of envelope loss that we do not consider here in detail is seen in some massive

binaries, say containing a Wolf–Rayet component and an O star. Both stars have winds,

and a region where they collide is sometimes observed, particularly in X-rays. Even if the

region is not directly evident, it is obvious that winds from both components must have some

collision front. However, in default of a detailed model, we assume here that what goes on

in the collision region does not react back on the orbit, and that the effect on the orbit of two

independent winds is given by the same simple mathematical model, Eq. (4.38).



178 Slow non-conservative processes

4.4 Magnetic braking and tidal friction: mode MB
Rotating single stars that lose mass by winds may be subject to magnetic braking,

with magnetic fields possibly linking the star to the outflowing wind (Schatzman 1962) and

forcing the wind to corotate out to an Alfvén radius of several stellar radii. This applies

particularly to relatively late stars, ∼F2 or later. The fact that such stars are generally slow

rotators, whereas earlier stars are rapid rotators, suggests that magnetic braking can operate

effectively only in stars with convective envelopes. This is not conclusive evidence that the

radiative/convective transition in the envelope is the major cause, since if all stars were

subject to magnetic braking on a timescale of say 3 gigayears, stars earlier than ∼F2 would

be little affected and most of those later would be strongly affected. However, it seems a

plausible starting point.

Even without magnetic linkage, we expect some spin-down as a consequence of stellar

wind. If the star rotates roughly uniformly, the mass leaving the surface has more specific

angular momentum than the average in the star, by a factor of about 2R2/3k2. R, k are the

radius and radius of gyration of the star. The factor 2/3 assumes that the mass-loss is uniform

over the surface. We will however continue to use the term ‘magnetic braking’ (MB) to

describe the combined effect. For the Sun the Alfvén radius is ∼12 R�, and the gyration

radius ∼0.26 R�.

If a star is in a close binary, close enough that tidal friction keeps it locked in corotation

with the system, then MB drains angular momentum not just from the stellar spin, but from

the orbit. Hence this mechanism can alter the fundamental orbital separation, and for example

make RLOF occur earlier than might otherwise be the case. Although the process is normally

slow, it can in some cases be more rapid than nuclear evolution or gravitational radiation. We

refer to the combined effect on a binary as MB; we rely on the context to determine whether

we are talking about magnetic braking of single stars, of stars in widish binaries which might

spin down without exchanging angular momentum with the orbit, or of closish binaries where

tidal friction leads to exchange of spin and orbital angular momentum.

A rather detailed theoretical model of axisymmetric, stationary winds with ‘frozen-in’

fields (i.e. the limit of infinite conductivity) can be developed (Mestel 1968, Mestel and

Spruit 1987). The mathematics of this model is outlined in Appendix D. The stationary,

axisymmetric assumptions mean that there are five functions to be solved for: the density, the

toroidal components of both the velocity and the magnetic fields, and the stream functions

of the poloidal components of both fields. The five equations determining them are the two

independent components of the steady dynamo equation

∇ × (v × B) = 0, (4.53)

and the three of the steady momentum equation

ρv · ∇v = −∇ p − ρ∇� + 1

μ0

(∇ × B) × B. (4.54)

Three first integrals can be extracted rather generally, and also a fourth if the wind is assumed

to be adiabatic or isothermal; one of these integrals tells us that field lines and stream lines

in a plane through the rotation axis coincide. The remaining equation, which can be viewed

as determining the poloidal part of the magnetic field, is unfortunately rather complicated.

The model is sketched in Fig. 4.5. If it is assumed that the magnetic field of the star, in the

absence of wind, is roughly dipolar, then the model shows that field lines originating on polar
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Figure 4.5 An artist’s impression of the field lines and stream lines (which coincide) in an
expanding magnetic stellar wind, assuming axial symmetry. The magnetic field (arrows) is
outwards on the northern hemisphere and inwards on the southern hemisphere. The gas flow
is outwards on both hemispheres, but is zero in the ‘dead zone’, a toroidal belt separating
the flows. There is a cusp in the critical field line that separates the wind zone from the dead
zone. In the simplest model, a current sheet is required in the equatorial plane, to support
discontinuities in the tangential magnetic field.

caps will be stretched by escaping wind to reach infinity roughly radially (the ‘wind zone’),

while field lines originating in an equatorial belt will cross the equatorial plane normally, and

trap a region of hot gas (the ‘dead zone’) in which the gas flow is purely toroidal. On field

lines within the wind zone there will be an ‘Alfvénic point’ at a distance RA, say, such that

at smaller distances the wind is obliged by magnetic stress to corotate with the star, while

at larger distances the wind expands freely conserving its specific angular momentum. If the

Alfvénic point is at several times the radius of the star, the escaping gas will remove a much

larger amount of angular momentum per unit mass than is contained in the body of the star,

and thus the rotation will be braked.

In general, we expect the torque to depend on both the mass-loss rate |Ṁ1| and the sur-

face dipolar magnetic field BP. Using the analysis of Mestel and Spruit (1987), outlined in

Appendix D, but simplifying to a very considerable extent as summarised in Eqs (D27)–

(D34), we can estimate the dependence as follows. The wind is presumed to be corotating

with the star from the stellar surface to an Alfvén radius RA at which it attains escape velocity.

We can then write

|Ṁ1| ∼ 4π R2
AρAvA, ρAv2

A ∼ B2
A

μ0

, v2
A ∼ 2G M1

RA

,
BA

BP

∼
(

R

RA

)2

, (4.55)

where suffix A refers to the Alfvén radius. The magnetic field is to be identified very loosely

with the poloidal field BP of Appendix D. Its assumed decrease as B ∝ r−2 is based on a

‘split monopole’ model of the field. The field lines are assumed to be dragged out almost

radially by wind, with a northern monopole in one hemisphere, a southern monopole in the

other, and a toroidal current sheet in the equatorial plane separating them (Fig. 4.5).

From estimates (4.55), we easily obtain(
RA

R

)3/2

= C1

(
R5

2G M1

)1/2

|Ṁ1|−1 4π B2
P

μ0

, (4.56)
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and corresponding dependences for vA, ρA, BA. C1 is a fudge factor that we calibrate

from Solar data. For the Sun, BP ∼ 1.25 × 10−4 tesla (∼1.25 gauss) and |Ṁ1| ∼ 10−7.6

M�/ megayears. Then the observed value RA ∼ 12 R� means that we should take C1 ∼ 0.6.

The braking rate should be

Ṗ1

P1

= − 1

I�

(
dI�

dt

)
MB

∼ |Ṁ1|R2
A

I
∼ C4/3

1

R2

M1k2

(
R5

2G M1

)2/3

|Ṁ1|−1/3
(

4π B2
P

μ0

)4/3

. (4.57)

It can be seen that the spin-down timescale depends rather weakly on Ṁ1 and rather strongly

on BP. We can imagine that spin-down becomes very rapid if BP is large and |Ṁ1| is small,

but at least in stars with active surface dynamos it is likely that they correlate positively (see

Section 4.5).

For notational purposes, we call the rotational period P1, to distinguish it from the orbital
period P – although for the moment we are only talking about single stars. But we use �

rather than �1 because (a) we use ω rather than � for the mean orbital angular velocity, and

(b) we assume throughout most of this chapter, just for clarity, that only ∗1 is active. This

latter assumption also allows us to drop the suffix unity on R and L; yet we keep a suffix on

M1, because in a binary M2 and the combined mass M ≡ M1 + M2 are still relevant, even if

∗2 is inert.

Unfortunately, the above model does not by itself predict either the magnitude of the wind

or the strength at the stellar surface of the magnetic field; these have to be fed in as boundary

conditions. Presumably they are determined by processes inside and at the surface of the

star. I will attempt to model these in the next section. Nor can the magnetic-braking model

readily incorporate the fact that most magnetically active stars show non-axisymmetric and

non-stationary behaviour. So, although we rely on the concept of corotation out to an Alfvénic

radius, and free expansion beyond, we discuss here first some more empirical determinations

of the braking rate.

Observations of the rotation rates of single, roughly Solar, stars (Kraft 1967), in clusters of

different ages, suggest that these stars slow down on a timescale of about 103–104 megayears,

which is much less than their mass-loss timescales of 107 megayears – Eq. (2.73). This is

roughly consistent with the fact that the Solar wind is observed to corotate out to ∼12 R�
(Pizzo et al. 1983). Skumanich (1972) estimated, from Kraft’s data, a formula for rotation

period as a function of age: his result can be written

P1 ∼ 0.4t
1
2 , (4.58)

with P1 in days, t in megayears. This was based on rotation velocities of stars in three clusters

of known ages. Equation (4.58) is consistent with a magnetic braking rate for Solar-type stars

given by

Ṗ1

P1

∼ 1

t0

(
4

P1

)2

, t0 ∼ 200 megayears, (4.59)

in the same units. However, for the Sun (P1 = 26 days) this gives a braking timescale too

short by a factor of ∼2.5: it should be ∼20 gigayears (Pizzo et al. 1983).
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Stȩpień (1995) proposed a braking law for Solar-type stars, based partly on observation and

partly on theory, which roughly agrees with Eq. (4.59) at P1 ∼ 4–8 days, but gives a smaller

torque at both larger and smaller period. We adopt here the essence of Stȩpień’s result, but

use a different mathematical form for his expression, a form that integrates analytically but

that agrees to within about 50% for the period range 0 <∼ P1
<∼ 27 days:

Ṗ1

P1

∼ 1

t0

[
1 +

(
P1

9

)2
]−2

, t0 ∼ 200 megayears. (4.60)

Stȩpień’s formula has e−0.2P1 instead of the expression to the right of t−1
0 . Equation (4.60)

gives a value of spin-down timescale for the Sun of ∼18 gigayears, in better agreement than

Eq. (4.59) with the fairly direct observational determination of Pizzo et al. (1983). We can

integrate the resulting formula to give an estimate of the time taken for a single star to spin

down from Pa to Pb:

t

t0
∼

[
ln

(
P1

9

)
+

(
P1

9

)2

+ 1

4

(
P1

9

)4
]Pb

Pa

. (4.61)

For the Sun, this means that ∼5.4 gigayears would be required for spin-down from an initial

value of a few days to the present, only ∼20% longer than it should be.

Stȩpień (1995) suggested that Eq. (4.60) can perhaps be generalised to stars other than

Solar-like if

(a) The ratio P1/9 is replaced by a multiple of the Rossby number σ ≡ P1/tET. This is the

ratio of rotation period to the convective envelope turnover time tET, which is ∼15 days

for the Sun, Eq. (2.33).

(b) A multiplicative factor, f (M1, R, L), say, is introduced, which is unity for

M1 ∼ M�, R ∼ R�, L ∼ L�. Then we might hope that a more general expression

could be something like

Ṗ1

P1

∼ 1

t0

f (M1, R, L)

(1 + 2.8σ 2)2
, σ ≡ P1

tET

. (4.62)

In the next section, I will attempt a simplistic model that gives a functional form for f .

In a wide binary, angular momentum loss by winds would simply slow down one or other

star (or both) independently of the orbital motion, but in a close binary tidal friction may

keep the stars corotating so that the magnetically coupled winds may drain the orbital angular

momentum (Huang 1966, Mestel 1968, Eggleton 1976, Verbunt and Zwaan 1981, Mestel and

Spruit 1987). Because the orbital moment of inertia is much greater than a single star’s, this

might seem like a small effect, but it is balanced by the fact that the star could be rotating

much more rapidly than if it were single. Indeed, as the orbit loses angular momentum the star

spins up, not down, because of tidal coupling. As a consequence binaries with P <∼ 1.5 days,

or thereabouts, may (if they contain a Solar-type star) be forced appreciably closer, even to

RLOF, in the course of the Hubble time (van’t Veer 1976, Vilhu 1981, Rucinski 1983). If

tidal friction is strong enough to ensure corotation, so that the angular momentum lost in the

wind is drained ultimately from the orbit, Eq. (4.62) along with Eq. (3.14) tells us that the
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rate of orbital period change, in the absence of significant mass loss, is

− 1

tMBb

≡ 1

Ho

(
dHo

dt

)
= Ṗ

3P
≈ 1

Ho

(
dI�

dt

)
MB

= − λ

tMBs

∼ − λ

t0

f (M1, R, L)

(1 + 2.8σ 2)2
, (4.63)

where λ, as in Eq. (4.15), is the ratio of spin to orbital angular momentum. The letters b and s

in the subscripts refer to binary and single-star timescales. The factor λ as well as σ contains

a P-dependence. From Eqs (4.15), (3.5), (3.11) and (3.18),

λ = λ0

(
Pcr

P

)4/3

, λ0 = M

M2

RL
2

a2

k2

R2
. (4.64)

If we take q ∼ 1, and polytropic index ∼3, we get a representative value of λ0 ∼ 0.023. Pcr

is the period at which the star fills its lobe (Table 3.2). Hence

Ṗ

P
= −3λ0

t0

(
Pcr

P

)4/3 f (M1, R, L)

(1 + 2.8σ 2)2
. (4.65)

If initially P 	 tET (e.g. P<∼ 2 days), then σ ∼ 0, although the P-dependence implicit in σ

can be integrated easily enough. Then a binary containing a dynamo-active star spins up from

period P0 to Pcr in a time

t

t0
∼ 1

4λ0 f (M1, R, L)

[(
P0

Pcr

)4/3

− 1

]
. (4.66)

With t0 ∼ 200 megayears – Eq. (4.60) – and λ0 ∼ 0.023 – Eq. (4.64) – and assuming Solar

parameters, the period could decrease from a few days to the point where contact is reached

(P ∼ Pcr ∼ 0.3 d) in something like the Hubble time.

It is regrettable that in using either Eq. (4.60), as here, or Eq. (4.59) to estimate magnetic

braking in short-period binaries we are extrapolating well outside the range of validity of

either. The two estimates differ by a very large factor at, say, 0.1–0.3 days, which is the kind

of period relevant to contact binaries and cataclysmic binaries.

Mass loss will cause a single star to spin down, even in the absence of magnetic field,

because the specific angular momentum at the surface is greater than the mean. We replace

Eq. (4.57) by

− 1

I�

dI�

dt
∼ |Ṁ1|

2
3

R2 + R2
A

I
≡ 1

tMBs

. (4.67)

Although tMBs defined in this equation is not wholly magnetic in origin, we refer here to the

combination as mode MB.

In a binary that is sufficiently close for tidal friction to enforce corotation, we have yet

another term for angular momentum loss, because even if R = RA = 0, mass leaving ∗1 will
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carry off orbital angular momentum. Following Eq. (4.34), we write

− 1

Ho

(
dHo

dt

)
= |Ṁ1|M2

M M1

[
1 +

2
3

R2 + R2
A

a2

M2

M2
2

]

≡ K
|Ṁ1|M2

M M1

≡ 1

tMBb

, (4.68)

where Ho is the orbital angular momentum, a is the orbital radius, and M ≡ M1 + M2. K is a

factor giving the excess of actual angular momentum loss to its minimal value. For binaries,

we use the term MB to cover all three terms, for brevity: usually it is obvious by context

whether we are referring to single stars or binaries, and where it is that we use MBs and MBb.

We define a third timescale, for binary mass loss, by

|Ṁ1|
M1 + M2

≡ 1

tML

. (4.69)

Presumably a complete theory of winds, determining Ṁ1, and of dynamo activity, deter-

mining BP, would provide values for these quantities which when substituted into Eq. (4.57)

give something close to the semi-empirical Eq. (4.62), for Solar-type stars. These two theories

are probably not independent, since we can see in the Sun that it is largely or wholly magnetic

energy dissipation that drives the wind. In the next section we shall attempt to quantify this

in a very crude way.

4.5 Stellar dynamos
Much excellent data on stellar rotation and stellar activity exists, but it is not easy

to translate this into a usable mathematical formulation of magnetic braking. Mainly, this is

because what are usually measured are parameters such as the strength of the emission cores

in the HK lines of calcium, or the X-ray or radio flux. These themselves need a comprehensive

theoretical model to be translated into such quantities as magnetic field and mass-loss rate.

Equivalently, although much excellent theoretical work has been done on stellar dynamos,

this work usually shows chaotic behaviour; and it normally starts by assuming a given law

of differential rotation. Massive three-dimensional computational effort will be required

to build a self-consistent MHD model of a rotating convection zone, that one hopes would

generate for itself the necessary differential rotation as well as the magnetic field and the mass

loss.

I present here an elemetary recipe for dynamo activity, which is necessarily ad hoc in the

absence of a detailed theory. Such a theory would no doubt be very complicated. The recipe’s

purpose is to fill in the two missing links of the previous analysis, i.e. to determine as far

as possible from first principles the two parameters |Ṁ1| and BP that themselves determine

the braking rate. The present analysis is largely dimensional, but also makes use of some

observational relationships such as Stȩpień’s (1995) correlation as approximated in Eq. (4.60).

It is based on the following assumptions:

(a) The velocity field in the star is determined by its overall rotation, by the extent and

strength of its turbulent convection, and by their interaction. In particular, we suppose

that there is differential rotation, which is driven solely by the combination of these two
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influences. Then if �� is some measure of the differential rotation (mainly concentrated

at the base of the convection zone, in the Sun), we expect that

�� = 1

tET

E(σ ), σ ≡ P1

tET

, tET ≡ l

w
, (4.70)

where w and l are the velocity and mean free path of turbulent convective eddies at

some reference point, say half way in radius between the top and the bottom of the

zone – this is one way that tET was estimated in Section 2.2.3. E is some dimensionless

function to be determined or guessed at, and σ , as in Eq. (4.62), is the Rossby number,

also dimensionless. On the Solar surface, rotation is seen to vary with latitude as � ∝
1 − 0.08 P2(cos θ ). Consequently we take �� = 0.08�, which gives E ∼ 0.3 for the

Sun. We also have σ ∼ 1.7 for the Sun.

(b) The magnetic field, driven by an α� dynamo, can be represented by two values: BP,

an overall poloidal field, and Bφ , a toroidal field. This type of dynamo, which might

better be called the α, �, �� dynamo, relies on differential rotation �� to wind up the

internal poloidal field and produce a toroidal field. In a purely axisymmetric situation it

would not be possible for this toroidal field to be converted back into a poloidal field, thus

completing a feedback loop, and so the poloidal field would ultimately decay by ohmic

dissipation. But small-scale non-axisymmetric perturbations due to turbulent convection

can be allowed for at least crudely. Using a Fourier transform analysis (Appendix E),

they lead to a small complex coefficient α which allows a poloidal field to be regenerated.

When the equations of the α� dynamo are reduced to their barest essentials – Eqs (E19) –

they emerge as

Ḃφ ∼ ��

l
RBP, ḂP ∼ αBφ

R
. (4.71)

The (complex) coefficient α relates to the ‘helicity’ of the turbulent motion, i.e. the mean

value of v · ∇ × v. In a non-rotating situation this can be expected to average to zero, but

Coriolis force leads to cyclonic turbulence with a non-zero mean helicity. The process

can be observed fairly directly on the face of the Sun. The toroidal flux loops deep in

the convection zone rise to the surface because of magnetic buoyancy. They become

‘kinked’ by the turbulent convection, so that they emerge at the surface as pairs, rather

than all at once. With no helicity, these pairs would, on average, be aligned east–west,

but cyclonic turbulence gives them on average a slight north–south tilt. The pairs drift

polewards in a large-scale meridional circulation current, which presumably, like the

differential rotation, is a consequence of the interaction of convection with rotation.

As they drift and decay (not so much by ohmic diffusion, but by the highly non-linear

process of field-line reconnection above the photosphere), the tilt increases, giving a

small contribution to the large-scale poloidal field.

Equations (4.71), with complex α, give exponential growth as well as cyclic behaviour,

both on a timescale of
√

l/|α��|. However, we can expect that the neglected non-linear

dissipation terms will prevent growth beyond some amplitude, and so lead to a limit-

cycle, whose frequency �c is likely to be comparable to the growth rate and cycle

frequency of the linear regime. We identify this with the Solar cycle frequency, which

allows us to estimate α, at least for the Sun and a number of Solar-type stars for which

cyclic activity is observed. Although �c might depend on field-strength, for example,

we assume for simplicity that, like ��, �c is some Rossby-number-dependent function
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Table 4.5. Solar parameters connected with dynamo activity

Observed Stellar model Dynamo model

M1 2.0 × 1030 RHT 1.27 × 109 σ 1.7

R 7.0 × 108 D 2.0 × 108 |α| 0.029

L 3.8 × 1026 l 6.6 × 107 Bφ 0.030

� 2.8 × 10−6 w 51 E 0.29

2.2 × 10−7 tET 1.30 × 106 F 0.0129

�c 10−8 ρ 11.7 H 6.4 × 10−4

BP 1.25 × 10−4 w
√

μ0ρ 0.58 C1 0.58

|Ṁ1| 1.7 × 109 k2 3.4 × 1016 C2 0.155

ρ 1.4 × 103

wG 36

All quantities are in SI units.

(with dimensions of time−1) of the turbulent velocity field:

�c ∼ 1

tET

F(σ ). (4.72)

Then, from Eqs (4.71), α and the ratio BP/Bφ are clearly given by

�2
c ∼ |α|��

l
, |α| = l

tET

F2(σ )

E(σ )
, Bφ ∼ R

l�c

BP ∼ R

l

E

F
BP. (4.73)

We assume that both BP and Bφ scale like w
√

μ0ρ, where w is the mean velocity of

convection, since this has the appropriate dimensions. Consequently we write

BP = w
√

μ0ρ H (σ ), Bφ = w
√

μ0ρ
R

l

E H

F
, (4.74a,b)

taking the density ρ, like w, l, to be to be a mean value somewhere in the convection

zone.

(c) The toroidal field Bφ is produced near the base of the convection zone, where �� is

concentrated, but levitates to the surface, being shredded in the process by the turbulent

convection. It emerges chaotically at the surface, and largely dissipates above the photo-

sphere, driving a wind which carries away part of the field not dissipated. Arguably the

wind is driven by the rate of dissipation of magnetic energy in the course of a magnetic

cycle:

2G M1

R
|Ṁ1| ∼ C2 4π R2 D �c

B2
φ

2μ0

, taking Bφ � BP, (4.75)

where D is the depth of the convection zone (so that 4π R2 D is approximately its volume).

C2 is another fudge factor, which represents the fraction of magnetic energy going into

escape. Other fractions might be radiated away, or used to drive the wind to higher than

escape velocity. Numerical estimates suggest that C2 ∼ 0.16 for the Sun, and since there

seems no obvious reason why this should depend on σ we take it to be constant. Table 4.5

gives Solar quantities estimated by a combination of direct observation, stellar-structure

modelling, and the dynamo model proposed here.
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For a given M1, R, L , the extent of the convection zone can be estimated reasonably well

as a function of the ratio of the stellar radius R to the radius RHT that the star would have if

it were on the Hayashi track. RHT is a function of L , M1, given by Eq. (2.47). In SI units

RHT = R�

[
1.65

(
L

L�

)0.47

+ 0.17

(
L

L�

)0.8
] (

M�
M1

)0.31

. (4.76)

For the Sun, R/RHT ∼ 0.55, and this ratio drops rapidly further up the main sequence. We

reintroduce the two global quantities wG, ρ, i.e. the mean convective velocity and the mean

density – Eqs (2.29) –

wG =
(

L R

3M1

)1/3

, ρ = 3M1

4π R3
. (4.77)

The velocity wG is a convenient dimensional quantity even when the star, or a part of it, is

not actually convecting. Then an appropriate D, l, w, ρ in the surface convection zone can

be approximated by empirical power-law depences on R/RHT:

D ∼ R

(
R

RHT

)2.1

∼ 3 l, w ∼ wG

(
R

RHT

)−0.6

, ρ ∼ ρ

(
R

RHT

)8.0

. (4.78)

The powers were estimated from ZAMS models of 0.8 and 1.2 M�. We see for instance that

tET of Eq. (4.70) and the magnetic field BP of Eq. (4.74a) are

tET = 0.33

(
3M1 R2

L

)1/3 (
R

RHT

)2.7

,

BP =
(

3μ0

4π

)1/2 (
L2 M1

9R7

)1/6 (
R

RHT

)3.4

H. (4.79a,b)

All quantities here are in SI units, not Solar units. These relations give Bφ from Eq. (4.74b);

substituting into Eq. (4.75) we obtain |Ṁ1| and the binary mass-loss timescale tML:

M1 + M2

tML

≡ |Ṁ1| = C2

RL

4G M1

(
D

l

)3 (
R

RHT

)2.0 E2 H 2

F
. (4.80)

Then we can use BP and |Ṁ1| in Eq. (4.56) to obtain the Alfvén radius,(
RA

R

)3/2

= 2C1

C2

(
l

D

)3 (
2G M1

R

)1/2 (
3M1

L R

)1/3 (
R

RHT

)4.8 F

E2
, (4.81)

and use this in Eq. (4.57) to obtain the braking rate for single and also binary stars:

1

λtMBb

∼ 1

tMBs

∼ 3C4/3
1

C1/3
2

R2

k2

l

D

(
R3

2G M1

)1/3 (
L

3M1 R2

)5/9 (
R

RHT

)8.4 F1/3 H 2

E2/3
. (4.82)

Comparing this result with the semi-empirical Eq. (4.62), we can identify the factor

f (M1, R, L) with the first few factors of this expression, and the σ -dependent factor

(1 + 2.8σ 2)−2 with the last factor, F1/3 H 2/E2/3, apart from constant factors in each case,

which can be put together and identified with the empirical timescale t0. The approxima-

tion signs in these equations allow for the fact that we have not yet applied the corrections

suggested in Eqs (4.67) and (4.68).
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Although we have identified one combination of E(σ ), F(σ ) and H (σ ) with an empirical

function of σ , we need two more. Unfortunately we have a direct measure of �� or BP for

few stars other than the Sun. However, in a few cases a magnetic activity cycle can be seen and

the frequency �c estimated. Brandenburg et al. (1998) found �c ∝ �1.5tET
0.5 (F ∝ σ−1.5),

for six active stars with rotation periods of ∼10–20 days and σ ∼ 0.5–1.4. They also found

that for 15 less active stars with rotational periods of about 25–50 days and σ ∼ 1.2–1.8

there was a similar slope but with �c larger by a factor of ∼5; at σ ∼ 1.2–1.4 there were one

or two stars on both branches. They interpret this behaviour as suggesting a mode change in

the dynamo at an intermediate σ .

If, then, we put together two approximate pieces of observational information with one

theoretical postulate, we can estimate each of E, F, H as functions of σ . They are

(a) F1/3 H 2/E2/3 ∝ (1 + 2.8σ 2)−2, by comparing Eqs (4.82) and (4.59).

(b) F ∝ σ−1.5, as in the paragraph above; except that on the supposition that there should be

saturation at small σ rather than a divergence we replace this by F ∝ (1 + 2.8σ 2)−0.75.

(c) E/F2 ∝ σ , on the basis that α in Eq. (4.72) should be proportional to � ∝ 1/σ

(Appendix E); but we also assume here that there is saturation at small σ (rapid rotation),

so that E/F2 ∝ (1 + 2.8σ 2)0.5.

Then our model requires

E ∼ 2.7

1 + 2.8σ 2
; H ∼ 0.0096

(1 + 2.8σ 2)1.21
;

F ∼ 0.014

(1 + 2.8σ 2)0.75
if σ <∼ 1.3; F ∼ 0.07

(1 + 2.8σ 2)0.75
if σ >∼ 1.3. (4.83)

The jump in F at σ ∼ 1.3 takes account of the suggestion by Brandenburg et al. (1998) that

there are two distinct modes on either side of σ ∼ 1.3.

Note that Eq. (4.82) did not include the extra spin-down terms, shown in Eq. (4.68), which

occur even when RA = 0. However, it is easy to add in these extra terms, since we know both

|Ṁ1| and RA separately.

Numerically, our final results for the mass-loss rate and the Alfvén radius as functions of

M1, L , R and P1 are, in SI units,

|Ṁ1| ∼ 0.050
RL

G M1

(
R

RHT

)2.0 1

(1 + 2.8σ 2)3.67
, (4.84)

and (
RA

R

)3/2

= 0.0039

(
2G M1

R

)1/2 (
3M1

L R

)1/3 (
R

RHT

)4.8

(1 + 2.8σ 2)1.25, (4.85)

with

σ = P1

tET

, tET = 0.33

(
3M1 R2

L

)1/3 (
R

RHT

)2.7

, (4.86)

and with RHT given in terms of M1, L by Eq. (4.76). The above are valid for σ <∼ 1.3; if

σ >∼ 1.3, |Ṁ1| should be multiplied by five, and (RA/R)3/2 divided by five.
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For a red giant R ∼ RHT, and in that case Eq. (4.84) bears close comparison with Reimers’

(1975) empirical formula (2.74), which, also in SI units, is

|Ṁ1| ∼ 1.3 × 10−5 RL

G M1

. (4.87)

These agree provided that σ ∼ 1.2–1.8 is reasonably typical for red giants; but clearly we

should expect a substantial spread. It is no doubt a coincidence, but a rather interesting one,

that although stars slow down as they become red giants the convective turn-over time goes

up to the extent that the Rossby number does not change as much as one might expect. For

those red giants rotating sufficiently rapidly that σ<∼ 0.3 (which will usually only be those

that are in relatively close binaries where they are forced by tidal friction to corotate) we can

expect mass-loss rates larger than Reimers’ formula by >∼103. Note that if the enhancement

of Eq. (4.87) is by only a factor of 102 it puts the mass loss on a nuclear timescale. We will

return to this in Section 4.6.

The above formulation represents a ‘complete’ theory of magnetic braking, to the extent

that it predicts the braking rate of a single star, and hence of a binary assuming tidally-

induced synchronism, as a function of mass, radius, luminosity and rotation period only. As

by-products, the model predicts also such quantities as �c, ��, BP, Bφ . For example, the

relative differential rotation is

��

�
= σ E(σ )

2π
∼ 0.43σ

1 + 2.8σ 2
, (4.88)

which has a maximum value of 13% at σ ∼ 0.6, but which is very small both for rapidly

rotating K dwarfs (σ ∼ 0.01) and slowly rotating red giants (σ ∼ 10). Of course, the model

is extremely tentative, but we shall use it as a reference point for discussion.

To clarify a point that might seem confusing, we should emphasise that the Bφ of dynamo

theory (above, and Appendix E) is different from and independent of the Bφ of magnetic-

braking theory (Appendix D); but on the other hand BP is taken to be the same. Both Bφ

can be seen to be consequence of differential rotation, but in the very different environments

of the stellar interior (specifically, the base of the convection zone) and of the stellar wind.

It is not yet clear what drives the interior differential rotation, although it can be measured

in some detail by helioseismology. It is probably caused by a combination of Coriolis force

with turbulent convection. What drives differential rotation in the wind is more simply the

fact that the poloidal field cannnot be strong enough to enforce corotation indefinitely, but

only as far as the Alfvén radius. In our analysis of the wind – Eqs (4.55) to (4.57) – we make

no reference to the external Bφ because we have already eliminated it (crudely) using the

precepts of Appendix D.

Some timescales expected in a few cases are shown in Table 4.6: nuclear evolution, thermal

(Kelvin–Helmholtz) evolution, magnetic braking (for a single star, i.e. for ∗1 assumed single

but rotating with the period listed), gravitational radiation – Eq. (4.4), circularisation by tidal

friction – Eqs (4.10 and 4.31), synchronisation by tidal friction – Eq. (4.15), mass loss –

Eq. (4.80), and magnetic braking with tidal friction (for a binary star). The last two are based

on Eq. (4.85), but tMBs includes the additional non-Alfvénic term of Eq. (4.67) and tMBb also

includes the further term in Eq. (4.68). Note that the circularisation, GR and MBb timescales

are for e-folding of eccentricity and period, not angular momentum. The timescales involving

tidal friction assume e ∼ 0, ω ∼ �‖.
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Table 4.6 also gives the parameter K1 of Eqs (4.37) and (4.41). This is an estimate of

the ratio of actual to orbital specific angular momentum carried off in the wind. The stellar

activity produces both mass loss and angular momentum loss, and whether it is the mass

loss, which tends to increase the separation, or the angular momentum loss, which tends

to decrease it, that dominates is approximately decided by K1 and the mass ratio: angular

momentum loss wins if K1
>∼ 1 + q .

In Table 4.6 only ∗1 is considered active, ∗2 being supposed inert, although in some cases

(rows 3a, 3b, etc.) we interchange them to see which is the more active. For example, rows 4a

and 4b imply that the timescale for period change by mode MB in a binary with parameters

(0.8 + 0.6 M�, 3 d) is 2.7 gigayears, the harmonic sum of the two values of timescale. Various

evolutionary states (M, H, G, W, N; Table 3.5) are hypothesised for each component. Some

systems are assumed detached, some semidetached, and one system is in contact. These data

show that:

(a) a 12-day orbit containing two Solar-type stars can circularise in substantially less than

a Hubble time; half the time listed, since the components contribute equally. A 4-day

orbit can shrink its period significantly by mode MB in a similar time.

(b) two M dwarfs in an 0.8-day binary (row 5) can shrink their orbit by mode MB in much

less than a Hubble time

(c) in a contact binary of roughly Solar temperature (row 6) the magnetic-braking timescale

may be substantially shorter than the evolutionary timescale, due mainly (at least in the

case tabulated) to the more massive component

(d) red giants in close binaries (rows 7–12) can lose both mass and angular momentum on

roughly the nuclear timescale

(e) short-period binaries containing a late main-sequence dwarf can shorten their periods

(rows 13–19) on much less than a Hubble timescale, with mode MB dominating mode GR

by an order of magnitude or more

(f) binaries with nearly lobe-filling components have very short tidal-friction timescales,

and so can generally be assumed to be circular and corotating

(g) for short-period binaries containing a Solar-type star, mode MB may be more effective

(row 13) than Mode NE in bringing the system towards RLOF.

The model presented here for magnetic braking is similar to that of Tout and Pringle

(1992), who however restricted their discussion to fully convective pre-main-sequence stars.

They also used somewhat different approximations regarding conditions at the Alfvén radius.

Even if one accepts the general concept that simple equations may be sufficient to model the

dynamo and it consequences, there remains a fair amount of choice about the nature of the

formulae to be used.

Although the estimates (4.84) and (4.85) above may apply at some level of approximation

to single stars, it is by no means obvious that they can be applied directly to components of

binaries. For example, it would not be surprising if tidal friction in a binary, as one potentially

active component evolves towards filling its Roche lobe, brings the surface into corotation

more quickly than the interior, thus possibly enhancing the differential rotation causing the

dynamo. But equally, once near-uniform rotation is achieved, tidal friction might diminish
the differential rotation of the sort observed on the Solar surface.

I have incorporated the above detailed yet speculative model into codes which follow

either the orbital evolution alone (taking the interior evolution to be negligible) or the
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(a) (b)

age (megayears) age (gigayears)

Figure 4.6 Orbital and spin evolution of a model for BY Dra. (a) the short term, starting
200 megayears ago and ending 150 megayears ago. The initial period and eccentricity were
chosen to give the present period and eccentricity after 200 megayears. (b) the long term,
starting from present conditions. Eccentricity, pluses; orbital period (log days), asterisks;
rotational periods (log days) of ∗1 and ∗2, circles and crosses. For (a) only: pseudo-
synchronous period (log days), squares; cosine(inclination), for ∗1 only, triangles.
‘Inclination’ means the angle between the stellar spin and the orbital spin.

combination of stellar and orbital evolution. Figure 4.6 shows results for the active K/M

dwarf binary BY Dra (Boden and Lane 2001). This is a double-lined binary, which does

not eclipse but which has a remarkably small interferometric orbit (4.4 mas). Although the

inclination is in principle measured, it is somewhat uncertain (151.8 ± 3.5◦) and allows a sub-

stantial range of masses. We assume initial parameters (0.73 + 0.64 M�, 9 days, e = 0.54).

After ∼200 megayears it reaches its present parameters (6 days, e = 0.3). We choose this age

because the system has a cpm companion, M5V at 17′′ (Zuckerman et al. 1997), which is

presumably at least this old. Because we cannot be clear how the binary formed in the first

place, we cannot be sure that evolution ‘started’ with synchronous, parallel rotation in both

components, and so we assume arbitrarily that the initial spin periods were both 2 days, and

that the two axes were at 60◦ to the orbital axis, and 120◦ to each other in the same plane.

In Fig. 4.6a, we see that pseudo-synchronisation and parallelisation take ∼6 megayears. Our

model gives the spin period of ∗1 as 4 days, not very different from the observed value of

3.83 days. In Fig. 4.6b we follow the evolution much further, and find that the orbit shrinks to

RLOF at ∼3.4 gigayears, by which time the masses have dropped 15% and 10% respectively.

They might form a contact binary (case AR, Section 3.5), but also might merge quickly in

a hydrodynamic burst of RLOF (case AD). However, conservative evolution would not lead

to any interaction at all (within a Hubble time), and so we define a new sub-case: case AA.

Yet another sub-case occurs if mass loss is relatively stronger than angular momentum loss.

In that case the binary widens and can avoid interaction. We call this case AM. These are

discussed further in the next section.

Unfortunately we cannot draw as strong conclusions as we would like from BY Dra,

because (a) the inclination and, therefore, the masses are rather uncertain, and the dynamo
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model depends rather sensitively on mass on the lower main sequence; and (b) the third body

might influence the close pair’s eccentricity through Kozai cycles (Section 4.8). These were

included in Fig. 4.6 and had little effect, but it would be possible to start with quite different

conditions and end up with much the same system as is seen, thanks to Kozai cycles.

Magnetic braking, and therefore dynamo activity, is a crucial process in the evolution of

certain types of binary (Algols, contact binaries, CVs, LMXBs), and at some stage a model

has to be included in attempts to understand the course of their evolution. But it should not

be forgotten that winds carry off mass as well as angular momentum, and whether the orbit

shrinks or expands in response to stellar wind depends mainly on the ratio of Alfvén radius

to orbital radius, not stellar radius – Eq. (4.68).

It is often asserted that dynamo activity should vanish if a star becomes fully convective,

as on the lowest portion of the main sequence. We can see no justification for that, either

in theory or in observation. Many very late M dwarfs are flare stars with evidently active

dynamos, and yet fully convective. Active low-mass young red or brown dwarfs have been

seen in the Pleiades, with rotational periods of 2–3 hours. The details of the dynamo process

may well be very different from those in more slowly-rotating and more massive Solar-type

stars, but it is clear that considerable dynamo activity takes place in rapidly-rotating stars at

the bottom of the main sequence and beyond.

4.6 Binary-enhanced stellar winds: modes EW, MB
Isolated stars that evolve to large radii will rotate very slowly, partly because the

moment of inertia increases and partly because even a modest stellar wind, and even without

the extra effect of magnetic braking, tends to remove a disproportionate amount of angular

momentum. For example the 4 M� star of Table 3.2 increases its radius by ∼30 between the

ZAMS and helium ignition, and if it started with a rotational period of 1 day would have

slowed to more than 1000 days. However, at its temporary maximum radius of over 70 R� it

could still (just) fit within a binary of period 110 days. Thus, tidal friction might spin such

a star to 10 times the rotation rate that it would experience if single. Since the convective

turnover time of red giants is ∼ 100–200 days, this can be expected to have an effect on its

mass-loss rate. Our specific model of the previous section predicts a specific increase, but

even if the model is not correct some increase is to be expected.

Cool giants and supergiants usually show evidence of winds, but there may be a dichotomy

between those with relatively tenuous, hot fast winds and those with more copious, cool and

slow winds (Linsky and Haisch 1979). The former may be driven partly at least by dynamo

activity, while arguably in the latter it is the more direct effect of high luminosity, with

radiation pressure acting on grains that form in the cool superphotospheric region. Possibly

rotation plays a more minor role in the latter. But any star which is close to filling its Roche

lobe is also rotating within a factor of three of its break-up velocity – Table 3.1 – and this

seems very likely to be a cause of ‘enhanced wind’, whatever the detailed mechanism of

the ‘normal wind’. It is not easy to demonstrate either observationally that such a process

is taking place, or theoretically that such a process must take place, but there are several

pointers from individual systems, some of which we discuss shortly.

For very massive stars, which also have winds, there is little direct evidence for magnetic

braking. Indeed, because massive stars in general rotate rapidly, while also losing mass at

a much greater rate than lower-main-sequence stars, it seems likely that magnetic stresses

cannot make the wind corotate to any great distance. But even a wind not linked to the star
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Table 4.7. Some RS CVn and possibly related systems

Name Spectra State P e M1 M2 R1 R2 Xa Y a Reference

RS CVn K0IV + F4IV-V G M D 4.80 1.44 1.41 4.0 2.0 12 1.45 Popper 1988a

Z Her K0IV + F4 G M D 3.99 1.31 1.6 2.7: 1.9: 11 1.25 Popper 1988a

RW UMa K4IV-V + F5V G M D 7.33 1.45 1.5 3.8: 2: 18 1.4 Popper 1980

RZ Eri K2III + F5m G M D 39.3 0.35 1.62 1.68 7.0 2.8 90 1.9 Popper 1988b

SZ Psc K1IV + F8V G M D 3.97 1.6 1.3 5.1 1.5 9 1.2 Popper 1988b

λ And G8III-IV + ? gm D 20.5 0.04 0.0006b Walker 1944

AR Lac K0 + G2 Gh D 1.98 1.3 1.3 3.1 1.8 5.33 1.42 Popper 1980

WW Dra G8IV + G2IV Gh D 4.63 1.34 1.36 3.9 2.1 12.2 1.57 Popper 1988b

α Aur G8III + G0III SH D 104 2.61 2.49 11.4 8.8 192 4.9 Barlow et al. 1993

V643 Ori K7III + K2III ss D 52.4 0.014 2.0 3.4 22 16 109 7.5 Imbert 1987

OW Gem G8IIb + F2Ib-II H H E 1259 0.52 3.9 5.8 32 30 10.4 Griffin and

Duquennoy 1993

a X >∼ 4 implies case B or C; Y is the ratio of R2 to its unevolved value; see Section 3.5.
b Mass function, or if two values M sin3 i .

magnetically should cause some braking: Eq. (4.67) shows that the single-star spin-down

timescale is about a tenth of the mass-loss timescale. Thus a massive star that rotates rapidly

cannot have lost more than, say, 10% of its mass so far, and less than that if RA is significant.

Equation (2.71) suggests that massive stars can indeed be expected to lose a few per cent of

their masses. But it seems quite possible that convective cores might be just as effective as

envelopes in sponsoring dynamo activity.

Table 4.7 contains a number of systems, mostly ‘RS CVn binaries’, in which the larger

and cooler star shows evidence of considerable activity, much more than one sees in isolated

stars of the same spectral type. Among them Z Her shows clearly that the more evolved star

is substantially the less massive, and yet is well short of filling its Roche lobe. Two or three

other systems show a marginal mass deficit.

It is much more difficult to construct serious models of non-conservative binary evolution

to fit such systems, than it is to fit conservative models as in Table 3.9. In a conservative model

we know the total mass and angular momentum from the presently observed parameters, and

only the initial mass ratio has to be varied in the hope of getting a good fit. It is obvious

that no conservative model will give Z Her, but it is not obvious whether we should assume

minimal mass loss, or whether perhaps both components have lost mass, though presumably

more from ∗1. In practice, our recipe in Section 4.5 gives some mass loss even from ∗2. A

further problem is that we would like the same recipe to hold for RS CVn as for Z Her. These

systems have rather similar masses and periods, and yet show rather different effects of mass

loss: arguably slight or even non-existent in RS CVn, while unarguably very substantial in Z

Her. We may be faced with the unattractive possibility that mass loss is far from deterministic,

but instead rather chaotic, so that it acts very differently in otherwise similar systems.

Two systems in Table 4.7 that show something of a similar contrast are α Aur and V643 Ori.

The former appears to be quite normal – although the fact that the orbit is circular suggests

that ∗1 came quite near to filling its Roche lobe at its peak radius during He ignition, and

we might have expected some enhanced activity then. By contrast, the almost equally wide

system V643 Ori appears to have suffered considerably, despite the fact that the orbit is still

very slightly eccentric. I would like to suggest that the original masses in V643 Ori were
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somewhat larger than those in α Aur. Coupled with the probability that the initial period was

somewhat smaller, say ∼30 days, so that ∗1 would have been very near its Roche lobe at

helium ignition, this might have implied substantial mode EW. This could mean that when ∗2

in turn reached helium ignition the binary was wider and so ∗2 suffered less mode EW than

∗1. We expect both giants to be post-helium-ignition because their masses, assuming one or

both were more massive originally, would lead to non-degenerate helium-core ignition very

quickly after crossing the Hertzsprung gap.

Another system that shows surprising masses, to much the same extent as in V643 Ori, is

OW Gem. Here we can hardly appeal to mass loss, whether intrinsic, or enhanced by binarity,

since the orbit is much larger and also eccentric. The G8II star is not luminous enough to

be the remains of a star that was initially the more massive. I suggest here a quite different

explanation: that the FI–II star is the merged remnant of a former close sub-binary, and that

the initial triple system had parameters something like (3.9 M� + (3.9 + 1.9 M�; 2 days);

1260 days). It seems reasonable to assume that the mass ratio in the sub-binary was sufficiently

large (∼2) to trigger a rapid merger (case AD) rather than normal RLOF. However, it may

be stretching credulity to suggest that V643 Ori had a similar history, even though a few

adequately close triples are known to exist (VV Ori, λ Tau, DM Per, Table 3.8; HD 109648,

Fig. 1.7b).

Systems such as those in Table 4.7 are probably a gold mine for researching the kind of

non-conservative processes described here. For example, RZ Eri shows a similar but smaller

mass deficit than Z Her, and also has substantial eccentricity remaining in its orbit. One

might expect pseudo-synchronism here, but the observed rotation period of ∗1, determined

from its spottedness, is 31.4 days, in between the pseudo-synchronous rate (23 days) and the

synchronous rate. This could mean that magnetic braking is keeping it at a pseudo-equilibrium

which is slower, or it could mean that tidal friction is not quite strong enough to keep up with

evolutionary expansion.

However, the gold will be difficult to extract, because as noted above, in non-conservative

systems it is much harder to guess the initial parameters. Attempts that we have pursued so

far suggest that quite substantial amounts of mass and angular momentum can be lost, and

so there is a considerable range of initial parameter space to explore. In addition, since it is

unlikely that the non-conservative model of Section 4.5 is exactly right, we would have to

treat several ‘constants’ in it as unknown variables; how many depends on taste.

Figure 4.7 is an attempt to model RZ Eri. We started somewhat arbitrarily with e = 0.5,

but this led to a satisfactory pair of present masses, as well as eccentricity and radii, after

∗1’s mass was reduced by about 12% at age ∼1.7 gigayears. However, the rotation rate of ∗1

was determined to be nearly pseudo-synchronous, in contrast to what is observed. It is not

yet clear whether some other starting point in parameter space might do better, or whether

the ‘constants’ in the non-conservative model need fine tuning.

Note that M1 was reduced in this calculation from 1.75 to 0.7 M� before RLOF was

reached. This had the effect of removing the possibility of hydrodynamic RLOF, that one

would otherwise expect in conservative case C. We call this kind of evolution sub-case CUN

of case CU, the U referring to ‘unusually’ strong wind – unusual in comparison to the rather

weak but detectable wind of a normal (single) red giant that is nowhere near the top of the

giant branch.

More precisely, and in analogy with case B (Sections 3.5 and 4.3), we will define sub-

cases of case C where different amounts of envelope of ∗1 are blown away by enhanced wind,
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Figure 4.7 Possible evolution of RZ Eri, taking account of enhanced wind, magnetic
braking and tidal friction in both components. The system was started with parameters
(1.75 + 1.68 M�; e = 0.5; 49 days); both stars were started with an initial rotation period
of 2 days. (a) The theoretical HRD, ∗1 being the thinner line. At the end of the evolution ∗1
is starting to undergo a nova-like outburst, due to accretion from the wind of ∗2. (b) Stellar
radii (lower curves) and Roche-lobe radii (upper curves) for both components as functions
of their masses. (c) The evolution of eccentricity (lowest curve), orbital period (uppermost
curve) and rotational period of ∗1, during the time interval when they were varying most
rapidly.

thus:

CW: M M E → H M E → G M E → SM E → SM E ; SW → C M E → W M E → . . . (4.89)

CU: M M E → M M E ; T F2 → M M D → H M D → G M D; EW 1,M B1 → C M D → . . . (4.90)

CUN: ” ” ” ” → G M S; F1,EW 1,M B1 → C M D → . . . (4.91)

CUD: ” ” ” ” → G M S; F3 → G MC ; C E → C M D → . . . (4.92)

In the first case, the normal wind (superwind) that terminates the evolution of an AGB

star prevents the star from ever filling its Roche lobe. In the second, the same effect may

be produced by enhanced wind, at an earlier stage of evolution. In the third, RLOF is not

entirely avoided, but the mass ratio is so reduced by mode EW that the subsequent RLOF

is on a nuclear rather than dynamical timescale. In the fourth, either because mode EW was

less severe or because the initial mass ratio was larger in the first place, the RLOF is at a

dynamical rate, and leads to common-envelope evolution (mode CE, Section 5.2). The final

letters N and D imply some similarity with cases AN and AD of Section 3.5. RZ Eri is a

system which, I suggest, belongs to case CUN.

There are, of course, several possible variants of these cases. CaseCW might happen to stars

of ∼1 M� even on the FGB, rather than the AGB. The other cases might happen in sufficiently

wide binaries that ∗1 reaches the AGB before modes TF and EW becomes important. The

initial mass ratio may be sufficiently close to unity that both components are giants either

before or after RLOF begins, as was presumably the case for RT Lac to AR Mon in Table 4.8.
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We might note that among low-mass stars, where the effects of dynamo activity are more

likely to be significant than at intermediate masses, there is rather little scope for case B,

because at M <∼ 1.5 M� the main sequence terminates very close to where the giant branch,

with substantial convective envelopes, begins. We have chosen to define the B/C boundary as

where the convective envelope is sufficiently deep that the star expands (case C) rather than

contracts (case B) in response to mass loss on a thermal timescale. This will not coincide

with the boundary between where dynamo activity is negligible and where it is important, but

we hope, for simplicity, that the two boundaries are not very far apart. On the main sequence

they are quite far apart, perhaps early F for dynamo activity and late K for mass-loss-driven

expansion, but they may be closer together, say early G and late G, for (sub)giants. In this

section some binaries that we discuss may be technically case B, but we largely ignore this.

For the massive binaries discussed in Section 4.3, case B covered a much wider range of

initial parameters.

Table 4.8 contains a selection of binaries with one or more cool components, where we can

expect some binary-enhanced activity. Some are pre-RLOF, some are undergoing semide-

tached RLOF, some are in contact, and some are arguably post-RLOF systems. We might have

evolution from a detached system like UV Leo through a semidetached state like V361 Lyr to

a contact state like W Uma. In this hypothetical sequence the total mass decreases modestly

from 2.22 to 2.05 M�, and the angular momentum decreases also modestly; but it could

easily be the case that relatively more mass is lost and the contact system might be more like

EQ Tau, or even RW Dor.

We have argued in Section 3.4 that contact might not be a stable configuration, but that

instead the system pursues a relaxation cycle about an unstable equilibrium of marginal

contact with poor thermal contact and markedly unequal temperatures. We anticipate that

the unstable equilibrium itself gradually changes, because of progressive loss of angular

momentum. This means that the system cycles between contact and semidetached states,

with the mass ratio oscillating but growing slowly larger in the mean. During an oscillation

the contact phase lasts for something like the thermal timescale of the less massive com-

ponent, and during the semidetached phase of the more massive. Thus we may expect the

semidetached phase to be short compared with the detached phase. Four systems in Table 4.8,

FT Lup to VZ Psc, may arguably be in the semidetached phase of the oscillation, but sev-

eral hundred contact systems are known, and so the ratio of timescales may indeed be quite

small.

An alternative view might be that these semidetached systems are approaching contact for

the first time, and once in contact will remain in contact. However, in that case we expect

only about one semidetached system per thousand contact systems, which does not appear to

be the case. Nevertheless, the nature of the evolution in contact binaries remains one of the

least understood processes in binary-star evolution.

It is likely that both nuclear evolution and magnetic braking contribute about equally to

the long-term evolution of some contact binaries. But the balance will no doubt itself change

in the course of evolution, and will also depend on the initial mass. Nuclear evolution will

only be significant if at least one component is >∼M�, while magnetic braking may only

be significant if the system is of spectral type G/K/M, and perhaps (for these very rapid

rotators) type F as well. These ranges overlap in stars of ∼1–1.5 M�. In ε CrA it may be

nuclear evolution that dominates now: ∗1 appears to be significantly evolved. But at an earlier

stage M1 was probably less, and it may have been mainly magnetic braking that transformed
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it from a detached system like UV Leo to a contact binary like EQ Tau, followed by incipient

nuclear evolution that took it to something like its present form.

We can anticipate that there may be a mild dichotomy between (a) systems of somewhat

low total mass, where magnetic braking dominates nuclear evolution and the ultimate merger

produces a main-sequence star, and (b) more massive systems where nuclear evolution dom-

inates and the ultimate merger produces a red subgiant instead. Probably ε CrA is already

close to a merger that will leave it as a partially evolved main-sequence star. On the other

hand AH Vir seems part way to merging as a cool subgiant.

I may have biased this discussion by representing in Table 4.8 that ∗1 of AH Vir is the

currently more massive component. This is just a hypothesis; there are also some ultra-short-

period systems like ZZ Cyg and W Crv that may have arisen by fairly normal (mode NE)

RLOF, although I suspect that there has been considerable magnetic braking as well. Even

more magnetic braking in the future may bring such systems into a contact configuration

like AH Vir, but with ∗1 and ∗2 interchanged. All of the systems above β Per in Table 4.8

look as though they may come from a rather small volume of initial-parameter space, where

nevertheless considerable diversity is achieved because modes NE, MB and EW are rather

finely balanced there.

We attempt to categorise some scenarios where mode MB or mode EW play a significant

role. Because of the above expectation of diversity we restrict ourselves to two main sub-cases

of case A, although each has several possible variants. We call them cases AA and AM, the

second letter in each standing for ‘angular momemtum loss’ and ‘mass loss’, respectively.

Both processes happen in both cases, but the relative importance is perceived as varying.

Case AA is likely to lead to progressively shorter periods, although if the mass ratio increases

as the angular momentum decreases (as is likely in contact binaries) it is possible for the

period actually to increase modestly. Case AM would lead to longer periods. In the former

case, we expect contact binaries as for conservative case AR (route 3.89), except that the

components merge while still on the main sequence, instead of after ∗1 has evolved into the

Hertzsprung gap. In the latter case, it is possible that RLOF is entirely avoided, as the stars

decrease in mass to the point where there is no longer nuclear evolution in a Hubble time.

This could be quite common in old clusters. Binaries with initial masses that would put them

near the current turnoff may be pushed down the main sequence at much the same rate as the

turnoff itself moves downward, instead of evolving into the sub-giant region.

AA: M M D; T F,M B → M M S; F2 → M MC → M MC ; R2, M B1 ↔ M M S; F2, M B1 →

→ M MC ; DI → M MC ; C E → M ; M B → G → . . . → W. (4.93)

AM: M M E ; T F, EW, N E → M M D; no N E . (4.94)

Table 4.8, as well as listing a number of short-period Algols like V361 Lyr that may be

related to case AA, lists some more normal (i.e. longer-period) Algols, and a few possible

post-Algols. I have already argued (Section 3.5) that AS Eri and R CMa show signs of

substantial angular-momentum and mass loss, respectively. DN Ori and S Cnc are similar to

AS Eri, though not quite so extreme. I feel fairly sure that all of the Algols (β Per to DL Vir)

are subject to all of modes NE, MB and EW, but with mode NE probably the dominant one,

by a modest margin, at least in the early evolution. This is the opposite of our interpretation

of contact binaries, where I have suggested that mode MB dominates earlier, and (possibly)

mode NE later. The Algol systems must have started with substantially longer periods than
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those listed above β Per, and also with substantially greater total masses, and both of these

are likely to give mode NE an initial advantage; but it is clearly not a big advantage.

Some Algols (RT Lac to AR Mon) contain two giants or sub-giants. This is to be expected

in conservative case AL, but once again it is likely that the non-conservative modes MB and

EW have played a part here. In fact it is especially likely, since two cool stars may be more

effective than just one.

DL Vir is particularly interesting as a system where there is not only a third body, but a

substantially evolved third body. We can be reasonably confident that both cool stars in this

triple started with much the same mass (1.9 M�), since they are both well evolved. Thus here

we have some handle on the initial parameters of the Algol, independent of conservation or

the lack of it. If we take the quoted numbers at face value, then we also have an upper limit

on the initial masses of the Algol pair (∼1.9 + 1.9 M�) and a lower limit (∼1.9 + 1.4 M�).

Thus the upper limit of the amount of mass lost is ∼0.5 M�. This is only ∼14% of the initial

mass, but the Algol is also not very evolved (i.e. has quite a large mass ratio) compared with

the others. Unfortunately the masses are not well determined, though they would repay an

analysis with modern instrumentation.

θ Tuc is an excellent example of a probable post-Algol. It is not eclipsing, so that the

inclination can only be guessed, but likely current masses are (0.2 + 1.8 M�), not unlike

AS Eri, which is at a slightly earlier stage of evolution (and slightly less wide). V1379 Aql

is at first glance an even later stage, and of a somewhat wider binary. However, V1379 Aql

has two problems: (a) the hot sub-dwarf is more massive than we would expect at this period

(∼0.23–0.25 M�) and (b) the orbit is significantly eccentric (e = 0.09 ± 0.01). Possibly the

answer to the first is that the system has less metallicity than the Solar system (Jeffery, private

communication 1998). I suspect that the eccentricity can only be caused by the presence of

a third body, so far undetected (Section 4.8). Obviously, we expect the orbit of a post-Algol

to be highly circular, if unperturbed. A third body like that in β Per or DL Vir, but perhaps

half the mass, and in a substantially inclined orbit, could easily have this effect.

The last four systems in Table 4.8 are also combinations of a hot sub-dwarf and a main-

sequence or giant star. They might be post-Algols, but either the estimated mass of the hot

sub-dwarf is a little too high, or that of the companion too low, for such a scenario. I will

discuss them again in the context of common-envelope evolution (mode CE, Section 5.2).

4.7 Effects of a third body: mode TB
If the binary is part of a triple system, with a third body of mass M3 in a wider outer

orbit, there can be an appreciable effect on the inner orbit. This is more pronounced the closer

the third body, and also the more inclined is its orbit to the inner orbit; but in the case that

the inclination of the two orbits is greater than 39◦ (sin−1
√

2/5) the effect (‘Kozai cycles’)

can be surprisingly large even if the outer orbit is quite wide.

I give here a model – Appendix C(f) – based on the quadrupole level of approximation. At

this level there is an extra acceleration f in the inner binary given by

fi = Si j (D)d j , Si j = G M3

D5
(3Di D j − D2δi j ), (4.95)

where d is, as before, the separation of the inner pair and D is the separation of the outer pair,

i.e. the vector from the center of gravity of the inner pair to the third body. At the same level of

approximation, there is (somewhat surprisingly) no extra acceleration within the outer orbit.
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Since there is a couple on the inner orbit, and not on the outer, angular momentum is not

conserved. However, it is conserved approximately, since it is implicit in the approximation

that the angular momentum of the inner orbit is small compared to the outer.

If we average the effect of f over the inner orbit, according to the precepts of Appendix

C, we find that the energy of the inner orbit is unaffected – because a potential force does

no work around a closed curve. Thus a and P are constant, at this level of approximation.

But the vectors e, q, h defining the ‘orbital frame’, as in Sections 3.2.2 and 3.4.2, can vary,

in direction as well as magnitude, and their variation is given once again by

ė = U × e − V e, ḣ = U × h − W h, (4.96a,b)

where U is the angular velocity of the orbital frame relative to an inertial frame. The equation

for q is easily obtained from these, since by definition q = h × e. Unlike the V, W terms that

we introduced in Eqs (4.22 and 4.23), V, W here are not dissipative: they can be negative as

well as positive. The orbital-averaging technique, which assumes, of course, that the tensor

S, and therefore D, does not vary significantly during one inner orbit, gives U, V and W as

U ≡ Xe + Y q + Zh

= a2

2h
[ (1 + 4e2)S13 e + (1 − e2)S23 q + (1 − e2)(4S11 − S22) h ], (4.97)

and

V = 5a2

2h
(1 − e2) S12, W = −5a2e2

2h
S12. (4.98a,b)

As before, X, Y give precession and Z gives apsidal motion; but see the last paragraph of

this section.

We now average the Si j over an outer orbit, which is in fact exactly Keplerian at this level

of approximation. We obtain

〈Si j〉 = C (δi j − 3Hi H j ), C ≡ G M3

2A3(1 − E2)3/2
, (4.99)

where A, E, H are for the outer orbit the equivalent of a, e, h for the inner orbit, i.e. the

semimajor axis, the eccentricity and the unit vector in the direction of the orbital angular

momentum. Surprisingly but conveniently, the tensor S is symmetrical about the H-axis even

although the outer orbit, if eccentric, is not.

In the inner-orbital frame, with the 1, 2, 3-directions parallel to e, q, h respectively, S12

means Si je iq j , etc., and so

〈S11〉 = C {1 − 3(H · e)2}, 〈S12〉 = −3C H · e H · q, etc. (4.100)

These expressions allow us to replace the Si j in Eqs (4.98) for ė, ḣ by their outer orbital

averages, which are now known functions of the constant H and the basis vectors e, h (and

q ≡ h × e). Thus we have a closed set of equations, which can be integrated by a stepwise

procedure such as Runge–Kutta. In fact, two first integrals can be extracted analytically –

Appendix C(f) – leaving a first-order ordinary differential equation for say e, whose solution

is an elliptic integral.
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Figure 4.8 (a) Eclipse history of SS Lac, 1912–4900, subject to precession driven by a third
body in an orbit inclined at 29◦ to the inner orbit. Phase is plotted vertically, covering two
complete inner orbits. Eclipses occur within the isolated leaf-shaped patches. Eclipses
typically last for just over a century, several centuries apart. Also shown are the phases of
inferior and superior conjunction. (b) Rotational history of ∗1 in SS Lac, starting
(arbitrarily) with corotation in 1912. The three components of the spin vector are plotted:
circles are the component of spin parallel to the orbit. The spin is partially retrograde for
∼25% of the time. However, the spin history, unlike the eclipse history, depends quite
sensitively on the dimensionless quadrupole moment Q of Section 3.2.2.

Two effects of the third-body force are precession and apsidal motion, both of which come

from the rotation rate U of the orbital frame. These effects are both on a timescale

tTB ≡ h

a2C
∼ M + M3

M3

P2
out

2π P
(1 − E2)3/2, (4.101)

where Pout is the period of the outer orbit. Figure 4.8 illustrates the effect of precession and

apsidal motion on the inner orbit (14.4 d) of SS Lac (Table 2.1), a binary system which showed

eclipses up till about 1950, and not subsequently. A triple companion in a 679 day orbit was

detected by Torres and Stefanik (2000). This third body can account for the eclipse history

provided its orbit is inclined at 29◦ to the 14.4 day orbit (Eggleton and Kiseleva 2001).

However, a third effect is that h and e can also change on the same timescale. Fluctuations

in these quantities are periodic, although if calculated with a more exact three-body code

there tend to be modest departures from strict periodicity. In the case that the inclination of

the two orbits is in the range 39–141◦ (|H · h| < √
3/5) the fluctuations can be very large, with

a range that is independent of tTB, and hence of Pout. Table 4.9 shows the relation between

inclination on the one hand and minimum and maximum eccentricity on the other. It can be

seen that an inclination of only 60◦, about the average to be expected if triple orbits are the

result of random encounters, can lead to eccentricities in excess of 0.75. However, although

the eccentricity and angular momentum fluctuate, perhaps by quite a large amount, the period

and semimajor axis are constant (in the lowest approximation), because the the third body’s

force is still a potential force, and so does no work in total around an orbit of the inner pair.

P and a are determined purely by the energy of the orbit, and not by its angular momentum.
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Table 4.9. Limits of Kozai cycles

η a Probability ea eb ea eb ea eb

0 0.000 0 0 0.3 0.3 0.5 0.5

10 0.015 0 0 0.3 0.309 0.5 0.510

20 0.060 0 0 0.3 0.341 0.5 0.543

30 0.124 0 0 0.3 0.407 0.5 0.600

40 0.224 0 0.149 0.3 0.521 0.5 0.679

50 0.357 0 0.558 0.3 0.669 0.5 0.772

60 0.500 0 0.764 0.3 0.808 0.5 0.863

70 0.658 0 0.897 0.3 0.914 0.5 0.937

80 0.826 0 0.974 0.3 0.978 0.5 0.984

90 1.00 0 1.00 0.3 1.00 0.5 1.00

The first column is the initial inclination and the second the cumulative probability of this

inclination. Remaining pairs of columns are the initial (minimum, subscript a) and maximum

(subscript b) inner eccentricity.

Neither precession nor apsidal motion is expected to have much effect on the long-term

evolution of a binary. But the substantial cyclic variations in e possible at high inclination

(Kozai cycles; Kozai 1962), coupled with the approximate constancy of a, means that tidal

friction can become important (at periastron) during some part of the cycle, even if it is

unimportant during that part of the cycle when the eccentricity is small. The effect means

that over many Kozai cycles the inner orbit will shrink as well as become circularised, the

final period being roughly the period when the stars are close enough for apsidal motion

due to their distortion to dominate over apsidal motion due to the third body. Of course,

the possible importance of this process depends on (a) the frequency of triples, relative to

binaries, and (b) the frequency of high inclinations relative to low. Neither frequency is well

known at present.

We must not, however, let ourselves be carried away. Kozai cycles can be quenched by

perturbations, apart from the third-body perturbation, that cause apsidal motion at much the

same rate as the third body does. Rotation, mutual distortion and GR are all capable of doing

this, if strong enough; but they all drop off fairly rapidly with the inner separation. Therefore,

for a given inner binary, there will be a maximum size of outer orbit that can generate Kozai

cycles, but this may still be several thousand times larger than the inner orbit.

Figure 4.9 relates to one or even both sub-components of the remarkable quadruple sytem

ADS 11061 (Tokovinin et al. 2003). This consists of four rather similar late-F dwarfs, marking

out the turnoff region of an isochrone of ∼2.5 gigayears. One orbit is long and thin (1274 days,

e = 0.9754), the other smaller and rounder (10.5 days, e = 0.374). The outer orbit is not

known, though it can reasonably be estimated to be ∼104 years. Its inclination is almost

certainly different from those of the two sub-binaries, which differ from each other. Assuming

a range of initial parameters for all three orbits, we get a wide variety of possible scenarios.

In some, neither orbit is much affected by Kozai cycles, but in others one or both orbits are

affected, perhaps seriously. Figure 4.9 is a possible model of the long, thin orbit. Starting

with parameters as listed in the caption, the eccentricity cycles powerfully with e fluctuating

between ∼0 and ∼0.98, and the inclination between 70◦ and 86◦. But in the close periastra at
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age (megayears) age (megayears) age (megayears)

Figure 4.9 Possible orbital evolution for 41 Dra, the more eccentric sub-binary of ADS
11061. Initial conditions: P1 = 1500 days, e1 = 0.01 (inner orbit), P = 15 000 years,
e = 0.73 (outer orbit), mutual inclination 86◦. (a) Eccentricity. (b) Inclination relative to
outer orbit. (c) Period. Individual Kozai cycles are about 20 megayears long, and are
severely undersampled by the plotting processs.

the peaks of eccentricity, tidal friction after ∼2 gigayears reduces the range considerably (but

not its upper limit), and by 2.7 gigayears the eccentricity though still large starts to diminish

rapidly. By 3 gigayears the orbit is much smaller and only moderately eccentric, as is observed

in the other sub-binary. The inclination (Fig. 4.9b) cycles intimately with the eccentricity,

and the period (Fig. 4.9c) drops, though to 20 days rather than 10 days as seen in the other

system. Either or both sub-binaries may have suffered, or be suffering, such evolution, for

all one can tell at present.

A further effect of a third body, which is smaller but can have longer-term importance,

comes from a combination of third-body perturbation and tidal friction even in the case that

the orbits are coplanar. In an unperturbed binary, tidal friction simply circularises the orbit,

which then remains circular so that the frictional dissipation goes to zero. But in an orbit that

is continually being perturbed by a third body, circularisation cannot be completed because

fresh eccentricity (though probably of small magnitude) is always being added. Tidal friction

tries to remove eccentricity, because it tries to dissipate time-dependent tides such as are raised

by eccentric orbits. Thus the conversion of mechanical energy into heat continues unabated,

though no doubt rather slowly, leading to a secular decrease in the orbital period. Since, in

the triple system as a whole, angular momentum should be conserved, loss of orbital energy

and consequential loss of angular momentum, from the close pair will result in a widening

of the wide pair, but on a still smaller scale since the wide pair will have greater angular

momentum to start with.

Unfortunately, this process is not well modelled by the equations above; nor would going

to a higher order (say, octupole) approximation help. If, for example, we consider an outer

orbit exactly parallel to the inner orbit, the off-diagonal components of the S-tensor are zero:

hence V = 0 – Eq. (4.100) – and so e is unchanged in magnitude – Eq. (4.100). But in such
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a triple there will in fact be small fluctuations in e, on the timescale of the inner orbit as

well as on longer timescales. The basis of the above approximation, and several others in

this chapter, is that we determine the effect of a small perturbation by integrating around an

exactly Keplerian orbit, assuming the orbit changes insignificantly on the orbital timescale.

To model the process of the previous paragraph we need a full three-body code, rather than

an orbitally-averaged approximation; but we also need to include the quadrupolar gravity

perturbation of intrinsic spin and mutual distortion.

Using a three-body code, we can investigate tentatively the root-mean-square eccentricity

fluctuation introduced into the inner orbit, on a timescale that is comparable to the inner orbit.

A preliminary estimate is

eTB ∼ M3

M + M3

1

X2
, X ≡ Pout

P
. (4.102)

The effect on the binary can then be modelled by adding to Eq. (4.12), in the limit e 	 1, a

source term on the right:

eė ≈ − 7e2

2tTF

+ 1

P

(
e2

TB − e2
)
. (4.103)

In the absence of tidal friction this means, as we require, that e2 → e2
TB on an orbital timescale.

The equilibrium value will be little affected by tidal friction, in fact, because typically tTF � P .

The effect of the small e2 ∼ e2
TB propagates through Eq. (4.17), in transient equilibrium, to

give �/ω – Eq. (4.18) – and hence to give ḣ/h from Eq. (4.13) as

ḣ

h
∼ − 15λe2

TB

2tTF

, (4.104)

where λ is as usual the ratio of spin to orbital angular momentum. For semidetached or contact

binaries, where tTF is about as small as possible, since a ∼ 2R in Eq. (4.10), this effect can

be significant if Pout
<∼ 100P .

Georgakarakos (2003) has determined a much more substantial estimate than (4.102). For

a general outer eccentricity his expression is some ten lines long, and so for illustration we

specialise here to circular outer orbits. He gives

e2
TB ∼

(
M3

M + M3

)2 (
225

128

M2
∗

X10/3
+ 43

4

1

X4
+ 122

3

1

X5
+ 20961

4096

M2
∗

X16/3
+ 365

9

1

X6

)
,

(4.105)

where X is the period ratio, as above, and

M∗ ≡ M2 − M1

M2/3 (M + M3)1/3
. (4.106)

The angular momentum loss rate is still given by Eq. (4.104).

We therefore have ‘third-body’ modes of secular orbital change, which we label mode TB.

There are at least two rather different modes, one involving Kozai cycles with tidal friction

operating only near their peaks in eccentricity, and one involving possibly coplanar (or

nearly coplanar) systems where the third body is unusually close. We believe that the Kozai

mechanism might be quite common, and the other less common, and we do not attempt for

the present to distinguish them.
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However, precession and apsidal motion, although conservative, can be important in rela-

tion to observed properties of binaries. A handful of binaries is known where eclipses have

been seen over some stretch of time and not seen over some other stretch of time (Fig. 4.8).

This is presumably because of precession, and although precession can also be caused by

oblique rotation of one or both components (Section 3.2.2) it is more likely to be caused by a

third body, because spin angular momentum is normally small compared to orbital whereas

the third-body effect can be large. There is also a handful of close binaries where apsidal

motion can be measured and is found to be discrepant with estimates based on Eq. (3.48).

Here it may also be the effect of a third body that is causing the discrepancy.

The effect of U, the rotation rate of the orbital frame, on the inclination and apsidal motion

of the orbit can be seen as follows, and independently of whatever mechanism is causing the

frame to rotate. Let J be a unit vector pointing from the centre of gravity of the orbit to the

observer. This is a fixed vector in an inertial frame (apart from a small contribution from the

acceleration of the binary around the centre of gravity of the triple, which can however also

be allowed for), but it is a variable vector in the orbital frame e, q, h. If i is the inclination

of the orbit to the line of sight and if ωlp is the longitude of periastron – we use ωlp rather

than the more conventional ω since the latter is used here for the mean angular velocity of

the orbit – then these are given generally by

cos i = h · J and tan ωlp = e · J

q · J
. (4.107a,b)

Differentiating with respect to time in the inertial frame, we obtain, after some manipulation,

di

dt
= U × h · J

|h × J| ,
dωlp

dt
= U · h − J · h J · U

|h × J|2 . (4.108a,b)

I have used the fact that e, h satisfy the same equations (Eqs (4.96)), as e, h, except that the

V, W terms are absent; and q satisfies a similar equation.

In the event that the rotation rate U is purely in the h direction, i.e. that U = Zh, Eq. (4.110)

gives dωlp/dt = Z , in other words the rate of rotation of the line of apses is just Z . However,

it is instructive to note that if U has e, q components as well, corresponding to precession,

then dωlp/dt �= Z . Thus the quantity Z , which is often referred to as ‘apsidal motion’, is not,

in fact, the only contributor to this effect. I believe therefore that it is inappropriate to describe

Z as ‘apsidal motion’, although this is commonly done. Equations (4.109 and 4.110), and this

comment, apply irrespective of whether U is caused by a third body or to any other process,

such as oblique rotation.

Table 4.10 shows some of the rich variety of triples that can be found; two are quadruples.

All have been selected from the minority of systems in which the outer period is <∼30 years,

so that there is some probability that not only the inner pair but even the outer pair may

interact in the course of evolution. Six of the systems, those with Greek letters, as well as

three more similar triples (ξ Tau, κ Peg and p Vel), are among the brightest 500 stars, a set

that may be reasonably representative of stars with masses >∼2 M�. Thus it seems possible

that such compact multiple systems may represent ∼2% of systems (including single stars as

‘systems’), although of course multiples may be somewhat overrepresented in a magnitude-

limited sample. It would not be surprising if a further few systems of these 500 are similarly

multiple, given particularly the difficulty of recognising small third bodies such as M dwarfs

at separations of a few AU from binary B/A companions.
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Table 4.10. Some close triple and quadruple systems

β Per ((K0-3IV + B8V; 0.8 + 3.7 M�; SD, 2.87 days) + F1V; 4.5 + 1.7 M�; 1.86 years,

e = 0.23)

β Cap ((B8V + ?; 3.3 + 0.9 M�; 8.68 days) + K0II-III; 4.2 + 3.7 M�; 3.76 years, e = 0.42)

λ Tau ((A4IV + B3V; 1.9 + 7.2 M�, SD, 3.97 days) + ?; 9.1 + 0.7: M�; 0.09 years = 33 days,

e = 0.15:)

η Ori ((B1V + B3V, 15 + 12 M�; 7.98 days) + B1V; 27 + 14 M�; 9.5 years, e = 0.43)

DL Vir ((? + A3V, 1.1: + 2.2 M�; SD, 1.32 days) + G8III, 3.9 + 1.9: M�; 6.2 years, e = 0.44)

CQ Dra ((WD + ?; SD, 0.16 days) + M3III; 4.7 years, e = 0.3, f = 0.0076 M�)

VV Ori ((B1V + B5V, 10.8 + 4.5 M�; 1.49 days) + A3:, 15.3 + 2.3: M�; 0.33 years, e = 0.3)

DM Per ((A6III + B5; 1.8 + 5.8 M�; SD, 2.73 days) + B7:; 7.6 + 3.6: M�; 0.27 years)

SU Cyg (F2-G0I-II, δ Cep + (B7.5HgMn + A0:;3.2 + 2.6 M�; 4.675 days); 6.2 + 5.8 M�;

549 days, e = 0.34)

τ CMa (O9II + (B: + B:;1.28 days); 0.42 years, e = 0.29, f = 6.1 M�)

V907 Sco ((B9.5V + B9.5V; P1 = 3.78 days) + ?; P = 99.3 days, f = .004 M�)

μ Ori ((A7m + ?;1.8 + 1 M�; 4.45 days) + (F3V + F3V, 1.4 + 1.4 M�; 4.78 days);

2.8 + 2.8 M�; 18.8 years, e = 0.76)

QZ Car ((O9.7Ib + B2V:; 40: + 9: M�; 20.7 days, e = 0.34) + (O9V + B0Ib; 28 + 17 M�;

6.00 days); 49: + 45 M�; <∼ 25.4 years, <∼ 0.012′′)

References: DL Vir – Schöffel (1977); CQ Dra – Reimers et al. (1988); DM Per – Hilditch et al. (1986);

SU Cyg – Evans and Bolton (1990); τ CMa – Stickland et al. (1998), van Leeuwen and van Genderen

(1997); V907 Sco – Lacy et al. (1999); QZ Car – Morrison and Conti (1980); others from Fekel (1981).

Where the eccentricity is not given, it is zero to observational accuracy; SD stands for

semidetached.

Note that outer periods can be as small as 33 days (λ Tau), that β Cap and DL Vir contain

two red giants, that SU Cyg contains a Cepheid pulsator and that CQ Dra contains a possible

cataclysmic binary. SU Cyg and τ CMa have a third body more massive than the combined

mass of the close pair, but it seems more normal that the third body is the least massive of

the three, or else that all three are of comparable mass. The last may be a selection effect,

since such systems are easiest to recognise. From the point of view of dynamical interaction

by Kozai cycles, what matters most is the inclination between the outer orbit and the inner

orbit or orbits. This is usually not well known, although in β Per it is a well-determined 100◦.

However, Kozai cycles can also be important in the many more systems where the outer

period is up to ∼103–104 years.

4.8 Old Uncle Tom Cobley and all
We can now put together most of the various slow orbital perturbations discussed in

this chapter. We have seen that many of them have a somewhat similar mathematical form, to

the extent that they cause a rotation rate U ≡ Xe + Y q + Zh of the orbital (e, q, h) frame,

and also variations of the orbital triad e, q, h parallel to themselves. We include specifically

GR (both as a conservative and a non-conservative process), quadrupolar distortion due to

both rotation and a companion, tidal friction, mass loss (possibly with magnetic braking),

mass exchange and a third body. It is somewhat unlikely that all these processes are operating

significantly in the same binary at the same time, but it is convenient to have to hand a

computer code that can include any of them as necessary.
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We can write the combination as

de
dt

= U × e − V e, (4.109)

d

dt
Ho = U × Ho − W Ho −

[
ζ1 M2

M M1

+ ζ2 M1

M M2

]
Ho, Ho ≡ μh, (4.110)

d

dt
I1��1 = −U1 × Ho + W1Ho − ζ1

[
R2

A1 + 2

3
R2

1

]
��1, (4.111)

d

dt
I2��2 = −U2 × Ho + W2Ho − ζ2

[
R2

A2 + 2

3
R2

2

]
��2. (4.112)

U ≡ Xe + Y q + Zh is the sum of U1, U2 in Section 4.2 (tidal friction and distortion), and

also of terms due to GR – Eq. (3.50) – and to a third body – Eq. (4.97). V, W are similar

sums, although the GR terms now come from Section 4.1. A term can be added into V to

give the additional third-body effect of Eq. (4.104). The mass loss rates (to infinity) ζ1, ζ2

can be obtained from Section 4.5, or from some other model. The prescription of Section 4.5

includes a model for binary-enhanced wind (mode EW), because it makes the ζ depend on the

rotation rates, which are often much faster for components of binaries than for single stars if

tidal friction is significant. The Alfvén radii RA1, RA2 can also be obtained from Section 4.5,

or from some other model. The masses M1, M2, M, μ are all now possibly variable, so that

we have to add to the ensemble Eqs (4.36), which allow for mass transfer as well as mass loss

to infinity. The moments of inertia are also possibly variable, not only because of varying

masses but also because of evolution. The entire ensemble of differential equations can be

integrated by a Runge–Kutta procedure, as is done for Figs. 5.2 and 6.3, although care should

be taken because in some circumstances (e.g. when tidal friction is so strong that it enforces

very-near corotation) the equations can become quite ‘stiff’.

For some examples computed in this book we use two different codes. One consists only of

the above equations, supplemented by very simplistic approximations to stellar evolution that

give radius and luminosity explicitly as functions of mass and time; for example Eqs (2.49)

and (2.50) for red giants. The other is a full stellar evolution code, in which, for example, a

differential equation for the moment of inertia is added to the set for pressure balance, heat

transport, etc. In this code Eqs (4.109)–(4.112) are added as boundary conditions; for the

present they are only scalar, i.e. U is ignored and all the vectors are assumed parallel.

In Eqs (4.109)–(4.112) the term for angular momentum loss due to winds has been split

into two parts, one because winds, even without magnetic braking, carry off orbital angular

momentum (Eq. 4.110), and the other because magnetic braking carries off spin rather than

orbital angular momentum Eq. (4.111). In the case that tidal friction is strong, Eq. (4.111)

leads to a transient equilibrium between the tidal friction term W1Ho and the magnetic-

braking term (the rotational term U being usually unimportant in such a case). Substituting

this, and the equivalent from ∗2, into Eq. (4.110), we see that in effect the angular momentum

is drained directly from the orbit. An example was given in Fig. 4.6.
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Rapid non-conservative processes

There are at least four processes that might change an orbit radically on a short timescale.

These are (a) the Darwin instability, in binaries with a rather extreme mass ratio, (b) hydro-

dynamic mass transfer in a semidetached configuration, e.g. where the loser is convective

and more massive than the gainer (modes SF3 or SR3 of RLOF), (c) a supernova explosion in

one component and (d) a dynamical encounter with a previously independent star or system,

during a chance fly-by in a dense cluster of stars. In fact, I feel that there is need for at least

a fifth process, which I shall tentatively identify in the section that deals with (b).

5.1 Tidal friction and the Darwin instability: mode DI
Although tidal friction attempts to dissipate relative motion and so lead to a state

of uniform rotation, with the components corotating with the binary in circular orbits, there

is no guarantee that such a state is actually attainable. Consider a detached binary with a

circular orbit, where ∗2 is sufficiently small that its moment of inertia can be neglected but

∗1 is not. In the absence of winds, the total angular momentum H , if ∗1 corotates, is given

by

H

M1

= ωk2 + (G M)2/3

ω1/3(1 + q)
= constant, (5.1)

where k is the radius of gyration of ∗1. The second term is the orbital contribution: it comes

from Eq. (3.14). Through evolution, k may grow with time. However, Eq. (5.1) when dif-

ferentiated wrt ω at constant H, M1, M2 shows that k, considered as a function of ω, has a

maximum value, say k0, which occurs when

ωk2
0 = 1

3

(G M)2/3

ω1/3(1 + q)
, (5.2)

i.e. when the ratio λ – Eq. (4.15) – of spin to orbital angular momentum is 1/3. Hence if

k grows beyond k0, corotation must break down (Darwin 1879, Counselman 1973, Pringle

1974). The star, by growing, takes angular momentum from the orbit, which thereby shrinks

and rotates faster, making it impossible, beyond some point, for the star to keep up. Of course

if ∗1 fills its Roche lobe before k = k0, the conventional picture of corotation until Roche-lobe

overflow can be sustained. Using Eq. (3.18), the critical condition for an n = 3 polytrope is

1

3

a2

1 + q
= k2

0 ≈ 0.076 a2x2
L(q). (5.3)

209



210 Rapid non-conservative processes

With xL(q) given by Eq. (3.5), this reduces to q ≡ qD ≈ 12 (Table 3.4). For q > qD, tidal

friction cannot maintain corotation as the star expands all the way to its Roche lobe. As

shown in Section 4.2, we expect the system to move out of corotation in this case, which

means also that the eccentricity will depart from zero. The likely outcome is that the smaller

body will plunge into its companion, and experience a variant of common envelope evolution

(next section): either the system will merge, ∗2 becoming smeared out in the envelope of

∗1, or enough orbital energy may be released for the envelope to be blown away leaving a

much closer binary. For n = 1.5, as might be more appropriate for red giants, qD ∼ 5; for

n ∼ 3.5–4, more appropriate to substantially evolved main-sequence stars, qD ∼ 18–30.

If the orbit is already eccentric, then Eq. (4.17) shows that the instability will set in when

the ratio λ of spin to orbital angular momentum is a function of e. For e = 0.4 we obtain

λ = 0.18. In principle, we can integrate the system of Eqs (4.11)–(4.14) in order to follow

the way in which the instability develops, as for the two examples given in Fig. 4.2. However,

the model presented here and in Section 4.2 assumes that the star stays in uniform rotation,

and it is not clear that the whole star will in fact spin up uniformly as a result of tidal friction:

another possibility is that the surface spins up relatively rapidly while the interior spins up

more slowly. Non-uniform rotation is thought to be unstable on something like a thermal

timescale, but the development of the Darwin instability may be on a faster timescale.

5.2 Common envelopes and ejection: modes CE, EJ
We have already seen that rapid (hydrodynamic) mass loss, i.e. mode 3, is expected

if the loser is a red giant with a convective envelope, and has more than ∼0.66 of the gainer’s

initial mass. It is very unlikely that the gainer could accrete at anything like this rate, so that

much or all of the envelope’s mass may end up in a halo round the binary, and possibly, though

not certainly, be expelled. It will be hard to make this process more precise. Paczyński (1976)

suggested a ‘common-envelope’ process, in which the material lost very rapidly by ∗1, too

rapidly to settle easily on ∗2, will collect in a differentially rotating envelope around both
stars. Unlike the envelope of a normal contact binary, which is expected to be in hydrostatic

equilibrium and uniform corotation, and therefore limited by the outer Roche-lobe radius –

Eq. (3.13) – the common envelope hypothesised following mode 3 RLOF is differentially

rotating, and therefore not restricted by the outer Roche-lobe radius. The formation of the

envelope is envisaged as so rapid that tidal friction will be irrelevant. Ordinary dynamical

friction will occur between ∗2 and the common envelope through which it moves, and this

will transfer angular momentum from the orbit to the envelope, but not so efficiently as to

bring the envelope into corotation with the orbit. Thus the mutual orbit of ∗2 and the core of

the red giant or supergiant loser (∗1) can shrink, perhaps by a large factor, while the common

envelope remains at about the same size as the binary was at the onset of RLOF. The timescale

of this orbital shrinkage, though short compared with even the thermal, let alone the nuclear

timescale of ∗1, will probably be long compared with the orbital period, so that ∗2 will ‘spiral

in’ towards the core of ∗1 in a fairly tight spiral.

An order-of-magnitude estimate is that when ∗2 has spiralled in to distance a from the

centre of ∗1, the drag force on ∗2 will be

Fdrag ∼ ρv2 R2
L, (5.4)

with v the orbital velocity, and ρ the ambient density, which we take to be the unperturbed

density at radius r ∼ a within a red-giant envelope. RL is the Roche-lobe radius (shrinking,
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along with the orbit), and R2
L represents roughly the cross-sectional area, since the fluid

motion will be seriously affected by ∗2’s gravity out to distance RL. The drag luminosity will

be

Ldrag ∼ v Fdrag, (5.5)

and we equate this roughly to the rate of loss of energy from the orbit:

Ldrag ∼ ρv3 R2
L ≡ G M2

atCE

, (5.6)

where tCE is an estimate of the common-envelope timescale. Taking RL ∼ a, v2 ∼ G M/a,

and P ∼ 2πa/v , we obtain

tCE

P
∼ M

2πρa3
. (5.7)

Equation (2.44) shows that in the extensive radiative inner portion of a red-giant envelope,

ρr3 ∼ constant ∼ Mshell, (5.8)

where Mshell is the mass in the nuclear-burning shell. This decreases as the red giant evolves,

being ∼10−2 Mc near the base of the giant branch and ∼10−6 Mc near the AGB tip. Since

we are assuming as the crudest approximation that r ∼ a, i.e. that when the companion

has moved to a separation a it encounters material with a density comparable to that in the

unperturbed red giant at radius r ∼ a, we expect a tight spiral in a highly evolved red giant,

but a much less tight one lower down the giant branch. In the convective outer portion of a

red-giant envelope, the spiral should also be less tight.

It is not clear a priori where this process will end. It is possible that ∗2 will spiral in so

close to ∗1’s core that it will simply be smeared out, adding to the envelope’s mass but losing

its separate identity; this process will be called a ‘merger’. This is likely to produce a single

star that is very rapidly rotating, at least to start with. But there may be several types of

merger, since although one component is probably a red giant the other might be either a

main-sequence star or a white dwarf or neutron star.

Alternatively, if the gravitational energy released by the orbit’s shrinkage is dumped suf-

ficiently rapidly into the common envelope, the envelope may be blown away. A condition

which is presumably necessary, though it can hardly be sufficient, is that the energy released

as the orbit shrinks is greater than the binding energy of the envelope. We can write this

roughly as

αCE

G M2

2

(
Mc

a′ − M1

a

)
= EB ≡

∫ M1

Mc

(
Gm

r
− U

)
dm, (5.9)

with the prime referring to the final state, when M1 has been reduced to Mc, EB being the

binding energy of the envelope – Eq. (2.62) – and αCE being a factor to allow for the fact that

some of the energy will be radiated away rather than channelled into unbinding the envelope.

If this condition is satisfied, then it seems possible that the outcome of mode CE is a binary of

shorter, perhaps much shorter, period than the original, surrounded temporarily by a planetary

nebula which consists of the ejected common envelope glowing in the UV radiation of the hot

core of ∗1. However, it is quite possible that not enough energy is liberated, and the outcome

is a merger: ∗2 becomes smeared out in the deeper regions of ∗1.
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We have noted that if stars are evolved without mass loss the binding energy EB may

become negative at some point on the AGB. We interpreted that in Sections 2.3 and 2.4 as

a crude indication that the envelope would be lost spontaneously at about that stage in the

evolution of a single star. Evidently it would also imply that at a somewhat earlier stage the

envelope could be rather easily blown away by the common-envelope interaction, with very

little contraction of the binary.

EB is often modelled as

EB = G M1 Me

λR1

, (5.10)

where the envelope mass is Me = M1 − Mc and λ is some coefficient of order 0.5 (de

Kool 1990). However, this may be too simple: a precise definition of EB is very unclear

(Section 2.4), partly because it is uncertain where to define the boundary between core and

envelope, and partly because it is unclear whether to include all, some, or none of the thermal
energy with the gravitational energy – Eq. (5.9) assumes that all the thermal energy (U ) is to

be included.

Dewi and Tauris (2001) list five possible definitions of the core. They are

(a) the point where the H-burning energy generation rate has a maximum

(b) the point where XH = 0.1

(c) the location of an inflection in the ρ(m) distribution

(d) the place where EB (viewed as a function of Mc), after varying slowly with Mc in the

outer layers starts to increase rapidly as Mc decreases towards the He-burning shell

(e) the base of the convective envelope.

The first of these usually gives the smallest, and the last the largest, core mass Mc. We can

probably rule out (e) because for stars that have not yet reached the Hayashi track, even if

only by a very narrow margin, it gives hardly any envelope mass. But the others can still give

a range of about 10% in core mass.

To elaborate, consider an envelope (Fig. 5.1) that can be approximated as two layers with

different ρ(r ) power laws:

ρ = ρ0

(
Rc

r

)α

, Rc ≤r ≤ Rab, and ρ = ρ0

(
Rc

Rab

)α (
Rab

r

)β

, Rab ≤r ≤ R1.

(5.11)

The gravitational part of the binding energy of this envelope, defined as positive, has the form

EG = G M2
α

Rc

W1(Rab/Rc, α) + G Mα Mc

Rc

W2(Rab/Rc, α)

+ G M2
β

Rab

W1(R1/Rab, β) + G Mβ(Mc + Mα)

Rab

W2(R1/Rab, β), (5.12)

where

W1(x, α) ≡ 2F(x, 5 − 2α) − x2−α F(x, 3 − α) − F(x, 2 − α)

F2(x, 3 − α)
, (5.13)

W2(x, α) ≡ F(x, 2 − α)

F(x, 3 − α)
, (5.14)
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Figure 5.1 The distribution of log ρ (kg/m3, pluses), m (Solar units, asterisks) and 10Y
(circles) in a red supergiant of ∼9M�, as a function of radius (Solar units). The helium
burning shell is fairly well-defined in the region 0.06–0.15R�, but the hydrogen/helium
interface, with no burning, is spread out over 0.6–5R�. Straight lines of slope −3.8 and
−1.7 have been drawn by hand.

and

F(x, γ ) ≡ xγ − 1

γ
(γ 	= 0), ≡ ln x (γ = 0). (5.15)

The masses Mα, Mβ in the two parts of the envelope (of total mass Me) satisfy

Mα

Mβ

=
(

Rc

Rab

)3−α F(Rab/Rc, 3 − α)

F(R1/Rab, 3 − β)
, Me = Mα + Mβ. (5.16)

It is not especially easy to see which terms dominate, since this depends rather critically on

the values of α, β relative to the (removable) singularities at 2, 5/2 and 3. But probably in

most circumstances we can assume that α > 3, β < 2, and we can also usually assume that

Rc 
 Rab 
 R1. This leads to Mα 
 Mβ ∼ Me, i.e. to

Mα

Me

∼ (Rab/Rc)α−3(Rab/R1)3−β 3 − β

α − 3

 1, (5.17)

and in addition the core is comparable in mass to the envelope so that Mα 
 Mc. Then the

leading terms in EG are

EG ∼ G Mα Mc

Rc

(α − 3) + G M2
e

R1

3 − β

5 − 2β
+ G Me Mc

R1

3 − β

2 − β
. (5.18)

Although Mα is normally small, so is Rc, and therefore it is not clear that the first term in

Eq. (5.17) can be neglected relative to the second and third (the last two being comparable to

each other). In fact the crux of the matter is where one thinks the core ends and the envelope

begins.

In the star shown in Fig. 5.1, an 8.6 M� red supergiant on the verge of non-degenerate car-

bon ignition, we can fairly clearly see that α ∼ 3.8, β ∼ 1.7 and that Rab ∼ 5 R�, R1 ∼ 400 R�.
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But we might see the boundary of the core as anywhere between the outer edge of the helium-

burning shell (Rc ∼ 0.15 R�) and the base of the convective envelope (Rc ∼ 5 R�). There is

no hydrogen-burning shell in this model because the H/He transition is too cool, and there

is not even a sharp boundary in composition because the hydrogen shell, though covering a

narrow range of mass, is spread out in radius over 0.6–5 R�.

We can think of Rab, R1, β, α as given, while altering the depth of the envelope by varying

Rc and consequentially Mα . As long as Rc is not much less than Rab ∼ 0.01R1, the last

two terms in Eq. (5.18) dominate, and are comparable. Together they can be estimated to

correspond to λ ∼ 0.6. Decreasing R1, which also increases Mα , will have little effect until

Rc ∼ 0.3Rab ∼ 0.003R1; but at this point Mα ∼ 0.001Me and so as Rc decreases further the

first term rapidly becomes dominant. The place where the first term starts to be important –

definition (d) above – was suggested by Han et al. (1994) as a reasonable definition of the

boundary, and is the one I prefer here; but obviously it is not the only reasonable definition.

By definition the resulting EG (which for the moment we are equating with EB, i.e. we are

ignoring the thermal energy contribution to EB) is sensitive to using a smaller Mc, though

not a larger.

Dewi and Tauris (2001) show that λ can be several times larger than ∼0.5 if the thermal

energy is included. In fact λ → ∞, obviously, if we include all of the thermal energy, and

allow the star to evolve to the point where the binding energy becomes zero. I showed in

Section 2.3 that if single stars lose their envelopes at about this point we get a reasonable

initial/final mass relation. Clearly if a single star can lose its envelope at this point, a binary

companion will have little difficulty in removing the envelope slightly before this point. We

can view λ as a function not only of the uncertain Mc, but also of an uncertain factor αth such

that our definition of EB is revised to

EB ≡
∫ M1

Mc

(
Gm

r
− αthU

)
dm, (5.19)

with 0≤αth ≤1.

Supposing for the moment that we ignore these uncertainties, and consider Mc, αth, λ and

αCE as known, we can rewrite Eqs (5.9) and (5.10) to give the final value a′ of the separation

as

a′

a
= Mc

M1

M2

M2 + 2Me/(αCEλxL)
, xL(M1/M2) = R1

a
. (5.20)

We are assuming that ∗1 just fills its Roche lobe at the start of this process: the function xL

is given by Eq. (3.5). At least in this formula the uncertainties are compounded into a single

parameter, the quantity λαCE (λ itself incorporating uncertainties in Mc and αth). Until these

uncertainties can be reduced by fully three-dimensional modelling of the complicated gas

dynamics (which may well be influenced by MHD), it is probably necessary, for the present,

to treat λαCE as a free parameter that can best be estimated by seeing what values will give

reasonable agreement, statistically, with the observed distribution of post-common-envelope

systems.

That the energetics of ejecting gas from a binary is over-simplified here is seen by the stark

contradiction between the result (5.20) in the case λ → ∞, i.e. when the envelope is not in

fact bound at all, and Eq. (4.35), which estimates the final period when one star loses all its

envelope to infinity as a result of a spherically symmetrical wind. Equation (4.35) predicts
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that the separation increases, inversely proportional to the decreased total mass, on the basis

(ultimately) of an angular momentum consideration; on the other hand Eq. (5.20) predicts

that it decreases on the basis of an energy consideration, that the orbit conserves its energy

(while remaining circular), since no energy is required to remove the envelope in this case. In

reality, we should consider what happens to both angular momentum and energy, and should

remember that a lot of energy is available, in principle, from the nuclear supply of the star. It

is absolutely clear that the physics here is far from complete.

There have been several numerical attempts to model mode CE: see Taam and Sandquist

(2000). Those that are three-dimensional appear to give αCE ∼ 0.3–0.5. But our understanding

at present can only be very tentative. Most attempts so far start somewhere in the middle

of the spiral-in process, and it is not clear that an actual spiral in will pass through this

state. We will need fully three-dimensional modelling of the entire process, starting from just

before RLOF and ending when the envelope clears away; we cannot expect such modelling

soon.

Table 5.1 is a collection of binaries that appear to be related to mode CE. Not all have short

periods, because we wish to emphasise the fact that arguably rather similar initial systems

seem to produce wide as well as close binaries. Mode CE probably produces mergers as well,

but it is difficult to see how one would clearly recognise a single star as the merged remnant

of a binary. Let us concentrate here on detached binaries, thus excluding CVs and LMXBs,

on the grounds that if no mass transfer has yet taken place (after the mode CE interaction, of

course) then we might hope for a clearer picture of the mode CE transition.

The first group of systems in the table are located in planetary nebulae, which suggests that

they have only recently experienced mode CE. One component in each system is indeed very

hot (SDO), and presumably powers the nebula. The next group is somewhat heterogeneous,

with one component being apparently hot and undermassive (relative to the main sequence),

and the other arguably a fairly normal unevolved or moderately evolved star. The third group

contains a white dwarf and a relatively normal star; and the fourth group contains two highly

evolved objects, and might be perceived as the outcome of two successive mode CE steps.

Because these systems have not (yet) begun to exchange mass in the course of post-CE

evolution, we can make an estimate, but only a very tentative one, of parameters in the pre-CE

state. Even this is ambiguous, however, since it is quite likely that the pre-CE red giant was

losing mass by stellar wind. Our best attempts, for a subset of systems, are given in Table 5.2;

they are still very subjective.

For the C M D and W M D systems of shortest period in Table 5.1 it is perhaps a little sur-

prising how many have a very low value of M2. The typical ∗2 appears to be a late M

dwarf of 0.1–0.2 M�. One does see some more substantial stars (A5 in V651 Mon, G8III in

FF Aqr), but they are found in longer-period systems. This leads us to suggest that it is the

mass ratio – well before mode CE begins – which is most important in determining the final

period. A massive companion may manage to blow away the envelope with rather little orbital

shrinkage, while a low-mass companion has to spiral in much further, and perhaps in many

cases merge.

This is illustrated in Fig. 5.2, where the estimates of Table 5.2 are plotted in a P0, q0 plane.

In our estimates of precursor parameters we have gone for the possibility that has the lowest

reasonable M10, on the grounds that lower masses are more probable than higher masses,

but we still find that virtually all the systems that have shrunk their orbits by large factors

(marked by an asterisk in Fig. 5.2) had precursor mass ratios of >∼ 4, while conversely most
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Table 5.1. Some detached evolved binaries possibly related to common-envelope evolution

Name Spectraa State P e M1 M2 R1 R2 Reference

KV Vel 77kK + CIIIem C M D 0.357 0.63 0.23 0.16 0.40 Hilditch et al. 1996

UU Sge 87kK + 6.3kK C M D 0.465 0.63 0.29 0.33 0.54 Bell et al. 1994

V477 Lyr 60kK + 6.5kK C M D 0.472 0.51 0.15 0.17 0.46 Pollacco and Bell 1994

BE UMa 105kK + 5.8kK C M D 2.29 0.7: 0.36: 0.08: 0.7: Ferguson et al. 1999

V651 Mon 100kK + A5Vm: C M D 16.0 0.07: 0.0073b Smalley 1997

IN Com 200kK: + (G + G) C(. . .)D 41: 0.0016:b Jasniewicz et al. 1987

IN Com G: + G5III ggc 1.99 0.004:b 0.016:b Jasniewicz et al. 1987

HW Vir SDB + 4.5kK E M D 0.1167 0.48 0.14 0.18 0.18 Wood and Saffer 1999

AA Dor 40kK + 4kK C M D 0.262 0.3: 0.05: 0.16: 0.09: Wl�odarczyk 1984

FF Aqr SDOB + G8III cG D 9.2 0.35 1.4 0.16 7.2 Vaccaro and Wison 2002

V1379 Aql SDB + K0III-IV EG E 20.7 0.09 0.30 2.27 0.05 9.0 Jeffery and Simon 1997

HD 137569 B5III + ? hm E 530 0.11 0.21b Bolton and Thomson 1980

V652 Her B2IIIp + ? hme 3000: 0.7: 0.015: 1.7: Kilkenny et al. 1996

HR Cam 19kK + M W M D 0.103 0.41 0.10 0.018 0.125 Maxted et al. 1998

13471-1258 14.2K + M3.5/4 W Md 0.151 0.78 0.43 0.011 0.42 O’Donoghue et al. 2003

NN Ser 55kK + M5-6 W M D 0.130 0.57 0.12 0.019 0.17 Catalán et al. 1994

LM Com 29kK + M4.5 W M D 0.259 0.45 0.28 Orosz et al. 1999

CC Cet WDA2 + M4.5e W M D 0.284 0.39 0.18 0.21 Saffer et al. 1993

GK Vir WDAO + M3-5V W M D 0.344 0.51 0.10 0.15 Fulbright et al. 1993

V471 Tau 35kK + K2V W M D 0.521 0.84 0.93 0.011 0.96 O’Brien et al. 2002

EG UMa 13kK + ? W M D 0.668 0.38 0.26 O’Brien et al. 2002

Feige 24 55kK + M1.5V W M D 4.23 0.47 0.30 0.032 Vennes and

Thorstensen 1994

G203-47 ? + M3.5V w M E 14.7 0.07 0.2b Delfosse et al. 1999

IK Peg 35kK + A8p W M D 21.7 1.1: 1.7: Landsman et al. 1993

AY Cet WD + G5IIIe W h D 56.8 0.09: 0.55: 2.1: 0.012 15 Simon et al. 1985

HD121447 ? + K7Ba5 wG D 186 0.02 0.025b Jorissen et al. 1998

G77-61 ? + MVp w M D 246 0.173b Dearborn et al. 1986

AG Dra SDOe+ K3pIIIBa wgd 549 0.006b Smith et al. 1996

DR Dra WD + K0III W G E 904 0.07 0.0035b Fekel et al. 1993

HD17817 ? + K4IIIBa5 wG E 2866 0.43 0.0056b Jorissen et al. 1998

α CMi WDF + F5IV-V w M E 14910 0.41 0.60 1.50 0.0096 2.0 Girard et al. 2000

α CMa WDA2 + A0Vm: w M E 18300 0.59 1.00 2.0 0.0084 1.7 Provencal et al. 1998

0957-666 WDA + WDA W W D 0.061 0.32 0.37 Maxted et al. 2002

1101 + 364 WDA3 + WDA W W D 0.145 0.33 0.29 Marsh 1995

1704 + 481.2 WDA4 + WD W W D 0.145 0.39 0.54 Maxted et al. 2002

1704 + 481 (W+ W) + WDA5 (. . .)W E 4.5′′ 0.93 0.55: Greenstein et al. 1983

1414-0848 8.9kK + 10.8kK W W D 0.518 0.55 0.71 0.012 0.01 Napiwotzki et al. 2002

IQ Cam ? + SDB w E D 0.090 0.126b 0.01: 0.25 Koen et al. 1998

V2214 Cyg ? + SDB w E D 0.095 0.42b 0.18: Maxted et al. 2000

HD 49798 XR + SDO6 weD 1.55 0.263b 1.5 Bisscheroux et al. 1997

UX CVn ? + BV wh D 0.574 0.42: 0.39: 1.1: Schönberner 1978

V379 Cep B2III + B2III hhE 99.7 0.15 1.9 2.9 5.2 7.4 Gordon et al. 1998

EG52 DC9 + DC9 W W E 7500 0.18 0.65: 0.65: Borgman

and Lippincott 1983

a In several cases an effective temperature is listed.
b Mass function, or if two values, M sin3 i .
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Table 5.2. Estimated parameters well before interaction

Name M10 M20 P0 q0 M1m M2m Pm M1 f M2 f Pf Case

KV Vel 2.55 0.23 146 11.1 1.26 0.23 1518 0.63 0.23 0.36 CUD

UU Sge 2.55 0.29 166 8.78 1.26 0.29 1576 0.63 0.29 0.47 CUD

BE UMa 3.18 0.35 191 9.09 1.40 0.35 2161 0.70 0.35 2.29 CUD

V651 Mon 2.04 1.00 185 2.04 1.20 1.80 1676 0.60 1.80 16.0 CUD

HW Vir 1.20 0.14 274 8.57 0.62 0.14 853 0.48 0.14 0.12 CUD

AA Dor 1.20 0.05 12 24.0 0.35 0.05 113 0.30 0.05 0.26 CUD

FF Aqr 2.60 1.00 2.0 2.60 0.35 1.40 9.2 CUN

HD137569 1.10 0.60 393 1.83 1.05 0.60 417 0.45 0.60 530 CU

HR Cam 1.50 0.10 63 15.0 0.51 0.10 436 0.41 0.10 0.10 CUD

NN Ser 2.04 0.12 126 17.0 1.14 0.12 1235 0.57 0.12 0.13 CUD

LM Com 1.50 0.28 181 5.36 0.73 0.28 562 0.45 0.28 0.26 CUD

CC Cet 1.50 0.18 64 8.33 0.57 0.18 322 0.39 0.18 0.28 CUD

V471 Tau 4.20 0.93 415 4.52 1.68 0.93 3486 0.84 0.93 0.52 CUD

EG UMa 1.50 0.26 68 5.77 0.64 0.26 260 0.38 0.26 0.67 CUD

Feige 24 1.90 0.30 159 6.33 0.77 0.30 673 0.47 0.30 4.23 CUD

G203-47 2.04 0.25 242 8.16 1.12 0.28 1451 0.56 0.28 14.7 CUD

IK Peg 5.50 1.50 819 3.67 2.20 1.70 4710 1.10 1.70 21.7 CUD

AY Cet 2.55 1.20 301 2.12 1.26 2.10 1986 0.63 2.10 56.8 CUD

G77-61 2.04 0.30 252 6.80 1.10 0.33 1518 0.55 0.33 245 CU

α CMi 2.04 1.48 2373 1.38 0.60 1.48 6800 D

α CMa 5.00 2.00 918 2.50 1.00 2.00 5000 D

0957-666 2.43 1.00 13 2.43 0.32 1.60 59 BUN

0957-666 0.32 1.60 59 5.00 0.32 0.69 213 0.32 0.37 0.06 reverse CUD

1101+364 2.49 1.00 3.5 2.49 0.33 1.70 15 BUN

1101+364 0.33 1.70 15 5.15 0.33 0.62 66 0.33 0.29 0.14 reverse CUD

1704+481 2.82 1.00 62 2.82 0.39 2.04 230 CUN

1704+481 0.39 2.04 233 5.23 0.39 1.12 1525 0.39 0.56 0.14 reverse CUD

IQ Cam 3.87 1.50 75 2.58 0.60 2.45 270 CUN

IQ Cam 0.60 2.45 267 3.40 0.60 1.24 1666 0.60 0.62 0.09 reverse CUD

HD49798 5.00 3.00 117 1.67 1.00 4.00 423 CUN

HD49798 1.00 4.00 423 4.00 1.00 1.60 3267 1.00 0.80 1.55 reverse CUD

EG52 2.82 2.40 394 1.17 0.66 2.64 1200 CUN

EG52 0.66 2.64 1166 3.99 0.66 0.64 7500 reverse D

Suffix 0 refers to the hypothetical initial configuration; suffix m to the maximum period reached, just

before common-envelope evolution if it occurs; and suffix f to the final state, so far. For doubly-evolved

systems the second line begins where the first ends.

‘Case’ means the appropriate variant of Cases B, C or D.

that have emerged with rather longer periods typically had less extreme mass ratios. At the

longest periods, those near the boundary where no interaction occurs at all, even mass ratios

of ∼10 may not guarantee drastic shrinkage.

A system to take particular note of is AA Dor, which has a remarkably high initial mass

ratio, as well as an unusually low mass for the SDOB component. Although this system is

only SB1, it is also doubly eclipsing, and so its low mass function seems to translate plausibly

into the low masses quoted. It is hard to see how a companion of only 0.05 M� can have
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Figure 5.2 Possible locations in the initial period – mass ratio plane of the late case B/C
precursor systems, from which some of the systems of Table 5.2 have formed. Each system
is identified by some letters or numbers in its name. Asterisks: drastic shrinkage, current
P <∼ 3 days. Pluses: substantial shrinkage. Circles: slight shrinkage. Regions where
probably no shrinkage occurred are labelled ‘Ba Stars’, ‘RS CVns’, ‘Algols’. A region
where we estimate that total shrinkage should occur is labelled ‘merger’.

driven off the companion’s envelope, which must have been of order 0.75 M� originally. We

can imagine a two-stage process here, with mode EW playing an important part by driving

off most of the envelope; then when the envelope is down to perhaps 0.1 M� mode CE drives

off the remainder during a spiral-in episode. Mode EW could well be a prolonged and fairly

efficient process, helped by the fact that as the total mass of the system drops the orbit widens,

leaving ∗1 close to but not quite filling its Roche lobe during a substantial run up the first

giant branch. Such a process may also have happened in other systems such as HW Vir. It

is possible that mode DI played a role in systems like AA Dor and HW Vir, intermediating

between modes EW and SF3, but it is not easy to be sure.
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Mode 3 RLOF, and subsequent mode CE, is probably not limited to stars with convective

envelopes. In a binary where the initial mass ratio is rather extreme (say q0 ∼ 10), it would

be necessary under conservative assumptions for the orbit to shrink by a very large factor

(∼9, Table 3.1) before expanding again. Even if the loser has a radiative envelope, it seems

difficult to imagine that thermal-timescale mass loss could succeed in contracting the stellar

radius by such a large factor. A more likely outcome would be that ∗2 becomes swallowed by

the envelope of ∗1, with the same kind of results as above. A further way in which mode CE

evolution might be precipitated is by mode DI, as described in the previous section.

There is evidence, generally of a rather indirect character, that some binaries that might

be expected to have undergone a common-envelope phase have not in fact had their orbits

shrunk by any substantial amount. This could be a consequence of a number of factors. But

one possibility that I believe may be important, for moderately massive stars (say >∼ 10–

30 M�), and moderately long periods (say 50–1000 days), goes as follows. The evolved ∗1,

still in the Hertzsprung gap, approaches its Roche lobe. Because it is quite massive and

luminous, it is not very far below the Humphreys–Davidson limit, at which rather more

massive single stars apparently become unstable, probably because they are also rather close

to the Eddington limit. Massive single stars (M >∼ 30 M�) seem to eject almost their entire

envelope at this stage, but the somewhat less massive stars discussed here presumably do not.

Nevertheless, it may be that the presence of a binary companion in a suitable orbit somehow

lowers the threshold, so that the evolved component ejects most of its envelope in a more-or-

less spherical manner, as if its envelope were unstable to much the same extent that the more

massive stars’ envelopes are unstable. The loss of the envelope, if it happens in a roughly

spherical manner, may lengthen rather than shorten the separation, so that there may not be

the opportunity for the companion star to get caught up in it and spiral in to any significant

extent.

Although stars that have an active nuclear burning region within them are producing

energy at a rate that is capable, in principle, of driving off the star’s envelope on a thermal

timescale, it is clear that the conversion of radiant energy flux into outwardly directed mass

flow is not usually efficient – otherwise stars would hardly evolve beyond the ZAMS. But

single stars with a high L/M ratio, near the Eddington limit, apparently do achieve efficient

energy conversion of this sort. I suggest that, in circumstances where one might expect a

common envelope to be set up by rapid RLOF, the effect of a high L/M ratio may be to

drive the common envelope away to infinity. In classic mode CE evolution, the energy to

drive the envelope away is thought to come from the binary orbit, which necessarily means

that angular momentum is also extracted at much the same rate; but if the energy comes

from the radiation field, assumed to be near the Eddington limit, then little or no angular

momentum per unit reduced mass need be extracted from the orbit, which therefore remains

wide.

There may be at least two ways in which such evolution may come about. On the one

hand it may be that, shortly before RLOF would be attained, the envelope becomes unstable

on account of the lowered gravitational potential in the outer layers, and blows away; or, on

the other hand, it might be that slightly after RLOF, the disturbance to the outer layers is

sufficiently strong that the envelope blows away. The first way might be considered a variant

of mode EW; but we cannot say that the normal wind is enhanced since normally (i.e. in a

single star with M <∼ 30 M�) there might be no wind at all at this stage. The second way,

which in practice may be little different, is what we call ‘envelope ejection’: mode EJ.
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I have already suggested – Section 3.5 – that V379 Cep in the fourth part of Table 5.1

(and also in Table 3.10) is a product of such a process, but in the second (reverse) stage

of RLOF. V379 Cep is an ESB2, and so the masses, though not very secure, are not small

by virtue of low inclination, as one might expect. Each is only perhaps one quarter of the

mass to be expected for normal stars with their spectra. We imagine that this system may

have started in case AL with parameters (7 + 6.3 M�; 3 days). After a major episode of

forward RLOF, this can be expected, on a conservative basis, to become detached again at

parameters (1.1 + 12.2 M�; 100 days). In this state ∗1 burns helium for some considerable

time, but during this period ∗2 evolves rapidly to reverse RLOF. I hypothesise that either

at the onset of this RLOF, or perhaps slightly earlier (at which point ∗2 would just be entering

the Cepheid strip), ∗2 blew off most of its envelope very rapidly, and to infinity rather than

to ∗1. Perhaps a few per cent of the envelope was accreted, in order (a) to raise the mass

of ∗1 from 1.1 to 1.9 M�, and (b) to turn ∗1 from a He main sequence star to something

that is morphologically like a horizontal-branch star. The remnant of ∗2 must also hold on to

some portion of its envelope, so that it can also resemble a horizontal branch star in structure,

though not in mass.

The binary υ Sgr (Table 3.10) is a possible second example of this behaviour. It is a

surprisingly bright member of the rather rare class of HdC stars (Section 2.5), which appear

to have almost no hydrogen but high helium, and high carbon, a product of helium burning,

as well. It has long been known as an SB1, but Dudley and Jeffery (1990) were able to

detect a weak secondary spectrum in the UV. Although the system does not eclipse, there are

faint indications of variable Hα absorption round the orbit (Nariai 1967), suggestive of an

accretion flow and therefore of a fairly high inclination. Thus we may accept that the masses

are not very different from the mass-functions listed in Table 3.10. A helium star of the mass

of ∗1 can be expected to come from a star of ∼10 M� initially, but little or none of the

envelope has evidently been accreted by ∗2. I suggest that the envelope was largely blown

to infinity, but with little change of orbit, as ∗1 approached both RLOF and the Cepheid

strip simultaneously. Thus we suspect initial parameters of (∼10 + 3 M�; 150 days). The

conditions that I feel might be conducive to mode EJ are (a) ∗1, or in some cases ∗2, more

massive than ∼10 M�, (b) a period that puts the star somewhere in the right-hand half of the

Hertzsprung gap (and perhaps rather close to the Cepheid strip) as it also approaches RLOF.

Unlike in mode CE, I feel that the mass ratio may be something of an irrelevance; although

some binary companion is no doubt necessary since otherwise no star above ∼10 M� would

reach the giant branch.

I suggested at the beginning of this section that mode CE requires either a deep convective

envelope, or a severe mass ratio (or both). The mode EJ that I describe is different at least

to the extent that we require it to happen if the envelope is radiative, though very extended,

as in a massive star near the middle or right-hand edge of the Hertzsprung gap, and it also

appears to be required if the mass ratio is not particularly severe. Although we can identify

only a handful of binaries where we feel that mode EJ is called for, I feel that the need for it

is sufficiently pressing to define it as another mode, so that we have two common-envelope

modes: a somewhat less dramatic mode EJ, and the more dramatic classical mode CE. In both

modes, much mass is lost, but only in mode CE is a large fraction of the angular momentum

also lost.

Some other binaries that we can tentatively identify with Mode EJ are: δ Ori A, V505 Mon

and V2174 Cyg (Table 3.10) and PSR 0045-7319 (Table 5.3). In all of these, at least one
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component is severely undermassive for a credible conservative RLOF scenario. In δ Ori A

both are undermassive for their spectral types, rather as in V379 Cep, though perhaps by

factors of 2–3 rather than 4–5. This milder factor, and the substantially shorter period, may

relate to considerably greater original masses than in V379 Cyg, ∼30 M� each. The period

boundary for mode EJ perhaps slopes to periods as short as ∼6 days at these high masses;

this region (‘BU’) is illustrated in Fig. 4.4.

It is clear that our mode EJ, operating more-or-less at the boundary between mode EW

(in detached systems) and mode CE (in semidetached systems), is in just the contradictory

regime described earlier in this section where the orbital separation a might be expected to

either increase (mode EW) or decrease (mode CE). It is therefore particularly unlikely that

we could predict what does in fact fact happen to the separation and period. I suggest a rather

banal compromise: the period remains much the same.

5.3 Supernova explosion: mode SN
The effect on an orbit of a supernova explosion in one component of a binary can

be readily estimated under the following very simple assumptions (Blaauw 1961, Brosche

1962). Suppose that two stars are in an elliptic orbit (eccentricity e, semimajor axis a, total

mass M), and then one explodes instantaneously, sending to infinity a fraction 1 − F of the

total binary mass. As a first approximation, which we will improve on later, we assume that

the explosion is isotropic in the rest-frame of the supernova, and so the remaining objects

continue instantaneously with the same separation d and relative velocity ḋ as immediately

before. But because the total mass was changed instantaneously from M to M ′ = F M they

will now pursue a new Keplerian orbit described by e′, a′. We can calculate the energy and

angular momentum of the new orbit very simply, and hence a′, e′, from the initial conditions

and F .

The semimajor axes before and after the supernova are related to the corresponding energies

by

ḋ
2

2
− G M

d
= −G M

2a
,

ḋ
2

2
− G M ′

d
= −G M ′

2a′ , (5.21)

and so eliminating ḋ we have

M ′

a′ = M

a
− 2(M − M ′)

d
. (5.22)

For Keplerian ellipses it is straightforward (Appendix C) to average the reciprocal separation

1/d over time, assuming constant probability of explosion per unit time. The average is 1/a,

so that the expectation value of 1/a′ after the supernova is given by〈
1

a′

〉
= 2 − M/M ′

a
= 1

a

(
2 − 1

F

)
. (5.23)

Since d, ḋ are instantaneously unchanged, the angular momentum d × ḋ per unit reduced

mass will be the same after as before the supernova, and so the new eccentricity can be found

from

G Ma(1 − e2) = |d × ḋ|2 = G M ′a′(1 − e′2). (5.24)
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Hence, we arrive at the results

〈 a

a′
〉

= 2 − 1

F
;

〈e′2〉 − e2

1 − e2
=

(
1

F
− 1

)2

;

〈(
P

P ′

)2/3
〉

= 2F − 1

F2/3
. (5.25)

We see that if F < 1
2
, i.e. if less than half of the total mass of the binary is retained,

the new orbit is (on average) unbound, and the binary is disrupted. That the orbit in this

situation generally gets larger rather than smaller reflects the fact that most of the orbital

angular momentum is in the motion of the less massive star. In the particular case that the

orbit was circular before the supernova, we see that the final eccentricity is given simply by

e′ = 1/F − 1.

The above formulae suppose that the supernova explosion is isotropic in the rest frame of

the exploding star. Quite a modest degree of anisotropy can make a considerable difference

(Shklovskii 1970), since the material is ejected typically at something like a tenth of the

speed of light, or several hundred times the orbital speed. We can make a somewhat more

elaborate estimate of the effect of a ‘kick’ velocity u, assuming that this velocity has a certain

magnitude but random direction. We replace the second parts of Eqs (5.21) and (5.24) by

1

2
|ḋ + u|2 − G M ′

d
= −G M ′

2a′ , (5.26)

|d × (ḋ + u)|2 = G M ′a′(1 − e′2). (5.27)

Averaging over time (assuming that the supernova is equally likely at any time in the orbit,

as before), and averaging also over solid angle for u, we obtain〈 a

a′
〉

= 2 − 1

F
(1 + K 2), (5.28)

〈e′2〉 − e2

1 − e2
=

(
1

F
− 1

)2

+ K 2

3F(1 − e2)

[
9 − 8e2

F
− 2(2 + e2)

]
+ K 4

3F2

2 + 3e2

1 − e2
,

(5.29)

where K is a measure of the kick velocity in terms of the mean circular velocity before the

supernova:

|u| ≡ K

√
G M

a
∼ 214K

(
M

P

)1/3

, (5.30)

with M in Solar units, P in days and u in km/s. For a kick of given magnitude, and (for

simplicity) an initially circular orbit, the probability p of escape is

p = max{0, min(α, 1)}, α ≡ (K + 1)2 − 2F

4K
. (5.31)

For K ∼ 0 this is either zero (F > 1/2) or unity (F < 1/2), and for K > 1 + √
2 it is

always unity, but for 0 < K < 1 + √
2 the probability has an intermediate value, because

the orientation of the kick matters. An exceptionally well-placed kick can score a goal; the

neutron star or black hole remnant colliding with the companion star. If the kick is not

too strong the remnant may be trapped inside the companion, in a version of mode CE

(Section 5.2). The outcome could then be a Thorne–Żytkow object (Thorne and Żytkow
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1977), a red supergiant with a neutron star or black hole core (Leonard et al. 1994); or it

might be a short-period orbit of the newly-formed neutron star with the core of the companion,

the envelope being driven away.

Hansen and Phinney (1997) obtained a pulsar kick-velocity distribution

p(u) =
√

2

π

u2

V 3
e−u2/2V 2

, V = 190 km/s, (5.32)

based on proper motions and distances to 86 pulsars. Their mean velocity V is equivalent to

the circular velocity of a 20 M� binary in a 30 day orbit. Lyne and Lorimer (1994) found a

substantially larger value, 450 km/s; evidently the result is still fairly uncertain.

Table 5.3 lists a number of massive X-ray binaries. Clearly these have not been disrupted

by a supernova, though it is likely that those that have been disrupted far outnumber them.

If kick velocities of ∼450 km/s are typical, then it is rather surprising that any of them have

survived, except perhaps the first three or four with the tightest orbits. But in these short-period

systems it can be argued that a kick is necessary, although it must be a fairly well-placed

one. The typical product of case A or B RLOF would normally be a much wider binary, with

period ∼40–150 days (e.g. φ Per, Table 3.10, although ∗1 there is of somewhat too low a

mass to explode). In such an orbit, it would be necessary for the kick to direct the neutron star

towards the companion, generating an elliptical orbit with a periastron sufficiently close that

tidal friction can then moderate the ellipse into a circle with the same angular momentum

and semi-latus-rectum. It is not improbable that in some cases the neutron star is kicked right

into the companion. Perhaps it could travel right through and emerge on the other side; but

more probably it will be trapped inside, settle to the centre, and convert the companion into

a Thorne–Żytkow object (TŻO), as above.

Among the longer-period examples, Pfahl et al. (2002) distinguish between a group with

very eccentric orbits (e.g. V635 Cas, V725 Tau) and those with only mildly eccentric orbits

(e.g. X Per, γ Cas). It seems unlikely that a kick played any substantial role in the latter group –

they are much too wide for tidal friction to be important. Pfahl et al. suggest that the degree

of anisotropy in the explosion may depend on the rotation rate of the pre-supernova core, and

that this in turn depends on whether the preceding RLOF was case B or C. Although Spruit

(1998) suggested that internal magnetic stress would keep a core corotating with its envelope,

this may be mitigated if the core is contracting on a thermal timescale, so that ∗1 remnants of

case B might be rotating substantially more rapidly than remnants of case C. Possibly rapid

rotation reduces the anisotropy of the explosion when it occurs. Thus a bimodal distribution

of kick velocities could be generated. A mean kick of only ∼20 km/s is required to account

for the low-eccentricity systems.

The radio pulsar 0045-7319 in the SMC is one of the few ‘HMXBs’ which does not radiate

in X-rays. The B star is, untypically, not a Be star with substantial though erratic wind. It

probably rotates quite slowly. Consequently there appears to be nothing for the pulsar to

accrete. Its orbital shrinkage subject to mode TF was discussed briefly in Section 4.2. Its

previous evolution presents the problem that we expect ∗2 to be substantially more massive

than it appears to be. We would expect, as a result of reasonably conservative RLOF, that

∗2 will become substantially more massive than ∗1 was originally, and 8.8 M� (though

tentative) seems too small. φ Per (Table 3.10) produced a slightly more massive ∗2, and

yet its ∗1 is well short of becoming a supernova: I argued for an initial mass of ∼6 M�. I

suggest that 0045-7319 is a product of mode EJ (Section 5.2), by way of case BU, as for some
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other binaries that I propose were fairly wide and fairly massive originally. Initial parameters

(10 + 8 M�; 50–100 days) might produce such a system.

A handful of HMXBs contain a black hole, V1357 Cyg being the prototype. Masses of

black holes are estimated to be in the range 7–12 M� (Bailyn et al. 1998). Let us assume

here that all black holes come from stars more massive than those that produce neutron stars;

but this point deserves a much fuller discussion than there is room for here. Accepting this

hypothesis, it is likely that the boundary is around 40 M�.

Evolution of ∗2 in HMXBs is likely to produce reverse RLOF. The reverse RLOF should be

very hydrodynamic, and seems likely to lead to mode CE and either a merger or a very close

binary of state N RD. However, I have already postulated mode EJ as a likely alternative to

mode CE, in (reverse) case B systems that are moderately wide. Consequently we anticipate

three different outcomes, possibly depending primarily on the period in the HMXB state:

(a) Shorter-period systems like V779 Cen, for example, might merge to form a single star,

presumably a red-supergiant-like entity with a neutron-star core, i.e. a TŻO. The TŻO

would probably be subject to extremely copious wind, which might remove the envelope

in ∼104 years leaving a bare neutron star, or black hole in the case of LMC X-4.

(b) Intermediate-period systems like GP Vel or V635 Cas, for example, where the binary is

wide enough to allow reverse case BD rather than reverse case AD RLOF, might evolve

through mode CE to become a short-period N R D system like V1521 Cyg. If the WR-like

component of this system is >∼ 2.5 M�, which is likely since ∗2 in the precursor N H D

state is likely to be >∼ 12 M�, then it can have a second supernova explosion. Even a

fairly substantial supernova kick might fail to disrupt such a compact binary, and the

result could be an N N E binary like PSR J1915 + 1606.

(c) Longer-period systems like X Per, for example, seem likely to evolve by reverse caseBU

to a comparably wide N R D, which would almost certainly be disrupted by a later super-

nova explosion.

At present no B N E or N B E system is known, but both types seem likely to exist. BP Cru has a

sufficiently massive ∗2 that it might reasonably become a black hole (at least if the mass of the

precursor is the major determinant). The system may have evolved to its present configuration

by fairly conservative case AN from an initial binary such as V348 Car (Table 4.3) with both

masses ∼35 M�. This makes ∗2 grow to a mass substantially greater than the initial ∗1.

V1357 Cyg may have evolved more non-conservatively (case BUN) from a ∗1 of initially

much greater mass, but with ∗2 remaining arguably of low enough mass to leave a neutron

star. We can also expect that some B B E systems exist, but they will be very hard to recognise;

unless by good fortune they have a third body in a measurable orbit that yields a mass-function

of >∼ 20 M�, and an invisible companion.

5.4 Dynamical encounters in clusters: mode DE
If the space density of stars is n, and their mean velocity is v , then a binary with

separation a will typically have a close encounter with another star after time t where

πa2nvt ∼ 1. (5.33)

In the Solar neighbourhood n ∼ 0.1 /pc3 and v ∼ 10 km/s. Thus we need a ∼ 1000 AU

(∼0.005 pc) if the time required for a close encounter is to be ∼10 gigayears. This means that

near collisions are unlikely for the kind of binary mainly considered here, with a <∼ 10 AU.
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However, in a dense cluster, such as a globular cluster or a young dense star-forming region,

the space density can be a million times greater, and so systems with a ∼ 1 AU are vulnerable.

Since most of this book is concerned with the relatively low-density Solar neighbourhood,

say out to ∼1 kpc and occasionally further, I will not attempt to discuss clusters and dynamical

encounters in detail: see Heggie and Hut (2003). But when considering binary stars in globular

clusters it is important to note that several interesting objects, such as low-mass X-ray binaries

and radio-pulsar binaries that are found with surprising frequency there, may have been much

influenced by dynamical encounters. In particular, one cannot assume that such binaries

have always been binary, to the same extent that one probably can assume it in the Solar

neighbourhood. Dense young star-forming regions also allow the possibility of dynamical

encounters.

When considering the evolution of binary stars in dense clusters, therefore, it is important to

include the N -body gravitational dynamics as well as the effects of RLOF, etc. (Aarseth 1996,

2001). We cannot ignore the fact that stars may loop many times into and out of the densest

central core of the cluster. The number of stars in a cluster, ∼104–106, is not large enough

to allow simple statistical–mechanical arguments for estimating the degree of ‘ionisation’

of binaries. However, one aspect of thermodynamics that holds at least qualitatively is the

tendency of more massive particles to diffuse towards the centre, as in selective diffusion

in stars: I mentioned briefly the tendency of helium to diffuse inwards relative to hydrogen

in Section 2.2.4. Close binaries on the one hand, and neutron stars on the other, tend to be

more massive than the average globular-cluster star (∼0.5 M�), so they are somewhat more

likely to interact near the centre. At the other end of the mass spectrum, light stars tend to be

ejected to an outer halo, and some to escape velocity. Evaporation of the cluster is assisted

by the fact that a cluster near to a galaxy is surrounded by a ‘Roche lobe’ whose radius can

be estimated, as with binary stars, by Eq. (3.6). A crude estimate of the lobe radius is ∼50 pc,

for a cluster of 105 stars at a distance of 10 kpc from the Galactic centre.

It may seem a little odd that gravitational dynamics, being a strictly time-reversible process,

can lead to long-term irreversible changes. It is true that (given a sufficiently exact code), we

could evolve a cluster forward until, say, half the stars have escaped, and then reverse the

evolution and watch the escaped stars being captured. But the (huge) volume of phase space

occupied by the evolved cluster and its escapers is still a tiny fraction of the incomparably

vaster total phase space involved, and a very special fraction. In general, we would not expect

similarity between a cloud of escaped stars and a general cloud of stars, most of which would

be non-capturable.

The internal distribution of stars in a globular cluster can be modelled in some respects like

the internal structure of stars themselves, with a potential gradient balanced by a gradient of

‘pressure’ that is essentially the local velocity dispersion multiplied by the density. There is an

outward ‘heat’ flux, with energy from the centre being transported outwards by gravitational

interactions between stars; although unlike the atomic case a star may have to rotate many

times around the cluster before undergoing a significant interaction. In addition there can even

be a central ‘nuclear’ energy source, i.e. a binary at the centre that can grow more tightly

bound while giving energy to neighbours. Lynden-Bell and Eggleton (1980) found that such a

cluster (without a central energy source), contracting in a self-similar fashion, is rather like an

n ∼ 11 polytrope, i.e. fairly nearly but not quite isothermal. The slow self-similar contraction

would in a long but finite time lead to the core’s collapse to infinite density, the ‘gravothermal

catastrophe’ (Antonov 1962, Lynden-Bell 1968), except that this is prevented (Bettwieser
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and Sugimoto 1984, Inagaki 1984) by the formation of a close binary at the centre. This is

analogous to the ignition of nuclear fuel as in a star approaching the main sequence, or the

tip of the giant branch.

Until relatively recently (McMillan et al. 1990, Heggie and Aarseth 1992) simulations of

N -body gravitational dynamics tended to start with a large number of single stars – although,

harking back to the first paragraph of this book, the long-range nature of gravity is such that it

is not always clear whether sub-sytems are bound or not. But the introduction of a substantial

fraction of ‘primordial’ binaries has been shown to be very significant for the evolution of a

cluster, both dynamically and in terms of stellar evolution. The reason is that binaries are very

difficult to form by two-body encounters among single stars. Energy and angular momentum

conservation say that two bodies approaching each other on a hyperbolic orbit will depart

on the same hyperbolic orbit – unless there happens to be a third star around close enough

to interact at the same time and absorb some of the energy. Normally one or two binaries

do form nevertheless, and they can dominate the later evolution: the binding energy of one

fairly close binary (say 1 AU) is comparable to that of 105 stars within a sphere of ∼1 pc.

But single–binary, and a fortiori binary–binary, encounters are fairly rare in such a system,

whereas if binaries are as common primordially in clusters as in the field such encounters

can be very important. Furthermore, I will suggest below that primordial triples may be not

just a luxury but a necessity for understanding such objects as the blue stragglers of M67 and

other clusters.

Whether a primordial binary in a cluster survives for a long time or gets disrupted by

encounters can be measured by its ‘hardness’. A binary is ‘hard’ if the orbital velocity within

the binary is large compared with the velocity dispersion of the cluster, and otherwise ‘soft’.

This leads rather easily to the condition that, in a cluster of N stars within radius R, hard

binaries have a <∼ R/N . With say 104 stars within 1 pc, this gives a <∼ 20 AU. Dynamical

encounters tend to make hard binaries harder, and soft binaries softer until they are disrupted

(Heggie 1975).

Two kinds of three-body (or four-body) dynamical encounter may be particularly interest-

ing: exchange reactions, and induced collisions. A neutron star encountering a binary of two

K dwarfs may expel one dwarf and form a binary with the other. If this is close enough to

have a period of only a few days, magnetic braking and tidal friction (mode MB, Table 3.8)

may lead to interaction, to a low-mass X-ray binary and ultimately to a millisecond pulsar

binary. Alternatively the neutron star (or another main-sequence star or binary) may perturb

the binary to such an extent that the two K dwarfs crash into each other, and merge to form

a single star. This single-star product could settle down into an apparently normal main-

sequence star that could be substantially brighter and hotter than most main-sequence stars

in these highly-evolved systems – a ‘blue straggler’.

Figure 5.3 shows a colour-magnitude diagram for the old Galactic cluster M67

(∼3.5 gigayears). The region to the left of the turn-off at colour 1.0 is populated by 18

blue stragglers, six of which are known to be binary and one of which is known to be triple,

as indicated. Even though binary evolution into Algols can, in principle, produce a blue strag-

gler, this does not seem to be the case for the five SB1s noted: all have orbits that are either

wide or eccentric or both, whereas Algols can be expected to have orbits that are compact

and circular. The eclipsing blue straggler is a contact binary (EV Cnc), where presumably

∗1 is gaining mass at the expense of ∗2 as we expect in case AR. This is, in fact, the only

binary blue straggler in M67 that is relatively well explained by its binarity. There may be
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Figure 5.3 Colour-magnitude diagram of the turn-off region of M67. The magnitudes are
from Fan et al. (1996), and are similar to but not the same as B, V . Central wavelengths
(nm) are indicated. Membership is based on the proper-motion study of Girard et al. (1989)
and on the radial velocity study of Mathieu et al. (1990): only candidates with a probability
greater than 90% of being members by both criteria are plotted. We define the 18 systems
bluer than B − V = 1.0 to be blue stragglers. Known SB1s (pluses), SB2s (squares),
eclipsing systems (circles) and triples (asterisks) are marked: the blue-straggler triple
(S1082) at V ∼ 11 also has shallow eclipses. Stars that are moderately above the main
sequence in the lower right are probably binary, and some may be triple.

some further binaries among the 18, since some have quite broad lines that are not amenable

to accurate radial-velocity measurement.

The triple-star blue straggler S1082 in Fig. 5.3 is an extraordinary object (Sandquist et al.
2003). It actually consists of two blue stragglers, one of which is in a ∼1 day orbit with a

component that is in the turn-off region, and the other of which is in a 1200 day eccentric orbit

round the close pair. We believe that it may have required the near-collision of two primordial

triples to produce such an outcome. Within each triple the close pair was perturbed into a

merger, and one third body was kept (but somehow scattered into a very close orbit with one

of the merged pairs) while the other was expelled.

Another blue straggler is so blue that it is difficult to account for, even as a merger of two

turn-off stars: it is very near the top left in Fig. 5.3. Perhaps therefore it is a doubly-merged

triple star. The close pair in S1082 appears to have only just missed such a fate.

Binary–binary encounters are quite likely in dense clusters with a substantial proportion of

primordial binaries. For point masses a typical outcome is that the two lightest components

are ejected and the two heaviest form an eccentric binary. On the evidence of M67 it seems

that quite often, for non-point-mass stars, there is a merger instead of an eccentric binary.

Another binary–binary outcome can be a hierarchical triple with a single star ejected. Several

‘runaway’ OB stars are seen with abnormally high space velocities. Some of these may be
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generated by supernova disruption (Section 5.3), and some by three- or four-body encoun-

ters. Hoogerwerf et al. (2000) have tracked the proper motions of OB runaways, and of

neutron stars, backwards in time. They find several cases of apparent common origin, both

for OB + OB pairs and OB + NS pairs, and they conclude that the two very different

mechanisms occur about equally frequently.

Hoogerwerf et al. (2000) point in particular to three stars, two single (AE Aur and μ Col)

and one triple (ι Ori A), which appear to have been scattered out of the Orion Nebula cluster

(ONC) 2.5 megayears ago. This seems likely to have been a binary–binary (or binary–triple)

collision in which one incoming system was broken up into two. The trajectories of AE Aur

and μ Col are almost exactly in opposite directions from the ONC.

Bagnuolo et al. (2001) note that the two components of the spectroscopic sub-binary within

ι Ori A are rather remarkable. The stellar and orbital parameters are (O9III + B0.8III–IV;

29.1 days; e = 0.76). Because the system does not eclipse, the inclination is not known, but

the mass ratio is ∼1.75 (Marchenko et al. 2000). The B star seems remarkably evolved,

considering that it is much less massive, and it is difficult to believe that this is due to RLOF,

for instance, since the orbit is so eccentric. Gualandris et al. (2004) suggest that the collision

involved an exchange as well as a disruption, with the present ι Ori containing components

that came from original binaries of substantially different ages – about 5 and 10 megayears

are necessary. In fact ι Ori contains a speckle companion as well (Mason et al. 1998), in

an orbit that might be ∼40 years. It appears that a very complicated dance has taken place

here.

There are quite a few massive binaries where one can question whether the two components

are coeval; I mentioned LY Aur in Section 3.5. The quadruple star QZ Car in Table 4.10

contains one component (B0Ib; ∗22 as listed) that appears to be more evolved and yet less

massive than its close companion (O9V; ∗21). If exchanges do occur among the massive

singles, binaries and multiples of a region of star formation, it is probably only within the

first ∼10 megayears, while the region is still densely populated, and would only have a

significant effect in those massive stars whose ages are of this order. Unfortunately early

massive stars also tend to have the least certain parameters, and so it is difficult to be sure

that two components are non-coeval. Since massive stars, and a fortiori binaries and triples,

tend to congregate towards the centre of a cluster by gravitational settling, it would not be

surprising if massive binaries were especially prone to show non-coeval components, or that

primordial triples may play a major part in producing the blue stragglers of old clusters.

If single stars are treated as extended bodies rather than as point masses, a dynamical

encounter of two single stars, leading to capture, may also occur (Fabian et al. 1975), though

probably not often. As two stars approach close to each other on a hyperbolic orbit they

can raise substantial time-dependent tides, which convert orbital energy into internal hydro-

dynamic energy. This may convert marginally hyperbolic orbits into marginally elliptic orbits,

at least temporarily. In the longer term, viscosity may convert the hydrodynamical energy

into heat that is radiated away, thus sealing the capture. In an extreme case the two stars

may actually collide, and merge. In a less extreme case the highly eccentric orbit may be

circularised over many orbits by tidal friction. It is a feature of circularisation by tidal friction

that the apastron separation can decrease considerably but the periastron separation can

only increase modestly. Tidal friction conserves angular momentum, and thus the semi-latus-

rectum of the orbit: the ratio of this to the periastron separation is 1 + e, which only decreases

from 2 to 1 as the orbit circularises.
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Induced collisions near the centres of young rich clusters may possibly be the origin of

some stars at the high end of the mass spectrum. If two stars do merge, a great deal of energy is

available, which may expand the merged star to red-giant proportions temporarily, making it

all the more likely that it will merge with further stars. We might have a runaway process that

continues until the density of stars is significantly reduced (Portegies Zwart and McMillan

2002). It does not seem impossible that all massive stars are produced in this way, rather than

by an unusually large amount of accretion on to an initially low-mass core.
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Accretion by the companion

Matter that leaves the surface of one component of a binary can be partly or wholly accreted

by the companion. We have seen that the loser could be losing mass either by RLOF or

by stellar wind, perhaps binary-enhanced; the accretion process has even more options, and

these are modelelled with even less confidence. A major reason why the accretion process

can be more complex than the mass-loss process is that gainers can have a very wide range

of radii, from black holes and neutron stars (at ∼3−30 km) to white dwarfs (∼104 km) to

normal dwarfs (∼0.1−10 Gm), and even occasionally to sub-giants (∼3−30 Gm) or giants

(>∼10−30 Gm); whereas the loser is usually only in the last three of these categories. Not

only does the available energy of the accreted material vary (inversely) over the same range,

but also different physical forces (magnetic, viscous, rotational, gravitational) may dominate

at different radii from the gainer.

The study of accretion is one of the most active areas in stellar astrophysics. Phenomena,

often dramatic, are observed to happen on timescales ranging upwards from milliseconds.

This book will not attempt to cover the ground in detail – partly for lack of space, but also

because this book is intended to concentrate on the long-term evolution of binaries rather

than on their short-term behaviour. Naturally, to test long-term predictions observationally it

would be helpful to be able first to model, and allow for, the observed short-term behaviour.

For a fuller treatment the reader is referred to some standard works: Lewin and van den

Heuvel (1983), Frank et al. (2002). The following few pages are an attempt to summarise the

aspects of accretion that are most relevant to long-term evolution.

6.1 Critical radii
The character of an accretion flow depends importantly on the size of the gainer,

particularly relative to the size of its Roche lobe. In a range of systems, one may see, or

expect to see, at least four zones of different radii around the gainer, in which different

physical processes are important. Proceeding outwards from the gainer, there may be some

or all of the following:

(a) A magnetospheric zone, in which a magnetic field anchored in the rotating gainer dom-

inates the flow, causing the (highly ionised) accreting gas to flow in along field lines,

arriving on the gainer at its magnetic poles (Lamb et al. 1973). The magnetic field is

normally assumed to be dipolar, oblique to the axis of rotation and not necessarily sym-

metrical about the centre. It has to be oblique to account for the observed rotational

modulation; nevertheless in many analytic attempts to model magnetic-dominated ac-

cretion one often assumes axisymmetry for convenience.

231
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(b) A Keplerian disc region, in which centrifugal force largely balances gravity in the

radial direction, while viscosity drives an inward flux of gas superimposed on the

almost-circular motion, and simultaneously drives an outward flux of angular momen-

tum (Lüst 1952, Lynden-Bell 1969, Lin and Pringle 1976, Pringle 1981). The mechanism

giving rise to the viscosity might be turbulent motion as a result of convective energy

transport in the disc, but, more probably turbulent magnetic field in rough balance with

the pressure supporting the disc against gravity in the direction perpendicular to the disc

(Shakura and Sunyaev 1973, Balbus and Hawley 1991) – see Appendix F.

(c) A region of inward free-falling gas, where the specific angular momentum of the gas is

small compared with Keplerian specific angular momentum. The material gains angular

momentum while falling in, partly due to Coriolis force in the frame that corotates with

the binary, and partly due to the non-central character of the forcefield (3.2) around ∗2.

(d) A region of wind flow from the loser. This flow might be fairly uniform and radial in the

frame of the loser, if it were not for the perturbing gravitational field of the gainer.

The first region applies mainly to compact gainers like neutron stars and white dwarfs,

although a magnetic Bp star accreting from a red supergiant might have a similar magneto-

spheric zone. The last region applies mainly where the loser underfills its Roche lobe but is

losing mass by stellar wind.

Dictating the nature and extent (or existence) of these zones are several characteristic radii,

some of which can be estimated only crudely:

(i) The radius R2 of the gainer or, for a black hole, its Schwarzschild radius

RS ≡ 2G M2

c2
. (6.1)

This is the radius such that light cannot escape from within it. But circular orbits outside

this, up to 3RS, are unstable to the extent that bodies in them will rapidly plunge inwards,

to within RS.

(ii) The corotation radius Rc, at which the angular velocity of material in Keplerian orbit is

the same as the angular velocity �2 of the gainer:

Rc =
(

G M2

�2
2

)1/3

. (6.2)

If ∗2 is rotating close to break-up, then of course Rc ∼ R2.

(iii) An Alfvén radius RA determined roughly by the balance of Alfvén speed vA with

Keplerian rotational speed vK, as for Eq. (4.55):

v2
A ∼ B2

A

μ0ρA

∼ 1

μ0ρA

(
B2 R3

2

RA
3

)2

∼ v2
K = G M2

RA

. (6.3)

B2 is the dipole field strength at ∗2’s surface; the field is assumed to diminish outwards

like r−3. Note that in Section 4.4 on magnetic braking, we took B ∝ r−2, appropriate

for outflowing magnetically-coupled winds in the ‘split-monopole’ approximation; apart

from this the analysis is the same. The Alfvén density ρA is estimated from the accretion

rate by

Ṁ2 ∼ 4πρA R2
AvA ∼ 4πρA R2

AvK. (6.4)
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Combining these, we get(
RA

R2

)7/2

∼ 4π B2
2

μ0 Ṁ2

(
R5

2

G M2

)1/2

. (6.5)

(iv) The radius Rl of the cylinder on which corotating material would have the speed of

light:

Rl = c

�2

= R3/2
c

(RS/2)1/2
. (6.6)

(v) A characteristic disc radius RD, where the specific angular momentum h of the material

at the inner edge of zone (c) equals the Keplerian value. For particles moving in the

plane of the orbit, Coriolis force, in the frame that rotates with the binary, ensures that

h + ωωr2, though not h itself, is conserved, except to the extent that the force within

the lobe of ∗2 is not entirely central towards ∗2. This latter effect is fairly modest, for

particles falling from rest at L1 into the vicinity of ∗2, and so for RLOF we can estimate

h by saying that it is roughly the same as ωz2, where z is the distance from the centre of

∗2 to L1. Then

RD

a
≡ h2

G M2a
∼ (ωz2)2

G M2a
= M1 + M2

M2

z4

a4
∼ constant (1 + q) x4

L(1/q). (6.7)

Empirically, z is ∼20−35% greater than the Roche-lobe radius RL2 = axL(1/q) –

Eq. (3.5) – over a large range of mass ratio q. Hence the constant on the far right-

hand side of Eq. (6.7) should be in the range 2.1–3.3. By comparing Eq. (6.7) with the

more detailed calculations of Lubow and Shu (1975), we find that we can get very good

agreement (to ∼3%) if we replace ‘constant (1 + q)’ empirically by 1.9 + 2.2q. Thus

we arrive at the following expression for the ratio of disc radius to lobe radius:

RD

RL2

∼ (1.9 + 2.2q) x3
L(1/q). (6.8)

This is not the radius to which the outer part of the disc would settle down in equilibrium,

since the outward transport of angular momentum in a steady-state disc would push the

boundary outwards. But if the radius of the gainer is greater than this radius we expect

no substantial disc to form, because the stream will simply impact on to the trailing

face of the gainer instead of forming a ring. Also, in the case of accretion from a wind

rather than RLOF, the disc radius might be determined by the inhomogeneity in either

the wind speed or the wind density in zone (d), rather than by the simple argument given

above.

(vi) A Bondi–Hoyle accretion radius Racc, where the kinetic energy in the outflowing wind

from the loser balances the gravitational potential energy in the field of the gainer. If the

wind has speed Vw relative to ∗1 in the radially outward direction when it reaches the

orbit of ∗2, this balance gives (at a rather simplistic level of approximation)

Racc ∼ G M2

|Vw − Vorb|2 , Vw = Vw

d
d

, Vorb = ḋ . (6.9)

Although for circular orbits d and ḋ are perpendicular, we write this in a form which

allows for the possibility of an eccentric orbit (Section 6.5).

(vii) The Roche-lobe radius of the gainer.
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Table 6.1. Estimates of critical radii and other parameters in the accretion process

Loser (∗1) OB star B star M dwarf Red dwarf Red supergiant

Gainer (∗2) NS NS NS WD Bp dwarf

M1 20 10 0.4 0.5 3

M2 1.4 1.4 1.4 0.7 4

P (d) 3 100 0.3 0.15 1000

B2 (T) 108 108 105 102 1

Ṁ2 (M�/megayear) 10−3 10−6 10−3 10−3 1

P2 (s) 0.3 3.0 0.05 103 1 d

Vw (km/s) 103 103 200 300 30

RS (Schwarzschild) 5.9 × 10−6 5.9 × 10−6 5.9 × 10−6

R2 1.4 × 10−5 1.4 × 10−5 1.4 × 10−5 0.01 3

Rc (corotation) 1.1 × 10−3 0.005 3.3 × 10−4 0.19 6.7

RA (Alfvén) 5.6 × 10−3 4.0 × 10−2 1.1 × 10−4 0.17 24

Rl (light velocity) 0.021 0.21 3.4 × 10−3 69 5.9 × 103

RD (disc) 0.97 9.7 0.33 0.12 76

Racc (Bondi–Hoyle) 0.23 0.26 1.61 0.49 300

RL (Roche lobe) 4.5 46 1.12 0.52 325

ṀEdd (M�/megayear) 0.018 0.018 0.018 12 3.7 × 103

Peq (s) 3.5 68 0.0095 870 5.8 d

Masses and radii in Solar units; periods in days or seconds as indicated; 1 tesla = 104 gauss.

Table 6.1 gives some typical values for these radii, and other parameters, in a variety of cases.

As material falls on to the gainer, it generates a luminosity

Lacc ∼ G M2 Ṁ2

R2

, (6.10)

from which Ṁ2 may be estimated if we have a rough idea of the apparent brightness and the

distance of the source. This luminosity might be very large if the gainer is compact. However,

we expect that the luminosity should not be able to exceed the Eddington luminosity:

Lacc ≤ LEdd = 4πcG M2

kth

, (6.11)

taking kth to be the Thomson scattering opacity, 0.034 m2/kg. According to Eq. (2.11) this is

the maximum luminosity of a spherical star in hydrostatic equilibrium, the maximum being

approached as ζ ≡ prad/pgas → ∞. The Thomson scattering value is reasonably appropriate

for hot luminous objects. Equation (6.11) means that the gainer may not be able to accept

more than a fraction of the mass lost by the loser. By equating Lacc to LEdd we obtain an

upper limit ṀEdd to the rate at which the gainer can accrete, except in a short-lived, unstable

manner:

ṀEdd ∼ 4πcR2

kth

. (6.12)

If this is less than ∗1’s mass-loss rate, the remainder of the mass is presumably either lost

to the system as a whole, or else accumulates perhaps in the outer part of the gainer’s
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Roche lobe, or in a common envelope around the system. For white dwarfs, if we adopt

a mass and radius of 0.7 M� and 7 × 103 km, then we obtain LEdd ∼ 2.8 × 104 L�,

ṀEdd ∼ 12 M�/megayear. For neutron stars, adopting 1.4 M� and 10 km, we have

LEdd ∼ 5.6 × 104 L�, ṀEdd ∼ 0.018 M�/megayear.

We can rewrite Eq. (6.5) for the Alfvén radius in a slightly more transparent dimensionless

form by using ṀEdd as a reference value for Ṁ2, and by introducing a reference magnetic

field B0 defined by

B2
0

μ0

≡ G M2

R2
2kth

. (6.13)

For a normal hot star, with photospheric boundary condition pκ ∼ g – Eq. (2.17) – the right-

hand side is just the photospheric pressure, which represents an upper limit to the strength

of the magnetic field in a starspot. However, for the reference value we continue to use the

Thomson scattering opacity kth, even although in the Sun, and most stars cooler than ∼10 kK,

the photospheric opacity is substantially less, by two to four orders of magnitude. For a white

dwarf we have B0 ∼ 8.4 T. For a neutron star the physical picture is not very appropriate,

but Eq. (6.13) nevertheless gives a reference field of ∼8.3 × 103 T. Then Eq. (6.5) can be

rewritten

RA

R2

=
(

G M2

c2 R2

)1/7 (
ṀEdd

Ṁ2

)2/7 (
B2

B0

)4/7

. (6.14)

The first factor on the right-hand side ∼0.28 for a white dwarf, and ∼0.80 for a neutron star.

When accreted material falls inside the Alfvén radius, it tries to corotate with the field and

∗2 as it follows the field lines to the surface, so that ∗2 is spun up or down depending on

whether �2 RA is less than or greater than the Alfvén speed, or equivalently, by Eq. (6.5), the

Keplerian speed, at the Alfvén radius. This implies that there is a stable equilibrium rotation

rate �eq (and period Peq = 2π/�eq), with

�eq RA = vK =
√

G M2

RA

, (6.15)

and so from Eq. (6.14),

Peq

P0

= �0

�eq

=
(

G M2

c2 R2

)3/14( ṀEdd

Ṁ2

)3/7(
B2

B0

)6/7

, �2
0 ≡ G M2

R3
2

. (6.16)

�0 is more or less the break-up angular velocity, corresponding to periods P0 ∼ 12 s for a

white dwarf and ∼0.5 ms for a neutron star. Table 6.1 lists ṀEdd and Peq for some cases.

6.2 Accretion discs
An accretion disc is likely to form within the Roche lobe of the gainer (∗2) if ∗2

is much smaller than its Roche lobe, and not so strongly magnetic that RA > RD. This disc

would be a ring if it were not for the possibility of a torque that causes angular momentum

to be transported in an outward direction, allowing material to spiral in to smaller orbits of

lower angular momentum (Appendix F). The force whose azimuthal component provides

this torque is commonly described as ‘viscous’, and modelled by a Navier–Stokes term of

the form (in cylindrical polars) R−2∂/∂ R{χρR3 ∂�/∂ R}, � being the Keplerian angular
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velocity within the disc and χ the coefficient of viscosity. This viscosity coefficient is usually

written as χ = αp/ρ�, with α a dimensionless constant.

Recent work (Balbus and Hawley 1991, Stone et al. 1992, 1996, Tout 1997) makes it rather

clear that the torque is in practice magnetic, and should be modelled with the Lorentz force

j × B. The magnetic field is expected to be chaotic, because any weak, systematic seed field

in the presence of rotational shear is expected to be amplified strongly by a hydromagnetic

instability (Chandrasekhar 1961). Since the amplification of the field, presumably until it

reaches some quasi-steady amount dictated by the balance of magnetic pressure with gas

pressure, depends on the shear ∂�/∂ R, it is not unreasonable that the torque due to the

azimuthal part of the Maxwell tensor might have much the same mathematical form as

the Navier–Stokes term above, with the viscosity coefficient χ replaced by an effective

‘viscosity’:χ ∼ αB2/μ0ρ� (Shakura and Sunyaev 1973; Appendix F). It is therefore possibly

still reasonable to model disc accretion as an ‘α-disc’.

Modelling of the chaotic magnetic field to be expected will no doubt be complicated by

the fact that the saturation of the magnetic field at some mean value (assumed to be when

magnetic pressure ∼ gas pressure) will probably not be achieved by simple ohmic diffusion,

but rather by ‘field-line reconnection’, a highly non-equilibrium process (Syrovatskii 1981)

such as is seen in Solar flares as well as in laboratory MHD. When regions of fluid containing

frozen-in field of opposing sign collide with each other, a singularity develops, which leads

to an explosive release of energy. In Appendix F we suppose for simplicity that there is an

ohmic diffusion which is sufficiently large that the heat production is effectively the same as

might be achieved by sporadic field-line reconnection.

The α-disc gives estimates – Appendix F, Eqs (F25) and (F26) – for, among other things, the

optical depth τ0(R), and the thickness of the disc as a fraction δ(R) of the radial coordinate R.

For the sake of argument we adopt α =constant. The model is only valid if δ2 
 1, α2δ2 
 1,

but δ is indeed expected to be small (0.01−0.1) for a fairly wide range of values of Lacc, M2, R2

and R. We can estimate α crudely from the observed timescale on which discs evolve, which

should be ∼R2/χ . The model gives this as a multiple α−1δ−2 of the timescale of Keplerian

rotation �−1. Accretion discs in cataclysmic variables seem to require α ∼ 0.01−0.1. Ordi-

nary molecular or radiative viscosity would give a smaller α by many orders of magni-

tude, but magnetic processes seem capable of giving α in this range (Stone and Norman

1994).

An alternative source of viscosity that has often been invoked is turbulence, perhaps driven

by convection. Turbulence is not expected to be generated by the shear, because the Rayleigh

criterion for instability would require the angular momentum (per unit mass) to increase

inward, and in a Keplerian disc it increases outward. But a torque capable of causing material

to spiral inwards would release gravitational energy, and this energy has to be transported

within the disc before it can be radiated from the surface (at least if the disc is optically thick).

The temperature gradient required might well be unstable to convection for much the same

reason that stellar envelopes can be unstable to convection, because of the rapid rise of opacity

with temperature during partial hydrogen ionisation at ∼6−10 kK (Section 2.2.3). However,

numerical simulations (Balbus et al. 1996) suggest that this will not achieve an α in excess

of ∼10−4. The basic reason for the relative insignificance of convective turbulence appears

to be that it is not driven directly by the shear, whereas the hydromagnetic instability is.

Nevertheless, at low temperatures of a few hundreds kelvin, such as is expected in accretion
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Figure 6.1 Models of accretion discs in cataclysmic variables, from (a) theory and (b) and
(c) observation. In (a), after Lin and Pringle (1976), contours of energy-production rate are
plotted, from a model where the gas is treated as collisionless particles, except that an
artificial viscosity is included. In (b), after Wood et al. (1989), contours of surface
brightness in the disc of the dwarf nova OY Car are plotted, reconstructed from eclipse
mapping. The models are not directly comparable, having mass ratios (gainer/loser) of
2.5 and 10 respectively. (c) Spiral arms in the accretion disc of IP Peg during outburst
(Harlaftis et al. 1999). Doppler tomography maps the gas in velocity space, large velocities
(moduluswise) being associated with the innermost part of the disc, and vice versa.

discs around protostars, it may be necessary to have some other source of viscosity than

frozen-in magnetic fields, since the gas will be almost completely un-ionised.

Figure 6.1 shows three views, one theoretical and two observational, of accretion discs.

The left panel is a model where the gas was treated as a stream of particles coming from the

L1 point and subject to the acceleration of the Roche potential (and Coriolis force). The effect

of viscosity was simulated by dividing the area into small cells and replacing the velocities

of all particles in a given cell by the average for the cell. This allows for an estimate of the

local energy release, and hence of the local temperature. The centre panel is a reconstruction

of the surface brightness in the disc of OY Car, a short-period (0.063 days) binary with a red

dwarf loser and a white dwarf gainer. The track expected for particles falling freely from the

L1 point is marked; perhaps the hot region in the top right is where the heat from the collision

of the stream with the disc is released. The right panel shows the distribution of the gas in

velocity space from Doppler tomography applied to a rather similar system, but with longer

period (0.158 days). If one assumes a model of a steady disc with a Keplerian velocity field,

one can map from velocity space to coordinate space; but such a model would not produce

this two-armed spiral pattern.

As a star accretes it is liable to spin up, because the accreting gas acquires angular momen-

tum from Coriolis force in the corotating frame. In the relatively simple case that accretion

is via a disc, the newly accreted material has Keplerian velocity when it is added to ∗2. If the

rotation is redistributed to uniformity within ∗2, we can write

d

dt
M2(k2 R2)

2
�2 =

√
G M2 R2

dM2

dt
, (6.17)

where k2 is the dimensionless radius of gyration – Eq. (3.8). If R2 ∝ Ma
2 and k2 is a constant,

we can easily integrate this to see that ∗2 is spun up from �2 = 0 at M2 = M20 to break up
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Figure 6.2 Over-rotation factor F against mass ratio q in semidetached binaries. F is the
ratio of the gainer’s angular velocity to the orbital angular velocity. Circles: long-period
systems, P > 4.5 days. Pluses: shorter-period systems.

at M2 = M2 f when the mass has been increased by a factor

M2 f

M20

=
(

1

1 − bk2
2

)1/b

, b = 3 + a

2
. (6.18)

This is largely independent of the exponent a (or b) since k2
2 is small. For a non-relativistic

white dwarf k2
2 ∼ 0.2, and for a main-sequence star above ∼0.5 M� k2

2
<∼ 0.08. Thus the mass

can only be increased by ∼8−20%. What happens next is not clear, but it is possible that the

gainer develops a differentially rotating outer shell, which may allow it to be substantially

bigger. There is evidence in some Algols that the gainer has up to twice the radius expected,

and is also in very rapid rotation. We noted in Section 3.5 that RZ Sct has an anomalously

large ∗2.

Although spin-up of the gainer drains angular momentum from the orbit, the effect should

not normally be substantial, as the gainer is, by the hypothesis of an accretion disc, well

inside its Roche lobe. Nevertheless, it can be allowed for fairly easily in computations by

adding (or subtracting) an appropriate term in Eqs (4.74) and (4.76).

There is plenty of observational evidence to confirm that some gainers are indeed rotating

substantially faster than synchronously. Van Hamme and Wilson (1990) determined rates of

rotation relative to orbital rotation (a factor F , say) in the gainers of 36 Algols – Fig. 6.2.

Eleven of them had F > 5, three of them F = 2–5, and the remainder F < 2. RY Per (F = 10),

V356 Sgr (F = 5) and RZ Sct (F = 6) are examples of gainers rotating at several times the

orbital rate; probably β Lyr is another. Some of the systems of Fig. 6.2 are what we identify

as H M S; many are G M S and some are M M S, but it is sometimes hard to discriminate.

In a simplistic model, we would expect that (a) at the beginning the gainer accelerates

only moderately during the thermal-timescale mass transfer, because it is fairly large relative

to its Roche lobe, which both limits the amount of angular momentum the stream can pick

up and allows tidal friction to work towards corotation and (b) as the mass ratio starts to

drop well below the reciprocal of its intial value the system widens, and so in contrast to

(a) the gainer can spin up strongly. There is some evidence for this: among the longer-

period systems (P > 4.5 days) there is a substantial correlation of F with q. Among the
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shorter-period systems there is no such correlation; almost all the gainers are still rotating

rather slowly.

However, the simple picture above does not take account of mass loss and angular momen-

tum loss from the system. Four of the 36 systems, all represented by pluses, have 0.35 < X < 1,

where X is the parameter (Section 3.5) that describes how wide the system was at age zero.

X < 1 indicates a substantial amount of orbital angular momentum loss; and it is likely that

this is coupled with substantial mass loss. In fact most of the systems represented by pluses

in Fig. 6.2 have X < 2, and in fully conservative evolution these would not be able to evolve

to q <∼ 0.35 before coming into contact in case AS. To avoid this probably requires a fairly

specific amount of mass loss. If the gainer fails to gain all of the mass lost by the loser, the

acceleration of its evolution, leading to contact, can be mitigated. But on the other hand if

it fails to gain any of the mass lost, then it is difficult to see how values log q <∼ − 0.7 can

be reached. There is scope here for a rather considerable investigation, which would have to

include all of mass loss, angular momentum loss, spin-up of the gainer and tidal friction, at

least.

6.3 Partial accretion of stellar wind: mode PA
From the point of view of the long-term evolution of a binary system, the things that

matter most are (a) the fraction of the material lost by ∗1 which is gained and retained by

∗2, and (b) the specific angular momentum carried off by the fraction of the material which

is lost to the system from either ∗1 or ∗2; in other words the parameters ζ1, ζ2, ξ, K1 and

K2 of Section 4.3. Modelling these parameters is necessarily very tentative. In a relatively

simple case, with a radial wind of speed Vw from ∗1 and with no mass loss from ∗2, we might

estimate ξ/ζ1 as follows:

−ξ − ζ1 ≡ Ṁ1 ∼ − 4πd2ρVw, ξ ≡ Ṁ2 ∼ π R2
accρ|Vwd/d − ḋ |, (6.19)

d and ḋ being the separation and relative velocity of the two components, as usual. Hence,

using Eq. (6.9) to estimate the accretion radius,

ξ

ξ + ζ1

∼ 1

4

(
G M2

d

)2 1

Vw|Vwd/d − ḋ |3 . (6.20)

Both d and ḋ might be variable functions of orbital phase, if the orbit is eccentric – see next

section. If Vw is small compared with |ḋ | the above formula must clearly be modified to

prevent Ṁ2 > |Ṁ1|. However, we would usually not expect Vw to be so small, because, in

the absence of the gainer, the wind would have to be expanding with a speed at least equal

to the escape speed in order to leave the loser, and the escape speed is itself larger than the

orbital speed.

An alternative estimate of Ṁ2 in Eq. (6.19), which probably represents an upper limit for

winds whose velocities are comparable to the orbital velocity, comes from supposing that the

accreted fraction of the outgoing wind is given by the fractional solid angle that ∗2’s Roche

lobe subtends at ∗1. This leads to the estimate

ξ

ξ + ζ1

∼ 1

4
x2

L(M2/M1), (6.21)

with xL(q) coming from Eq. (3.5). It is difficult to be much more precise. Full three-

dimensional modelling of the accretion problem should help, but it should be noted that
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Table 6.2. Some Ba stars and possibly related systems

Name Spectra State P e f2 Reference

ζ Cap WD + G5IbBa2 W H E 2380 0.28 0.0042 Böhm-Vitense 1980,

McClure and Woodsworth 1990

ξ1 Cet WD + G7IIIBa0.4 W G D 1642 0 0.035 Böhm-Vitense and Johnson 1985,

Griffin and Herbig 1981

ζ Cyg WD + G8IIIBa0.5 W G E 6489 0.22 0.0227 Dominy and Lambert 1983,

Griffin and Keenan 1992

HD31487 ? + K1Ba5 wG D 1066 0.045 0.0379 Jorissen et al. 1998

105 Her ? + K3IIIBa0.5 wG E 486 0.36 0.135 Scarfe et al. 1983

HD 77247 ? + G7IIIBa1 wG E 80.53 0.09 0.0050 McClure 1983

HD123949 ? + Ba4 wG E 9200 0.97 0.105 Jorissen et al. 1998

DR Dra WD + K0III W G E 903.8 0.072 0.0035 Fekel et al. 1993

V832 Ara WD + K0III/IIBa W G E 5200: 0.18: 0.03: Fekel et al. 1993

−43◦14304 110kK + K5-M0 W s E 1450 0.2: 0.013 Schmidt et al. 1998

V2012 Cyg S3,1 + ? Sm E 669 0.08 1.23 Jorissen et al. 1998

BD Cam WD + S3.5/2 W SE 597 0.09 0.037 Jorissen et al. 1998

AG Dra SDOe + K3pIIBa W s E 549 0.13 0.006 Mikolajewska et al. 1995,

Smith et al. 1996

T CrB Be + M4III w SS 227.7 0 0.30 Belczyński and

Mikolajewska 1998

For V2012 Cyg alone, the mass function is f1, not f2.

some winds have an MHD origin, and so the problem may be dominated by MHD rather

than just hydrodynamics.

Barium stars are a group of stars that have clearly been affected by mode PA. These are

∼3% of all G/K giants; they are fairly normal, but on close inspection of their spectra show an

overabundance of Ba, and a few other elements such as C, Zr (Bidelman and Keenan 1951).

The overabundant elements all appear to relate to the s-process (Section 2.3.2), and suggest

that some of the material of the star has been subjected to a flux of low-energy neutrons.

These neutrons can be generated during the thermal pulses of an AGB star, but it is odd that

very few Ba stars (with the possible exception of ζ Cap) are of high enough luminosity, or

low enough temperature, to be comprehended as such stars.

The answer (McClure 1983) appears to be that the nuclear processing took place in a

companion star, formerly an AGB star but now a white dwarf. Most, and arguably all, Ba

stars turn out to be spectroscopic binaries, and in a handful the companion can actually be

recognised as a white dwarf (Fig. 1.1b). Table 6.2 lists a few. Almost all Ba star orbits have

periods in the range 400−4000 days, and this is much like the range expected for stars that

are able to reach the AGB. There does not appear to have been much orbital shrinkage, despite

the fact that one might reasonably expect mode CE (Section 5.2) for binaries in this period

range. Here we attribute the lack of mode CE in Ba-star precursors to the fact that these

systems presumably had mass ratios in the range 1–2. Evidently ∗2 of a Ba binary is >∼1 M�,

since it is massive enough to have left the main sequence; whereas ∗2 in the post-CE binaries

of Table 5.1 are more typically M dwarfs than F/G dwarfs. In Section 5.2 we suggested that

a mass ratio of more than ∼4 is necessary for the drastic orbital shrinkage characteristic of

mode CE. Hence we argue that a relatively massive ∗2 can shake loose the envelope of an

AGB star without much orbital shrinkage, while a low-mass ∗2 cannot avoid being caught
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up in the expanding AGB envelope. This points to modes CW, CU or CUN (Section 4.6), but

not mode CUD.

It is likely that Ba stars owe their characteristics to the combination of mode PA with

modes NW or EW. Their orbits are commonly more circular than most normal G/K giants

(Fig. 1.9b) in the same period range (which presumably have unevolved companions),

although at least one has a markedly eccentric orbit. Within the period range of Ba-star

binaries there are some, such as DR Dra, which do not show significant Ba enrichment,

despite having a recognised white-dwarf companion. Possibly this is simply at the low edge

of the distribution of Ba abundances that can be expected.

While Ba-rich red giants are reasonably well explained by mode PA, we would expect

that there must also exist (a) some red supergiants, single and binary, that are Ba-enriched

by virtue of their own intrinsic s-processing and (b) some similar red supergiants that do
have white-dwarf companions, but that are now further enriching themselves by intrinsic s-

processing. Examples can indeed be found of both kinds, and two (V2012 Cyg and BD Cam)

are listed in Table 6.2. The former has a mass function too large to allow credibly for a

white-dwarf companion.

When the barium-rich red giant evolves sufficiently, it is possible for reverse mass transfer

to take place, initially with accretion from a wind but perhaps later (if the wind does not

exhaust the envelope) by RLOF. This could make the system a ‘symbiotic binary’, i.e. one

in which the spectrum shows evidence of both a cool component (usually MIII) and a hot

component (usually SDOBe). AG Dra and T CrB are fairly typical of these. We might expect

the final result to be either a wide or a close pair of white dwarfs. In the last section of

Table 5.2, where the results of the two stages, forward and reverse, of evolution leading to

W W D binaries are estimated, only EG52, with a long period, seems arguably to have had the

parameters of a typical Ba star between the forward and reverse stages; but there is a great

deal of guesswork in this table, as there is bound to be in any scenario involving mode CE.

However, the mass ratio in a Ba star is not likely to be very extreme. With a white-dwarf

mass of 0.55−0.65 M�, say, and a mass for ∗2 of typically 1.5−2.5 M�, most (according to

our tentative criterion of q <∼ 4) should avoid mode CE in its rather severe form.

6.4 Accretion: modes BP, IR
When material lost by ∗1 is accreted by ∗2, energy is released, and a part of this

energy may be used to drive off a part of the mass that is trying to be accreted. Indeed, it is

not entirely an exaggeration to say that ‘wherever theorists talk of accretion, observers see

an outflow’. This may happen in a number of ways:

(a) Many objects that involve accretion discs are also seen to be accompanied by bipolar

jets apparently emerging from the central region normal to the disc. The disc need not

be caused only by binary-star interaction, because the phenomenon is seen in young

stellar objects (YSOs) where the disc is simply high-angular-momentum material left

over during star formation. Jets are also seen in active Galactic nuclei (AGNi), where it

is believed that a central massive black hole is accreting neighbouring material. I will

discuss accretion discs very briefly in Appendix F. It may be that a very strong chaotic

magnetic field is produced by differential rotation, and that near the centre magnetic

pressure overcomes gas pressure, in a vertical direction, driving the jets.
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(b) Accretion discs often show P-Cyg type absorption lines that may be caused by coronal

heating above (and below) the disc. A tenuous wind may be driven away from the disc,

somewhat like a stellar wind.

(c) Hydrogen-rich material accreted by a ∗2 which is a white dwarf or neutron star accu-

mulates on the surface of ∗2, but when this layer is massive enough the pressure and

temperature at its base, or at the base of the He shell below it, become enough to trigger

nuclear burning in a highly unstable way – nova explosions, for a white dwarf (Truran

et al. 1977), or Type I X-ray bursts for a neutron star (Taam 1981). In the former case,

though not the latter, there is easily enough energy for much or all of the accreted layer

to be ejected, roughly spherically, and even for some of the underlying white dwarf, if it

has mixed to some extent with the accreted layer (MacDonald 1983); so that over long

times the mass of ∗2 might actually decrease (ζ2 > ξ , Section 4.3). For a neutron-star

gainer, however, the nuclear energy is well below the gravitational binding energy, and

the material is unlikely to escape.

In all three cases, a first guess at the amount of angular momentum removed from the system

is that it is the same as the orbital angular momentum of ∗2 (K2 = 1). I have referred to this

process (Section 4.3) as bi-polar reemission (mode BP).

For systems in which accretion takes place on to a compact gainer (∗1 probably), the

luminosity from the accretion process may dominate the accretion from either component,

and may have an important feedback on the evolution of ∗2 since ∗2 may be irradiated by

a fraction of the accretion energy – mode IR. The expectation is that ∗2 will be somewhat

swollen by irradiation, and that this will increase the rate of transfer. If the mass transfer is on

the thermal timescale of ∗2, then the ratio of irradiated luminosity to intrinsic luminosity is

�L

L2

<∼
π R2

2

4πa2

M1/R1

M2/R2

. (6.22)

This is based on the solid angle subtended by the loser at the gainer, and is likely to be an

upper limit since the loser may be partly or largely in the shadow of the accretion disc. R2/a
relates to the mass ratio by Eq. (3.5) if the loser is semidetached. The ratio R2/R1 can be

large if ∗1 is compact, and this can easily outweigh the modest solid-angle factor. But the

shadowing effect may be important, and is hard to assess without a reliable three-dimensional

model of the disc, including its optical thickness to the accretion radiation incident on it.

If mass transfer is on a slower timescale than thermal, say mode NE or MB, the effect will

be less, but still potentially significant for neutron-star gainers. However many systems with

compact gainers – cataclysmic binaries and low-mass X-ray binaries – have M dwarf or even

brown dwarf losers, for which mode MB and even mode GR may be on a thermal timescale.

I give here a very brief discussion of ‘cataclysmic binaries’, also known as ‘cataclysmic

variables’ (CVs), which can be seen as the next stage of evolution of the short-period systems

in Table 5.1. A whole book can be written – and has been, Warner (1995) – on this class, but

here we must content ourselves with a few paragraphs. CVs include novae and dwarf novae,

along with some other non-outbursting but otherwise similar systems. The large outbursts of

novae are due to a thermonuclear explosion of hydrogen-rich material recently accreted by a

white dwarf from a companion (Truran 1982). The smaller outbursts of dwarf novae, occuring

every few weeks, may be due to instability in the accretion process, whereby material lost

from the companion accumulates in a disc or ring around the white-dwarf gainer until some

criterion is passed that increases the viscosity so that the accumulation is rapidly dumped into

the deep potential well of the gainer (Bath and Pringle 1982). Additional ‘superoutbursts’,
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occurring at intervals of 6 months to 30 years in a fraction of the systems that usually also show

normal dwarf outbursts, appear to be due to a dynamical 3:1 resonance between the orbit of

the system and the orbit of material within the Roche lobe of the gainer (Whitehurst 1988). The

interested reader should study Warner (1995) for a very comprehensive discussion of these

phenomena; here however we shall treat even the rare outbursts of classical novae (perhaps one

every >∼104 years) as minor perturbations (principally mode BP) on an otherwise fairly steady

accretion at a rate estimated from the accretion luminosity as ∼10−3−10−5 M�/megayear.

This quasi-steady evolution probably spans 102−104 megayears.

Probably all CVs suffer thermonuclear outbursts every ∼104 years, but most have not

been observed to do so. When a white dwarf has acquired a thin hydrogen-rich shell of

∼10−4 M�, the density at the base of this shell is great enough to trigger hydrogen burning.

The environment however is electron-degenerate, unlike in a normal red giant burning shell

(Section 2.3.2) where the temperature is higher and the density lower. We therefore have an

explosive runaway as in a core helium flash. The luminosity reaches the Eddington limit,

and the shell is blown away. Thus over a long time span we expect mode BP, in addition

to modes MB, GR or NE that presumably drive the long-term evolution. It is possible that

mode BP blows away more than 100% of the accreted matter, since it is likely that shear

instability at the interface may result in mixing of the recently-accreted envelope with deeper

carbon-rich (or in some cases neon-rich, as in QU Vul) core. For unusually large white-dwarf

masses, approaching the Chandrasekhar limit, the critical shell mass can be <∼10−6 M�,

and thermonuclear outbursts correspondingly more frequent, as appears to be the case for

recurrent novae.

Many of the shorter-period systems of Table 5.1, with P<∼ 3 days and with a cool (G/K/M)

main-sequence companion, may be capable of evolving by mode MB towards a semidetached

state. Some with rather more massive companions might evolve by mode NE to a similar state;

although the few systems in Table 5.1 with such massive companions (V651 Mon, FF Aqr)

have substantially longer periods than one would expect as ancestors of those CVs in Table 6.3

(e.g. BV Cen, U Sco and GK Per) in which ∗2 is substantially evolved. A W W D system like

0957-666 (Table 5.1) can evolve by mode GR alone to something like AM CVn (Table 6.3).

Several hundred CVs have known orbital periods (Ritter and Kolb 1998), with a distribution

over period showing (a) very strong and rather narrow peaks at ∼0.075 days and 0.14 days,

(b) a conspicuous shortage between 0.094 days and 0.125 days, the ‘period gap’, (c) a con-

spicuous shortage below ∼0.058 days, the ‘cutoff’, and (d) a tail towards long periods with

some but not many above 0.4 days. There is, however, a handful at ultrashort periods, e.g.

AM CVn, in which the loser is probably a low-mass helium white dwarf rather than a low-

mass main-sequence star. There are also about a dozen systems within the gap, e.g. QU Vul,

compared with well over 100 in the peaks on either side. Those that are in the long-period

tail tend to be fairly conspicuous because ∗2 is relatively massive and bright, but most recent

discoveries have tended to be in the short-period peaks.

Figure 6.3a illustrates the evolution of ∗2 in the M2, P plane, ‘starting’ from masses

0.6 + 0.4 M� and period 0.2 days. Bipolar reemission was set at 90%, so that only 10%

of the mass lost by ∗2 was permanently accreted by ∗1. The evolution is under three

different assumptions: (a) angular momentum loss is given by the combination of mode GR

(Section 4.1) and of mode MB with the specific model of Section 4.5, (b) it is given by

mode GR alone and (c) the thermal perturbation to the radius is artificially suppressed, so

that ∗2 simply slides down the ZAMS. Because, in the mass range plotted, ∗2 is largely or

wholly convective, its response to mass loss is to expand, but because it is substantially less
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cutoffC
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Figure 6.3 Theoretical evolution of ∗2 of a CV, in the log M2–log P plane. (a) In all three
tracks the system ‘started’ with parameters (0.6 + 0.4 M�; 0.2 days). In the lowest curve,
the thermal response of ∗2 to mass loss was ignored, so that ∗2 simply slid down the
ZAMS. In the middle curve, GR alone drove the evolution; the thermal perturbation was
slight except at the very shortest periods of <∼0.06 days. In the top curve mode MB
(Section 4.5) as well as mode GR drove the evolution. The thermal perturbation was
substantial below 0.08 days, and caused the period to ‘bounce’ at ∼0.065 days. The
positions of the period gap and cutoff are indicated by horizontal lines. The dotted line is
hypothetical evolution involving ‘interrupted magnetic braking’: see text. (b) Three tracks
all start with masses 0.9 + 1.4 M�, and periods of 0.5, 1.0 and 5 days. Roche-lobe overflow
began at M2 ∼ 0.5 M� in the intermediate-period system. The long-period system reached
RLOF only briefly, shortly before ∗2 shrank away from its Roche lobe to become a well-
detached white dwarf of low mass.

massive than ∗1 this does not lead to dynamic mode SR3 RLOF (Section 3.3). Instead it leads

to steady mode SR2 RLOF – the timescale of modes MB plus GR on path (a) being somewhat

coincidentally comparable to the thermal timescale, which is very long at these low masses.

Path (c) terminates at about 0.08 M� because there are no ZAMS (i.e. thermal-equilibrium)

stars below this mass. Path (b) terminates at a slightly lower mass. Such masses are allowed

because the component is no longer in thermal equilibrium, but the approximate equation

of state in our code becomes unreliable at these very low temperatures and high densities

where non-ideal-gas effects dominate it. In fact, any equation of state is rather uncertain in

this regime. On path (a) ∗2 was sufficiently expanded and heated that it avoided breakdown

of the equation of state, but the models are nevertheless very uncertain.

Figure 6.3a suggests a reason for the observed cutoff at P ∼ 0.058 days: it may be owing

to the ‘bounce’ caused by increasing thermal disequilibrium, although only if mode GR is

dominant and mode MB is not at a substantially greater rate. This – and another reason, see

below – suggests that we should explore the possibility that mode MB is somehow switched

off when ∗2 is below some critical mass or temperature. Let us suppose that above a certain

mass mode MB is substantially stronger than the model used, by a factor of ∼10. We sketch
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Table 6.3. Some cataclysmic and related binaries

Name Spectrum State Class P M1 M2 R2 Reference

AM CVn He em W cS U S P 0.012 0.04: Harvey et al. 1998

GP Com He em W cS U S P 0.032 Marsh et al. 1991

OY Car SDBe + M7-M8 W M S SU 0.063 0.685 0.07 0.127 Wood et al. 1989

ER UMa W M S E R 0.065 Thorstensen et al. 1997

GQ Mus W M S C N , M P, SSX 0.065 Shanley et al. 1995

HT Cas SDBe + M5.4V W M S DN 0.074 0.61 0.09 0.154 Horne et al. 1991

T Pyx W M S RN 0.075: Patterson et al. 1998

Z Cha SDBe + M5.5V W M S SU 0.075 0.84 0.125 0.17 Robinson et al. 1995

ST LMi SDBe + M5-6V W M S P L 0.079 0.76 0.17 0.20 Smith and Dhillon 1998

QU Vul W M S C N 0.112 Shafter et al. 1995

AM Her SDBe + M4+V W M S M P 0.129 0.44 0.29 0.33 Smith and Dhillon 1998

MV Lyr SDBe + M5V W Ms V Y 0.134 Beuermann and Pakull 1984

UU Aqr SDBe + ? W M S N L 0.164 0.67 0.20 0.34 Baptista et al. 1994

U Gem SDBe + M4+V W M S U G 0.177 1.26 0.57 0.51 Smak 1993

DQ Her SDBe + M3+V W M S C N , I P 0.194 0.60 0.40 0.49 Horne et al. 1993

UX UMa SDBe + K-M W M S U X 0.197 0.43 0.47 Shafter 1984

EM Cyg SDBe + K3V W M S ZC 0.291 1.12 0.99 0.87 North et al. 2000

AC Cnc SDBe + K0V W M S N L 0.300 0.82 1.02 0.92 Schlegel et al. 1984

BT Mon SDBe + G8V W M S C N , SW 0.334 1.04 0.87 0.89 Smith et al. 1998

AE Aqr SDBe + K4V WgS I P 0.412 0.79 0.50 0.86 Smith et al. 1998

V Sge WN: + B8: emc SSX 0.514 0.9: 3.3: 2.1: Herbig et al. 1965,

Smak et al. 2001

BV Cen SDBe + G6IV-V W GS DN 0.611 Williger et al. 1988

U Sco SDBe + F8V W hS RN 1.23 1.55: 0.88 2.1 Thoroughgood et al. 2001

GK Per SDBe + K1IV W GS C N , DN , I P 2.00 0.9: 0.5: 2.5: Morales-Rueda et al. 2002

Some of the major classes are

CN – classical nova – one large outburst (�V ∼ 10–15) recorded

RN – recurrent nova – somewhat smaller outbursts, every ∼ 30 years

DN – dwarf nova – moderate outbursts (�V ∼ 3–5) every few weeks

UG – U Gem – repetitive lows last weeks, outbursts last days

ZC – Z Cam – occasional long-lasting plateaus between maxima and minima

SU – SU UMa – fairly regular, ∼ annual, ‘superoutbursts’ lasting 2 weeks, in addition to UG

behaviour

ER – ER UMa – as SU, but more frequent superoutbursts, ∼ monthly

NL – nova-like system – no outburst noted, but similar to CN, DN between outbursts

UX – UX UMa – fairly steady accretion, no substantial outbursts

VY – VY Scl – occasional cessation of mass transfer, lasting years

SW – SW Sex – single-peaked emission; hot spot dominates disc

SSX – supersoft X-ray source – powerful source of soft X-rays, usually from rapid, steady accretion

USP – ultra-short period – hydrogen absent from spectra, ∗2 a He white dwarf

MP – magnetic polar – accretion column, not disc; flow dominated by magnetic field; white dwarf locked in

corotation with binary

IP – intermediate polars – combination of column and disc; white dwarf rotation slow but not synchronous.
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by hand a hypothetical track, the dotted curve in Fig. 6.3a. Starting from the top right, the

star evolves well above the ZAMS to point A. Then mode MB is switched off. ∗2 shrinks on

a thermal timescale inside its Roche lobe, mass transfer ceases, and the system becomes very

faint (since ∼90% of the luminosity from such CVs is accretion luminosity). However, the

Roche lobe also shrinks, more slowly, on the timescale of mode GR. When ∗2 stabilises on

the ZAMS at point B, it will fill its Roche lobe again after a substantial wait, and evolution

will continue along curve BC.

Such an assumption kills two birds with one stone. It explains the period gap (provided

the critical mass is ∼0.19 M�; see Fig. 6.3a), because stars on the portion AB are very

inconspicuous, and it explains the period cutoff also. Note that we need the cessation of

mode MB to be rather abrupt; a steady diminution would leave the star following a steady

RLOF path, without getting substantially but temporarily fainter as required.

It is usually suggested that the sudden cessation of mode MB is due to the fact that low-mass

stars change from having radiative cores to being fully convective at ∼0.35 M�. However,

the transition has to occur at about 0.19 M�, to place the gap at the right period range. In fact,

there are many later and lower-mass M dwarfs known that are conspicuously active, such

as the prototype flare star UV Cet. But UV Cet rotates much more slowly. Perhaps rapid rota-

tion alters (i.e. supresses) the dynamo, although most indications are that activity increases,

or at least saturates, with increasing rotation.

Another difficulty may be that the model assumes that all CVs start somewhere near the

upper right of Fig. 6.3a, perhaps even beyond the right-hand margin of the figure. But many

of the precursor systems in Table 5.1 have a ∗2 that is already of quite low mass. If, say,

KV Vel evolves in the fullness of time to a CV (∗2 being above the critical mass at 0.23 M�),

it will become a CV squarely in the middle of the period gap. There are several other such

precursor systems; they would have to avoid the mass range 0.17−0.35 M� in order not to

do so. Although the statistics are very poor, the precursor detached ∗2s do not seem to do

this, and there seems no reason why they should.

Patterson (1998) has discussed very carefully the implications for theoretical evolution

that can be drawn from the short-period systems near the cutoff. He concludes that angular

momentum loss in excess of GR by about 50% is desirable, and that after ‘bouncing’ the

systems must dissipate themselves rather quickly, in ∼10% of the time that GR would allow.

Evidently the distribution over period among CVs convolves both the current evolution

mechanism and the distribution over mass (M2) of precursor systems. The distribution of

CVs over period has strong features in it that cry out for interpretation, but I feel that we are

far from understanding them at present.

The modest subset of CVs that show substantial nuclear evolution in ∗2 – e.g. BV Cen

to GK Per, Table 6.2 – will evolve in a very different manner to the low-mass systems that

are incapable of mode NE. Whether the period increases or decreases will depend on the

balance of mode MB to mode NE, but it is clear that mode MB cannot always dominate or

something like GK Per would not exist. It is likely therefore that these systems evolve to

longer, not shorter, periods, with a bifurcation at around ∼1 M� for the original mass of ∗2.

The outcome in the long term would often be a W W D binary, with a period of a few days. ∗1

would be unusually massive, and ∗2 of unusually low mass.

Figure 6.3b shows possible evolution of systems with different initial periods, but the

same initial masses (0.9 + 1.4 M�). All of modes NE, EW, MB, PA and BP were included,

along with (reverse) RLOF. Even the shortest-period system is able to do some significant



6.4 Accretion: modes BP, IR 247

nuclear evolution in its early stages, so that by the time that ∗2 is reduced to the mass where

it becomes fully convective its uniform hydrogen abundance is reduced from 0.7 to 0.55.

The next system shows modes NE and EW winning at first, so that the period increases, but

then mode MB takes over and ∗2 fills its Roche lobe when it is reduced to ∼0.5 M�. Its

small, nearly-exhausted, core persists without being entirely mixed by convection, and so the

period ultimately bounces at a somewhat shorter period than in the first case. In the widest

system modes NE and EW dominate throughout, and the system widens from P ∼ 5 days to

P ∼ 13 days, at which point ∗2 detaches from its Roche lobe and becomes a white dwarf of

∼0.25 M� with a rather thick hydrogen shell (∼0.01 M�).

It is possible for a white-dwarf gainer to grow fairly steadily in mass, if it is fed with fuel

at a rate that is not much less than the rate at which a white dwarf is fed fuel if it is the core

of a conventional red giant. In this case the white dwarf can be expected to retain most of

its accreted mass, instead of blowing it away in intermittent CN outbursts. Some ‘supersoft

X-ray sources’ (SSXs) may be in such situation. It is possible that the white dwarf will grow

to the Chandrasekhar mass, and suffer ‘accretion-induced collapse’ (AIC), to a neutron star.

V Sge is a binary that has been known for a long time. It is not clear that it fits into any

regular class of CVs, although it is usually grouped with them. The nature of both components

has been arguable, but Smak et al. (2001) opt for the combination of a somewhat massive

C/O white dwarf core surrounded by a helium-burning shell, and a late B main-sequence star;

a possible product of case C evolution, which may have started with parameters not unlike

that hypothesised for the precursor of IK Peg (Table 5.2). Both components of V Sge are of

much greater luminosity than in normal CVs. They both appear to fill, or slightly overfill,

their Roche lobes, but nevertheless to have very different temperatures (65 and 12 kK). It is

unlikely that the outer layers are in a simple hydrostatic configuration, and there is evidence

of a hot gaseous envelope around the system, fed by mass loss from the hot component. The

luminosity varies erratically between lower and higher values, but not in the manner of dwarf

nova outbursts.

There are observational indications of mass loss from the system, probably from ∗1 alone. It

is not clear that there is any mass transfer at all; both components might be radiating intrinsic

(nuclear) luminosity, while the Wolf–Rayet-like component may produce an intrinsic wind.

But the fact that both components appear to be as large as their Roche lobes makes it rather

unlikely that there is no mass transfer. If the system is simply the last, slightly detached,

stage of case C RLOF that has suffered mode CE, we would expect ∗1 to shrink rapidly

inside its lobe. But because of the mass ratio, it is quite likely that ∗2 loses mass on a

thermal timescale (mode SR2) as a result of evolution that was originally (post-mode-CE)

on a nuclear timescale. Some of this mass may be accreted, burn, and add to the core mass

of ∗1, while some may be reemitted (mode BP). Since L1 ∼ 400L2, it is possible that ∗1

is burning a substantial fraction of the mass lost by ∗2, i.e. that ∗1’s nuclear timescale is

comparable to ∗2’s thermal timescale. If indeed the process manages to average to a fairly

steady rate of transfer and accretion, it does not seem unlikely that ∗1 will grow in mass to

the Chandrasekhar mass.

However, it is something of a problem that we would expect rapid (thermal timescale)

RLOF, because of the considerable mass ratio. The observed timescale of period decrease

is P/Ṗ ∼ −3 megayears, and Smak et al. (2001) estimate the ratio of mass lost from the

system to mass transferred (from ∗2 to ∗1) as 2/3. These correspond to our non-conservative

parameters (Section 4.3) ξ :ζ1:ζ2 = −3:2:0. Then Eq. (4.42) – ignoring the terms in RA and
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Table 6.4. Some low-mass X-ray and possibly related binaries

Name Alias Spectrum State P M1 M2 R2 Reference

J1751-305 2.5ms + ? NcS 0.029 0.0000013a Markwardt et al. 2002

UY Vol J0748-6745 XR + ? N M S 0.159 – – van Paradijs et al. 1988

V616 Mon J0622-0020 XR + K5-7 B M S 0.323 10: 0.7: Johnson et al. 1989

V818 Sco Sco X-1 XR + A: N M S 0.787 – – Priedhorsky and Holt 1987

HZ Her Her X-1 1.2s+ A-FIII N M S 1.70 1.3: 2.2: 3.9: Deeter et al. 1991

V1033 Sco J1654-3950 XR + F6IV B M S 2.62 6.6 2.8 5.2 Shahbaz 2003

V404 Cyg J2024 + 3352 XR + K0IV BGS 6.47 6.8a 0.4a 5.0b Casares and Charles 1994

V1341 Cyg Cyg X-2 XR + A9III N H S 9.84 1.8: 0.6: 7.5 Orosz and Kuulkers 1999

J1012 + 5307 5.3ms + WD N W D 0.605 1.6a 0 .12a van Kerkwijk et al. 1996a

J1857 + 0943 1855 + 09 5.4ms + WD N W D 12.3 1.5 0.26 Kaspi et al. 1994b

J1640 + 2224 3.2ms + WD N W D 175 0.0058a Lundgren et al. 1996

a Mass function or, if two values, Mi sin3 i .
b R2 sin i .

R – along with Eqs (4.36) gives M2/Ṁ2 ∼ −21 megayears. This is quite a lot slower than

the expected thermal timescale. Perhaps the mass transfer is somehow stabilised by mode IR,

which must be very important in this system.

I believe the system is still highly problematic. I have argued, regarding mode CE, that

only systems with rather extreme initial mass ratios (q0
>∼ 4) undergo conventional mode CE

with a large period shrinkage; milder initial mass ratios may result in much mass loss but

relatively little period shrinkage, as in IK Peg or V651 Mon (Table 5.2). Then add to this

the difficulty of reconciling the timescales. But whatever the past evolution, future evolution

seems quite likely to lead to AIC in <∼1 megayear.

CVs are a class of binary where accretion energy is often the dominant contribution to

the observed energy output, apart from occasional thermonuclear outbursts. This is also the

case for low-mass X-ray binaries (LMXBs). Here the dominant energy is typically in X-rays,

but even in the visual region much of the observed energy often comes from the accretion

disc rather than either stellar component. The gainer is either a neutron star or a black hole.

Mode IR is likely to be substantially more important than for CVs – see Eq. (6.22).

Some examples are given in Table 6.4. Although the origin of most CVs can be plausibly

accounted for by mode CE, followed by mode MB or mode NE, or both, it is harder to see

how LMXBs are formed. The transition SM S;C E → W M D seems reasonably natural, but it is

not so clear how a neutron star would emerge from something similar. Currently there appear

to be three main suggestions.

Firstly, the AIC process referred to above might convert a CV directly into an LMXB. A

major problem is that this will not account for black holes, which are several times more

massive than neutron stars. However, the existence of objects like V Sge, and other SSXs,

does suggest that at least some LMXBs may form in this way.

Secondly, mode CE can occur when the core of the large star is still burning helium, or even

somewhat earlier. Stars with M10
>∼ 8 M�, i.e. massive enough to form a neutron star, evolve

rapidly across at least the first half of the Hertzsprung gap before igniting helium. Mode CE

can be expected if q0 is large, whether RLOF begins in case B or case C. We obviously need

a large q0 to produce the combination of a neutron star (or black hole) and an A/F/G/K

dwarf. Unfortunately, we do not have a clear idea of how common high-q0 systems are. The
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largest q0 (∼8) measured fairly reliably in M M D systems is in EN Lac (Table 2.2), but such

systems must be hard to detect.

Thirdly, supergiants with a neutron-star or black-hole core (TŻOs) may be the natural

outcome of evolution of those HMXBs (Section 5.3) that have relatively short periods. If

such a system lies within a wider triple, it is possible that the distant companion, presumably

a low-mass star, is caught up in the envelope of the TŻO, and spirals in by mode CE. VV Ori

(Table 4.10) might be such a triple, although we would prefer one with a longer outer period.

A substantial number of radio pulsars with pulse periods of a few milliseconds are found

to be binary (‘MSPBs’), and with orbital periods ranging from a few hours to a few years.

The companions are very inconspicuous. They are conjectured to be white dwarfs; in a few

cases a white dwarf is actually seen at the radio position. They could be the descendants of

those LMXBs in which mode NE dominates over mode MB, e.g. HZ Her and V1341 Cyg.

It is, however, surprising in that case that there are several with period under 1 day, such as

J1751-305. We would expect a dichotomy, with shorter-period LMXBs evolving to shorter

period still by mode MB with no mode NE, and remaining as LMXBs, while the longer-

period LMXBs evolve by modes NE and SR1 to longer period still, until the envelope is

exhausted and a white dwarf core is left. We seem to require that several systems ‘start’

in an intermediate regime where at first mode NE allows a small white-dwarf core to form

while the binary widens, but then mode MB becomes dominant and shrinks the orbit while

it exhausts the envelope. If this is so, it may be quite a powerful restriction on models of

mode MB.

At the beginning of this section, I indicated three cases, (a)–(c), in which mode BP might

be expected. In cases (a) and (b), since the energy being tapped is essentially energy from

the accretion process itself, it is unlikely that more than a modest fraction of accreted mass is

blown away. The third case does not apply to neutron stars, since even the nuclear energy from

hydrogen-rich accretion is not enough to push material from the surface of the neutron star

to infinity. Thus we appear to be arguing, for a neutron-star gainer, that in any circumstances

it would be likely to accrete most of the material that falls into its potential well, rather

than to reemit much of it. This is something of a problem, because (a) several MSPBs

(three in Table 6.4), are seen with faint white-dwarf companions, presumably the relics of

companions that were once >∼1 M�, and (b) neutron stars probably have an upper limit to

their mass, because of their equation of state, and although this limit is not well known it

would be surprising if it were over ∼2 M�. If, for example, HZ Her evolves in a largely

conservative way, with RLOF and with very little mode BP, one would expect it to evolve to

a state with parameters say (3.4 + 0.4 M�; 30 days). ∗1 would probably become a black hole

in the course of this, though with substantially less mass than any currently-known black

hole (as in V616 Mon).

A further reason for believing that neutron stars do not in fact accrete much mass comes

from the fact that, as in Eq. (6.18), they would be spun up to breakup by the accretion of a

rather modest amount of mass from the inner edge of a Keplerian disc. We cannot entirely

discount the possibility that the neutron star is in a state of extreme differential rotation, in

which case centrifugal support might allow it to be of substantially greater mass than any

non-rotating limiting mass. But J1857 + 0943, the only system so far with an SB2 character,

seems to argue against this. Although the inclination is unknown, eclipses being exceedingly

improbable, the white-dwarf mass on the assumption that i ∼ 90◦ is about what is expected

from the orbital period.
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However, our non-conservative model of Section 4.5 predicts that LMXBs are quite likely

to evolve mainly by modes EW, MB and PA, rather than RLOF. If the neutron star accretes

only a modest proportion of the wind generated by dynamo activity in the companion, while

the rest of the wind blows to infinity, then it may naturally increase its mass by only a modest

amount, while accelerating its spin to the short periods observed.

Our canonical model of modes NE, EW and MB gives evolution in the log P–log M2

plane which is, not surprisingly, little different from the CV evolution of Fig. 6.3. However,

as mentioned above, it is not easy to see what starting conditions might produce the very

short-period system J1751-305 in Table 6.4. The short-period (AM CVn) systems of Table 6.3

seem like legitimate descendants of W W D systems like 0957-666 in Table 5.1, which may

themselves be legitimate descendants of post-Algols after mode CE in reverse RLOF. But

it is not so easy to see how this kind of progression would occur if ∗1 were a neutron

star rather than a low-mass white dwarf. Possibly the system ‘started’ as in Fig. 6.3b but

somewhere intermediate between the initial periods of ∼1 day and ∼5 days; presumably very

close to some critical period defining the dichotomy between late contraction and continued

expansion. Such models were suggested by Nelson and Rappaport (2003), although as they

did not model mode EW they favoured a somewhat shorter initial period.

Surprisingly many LMXBs, as well as MSPBs, are found in globular clusters. This suggests

that mode DE is much more important there than in the bulk of the Galaxy. Neutron stars

are, no doubt, formed from the massive stars that existed in very young globular clusters,

but it is surprising that any have been retained, given the asymmetric kicks that seem to

be necessary to produce the high proper motions of pulsars in the Solar neighbourhood.

A bimodal distribution of kicks may be necessary. But given that apparently several are

retained by their parent globular clusters, they presumably gravitate slowly to the centre once

the mean mass of stars is reduced below ∼1.4 M�, and there can interact by an exchange

reaction (mode DE) with close primordial K/M dwarf pairs.

6.5 Accretion in eccentric orbits
Most binaries with P>∼ 5 days have eccentric orbits, at least initially. In many binaries

with P ∼ 0.5–100 years, we expect ∗1 to develop a wind, as a red giant or supergiant, and

∗2 is liable to accrete from this wind, even if the orbit is non-circular. Although tidal friction

may well circularise the orbit if and when ∗1 becomes large enough, the wind may become

significant before then. There are several binaries, such as some in Table 6.2, whose present

evolutionary state suggests a previous interaction, and yet whose orbits are obstinately non-

circular.

Although the concept of a Roche lobe only applies to circular orbits, we may expect that

Eq. (3.10) can be loosely generalised to say that if at periastron the radius of ∗1 is a fraction

xL(q) of the separation then some kind of overflow should take place. This means that Pcr,

the period at which interaction first occurs as the star’s radius expands, is in effect increased,

or equivalently we should compare it to an ‘effective orbital period’ P ′ defined by

P ′ ∼ P(1 − e)3/2, (6.23)

such that the semimajor axis of the effective circular orbit is the same as the periastron

separation in the actual orbit. However, some interaction affecting the orbit might take place

significantly before that, because of wind – either wind which leaves the system, or wind which

is partially accreted by the companion. There is also the possibility of episodic accretion: this
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might take place mainly near periastron since the wind density will be highest there, but might

alternatively be peaked to apastron since the relative velocity is slowest there and therefore

the accretion radius is largest – Eqs (6.9), (6.22). Even without wind, and supposing that tidal

friction has not in fact circularised the orbit, we expect some kind of episodic accretion once

the star exceeds its ‘Roche lobe’ at periastron. A variant of this is that ∗1 might be a pulsator

(Mira, Cepheid), which might transfer mass at some periastra, those which coincide, more

or less, with a maximum stellar radius, but not at others.

It is difficult to model in detail the accretion process in such cases, but we can seek

guidance in very simple models. In Appendix C(e) a model is put forward for dealing with

the perturbation to an orbit due to mass loss with or without mass transfer. This model comes

from considering the simplest generalisation of the usual momentum equations M1d̈1 =
−M2d̈2 = F(d1 − d2) that

(a) is invariant under Galilean transformations di → di + Ut , where U is a constant,

(b) is symmetrical with respect to suffices 1 and 2, so that it is unimportant whether one or

the other star (or both) is losing mass,

(c) leads, in the case of mass transfer with no wind mass loss, e.g. conservative RLOF in a

circular orbit, to the familiar Eq. (3.13) and

(d) leads, in the case of wind mass loss with no transfer to the familiar Eq. (4.35).

Replacing M1d̈1 by d(M1ḋ )/dt = M1d̈1 + Ṁ1ḋ1 will not do, since the result is not Galilean

invariant.

Let us write, as in Section 4.3, the following equations for the rates of change of mass:

Ṁ1 = −ζ1 − ξ, Ṁ2 = −ζ2 + ξ, Ṁ = −ζ1 − ζ2; (6.24)

the ζ are the rates of loss to infinity, and ξ is the rate of transfer. Some or all of these we

now imagine to be dependent on orbital phase. Then suitable equations that are manifestly

Galilean invariant and symmetrical are

M1d̈1 = −G M1 M2d
d3

+ (ḋ1 − V)ξ, M2d̈2 = G M1 M2d
d3

− (ḋ2 − V)ξ, (6.25)

where

MV ≡ M1ḋ1 + M2ḋ2 . (6.26)

Combining these into an equation for the relative motion,

d̈ = −G Md
d3

+ fWT, fWT ≡ − ξ

MWT

ḋ ,
1

MWT

≡ 1

M2

− 1

M1

, (6.27)

and the label WT stands for wind transfer. This equation does have also the required property,

as shown in Appendix C(e), of giving the two familiar results of conditions (c) and (d) above,

in the appropriate limiting circumstances.

We can now determine the effect of the term fWT on a general Keplerian orbit, using the

methodology of the LRL vector as described in Appendix C. In particular, we look for any

general guidance on whether the eccentricity can be expected to decrease or increase, if the

factor ξ in fWT is phase-dependent. Consider for example a situation where ζ2 = 0 (no wind

out of ∗2) and where ζ1 + ξ = −Ṁ1 ∼ constant, but where ξ , and hence also ζ1, is strongly

phase-dependent. Using angular brackets for an average over an unperturbed Keplerian orbit,

the rates of change of the specific angular momentum vector h ≡ d × ḋ , and of the LRL
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vector e which gives the direction of the semimajor axis and the magnitude of the eccentricity,

are given – Eqs. (C106) – by

ḣ = − 1

MWT

h〈ξ〉,

ė = − 2

G M MWT

〈ξ ḋ〉× h − 1

M

(〈
ξd
d

〉
+ e〈ξ〉

)
. (6.28)

This is a special case of the more general Eq. (C100), which applies if any or all of the ζ s and

ξ are non-zero. We consider the following three models for ξ , which are loosely related to the

discussion on accretion in Section 6.4, but are mainly chosen for their analytic convenience:

ξ = |Ṁ1|d2
0

d2

(
V0

| ḋ |
)2 j

, j = 0, 1 or 2. (6.29)

The quantities d0 and V0 can be subsumed into one constant, but are given separate names

to indicate their dimensionality: like Ṁ1, they are assumed constant on an orbital timescale,

but might well vary on a longer timescale. The factor 1/d2 imitates the fact that the density

of the wind can be expected to drop off with distance, and the | ḋ |-dependence imitates an

expected dependence on accretion radius. From the estimate of Eq. (6.23) we might expect

that j ∼ 0 is relevant if the wind speed is high relative to the orbital speed, and j ∼ 1.5 is

relevant if it is low. Equation (6.29) with j = 1.5 leads to a tedious elliptic integral, but we

hope to estimate the behaviour in this limit by looking at j = 1 and 2.

The dependences on d and on | ḋ | in Eq. (6.29) work in opposite directions. The d-

dependence alone gives most accretion at periastron, whereas the | ḋ |-dependence alone gives

most at apastron. The case j = 1 is neutral: accretion has the same (local maximum) rate at

both apses.

Performing the averages with respect to time over the unperturbed Keplerian orbit, with

the help of the basic equations (C4)–(C9) of Appendix C, we obtain

j = 0: ḣ = − Ṁ0

MWT

h, ė = −Ṁ0e
(

2

MWT

+ 1

M

)
; (6.30)

j = 1: ḣ = − Ṁ0

MWT

h, ė = 0; (6.31)

j = 2: ḣ = − Ṁ0

MWT

h
1 + e2

1 − e2
, ė = Ṁ0 e

(
2

MWT

+ 1

M

)
(6.32)

where

Ṁ0 ≡ |Ṁ1|d2
0

a2(1 − e2)2

(
V 2

0 a

G M

) j

. (6.33)

Because of the symmetry of ξ about the major axis, there is no apsidal motion in these

models, i.e. no term in ė proportional to e × h. Thus e changes only in magnitude. We see

that, in the j = 0 case, the eccentricity decreases to a minimum at a specific mass ratio,

which is M1/M2 = 0.78, and then increases again. In the j = 2 case the eccentricity reaches

a maximum at that value. One might wonder if this critical mass ratio is an artefact of the

specific form of Eq. (6.29), but variants of this usually give a similar answer because of the
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more general character of Eq. (6.28). This typically leads to a critical value of M1/M2 that

may depend slightly on e.

A different but related situation is one where, perhaps because∗1 is a pulsator, say a Cepheid

or Mira, mass transfer is very strongly peaked at periastron – perhaps not every periastron, if

the pulsator happens to be at minimum radius, but nevertheless only near periastron if at all.

A crude model of this can be obtained with a δ-function mass-exchange rate. To some extent

the process might even be conservative in the sense that all the matter lost by the pulsator is

gained by the companion. So let us consider ζ1 = 0 = ζ2, and

ξ = Ṁ0 P
∑

n

δ(t − tn), (6.34)

a delta-function pulse of mass transfer at periastron, when t = tn and Ṁ0 is a given (positive)

constant. The equation for the evolution of h is the same as in Eq. (6.28), but the e-equation

is simpler because of assumed mass conservation:

ė = − 2

G M MWT

〈ξ ḋ〉× h. (6.35)

Averaging over the Keplerian orbit, we obtain

ḣ = Ṁ0

MWT

h, ė = − 2Ṁ0

MWT

1 + e

e
e. (6.36)

Thus, for M1 > M2 initially (MWT > 0), the eccentricity reduces to a minimum at M1 = M2,

slightly earlier than in the previous case. Of course the model fails if e is reduced to zero

before this: episodic accretion at periastron makes no sense once e ∼ 0. Presumably if e
reaches zero it stays zero, but if it does not reach zero before M1 = M2 then it increases again

subsequently.

Tout (private communication) has suggested that a more valid model for fWT – Eq. (6.27) –

would have MWT = M2 rather than the definition (6.27). This is because it is unclear what

happens to the angular momentum of the matter that is being accreted by ∗2. The matter

from ∗1 gains angular momentum from Coriolis force as it flows towards ∗2; this is why an

accretion disc is formed. As the matter flows in through the disc, its angular momentum flows

out. If ∗2 is quite small (as is usually supposed) most of the angular momentum must be

‘lost’, but it is not clear where to. In principle, it might either escape from the system, carried

by a very small amount of mass from the outer edge of the disc, or it might be reaccreted by

∗1 and thus get back into the orbit. Equation (6.27) indirectly assumes the latter: it assumes

that all the matter getting to infinity carries only the specific orbital angular momentum of the

star from which it came. The amended version – MWT = M2 – assumes the former. Without

a detailed hydrodynamic (or MHD) model, it is not clear which extreme is closer to the truth.

Note that the amended version is no longer symmetrical as between ∗1 and ∗2.

6.6 Conclusions
There can be no doubt that RLOF is the most important way in which the evolution

of a star can be affected by the presence of a binary companion. If the RLOF is largely

conservative of both mass and orbital angular momentum there are several straightforward

consequences that should follow. However, there are certainly some non-conservative pos-

sibilities that can arise in various situations; and the fact that even isolated stars are quite
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complicated entities means that we must always be cautious in applying ‘standard’ theoretical

conceptions to real systems.

A number of fairly general problems are listed here. The first five are those considered to

be most important, and the remainder are in no particular order.

(a) Even the evolution of single stars presents severe problems. I would like to emphasise

the fact – Section 2.3.5 – that in several (arguably) non-interactive wide binaries with

well-determined parameters where one component is a red giant and the other is a main-

sequence dwarf, the dwarf’s radius is considerably larger than the mass-ratio would

imply in an alarming fraction of cases.

(b) Many of the closest systems (case A) must evolve into contact, and evolution beyond

this point is very poorly understood. Some close binaries will probably merge, which

means that a proportion of currently single stars may be former binaries, and of current

binaries may be former triples.

(c) Common-envelope evolution is a particularly uncertain area, and it is not possible at the

moment to make a clear a priori estimate of the period of a system that emerges from a

common envelope. Nevertheless it is clear that some compact highly-evolved systems

were created this way: we can only parametrise the situation, and hope that observed

systems will give some sensible value for the parameters introduced.

(d) Many binaries containing cool stars show evidence of dynamo activity considerably

in excess of similar single stars. Many also show some evidence of substantial loss of

angular momentum or mass. These problems may be related; we need a non-conservative

model of them. Such a model must also include tidal friction. Models of these processes

have been described here, but are extremely tentative. Much work has to be done in this

area.

(e) Some observed systems are found to disagree both with moderately conservative evolu-

tion (RLOF, but perhaps modified by winds) and the extremely non-conservative mecha-

nism of common-envelope evolution. We need a compromise mode, which we shall call

mode EJ, where much of an envelope is ejected rapidly but there is rather little change

to the orbit.

(f) We have to understand better whether (i) all stars producing black holes are more mas-

sive than all stars producing neutron stars, (ii) there is something systematic but not

necessarily monotonic in the production of compact remnants or (iii) it is a chaotic

process, perhaps depending on the history of rotation and magnetic field in the core and

envelope.

(g) The velocity field of material within even single stars is not well understood, and may

have important effects on both mixing of composition and tidal dissipation.

(h) The heat energy deposited in the gainer as a result of mass transfer from the loser no

doubt depends on the thermal history of the gas as it flows from one star to the other,

either directly or through a disc. When, after much transfer, the material added to the

gainer comes from near the core of the loser its composition will be different and might

induce mixing, by the Rayleigh–Tayler instability. Probably these will only be small

effects.

(i) Some of the accretion energy, particularly from a compact gainer, may be used to drive a

bipolar outflow from near the central region of the accretion disc. Probably the material

lost to the system carries off specific angular momentum equal to that of the gainer’s

orbital motion.
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(j) The outer radius of the disc can be estimated by integrating the motion of particles

falling inwards from the L1 point, to the point where they have acquired an angular

momentum (from Coriolis force) about the gainer equal to the angular momentum of a

circular Keplerian orbit through the same point (Flannery 1975, Lubow and Shu 1975).

However, this does not allow for the fact that angular momentum transport outwards

in the disc, due to viscosity, will push out the outer edge of the disc; some discs in

cataclysmic binaries appear to be substantially larger than the simple theory predicts.

At the point where the stream of particles from L1 impacts on the outer edge of the disc

we expect a ‘hot spot’.

(k) Averaged over a very long time, it is possible that the gainer might actually lose mass. If

the gainer is a C/O white dwarf, and if accreted hydrogen-rich material mixes to some

extent with the C/O material at the surface, a thermonuclear explosion will occur once

the H-rich outer layer reaches a critical mass, and this explosion could eject not only the

accreted material but also interior C/O material that it mixed with (MacDonald 1983).

Thus the white dwarf, and hence the system, might lose mass in the long term.

(l) The gainer may acquire spin angular momentum, until it rotates at its own breakup speed

(�2
2 ∼ G M2/R3

2). This may act as a drain on the orbital angular momentum, though only

a modest one. But it may prevent the gainer from actually accreting any more material,

and further material may have to accumulate in some outer part of the Roche lobe

until tidal friction transfers some of the gainer’s spin angular momentum back into the

orbit.

(m) If the gainer is not strongly magnetic, then the accretion disc should extend down to the

stellar surface. But unless the gainer is rotating at breakup, there must be a boundary layer

between the surface and the inner edge of the disc, in which there will be considerable

shear. The boundary layer must liberate considerable energy; but the details of this region

are not definitively modelled.

(n) Equation (6.22) assumes that the wind from the loser is spherically symmetrical, but

real winds may well be confined towards the equatorial plane. This could increase

significantly the fraction of mass transferred.

(o) The concept of RLOF is based on the notion that a star has a rather well-defined pho-

tospheric surface, but red supergiants probably have extremely poorly defined surfaces,

which may be very asymmetric if dominated by a small number of large convective cells

(Tuthill et al. 1999). Such stars may also be pulsating variables, either fairly regular

(Miras) or, lower down the giant branch, semiregular or irregular. This might mean that

Mode 3 RLOF (i.e. on a hydrodynamic timescale) could be irrelevant, or at least much

modified.

(p) Roche-lobe overflow is in theory only meaningful in a circular orbit. It is usually assumed

that an orbit will circularise in the interval prior to RLOF, thanks to tidal friction. But

stars crossing the Hertzsprung gap evolve on a rather short timescale, and it is not so

clear that tidal friction has time to circularise the orbit. Even when evolution slows down

temporarily on the giant branch, the evolution is still rapid compared with main-sequence

evolution, and tidal friction may not be fast enough for circularisation. Some kind of

intermittent mass transfer may take place when a star approaches a radius comparable

to the ‘Roche lobe’ radius at periastron.

(q) Triples, in particular fairly close triples where both periods are less than ∼30 years, while

not very common, are also not very rare. Some of these will evolve in rather interesting

ways that are not available to mere binaries. Triples are probably also particularly prone

to dynamical encounters.
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(r) Dynamical encounters, both in young star-forming regions and in older clusters that

are still dense, may change binaries radically, probably causing collisions in some close

primordial binaries, and also causing exchanges which mean that the current components

may be non-coeval.

A number of the problems may only be approachable by three-dimensional modelling of

entire stars, and indeed entire binaries. This subject is in its infancy, but rapid advances in

computer technology may mean that a model with 1011 meshpoints in it will be available in

perhaps ten years. Already the Djehuty project (named after the Egyptian god of astronomy)

at the Lawrence Livermore National Laboratory can manipulate whole stellar models with

∼108 meshpoints. This may be adequate for studying, say, convective motion in cores, but

the larger number is minimal for resolving convection in surfaces.



Appendix A The equations

of stellar structure

The equations of stellar evolution are presented here firstly in a traditional form and secondly
in a form that I have found convenient for computation. Traditionally they are seen as four
equations for the four structure variables p, T , r and L , with Lagrangian mass-cordinate m
as the independent variable. Omitting a few refinements, they are:

∂ log p

∂m
= − Gm

4πr4 p
, (A1)

∂r

∂m
= 1

4πr2ρ
, (A2)

∂ log T

∂m
= ∂ log p

∂m
min(∇r, ∇a), ∇r ≡ 3κpL

16πacGmT 4
, ∇a ≡

(
∂ log T

∂ log p

)
S

, (A3)

∂L

∂m
= ε − εν − CpT

(
∂ log T

∂t
− ∇a

∂ log p

∂t

)
. (A4)

Density ρ, opacity κ , specific heat Cp, adiabatic gradient ∇a, nuclear energy generation
rate ε and neutrino loss rate εν are known functions of pressure p, temperature T and the
abundances Xi (�Xi = 1) of the various nuclear species. Equations (A1)–(A4) are solved
for a given distribution of the Xi (m), and these abundances are then updated according to the
prescription that, at a radiative meshpoint (∇r < ∇a), is

∂ Xi

∂t
= Ai

∑
j

αi j R j ,
∑

i

Aiαi j = 0, (A5)

where Ai is the atomic number, R j is the local rate of the j th nuclear reaction, and the αi j

are stoichiometric integers giving the number of particles created or destroyed per reaction.
The number of compositions solved for can be quite large, although in practice only a modest
number of composition variables have an important influence on the structure of the star.
In a convection zone a more complicated recipe is needed, based on the concept that the
composition is uniform in the zone as a result of convective mixing. In a semiconvection zone
a still more complicated recipe is needed, usually based on the concept that the composition is
determined by the neutral condition for convection: ∇r = ∇a. It is often unclear in published
work what these recipes are, and how they are implemented numerically.
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The rates R j determine the nuclear energy generation rate ε as well as the composition
changes:

ε =
∑

i

∑
j

Ei Aiαi j R j =
∑

j

Q j R j , Q j =
∑

i

Ei Aiαi j , (A6)

where the Ei are the binding energies (per baryon) of the various species and the Q j are the
energy yields of the nuclear reactions. We will ignore in this discussion the fine distinction
between atomic weight and atomic number, although it is taken account of in the code.

Note that Eqs (A4) above and (A14) below, the latter a consequence of the former, are not
correct in situations where the composition is changing. Thermodynamics tells us that

dU + pdV = T dS + T
∑

ψi dXi/Ai

= CpT (d log T − ∇ad log p) +
∑ (

∂ H

∂ Xi

)
p,T

dXi , (A7)

where V is the specific volume (1/ρ), the ψi are chemical potentials, available from the
equation of state with a little extra trouble, and H is the enthalpy. The error in missing
out the enthalpy term would only be of consequence if the composition were changing on
a thermal timescale, but of course it normally changes on a nuclear timescale that is ∼1000
times longer. The error could be significant if, say, a convective zone expands rapidly, on a
thermal timescale, into a region with a substantial composition gradient.

In the code used here, we suppose that only five nuclear species (1H, 4He, 12C, 16O and
20Ne) are important for the changing structure of the star. Then we think of the structure
and composition equations together as a set of ten partial differential equations to determine
ten ‘dependent’ variables – ten rather than nine because there is an extra one to determine
the distribution of meshpoints (see below). The dependent variables are defined at a set
of discrete meshpoints, whose positions within the star are determined implicitly by the
equations themselves. This means for example that the mesh is non-Lagrangian, and so
when Lagrangian time-derivatives are required an advection term must be included. Such an
implicit adaptive mesh turns out to be very stable, at least in the context of stellar evolution,
and allows timesteps to be taken that can in some circumstances be much larger than those
that can be taken with a Lagrangian distribution of meshpoints.

The ten dependent variables are r , m, L , T , ψ (the electron chemical potential) and Xi ,
for i = 1 to 5, the fractional abundances by mass of 1H, 4He, 12C, 16O and 20Ne. In principle
there are many more than five abundances that have to be determined, but in practice these
five are the main ones determining the structure up to and including the late stage of carbon
burning. There are two independent variables, t (time), and a space-like quantity, k, which
is, in principle, a continuous function of position but in practice can be thought of as taking
consecutive integer values at the meshpoints. Since the non-Lagrangian mesh is arranged to
give meshpoints only where they are needed, a quite small number of meshpoints (say 200)
is normally adequate for the whole star, from surface to photo-sphere, independent of the
evolutionary stage of the star.

It is convenient to define a number of subsidiary variables, which are functions of the
dependent variables. The following 15 are functions only of the state variables T , ψ and Xi :
p, ρ, S, κ , ∇a, Cp, γ , Ri , ε, εν and χ . These are respectively pressure, density, entropy, opac-
ity, adiabatic gradient (∂ log T/∂ log p)S , specific heat at constant pressure (∂S/∂ log T )p,
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compressibility (∂ log p/∂ log ρ)S , the destruction rate of the i th nuclear species (a negative
quantity if the species is being produced rather than destroyed), the nuclear energy genera-
tion rate, i.e. �Q j R j as in Eq. (A6), the neutrino energy loss rate, and a radiative diffusion
coefficient

χ ≡ 4acT 3

3κρ2Cp
. (A8)

In addition to ∇r, defined in Eq. (A3), we define three more quantities which are also explicit
functions of the dependent variables at a point, but not just of the state variables. These are l,
the convective mixing length, w , the mean velocity of turbulent eddies in a convective zone,
and ∇, the actual temperature gradient – approximated in (A3) as min(∇r, ∇a). The last three
are only estimates, of course, which come from the standard version of the mixing-length
model of turbulent convection. They are given by

l ≡ α min

(
pr2

Gmρ
,

√
p

Gρ2

)
, (A9)

(
lw

χ

)3

+ 2

(
lw

χ

)2

+ 9
lw

χ
= α2l2

4χ2
Cp∇aT max(0, ∇r − ∇a) (A10)

and

∇ = ∇r − 4lw3

α2χ∇aCpT
. (A11)

Equation (A10) is a cubic equation for lw/χ which is readily solved algebraically for the
unique positive root: if x3 + 2x2 + 9x = a ≥0 then 3x = c − 23/c − 2, where c3 = b +√

b2 + 233 and 2b = 146 + 27a. Obviously Eq. (A10) gives w = 0 in a convectively stable
region (∇r < ∇a), and hence ∇ = ∇r from Eq. (A11). Thus we can determine l, w, ∇ in
terms of other local variables.

The ten differential equations for the ten dependent variables can now be written:

∂ log p

∂k
= − Gm

4πr4 p

∂m

∂k
, (A12)

∂r

∂k
= 1

4πr2ρ

∂m

∂k
, (A13)

∂ log T

∂k
= − Gm∇

4πr4 p

∂m

∂k
, (A14)

∂L

∂k
=

(∑
j

Q j R j − εν

)
∂m

∂k
− CpT

[
∂ log T

∂t
− ∇a

∂ log p

∂t

]
∂m

∂k

+ CpT

[
∂ log T

∂k
− ∇a

∂ log p

∂k

]
∂m

∂t
, (A15)

∂

∂k

[
4πr2ρwl

∂r/∂k

∂ Xi

∂k

]
= Ai

∑
j

αi j R j
∂m

∂k
+ ∂ Xi

∂t

∂m

∂k
− ∂ Xi

∂k

∂m

∂t
, i = 1 to 5, (A16)

∂m

∂k
= 1

C

[
a1Gm

4πr4 p
+ a2

m1/3

]−1

. (A17)
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In the last equation, C is a kind of eigenvalue, i.e. a constant (in space, but not in time) whose
value is not known until the equations are solved; a1 and a2 are constants whose values have
to be chosen in order to give a reasonable dissection of the star into finite mesh intervals.
By combining Eqs (A12) and (A17), it can be seen that the effect of these equations is to
make

k = C(−a1 log p + 1.5 a2m2/3) + constant, (A18)

and so the meshpoints, which are at equal intervals of k, are therefore at equal intervals of
this function of pressure and mass. In the surface layers, where m ∼ constant, this means that
they are at approximately equal intervals of log p; while near the centre, where p ∼ constant,
they are at approximately equal intervals of m2/3. In practice, a slightly more complicated
function, involving extra terms in log T and r2, is used. The significance of the particular
powers m2/3, r2 is that both go linearly with log p, log T near the centre.

C is determined by the fact that the first-order differential equation (A17) has two boundary
conditions, viz.

m = 0 at k = 0, (A19)

and

∂m

∂t
= Ṁwind + ṀRLOF at k = K , (A20)

where K is the number of the outermost meshpoint. The right-hand side of Eq. (A20) can be
zero, if there is no mass loss by stellar wind, and no RLOF; otherwise Eqs (2.76) or (3.70)
might be used for the two terms on the right-hand side. The remaining boundary conditions
are

r = L = 0 at k = 0, (A21)

L = πacr2T 4, pκ = 2

3

Gm

r2
at k = K , (A22)

and

w
∂ Xi

∂k
= 0 at k = 0 and k = K , i = 1 to 5. (A23)

Notwithstanding the fact that the diffusion coefficient – essentially the factor wl – in
Eq. (A16) should, for consistency, be derived from Eq. (A10), in computations such as those
presented in this book we have artificially ‘weakened’ the diffusion coefficient by typically
two orders of magnitude, because otherwise the gradient of composition is so shallow in full
convection zones that it is difficult to compute even to double precision. In Eq. (A16) we
replace wl by something roughly equivalent to

wl = constant (l2CpT χ )1/3 (∇r − ∇a)2. (A24)

The constant, expected from Eq. (A10) to be of order unity, is sometimes chosen to be smaller,
on an ad hoc basis according to the performance of the code on a particular machine. This
weakened coefficient typically gives a change of composition across a convective core of
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∼10−7, whereas one might expect it to be more like ∼10−9. According to the discussion of
Section 2.2.4, this recipe is further modified to incorporate an ad hoc recipe for convective
overshooting.

Equation (A10) is an implementation of the K. Schwarzschild criterion for convection in
a homogeneous star, and also of the M. Schwarzschild criterion for convection and semi-
convection in a star with a composition gradient. In the latter case it is not a statement that
convection sets in where the entropy decreases outwards, since the entropy gradient involves
the composition gradients as well as the pressure and temperature gradients. Equations (A10)
and (A16) include, without further modification, the possibility of semiconvective mixing,
as discussed in Section 2.2.4. It is not necessary to search for the boundaries of these zones
and apply different algorithms within them.

The equation of state has an unusual form in that it gives such quantities as p, ρ, Cp, . . . as
functions of the two independent variables f , a parameter related to electron degeneracy, and
T , the temperature. In addition, of course, the equation of state depends on the abundances of
the various elements, which are given constants for present purposes. The choice of f rather
than, say, ρ or p as independent variable is based on the fact that several physical processes,
notably electron degeneracy in cores and ionisation in envelopes, are explicit functions of
f , but not of ρ or p. So also would be such extra processes as pair production and inverse
β decay, although these have not actually been programmed. By using explicit formulae
the computation is rendered very efficient; there is no need to invert a complicated highly
non-linear relation ρ = ρ( f, T ) to determine the electron degeneracy parameter f , which is
needed in the Fermi–Dirac integrals.

Electron degeneracy is normally represented as a quantity ψ , which appears in such Fermi–
Dirac integrals as

Neρ = constant
∫ ∞

0

x2dx

eEmc2/kT −ψ + 1
. (A25)

The quantities x, E are the dimensionless momentum and energy of an electron, related by
E = √

1 + x2 − 1; Ne is the number of free electrons per atomic mass unit, which itself
depends on ψ via ionisation (see below). The quantity f gives ψ explicitly, by definition,
as

ψ = ln

√
1 + f − 1√
1 + f + 1

+ 2
√

1 + f , so that
dψ

d f
=

√
1 + f

f
. (A26)

In terms of a further function g( f, T ), defined by

g = T
√

1 + f , (A27)

the Fermi–Dirac integral above can be approximated, to about three significant figures for
all physical f, T , by

Neρ = constant
f

1 + f
{g(1 + g)}3/2

∑3
0

∑3
0 ai j f i g j

(1 + f )3(1 + g)3
, (A28)
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where the ai j are a set of 16 constant coefficients found by the least-squares method. It is
easy to see that in four limiting circumstances we have:

f � 1, g � 1: ψ ∼ ln
f

4
+ 2, g ∼ T, Neρ = constant 4a00 T 3/2eψ−2 (A.29a)

f � 1, g 	 1: ψ ∼ ln
f

4
+ 2, g ∼ T, Neρ = constant 4a03 T 3eψ−2 (A.29b)

f 	 1, g � 1: ψ ∼ 2
√

f , g ∼ ψT

2
, Neρ = constant a30 (ψT )3/2 (A.29c)

f 	 1, g 	 1: ψ ∼ 2
√

f , g ∼ ψT

2
, Neρ = constant a33 (ψT )3. (A.29d)

The functional forms of f, g as functions of ψ, T have been deliberately chosen so that
the series expansions of of Eq. (A29) in each of the four limits matches exactly the series
approximations of the integral (A25) in corresponding regimes. This means that considerable
accuracy can be achieved with rather few coefficients. Similar approximations exist for the
pressure and the internal energy U , or equivalently the entropy S, of the free electrons. The
coefficients are to be found in Eggleton et al. (1973).

A second virtue of the above approximation is that, because it is closely based on the
analytic expansions of the integral in its various limiting regimes, its partial derivatives, even
up to third derivatives, are reasonably accurate, and can also be written down analytically.
Since much of the physics we need involves derivatives of p, S wrt T, ρ, it is important
that the derivatives are also accurate. We can, in fact, ensure that certain relations between
derivatives of the state variables (Maxwell’s relations) are satisfied exactly, and not just to
the accuracy of the numerical approximation.

Ionisation is expressed by a number of sets of equations of the form

NH+

NH
= ωH+

ωH
eψ+χ

H/kT , NH+ + NH = XH, (A30)

where the ω are statistical weights and χH is the ionisation potential, and XH is the given
abundance of hydrogen by mass. Obviously these two equations give both NH and NH+

simply and explicitly in terms of ψ, T or equivalently f, T . Similar equations (three rather
than two) give the helium ionisation equilibrium. A slight complication is that for hydrogen
we also have to consider the molecular equilibrium, but it turns out that this only means
solving a quadratic rather than a linear equation for NH.

Two substantial problems remain, one of which is an artefact of the choice f of independent
variable, and one of which is a problem however we choose the independent variables. In
order, (a) f or ψ becomes indeterminate if the gas is fully non-ionised, so that there are no
free electrons and (b) the ionisation equation above breaks down at high density (‘pressure’
ionisation), because the atomic structure of ions is strongly modified when the ions are so
closely packed together that their Bohr radii are less than their separation. We do not have
an answer to (a), but mercifully most stellar material is hot enough, dense enough or dilute
enough, that at least some atoms are ionised. We help this along by approximating both Si
and Fe as wholly ionised, even although they are not.

We deal with (b) approximately, by assuming that both ω(H) and χH are dependent on
ρ, T , which we approximate as an explicit dependence on f, T . This is best done by adding
to the Helmholtz free energy a term of the form �F ≡ Ne F0(Neρ, T ). Then in the ionisation
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equation we have to add to ψ the additional chemical potential term (kT )−1(∂�F/∂ Ne)ρ,T .
This works because (∂�F/∂ Ne)ρ,T , unlike �F itself, is a function of Ne and ρ only through
the combination Neρ, and this in turn is a function only of the input variables f, T . We
must also for thermodynamic consistency add terms ρ2(∂�F/∂ρ)Ne,T to the pressure and
−(∂�F/∂T )Ne,ρ to the entropy.

We conclude by proving an analytic result which is useful in considering the question,
‘Why are some stars (such as evolved red giants) very centrally condensed?’ (Section 2.3.1).
We need only the equations of hydrostatic equilibrium, Eqs (A1) and (A2). Let us define

X ≡ 3m

4πr3
, (A31)

a quantity that ranges from the central density at r = 0 to the mean density at r = R. Let us
further define some ‘homology invariants’ s, U, V, W thus:

s ≡ d log ρ

d log p
, U ≡ − d log m

d log p
= 4πr4 p

Gm2
,

V ≡ − d log r

d log p
= r p

Gmρ
, W ≡ d log X

d log p
= 3V − U. (A32)

The variable s is the ‘softness index’, closely related to the local polytropic index n by
s = n/n + 1. We do not assume that s is a constant; it will in general vary through the star,
in a manner dictated usually by the temperature gradient and the molecular-weight gradient,
but for the present we think of it as some general variable. The theorem we prove, however,
reqires that 0 < s < 5/6 everywhere.

A self-gravitating entity in which p is a given function of ρ is a ‘barytrope’, the special case
of a power law being a polytrope. However, every hydrostatic stellar model is in principle a
barytrope, since once computed it will follow some specific curve in the (log ρ, log p) plane
whose (variable) slope is the softness index s.

As is generally true of differential equations like (A1) and (A2) which are ‘homologous’,
i.e. have right-hand sides that are products of powers of the variables, we can reduce the
order of the system by one, from two to one. We can do this in several ways, but we choose
a way which gives dW/dU as a function of W and U (and also s). Differentiating U, V
logarithmically wrt log p, we obtain

d log U

d log p
= 1 + 2U − 4V = 1

3
(3 + 2U − 4W ), (A33)

d log V

d log p
= 1 − s − V + U = 1

3
(3 − 3s + 2U − W ). (A34)

Hence

W ′ ≡ dW

dU
= 3V

U

d log p

d log U
− 1 = 3W − 3s(W + U ) + 5U W − W 2

U (3 + 2U − 4W )
, (A35)

and we also see that

d log X

d log U
= W

d log p

d log U
= 3W

3 + 2U − 4W
. (A36)
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Equation (A35) for W as a function of U – and of s, which we can now think of as a given
s(U ) – may not look very promising for analysis, but we can prove a by-no-means trivial
inequality from it. We begin by proving successively three preliminary results:

(a) W → 3

5
s, U → ∞ as r → 0

(b) 0 < W <
1

2
everywhere if 0 < s <

5

6
everywhere

(c) W < WE, where WE(U ) is the Emden polytropic solution for s = constant =
smax ≡ maxr s(r ) < 5/6.

To prove (a), we expand equations (A1) and (A2) about the origin. We see that if

p = pc

(
1 − r2

a2

)
, (A37)

neglecting terms of order r4, and with subscript c meaning a central value, then

ρ = ρc

(
1 − sc

r2

a2

)
, m = 4πρcr3

3

(
1 − 3

5
sc

r2

a2

)
, X = 1 − 3

5
sc

r2

a2
, (A38)

and hence

W = 3

5
sc. (A39)

Clearly U ∼ 1/r2 and so U → ∞ as r → 0; also s → sc, so that W → 3

5
s as U → ∞.

To prove (b), consider the value of W ′ on the line W = 1/2. It is

W ′ = 3

2U

(
5

6
− s

)
> 0. (A40)

If, therefore, a barytropic solution W = W (U, s) crosses the horizontal line W = 1/2 in the
(U, W ) plane, it crosses it sloping upwards to the right, as U increases (U is always positive
by definition). The barytropic solution can therefore never get back below W = 1/2, and yet
it has to, since W = 3s/5 < 1/2 at the centre, according to (a). By reductio ad absurdum, W
must remain below 1/2 throughout. By a similar reductio ad absurdum, W must also remain
above zero; this utilises our assumption that s > 0 everywhere. Note that W = 1/2 is, in
fact, the Emden solution for the s = 5/6 (n = 5) polytrope, and W = 0 the Emden solution
for s = 0 (n = 0), i.e. a uniform-density sphere.

We prove (c) similarly. Consider the value of W ′ as the barytropic curve crosses (if it can)
the Emden solution W = WE(U ) corresponding to a polytrope of softness index smax. The
value satisfies

W ′ − W ′
E = 3(U + W )(smax − s)

U (3 + 2U − 4W )
≥ 0, (A41)

where we use the fact that W < 1/2 to confirm that the denominator is always positive, and
the fact that W > 0 to confirm that the factor U + W in the numerator is always positive,
too. Thus the barytropic curve crosses the Emden curve from below left to above right, and
cannot cross back at greater U . But the central value of W is below (or at) the central Emden
value, and so we have another reductio ad absurdum.
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Having established that 0 < W < WE < 1/2 everywhere (if 0 < s ≤smax < 5/6 every-
where), we see from Eq. (A36) that

[
log X

]U=∞
U=0 =

∫ ∞

0

3W dU

U (3 + 2U − 4W )

<

∫ ∞

0

3WE dU

U (3 + 2U − 4WE )
= [

log X E
]U=∞

U=0 . (A42)

The central condensation parameter C is defined as

C ≡ 4πρc R3

3M
= X (centre)

X (surface)
= X (U = ∞)

X (U = 0)
, (A43)

and so we have shown that a barytrope with 0 < s ≤ smax < 5/6 is less centrally condensed
than the polytrope with s = smax throughout.



Appendix B Distortion and circulation

in a non-spherical star

(i) The hydrostatic-equilibrium model
Here, and in Section 3.2.1, we consider a star which has a binary companion, which

is in uniform rotation at rate � (not necessarily the same as the orbital rate, which might be

varying if the orbit is eccentric) and which has a uniform composition. These conditions, via

hydrostatic equilibrium, give

∇ p = −ρ∇φ, (B1)

∇2φ = 4πGρ − 2�2, (B2)

and lead to the result that ρ, p, T, s are all constant on surfaces of constant φ. We can

also define variables V, m, L , r∗ – volume, mass, nuclear luminosity and ‘volume radius’

respectively – which are constant on equipotentials: V is the volume contained within an

equipotential, m and L are the integrals of ρ and ρε over this volume, and r∗ is given by

4π

3
r3
∗ = V (φ). (B3)

The quantities m, L clearly satisfy

dm

dV
= ρ,

dL

dV
= ρε. (B4)

Let us define

K (φ) ≡ 4πGm − 2�2V =
∫

∇φ · d�� =
∫

|∇φ|d�, (B5)

and note that

∇2φ = dK

dV
. (B6)

We also see that, since the distance between adjacent equipotentials along a normal is

δl = δφ/|∇φ|,

dV

dφ
=

∫
δl

δφ
d� =

∫
d�

|∇φ| . (B7)

266
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Hence hydrostatic equilibrium can be written as

− 1

ρ

dp

dr∗
= dφ

dr∗
= dφ

dV

dV

dr∗
= 4πr2

∗∫
d�/|∇φ|

=
(

Gm

r2∗
− 2�2r∗

3

)
(4πr2

∗ )2∫ |∇φ| d�
∫

d�/|∇φ| . (B8)

The factor in parentheses simply cancels the first factor in the denominator to its right, by

Eq. (B5); we write it this way to show that the ratio to the right of the parentheses clearly

differs from unity in the second order if φ differs from spherical in the first order, so that we

can write

− 1

ρ

dp

dr∗
= dφ

dr∗
≈ Gm

r2∗
− 2�2r∗

3
. (B9)

Now consider the energy flux F, which in general is a combination of radiative and con-

vective flux. In spherical symmetry, we usually write this as

F = −4acT 3

3κρ

dT

dr
+ ρwT δS, (B10)

where w is the mean velocity of convection and T δS is the mean heat excess of an upward-

rising eddy. The mixing-length approximations (Section 2.2.2 and Appendix A) for w and

T δs are

w2 ∼ T δS ∼ T l

[
−d S

dr

]
∼ T

[
dS

d log p

]
, (B11)

where l is the mixing length, normally estimated by l ∼ −dr/d log p, and where the square

brackets have the meaning [X ] ≡ max(X, 0). In a non-spherical situation the generalisation

of the radiative term in the energy flux is obvious; and of the many possible generalisations

for the convective term we choose one which is

F = −4acT 3

3κρ
∇T + ρ

[
T

dS

d log p

]3/2 dr∗
dφ

∇φ, (B12)

i.e.

F = χ (φ)∇φ, χ(φ) ≡ −4acT 3

3κρ

dT

dφ
+ ρ

[
T

dS

d log p

]3/2 dr∗
dφ

. (B13)

Thus the equation of energy production and transport is taken to be

∇ · χ∇φ = ρε − ρT v · ∇S, (B14)

where v is the meridional velocity field, satisfying

∇ · ρv = 0. (B15)

We first establish that the circulation term carries no net energy across an equipotential

surface, i.e. that
∫

ρT v · ∇S dV = 0, where the integral is over the interior of an equipotential

surface. From thermodynamics and hydrostatic equilibrium,

T dS = dU + pd
1

ρ
= d

(
U + p

ρ

)
− 1

ρ
dp = d

(
U + p

ρ
+ φ

)
. (B16)
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Hence, using (B15),∫
ρT v · ∇S dV =

∫
ρv · ∇

(
U + p

ρ
+ φ

)
dV =

∫ (
U + p

ρ
+ φ

)
ρv · d��. (B17)

Since the expression in parentheses is constant on an equipotential it can come outside the

last integral, and since
∫

ρv · d�� = 0 by Eq. (B15) we have the result. Hence∫
F · d�� =

∫
χ∇φ · d�� =

∫
ρεdV = L . (B18)

Since χ is constant on equipotentials, we can write this, using Eq. (B5), as

L = χ

∫
∇φ · d�� = χ K , i.e. χ = L/K . (B19)

It follows that the only effects of the distortion on the structure equations (A1)–(A4) are that

the factor Gm in Eqs (A1) and (A2) is to be replaced by Gm − 2�2r3/3.

Using Eqs (B4)–(B7) with (B19), Eq. (B14) becomes

L

K

dK

dV
+ |∇φ|2 d

dφ

L

K
= dL

dV
− ρT

dS

dφ
v · ∇φ, (B20)

i.e., after some manipulation,

ρT
dS

dφ
v⊥ =

(
1

|∇φ|
∫

|∇φ| d� − |∇φ|
∫

d�

|∇φ|
)

d

dV

L

4πGm − 2�2V
, (B21)

where v⊥ is the component of v in the direction of ∇φ.

(ii) The degree of internal distortion
We now define the relative distortion parameter α(r ) of an internal equipotential,

and relate it to the quadrupole moment of a star distorted by either rotation or the effect of a

companion.

An equipotential surface can be approximated by

r ≈ r∗{1 − α(r∗)P2(cos θ )}, r∗ ≈ r (1 + α(r )P2), (B22a,b)

where θ is the angle from the axis of symmetry. Since α is first order, it can be thought of as a

function of either r or r∗. The contribution to the quadrupole moment q from mass between

surfaces φ and φ + dφ is

dq

dφ
= ρ(φ)

∫
2πr2 sin θdθ

|∇φ| r2 P2(cos θ ), (B23)

where we use Eq. (B7) to estimate the volume element. Now, φ is a function of r∗ only, and

r∗ is a function of r, θ given by Eq. (B22b), so that

|∇φ| = dφ(r∗)

dr∗
|∇r∗| ≈ dφ(r∗)

dr∗

(
1 + d rα(r )

dr
P2

)
≈ dφ(r∗)

dr∗

(
1 + dr∗α(r∗)

dr∗
P2

)
. (B24)

Hence

dq

dr∗
≈ ρ(r∗)

∫ (
1 − d r∗α(r∗)

dr∗
P2

)
r4
∗ (1 − 4αP2)P2 2π sin θdθ = −4π

5
ρr4

∗

(
4α + d r∗α

dr∗

)
,

(B25)
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and so, over the whole star,

q = −1

5

∫ M

0

(5α + r∗α′)r2
∗dm. (B26)

(iii) The effect of rotation
First consider rotation alone. In this case the potential distribution outside the

star is

−φ(r) ≈ G M1

r
+ Gq rot

r3
P2(cos θ ) + 1

2
�2r2 sin2 θ. (B27)

On the stellar surface (r∗ = R1) this means, using Eq. (B22a), that

−φ(R1) ≈ G M1

R1

+ 1

3
�2 R2

1 +
(

α1

G M1

R1

+ Gq rot

R3
1

− 1

3
�2 R2

1

)
P2(cos θ ), (B28)

where α1 = α(R1). This must be independent of θ , so that

α1 = R3
1

(
�2

3G M1

− q rot

M1 R5
1

)
. (B29)

Using Eq. (B26), this leads to

α1 = �2 R3
1

3G M1

1

1 − Q
, q rot = −�2 R5

1

3G

Q

1 − Q
, Q = 1

5

∫ M
0

r2dm(5α + rα′)
M1 R2

1α1

.

(B30a,b,c)

Since α is first order, we do not need to distinguish between α(r∗) and α(r ) in the integral.

(iv) The equation for α(r )
From r∗(r, θ ) as given by Eq. (B22b),

|∇r∗|2 ≈ 1 + 2(rα)′ P2, (B31)

and

∇2r∗ ≈ 2

r
+

(
1

r2

d

dr
r2 drα

dr
− 6α

r

)
P2 ≈ 2

r∗
+

(
rα′′ + 4α′ − 2α

r

)
P2, (B32)

so that

∇2φ = φ′′|∇r∗|2 + φ′∇2r∗ ≈ φ′′ + 2

r∗
φ′ +

[
rα′′ + 4α′ − 2α

r
+ 2

φ′′

φ′ (rα′ + α)

]
φ′ P2

= 4πGρ(r∗) − 2�2. (B33)

For this to be true for all θ , we need

φ′′ + 2

r∗
φ′ = 4πGρ(r∗) − 2�2, i.e. φ′ = K (r∗)

4πr2∗
, (B34)

where K is the quantity defined in Eq. (B5). Equation (B34) is the same as (B9). We also

need

α′′ − 6α

r2
+ 2r K ′

K

(
α′

r
+ α

r2

)
= 0. (B35)
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Since α is first order in �2, we see that (a) the bracketed expression in Eq. (B33) can be

thought of as a function of either r or r∗ and (b) we can take K = 4πGm in (B35). Thus our

equation for α is

α′′ − 6α

r2
+ 2rm ′

m

(
α′

r
+ α

r2

)
= 0. (B36)

We therefore determine α by first solving the stellar structure equations to obtain m(r ), and

then integrating (B36) with this m(r ), subject to α and α′ being finite at the centre. These

determine α up to a multiplicative constant, since at r = 0 we have rm ′/m = 3 and hence

from (B36) α ∼ B + C/r5 there. The second term has to be excluded on account of its

singularity. Then α(r ) determines the constant Q unambiguously, since the definition (B30c)

of Q is independent of a constant factor in α. A numerical treatment of Eqs (B36) and (B30c)

for polytropes of index n < 4.95 leads to the interpolation formula

Q ≈ 3

5

(
1 − n

5

)2.215

e0.0245n−0.096n2−0.0084n3 ± 1.5% rms. (B37)

(v) An approximation for α(r )
At a lower level of approximation, suppose that (a) the mass is concentrated entirely

at the centre and (b) the quadrupole is concentrated entirely at the surface, where the distortion

is greatest. Then the potential inside the star (r∗ ≤ R1) – cf. Eq. (B27) for outside – is given

by

−φ(r) ≈ G M1

r
+ Gq rotr2 P2

R5
1

+ 1

2
�2r2 sin2 θ. (B38)

The condition that φ is constant on any interior potential r∗ = constant implies that

−φ(r∗) ≈ G M1

r∗
+ 1

3
�2r2

∗ +
(

α
G M1

r∗
+ Gq rotr2

∗
R5

1

− 1

3
�2r2

∗

)
P2(cos θ ) (B39)

is independent of θ and hence that

α = r3
∗

(
�2

3G M1

− q rot

M1 R5
1

)
≈ r3

(
�2

3G M1

− q rot

M1 R5
1

)
. (B40)

Equation (B29) is just Eq. (B40) evaluated at r∗ = R1. We confirm that α ∝ r3 satisfies

(B36) at least in the outer layers, for centrally condensed stars, since m ′ ∼ 0 in that case.

Putting α ∝ r3 in (B30c), we obtain

Q ≈ 8

5

∫
r5dm

R5
1 M1

. (B41)

A numerical evaluation of Eq. (B41) for polytropes gives

Q ≈ 3

5

(
1 − n

5

)2.205

e−0.437n+0.066n2−0.023n3 ± 2% rms, (B42)

for polytropes of index n < 4.95.

If the star is so centrally condensed that m ′ ∼ 0 for r > 0, Eq. (B36) has the solution

Br3 + C/r2. This cannot persist all the way to the centre, of course, because the density,

though large there, is finite. Taking C = 0 nevertheless, we have solution (B40). Numerical
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calculation of polytropes shows that C → 0 as n → 5, but unfortunately C is not really

negligible in the important regime n ∼ 1.5–3. In the opposite extreme that the star is of

constant density, rm ′/m = 3 throughout and Eq. (B36) has the solution α = B + C/r5.

We must take C = 0 to exclude the singularity at the origin. This is just the well-known case

of ‘liquid’ stars. For such stars all the equipotentials are similar ellipsoids with eccentricity

e where

�2 R3
1

G M1

= 3
√

1 − e2

2e3
{(3 − 2e2) sin−1 e − 3e

√
(1 − e2)} ≈ 2

5
e2. (B43)

The quadrupole moment of a uniform ellipsoid is

q rot = −1

5
M1 R2

1e2(1 − e2)1/3 ≈ −�2 R5
1

2G
. (B44)

This ‘agrees’ with (B41) in the case that ρ = constant and hence Q = 3/5. The agreement is

providential, however, since we ought to use Eq. (B30c) with α = constant, whereas Eq. (B41)

assumed α ∝ r3; but both expressions give the same answer if ρ = constant. The agreement,

providential or not, at n = 0, coupled with agreement in the limit n → 5, suggests that the

approximation (B41) might in practice be good enough over the whole range of models from

uniform density to centrally condensed. However, detailed comparison of approximations

(B37) and (B42) shows that Q from Eq. (B42) can be in error by ∼40–50%.

(vi) The distortion due to the companion
For a star distorted by the gravitational field of a companion, and not rotating, the

calculation is the same as in Section (iii) except that the potential (B27) is replaced by

−φ(r) ≈ G M1

r
+ Gqcomp

r3
P2(cos θ ′) + G M2r2

d3
P2(cos θ ′), (B45)

θ ′ being measured from the line of centres rather than the rotation axis. This differs from

(B27) mainly in the replacement of �2/3 by −G M2/d3 (apart from the orientation). Thus

for the quadrupole moment we similarly obtain

α1 = − M2 R3
1

M1d3

1

1 − Q
, qcomp = M2 R5

1

d3

Q

1 − Q
, (B46a,b)

with the same Q as before – either the accurate (to first order) Eqs (B30c) and (B36) or the

approximation (B41).

(vii) Schwarzschild’s derivation
Schwarzschild (1958) obtained, by a slightly different route, a result which in our

notation is

qcomp = M2 R5
1

d3

(
3α − rα′

2α + rα′

)
r=R1

. (B47)

Although superficially very different from (B46b) with Q given by (B30c) and (B36), it is in

fact the same by virtue of the fact that

d

dr
mr2(3α − rα′) = r2(5α + rα′)m ′, (B48)
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as can be verified by using Eq. (B36) to eliminate α′′ from the left-hand side of Eq. (B48).

Thus

Q =
(

3α − rα′

5α

)
r=R1

= 1

5M1 R2
1α1

∫
(5α + rα′)r2dm. (B49)

Note, however, that α ∝ r3 gives zero in the differential form of Eq. (B47), as against approx-

imation (B41) in the integral form of Eq. (B49). The differential form requires us to obtain a

more accurate solution for α than the integral form, as is not unusual.

(viii) The circulation velocity
The determination of α(r ) allows us to estimate the angular-dependent term in the

circulation velocity (B21). It is

1

|∇φ|
∫

|∇φ| d� − |∇φ|
∫

d�

|∇φ|

≈ − 8π R3
1

M1(1 − Q)

r2

α(R1)

d(rα)

dr

[
�2

3G
P2(cos θ ) − M2

d3
P2(cos θ ′)

]
, (B50)

where θ is latitude measured from the rotation axis and θ ′ is latitude measured from the line

of centres.

In addition to the rotationally-driven circulation of Eq. (B50), there is in principle a cir-

culation due to the part of the potential that comes from ∗2’s gravity. But unless and until

∗1 is brought into synchronism, and the orbit circularised, this contribution will fluctuate

about zero with the period of ∗1’s relative rotation. It will therefore be insignificant until

synchronism is reached.

(ix) The quadrupole tensor
For a quadrupole moment q with symmetry axis k, the quadrupole tensor qi j is

qi j = q

2k2
(3ki k j − k2δi j ). (B51)

Since the symmetry axes are �� for rotation and d for the companion, results (B30b) and

(B46b) tell us finally that the quadrupole tensor of a star in a binary is

qi j = q rot
i j + qcomp

i j , q rot
i j = − A

6G
(3�i� j − �2δi j ),

qcomp
i j = M2 A

2d5
(3di d j − d2δi j ), A = R5

1 Q

1 − Q
. (B52)

(x) The force between the stars
When we allow for the quadrupole distortion above, we can write down the potential

φ′ at a general point s outside ∗1 in the inertial frame centred on the centre of gravity of the

binary. With ∗1 at d1, ∗2 at d2, and remembering that d = d1 − d2, φ′ is the following:

φ′(s, d1, d2, ��) = − G M1

|s − d1| − G M2

|s − d2| − G(si − d1i )(s j − d1 j )
(
q rot

i j (��) + qcomp
i j (d)

)
|s − d1|5

= − G M1

|s − d1| − G M2

|s − d2| − G

3
li j (s − d1)

[
q rot

i j (��) + M2 A

2
li j (d)

]
, (B53)
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where the tensor li j is defined, for a general vector a, by

li j (a) ≡ 3ai a j − a2δi j

a5
, so that lii = 0. (B54)

Note that φ′ is different from φ of Eq. (B2) or Eq. (B27) because it is in an inertial frame

whereas φ is in a frame that rotates with ∗1.

The force F1 on ∗1, or equivalently its negative F2 on ∗2, is

F1 = − F2 =
∫

V2

ρ(s)∇sφ
′(s, d1, d2, ��) d3s, ρ = 1

4πG
∇2

s φ′ (B55)

integrated over the interior of ∗2. In this region ρ is just a delta function M2δ(s − d2), since

the other terms in φ′ give zero density outside ∗1. Excluding the self-term of ∗2, we obtain

F1 = M2

[∇sφ
′]

s=d2
= −G M1 M2 d

d3
+ G M2

3

[
q rot

i j (��) + M2 A

2
li j (d)

]
∇d li j (d). (B56)

Because the same function, li j (d), appears before and after the gradient operator in the term

that relates to the companion’s distortion, the resulting F is seen to be derivable from a new

potential 
(��, d):

F = −∇d
, 
 = −G M1 M2

d
− G M2

3

[
q rot

i j (��) + AM2

4
li j (d)

]
li j (d), (B57)

which, on replacing li j (d) in terms of d with Eq. (B54), is


 = −G M1 M2

d
− G M2 Adi d j

d5

[
− 1

6G
{3�i� j − �2δi j } + M2

4d5
{3di d j − d2δi j }

]

= −G M1 M2

d
+ AM2

[
(�� · d)2

2d5
− �2

6d3
− G M2

2d6

]
. (B58)

(xi) The tidal velocity field
In addition to the circulation velocity field there is, in the case of eccentric orbits

or non-corotating stars, a tidal velocity field driven by the time-dependent character of the

distortion. In the frame that rotates with ∗1, this field can be determined by using (a) the

conservation statement

∂ρ

∂t
+ ∇ · ρv = 0, (B59)

and (b) the constancy of ρ on equipotential surfaces, i.e. the fact that

ρ = ρ(r∗), r∗ = r + rαP2(cos θ ). (B60a,b)

We are only concerned here with the companion-induced distortion, so that α1, the surface

value of α, is given by Eq. (B46a).

Let

F ≡ r2 P2 = 3

2
(k · r)2 − 1

2
r2, so that ∇2 F = 0, r · ∇F = 2F, (B61)
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where k ≡ d/d. With d time-varying, both α and k depend on t , the former because α ∝ 1/d3

(Eq. B46a). Then we can differentiate ρ (Eqs B60a,b) wrt time to get

∂ρ

∂t
= dρ

dr∗

∂r∗
∂t

= dρ

dr∗

(
∂α

∂t

F

r
+ 3αG

r

)
= 3α

r

dρ

dr∗

(
− 1

d
∂d
∂t

F + G

)
, (B62)

where

G ≡ 1

3

∂ F

∂t
= k · r

∂k
∂t

· r, so that ∇2G = 0, r · ∇G = 2G. (B63)

Then it is easy to see that a velocity field given by

v = 3α1

2
β(r )

(
1

d

∂d

∂t
∇F − ∇G

)
, (B64)

satisfies Eq. (B59) to first order, provided that

dρβ

dr
= α

α1

dρ

dr
, so that βρ = ρ1 + 1

α1

∫ r

R1

α
dρ

dr
dr. (B65)

The constant of integration comes from the fact that on the free surface β = 1. The function

β is determined unambiguously by the structure of the star, via Eq. (B36) determining α(r ),

and is well behaved at the surface even for polytropic (0 < n < 5) surfaces as ρ → 0,

despite the apparent singularity there. For the special case n = 0, i.e. uniform density, we

have β = α/α1 = 1.

Using suffices, and putting k = d/d , Eq. (B64) becomes

vi = 3α1

2
β(r )si j (t)x j , si j ≡ 1

d3

∂d

∂t
(5di d j − d2δi j ) − 1

d2

(
di

∂d j

∂t
+ d j

∂di

∂t

)
. (B66a,b)

The tensor si j is symmetrical and traceless. Equation (B66) allows us to calculate the rate of

dissipation of energy due to the action of turbulent viscosity (or any other viscosity) on this

velocity field, and this dissipation in turn determines the amount of ‘tidal friction’.

(xii) The rate of dissipation
The rate-of-strain tensor is

ti j ≡ ∂vi

∂x j
+ ∂v j

∂xi
= 3α1

2

(
2βsi j + β ′

r
{sik xk x j + s jk xk xi }

)
. (B67)

Squaring this, and averaging it over an equipotential (which at this level of approximation

can be taken to be spherical), we use the standard results

1

4π

∫
xi x j d� = r2

3
δi j ,

1

4π

∫
xi x j xk xl d� = r4

15
(δi jδkl + δikδ jl + δilδ jk) (B68)

to obtain

1

4π

∫
t2
i j d� = 9α2

1 s2
i j γ (r ), γ ≡ β2 + 2

3
rββ ′ + 7

30
r2β ′2. (B69)

Now, after some manipulation of Eq. (B66b),

s2
i j = 2

d2

[
2

(
∂d

∂t

)2

+
(

∂d
∂t

)2
]

= 2

d4

∂d
∂t

·
[

2 d d · ∂d
∂t

+ d2 ∂d
∂t

]
, (B70)
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and so, using Eq. (B46a) for α1, the rate of dissipation of mechanical energy is

−Ė = 1

2

∫
ρwl t2

i j dV

= 9M2
2 R6

1

M2
1 (1 − Q)2

1

d10

∂d
∂t

·
[

2 d d · ∂d
∂t

+ d2 ∂d
∂t

] ∫ M1

0

wl γ (r ) dm, (B71)

where w, l are the mean velocity and mean free path of turbulent eddies, assuming that

turbulent viscosity is the dominant dissipative agent. If we define a viscous timescale tvisc for

∗1 by

1

tvisc

≡ 1

M1 R2
1

∫ M1

0

wl γ (r ) dm, (B72)

then Eq. (B71) tells us that the energy loss is equivalent to the rate of working of a resistive

force F where

F = − 9M2
2 R8

1

M1(1 − Q)2tvisc

1

d10

[
2 d d · ∂d

∂t
+ d2 ∂d

∂t

]
, (B73)

which we can identify with the force due to tidal friction – see Appendix C(c).



Appendix C Perturbations to

Keplerian orbits

Using the relative position vector d ≡ d1 − d2, and mass M ≡ M1 + M2, the relative motion
of a binary subject to (a) Newtonian point-mass gravity and (b) an additional acceleration f
(the perturbing force per unit reduced mass μ ≡ M1 M2/M) is given by

d̈ = −G Md
d3

+ f. (C1)

Define E (the Keplerian energy per unit reduced mass), h (the angular momentum, similarly)
and e (the Laplace–Runge–Lenz vector) by

E ≡ 1

2
ḋ · ḋ − G M

d
, h ≡ d × ḋ, G Me ≡ ḋ × h − G Md

d
. (C2a–c)

Note that E is not the total energy, if f �= 0, but only the part that is kinetic plus Newtonian
point-mass energy. We can see, after some manipulation in the case of e, that

Ė = ḋ · f, ḣ = d × f, G M ė = f × h + ḋ × (d × f ). (C3a–c)

Hence E , h and e are all constants of the motion if f = 0. Using a standard parametrisation
of the Keplerian orbit in this case, for example either of the two parametrisations below,
Eqs (C6)–(C10), we find that e is a vector in the direction of periastron, and has magnitude
equal to the eccentricity (thus justifying belatedly the choice of name e). Even if f �= 0,
auxiliary variables a, b, l, ω (mean angular velocity) and p (period) can be defined in terms
of E, h, e in the usual way:

a = −G M

2E , b = a
√

1 − e2, l = a(1 − e2), ω = h

ab
= 2π

p
. (C4a–d)

For general f, and not just f = 0, four standard relations can be shown to be satisfied:

2h2E + G2 M2(1 − e2) = 0, e · h = 0, h2 = G Ml, ω2 = G M/a3. (C5a–d)

Thus even when h, l, ω and a are continuously changing because f �= 0, the orbit can be
perceived as always ‘instantaneously Keplerian’. For example, the instaneous period and
semimajor axis always satisfy Kepler’s third law.

If f is small, we can estimate its effect on E, h, e by averaging over time the right-hand
sides of Eqs (C3) in a Keplerian orbit. This is done most easily by writing the Keplerian orbit
in Cartesian coordinates (origin at focus, e in the 1-direction, h in the 3-direction) using one

276
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or other of the following parametric forms:

d = l

1 + e cos θ
(cos θ, sin θ, 0) = (a cos φ − ae, b sin φ, 0) (C6)

ḋ = ωab

l
(−sin θ, cos θ + e, 0) = ω

1 − e cos φ
(−a sin φ, b cos φ, 0) (C7)

ωdt = l2

ab

dθ

(1 + e cos θ )2
= (1 − e cos φ)dφ (C8)

d = l

1 + e cos θ
= a(1 − e cos φ) (C9)

ḋ = ωabe

l
sin θ = ωae sin φ

1 − e cos φ
. (C10)

Various scalar, vector and tensor functions of d can be averaged over time using these
parametrisations, θ being more useful if the function contains a substantial negative (≤–2)
power of d and φ otherwise (≥ –1). It is convenient to introduce an orthogonal right-handed
basis of vectors e, q ≡ h × e and h. These are not unit vectors: we use overlines to define the
corresponding unit vectors e, q, h.

Some examples, expressed in terms of polynomials In,l(e), n, l ≥ 0, defined below, are as
follows: 〈 1

dn+2

〉
= 1

abln
In,0 (C11)

〈
dn−1

〉
= an−1 In,0 (C12)

〈 ḋ i ḋ i

dn+2

〉
= ω2ab

ln+2
{(1 + e2)In,0 + 2eIn,1} (C13)

〈
dnḋi ḋ i

〉
= ω2an+2(In,0 − eIn,1) (C14)

〈 ḋ
2

dn+2

〉
= ω2abe2

ln+2
(In,0 − In,2) (C15)

〈
dn−1di

〉
= −an(In,1 + eIn,0)e i (C16)

〈 di

dn+3

〉
= 1

abln
In,1e i (C17)

〈 ḋ i

dn+2

〉
= ω

ln+1
(eIn,0 + In,1)q i (C18)

〈 ḋdi

dn+3

〉
= ωe

ln+1
(In,0 − In,2)q i (C19)

〈 di d j

dn+4

〉
= 1

abln
{In,2e ie j + (In,0 − In,2)q iq j } (C20)

2
〈
di d j

〉
= a2{(1 + 4e2)e ie j + (1 − e2)q iq j } (C21)

2
〈
di ḋ j

〉
= εi jkhk (C22)
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2
〈
di d j ḋk

〉
= eah(e iq jek + q ie jek − 2e ie jqk) (C23)

〈di d j dk

dn+5

〉
= 1

abln
{(In,1 − In,3)(e iq jqk + q ie jqk + q iq jek) + In,3e ie jek} (C24)

〈di d j ḋk

dn+4

〉
= ω

ln+1
{(In,3 − In,1)(e iq jek + q ie jek) + (In,1 + eIn,0)q iq jqk

+ (In,3 + eIn,2)(e ie jqk − q iq jqk)}. (C25)

The polynomials In,m are defined by

In,m(e) ≡
∫ 2π

0
(1 + e cos θ )n cosm θ

dθ

2π
. (C26)

They are easily evaluated from

I0,2m =
∫ 2π

0
cos2m φ

dφ

2π
= (2m)!

22m(m!)2
,

I0,2m+1 = 0 , In+1,m = In,m + eIn,m+1. (C27)

Clearly ∫ 2π

0
(1 − e cos φ)n cosm φ

dφ

2π
= In,m(−e) = (−1)m In,m(e). (C28)

We can now apply these to the following: (a) apsidal motion driven by general relativ-
ity, (b) apsidal motion and precession driven by quadrupolar distortion, (c) tidal friction,
(d) gravitational radiation, (e) mass loss and mass transfer and (f) a third body.

(a) Apsidal motion from general relativity
The motion of a particle in the Schwarzschild metric is given by

δ

∫
L dt = δ

∫ √
c2 F − ḋ

2
/F − d2θ̇

2
dt = 0, F(d) = 1 − 2G M

c2d
. (C29)

The equations of motion are, therefore,

d

dt

(
d2

L
θ̇

)
= 0 (C30)

d

dt

(
− 1

F L
ḋ

)
= 1

2L

(
c2 F ′ + ḋ

2 F ′

F2
− 2d θ̇

2
)

(C31)

where primes are derivatives wrt d and dots wrt t . The Euler–Lagrange integral is

ḋ
∂L

∂ ḋ
+ θ̇

∂L

∂θ̇
− L = cF

L
= constant. (C32)

Changing to the proper-time coordinate ds ≡ L dt/c, and now using dots for derivatives wrt
s, we obtain (after some manipulation)

d2θ̇ = h = constant, d̈ − d θ̇
2 = −G M

d2
− 3G Mh2

c2d4
. (C33)
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Thus the effective perturbing force f is radial:

f = −3G Mh2

c2

d
d5

. (C34)

So by Eq. (C3a) Ė averages to zero, and by Eq. (C3b) ḣ is zero. Also, by Eqs (C3c), (C4),
(C17), (C26) and (C27),

G M ė = 〈f × h〉 = 〈f〉 × h

= −3G Mh2

c2

I2,1 e × h
eabl2

= 3G2 M2ω

c2l
h × e. (C35)

Hence e rotates about h (apsidal motion) with angular velocity ZGR, where

ZGR = 3G Mω

c2l
= 3G Mω

ac2(1 − e2)
. (C36)

(b) Apsidal motion and precession
We consider here the effect on the orbit of the quadrupole distortion or ‘equilibrium

tide’ of ∗1 due to its rotation and to the presence of a companion (Appendix B). We ignore the
distortion of ∗2, but this can easily be added into the result (C40) below. The force between
the stars can be derived – Appendix B(x) – from a potential 	:

F = −∇	, −	 = G M1 M2

d
+ AM2

[

2

6d3
− (

 · d)2

2d5
+ G M2

2d6

]
, (C37)

where A is the structure constant given by Eq. (B51). Hence the perturbing force fQD in the
orbital equation due to the quadrupole distortion is given by

d̈ = − 1

μ
∇	 = −G Md

d3
+ fQD,

fQD = AM2

μ

[−
2d
2d5

+ 5(

 · d)2d
2d7

− 

 · d 



d5
− 3G M2d

d8

]
. (C38)

We assume first that the stellar rotation is parallel to the orbital rotation, and so 

 · d = 0.
Then fQD is purely radial, and Ė, ḣ average to zero, as for any f of the form F(d)d. The only
effect of the quadrupole moment on the otherwise Keplerian motion is to make the Laplace–
Runge–Lenz vector e rotate about the angular momentum vector h. Using Eqs (C3c) and
(C17) to average over the orbit,

G M ė =
(

M2 A
2

2μabl2
I2,1 + 3G M2

2 A

μabl5
I5,1

)
h × e. (C39)

By Eqs (C4), (C26), and (C27), this can be written

ėQD ≡ Z h × e, Z = M2 A
2

2μωa5(1 − e2)2
+ 15G M2

2 A

2μωa8

1 + 3
2 e2 + 1

8 e4

(1 − e2)5
. (C40)

Z is the rate of apsidal motion.
If 

 · d �= 0, the extra terms in fQD give some extra apsidal motion. It is necessary to use

some of the tensorial averages, Eqs (C24) and (C25). The extra apsidal motion turns out to
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be in a negative sense: Eq. (C40) should be replaced by

Z = M2 A
(
O2

h − 1
2 O2

e − 1
2 O2

q

)
2μωa5(1 − e2)2

+ 15G M2
2 A

2μωa8

1 + 3
2 e2 + 1

8 e4

(1 − e2)5
, (C41)

where 
e, 
q , 
h are the components of 

 in the triad of vectors defining the orientation of
the orbit.

The extra terms in fQD still make Ė average to zero, as for any conservative force, but they
give a couple

ḣ = 〈d × fQD〉 = M2 A

μ

〈


 · d 

 × d

d5

〉
= − M2 A

2μablh2


 · h 

 × h, (C42)

where the average was evaluated using Eq. (C20). This means that h precesses about 

.
However 

 is not a vector fixed in space. Rather, the total angular momentum vector H ≡
μh + I

 is fixed in space, since ∗1 experiences a couple which is the negative of the couple
on the binary; I is the moment of inertia of ∗1. Thus we can write

ḣ = − M2 AH

2μablh2 I


 · h H × h, (C43)

and so h, 

 both precess about H at a rate χ̇ given, using Eq. (C4), by

χ̇ = − M2 A
h H

2μablh I
= − M2 A
h H

2μωa5 I (1 − e2)2
. (C44)

We have assumed so far that the star is dissipationless, and so there are no secular terms
leading to orbital shrinkage or circularisation. We now consider a model of dissipation, i.e.
tidal friction.

(c) Tidal friction
We continue to suppose (for simplicity) that ∗1 is extended while ∗2 is a point mass.

In the frame that rotates with ∗1 the quadrupolar tide will in general be time-dependent: ∗1
will be continually changing its shape. If the star is not perfectly elastic, we expect a loss of
total mechanical energy but no loss of total angular momentum.

In Appendix C(b) we had an acceleration fQD which is derivable from a potential 	 given
by Eq. (C37). This conserves total energy, as will be verified shortly. But if there is in addition
some slow dissipation of energy (‘tidal friction’) we will have an extra force fTF, say. Writing

d̈ = −G Md
d3

− 1

μ
∇	 + fTF, (C45)

we can see that total angular momentum

H ≡ μd × ḋ + I

 (C46)

is conserved if the couple on ∗1 is given by

I 
̇
 = d × (∇	 − μ fTF). (C47)
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The total energy

E ′ ≡ μE + 	(d, 

 · d) + 1

2
I
2

= μ

2
ḋ · ḋ − G Mμ

d
+ 	(d, 

 · d) + 1

2
I
2, (C48)

may change not only because d in E and 	 varies but also because 

, which appears in 	 as
well as in I
2, can vary, for instance as a result of precession. We find however that Ė ′ = 0
(in the absence of tidal friction) provided that 	 depends only on d and 

 · d:

Ė ′ = μ ḋ ·
{

d̈ + G Md
d3

+ 1

μ
∇	

}
+ d · 
̇
 	′ + I

 · 
̇


= μ ḋ · fTF + d
I

× (∇	 − μ fTF) · (d 	′ + I

), (C49)

where we use Eqs (C45) and (C47) for d̈ and 
̇
; 	′ means the partial derivative of 	 wrt


 · d. For 	 = 	(d, 

 · d), ∇	 is entirely in the plane of d and 

. Hence all terms in
Eq. (C49) vanish except those with fTF:

Ė ′ = μ(ḋ − 

 × d) · fTF = μ
∂d
∂t

· fTF, since ḋ = ∂d
∂t

+ 

 × d, (C50a,b)

where ∂/∂t is a derivative in the frame that rotates with ∗1, ḋ being the derivative in an inertial
frame.

When there is dissipation, probably the simplest assumption is that the rate of loss of energy
is some positive-definite function of the rate of change of ∗1’s shape, e.g. of its quadrupole
tensor, since this determines its shape to lowest order. We therefore write

Ė ′ = −σ
∂qi j

∂t

∂qi j

∂t
, (C51)

where qi j is given by Eq. (B51) and σ is a dissipative constant intrinsic to ∗1 (dimensions
m−1l−2t−1). In the frame that rotates with ∗1, 

 is a constant while d varies at rate ∂d/∂t ,
so that

∂qi j

∂t
= ∂

∂t

M2 A

2d5
(3di d j − d2δi j )

= 3M2 A

2d5

[
di

∂d j

∂t
+ d j

∂di

∂t
+ d

∂d

∂t
δi j − 5

d

∂d

∂t
di d j

]
. (C52)

Hence, after some manipulation,

Ė ′ = −9σ M2
2 A2

2d10

∂d
∂t

·
[

2 d d · ∂d
∂t

+ d2 ∂d
∂t

]
. (C53)

Comparing this with (C50a), we see that a consistent expression for fTF is

fTF = −9σ M2
2 A2

2μd10

[
2 d d · ∂d

∂t
+ d2 ∂d

∂t

]

= −9σ M2
2 A2

2μd10

[
3 d d · ḋ + (h − 

d2) × d

]
, (C54a,b)
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using Eqs (C50b) and (C2b). Comparing the acceleration fTF of Eq. (C54a) with the resistive
force F (and hence acceleration F/μ) of Eq. (B67), we obtain σ as a function of the internal
viscous dissipation timescale of ∗1 as defined in Appendix B(xii):

σ = 2

M1 R2
1 Q2tvisc

. (C55)

We first specialise to the case 

 ‖ h. Using Eqs (C3b,c) for ė and ḣ, with acceleration f
from Eq. (C54b), and averaging various functions of d according to Eqs (C17)–(C19), we
obtain, after substantial manipulation

ė ≡ −V e

= −9σ M2
2 A2

2μabl6

[
4eI6,0 + I6,1 − 3eI6,2 + I7,1 − 
h

ω

l2

ab
(eI4,0 + 2I4,1 + eI4,2)

]
e,

(C56)

ḣ = −9σ M2
2 A2

2μabl6

[
I6,0 − 
h

ω

l2

ab
I4,0

]
h ≡ −W h. (C57)

Evaluating the polynomials Im,n according to Eqs (C27), V and W can be seen to be

V = 9

tTF

[
1 + 15

4 e2 + 15
8 e4 + 5

64 e6

(1 − e2)13/2
− 11
h

18ω

1 + 3
2 e2 + 1

8 e4

(1 − e2)5

]
, (C58)

W = 1

tTF

[
1 + 15

2 e2 + 45
8 e4 + 5

16 e6

(1 − e2)13/2
− 
h

ω

1 + 3e2 + 3
8 e4

(1 − e2)5

]
, (C59)

where

tTF ≡ 2μa8

9σ M2
2 A2

= 2

9σ

a8

R10
1

M1

M2 M

(
1 − Q

Q

)2

= 2tvisc

9

a8

R8
1

M2
1

M2 M
(1 − Q)2. (C60)

We write 
h , the component of 

 parallel to h, rather than 
 – despite the fact that they are
equal in the present case – because V, W remain useful even in the non-parallel case (see
below).

Using the identities (C3) and (C4), we also obtain

−2

3

Ṗ

P
= − ȧ

a
= Ė

E = −2ḣ

h
− 2eė

1 − e2

= 2

tTF

[
1 + 31

2 e2 + 255
8 e4 + 185

16 e6 + 25
64 e8

(1 − e2)15/2
− 
h

ω

1 + 15
2 e2 + 45

8 e4 + 5
16 e6

(1 − e2)6

]
.

(C61)

We can obtain the rate of change of the intrinsic spin 
, using the constancy of H in
Eq. (C45):


̇



= −μh

I


ḣ

h
= λW, λ ≡ μh

I

. (C62)

The factor λ, the ratio of orbital to spin angular momentum, is usually large.
For the general case

 × h �= 0 there are more terms, but the problem is tractable. Equations

(C3) give ė and ḣ in terms of the perturbing force; we average these over a Keplerian orbit,
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using the combination of the forces fQD and fTF of Eqs (C38) and (C55). The recipes (C11)–
(C25) allow us to express the results in the form

ė/e = −V e + U ∧ e (C63)

−I 
̇
/μh = ḣ/h = −W h + U ∧ h, (C64)

where the vector U ≡ Xe + Y q + Zh is the angular velocity of the e, q, h frame relative to
an inertial frame. V, W are as above – Eqs (C58) and (C59). For X, Y we obtain, after some
manipulation,

X = − M2 A

2μωa5


h
e

(1 − e2)2
− 
q

ωtTF

I4,2

(1 − e2)5
, (C65)

Y = − M2 A

2μωa5


h
q

(1 − e2)2
+ 
e

ωtTF

I4,0 − I4,2

(1 − e2)5
, (C66)

while Z is exactly the same as Eq. (C41): tidal friction contributes nothing extra to apsidal
motion.

It is instructive to use Euler angles η, χ, ψ , say, to determine the orientations of e, q, h
relative to an inertial frame, say E, Q, H, a suitable choice for H being the total angular
momentum vector of Eq. (C46):

H = μh + I

. (C67)

E and Q are arbitrary, provided they make a right-handed orthogonal set with H. The trans-
formation from E, Q, H to e, q, h is the product of three successive simple rotations: by χ

about H, by η about (new) E, and by ψ about (newer still) H, which now coincides with h.
This gives

e = (cos χ cos ψ − sin χ sin ψ cos η, sin χ cos ψ + cos χ sin ψ cos η, sin η sin ψ) (C68)

q = (− cos χ sin ψ − sin χ cos ψ cos η − sin χ sin ψ + cos χ cos ψ cos η, sin η cos ψ)

(C69)

h = (sin η sin χ − sin η cos χ, cos η), (C70)

where the 1, 2, 3 axes are in the directions of E, Q, H. Differentiating Eqs (C68)–(C70) wrt
time, and dotting by e, q or h, it is straightforward to show that the components X, Y, Z of
the angular velocity U in Eqs (C63) and (C64) relate to η̇, χ̇ , ψ̇ by

X = η̇ cos ψ + χ̇ sin ψ sin η, Y = −η̇ sin ψ + χ̇ cos ψ sin η,

Z = ψ̇ + χ̇ cos η. (C71a,b,c)

Define a constant 
0 by


0 ≡ H/I, so that 
⊥ ≡ |

 × h| =
√


2
e + 
2

q = 
0 sin η, (C72a,b)

by the triangle of angular momenta (C67). Then


e ≡ 

 · e = 1
I (H − μh) · e = 
0 sin η sin ψ = 
⊥ sin ψ, (C73)


q ≡ 

 · q = 
0 sin η cos ψ = 
⊥ cos ψ, 
h = 

 · h = 
0 cos η − μh/I, (C74)
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and so, from X, Y, Z in Eqs (C65), (C66) and (C41), we obtain

η̇ = X cos ψ − Y sin ψ = − 
⊥
2ωtTF

1 + 3e2 + 3
8 e4 + 3

2 e2
(
1 + 1

6 e2
)

cos 2ψ

(1 − e2)5
, (C75)

χ̇ = X sin ψ + Y cos ψ

sin η
= − M2 A

2μωa5


0
h

(1 − e2)2
− 3
0

4ωtTF

e2
(
1 + 1

6 e2
)

sin 2ψ

(1 − e2)5
, (C76)

and

ψ̇ + χ̇ cos η = Z = M2 A
(

h

2 − 1
2
2

⊥
)

2μωa5(1 − e2)2
+ 15G M2

2 A

2μωa8

1 + 3
2 e2 + 1

8 e4

(1 − e2)5
. (C77)

If σ = 0 (tTF = ∞) we have steady precession, η = constant, and the same precession rate
χ̇ as in Eq. (C44).

We now have a complete set of equations for ḣ, ė, η̇, χ̇ , ψ̇ : Eqs (C63) and (C64) – dotting
through by e, h respectively – and (C75)–(C77). Ancillary variables a, ω, tTF, 
h, 
⊥ are
given in terms of h, e, η by Eqs (C4), (C5), (C60), (C72b) and (C74). A and 
0 are constants
given by Eqs (B51) and (C72a); M1, M2, R1, Q, σ, H, I are given constants.

When both stars are extended bodies the Euler angles are less helpful, but we can, never-
theless, follow the motion numerically using the following larger set of equations:

ė/e = −(V1 + V2)e + (U1 + U2) × e, (C78)

I1
̇
1

μh
= W1h − U1 × h, (C79)

I2
̇
2

μh
= W2h − U2 × h, (C80)

with h now given by

h = 1

μ
(H − I1

1 − I2

2). (C81)

U1, U2 are the obvious generalisations of U to ∗1 and ∗2 separately. These equations, by
updating e, 

1, 

2 and h, also update q = h × e and so 
q as well as 
e, 
h , for each
component. As in the case of the single extended star, a, ω are obtained from e, h by using
Eqs (C4) and (C5).

(d) Gravitational radiation
In the weak-field approximation, gravitational radiation implies that a system loses

total energy (μE) by gravitational radiation at a rate

μĖ = − 4G

45c5

d3qi j

dt3

d3qi j

dt3
, (C82)

where qi j is the quadrupole tensor of the matter distribution. For a binary,

qi j = μ

2
(3di d j − d2δi j ), (C83)
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and hence, using Eq. (C1) with f = 0,

d2qi j

dt2
= −G Mμ

d3
(3di d j − d2δi j ) + μ(3ḋ i ḋ j − ḋ · ḋ δi j ), (C84)

d3qi j

dt3
= −G Mμ

d3
(6di ḋ j + 6 ḋ i d j − 9di d j ḋ/d − d ḋ δi j ). (C85)

Squaring Eq. (C85), we obtain, after some manipulation,

Ė = −32G3 M2μ

5c5

(
ḋ · ḋ
d4

− 11

12

ḋ
2

d4

)
. (C86)

Averaging over the Keplerian orbit, using Eqs (C4), (C13) and (C15), we find that

Ė = −32G3 M2μ

5c5

ω2ab

l4
{2I3,0 − (1 − e2)I2,0 − 11

12
e2(I2,0 − I2,2)} (C87)

= 64G3 M2μE
5c5a4

1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2
. (C88)

In the same weak-field approximation, the loss rate of total angular momentum μh is

μḣi = − 8G

45c5
εi jk

d2q jl

dt2

d3qkl

dt3
, (C89)

which, by Eqs (C84) and (C85) gives

ḣ = − 32G

5μc5

[(
G Mμ

d3

)2 d2

2
+ G Mμ2

d3

(
ḋ · ḋ

2
− 3 ḋ

2

4

)]
d × ḋ. (C90)

Averaging with Eqs (C14), (C19), (C21), (C27) and (C28), we get

ḣ = −32G3 M2μ

5c5

1

abl2

[
1

2
I2,0 + {I2,0 − 1

2
(1 − e2)I1,0} − 3

4
e2(I1,0 − I1,2)

]
h, (C91)

i.e.

ḣ

h
= −32G3 M2μ

5c5a4

1 + 7
8 e2

(1 − e2)5/2
. (C92)

As in the case of tidal friction, Eq. (C60), we can find ė from Ė and ḣ, and obtain

ė

e
= −32G3 M2μ

5c5a4

19
6 + 121

96 e2

(1 − e2)5/2
. (C93)

(e) Mass loss and mass transfer
When one or both stars are losing mass (by isotropic stellar winds), and perhaps

also one star is gaining mass from the other (by either RLOF or accretion from a wind), the
equations of motion have to be modified to take account of varying mass. In more general
circumstances we might have to model the process in difficult detail, but we suppose here
that we can write

Ṁ1 = −ζ1 − ξ, Ṁ2 = −ζ2 + ξ, Ṁ = −ζ1 − ζ2; (C94)
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the ζi are the the rates of mass loss to infinity, and ξ is the rate of mass transfer. For the
reduced mass

μ̇

μ
= ξ

(
1

M2
− 1

M1

)
− ζ1

M2

M1 M
− ζ2

M1

M2 M
. (C95)

The equations of motion of the individual components, allowing for momentum transport
between them, are

M1d̈1 = −G M1 M2d
d3

+ ξ (ḋ1 − V), M2d̈2 = G M1 M2d
d3

− ξ (ḋ2 − V), (C96)

where

MV ≡ M1ḋ1 + M2 ḋ2. (C97)

V is not the velocity of the centre of mass, since the masses are varying. V is not necessarily
constant, and neither is Ḋ, the velocity of the centre of mass (MD ≡ M1d1 + M2d2).

It is easy to see that

d̈ = −G Md
d3

+ ξ

(
1

M1
− 1

M2

)
ḋ, i.e. f = ξ

(
1

M1
− 1

M2

)
ḋ, (C98)

and further that

V̇ = ζ2 M1 − ζ1 M2

M2
ḋ, Ḋ = V +

(
ζ2 M1 − ζ1 M2

M2
− ξ

M

)
d. (C99)

We can now determine the rates of change of E , h and e from Eqs (C3), except that Eqs (C3)
were obtained from the definitions (C2) on the assumption that M = constant. Correcting for
this, we replace (C3) by

Ė = ḋ · f − G Ṁ

d
, ḣ = d × f,

G M ė + G Ṁe = f × h + ḋ × (d × f) − G Ṁd
d

. (C100)

We can now average over the Keplerian orbit. If we assume for the moment that ξ is inde-
pendent of phase over one orbit, then using Eqs (C12) and (C14) we obtain, after some
manipulation,

d

dt

E
M2

= −2ξ

(
1

M1
− 1

M2

) E
M2

, or (C101a)

d

dt

E
M2μ2

= 2E
M2

(
ζ1

M2

M1 M
+ ζ2

M1

M2 M

)
, (C101b)

ḣ = ξ

(
1

M1
− 1

M2

)
h, or (C102a)

d

dt
μh =

(
ζ1

M2

M1 M
+ ζ2

M1

M2 M

)
μh, (C102b)

ė = 0. (C103)
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Consider the two limiting cases of (a) winds with no transfer (ξ = 0) and (b) transfer with
no winds (ζ1 = 0 = ζ2). In the first case, we get

E ∝ −M2, h = constant, e = constant, a = −G M

2E ∝ 1

M
(C104)

and in the second,

M = constant, ξ

(
1

M2
− 1

M1

)
= μ̇

μ
, E ∝ μ2, μh = constant,

e = constant, a ∝ 1

μ2
. (C105)

The ζ and ξ were not assumed either small or constant in obtaining Eqs (C98)–(C100),
but they were assumed small and nearly constant (i.e. constant on an orbital timescale) to do
the averaging for Eqs (C101)–(C103). If they depend on orbital phase, say according to some
prescribed dependence of ξ on d, ḋ, an averaging that incorporates this can still be done. In
this case ė will not necessarily be zero.

In a particular case where ∗2 has no wind and ∗1 loses mass at a constant rate, we could
have ζ2 = 0, ξ + ζ1 = constant, but ξ = ξ (d, ḋ). Then Eqs (C100) for ḣ and ė become

ḣ = h
(

1

M1
− 1

M2

)
〈ξ〉,

ė = 2

G M

(
1

M1
− 1

M2

)
〈ξ ḋ〉 × h − 1

M

(〈
ξd
d

〉
+ e〈ξ〉

)
. (C106)

(f) Third body
If f is due to a third body at position D(t) (D �d) relative to the inner binary’s centre

of mass, the effect on the binary can be obtained by ‘doubly averaging’ (Heggie, private
communication 1995) over both inner and outer orbits. This is reasonable since the timescale
on which either orbit is changed by the other turns out to be long compared to either orbit.
Let M1 and M2 be the masses of the inner pair, and M ( ≡ M1 + M2) and M3 be the masses
of the outer pair. We use the quadrupole approximation for the perturbative force f on the
inner pair:

fi = Si j d j , Si j = G M3

(
3Di D j

D5
− δi j

D3

)
. (C107)

The Si j are functions of time, but assumed as usual to be nearly constant over one Keplerian
orbit of the inner binary. By Eqs (C3) and (C21)–(C23), we obtain the following averages:

Ė = 0, and so a = constant, p = constant (C108)

ė = eal

2h
{− 5S12 e + (4S11 − S22) q − S23 h}, (C109)

ḣ = a2

2
{ (1 − e2)S23 e − (1 + 4e2)S13 q + 5e2S12 h}, (C110)

with the 1,2,3 axes in the directions of e, q, h respectively. From these, the angular velocity
U = (X, Y, Z ) of Eqs (C63) and (C64) can be read off, and also the rates V, W of the change
of magnitude of eccentricity and angular momentum.

Let us assume that H � h, so that H rather than H + h can be taken to be a constant vector
in direction and magnitude; in fact at the level of the quadrupole approximation H is exactly
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constant though h is not. We specify the orientation of e, h relative to E, H by Euler angles
η, χ, ψ as in Section (c), Eqs (C68)–(C70). The rates of change of these angles are found
from (X, Y, Z ) using Eqs (C71). We now average Si j over an outer orbit, using Eqs (C11)
and (C20) with n = 1. We use capitals E, Q, H, A, B, L , P, . . . to mean the same quantities
as e, q, h, a, b, l, p, . . . for the inner orbit. Since S12, for example, means Si je iq j ,

〈S12〉outer = − 3G M3

2ABL
H · e H · q = − 3G M3

2ABL
sin2 η sin ψ cos ψ, etc. (C111)

Then, after considerable manipulation, we obtain the following average rates of change:

tTB

√
1 − e2 ė = 5e(1 − e2) sin2 η sin ψ cos ψ (C112)

tTB

√
1 − e2 η̇ = −5e2 sin η cos η sin ψ cos ψ (C113)

tTB

√
1 − e2 χ̇ = −{1 + e2(5 sin2 ψ − 1)} cos η (C114)

tTB

√
1 − e2 ψ̇ = 2(1 − e2) + 5(e2 − sin2 η) sin2 ψ. (C115)

The constant tTB determines the timescale:

tTB = 2P2

3πp
(1 − E2)3/2 M + M3

M3
= 2P2

3πp
(1 − E2)3/2 M1 + M2 + M3

M3
. (C116)

Eqs (C112)–(C115) combine to give two integrals:

(1 − e2) cos2 η = constant, e2(2 − 5 sin2 ψ sin2 η) = constant. (C117)

If we identify the integration constants by taking e = ea at ψ = 0 and e = eb at ψ = π/2,
and then eliminate η, ψ from Eq. (C112), we obtain the following equation for e:

tTB eb e ė = ±
√

2
(
e2

b − e2
)(

e2 − e2
a

)(
2e2

a + 3e2e2
b

)
. (C118)



Appendix D Steady, axisymmetric

magnetic winds

Most manifestations of magnetohydrodynamics in stars are non-steady, or non-axisymmetric,
or both. However, much insight can be gained by considering steady axisymmetric configu-
rations, which are relatively amenable to analysis. We are also helped by the assumption of
high, in fact infinite, conductivity – even although some dissipation of magnetic energy via
finite conductivity or field-line reconnection is probably what drives winds in many stars. We
can further simplify matters by assuming that the wind is adiabatic. This leads, as we show
below, to five equations in five unknowns, four of which can be integrated analytically.

Since the magnetic field B is solenoidal, and since ρv is also solenoidal in a steady situation,
both can be written in terms of a toroidal component combined with a poloidal component
derivable from a stream function. Using cylindrical polars (R, φ, z), we can write

ρv = ρvφφφ + ρvP = ρvφφφ − 1

R
φφ × ∇ P, (D1)

B = Bφφφ + BP = Bφφφ − 1

R
φφ × ∇Q, (D2)

with ρ, vφ, Bφ, P, Q all functions of R, z only, because of the assumed axisymmetry.
The dynamo equation, for steady fields with infinite conductivity, is

∇ × (v × B) = 0. (D3)

This (with several other results below) is best written in terms of Jacobians:

J (X, Y ) ≡ ∂ X

∂ R

∂Y

∂z
− ∂ X

∂z

∂Y

∂ R
, (D4)

for any X (R, z), Y (R, z). Using Eqs (D1) and (D2) we see for instance that

ρv · ∇ X = 1

R
J (P, X ), B · ∇Y = 1

R
J (Q, Y ). (D5a,b)

Hence Eq. (D3) can be written, after some manipulation, as

φφ

[
J

(
Q,

vφ

R

)
− J

(
P,

Bφ

ρR

)]
+ φφ

R
× ∇ J (P, Q)

ρR
= 0. (D6)

Generally, if J (X, Y ) = 0 then Y is a function of X , and conversely; and for any further
function Z (X ),

J (Z (X ), Y ) = dZ

dX
J (X, Y ) = J

(
X,

dZ

dX
Y

)
. (D7)
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Consequently a sufficient, though not necessary, condition for the poloidal part of Eq. (D6)
to vanish is that J (P, Q) = 0, so that P = P(Q) and hence

ρvP = f (Q)BP, where f (Q) ≡ dP

dQ
. (D8)

The toroidal part of Eq. (D6) will then also vanish provided that

J
(

Q,
vφ

R

)
= J

(
P,

Bφ

ρR

)
= J

(
Q,

dP

dQ

Bφ

ρR

)
, (D9)

using Eq. (D7), so that

vφ

R
− f (Q)Bφ

ρR
= g(Q). (D10)

Putting Eqs (D1), (D2), (D8) and (D10) together, a very general condition for a frozen-in
velocity field is that

v = f (Q)B
ρ

+ Rg(Q)φφ, (D11)

where f and g are arbitrary functions constant on field lines of B and stream lines of v, and
determined by conditions at the base of these lines, where they leave the star. P(Q) is the
first integral of f (Q).

The equation of motion also yields an integral, which comes from its toroidal component
and expresses the gain of angular momentum under the action of the magnetic torque. For
steady axisymmetric motion, with pressure p(R, z) and gravitational potential �(R, z) =
−G M/

√
R2 + z2,

ρv · ∇v + ∇ p + ρ∇� = j × B = 1

μ0
(∇ × B) × B. (D12)

Using Eq. (D2), we can write the toroidal component of the magnetic term as

φφ · (∇ × B) × B = 1

R2
J (Q, RBφ). (D13)

We can write the inertia term in Eq. (D12) as

ρv · ∇v ≡ 1

2ρ
∇(ρ2v2) − vv · ∇ρ + 1

ρ
(∇ × ρv) × ρv. (D14)

The toroidal term, using (D1), and by analogy with Eq. (D13), is

φφ · (ρv · ∇v) = −vφv · ∇ρ + 1

ρR2
J (P, Rρvφ)

= − vφ

ρR
J (P, ρ) + 1

ρR2
J (P, Rρvφ) = 1

R2
J (P, Rvφ). (D15)
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Since the pressure and potential in Eq. (D12) do not contribute toroidal terms, the toroidal
component of (D12) is, from (D13), (D15) and (D7),

1

μ0
J (Q, RBφ) = J (P, Rvφ) = J (Q, f (Q)Rvφ), (D16)

which integrates immediately to

RBφ

μ0
− f (Q)Rvφ = −h(Q), (D17)

where h is another arbitrary function of Q.
Combining the two integrals (D10) and (D17), we obtain

vφ

R

(
1 − μ0 f 2

ρ

)
= g

(
1 − μ0 f h

gρR2

)
, (D18a)

RBφ

(
1 − μ0 f 2

ρ

)
= −μ0h

(
1 − R2 f g

h

)
. (D18b)

The quantities f, g, h are all constant on field lines, and can be thought of as determined by
given conditions at the surface of the star where the field lines originate. Equations (D18)
then determine Bφ and vφ as functions of ρ and R on each field line. Clearly both Bφ and
vφ would have singularities at the point where ρ = μ0 f 2, unless at that point the terms in
parentheses on the right-hand sides also vanish. This means that there is a critical (Alfvénic)
surface in the flow, at R = RA(Q), ρ = ρA(Q) say, where

R2
A = h

f g
, ρA = μ0 f 2. (D19a,b)

Note that for Bφ to be non-singular on the axis R = 0 we need to have h(Q) ∝ Q ∝ R2 near
the axis.

If BP near the star is roughly dipolar, as we expect, then field lines emerging from the
northern hemisphere can be expected to be of two types, as illustrated in Fig. 3.7:

(a) closed field lines, which emerge between the equator and a critical latitude, cross the
equatorial plane, and return to the symmetrical point on the southern hemisphere

(b) open field lines, which emerge from a polar cap north of the critical latitude, and are
dragged out roughly radially to infinity by the wind – and similar field lines in the
southern hemisphere, which connect the symmetrical polar cap to infinity but with the
field reversed.

In the region of closed field lines, the ‘dead zone’, we expect from symmetry that there is no
poloidal flow:

vP = f = 0, RBφ = μ0h, vφ = Rg. (D20)

The last two results come from Eqs (D18) and (D19). In the regions of open field lines on
the stellar surface, P increases from (say) zero to |Ṁ |/4π in the northern hemisphere, and
further to |Ṁ |/2π in the southern hemisphere. Since Q will have the same value at the same
(positive or negative) latitude on the two hemispheres, P and f must be two-valued functions
of Q.
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We see from Eq. (D18) that provided both ρ and ρR2 decrease outwards, the angular veloc-
ity � ≡ vφ/R is roughly constant on field lines within the Alfvénic cylinder, and decreases
roughly as 1/R2 outside it, i.e. the material is forced to corotate with the star out to RA and
then expands freely outside RA conserving its angular momentum.

If we assume that the flow is approximately adiabatic, we can obtain a second integral, of
Bernoulli type, from the equation of motion. The pressure term in Eq. (D12) is

∇ p = ∇Kργ = ρ ∇ γ

γ − 1

p

ρ
. (D21)

We dot Eq. (D12) through by v, and on its left-hand side use Eq. (D5a). On the right-hand
side we use Eqs (D11) and (D13) to obtain

v · {(∇ ∧ B) ∧ B} = g(Q)

R
J (Q, RBφ). (D22)

Consequently (D12) gives

1

R
J

(
P,

1

2
v2 + γ

γ − 1

p

ρ
+ �

)
= g(Q)

μ0 R
J (Q, RBφ), (D23)

which, with the help of Eqs (D8), (D1), (D7), (D16) and (D17), leads to

|∇ P|2
2R2ρ2

+ 1

2
vφ

2 + γ

γ − 1

p

ρ
− G M√

R2 + z2
− g(Q)Rvφ = k(Q), (D24)

where k(Q) is yet another arbitrary function that is constant on field lines. Equation (D24)
remains true in the dead zone, where from Eqs (D20) it simplifies to

γ

γ − 1

p

ρ
− 1

2
R2g2 − G M√

R2 + z2
= k(Q). (D25)

Five equations, i.e. the dynamo equation (two components) and the equation of motion
(three components), determine the five unknown functions ρ, vφ, P, Bφ, Q. They have
yielded four integrals, Eqs (D8), (D10), (D17) and (D24). We can use Eq. (D24), in principle,
to obtain ρ as a function of R, z, Q and |∇Q|, since vφ and Bφ are known functions of Q, R
and ρ via Eqs (D18). The remaining component of the equation of motion is then a highly
non-linear second-order partial differential equation for Q(R, z). Since we have already taken
components in the φφ and v directions, the remaining component can be taken in the direction
of ∇ P (or ∇Q) since this is perpendicular to both. Unfortunately this component is not
particularly simple; it can be written in the form(

1

μ0
− f 2

ρ

)
|∇Q|2

(
R

∂

∂ R

1

R

∂ Q

∂ R
+ ∂2 Q

∂2z

)
= |∇Q|2

[
f 2

ρ
∇Q · ∇

(
log

f

ρ

)
− R2ρ

dk

dQ

]

+ ∇Q ·
[
ρ∇

(
R2vφ

2

2

)
− R2ρ∇(gRvφ) − ∇

(
R2 Bφ

2

2μ0

)]
. (D26)

Let us now attempt a few simplifications, to obtain some order-of-magnitude estimates
of, for example, the Alfvén radius and the braking torque. We think of the mass-loss rate as
given, and also the strength of BP on the surface, and then we hope that RA, Bφ and other
quantities will follow.
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We first make a very bland estimate of the field that solves Eq. (D26). We take it to be
dipole-like near the stellar surface, and a ‘split monopole’ further out: the wind drags out
field lines until they are roughly radial away from the star in one hemisphere, and towards
it in the other. Separating the two hemispheres at the equator (beyond the dead zone; see
Fig. 3.7) must be a plane current sheet, to support the assumed discontinuity in the tangential
field. Supposing that the dead zone does not extend anything like as far as the Alfvén radius,
we simply approximate BP near the equatorial plane by

|BP| ∼ B1

(
R1

R

)2

, so that BA ∼ B1

(
R1

RA

)2

, (D27)

B1 being the field on the stellar surface and BA at the Alfvén radius. The velocity field beyond
the dead zone is similarly approximated by a monopole (but ‘unsplit’).

We next estimate f, g, h of Eqs (D8), (D18) and (D19). The stream functions P and Q
take the following values on the stellar equator:

Peq = |Ṁ1|
4π

, Qeq ∼ B1 R2
1, hence f ∼ |Ṁ1|

4π R2
1 B1

. (D28)

From (D18) and (D19), assuming that both ρ and ρR2 increase inwards, we see that

g ∼ �1 ∼ �A, h ∼ R1|Bφ1|
μ0

∼ RA|BφA|
μ0

, (D29)

and that Bφ ∝ 1/R for R <∼ RA. Then by eliminating f, g, h in Eq. (D19a) we obtain

|Ṁ1| �1 R2
A ∼ 4π

μ0
|Bφ1|B1 R3

1 ∼ 4π

μ0
|BφA|BA R3

A. (D30)

Thus the torque is largely determined by the product of the poloidal and toroidal fields, as
we expect on very general grounds.

The magnitude vA of the poloidal velocity field at the Alfvén radius can be estimated thus:

vA ≡
( |∇ P|

ρR

)
A

∼ |Ṁ1|
4π R2

AρA
. (D31)

This, along with Eq. (D19b) for ρA, Eq. (D28) for f and Eq. (D27) for B gives

ρAv2
A ∼ B2

1

μ0

R4
1

R4
A

∼ B2
A

μ0
, (D32)

a result that we might well have written down a priori.
We now use Eq. (D24) very crudely, ignoring the pressure term, to estimate RA. Beyond RA

there is little further radial or tangential acceleration, and so the poloidal velocity field must
reach escape speed there. On the equatorial plane z = 0, comparing R = RA with R = ∞,
we obtain

v2
A ∼ 2G M

RA
. (D33)

Then Eqs (D19b), (D28) and (D31) give

|Ṁ1| R3/2
A

√
2G M1 = 4π

μ0
B2

1 R4
1 . (D34)



294 Appendix D

This gives RA in terms of supposedly known quantities. Finally, the ratio of Eqs (D30) and
(D34) gives us an estimate for the tangential magnetic field:

|Bφ1|
B1

∼ �1 R1

(
RA

2G M1

)1/2

,
|BφA|

BA
∼ �1

(
R3

A

2G M1

)1/2

. (D35)

Note that the Bφ in this appendix, which is external to the star, is not to be identified with the
Bφ of the next appendix (the α� dynamo), which is internal to the star. However, the global
BP field is perceived to be essentially the same field, and is continuous across the stellar
surface.
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Some stars, like the Sun, are active dynamos, producing magnetic energy out of rota-

tional energy. It is not clear whether all magnetic stars (Bp stars, neutron stars, some white

dwarfs, . . .) produce fields continuously, or whether some have ‘fossil’ fields generated dur-

ing an earlier active phase; the timescale of magnetic diffusion in a large-scale field is ∼1010

years. To have an active dynamo it is thought necessary to have all three of (a) rotation,

(b) differential rotation (the � mechanism) and (c) turbulent convection (the α mechanism).

The first two alone might seem sufficient, but it is reasonable to suppose that they would be

axisymmetric. Such motion can convert poloidal magnetic field into toroidal field, but not

conversely – Eq. (E17), with α = 0, below – and so the poloidal field is bound to decay by

diffusion. Since the Sun reverses its poloidal field every 11 years, it must be making use of

the turbulent convection in its surface layers to convert toroidal field back to poloidal field.

Even if we think of the velocity field as given, so that the induction equation

∂B
∂t

= ∇ × (v × B) + λ∇2B (E1)

is linear in the unknown B, it is difficult to approach the fully three-dimensional problem; and

in practice B might react back on v through the Lorentz force j × B = (∇ × B) × B/μ0.

The usual approach (Steenbeck et al. 1966, Roberts and Stix 1972, Moffat 1978) uses a

‘two-scale’ model, with macroscopic (‘M-scale’) fields v0, B0 that are axisymmetric, and

microscopic (‘μ-scale’) fields δv, δB that are affected by turbulence. The essential result that

emerges from the μ-scale analysis (crudely summarised below) is that it adds two extra terms

to the equation for the M-scale field:

∂B0

∂t
= ∇ × (v0 × B0 + αB0) + (λ + β)∇2B0. (E2)

The α term is the more important since, even if small, it ‘closes’ the system by allow-

ing toroidal field to be converted into poloidal field. The β term does not change the

nature of the system, but being of the same order as turbulent diffusion it does, in practice,

dominate the magnetic diffusion. Crude orders of magnitude are α ∼ 10−2 m/s, β ∼ 1011 m2/s

and λ ∼ 105 m2/s.

On the M scale the μ fields average to zero, except for their products, and so Eq. (E1)

becomes

∂B0

∂t
= ∇ × (v0 × B0 + E) + λ∇2B0, where E ≡ 〈δv × δB〉. (E3)

295
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Subtracting this from Eq. (E1) we get an equation for the μ field:

∂δB
∂t

= ∇ × (δv × B0 + v0 × δB + G) + λ∇2δB,

G ≡ δv × δB − 〈δv × δB〉. (E4)

In an apparent inconsistency we drop G from Eq. (E4) while retaining E in Eq. (E3). G
is second order, and so might reasonably be dropped. However, E, although of the same

order of smallness (at least by hypothesis), is crucial to Eq. (E3) because of its ability

to regenerate poloidal field; it leads to the α term in Eq. (E2). A less obvious, but more

important, inconsistency is that, as applied to turbulence, G is not small: we expect that |δv|
is of the same order as the ratio of length scale to timescale of the μ field, so that |∂δB/∂t |
is necessarily of the same order as |∇ × (δv × δB)|. However, we ignore that point, hoping

to gain some insight anyway.

The μ fields are usefully represented by their Fourier transforms (FTs):

δṽ =
∫

δv e−ik.r+iσ t d ′4r, δv =
∫

δṽ eik.r−iσ t d ′4k, (E5)

and similarly for δB, where d ′4k, d ′4r represent volume elements in k, σ and r, t space, both

(somewhat unconventionally) divided by (2π )2; the prime is a reminder. Strictly the integrals

should be over all space, but we hope to get away with the concept that we can use a volume

(V4, say) that is large compared with the μ scale yet small compared with the M scale (and

conversely in the Fourier space).

We assume, for the time being, that B0 and v0 are strictly constant on the μ scale. This

allows us to estimate α, whereas to estimate β we need to allow B0 to have a slight (constant)

gradient.

Following the above, Eq. (E4) has Fourier transform

−iσ δB̃ = ik · B0δṽ − ik · v0 δB̃ − λk2 δB̃, δB̃ = ik · B0δṽ
λk2 − iσ + ik · v0

. (E6)

The solenoidal character of B ensures that k · δB̃ = 0, and we have assumed incompressible

motion so that k · δṽ = 0 as well. Using a version of the convolution theorem,

V4E =
∫

δv × δB d ′4r =
∫

δṽ∗ × δB̃ d ′4k = i

∫
k · B0δṽ∗ × δṽ d ′4k

λk2 − iσ + ik · v0

. (E7)

The asterisk indicates complex conjugation. The answer must be real, since the first integral

is, and so we can replace the answer by the average of it with its complex conjugate:

V4E ∼ B0.

∫
iλk

k2δṽ∗ × δṽ d ′4k

λ2k4 + (σ − k · v0)2
. (E8)

The factor δṽ∗ × δṽ in the integrand shows that the integral is related to the ‘helicity’ v · ∇ × v;

for, by the same convolution theorem,∫
δv · ∇ × δv d ′4r =

∫
δṽ · (ik × δṽ)∗ d ′4k = i

∫
k · δṽ × δṽ∗ d ′4k. (E9)

We also see that the magnetic diffusivity is, in fact, crucial to the dynamo process, since the

answer in Eq. (E8) contains it as a factor. On the other hand, the term k · v0 in Eq. (E8) does

not appear to be very significant, unlike the term in k · B0, and so we take v0 = 0 in future.
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In a convective region helicity is generated by the Coriolis force. We can model this crudely

by considering an approximate equation of motion including the Coriolis force, along with a

buoyancy term that is a vertically upward force −gn δρ/ρ:

∂δv
∂t

= − g

ρ
n δρ − 2�� × δv, −iσδṽ = − g

ρ
n δρ̃ − 2�� × δṽ,

δṽ ≈ − ig δρ̃

ρσ

(
n − 2i�� × n

σ

)
. (E10)

We ignore quadratic terms in �/σ . Then

δṽ∗ × δṽ ≈ 4ig2 |δρ̃|2
ρ2σ 3

n × (�� × n). (E11)

Thus the helicity (Eq. E9), and also the turbulence-driven electromotive force (Eq. E8), is

largely dictated by the Coriolis term, i.e. by the rotation of the star.

The integral on the right-hand side of Eq. (E8) is a tensor, say V4αi j . It is common to assume

in practice, for simplicity, that αi j is isotropic, αi j = αδi j . This leads to the symmetrical result

E = αB0 that was included in Eq. (E2). Given the inherent problems of the analysis one cannot

be confident that this is a good approximation. But in fact we only need E ≈ αφφ B0φφφ to

accomplish the goal of turning toroidal field into poloidal field. It is probably not worthwhile

to try and estimate αφφ directly from the integral, given the uncertainties. All we need to note

is that it contains both λ and � as factors.

To estimate β in Eq. (E2), we replace the constant field B0 in Eq. (E4) by a magnetic field

of constant gradient, r · B, where B is a constant traceless tensor:

Bi j = ∂ B0 j/∂xi . (E12)

Then the Fourier transform of Eq. (E4) leads to the following replacement for Eq. (E6):

−iσ δ B̃k = −Blm

[
∂

∂kl
(km δṽk) + δkm δṽl

]
− λk2 δ B̃k, (E13)

and the estimate for the mean turbulent electromotive force corresponding to Eq. (E7) is

V4 Ei ∼
∫

(δv × δB)i d ′4r = −εi jk Blm

∫
δṽ∗

j

[
∂

∂kl
(km δṽk) + δkm δṽl

]
d ′4k

λk2 − iσ
. (E14)

Once again, we can do little better than hope that the integral, now a fourth-rank tensor, will

be approximately isotropic, i.e. of the form V4(β ′δ jkδlm + β ′′δ jlδkm + β ′′′δ jmδkl). Defining

β ′′ − β ′′′ ≡ β, we obtain

Ei ∼ − βεi jk B jk, i.e. E = − β∇ × B0, (E15)

using the definition (E12) of B. By these somewhat crude means, we smooth the turbulent-

field Eq. (E4) to reduce the mean-field Eq. (E3) to its standard form, Eq. (E2).

Having shown qualitatively how the effect of the μ field can be incorporated into the

equation for the M field, we now consider Eq. (E2) applied to an axisymmetric star. As in

Appendix D, we describe B (dropping the suffix zero) terms of a toroidal component Bφ

and a poloidal component with stream function Q; this can be done even when the magnetic

field is time dependent. However, we simplify further by taking the velocity M field to
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be both steady and purely toroidal (P = 0), and write vφ ≡ R�(R, z). Then, with some

manipulation, Eq. (E2) can be written

∂ Bφ

∂t
= −J (�, Q) − α

R
D2 Q + λ + β

R
D2(RBφ), (E16)

∂ Q

∂t
= αRBφ + (λ + β) D2 Q, (E17)

J being the Jacobian operator of Eq. (D4) and D2 a Laplacian-like operator

D2 ≡ R
∂

∂ R

1

R

∂

∂ R
+ ∂2

∂z2
. (E18)

The Jacobian in Eq. (E16) is a source term that winds up the poloidal field to give a toroidal

component, provided that surfaces of constant � do not coincide with surfaces of constant

Q; and the α term in Eq. (E17) allows toroidal field to be converted back to poloidal field,

although slowly, on the assumption that α is small.

To simplify still further, let us suppose that the poloidal field has the simplest possible

structure, being uniform of strength BP0(t) within the star so that Q = BP0 R2/2, D2 Q = 0.

Then the Jacobian source term involves only the z gradient of �, and we approximate this

as 
�/ l, assuming that the gradient in � is confined to a shell of thickness l (as found by

helioseismology at the base of the Solar convection zone). For consistency in Eq. (E17) we

must take Bφ ∝ R, i.e. Bφ = Bφ0(t)R/R0, where R0 is some characteristic radius and Bφ0 is

independent of position. Then D2(RBφ) = 0 as well, and we end up with

Ḃφ0 ∼ R0
�

l
BP0, ḂP0 = 2α

R0

Bφ0. (E19)

These equations allow the kind of cyclic behaviour seen in the Sun and some other stars,

provided that α is complex, as we reasonably expect from its derivation.

As emphasised at the end of Appendix D, the Bφ of Appendices D and E are not the same,

even at the surface of the star; however, we do assume that the poloidal field BP0 of Eq. (E19)

is basically the same in magnitude, at the stellar surface, as the uniform internal field B1 of

Eq. (D27).



Appendix F Steady, axisymmetric,

cool accretion discs

Accretion discs are usually modelled in cylindrical polars, and assumed to be steady, axisym-
metric, and thin in the z direction: |z| <∼ h(R), where

h/R ≡ δ(R) � 1. (F1)

The material has little velocity in the R and z directions, compared with its tangential velocity:

|vz| ∼ δ|vR| � |vR| � vφ ≡ R�(R). (F2)

We take the temperature T (R) to be largely independent of z, and low enough that the
tangential velocity is strongly supersonic

�T (R)

μ
≡ c2

s , cs � �R. (F3)

Of course cs is not actually the sound speed, but is of the same magnitude. Pressure and
density drop off rapidly with |z|, but T – as well as the radial velocity vR, the viscosity χv

(in dimensions of length2/time) and the opacity κ – are assumed to be nearly independent of
z, though dependent on R. I will show below – Eq. (F10) – that cs ∼ h�, so that the strong
inequalities (F1) and (F3) are not independent. Most of the above assumptions are justified
below a posteriori, from the basic ones: steady, axisymmetric and cool.

The equation of motion (EoM) includes four terms: the inertia term, the pressure gradi-
ent, gravity (potential � = G M2/

√
R2 + z2, ignoring the self-gravity of the disc), and

Navier–Stokes viscosity. In the R direction, inertia and gravity dominate, their balance giving
Keplerian motion. In the φ direction only inertia and viscosity contribute, and so they are in
balance. In the z direction the pressure gradient and gravity (weak as it is in that direction)
dominate, and balance. The equation of heat (EoH) has three terms: advected heat, radiative
heat loss, and viscous heating. In the usual model, advected heat is assumed negligible, and
the second and third terms balance.

In reality, it is likely that magnetic forces rather than viscous forces are important, at
least when the disc material is hot enough to be substantially ionised, and so the Navier–
Stokes term should be replaced by the Lorentz force j × B, and the viscous heating by ohmic
dissipation. We show below, after dealing with the standard viscous disc, that under some
rather idealised circumstances the magnetic terms become surprisingly similar to the viscous
terms. This does not really justify the viscous model, but it does leave it as a reasonable first
approximation.
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The continuity equation is

1

R

∂

∂ R
RρvR + ∂

∂z
ρvz = 0. (F4)

Both terms are comparable if |∂/∂z| ∼ 1/h and |∂/∂ R| ∼ 1/R; but if we integrate in the
z direction, taking ρ ∼ 0 for |z| � h, and suppose that vR is largely independent of z, we get

d

dR
Rσ (R)vR(R) = 0, RσvR = − Ṁ2

2π
= constant, (F5)

where σ is the surface density
∫

ρdz, and Ṁ2 > 0 is the accretion rate.
The R component of the equation of motion is

−�2 R + v · ∇vR = − 1

ρ

∂p

∂ R
− G M2 R

(R2 + z2)3/2
+ viscous terms involving vR, vz . (F6)

We ignore the terms involving vR, vz , and the radial pressure gradient, to obtain the usual
Keplerian approximation

�2 = G M2

R3
(|z| <∼ h � R). (F7)

The z component of the equation of motion is

v · ∇vz = − 1

ρ

∂p

∂z
− G M2z

(R2 + z2)3/2
+ viscous terms involving vR, vz . (F8)

Again ignoring vR, vz , but keeping the vertical pressure gradient, we get

∂p

∂z
= −�2ρz (|z| <∼ h � R). (F9)

With Eq. (F3) this implies that

ρ = ρ0(R) e−z2/2h2
, h = cs/�, σ =

√
2π ρ0h, (F10)

where ρ0 is the density on the plane z = 0.
The φ component of the equation of motion has no terms from pressure or gravity, and so

with the approximation � = �(R) of Eq. (F7) it becomes

ρvR

R

d

dR
�R2 = 1

R2

∂

∂ R
χvρR3 d�

dR
. (F11)

Integrating over z, and then using Eqs (F5) and (F7), this gives

Ṁ2 = 3πχvσ + constant

R1/2
∼ 3πχvσ + Ṁ2

(
R2

R

)1/2

. (F12)

The constant of integration represents the fact that the disc cannot be Keplerian all the way
to the surface of ∗2. There must be a point near the inner edge of the disc where the viscous
couple χvσ R3 ∂�/∂ R goes through zero, which leads to the estimate above for the constant.

The equation of heat is

ρT v · ∇s = −∇ · F + ρε, ε = χv R2

(
∂�

∂ R

)2

= 9

4
χv

G M2

R3
. (F13)

The advection term on the left-hand side is usually expected to be small. The viscous dissi-
pation rate ε neglects terms in vR, vz and ∂�/∂z, as usual. F is the radiative heat flux (though
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convection can be significant in some circumstances). F will be mainly in the z direction,
with surface value of, say, ±F0/2 at z ∼ ± h. Integrating perpendicular to the disc,

F0 =
∫

ρε dz = 9

4
σχv

G M2

R3
= 3

4π

G M2 Ṁ2

R3

[
1 −

(
R2

R

)1/2
]

, (F14)

where we have used Eq. (F12). We have assumed that χv, like T , varies only modestly in the
z direction.

Radiative transport allows us to estimate F0 in terms of the temperature and opacity κ , or
more specifically the optical depth τ0 at the plane z = 0:

2τ0 =
∫

κρdz = κσ. (F15)

We approximate Eq. (F13) as

dF

dz
= ρε, so that F = ε

κ
(τ0 − τ ) = F0

2τ0
(τ0 − τ ), (F16)

where τ (z) is the optical depth of a general layer, measured from the upper surface. The
usual equation of radiative transport in the grey-body approximation (Mihalas 1970) for the
specific radiation intensity I , at depth τ and angle θ to the outward normal, is

cos θ
∂ I

∂τ
= I − acT 4

4π
, F = 2π

∫ π

0
I cos θ sin θ dθ. (F17)

For τ0 >∼ 1, this has a solution similar in nature to the Milne–Eddington solution for a stellar
atmosphere, but it differs slightly because, by Eq. (F16), the flux F is not independent of τ .
The solution is

I = 3F0

8πτ0

{
(τ0 − τ ) cos θ − cos2 θ − 1

2
(τ0 − τ )2 + A

}
,

acT 4 = 3F0

2τ0

{
A − 1

2
(τ0 − τ )2

}
. (F18)

The constant A(τ0) is determined by the condition that at τ = 0 there is no net inward flux,
i.e. ∫ π

π/2
I cos θ sin θ dθ = 0, so that A(τ0) = 1

2
+ 2

3
τ0 + 1

2
τ 2

0 . (F19)

Thus, the temperature T0 on the mid-plane, and the effective temperature Te defined by
F0/2 = surface flux = acTe

4/4, are given by

acT 4
0 = 3ε

κ
A(τ0) = 3F0

2τ0
A(τ0), acTe

4 = 4τ0 ε

κ
= 2F0. (F20)

The fact that T0 differs from Te by a factor ∼ (3τ0/8)1/4 for large optical depths apparently
violates our assumption that T is roughly independent of z, but (a) empirical estimates suggest
that τ0 is usually not large and (b) the assumption is not very important, since it only influences
in detail the estimate (F10) for the density distribution.

The optically thin case (τ0 � 1) is rather easier to estimate, directly from Kirchhoff’s law:

acT 4
0 = acT 4

e = ε

κ
= F0

2τ0
. (F21)
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A single interpolation formula includes both the thick and the thin estimates:

acT 4
0

1 + 3τ0/8
∼ acT 4

e ∼ 1 + 4τ0

2τ0
F0, (F22)

with F0 given by Eq. (F14).
It is usual to introduce a dimensionless parameter

α ≡
χv

csh
. (F23)

In terms of α, along with δ of Eq. (F1), we can estimate all the neglected terms in the equations
of motion and heat, relative to either of the leading two terms, and find that they are all of order
δ2, α2δ2 or α2δ4. Further, we can estimate δ, along with τ0, from some of the above results,
supposing that we know M2, R2, α, and either Ṁ2 or equivalently the accretion luminosity
Lacc as a fraction of LEdd (Eq. 3.5.11):

Lacc ∼ G M2 Ṁ2

R2
, Ṁ2 ∼ 4πcR2

κT

Lacc

LEdd
, (F24)

where κT is the Thomson-scattering opacity. Then using the definitions (F1) and (F3) of δ

and cs, and using Eqs (F7), (F14) and (F22) for �(R), F0(R) and T0(R), we obtain

δ8 ∼ C1
Lacc

LEdd

R2

Rch

R

Rch

(
Mch

M2

)3 (8 + 3τ0)(1 + 4τ0)

16τ0
,

C1 = 3�4 Rch
2

μ4G3aκT Mch
3 ∼ 2 × 10−14, (F25)

where we take μ ∼ 0.6; we refer radii and masses to the Chandrasekhar values of Eq. (2.51).
From Eq. (F15) we estimate

τ0 ∼ C2

αδ2

Lacc

LEdd

R2

Rch

(
Rch

R

)1/2 (
Mch

M2

)1/2
κ

κT
,

C2 = 2

3

√
c2 Rch

G Mch
∼ 40. (F26)

These linked estimates of δ and τ0 can be solved simultaneously. Supposing α is independent
of R (for which there is no basis), Eqs (F25) and (F26) give

τ0 ∝ R−0.6, δ ∝ R0.05, τ0 >∼ 1 (R small)

τ0 ∝ R−1, δ ∝ R0.25, τ0 <∼ 1 (R large). (F27)

If we accept that in reality magnetic fields rather than viscosity are what really drives
accretion, we should replace the viscous term in Eq. (F11) by[

1

μ0
∇ · (BB)

]
φ

= 1

μ0

[
1

R2

∂

∂ R
R2 BR Bφ + ∂

∂z
Bz Bφ

]
. (F28)

The field exists because any seed BR or Bz will be turned rapidly by Keplerian differential
rotation – and even more rapidly by MHD instability (Balbus and Hawley 1991) – into a large
Bφ . We assume the field to be limited by magnetic diffusivity, although more realistically
it is likely to be limited by field-line reconnection, a highly non-linear and non-equilibrium
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process such as happens in Solar flares. The φ component of the induction equation, assuming
a quasi-steady balance, gives

[∇ × (v × B)]φ = RBR
d�

dR
+ terms involving vR, vz

∼ [∇ × (χm∇ × B)]φ = − ∂

∂ R

χm

R

∂

∂ R
RBφ − ∂

∂z
χm

∂ Bφ

∂z
, (F29)

where χm is the magnetic diffusivity, with same dimensions as χv. Bz will also be created, if
it did not exist already, but we shall ignore Bz for mathematical simplicity; we continue also
to ignore vR, vz . The BR and Bφ fields are likely to be chaotic rather than systematic, so that
we guess ∂/∂ R ∼ ∂/∂z ∼ 1/h and then approximate the balance of Eq. (F29) by

Bφ ∼ h2

χm
RBR

d�

dR
. (F30)

Then the magnetic torque of Eq. (F28) is equivalent to the viscous torque of Eq. (F11),
provided we define χv by

χv ≡ h2

χm

B2
R

μ0ρ
. (F31)

The magnetic field will also contribute a pressure term, which by magnetic confinement we
can expect to be limited by balance with the gas pressure:

Bφ
2

μ0
∼ ρc2

s . (F32)

Using the estimate h = cs/� of Eq. (F10), and the definition (F23) of α, Eqs (F30)–(F32)
tell us that

χv ∼ χm ∼ α
Bφ

2

μ0ρ�
, BR ∼ αBφ. (F33)

The magnetic energy generation rate is

ε =
χm

μ0ρ
|∇ × B|2 ∼

χm Bφ
2

μ0ρh2
∼ χv�

2, (F34)

using estimate (F32) and Eqs (F10), and so is of the same order as the conventional viscous
dissipation of Eq. (F13). This crude equivalence of magnetic stress and dissipation with
viscous stress and dissipation suggests that we can continue to use estimates like (F25) and
(F26) to model magnetically-driven accretion discs.
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perturbations, Keplerian orbits, 126–128
photometric binaries, 7–8
photometric observations, 2
photospheres, modelling, 107
planetary nebulae, 147, 211, 215
polytropes, 37–42, 121–122
polytropic envelope, 42
polytropic index, 37–38, 39, 70, 71, 73
Population I/ II/ III stars, 33, 57
precession, 126, 128
pre-main sequence state, 147
primordial binaries, 227
primordial elements, 31
primordial triples, 227
proton-proton cycle, 48
protostars, 62
pseudosynchronism, 161
pulsars

equation of state, 94–95
magnetic fields, 94–95
millisecond, 249, 250
radio, 7, 13
rotation, 94–95
X-ray, 7, 147

quadruple systems, examples, 206–207
quadrupoles, 126, 127, 207

R CrB variables, 104
radial pulsations, 55, 80
radiative region, of core, 43–45

radio pulsars, 7, 13
Rayleigh–Taylor instability, 87, 144, 254
red giants

abbreviation for, 147
central condensation, 263–265
evolution, 76–78
examples, 95–97
lifetime, 75
luminosity, 75
and magnetic braking, 189
mass loss, 97, 99–100
mass transfer, 136

red supergiants, 147, 213, 255
reflection effect, 7, 9
Reimer’s Law, 99, 100
relative orbits, 3
reverse BU case, 225
roAp stars, 56
Roche lobes, 110, 111–112, 118, 250
Roche-lobe overflow, 62, 115–116, 126

effect of rotation, 119–120
and gainer, 140–144
from loser, 129–140
reverse (RLOF), 225, 246, 253, 254, 255

Roche potential, 109–117
Rossby number, 45, 184
rotation, of stars, 64–65

modelling, 107
non-uniform, 209–210
and Roche-lobe overflow, 119–120
and tidal distortion, 121

RR Lyr variables, 80
RS CVn binaries, 193

Salpeter initial mass function, 19–20
Scalo initial mass function, 20–21
Schwarzchild criterion, 50
Schwarzschild radius, 232, 234
Sco-Cen, 63
selective diffusion, 53
semiconvection, 47, 48–50, 107
semidetached binaries

case A evolution, 152
configuration, 110
and contact binaries, 198
notation for, 148
Roche overflow, 146

SF mode, 146
SF1 mode, 146
SF2 mode, 146
single-star wind, 148, 195
size of stars, minimum, 13
Slowly Pulsating B stars, 55
SN mode, 148, 221–225

see also supernovae
softness index, 39–40, 71–72
speckle interferometry, 3, 4
spectroscopic binaries, 5–7
spectroscopic observations, 2
s-process, 57, 82, 240
SR mode, 146
SR1 mode, 249
SR3 mode, 146
star formation, 33, 59–63
starbursts, 29
star-forming regions, 59, 63
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statistics of binaries, 65–69, 114
stellar dynamos, 183–192, 254, 295–298
stellar wind, 168–177

and accretion, 232
companion-enhanced, 148
enhanced, 96, 195
and mass loss, 97–103
and massive binaries, 173–177
Mestel–Spruit model, 178
modelling, 35
normal, 148, 195
and partial accretion, 239–241
superwinds, 100, 148
see also EW mode; MB mode; PA mode

Strong λ 4077 stars, 57
sub-clusters, 60, 62
supernovae

formation of, 88–89, 221–223
types of, 87, 92, 93
and X-ray binaries, 223–225
see also SN mode

supersoft X-ray sources, 245, 247
superwinds, 100, 148
SW mode, 148

see also stellar wind

T Tau stars, 59, 147
Taurus-Auriga cloud, 59
TB mode, 148, 205

see also third bodies
temperature gradients, 43
temperature, initial, 36
temperature, on Hayashi track, 74
terminal main sequence, 32, 63–64
TF mode, 148, 159–168, 195

see also tidal friction
thermal relaxation oscillations, 146
thermal timescale, 70, 130, 135, 136, 139, 148, 188
thermal-equilibrium models, mass loss, 135
third bodies, 126, 153

and apsidal motion, 202–203, 206
and binary evolution, 18–19
and eccentricity of orbits, 202–204, 205
and inner binary orbits, 200–201
and periodicy, 11, 12–13
and perturbation of orbits, 204–205
and precession, 202, 203, 206
and tidal friction, 204–205
see also TB mode

Thomson scattering, 43, 44, 234
Thorne–ytkow objects, 147, 223, 225
tidal friction

and angular monentum, 255
and Darwin instability, 209–210
and dynamo activity, 254
and massive binaries, 173–177
and magnetic braking, 178–183
and massive binaries, 173–177
orbit perturbation, 126, 229, 280–284
timescale, 188
see also TF mode

tidal velocity, 121–122, 273–274
timescales, 188
timesteps, in models, 34, 35
triple systems

examples, 206–207
third-body effects, 14, 200–207,

255
two-body gravitational relaxation, 63
Type I supernovae, 87, 92, 93
Type II supernovae, 87, 92, 93

very high mass stars, 88, 91, 93
‘very wide’ binaries, 18
viscosity, 232, 235–237, 255
visual binaries, definition, 2–4
visual orbits, 3–4

white dwarfs, 75–76
mass transfer, 136–137, 247
notation for, 147

wide binaries, 18
winds see stellar wind
Wolf–Rayet stars, 54–55

classification, 91–92
evolution of, 93
as helium stars, 104
mass loss, 98, 101–102
notation for, 147
stellar wind, 92

X-ray binaries, 90
high-mass, 223–225
low-mass, 226, 248–250

X-ray pulsars, 7, 147
X-ray sources, supersoft, 245, 247

zero-age main sequence (ZAMS), 32
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0045-7319, 165–166, 223–225
0534-69, 174, 175
0957-666, 216, 217, 218
105 Her, 240
1101 + 364, 216, 217, 218
13471-1258, 216
1414-0848, 216
16 Cyg, 14
1704 + 481, 216, 217, 218
1704 + 481.2, 216
3 Pup, 155, 156
41 Dra, 204
−43◦14304, 240
47 Tuc cluster, 79
53 Per stars, 55
93 Leo, 95

AA Dor, 197, 216, 217–218
ADS 11061, 203–204
AE Aqr, 245
AE Aur, 229
AF Gem, 152, 153
AG Dra, 216, 217, 218, 240
AH Vir, 152, 154, 196, 199
α Aur, 193–194
α Aur, 95
α Cen, 4
α CMa, 216, 217, 218
α CMi, 216, 217, 218
α Equ, 95
α Gem, 15
AM CVn, 244, 245
AM Her, 245
Ap stars, 56
AR Lac, 193
AR Mon, 197, 200
AS Cam, 12, 17
AS Eri, 152, 154, 196, 199, 200
AT Peg, 152
AY Cet, 197, 216, 217, 218

BD Cam, 240
Be stars, 55, 64
BE UMa, 216, 217, 218
β Cap, 207
β Lyr, 126
β Per (Algol), 10, 11, 196, 207
β Pic stars, 56, 61
BM Ori, 66, 67, 126
BP Cru, 224, 225
BT Mon, 245

BV Cen, 244, 245, 246
BY Dra stars, 57, 191

CC Cet, 216, 217, 218
CC Com, 196
Cepheid variables, 147, 253
CN And, 196, 198
CQ Cep, 174, 175
CQ Dra, 207
CV Ser, 174, 175
Cyg X-3, 159

δ Cap, 66, 67
δ Cep, 56
δ Del stars, 56
δ Lib, 152, 153
δ Ori A, 155, 156, 220–221
δ Sct pulsators, 56
δ Sge, 95, 97
DI Her, 66, 68
DL Vir, 197, 200, 207
DM Per, 152, 153, 194, 207
DN Ori, 196, 199
DQ Her, 245
DR Dra, 216, 240, 241

EG UMa, 216, 217, 218
EG52, 216, 217, 218

EK Cep, 66, 67
EM Cyg, 245
EN Lac, 66, 67, 249
ε CrA, 152, 154, 196, 198, 199
ε Vir, 3
EQ Tau, 196
ER UMa, 245
EV Cnc, 227
η And, 95
η Car, 91
η Ori, 66, 69, 207

Feige 24, 216, 217, 218
FF Aqr, 197, 215, 216, 217, 218, 244
FT Lup, 196, 198

G1 229 AB, 13
G203-47, 216, 217, 218
G77-61, 216, 217, 218
γ Cas, 223, 225
γ Dor variables, 56
γ Per, 95, 97
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GG Lup, 66, 68
GK Per, 244, 245, 246
GK Vir, 216
GP Com, 245
GP Vel, 163, 224,225
GQ Mus, 245

HD 17817, 216
HD 20214, 5
HD 31487, 240
HD 49798, 216, 217, 218
HD 51956, 155, 156
HD 77247, 240
HD 109648, 12, 13, 15, 16
HD 109648, 194
HD 121447, 216, 217, 218
HD 123949, 240
HD 137569, 216, 217, 218
HD 140913, 13
HR 3579, 3
HR Cam, 216, 217, 218
Hyades cluster, 79
HR2030, 95, 96
HT Cas, 245
HU Tau, 152, 153
HW Vir, 216, 217, 218
HZ Her, 248, 249

I Ori, 63
IC 4651 cluster, 52
III Cen, 63
IK Peg, 216, 217, 218
IN Com, 216
ι Ori, 153, 229
IP Peg, 237
IQ Cam, 216, 217, 218

J0737 + 3039, 224
J0737-3039, 159
J1012 + 5307, 248
J1640 + 2224, 248
J1751-305, 248, 249, 250
J1857 + 0943, 248, 249
J1915 + 1606, 224, 225
J1915, 159

κ Peg, 206
KV Vel, 216, 217, 218, 246

λ And, 193
λ Boo stars, 57
λ Eri variables, 55
λ Tau, 152, 153, 194, 207
LM Com, 216, 217, 218
LY Aur, 152, 153, 229
LZ Cep, 152

M67 cluster, 52, 227-228
μCol, 229
μOri, 207
MV Lyr, 245

NN Ser, 216, 217, 218

o Ceti, 17-18
Orion cloud, 59
Orion Nebula cluster, 66, 67

OW Gem, 193, 194
OW Gem, 95, 96, 97
OY Car, 237, 245
OY Car, accretion disc, 237

P Cyg stars, 91, 93, 148
p Vel, 206
φ Per, 155, 156, 223

QS Vul, 95, 97
QU Vul, 243, 245
QV Nor, 224
QZ Car, 207, 229

R CMa, 152, 154, 196, 199
RR Lyn, 66, 67
RR Lyr variables, 80
RS CVn binaries, 193
RS CVn, 95, 96, 193
RT And, 152, 196
RT Lac, 197, 200
RW Dor, 196
RW UMa, 193
RX Cas, 196
RX J0806, 159
RZ Cas, 196
RZ Cnc, 197, 200
RZ Eri, 95, 96, 193, 194, 195
RZ Oph, 155, 156
RZ Pyx, 152
RZ Sct, 155, 156, 238

S Cnc, 196, 199
S Dor, 91
S1082, 228
Sco-Cen, 63
SS Lac, 66, 69, 202
ST LMi, 245
SU Cyg, 207
Sun

Alfén radius, 178
differential rotation, 145
dynamo effect, 185
magnetic fields, 65
mass loss, 97
rotation, 64, 65, 125

SV Cen, 152
SX Cas, 197
SZ Cen, 66, 68
SZ Psc, 193

T CrB, 240
T Pyx, 245
T Tau, 65–66
τ Boo, 14
τ CMa, 207
τ Per, 95
θ Tuc, 197, 200
Trapezium cluster, 15, 66, 67
TT Aur, 152, 154
TT Hya, 196
TU Mus, 152
TV Cas, 152
TV Mus, 5
TX UMa, 152, 153
TY CrA, 66–67, 69
TZ For, 95
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U Cep, 10, 11, 196
U CrB, 152, 153, 154
U Gem, 245
u Her, 152, 154
υ And, 14
υ Sgr, 155, 156, 220
U Sco, 244, 245, 246
UU Aqr, 245
UU Sge, 9, 216, 217, 218
UV Cet, 13, 246
UV Leo, 196
UX CVn, 216
UX UMa, 245
UY Vol, 248

V Pup, 152, 154
V Sge, 245, 247–248, 248
V1010 Oph, 196
V1033 Sco, 248
V1341 Cyg, 248, 249
V1343 Aql, 224
V1357 Cyg, 224, 225
V1379 Aql, 197, 200, 216
V1488 Cyg, 95, 97
V1521 Cyg, 159, 224, 225
V2012 Cyg, 240
V2174 Cyg, 155, 220
V2214 Cyg, 216
V2291 Oph, 95
V348 Car, 174, 175, 176
V356 Sgr, 155, 156
V361 Lyr, 152, 154, 196, 198, 199
V379 Cep, 155, 156–157, 216, 220, 221
V382 Cyg, 174, 175
V388 Cyg, 196
V398 Car, 174, 175
V404 Cyg, 248
V415 Car, 95
V429 Car, 174, 175
V444 Cyg, 174, 175
V448 Cyg, 174, 175
V471 Tau, 216, 217, 218
V477 Lyr, 216
V499 Sco, 152

V505 Mon, 155, 156, 220
V616 Mon, 248
V618 Mon, 248
V624 Her, 66, 67, 68
V635 Cas, 223, 224, 225
V640 Mon, 152, 154, 174, 175
V643 Ori, 193-194
V645 Cen (Proxima Centuri), 4
V651 Mon, 197, 215, 216, 217, 218,

244
V652 Her, 216
V695 Cyg, 95
V725 Tau, 223, 224
V729 Cyg, 174, 175
V760 Sco, 7
V779 Cen, 224, 225
V832 Ara, 240
V907 Sco, 207
Vela X-1, 6
VV Ori, 152, 194, 207
VZ Psc, 196, 198

W Crv, 196, 199
W UMa, 152, 154, 196
WW Dra, 193

X Per, 223, 225
ξ Cet, 240
ξ Tau, 206
ξ1Cet, 3
XY UMa, 66, 67, 68
XZ Cep, 152

Y Cyg, 152
YY Gem, 196

Z Cha, 9, 245
Z Her, 193
Z Vul, 152, 154
ζ Aur, 95, 97
ζ Cap, 240
ζ Cyg, 240
ζ Oph stars, 55
ZZ Cyg, 196, 199
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