


PLANETS, STARS, 
AND GALAXIES



PHYSICS IN ACTIONPHYSICS IN ACTION

EnergyEnergy

Forces and MotionForces and Motion

The Nature of MatterThe Nature of Matter

Planets, Stars, and GalaxiesPlanets, Stars, and Galaxies

Processes That Shape the EarthProcesses That Shape the Earth  



PLANETS, STARS, 
AND GALAXIES

Gordon Ritter

Series Editor 

David G. Haase



PLANETS, STARS, AND GALAXIES
Copyright © 2008 by Infobase Publishing

All rights reserved. No part of this book may be reproduced or utilized in any form 
or by any means, electronic or mechanical, including photocopying, recording, or by 
any information storage or retrieval systems, without permission in writing from the 
publisher. For information contact:

Chelsea House
An imprint of Infobase Publishing
132 West 31st Street
New York, NY 10001

Library of Congress  Cataloging- in- Publication  Data

Ritter, Gordon.
  Planets, stars, and galaxies / Gordon Ritter.
       p. cm. —  (Physics in action)
  Includes bibliographical references and index.
  ISBN-13: 978-0-7910-8933-0 (hardcover)
  ISBN-10: 0-7910-8933-9 (hardcover)
 1.  Astrophysics. 2.  Cosmology.  I. Title. 
  QB461.R48 2007
  523.1—dc22
                                                                                                2007015334

Chelsea House books are available at special discounts when purchased in bulk quan-
tities for businesses, associations, institutions, or sales promotions. Please call our 
Special Sales Department in New York at (212) 967–8800 or (800) 322–8755.

You can find Chelsea House on the World Wide Web at http://www.chelseahouse.com

Text design by James Scotto-Lavino
Cover design by Ben Peterson

Printed in the United States of America

Bang NMSG 10 9 8 7 6 5 4 3 2 1

This book is printed on acid-free paper.

All links and Web addresses were checked and verified to be correct at the time of 
publication. Because of the dynamic nature of the Web, some addresses and links may 
have changed since publication and may no longer be valid.



CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

 1 The Universe (and Welcome to It!)  . . . . . . . . .11

 2 The Mathematics of Motion   . . . . . . . . . . . . .  24

 3  Newton, Kepler, and Gravity . . . . . . . . . . . . .  40

 4 Observing the Night Sky . . . . . . . . . . . . . . . .  58

 5 Relativity and Black Holes . . . . . . . . . . . . . .  73

 6  The Large-scale Structure of 

 the Universe . . . . . . . . . . . . . . . . . . . . . . . . .  90

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

Bibliography . . . . . . . . . . . . . . . . . . . . . . . .  109

Further Reading   . . . . . . . . . . . . . . . . . . . . . .  111

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113





7

Introduction

THE ATTEMPT TO UNDERSTAND THE UNIVERSE’S SEEMINGLY 
infinite mysteries is a great adventure that can surely provide 

one with merriment, frustration, joy, sadness, and continual won-
der and amazement throughout all of one’s life. The fundamental 
principles governing the operation of the universe and the way in 
which it forms structure always seem just beyond our grasp, and 
during every age of human history that supported the practice of 
science, it was believed that the state of knowledge was “mostly 
complete” with a few “loose ends” to be tied up. Often, however, 
a new cataclysmic discovery would completely change our concep-
tion of the natural world, and such new knowledge is always wait-
ing patiently, just around the corner, to be uncovered.

The intended audience for this book includes anyone who has 
ever been outside at night and stopped to wonder about the night 
sky, with questions such as: How large is the universe? Is it infinite 
or finite? What is its structure? What kinds of matter and energy 
does the universe contain and what are the physical laws that gov-
ern their motion and interactions? How did the universe begin and 
what is its ultimate fate? This section is an invitation to each reader 
of this book. You are invited to ask these questions and to tirelessly 
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seek their answers. In so doing, you will join a group of individuals 
who were not content merely to live in the universe, but who wanted 
to know precisely where they live, what is possible in this place, and 
how they came to be there. This book may help you to learn some of 
the tools you will need on your journey, including some mathemat-
ics, and some physical intuition. If one person is inspired by this 
book to become a physicist, it will be a tremendous success.

We end this invitation with a biographical snippet from the life 
of one of the twentieth century’s greatest physicists. Lise Meitner 
(1878–1968) was born in Vienna, Austria, the third of eight chil-
dren of a Viennese Jewish family (Figure 1.0). Her father was a law-
yer. Meitner was initially encumbered by restrictions that banned 
women from studying at institutions of higher education, but these 
were lifted in time for her to enter the University of Vienna in 
1901, where she received her doctorate in physics in 1905 under 
Ludwig Boltzmann. (Boltzmann was one of the founders of mod-
ern thermodynamics.) Upon Boltzmann’s death in 1907, Meitner 
moved to Berlin, where she studied with Max Planck (the discov-
erer of quantum theory whose work on blackbody radiation will 
be discussed later in this book) and with the chemist Otto Hahn. 
Despite obstacles such as the interruption of World War I, in which 
she served as a  front- line nurse, Meitner became a full professor 
and the head of her own section at the  Kaiser- Wilhelm Institute 
in Berlin. In 1926 at the University of Berlin, Meitner became the 
first woman in Germany to achieve the rank of full professor in any 
field of study. Because of her Jewish background, in 1938 Meitner 
fled from Germany to Stockholm, Sweden. This was a perilous and 
difficult journey; during the crossing from Germany into the Neth-
erlands, she was forced to abandon all of her possessions.

Meitner made many fundamental contributions to physics de-
spite the considerable difficulties she faced. One that stands out 
is her work with her nephew Otto Frisch that explained nuclear 
fission using Bohr’s “liquid drop” model of the nucleus. This was 
an immediate precursor to the Manhattan Project and to the de-
velopment of nuclear energy.

In a 1964 essay titled “Looking Back,” Meitner wrote: 



Figure 1.0 Lise Meitner was an Austrian physicist who made significant contributions 
to our understanding of radioactivity and nuclear physics.
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I believe all young people think about how they would like 
their lives to develop; when I did so, I always arrived at the 
conclusion that life need not be easy, provided only that it 
is not empty. That life has not always been  easy— the First 
and Second World Wars and their consequences saw to  that—
 while for the fact that it has indeed been full, I have to thank 
the wonderful developments of physics during my lifetime 
and the great and lovable personalities with whom my work 
in physics brought me contact.

It is hoped that your association with physics also brings you into 
contact with such “great and lovable personalities” as those whom 
Meitner describes!

The subject of this  book— the structure of the universe and 
how the Earth fits into  it— is vast. There were many possible 
routes one could take in a book about this topic. The author has 
chosen a route that leads the reader on a whirlwind tour of a few 
of the great scientists of antiquity, their lives, and their discov-
eries. Any book promising to describe the Earth’s relationship 
with the rest of the universe must at least contain a discussion of 
Newton’s physics and Einstein’s relativity. In order to understand 
these concepts, it is important to know some basic ideas from cal-
culus. Only a small amount of prerequisite mathematical training 
is needed in order to begin the book, and we will develop the rest 
of what is needed as we go along. Armed with these tools, the later 
chapters introduce the reader to astronomy and cosmology, just 
barely scratching the surface of these exciting fields. The reader 
should view this book not as a complete reference book for as-
tronomy, cosmology, and classical physics, but rather as a seedling 
that could grow in almost any direction.

The basic information one needs to begin a life in physics is 
here. To make the most of it, one should think critically about 
what you read both in texts and in the popular press; to be sure, 
it’s not the whole story. Look up the references, then look at the 
references you find there, and pursue relentlessly the questions 
that stand out to you.
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CHAPTER 1
The Universe 

(and Welcome to It!)

OUR SOLAR SYSTEM IS KNOWN TO CONTAIN THE SUN; THE 
eight official planets (in order of increasing distance from the 

Sun: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and 
Neptune), at least three “dwarf planets” (Pluto is now classified as 
a dwarf planet), more than 130 satellites of the planets, and a large 
number of comets, asteroids, and floating debris. There are prob-
ably also many more planetary satellites waiting to be discovered, 
and some of the known planetary satellites (or “moons”) are them-
selves comparable in size to small planets. A large asteroid belt lies 
between the orbits of Mars and Jupiter. An examination of a dia-
gram of the planets reflecting their relative sizes may provoke the 
reaction that Earth is very tiny compared to Uranus and Neptune, 
which are themselves tiny compared to Jupiter and Saturn, and 
all are tiny when compared to the Sun (Figure 1.1). The four large 
planets make up about 99% of the mass known to orbit the Sun.

Beyond Neptune lies the “Kuiper belt,” a large shell of objects 
about 30,000 to 50,000 times farther from the Sun than Earth. 
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Gerard Kuiper suggested in 1951 that  comet- like debris left over 
from the formation of the solar system should be just beyond Nep-
tune. Moreover, Kuiper argued convincingly that it would be most 
unusual not to find a continuum of particles beyond the part of 
the solar system occupied by the large planets. The reason for this 

Figure 1.1 Relative sizes of the planets and the Sun. Note that the distances to the 
Sun are not to scale.



is that, since the large objects of the solar system were formed by 
the condensation of smaller particles, it is very unlikely for such 
a process of formation to leave a discrete “edge” at its boundary. 
Some very remote and surprising Kuiper belt objects have been 
discovered using the Hubble Space Telescope, including, for in-
stance, an “ice planet” half the size of Pluto!

All of the planets orbit the Sun, following elliptical paths (the 
precise definition of an ellipse will come later), just as Newto-
nian physics would predict. Each planet has its own orbital pe-
riod, which is the time it takes to make one revolution around 
the Sun. For the Earth, this period is approximately 365 days, 
or one  Earth- year. Each planet’s elliptical orbit lies in a certain 
plane in  three- dimensional space, and for our solar system, the 
planes for different planets are, in a first approximation, aligned. 
In a rough, approximate sense, one can speak of “the plane of the 
solar system.”

It is important to stress that our modern level of knowledge 
of the solar system is built upon millennia of advances both in 
fundamental theoretical physics and in the science of observation, 
with one type of advance building upon the others. The Hubble 
Space Telescope gives us precise knowledge of distant parts of 
the universe that could never have been derived through purely 
theoretical investigations, but without many important theoreti-
cal advances (such as Newtonian mechanics, general relativity, 
and electromagnetism), such a telescope could never have been 
built and put into practice. In the next section we will give an in-
complete history of some of the most important scientific break-
throughs that enabled our current, fairly detailed understanding 
of the solar system to evolve into its present form.

PHYSICS HISTORY, LEGEND, 
AND FOLKLORE
This section is dedicated to a brief, informal history of the at-
tempts by our predecessors to understand the motions of planets, 
stars, and galaxies, which ultimately culminated in Isaac Newton’s 

 The Universe (and Welcome to It!) 13
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invention of calculus and of the associated theory of physics now 
known as Newtonian mechanics. Newton’s mechanics included 
the first modern concept of “force” and the rules by which forces 
inf luence the motion of bodies. We will give a brief, modernized 
account of Newton’s ideas in Chapter 2. Newton achieved the first 
successful mathematical explanation of planetary motion; while 
his description of planetary physics is now known to be only ap-
proximately correct, even by modern standards, the approxima-
tion is quite good. Tiny corrections to Newton’s mechanics, which 
can be properly explained by Einstein’s general theory of relativ-
ity, give a description of the mechanics of our solar system that is 
accurate to many decimal places and has passed all experimental 
tests thus far.

Claudius Ptolemy, an Egyptian living in Alexandria around 
A.D. 150, wrote a seminal work on astronomy now called the Al-
magest. Its original title was something like The Mathematical Com-
pilation, while the name Almagest derives from an Arabic translation 
of the title. The Almagest consists of 13 books containing compi-
lations of measurements of our solar system, with accompanying 
mathematical theories to explain them. These “theories” ultimately 
proved to be of little use, because they are not explanations of fun-
damental physical processes, and hence we should not even expect 
them to lead to a general theory of mechanics. Instead, they are 
guesses about possible mathematical descriptions for the planets’ 
motions, based on study of observational data.

One of the fundamental f laws in Ptolemy’s “theory” is that it’s 
based on the  Earth- centered (or “geocentric”) concept of Aristo-
tle. This view of the world contends that the Earth is fixed, while 
other objects (such as the Sun, Moon, stars, and planets) rotate 
around this fixed center. Modern physicists would agree that the 
statement “the Earth is fixed” has no intrinsic meaning, because 
it does not provide the answer to the question: “Fixed with re-
spect to what?” Based on such (rather illogical) premises, Ptol-
emy predicted the positions of the Sun, Moon, and planets using 
epicycles, the curves traced out by a point on a circle that rolls 
along another circle (Figure 1.2). Many of these predictions do not 



match the data well, because the 
correct equations of motion are 
not those of an epicycle.

Modern reasoning would 
point out that even on Earth on 
a dark night, a brighter torch 
viewed at a greater distance may 
appear to be the same brightness 
as a smaller, nearer torch. Thus, 
simply observing the brightness 
of an object in the night sky can 
never suffice to determine its 
distance from us. The determi-
nation of distance in astronomy 
can be very difficult, for pre-
cisely this reason, and it gener-
ally must involve at least two 
measurements made from dif-
ferent points on the Earth’s orbit.

Though he lived long before Ptolemy, Aristarchus (310–230 B.C.) 
had a remarkably modern picture of astronomy. Although some 
of Aristarchus’s most important writings were lost, it is generally 
believed that he proposed a heliocentric (or  sun- centered) model 
1,700 years before Copernicus, one of the central figures in as-
tronomy who we will introduce shortly. Archimedes writes in The 
Sand Reckoner: 

 . . . the “universe” is the name given by most astronomers 
to the sphere the centre of which is the centre of the Earth, 
while its radius is equal to the straight line between the 
centre of the Sun and the centre of the Earth. This is the 
common account as you have heard from astronomers. But 
Aristarchus has brought out a book consisting of certain hy-
potheses, wherein it appears, as a consequence of the assump-
tions made, that the universe is many times greater than the 
’universe’ just mentioned. His hypotheses are that the fixed 

Figure 1.2 Ptolemy used epicycles, 
the curves traced out by a point on a 
circle that rolls along another circle, 
to predict the positions of the Sun, 
Moon, and planets.
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stars and the Sun remain unmoved, that the Earth revolves 
about the Sun on the circumference of a circle, the Sun lying 
in the middle of the orbit, and that the sphere of fixed stars, 
situated about the same centre as the Sun, is so great that the 
circle in which he supposes the Earth to revolve bears such a 
proportion to the distance of the fixed stars as the center of 
the sphere bears to its surface.

Perhaps due to the clarity of exposition and apparent mathemati-
cal rigor of Ptolemy’s Almagest, its f lawed theories (including the 
geocentric model) would be generally accepted for at least 1,500 
years after its publication.

Nicolaus Copernicus (1473–1543) is often credited with the 
beginning of modern astronomy (Figure 1.3). He was born in Po-
land, and studied mathematics and optics at Krakow University. 
After returning to Poland from several years’ study of church 
law in Bologna, Italy, Copernicus was appointed as a priest in 
the cathedral of Frauenburg (now known as Frombork, in north-
ern Poland), where the rest of his life was sheltered and devoted 
to scholarship.

Although astronomy gradually grew to be his primary inter-
est, Copernicus was also a painter and a translator of poetry. He 
made celestial observations from a turret situated on the defensive 
wall around the cathedral of Frauenburg. Copernicus’ celestial 
observations were made with the naked eye, since telescopes had 
not yet been invented. In 1530, Copernicus completed his mas-
terpiece, De Revolutionibus, which asserted that the Earth spins 
once every 24 hours about an internal axis, while at the same time 
making a complete trip around the Sun once every 365 days. This 
idea was audacious and f lew in the face of all of the commonly ac-
cepted wisdom of the time.

Copernicus’s publisher apparently added a statement that 
the model was only a mathematical device to calculate planetary 
positions that did not ref lect reality. This assertion was unfair 
to Copernicus, because his mathematical devices did correctly 
ref lect certain aspects of reality. Although Copernicus fell short 
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Figure 1.3 Nicolaus Copernicus (1473–1543) was the astronomer who formulated 
the first heliocentric  (sun- centered) theory of the solar system, in which the Earth 
spins once every 24 hours about an internal axis, while at the same time making a 
complete trip around the Sun once every 365 days.
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of achieving a general theory of mechanics that could be applied 
to billiard balls as well as to planets and that might explain why 
the Earth rotates about the Sun, his qualitative picture of the 
Earth’s rotation about its own axis and about the Sun was right 
on the mark.

Copernicus died peacefully in 1543 and was never to know the 
upheaval that his work had caused within the Catholic Church. 
Other founders of modern astronomy, on the other hand, did not 
fare as well.

Giordano Bruno (1548–1600), unlike Copernicus’ publisher, 
gladly adopted Copernicus’s heliocentric model as the truth. 
Born near Naples, Italy, the son of Giovanni Bruno, a soldier, and 
Fraulissa Savolino, Bruno took the name Giordano upon enter-
ing the Dominican order. From 1583 to 1585, Bruno lived at the 
house of the French ambassador in London. During this period 
he wrote Cena de le Ceneri (“The Ash Wednesday Supper”) and 
De l’Infinito Universo e Mondi (“On the Infinite Universe and 
Worlds”), both published in 1584. In Cena de le Ceneri, Bruno 
defended the heliocentric theory of Copernicus. Though Bruno’s 
understanding of the technical details of astronomy was confused 

String Theory

Some wonder whether the branch of theoretical physics known as 
string theory should be described as only a mathematical device. The 

theory, which assumes the existence of tiny strings, much smaller even 
than protons or quarks, gave rise to a mathematical model for calcula-
tion of  short- distance effects of gravitation, such as Stephen Hawking’s 
celebrated theory that black holes, if not gaining mass from outside, 
will lose mass and eventually evaporate. The strings themselves cannot 
be seen directly, but the mathematical model arising from string theory 
seems compelling for many purposes.



on several points, his predictions for the overall structure of space 
and for the matter that it contains were much closer to our mod-
ern understanding than any other prevailing theory of the time. In 
Copernicus’s model, the stars were believed to be part of a finite 
sphere that encased the solar system. In De l’Infinito Universo e 
Mondi, Bruno hypothesized that they were actually distant suns 
scattered throughout a universe infinite in size, and that around 
these suns circled planets similar to those in our solar system. 
Bruno also predicted the existence of additional planets orbit-
ing the Sun beyond the orbit of Saturn (the most distant planet 
known at the time), which, he hypothesized, were too distant to 
be seen. We now know, of course, that Uranus and Neptune fit 
Bruno’s description.

Bruno was a philosopher whose writings sometimes diverge 
into medieval mysticism and magic. For example, Bruno’s belief 
that the Earth circled the Sun seems to have been connected with 
a conception that the Earth may be a living creature in and of 
itself. Similarly, Bruno’s belief in an infinite universe, filled with 
innumerable planets circling other stars, came not through the 
scientific method, but from religious mysticism. 

It is also clear from Bruno’s writing that he had the correct 
conception that these planets could not be seen because they 
were fainter (or less luminous) than their stars. To illustrate his 
point, he used a naval analogy. Suppose that we see a large ship 
docked at a nearby harbor, and it is surrounded by small boats. It 
is then a very reasonable supposition that, if we then see a large 
ship in the distance, said Bruno, it should also be surrounded by 
small boats, even though we will not be able to see them. Thus 
Bruno illustrated that the near and the far obey the same laws of 
physics. “We are a celestial body for the Moon and for every other 
celestial body,” wrote Bruno, “and we are the firmament just as 
much as they are for us.” He thus contradicted Aristotle, who had 
held that the Earth, f lawed and imperfect, was separate from the 
heavens, which were perfect and which never  change— the lat-
ter being a more appealing idea to the Church! For these views, 
Bruno was arrested and tried by the Inquisition, an organization 

 The Universe (and Welcome to It!) 19
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within the Catholic Church that was responsible for the elimi-
nation of heretics, those who held opinions contrary to those of 
the Church. He was ultimately found guilty of eight heresies and 
burned at the stake.

For precisely the reason Bruno pointed  out— their low intrinsic 
tendency to produce  light— it follows that distant planets are very 
difficult to detect. Only in the 1990s, four centuries after Bruno’s 
death, did astronomers finally succeed in detecting genuine plan-
ets around other stars, thus confirming Bruno’s prediction.

In May 1609, Galileo Galilei (1564–1642), by then a professor 
at the University of Padua, Italy, received a letter from Paolo Sarpi 
telling him about a man in Holland who had constructed a “spy-
glass” that had been displayed in Venice (Figure 1.4). From these 
and other reports, Galileo crafted a series of telescopes whose 
optical performance was much better than that of the Dutch spy-
glass. His first telescope was made from available lenses and gave 
a magnification of about four times. Eventually, Galileo learned 
how to grind and polish his own lenses, and by August 1609 he 
was able to make a telescope with a magnification similar to a set 
of inexpensive modern binoculars.

In December 1609 and January 1610, Galileo made an in-
credible number of revolutionary astronomical discoveries using 
his newly invented telescope. He described these discoveries in a 
short book called Starry Messenger (Siderius Nuncius), published 
in Venice in May 1610. This work, in which Galileo reported 
that there were mountains on the Moon, that the Milky Way was 
made up of tiny stars, and that four small bodies orbited Jupiter, 
caused a sensation.

In 1616, Galileo wrote a letter to the Grand Duchess Chris-
tina of Lorraine to argue in favor of a  nonliteral interpretation of 
Holy Scripture when the literal interpretation would contradict 
facts about the physical world proved by mathematical science. 
This letter also confirmed Galileo’s view of the Copernican the-
ory. In it, he wrote that he believed that the Earth rotates on itself 
and moves around the Sun, refuting both Ptolemy’s and Aristotle’s 
arguments. 



Galileo was examined by the 
Church in 1633, and was even-
tually forced, under the threat 
of torture and death, to re-
nounce all belief in Copernican 
theories. Galileo was thereafter 
sentenced to imprisonment (this 
became a mild sort of impris-
onment, which might today be 
called “house arrest,” partially 
due to Galileo’s failing health) 
for the remainder of his days. In 
addition to the invention of the 
telescope, and the correspond-
ing profound impact it had upon 
astronomy (and, indeed, on all 
of physics), Galileo correctly 
worked out various aspects of 
the motion of bodies under 
the inf luence of gravitation. In 
particular, he gave correct de-
scriptions of the acceleration of 
bodies along inclined planes and in freefall, which would be later 
confirmed by Newtonian mechanics. This shows Galileo’s versa-
tility: he devised experiments, invented and built the experimen-
tal apparatus, and developed theories to explain the outcome of 
those experiments.

THEORY VERSUS FACT
In the following chapters, we will describe some very exciting as-
pects of physics; some of these are exciting precisely because they 
f lagrantly contradict some of a person’s intuition about everyday 
physics. Einstein’s relativity is perhaps the  best- known example. 
Einstein taught us that there is no good (i.e. unambiguous) defi-
nition of concepts that we take for granted, such as the ability to 

Figure 1.4 The achievements of 
Galileo Galilei (1564–1642) in-
clude the invention of the telescope 
and a multitude of astronomical 
discoveries.
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tell whether or not two events happened at the same time; this is 
called the relativity of simultaneity. The counterintuitive state-
ments of quantum theory are still more bizarre; there is an ex-
tremely small (but  non- zero!) probability that a bullet could pass 
directly through a brick wall without damaging the wall.

Physics at high velocities and small distances does not behave 
at all like the physics at low energy and normal distances, so these 
statements may shock us when we first hear them. Because of 
these discrepancies, people who work in fields other than science 
often have the misconception that some of these statements are 
“wild, imaginative theories” that, while interesting mathemati-
cally, have little or no relation to  real- world physics. In fact, the 
seemingly  counter- intuitive assertions of quantum mechanics and 
relativity theory are verified over and over again in laboratories 
and in electronic devices (such as cellular phones and GPS de-
vices) all over the world.

There are elements of modern physics that are more specula-
tive. For example, there is controversy about the number of di-
mensions of space in our universe. No one disputes that at length 
scales comparable to those of everyday life, and with traditional 
measuring devices (in particular, the five senses), it appears that 
there are three dimensions of space, d = 3. But is this exactly true, 
or is it an approximation? Is it possible that d = 3 + k, and that 
the additional k dimensions remain hidden to all but the most 
sensitive measurements? No one knows the answer to this ques-
tion with certainty, but what we can say with certainty is that no 
experiment that has so far been done is capable of ruling out the 
possibility that the extra dimensions exist.

The theory of these extra dimensions is, then, necessarily 
somewhat speculative, while relativity and quantum mechanics 
have been tested in many thousands or millions of experiments 
of various kinds, and are on solid ground. For the reader who is 
not a professional physicist, how is it possible to tell whether the 
author is describing a theory that has been  well- tested and is on 
firm experimental ground or one that is a creative idea that is yet 
to be ruled out, but also not known to be true?



For the convenience of the reader who may be bewildered at 
the possibility of not knowing which theory to trust, in this book 
I have chosen to treat only topics that are solidly grounded in ex-
periment. While the debate may continue about how to properly 
interpret quantum mechanics, to dispute that quantum theory is 
at least a good approximate description of atomic physics (for in-
stance) would be tantamount to disbelieving the hard data that 
comes out of thousands of experiments. Direct disbelief of some-
thing that has been well understood by one’s predecessors is gen-
erally counterproductive to the progress of science. This is not to 
say these theories could not be extended or improved; in fact, it is 
essential for the continued progress of humanity that we continue 
to refine and improve our understanding of nature.

The theories described in this book are almost always of the 
 well- established and  well- tested type. The one possible exception 
is the discussion of the structure of the universe in Chapter 6. 
Since we can’t directly observe the universe at very early times, 
many of the conclusions assume that information can be obtained 
by observing trends that exist now, and extrapolating the trend 
backward in time. Also in cosmology, the actual values of certain 
of the physical parameters, such as the Hubble parameter, have 
proven notoriously difficult to measure (but even in those cases, 
measurements constrain the parameter to lie in a certain range, 
and the range continuously shrinks as the measuring process im-
proves). Therefore, some of my statements about the early uni-
verse are subject to argument; still, I wish to reassure the reader 
that the viewpoint I have endeavored to explain is that of the 
majority of the experts in the field.

 The Universe (and Welcome to It!) 23
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CHAPTER 2
The Mathematics of Motion

Philosophy is written in this grand  book— I mean the 
 universe— which stands open to our gaze, but it cannot be 
understood unless one first learns to comprehend the lan-
guage and interpret the characters in which it is written. It 
is written in the language of mathematics, and its characters 
are triangles, circles, and other geometrical figures, with-
out which it is humanly impossible to understand a single 
word of it; without these, one is wandering about in a dark 
 labyrinth. (Galileo, The Assayer)

GRAVITY IS EXPERIENCED BY THE EVERYDAY OBSERVER 
 because it changes the motion of objects. If you jump up from 

the surface of the Earth with some initial velocity, say, 1 meter/
second, then before you get very far, gravity will quickly adjust 
your velocity to be back towards the surface of the Earth, and you 
will be pulled back to the ground. Therefore, gravity is something 
that changes velocities. The strength of gravity is measured by 
how much it can change the velocity of an object. Before we can 
obtain a quantitative understanding of gravity, we must  develop 



one simple mathematical tool that shows us how to calculate the 
change in the velocity of a moving body. This simple mathemati-
cal tool, the slope of a curve, turns out to be fundamental in every 
branch of science. If you have never calculated the slope of a curve 
before, it’s important and worthwhile to take enough time to care-
fully check every step of the calculations in this chapter. The only 
mathematical prerequisite for reading this chapter is a familiarity 
with algebra and the concept of a function.

A CONCRETE EXAMPLE
Let’s begin with a concrete example. Consider the function f(t) = 
t2, whose graph is a parabola (Figure 2.1). Our problem is to cal-
culate the slope of the line through the two points (1, 1) and (1 + 
h, 1 + 2h + h2). Let’s agree to call this line �h. Both points lie on 
the graph of f(t) for any real number h, so the line �h always crosses 
the graph in two points unless h = 0, in which case it crosses in one 

Figure 2.1 The parabola y = t2, with the two points [(1,1) and (1 + h, 1 + 2h + h2)] 
labeled.
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point. Recall that slope is defined for a line y = mx + b to be the 
number m, and that given two points (x1, y1) and (x2, y2) on this 
line, we can calculate m by the formula

 

To get the slope of �h, all we have to do is plug in and calculate: 

  (2.1)

This is the answer, but some additional algebraic simplification 
will be worthwhile. Note the cancellation: 

  (2.2)

Taking h = 0 seems to make no sense: how could we calculate a 
unique slope for the line through only one point? Aren’t there 
many lines through one point, all with different slopes? On the 
other hand, Equation 2.2 tells us unambiguously that at h = 0, the 
answer is m = 2.

The important point is that substituting h = 0 into Equation 
2.1 gives 0/0, which looks like nonsense. To say a/b = k just means 
a = bk, so 0/0 = k would mean that 0 = 0k, but this is satisfied for 
any number k that you can imagine! It is much more instructive to 
look at the expression

 

which appeared in Equation 2.2. Keep h > 0, but continue to lower 
h as much as possible towards zero without actually reaching zero. 
During the whole process, the small h’s in the numerator and de-
nominator still cancel. All the while, m is getting closer and closer 
to the value m = 2.

This situation occurs so often in mathematics that it has been 
given a special name: we say that the limit as h → 0 of m equals 2. 



The notation for this is limh → 0m = 2. Geometrically, it’s clear that 
our line �h for h = 0 becomes a tangent line, which is a line that 
crosses the curve in exactly one point.

There’s nothing particularly special about the point (1, 1) as 
far as the parabola is concerned. We could have just as easily cal-
culated the slope at some general point (t, t 2) for some real num-
ber t by the same method. In Equation 2.2 we would have found 

 . (2.3)

We can now see that m depends on both t and h; it is a function of 
two variables, so perhaps m(t, h) would have been a better nota-
tion, and we will in fact use this later. As h approaches zero, m 
approaches 2t.

PHYSICAL UNITS
Of fundamental importance in physics is the distance an object 
has traveled as a function of time. In its present form, it is impos-
sible that f(t) = t2 could represent a distance, because t is a time 
(say) measured in hours. Then f(t) = t2 has units of hr2, where “hr” 
is an abbreviation for “hour.” The term “hour squared,” however, 
is a rather useless unit. This situation can be remedied by intro-
ducing a constant a with units of km/hr2, and redefining f(t) = at2. 
Here, “km” denotes the kilometer, a distance measure defined in 
terms of the speed of light, and equal to about 0.62 miles. With 
this redefinition, clearly f(t) is measured in kilometers.

What about the slope? Repeating the calculation of (2.3) for 
this case and taking h to zero gives

 

for f(t) = at2. Therefore m has units of
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or, in words, kilometers per hour. We could also measure m in 
miles per hour by multiplying all speeds by 0.62. In either case, 
m has the familiar units of speed, as measured on the dashboard 
of a car.

SLOPE AND RATE OF CHANGE
Now consider a completely general function, f = f(t), which de-
pends on an independent variable t, which we will think of as 
time. We will use the Greek letter delta (δ), to mean “change 
in,” which saves a lot of writing. Consider a very small change in 
time; the concretely minded reader may think that δt ≈ 0.0001 sec 
throughout this discussion, although the arguments are general. 
Note that above, the variable h played the role of a change in time, 
so we will make the replacement h = δt in what follows.

From the initial time t to the final time t + δt, this function has 
changed by an amount

 

As we will consider time intervals of various lengths, of greater 
interest is the total change in f per unit time, or average rate of 
change, which is obtained by dividing the previous expression by 
the length of the time interval, 

  (2.4)

Change per unit time is also called the rate of change. By analogy 
with the calculation of Equation 2.2, Equation 2.4 also arises if we 
calculate the slope of the line through the two points (t, f(t)) and 
(t + δt, f(t + δt)), both of which lie on the graph of the function 
f(t). A line that intersects a curve in exactly two points is called a 
secant line. We have observed that Equation 2.4 is the slope of the 
secant line through the two indicated points.

To know what is going on at a particular instant corresponds 
to taking a very short time interval around that instant, so δt 



approaches zero. It was absolutely crucial in Equation 2.3 that 
the numerator 2th + h2 can be factored, giving (2t + h)h. This al-
lowed the cancellation of the extra h in the numerator with the 
h in the denominator.

Suppose the function f(t) has the property that δf, as defined 
above, can have a δt factored out:

 

where m(t, δt) is some function of two variables. Plugging into the 
above, we find

 

Assuming that m is defined everywhere, we may take δt to be zero 
exactly, and conclude that the instantaneous rate of change at time 
t is m(t, 0). As discussed previously, this is also the slope of the tan-
gent line to the curve at (t, f(t)). In Equation 2.4, we could not have 
taken δt to be zero exactly, because δt appears in the denominator.

There are two notations used all over the world for m(t, 0). 
One is f '(t), and the other is df/dt. We now have three notations 
for the same thing: 

  (2.5)

and three is one too many. We will henceforth abandon the (cum-
bersome) m(t, 0) notation, and use df/dt and f '(t) interchangeably. 
Of the remaining two notations, each has its advantages and disad-
vantages. The advantage of the df/dt notation is that it emphasizes 
this function’s beginnings as a limit, as δt → 0, of the finite quo-
tient (Equation 2.4), and indeed, there are certain cases in which 
df/dt behaves literally as if it were a fraction. One then imagines 
df and dt as sides of an infinitely small triangle, which gives use-
ful intuition. In particular, we will encounter these infinitesimal 
triangles later on, when we study the concept of arc length in the 
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type of curved spacetime used by Einstein in his theory of relativ-
ity, and the intuition of df/dt as a quotient of very small pieces will 
be very useful. On the other hand, the notation f '(t) makes it very 
straightforward to write functional relationships, like the chain 
rule, which we will encounter later in this chapter.

A WONDERFUL MATHEMATICAL TOOL
The operation that takes a function f and returns a new function f ' 
representing the rate of change of the old function is a wonderful 
mathematical tool known as the derivative. This concept is also 
relevant in biology: if f '(t) represents the number of bacteria in a 
culture dish at time t, then f '(t) is the rate at which the bacteria 
reproduce themselves. As long as there is enough space and re-
sources in the dish, then (for bacteria) f '(t) will be approximately 
proportional to f '(t). In fact, this determines which function f '(t) 
is required to be, up to a constant!

Before continuing, it is important to give a few properties of 
our wonderful mathematical tool. For n > 2, this calculation may 
be performed by the binomial theorem, a general result that ex-
presses (x + y)n in terms of powers of x and y. This can even be 
made to work for fractional n, although more care is necessary. 
One finds for all n the result 

  (2.6)

For n = 2, this reproduces the result of the first calculation from 
this chapter. This is called the power rule.

A crucial property of the derivative is linearity, which means 
that

 

where f,h are any two functions whose derivatives exist, and c 
is any constant. There are also convenient rules for calculating 



derivatives of more complicated functions, if you know how to do 
it for simple functions. We mention the product rule, the rule for 
finding the derivative of a product function: 

  (2.7)

and the chain rule, the rule for finding the derivative of a com-
posed function: 

  (2.8)

You might say that Equation 2.7 looks great for calculating the 
derivative of a product; but what about quotients? What is ( f/g)'? 
To answer this, note that

 

where g –1 = 1/g by definition (the –1 exponent does not mean the 
inverse function).

We could apply the product rule if only we knew . 

The latter, however, is calculated by the chain rule and the power 
rule, together! Let’s do this explicitly, to solidify our understanding. 

The power rule (Equation 2.6) for n = –1 gives us . 
Then Equation 2.8 tells us that

.

The product rule now gives

 

This formula is called the quotient rule. It follows from the 
other rules.
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INSTANTANEOUS RATE OF CHANGE
Instantaneous rate of change is one of the most fundamental con-
cepts in physics. The rate of change of the position of an object is 
called the velocity. Normally, one speaks of velocity in a certain 
direction, but when there is only one direction, the velocity is 
described by a single number called the speed and corresponds to 
the reading on a car’s speedometer.

Let t denote the number of seconds from the time that one has 
thrown a baseball straight up from the Earth’s surface. Let x(t) 
denote the height of the ball at time t. The height turns out to be 
given by the following form (a parabola or quadratic function) 

  (2.9)

where ag, v, h0 are constants.
The precise values of these constants determine the motion 

of the ball, so they have physical interpretations. In fact, the sub-
script on ag indicates that it comes from gravity. Let s(t) = x'(t) 
and using Equation 2.6, we calculate: 

  (2.10)

The annoying factor of 1/2 in Equation 2.9 has disappeared. The 
function s(t) has the interpretation of the instantaneous speed of 
the ball at time t, in the vertical direction. Therefore, at the initial 
time, we have 

  (2.11)

This is our physical interpretation: v is just the speed of the ball 
at time t = 0, the time it was thrown.

In a game played in Chicago on August 20, 1974, pitcher Nolan 
Ryan threw a fastball that was officially clocked at 100.9 mi/hr; if 
he had thrown it straight up, this would be an example of v. The 
constant h0 is also easy to understand. It’s an overall constant added 



to the height for all t, so it’s as if the game were played in Denver 
(the  mile- high city) instead of Chicago, which is closer to sea level. 
For this reason, h0 is rather boring. In fact, we could shift it away by 
defining our coordinate axes to have the origin in Denver.

We have only the most interesting of the three constants, ag, 
left to analyze. Since finding the instantaneous rate of change 
worked so well before, let’s do it again. From Equation 2.10 we 
find immediately that

 

Therefore, the correct physical interpretation of ag is that it is the 
rate of change of velocity, otherwise known as acceleration. If a 
person tries to jump up from the surface of the Earth with initial 
velocity 1 meter/second (m/s), they might hope to continue f ly-
ing away at 1 m/s forever. If so, they will be disappointed. Gravity 
will quickly set to work adjusting their velocity in favor of a return 
to the Earth. The velocity will drop from 1 to 0.5 to 0.2 and then 
to zero, at which point it will actually become negative and they 
will fall back to Earth. The same thing happens to Nolan Ryan’s 
baseball, thrown straight up. Thus, the constant ag is something 
that adjusts the velocity and is directly related to the strength of 
gravity. It is also related to the size of the Earth, since it is, after 
all, the Earth’s gravity that pulls the baseball back.

Note that the acceleration is , but s(t) is in turn the 
derivative of something else: 

  while   (2.12)

The notation on the right of (2.12) is not really the square of any-
thing in the traditional sense; let’s agree that d2/dt2 means to take 
the derivative, and then take the derivative again of what’s left. 
This is called, not surprisingly, the second derivative. In the prime 
notation introduced in Equation 2.5, the second derivative would 
be written as x''(t).
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ACCELERATION DUE TO GRAVITY
The acceleration due to gravity is the acceleration that an object 
experiences because of gravity when it falls freely close to the sur-
face of a massive body, such as a planet (also known as the accel-
eration of freefall). Its value can be calculated from the formula 

  (2.13)

where M is the mass of the gravitating body (such as the Earth), R 
is the radius of the body, H is the height above the surface, and

  

is a universal constant. Here, N denotes a unit of force, called the 
newton, named after Isaac Newton, who first gave the correct defi-
nition of force. A newton is defined to be the amount of force re-
quired to increase the speed of a 1-kilogram mass by 1 meter per 
second, during each second that the force is applied. Clearly, to 
apply such a force would require work to be done, and this is the 
basis for the mathematically rigorous definition of work that’s in use 
by physicists today. We will return to these points in Chapter 3.

If the falling object is near the surface of the gravitating body, 
then in Equation 2.13, H is very small compared to R, and so it is 
a very good approximation to take R + H ≈ R, in which case Equa-
tion 2.13 takes the simpler form

  (2.14)

For a “terrestrial” experiment such as dropping a football from 
the top of the Empire State Building (don’t try this one yourself ), 
the approximation that ag does not depend on H is a very good ap-
proximation. For the Earth, ag ≈ –9.8m/s2. On other planets and 
moons, the values of the acceleration due to gravity may be very 
different, resulting in different weights for the same object on 
these various worlds. By contrast, the value of ag on the Earth’s 



Moon is ag, moon ≈ –1.6 m/s2, or about  one- sixth the value on 
Earth. In an experiment where G, R and ag are measured to great 
accuracy, the relation ag = GM/R2 may be helpful for determin-
ing M. This method is sometimes used to calculate the mass of 
the Earth.

MOTION IN THREE DIMENSIONS
All of the physics we have done so far involved objects falling or 
being thrown straight up and then falling. These are called  “one-
 dimensional problems” because the position of the object can be 
described by one number (for instance, the height). Even in that 
case, our one coordinate would have been ambiguous without the 
choice of a coordinate system. Our height function x(t) measured 
distance along some vertical axis whose origin was located at sea 
level (or perhaps at the height of Nolan Ryan’s arm, if we are solv-
ing for the motion of a baseball).

In the real universe, in order to specify the position of a par-
ticle, we need to choose a coordinate system and then give three 
spatial coordinates. Specifying the particle’s position at all times 
is equivalent to specifying three functions of time, which are typi-
cally called x(t), y(t) and z(t). When we want to denote all three 
of them with a single letter, we will use an arrow over the letter:

  (2.15)

Given any two points O, P in  three- dimensional space, one may 
draw the directed line segment, or arrow, from O to P. We will con-
sider two arrows to be “the same” if they are the same length, paral-
lel, and point in the same direction (though they may be located in 
different regions of space). Clearly, given the arrow from O to P, we 
can move it (carefully, so as not to change the direction it points or 
its length) until O is located at the origin (0, 0, 0).

Each point P in  three- dimensional space determines an arrow; 
just let the arrow begin at the origin (0, 0, 0) and end at the 
point P. This arrow could also be uniquely described by  giving 
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the angle it makes to each of 
the three axes, and its length. 
There are many descriptions of 
the same arrow, but the basic 
information is clear enough: 
just like a road sign, it tells you 
the direction to go (three angles 
with respect to the three axes) 
and how far (length).

Thus, an arrow can be 
thought of physically as a dis-
placement, an instruction to 
move a certain distance in a cer-
tain direction. Vector is a word 
meaning something that con-
ducts something else from one 
location to another location; 
thus, physical displacements are 
called vectors. Figure 2.2 shows 
a few  randomly  selected  three-

 dimensional vectors. One may specify a vector by giving the three 
components of a point P, with the unwritten understanding that 
the vector is to point from the origin to P.

What happens if we get displaced once, in a certain direction, 
and then get displaced a second time, in a different direction? Let 
v� = (v1, v 2, v 3) and w� = (w1, w 2, w 3) be vectors representing the 
first and second displacement. This is like moving from New York 
to Chicago, and then from Chicago to Dallas. There is, however, 
a single vector that describes the move from New York to Dallas, 
and it is given by the following formula: 

 . (2.16)

In other words, we add the components separately. The operation 
described by Equation 2.16 is called vector addition, and vector 

Figure 2.2 Vectors in  three-
 dimensional space.



subtraction v� − w� is defined similarly. Equation 2.16 is sometimes 
called the parallelogram rule, because if v� and w� form two sides 
of a parallelogram, then v� + w� will form the main diagonal of the 
same parallelogram. Figure 2.3 illustrates the principle in  two-
 dimensional space.

The length of v� may be calculated using the Pythagorean the-
orem in three dimensions (which follows from the Pythagorean 
theorem in two dimensions, done twice), and the answer is

 Length of  =  = 

Figure 2.3 The “parallelogram rule” for vector addition with  two- dimensional vec-
tors. The same idea works in three dimensions.
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where �v� � is just the notation for length. Vertical bars also denote 
absolute value; there is no conflict because if v� has only one com-
ponent, then �v� � is the absolute value of that component.

Our entire previous discussion that led to the definition of 
the derivative carries over without difficulties to the situation in 
which f(t) is replaced by r�(t), the vector of three functions famil-
iar from Equation 2.15. In particular, we are free to write down 
expressions such as

 

where the minus on the right side is interpreted as in Equation 
2.16. One might say, “But r�(t + δt) − r�(t) is a vector; what does it 
mean to divide it by δt, which is a (small) number?” One would 
be right to question this, because we have not yet defined what it 
means to multiply or divide a vector by a number.

Dividing by δt is the same as multiplying by 1/δt. Multiplying 
a vector v� by a number a is defined to be the new vector whose 
components are

.

Equipped with the proper definition of how to multiply a vector 
by a number, we may return to the case of considering δr�/δt, in 
the limit as δt → 0, analogously to our previous work for a single 
function. A short calculation will yield

  (2.17)

The arrow described by r'(t) has an interesting physical interpre-
tation. This arrow, when displaced to have its initial point at the 
particle position r�(t), will then point in the direction the par-
ticle is going next! If you do not believe this last statement, con-
sider a particle moving on a helix (otherwise known as a Slinky 



or the shape of  one- half of a DNA strand), whose position vector 
might be 

  (2.18)

Draw the trajectory of Equation 2.18 on a piece of paper, and then 
move your pencil along the trajectory as if the tip of your pencil 
were a particle. Then calculate r�'(t) from Equation 2.17 and figure 
out which direction the vector is pointing for 10 points equally 
spaced around one turn around the helix. You may need a calcula-
tor for the last part.

As a simple example, note that if a particle is moving in the 
 x- direction, its velocity vector is just r�'(t) = (x'(t),0,0); hence 

. Thus, in this case, the length of r�'(t) is 
the instantaneous speed, which continues to hold in general.

Since we had so much success taking the derivative of a vector, 
let’s do it again. The rate of change of the velocity vector is

 

This is called the acceleration vector. Its length �a�(t) � is simply 
called the acceleration. We saw an example of an acceleration pre-
viously in Equation 2.14.

The mathematics of moving bodies has a lot of appeal because 
it can be described using elementary concepts from geometry, 
such as slope, arrows, and the Pythagorean theorem, and yet it 
has universal applicability in every branch of science, including 
the social sciences. This subject goes by the name of calculus and 
was originally invented by Newton (and independently by Leibniz 
at around the same time), who invented it in order to study the 
physics of our solar system, for which it is absolutely essential and 
the only possible way to fully understand the mechanics.

 The Mathematics of Motion 39



40

CHAPTER 3 
Newton, Kepler, and Gravity

JOHANNES KEPLER WAS AN ACCOMPLISHED MATHEMATICIAN, 
but he is best known for writing down the first correct em-

pirical description of planetary motion in the solar system, and 
in particular for noting that the planets move along ellipses with 
the Sun at one of the foci. Kepler’s observations would not have 
been possible without the impressive astronomical data collected 
by Kepler’s teacher, Tycho Brahe (Figure 3.1).

Tycho Brahe’s contributions to astronomy were enormous. 
He designed and built new instruments, meticulously calibrat-
ing them and checking their accuracy periodically, which ul-
timately revolutionized astronomical instrumentation. While 
earlier astronomers had been content to observe the positions 
of heavenly bodies at certain points of their orbits, Brahe and 
his students observed these bodies throughout their orbits. 
As a result, Brahe was the first to notice many orbital anoma-
lies. Without such a complete and accurate set of observations, 
Kepler could not have discovered his empirical laws for plan-
etary motion.
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Figure 3.1 Kepler’s work built heavily on that of Tycho Brahe (1546–1601), pictured 
above, who designed, built, and calibrated new instruments in order to observe the 
positions of planets and stars throughout their orbits.



KEPLER’S DISCOVERIES
In undertaking the analysis of Brahe’s data, Kepler distilled a few 
of the most salient features of the data, which can be expressed 
using elegant mathematical relationships. It is to be emphasized 
that these relationships were not derived from fundamental phys-
ics; rather, they were extrapolated from the data. For these rea-
sons, instead of calling these features Kepler’s laws, as the usual 
terminology would dictate, we will consider them “facts,” because 
they are factual and true aspects of Brahe’s data.

Thus, let’s consider Kepler’s first “fact” to be that the motion 
of each planet is an ellipse with the Sun (approximately) at one 
of the foci.

Before discussing this further, let us give the proper definition 
of an ellipse. Let F1 and F2 be any two points in a plane. Let d(P, Q) 
denote the standard distance function between two points P and 
Q. An ellipse is the set of points P satisfying

 

where a is a constant, which is called the  semi- major axis. It is 
 one- half the major axis, as in Figure 3.2.

The points F1 and F2 are called the foci (plural of “focus”) of 
the ellipse, and they are analogous to the center of a circle. Unless 
the ellipse is a circle, however, neither of the foci lie at the geo-
metric center of the figure; when it is a circle, they both do.

Kepler believed that in the case of planetary orbits, one of 
the foci would be located at the sun’s center. It was later discov-
ered that the focus of the orbital ellipse is, in fact, located at the 
center of gravity of the  planet- Sun system. The center of grav-
ity is a weighted average of the positions of the various objects 
under consideration; it is weighted so that objects of higher mass 
contribute more heavily to the average. If the masses are very un-
equal, as with a planet and the Sun, the center of gravity lies close 
to the center of the heavy object.

Because the Sun is much heavier than Mars, the correction to 
Fact 1 due to the shifting of the center of gravity is too small to 

42 PLANETS, STARS, AND GALAXIES



have been noted by Kepler. Nev-
ertheless, the Sun also moves in 
response to motions of its plan-
ets, and motions of this type 
have become an important tool 
in the search for extrasolar plan-
ets (that is, planets in other solar 
systems). An  Earth- sized planet 
orbiting a distant star would be 
far too dim to be seen directly 
with any terrestrial telescope. 
However, as the remote planet 
orbits the remote star, the star 
moves in a “mirror image orbit” 
around the common center of 
gravity. It is a much smaller 
orbit and a much slower motion, 
because the center of gravity is very close to the center of that star, 
but it can still be detected by precise measurements. Recently a 
few extrasolar planets have been found, mostly the size of Jupiter. 
The current status of the search for planets like Earth is described 
on the Planet Quest website, part of NASA’s Jet Propulsion Lab.

Let’s consider Kepler’s second “fact,” that the line joining the 
planet to the Sun sweeps out equal areas in equal times as the 
planet travels around the ellipse.

Fact 2 is most easily understood with the help of Figure 3.3. 
Note that the point of the closest approach of a planet to the Sun 
is called the perihelion, and the point where they are furthest 
apart is considered the aphelion. As seen in Figure 3.3, a line 
joining a planet and the Sun sweeps out equal areas during equal 
intervals of time. Therefore, the planet moves faster when nearer 
the Sun, or at the perihelion, and slowest when the planet is 
near aphelion.

Finally, Kepler’s third “fact” states that the square of the pe-
riod of a planet orbiting the Sun equals the cube of the  semi-
 major axis.

Figure 3.2 Illustration of an ellipse 
with  semi- major axis a, and foci F1 
and F2.
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A convenient unit of measurement for periods is the Earth 
year, and a convenient unit for distances is the average separation 
of the Earth from the Sun, which is called an astronomical unit 
(AU). If these units are used to express the quantities in Fact 3, 
then the relationship has the simpler form

  (3.1)

where T is the period in years, and R is the  semi- major axis in 
AU; the  semi- major axis reduces to the radius in case of a spheri-
cal orbit.

Figure 3.3 Illustration of Kepler’s “equal areas in equal times” discovery.



As an example, let’s calculate the  semi- major axis of the orbit 
of Mars from the orbital period. The time for Mars to orbit the 
Sun is observed to be T = 1.88  Earth- years. Thus, using Equa-
tion 3.1, the length of the  semi- major axis for Mars’ orbit is R = 
T 2/3 = 1.52 AU.

NEWTON’S LAWS OF MOTION
Newton’s laws of motion, together with Newton’s law of universal 
gravitation and the mathematical techniques of calculus, provided 
for the first time a unified explanation for a wide range of physi-
cal phenomena, most of which had been studied by scientists and 
philosophers before Newton, who had come to various partial, 
incorrect, or approximate solutions. The phenomena for which 
Newton’s theory works well include the motion of spinning bod-
ies; motion of bodies in f luids; projectile motion; sliding along an 
inclined plane; motion of a pendulum; tides of the oceans; and 
the orbits of planets and moons. In particular, Kepler’s rules for 
planetary motion follow from Newton’s theory, as we shall see 
in a later section. The law of conservation of momentum, which 
Newton derived as a corollary of his second and third laws, was 
the first conservation law to be discovered.

Despite the impressive successes of Newton’s theory, it’s im-
portant to realize that it is very far from the whole story. In par-
ticular, it is completely incorrect as a description of atomic or 
subatomic physics. When applied to an atom, a Newtonian treat-
ment of the forces involved implies that the atom should collapse 
and we should not be here! To explain why there are distinct 
atomic orbitals for electrons, and hence why the basic processes 
of chemistry (such as covalent and ionic bonds) occur, one needs 
quantum mechanics. The inception of quantum mechanics can be 
traced to Max Planck’s treatment of blackbody radiation in 1900, 
which is separated from Newton’s discoveries by about two centu-
ries. We will discuss blackbody radiation in Chapter 6.

Newtonian mechanics is inadequate to describe the dynamics 
of galaxies, galaxy clusters, or black holes. Newton’s theory also 
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does not correctly describe the detailed properties of the elec-
tromagnetic field. A detailed theory of the electromagnetic field 
was developed by James Clerk Maxwell, but Maxwell’s theory 
(which we do not have space to describe here) is not compatible 
with Newtonian physics if one attempts to understand experi-
ments involving single photons, such as the photoelectric effect. 
Nonetheless, on length scales varying from tiny sand particles up 
to the size of a solar system, and for velocities small compared to 
the speed of light (the speed of light is c ≈ 3 × 108 meters/sec), 
Newtonian mechanics has proven to be an extremely good ap-
proximation. For problems near the surface of the Earth (such as 
modeling accelerations or collisions of cars), and for the motions 
of satellites, Newtonian physics is still in use today.

Newton’s first law is sometimes called the law of inertia, and 
it states that when the net force on an object is zero, it moves in a 
straight line at a constant speed.

Some explanation of the term net force is needed here. A sin-
gle force is represented by a vector 

 . (3.2)

The meaning of this is the following. Consider your intuitive 
notion of applying a force; for example, pushing a rock away 
from you. By pushing harder or softer you change the amount of 
force that you  exert— the magnitude of the force. You could also 
choose a direction in which to push the rock, so the force has a 
direction as well. Magnitude and direction together determine 
a vector. When written in the component notation, as in equa-
tion (3.2), the magnitude is determined from the Pythagorean 
theorem to be

 .

The arrow from the point (0, 0, 0) to the point (F1 , F2, F3) deter-
mines the direction of the force.



Vectors add via the parallelogram rule, as explained in Chap-
ter 2. The vector sum has the physical interpretation of applying 
several forces  concurrently— as if you and your friend are both 
pushing the rock. A more familiar example, a  tug- of- war, illus-
trates the idea of combining forces acting along a single line, but in 
different directions. The condition of zero net force in Newton’s 
first law is, in this case, equivalent to the statement that the  tug-
 of- war is a  tie— both sides are pulling, but they’re equally matched 
and (at least for a while) the rope does not move much.

In general, the net force is the vector sum of all of the forces, 
which corresponds physically to the statement that all of the forces 
are applied to the same object at the same time. Suppose that we 
let x�(t) denote the position vector of a particle at time t. Then the 
statement of the first law is 

  (3.3)

where x�0 and v� are constant vectors representing, respectively, the 
position of the object at time zero, and the (constant) velocity.

Some care in the application of Equation 3.3 is advised. An 
object satisfying Equation 3.3 would not satisfy any similar equa-
tion in a second set of coordinates r�(t), where r�(t) is defined by 
continuously rotating x�(t) about some fixed axis with some fixed 
angular speed. This led to the definition of an “inertial frame” to 
be a set of coordinates in which Newton’s first law holds true.

Newton’s second law is sometimes called the law of accelera-
tion, and it states that the acceleration of an object equals the 
total force acting on it, divided by a constant (called the mass), 
which is a property of the object. The second law, in equation 
form, gives rise to the famous

 

where F is force, m is mass, and a is acceleration. It is very use-
ful to think carefully about which quantities in this equation are 
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defined in terms of the others. In particular, most people have 
an intuitive notion of the meaning of the word mass, but when 
pressed, they often find that their intuitive notion is incomplete 
or incorrect.

In elementary courses, it is often emphasized that mass is a 
quantity that is invariant with respect to a body’s location; this is 
as opposed to weight, which would be different on the Earth ver-
sus the Moon. This is because the weight of an object A is roughly 
speaking the magnitude of the gravitational force between that 
object and a much larger object P, which could be a planet. There-
fore, the weight is GmAmP/r2, where G is the gravitational con-
stant, mA is the mass of A, mP is the mass of the planet, and r is 
the distance between the center of the object and the center of 
the planet.

The above statement that mass should be invariant under 
change of location gives a property of mass, but we still haven’t 
defined it. In the above expression for the weight, what is mA? 
How does one calculate it, given an object? There are at least two 
definitions of mass in common usage, both in terms of Newton’s 
second law. The gravitational mass is determined using scales and 
the local force of gravity; two objects at the same height above 
planet P are said to have the same gravitational mass if they have 
the same amount of attraction to planet P. The inertial mass is 
found by applying a known force to an unknown mass, measur-
ing the acceleration, and then defining m to be F/a. Interestingly, 
astronauts measure inertial mass when in a “weightless” situation 
(meaning that they can no longer rely on the Earth’s gravity to 
measure gravitational mass).

Newton was already well aware that the proportionality be-
tween inertia and gravitational attraction is an independent em-
pirical fact, not something that follows from the first principles of 
his theory. Newton also noted that this proportionality does not 
apply to forces in general, citing as an example the force of magne-
tism, which is not proportional to the mass of the attracted body. 
Is the proportionality of inertial mass to gravitational mass then an 
accident? Whether it is or not, Einstein’s general theory of relativ-
ity conceives of gravitational motion as inertial motion in curved 



 spacetime. In such a theory, inertial mass and gravitational mass are 
not just accidentally proportional but they are the same concept.

One could envision a third definition of mass: if a bar of pure 
gold contains N = 1023 atoms of gold, then its “atomic mass” is 
defined to be N times the number of protons in a single atom (79 
for gold) times a constant, mp, added to N times the number of 
neutrons per atom (118 for gold) times a constant, mn, added to N 
times the number of electrons per nucleus (equal to the number 
of protons for a stable atom) times a constant, me. Now there are 
three undetermined constants: mp, mn and me. We then define 
the atomic mass similarly for two more stable elements and per-
form experiments that determine the constants mp, mn and me by 
setting the atomic mass equal to the  gravitational- inertial mass. 
One may now extend the definition of atomic mass to all other 
elements and composite substances. Are the gravitational and in-
ertial masses, now believed to be identical, also related to the 
atomic mass that we have defined here? Is there a proof of this? I 
will leave this as a question to be explored by the reader!

Newton’s third law, sometimes called the law of reciprocal ac-
tions, states that for every force, there is a reaction force, equal in 
magnitude and in the opposite direction.

Consider a system of n particles, with positions x�1, … , x�n. Let 
F�ij denote the force that particle i exerts on particle j. Newton’s 
third law, given above, then states that 

 . (3.4)

This is because multiplying all of the components of a vector by 
the constant –1 represents a vector of the same length, but in the 
opposite direction.

There is much confusion that stems from the difference be-
tween this and the  so- called strong form of Newton’s third law 
(thus making the above the weak form of the law). The weak form 
asserts the existence of a reciprocal force that is equal in magni-
tude and opposite in direction, while the strong form asserts that, 
additionally, the reciprocal force acts along the line joining the 
two particles. The strong form is satisfied by electrostatic forces 
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and by gravity, but not by all types of forces that exist in nature. 
In particular, the strong form is not satisfied by the Lorentz force, 
which is the force exerted on a particle in the presence of a mag-
netic field. The Lorentz force on particle i from particle j (assum-
ing both particles have electric charge Q) is given by

  (3.5)

where v�i is the velocity of the ith particle and B�j is the magnetic 
field generated by the jth particle. In Equation 3.5, the symbol × 
denotes a new mathematical operation that we have not yet stud-
ied in this book: the cross product, also called vector product.

This is as good a place as any to introduce the cross product. 
This is a product that takes two vectors A� and B�, and gives you 
back a third vector, denoted A� × B� which is guaranteed to be 
perpendicular to the original two. (Thus, it can’t exist in two di-
mensions, where there are only two perpendicular directions!) Of 
course, given that A� × B� is perpendicular to A� and B� just specifies 
the line that it lies on, but doesn’t tell us much about its direction 
within that line or its length. The direction is easy to describe. 
Assume your right hand is stretched out f lat, with the thumb ex-
tended. If the index finger on your right hand points along A�, 
while B� comes straight out of your palm, then A� × B� is in the 
direction of your thumb. The length is given by

 

where A and B denote the lengths of the vectors with the same 
name, and θ is the angle from �A�� to �B��.

DERIVATION OF THE GRAVITATIONAL 
FORCE LAW
Newton derived the gravitational force law from his three laws of 
motion, together with certain thought experiments and data re-
f lecting the motion of the Moon relative to the Earth. As they are 



illuminating, we reproduce some of Newton’s arguments, phras-
ing them in modern language.

The actual motion of the Moon around the Earth is quite 
complicated due to gravitational interactions with the Sun and 
other nearby planets. As a reasonable first approximation, how-
ever, the Moon’s orbit is roughly circular. In uniform circular mo-
tion, the centripetal acceleration (centripetal acceleration is the 
rate of change of velocity in the direction tangent to the circle) 
has magnitude

 

where v is the speed of the Moon in its orbit, and r is the orbital 
radius measured from the center of the Earth to the center of the 
Moon. The average speed of the Moon in its orbit is

 

where T is the orbital period of the Moon. Thus the magnitude of 
the centripetal acceleration is

 .

Both r and T may be determined from astronomical observations 
and  long- distance surveying techniques.

The radius of the lunar orbit is about 3.84 × 108m, and the 
orbital period of revolution is 27.3 days, or about 2.36 × 106 sec-
onds. Substituting these numerical values into the preceding for-
mula, we find

.

Let ae denote the acceleration due to gravity on the surface of the 
Earth, and let am denote the acceleration due to Earth’s gravity at 
the distance of the lunar orbit. Then
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.

On the other hand,

.

Since 602 = 3600, one may conclude that the acceleration caused 
by the gravitational force evidently decreases proportionally to 
the inverse square of the distance. By the second law, F is propor-
tional to a, so the gravitational force must also vary inversely to 
the square of the distance. In other words,

where r is the distance between the Earth’s center and the center 
of the Moon, and the symbol “∝” means “proportional to.”

Newton then reasoned that the strength of the gravitational 
interaction between the Earth and the Moon depends strongly on 

The Lunar Calendar

Calendars based on the lunar orbital period of 27.3 days are still in use 
in most areas of the world. The Islamic calendar is the calendar used 

to date events in predominantly Muslim countries and used by Muslims 
everywhere to determine the proper day on which to celebrate Muslim 
holy days. It is a purely lunar calendar having 12 lunar months in a year 
of about 354 days. By contrast, The Chinese calendar is a lunisolar calen-
dar formed by combining a purely lunar calendar with a solar calendar. 
This combination is performed by inserting an extra month every second 
or third year, so that the same months approximately correspond to the 
same seasons.



the masses of the two objects, and not strongly on other physical 
properties, such as chemical composition. It certainly didn’t have 
to be this way. Nevertheless, Newton’s intuition was correct: we 
live in a universe where  nongravitational interactions between the 
Earth and the Moon are negligible, and where the strength of the 
interaction is governed by the mass.

Let M be the mass of the Earth and m be that of the Moon. With 
these assumptions and using the third law of motion, the Earth ex-
erts a force FM on m on the Moon that is equal and opposite to the 
force Fm on M exerted by the Moon on the Earth. More precisely, 
these forces are equal in magnitude but opposite in direction:

 .

In particular, the length (or magnitude) of these two vectors is 
the same. Let’s call their common magnitude F(M,m). Then our 
argument shows that this is a symmetric function: 

 . (3.6)

The symmetry of Equation 3.6 implies that the function F is 
a sum of terms that take the form of a sum or product of the two 
masses, that is, 

  (3.7)

for some constants A, B. We can in fact rule out all possibilities 
except the first power of the product of the masses by appealing 
to the second law and to experiment.

We now describe some very important experiments, originally 
due to Galileo, that help to fix the functional form of F. Consider 
the hypothetical action of dropping an object off of the top of the 
Empire State Building. It has been observed that if we neglect the 
effects of air resistance, then any object you could drop would 
reach the ground at the same time, regardless of the mass of the 
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object! In other words, if we fix a mass M, and consider dropping 
other objects of masses m1,m2, . . . onto M, then the acceleration 
experienced by these objects is actually independent of m1,m2, . . .  
and so on. This has the disturbing consequence that if we dropped 
a chicken and a pound of lead off of a high building at the same 
time on a planet with no atmosphere, they would hit the ground 
at exactly the same time.

By the second law applied to system m, we have

 

where the magnitude �a�grav� cannot depend on m by the above ob-
servation. Therefore, Fgrav/m cannot depend on m, either. The only 
way to reconcile this with Equation 3.7 is to take A = 0 and n = 1, 
which implies Fgrav ∝Mm, with a constant of proportionality that, 
as we have already seen, must depend on r and (to some good ap-
proximation) the  r- dependence takes the form r –2. Let’s then fac-
tor out the  r- dependence and call the remaining constant (which 
now really is constant) G, the gravitational constant. This yields 
the result: 

 . (3.8)

The constant G can be measured by experiments, and is found 
to have the approximate value G ≈ 6.67 × 10–11 N m2/kg2. Equa-
tion 3.8 is called Newton’s law of universal gravitation, though 
even in Newtonian mechanics, it is not a fundamental law; rather 
it is an analytic expression derived from the other laws and cer-
tain measurements.

The meaning of the word universal in the law of universal 
gravitation is questionable. The equation does seem universal in 
the sense that we expect it to also hold in some other part of 
the universe, such as the Andromeda galaxy. This property of a 
physical theory is called translation invariance, and it means that 
fundamental physics is the same here as in some other part of the 



universe. As intuitive as this property may sound, it is probably 
not correct in all cases. Some theories imply that parts of the uni-
verse might have been in contact early in the universe, but as the 
universe expanded they lost contact and their local laws of physics 
went separate ways.

Parallel universes can have different values of the fundamen-
tal constants of cosmology, such as the Newton constant, G, that 
we have become familiar with. It is not known whether some more 
fundamental theory fixes the value of G to be what it is in our 
universe, though we can say that had G (and other constants) 
been outside of a certain range, then structure such as galaxies 
could not have formed (and we could not exist). Imposing the 
condition that the universe must facilitate galaxy formation is ac-
tually a quite strong condition, and restricts one to a small corner 
of the space of possible values for parameters such as G. Inquiry 
and debate about these issues continues today; see in particular 
the work of Max Tegmark on parallel universes.

MACH’S PRINCIPLE
In formulating his general theory of relativity, Einstein relies on 
an idea that he attributes to Ernst Mach, who lived in Germany 
two centuries after Newton. The fundamental equations of gen-
eral relativity assert that the curvature of space and time can be 
determined from a set of functions (the  energy- momentum ten-
sor) describing the distribution of matter and energy. This is not 
unrelated to Mach’s statement that “mass everywhere determines 
inertia” statement, but it seems that Einstein molded and refor-
mulated Mach’s idea, ultimately presenting a clearer and truer 
version of it.

Mach states such ideas in the following sections of his book 
the Science of Mechanics, where he also objected to Newton’s idea 
that there is an absolute space. 

If, in a material spatial system, there are masses with differ-
ent velocities, which can enter into mutual relations with one 
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another; these masses present to us forces. We can only de-
cide how great these forces are when we know the velocities 
to which those masses are to be brought. Resting masses too 
are forces if all the masses do not rest. . . . All masses and all 
velocities, and consequently all forces, are relative. There is 
no decision about relative and absolute which we can possibly 
meet, to which we are forced, or from which we can obtain 
any intellectual or other advantage.

This is a clear and lucid statement of the relativity of mo-
tion. Mach also proposed to define the notion of mass in terms of 
acceleration and Newton’s third law (action/reaction). The Web 
site “From Stargazers to Starships” provides a good summary of 
Mach’s views on this: 

When two compact objects act on each other, they accelerate 
in opposite directions, and the ratio of their accelerations is 
always the same.

In a sense, all three of Newton’s laws follow from the preced-
ing statement. Adopting the notion of mass definable along this 
line, given two bodies A and B, Mach points out that only the ratio 
of the masses of A and B can be defined using concepts of inertia 
and acceleration. One then defines the mass of 1 liter of water 
to be 1 kilogram and this, together with Mach’s principle, allows 
to determine all other masses. We will return to these ideas in 
Chapter 6.

NEWTONIAN MECHANICS AND 
KEPLER’S LAWS
All three of the observations now known as Kepler’s laws may be 
derived from the fundamental theory put forth by Newton. As an 
example, we present the derivation for the third of Kepler’s obser-
vations, which relates the orbital period of a satellite to the radius 
of its orbit, from the more fundamental Newtonian theory.



This supposes that the mass of the satellite is much smaller 
than the mass of the central body (this is more or less the defi-
nition of the term “satellite“; otherwise, it’s simply a  two- body 
system). We’ll discuss satellites rotating about the Earth, but the 
result applies equally well to any tiny body orbiting a large one, 
such as the moons of Jupiter. For simplicity, we’ll take the orbit 
to be spherical, though Kepler’s observation concerned elliptical 
orbits as well.

Suppose that the satellite is in a circular orbit well above the 
Earth’s atmosphere, so that we can neglect friction effects due to 
the viscosity of air. The mass m of the satellite is assumably con-
stant, and the total force and the acceleration are in the same direc-
tion, towards the center of the Earth. It is also necessary to assume 
that m is much less than M, so that the satellite’s gravitational field 
does not cause a measurable acceleration of the Earth.

The second law, F = m a�, when applied to the centripetal ac-
celeration of the satellite, yields

 

Solving these algebraic equations for T 2 yields

 

Since by assumption T > 0 and r > 0, this equation has one real 
solution,

 

The latter equation is a more precise statement of what we called 
“Fact 3” above.
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CHAPTER 4 
Observing the Night Sky

IN CASUAL DISCOURSE, THE WORD “BRIGHTNESS” IS OFTEN 
used loosely. In astronomy, however, it is very useful to distin-

guish between intrinsic brightness (how much light does a star 
emit in a given time?) and apparent brightness (how much light 
from the star enters our pupils or strikes the mirror of our tele-
scope?). These concepts can be illustrated by an ordinary 60-watt 
light bulb. You can think of the energy output of the light bulb 
(60 watts) as a measure of its intrinsic brightness. If you are di-
rectly below it, you shouldn’t look at it for fear of damaging your 
eyesight. On the other hand, a single 60-watt bulb cannot suffice 
to illuminate a large area, such as a stadium. The light bulb’s ap-
parent brightness depends on its distance from us.

Thus, the apparent brightness of a star, or other celestial ob-
ject, depends on both its intrinsic brightness and its distance; 
the farther away it is, the lower its apparent brightness. Intrinsic 
brightness is also known as luminosity, and is frequently denoted 
by the letter L. Formally, the luminosity of a star is the rate at 



which it emits energy in the form of electromagnetic radiation. 
The SI unit corresponding to energy per second is the watt, named 
after James Watt, the Scottish engineer who redesigned the steam 
engine so that it provided a dramatic increase in fuel efficiency 
(Figure 4.1).

Luminosity is a quantity that relates to the internal physics of 
the star, rather than its distance to us. The Sun has a luminosity of 
approximately Lsun = 3.86 × 1026 watts. This luminosity includes 
not only visible light, but all electromagnetic radiation emitted 
by the Sun, including radio waves, γ-rays, and so on. The Sun’s 
luminosity varies slightly with time; the number quoted above is 
the  time- averaged value.

Since the difference between apparent brightness and lumi-
nosity depends on the distance of the object from us, we should 
discuss how distance measurements are made. The most com-
mon method is called parallax. This refers to a very simple op-
tical illusion of sorts. Imagine that we observe a statue, and 
behind the statue is a map of the world, so that the statue ap-
pears to be above Europe. If we then change our position, say by 
walking one meter to the left, the statue might appear to be in 
front of China instead. Of course, the statue has not moved rela-
tive to the background, but we have. The line along which we 
moved, and the two lines from our two positions to the statue 
form an isosceles triangle, and if we know both the angle and 
the distance by which we have moved, then we can calculate the 
lengths of the remaining two sides using Euclidean geometry. If 
the angle is very small, the remaining two sides will be approxi-
mately the same length, and that length represents our distance 
to the statue.

Stellar parallax works the same way: we view a star against the 
background of other stars, and we make two measurements as the 
Earth is on two opposite sides of the Sun. Thus the “short” side of 
the isosceles triangle is the Earth’s orbital diameter. This method 
was first successfully used by Friedrich Wilhelm Bessel in 1838 
when he measured the distance to the star “61 Cygni.”
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Figure 4.1 James Watt (1736–1819) was an engineer and inventor from Scotland 
whose improvements to the steam engine led to a dramatic increase in the engine’s 
fuel efficiency, speed, and safety. Changes in the steam engine underpinned the dra-
matic increases in production of the Industrial Revolution.



FLUX AND SOLAR PANELS
The apparent brightness of a star is closely related to its f lux, 
denoted f. The f lux of a star is the rate per unit area at which its 
energy strikes a surface held perpendicular to the star’s rays; f lux 
can be measured in watts per square meter.

Consider a sphere of radius d centered on a light source of 
luminosity L. The f lux of light energy through the sphere is the 
luminosity of the light source divided by the sphere’s area: 

James Watt

In his late teens, James Watt went to London to learn to be an instru-
ment maker, and when he returned to Glasgow, he got a job making 

instruments with Glasgow University, which gave him accommodation 
and a workshop. In 1763, John Anderson asked him to repair an early 
steam engine he had acquired. This early model, known as a Newcomen 
engine, was very inefficient. The cylinder had to be heated when steam 
was admitted and then gradually cooled again to condense the steam. 
This wastes time and fuel. Two years later, while wandering aimlessly 
through a park in Glasgow called Glasgow Green, Watt hit upon the idea 
of condensing the steam in a separate vessel. This removed the need 
for heating and cooling, making the engine faster, safer, and more fuel 
efficient. A stone in Glasgow Green marks this spot as where the Indus-
trial Revolution really began. In 1778, Watt presented Anderson with a 
micrometer he had designed and made, as a gesture of thanks. In 1755, 
Watt was granted a patent that prevented anybody else from making a 
steam engine like the one he had developed. For the next 25 years, the 
Boulton & Watt company had a virtual monopoly over the production of 
steam engines. Watt worked out how much each company that used his 
steam engine saved by using the engine, rather than a team of horses. 
The company then had to pay him one-third of this figure every year for 
25 years!
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 . (4.1)

The observed f lux of a star falls off as the inverse square of its 
distance. The Sun’s f lux at the Earth’s location is

.

More precisely, this would be the f lux experienced at noon on the 
equator during an equinox. This f lux is the same as the f lux from 
a 100-watt light bulb viewed from a distance of 7 cm.

This calculation shows that solar power is a potentially potent 
power source on Earth. If it were possible to build a solar panel 
that could operate at 80% efficiency, then a 1-meter square panel 
would generate about 1000 watts of free electricity. In fact, solar 
cell engineers define a unit of illumination called the sun: one sun 
is defined as 1000 watt/m2. Since a single lamp is about 75 watts, 
the f lux of one sun incident on a 1-meter square panel would 
power all of the lights in a house, together with an array of smaller 
appliances at the same time.

Actual solar panels work at roughly 15% efficiency, and 
that’s not even considering the difficulties of getting light to the 
panel. Our atmosphere is not transparent, there are frequent 
clouds, and it is night half the time. While these atmospheric 
factors will not go away, at least for  Earth- based solar cells, it 
is possible that new advances in fundamental science could im-
prove the efficiency of solar panels, which would be a great con-
tribution to humanity.

Previously we computed the Sun’s f lux, knowing its luminos-
ity and distance. In practice, astronomers measure a star’s f lux 
and distance, then compute its luminosity. The star Sirius, also 
known as alpha Canis Majoris, is the apparently brightest star in 
the night sky. The f lux of Sirius is

 



To intercept 1370 watts of sunlight, you need a panel 1 meter on a 
side. By contrast, to intercept 1370 watts of light from Sirius, you 
would need a solar panel the size of Massachusetts. The distance 
to Sirius, computed by parallax, is

 

Thus, we can compute the luminosity of Sirius:

 

WHY IS THE NIGHT SKY DARK?
There is a  centuries- old question about the sky: If there are infi-
nitely many stars distributed (roughly) uniformly throughout an 
infinite space, then why is the night sky so dark? Note that if the 
Sun were suddenly moved away from us to twice its current dis-
tance, we would intercept one-quarter as many photons, but the 
Sun would subtend one-quarter of the angular area, so the inten-
sity per unit area would be the same. Why isn’t all of that light, 
from stars in every corner of the galaxy, reaching us now, even at 
night? This is called Olbers’ paradox. Like any paradox, it only 
seems that there is a contradiction because one or more of the 
assumptions used in the argument is incorrect or naive. We now 
consider this famous problem in more detail.

Consider a thin spherical shell of stars with radius r and thick-
ness δ centered on the Earth. If there are n stars per unit volume 
of the shell, then the total number of stars per shell is

 

Using Equation 4.1, the f lux of radiation from the shell of stars 
will be 

 . (4.2)
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This evidently does not depend on the radius r of the shell, but 
only on the thickness δ. The total f lux of starlight from all the 
stars in the universe can be computed by adding up f lux contribu-
tions from shells of all possible radii. Equation 4.2 shows that this 
will be given by the constant nL times an infinite sum

 . (4.3)

Equation 4.3 indicates that the night sky should be infinitely 
bright, while observations indicate to the contrary that it is rather 
dark. This paradox is named after the astronomer Heinrich Ol-
bers, who wrote a paper on the subject in 1826, though the prob-
lem was mentioned by Thomas Digges as early as 1576. Since the 
conclusion is incorrect, one or more of the assumptions must have 
been wrong.

First, note that the number density n and luminosity L are 
not constant; more importantly, if the universe only extends to a 
distance rmax from us, then the total f lux of starlight that we see 
in the sky will be

.

The above also assumed that the universe is infinitely old, which 
is inconsistent with observation. If the universe has a finite age t0 
then the previous argument implies

 

where c is the speed of light.
Furthermore, Equation 4.1 follows from Euclidean geometry 

and assumes that the light source is stationary relative to the ob-
server. Our universe is expanding, and as the universe expands, the 
light from distant sources will be redshifted to lower photon ener-
gies. (This “redshift” effect is described in Chapter 6.) The calcu-
lation that leads to Olbers’ paradox is f lawed all the way along.



HIPPARCHUS’S MEASUREMENTS AND 
THE VISUAL MAGNITUDE SCALE
The first recorded attempt to quantify stellar f lux at visible wave-
lengths was made by the Greek astronomer Hipparchus in the sec-
ond century B.C. Noting that stars differed in apparent brightness, 
Hipparchus divided them into six groups. The  first- magnitude 
stars were the brightest in the heavens, which included Capella 
(alpha Aurigae), Sirius (alpha Canis Majoris), and Vega (alpha 
Lyrae). Hipparchus distributed the other stars according to their 
relative brightness, down to the dimmest that the naked eye could 
see, which were called sixth magnitude. Hipparchus’s magnitude 
scale is also called the visual magnitude to differentiate it from 
other things that might have magnitudes, and because it really is, 
in some sense, a property of the human eye. This has the some-
what confusing consequence that the larger a star’s visual magni-
tude, the dimmer the star.

Telescopes had not yet been invented, so in order to focus 
his attention on a certain area in the sky, Hipparchus used a thin 
tube. By around 1850, astronomers had a number of techniques 
allowing for more precise measurement of apparent magnitude. 
Any such measurement must be expressed using some system of 
units, and since we are free to choose the fundamental unit to be 
whatever we like, it was not hard to map the more precise mea-
surements onto a scale in which stars that Hipparchus would have 
called “fourth magnitude” are mapped onto some region around 
the number 4.0, and so on. Careful measurements can now deter-
mine a star’s f lux to within 0.01 magnitudes.

Interestingly, the human eye does not see a star whose f lux on 
Earth is twice that of another as being twice as bright. In other 
words, the human eye’s response to f lux is nonlinear. For example, 
if you show someone a 1-watt bulb, and a 100-watt bulb and ask 
them to select a bulb that is half way between the two in bright-
ness, they will choose a 10-watt bulb! A 50-watt bulb appears to 
our senses to be much closer in brightness to a 10-watt bulb than 
to a 1-watt bulb.
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This kind of relationship in which the f lux (at a given dis-
tance) from a 1-watt bulb might be assigned a brightness of 1, 
that from a 10-watt bulb a brightness of 2, that from a 100-watt 
bulb a brightness of 3, and in general, a  10n- watt bulb has bright-
ness n, is known as a logarithmic relationship. In mathematics, 
logarithms are defined as functions having the property that the 
logarithm of a product equals the sum of the logarithms. As the 
human optical nerve responds this way, one is led to the conclu-
sion that mathematics arises even in seemingly unrelated fields 
such as psychology.

Comparison of sophisticated measurements with Hipparchus’s 
classification showed that a difference of 5 magnitudes represents 
a multiplicative factor of roughly 100 in f lux. A  first- magnitude 
star was then defined as exactly one hundred times brighter than 
a  sixth- magnitude star. To illustrate, consider two stars with ap-
parent magnitudes m1 and m2. The assertion that star 1 is five 
magnitudes brighter than star 2 corresponds mathematically to 
the statement that m2 − m1 = 5, which implies that

 .

If m2 − m1 = 1 (that is, if star 1 is only one magnitude brighter than 
star 2), then

 .

A few stars are significantly brighter than one hundred times 
a  sixth- magnitude star. By necessity, these stars are assigned 
magnitudes of less than 1 (Betelgeuse has a visual magnitude of 
0.45). Comparatively brighter stars wound up with negative vi-
sual magnitudes. Sirius, the brightest star in the night sky, has 
a visual magnitude of −1.44. The full Moon has a magnitude of 
about −12.5, and the Sun is a bright −26.5. A magnitude greater 
than 6 means that the object is only visible through a telescope. 



A 6-inch amateur telescope at a dark site can reach to 13th mag-
nitude or so; the faintest stars in the Hubble Ultra Deep Field are 
about 30th magnitude. Figure 4.2 summarizes these results.

Intrinsically, Sirius is 23 times more luminous and about 
twice the mass and diameter of the Sun. Of course, it’s farther 
away from Earth than the  Sun— but in fact it’s very close to us, 
in the grand scheme of things. At a mere 8.5  light- years away, 
Sirius seems so bright in part because it is the fifth-closest star 
to the Sun.

By 1906, using a prism on a meridian transit telescope, 
E. Pickering at Harvard compiled a list of some 50,000 stars based 
on more than 1 million comparative measurements. This catalog 
also helped to fix the zero point for the apparent magnitude scale 
by reconciling the magnitude estimates from several different ob-
servers into one consistent catalog of brightnesses.

It’s perfectly reasonable that two stars of different luminosi-
ties may have exactly the same magnitude (to the best precision 
we could ever hope to measure). The star with greater luminosity, 
or intrinsic brightness, simply needs to be farther away so that 
fewer of its photons reach us.

Figure 4.2 The apparent brightness of various objects in the magnitude system.
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BLACKBODY RADIATION AND THE 
 STEFAN- BOLTZMANN LAW
A blackbody is a hypothetical object that does not ref lect radia-
tion and has the property that, at each temperature, the blackbody 
emits the maximum amount of energy possible for that tempera-
ture. This value is known as the blackbody radiation for that tem-
perature. True blackbodies do not exist in nature, but a very close 
approximation is provided by the behavior of a small hole that 
leads into a large box. Light entering the hole would ref lect many 
times from the interior walls of the box and is almost certain to be 
absorbed in the process. Radiation that leaves the hole is emitted 
at every possible wavelength.

A blackbody emits a definite amount of energy at each wave-
length for a particular temperature, so for each temperature, one 
can graph a blackbody radiation curve, a graph of energy versus 
wavelength (Figure 4.3). It is remarkable that these curves depend 
only on the temperature! The hotter the blackbody, the greater 
its power output per unit surface area. An incandescent light bulb 
(or more precisely, its filament) is an everyday example. As it gets 
hotter, it also gets brighter, emitting more energy from its surface 
in the form of photons. It may seem strange that the prototypi-
cal example of a “blackbody” would be a light bulb! Blackbodies 
do not ref lect light, however, and therefore appear black at low 
temperatures, as we now explain. As is clear from the blackbody 
radiation curves, a blackbody radiates some nonzero amount of 
energy at every possible wavelength and hypothetically should al-
ways radiate some energy in the visible range of wavelengths (400 
to 700 nm), so it should never appear completely black. For low 
temperatures, however, the energy radiated in the visible range 
of wavelengths may be too small to generate enough photons to 
register as light upon our eyes. The incandescent bulb has a high 
temperature, and so it generates a lot of photons at various wave-
lengths, including the visible range.

The  Stefan- Boltzmann law holds that the energy radiated by a 
blackbody per second per unit area is proportional to the fourth 



power of the temperature (with the latter measured in Kelvins), 
that is: 

 E = σT4 (4.4)

where σ ≈ 5.67 × 10–8 J/(K4m2s) is a constant. (Note: K, m, and s in 
this formula are merely units of temperature, length, and time.)

Figure 4.3 The blackbody radiation curve is a graph of energy versus wavelength 
that depends only on the temperature.
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The derivation of the  Stefan- Boltzmann law (Equation 4.4) 
is fascinating, but is also a more advanced topic than we would 
like to cover here. For now, note that the derivation makes use of 
Planck’s famous formula for the power output of blackbody radia-
tion as a function of wavelength, 

  (4.5)

in which P(λ) is the power per unit area per unit wavelength, k 
is Boltzmann’s constant, h is Planck’s constant, c is the speed of 
light, and T is temperature.

Planck’s formula (Equation 4.5) follows from the  Bose- Einstein 
distribution of quantum statistical mechanics. Accordingly, the 
 Stefan- Boltzmann constant σ can be expressed in terms of more 
fundamental quantities: the speed of light, Boltzmann’s constant, 
and Planck’s constant. Historically, however, the discovery of Equa-
tion 4.5 led to the development of quantum theory and hence to the 
eventual discovery of the  Bose- Einstein distribution, not the other 
way around. It is for this achievement that Planck is often credited 
with the inception of quantum mechanics, although most details of 
quantum theory as we know it today were developed by others.

THE  HERTZSPRUNG- RUSSELL DIAGRAM 
AND THE MAIN SEQUENCE
After reading the last section, the reader may be tempted to 
speculate that, although interesting, this discussion of blackbody 
radiation, and the ensuing inception of quantum theory, has no 
place in a chapter on observing the night sky. In reality, Equations 
4.4 and 4.5 are responsible for the identification of the  so- called 
“main sequence” of visible stars, which we define shortly.

Let’s assume that a star radiates according to the  Stefan-
 Boltzmann law and see what consequences we can derive. Equa-
tion 4.4 implies that the logarithm of E should be linear in T, so 
let’s plot temperature versus magnitude of all known stars, noting 



that absolute magnitude is defined on a logarithmic scale anyway, 
as discussed previously. Such a plot, called a  Hertzsprung- Russell 
diagram, has become a standard tool of astronomers and is argu-
ably the most famous diagram in astronomy. The standard dia-
gram is shown in Figure 4.4.

The large group of stars that do (approximately) satisfy the 
linear relationship between the logarithm of E and the tempera-
ture are called the main sequence. In Figure 4.4, they can be seen 
as the dark line from the upper left to the lower right.

Of course, eventually, near the end of its lifetime, a star may 
cease to radiate as a blackbody. One speaks of the  main- sequence 

Figure 4.4 In a  Hertzsprung- Russell diagram, each star is represented by a dot, the 
position of each dot corresponding to the star’s temperature and absolute magnitude.
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lifetime of a star as the amount of time that it stays on the main 
sequence. This is related to the amount of time that it spends 
fusing hydrogen into helium in its core, since that fusion process 
allows it to be a blackbody. Since this is what stars spend most of 
their lives doing, the main sequence lifetime is closely related to 
the lifetime of the star.
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CHAPTER 5
Relativity and Black Holes

The relativity theory arose from necessity, from serious and 
deep contradictions in the old theory from which there seemed 
no escape. The strength of the new theory lies in the consis-
tency and simplicity with which it solves all these difficul-
ties, using only a few very convincing assumptions. . . . The 
old mechanics is valid for small velocities and forms the lim-
iting case of the new one. (Albert Einstein and Leopold In-
feld, The Evolution of Physics.)

SPECIAL RELATIVITY
For a book titled Planets, Stars, and Galaxies, it’s hard to imagine 
a better topic than Einstein’s revolutionary discovery that space 
(and its identical twin, time) do not behave according to the way 
our intuition would expect them to behave. This intuition is built 
up from a lifetime of experience at velocities that are low relative 
to every object you can easily detect. The way that we perceive 
space and time is merely an aspect of our perception, but is not a 



74 PLANETS, STARS, AND GALAXIES

good guide to discovering the fundamental physical laws. In the 
physical world, no velocity can ever exceed that of light, and all 
velocities are relative, so in fact no relative velocity can ever ex-
ceed the speed of light. This has rather dramatic consequences for 
a pair of observers who are traveling at nearly the speed of light 
relative to one another, as we shall discuss.

Most individuals are accustomed to the addition rule for ve-
locities. If two cars approach each other from opposite directions, 
one going v = 50 km/hour and the other going w = 45 km/hour, 
then each car will perceive the other as approaching at a combined 
speed of u = v + w = 50 + 45 = 95 km/h. This is the reason that 
 head- on collisions are the most dangerous kind! One of Einstein’s 
many important insights was that this simple (indeed, naive) ve-
locity addition rule holds for cars only because their velocities, 
relative to the Earth and to each other, are very small (compared 
to the velocity of light), but the same velocity addition rule does 
not hold for photons. In fact, at velocities near the speed of light, 
experimental results show that the naive velocity addition for-
mula u = v + w can be wrong by an arbitrarily large factor. Let’s 
illustrate this with a calculation. Two spaceships approaching 
each other, each traveling at v = w = 0.9c relative to some third 
observer between them, do not perceive each other as approach-
ing at v + w = 0.9c + 0.9c = 1.8c; instead they each perceive the 
other as approaching at slightly less than 99.5% the speed of light, 
or 0.995c.

In general, the law for combining velocities is given by the 
Einstein velocity addition formula:

 .

If c is much, much larger than v or w, then the term vw/c2 is close 
to zero, and so in this limit, u is approximately given by v + w.

The work of James Clerk Maxwell and others near the end 
of the nineteenth century clarified the role of light (and other 
forms of radiation such as  X- rays) as manifestations of the elec-
tromagnetic field. An oscillating magnetic field is known to create 



an electric field, and the changing electric field in turn creates a 
magnetic field. (These mechanisms can be easily checked in ev-
eryday life; any change in the magnetic environment of a coil of 
wire, such as moving a bar magnet closer or farther from the coil, 
will cause a voltage to be ”induced” in the coil.) The oscillating 
electric/magnetic fields then can propagate along as a wave, which 
(assuming its frequency is in the visible range) we perceive as 
light. Maxwell discovered a set of equations involving the electric 
and magnetic fields and their derivatives, which (until one gets to 
the very  small- length scales, such as the scale of an atom, where 
 quantum- mechanical effects become important) form a highly ac-
curate description of electricity, magnetism, and light.

One consequence of Maxwell’s equations is that the speed of 
light does not depend on the velocity of the object emitting the 
light, although the color, frequency, energy, and momentum of 
the light will be shifted; when specifically applied to the fre-
quency, this is called redshift.

The speed of light in a vacuum, denoted c, is defined to be 
299,792,458 meters per second (about 186,282.4 miles per sec-
ond, or 670,616,629.38 miles per hour!). Note that this speed 
is a definition, not a measurement; our standard of length, the 
meter, is defined as the distance light travels in a vacuum in 
1/299,792,458 of a second). It is known that the speed of light 
through some sort of transparent substance, such as water, is less 
than the  above- quoted value for c. The ratio of c to the speed of 
light through a medium is called the refractive index of the me-
dium. Interestingly, it is this property that is responsible for the 
beauty of a natural rainbow!

A deeper understanding of the aforementioned properties of 
the speed of light and the behavior of all other speeds relative to 
this one fundamental speed is necessary in order to understand 
the structure of our universe on the very large scales considered 
in cosmology. We develop the basic ideas of relativity here, while a 
broad overview of cosmology is the subject of Chapter 6. For now, 
we content ourselves with the following observation: the speed of 
light gives an absolute “upper speed limit” on the propagation of 
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anything else, so one may infer the finite size of the universe, as-
suming it has existed for a finite time.

The following illustrates how Einstein considered the problem 
of how to synchronize clocks at two different locations. Consider 
two locations A and B, and assume that they are separated by 
some  nontrivial distance, such as the  Earth-Sun distance, so light 
takes a measurable amount of time to travel between them. A 
clock at A can measure time differences for events that occur in 
the very immediate vicinity of A, and a clock at B can do the same 
for the vicinity of B. Now, we wish to synchronize the clocks, or 
in other words, to establish a “common time” for A and B. To do 
this, we assume that the time for a light signal to travel from A to 
B is the same as the time for a light signal to take the opposite trip 
from B to A. If a  light- signal leaves A at time t = 0, is ref lected off 
a mirror at B, and returns to A at t = t0, then the time at which the 
signal reaches B is defined as being t0/2 on both clocks. In general, 
both A and B could have mirrors, and the light signal could be 
allowed to bounce back and forth between them indefinitely. As 
long as the interval between one f lash and the next remains con-
stant both locations, each location infers that the other location is 
the same distance away as it always has been and, moreover, ob-
servers at each location can use the regular f lashes to synchronize 
their clocks. An event happening near A is said to be simultaneous 
with an event happening near B if the two events happen at the 
same time on the synchronized clocks.

Einstein’s special theory of relativity is entirely founded on 
two postulates. In order to state them, we need to define an iner-
tial frame. First of all, a frame is equivalent to an observer; this 
refers to an idealization in which there is a coordinate system that 
covers all of space (we can take this to be x, y, z coordinates), and 
moreover there is a clock at each point in space and the clocks 
are all synchronized. In order to qualify as an inertial frame, it 
must be the case that the Newtonian law of motion is valid in this 
coordinate system. Specifically, in this coordinate system, a mass 
m subjected to a force F moves in accordance with the equation 



F = ma, where a is the acceleration. Intuitively, this means that 
the frame is not accelerating.

The following is a useful thought experiment to illustrate the 
idea of an inertial frame. Imagine that you are riding on a train 
that has no windows and has a perfectly smooth track. Assume 
also that the train is moving with a perfectly constant velocity, 
v. You are comfortably having your lunch on the train, which in-
cludes a bowl of soup on a perfectly f lat table. Under all of these 
assumptions, it will certainly be the case that the soup settles 
down evenly in the center of the bowl and the surface of the soup 
is in a plane parallel to the plane of the bottom of the bowl and 
to the plane of the table. As long as the train keeps its perfect, 
constant velocity, you may finish your meal in peace and in fact, 
there is no experiment you can do that will allow you to determine the 
velocity of the train, or even whether it is moving at all, unless you 
leave the train, open a window, and so on.

Now, suppose that the train begins to uniformly accelerate, 
that is, pick up speed with constant acceleration. Then the surface 
of the soup will no longer be parallel to the plane of the table. The 
soup will appear to “climb up the side” of the bowl as long as the 
acceleration continues. With this intuition in mind, let us finally 
state the two fundamental postulates of special relativity.

Postulate 1: All inertial frames are equivalent with re-
spect to all laws of physics.
Postulate 2: The speed of light in empty space always 
has the same value, c.

It is a testament to Einstein’s genius that an entire theory of 
dynamics could be based on these two statements.

In special relativity, it is very common to consider a model 
 two- dimensional universe, with one space and one time dimen-
sion, even though we experience the physical universe at large 
scales as if it were comprised of three dimensions of space and 
one of time. It turns out that the interesting features of the space 
dimensions in special relativity, such as length contraction, can be 

•

•
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trivially and immediately generalized to three dimensions once 
we know the answer for one dimension.

Consider two observers, each in a spaceship containing clocks 
and meter sticks. The space ships are moving relative to each other 
at a speed v close to the speed of light. Each observer will see the 
meter stick of the other as shorter than their own, by the same 
numerical factor. This factor is typically denoted by the Greek 
letter γ, and is given by

 

In our example, to each observer, the length of the other observ-
er’s meter stick will equal 1 meter divided by γ. This phenomenon 
has been confirmed by experimentation many times, and is known 
as length contraction.

If the  one- dimensional length x is contracted by a factor 1/γ, 
then in three dimensions, we can also define contraction by the 
statement that a  three- dimensional displacement vector, which 
might be denoted by x�, will end up pointing in the same direction, 
but with its length multiplied by 1/γ. In summary, to extend the 
concept of length contraction from one space dimension to three 
is very simple.

We will therefore follow convention and discuss special rela-
tivity in a world with one space dimension; this world might be 
affectionately be called “lineland,” in analogy with Edwin A. Ab-
bott’s famous book Flatland (1884), which chronicled life in a 
world with two space dimensions. The single space coordinate is 
denoted x, and time is still denoted t. The coordinates (x, t) may 
be plotted in a plane, which is convenient for drawing on paper; 
such plots are typically called  space- time diagrams. To specify the 
trajectory of a particle, that is, to specify its position x(t) at each 
time t, is equivalent to drawing a smooth curve on the  space- time 
diagram. This curve, representing the life of a single particle, is 
usually called the worldline of the particle. Straight worldlines 
on a  space- time diagram represent uniform (that is,  constant-
 velocity) motion (Figure 5.1).



The time coordinate t is the 
time measured on the clock of 
some particular observer, and x 
represents the position of that 
observer. Imagine a second ob-
server with position x' and clock 
reading t'. Suppose that neither 
of these observers is accelerat-
ing, so that both (x, t) and (x', t') 
are inertial frames. Let us now 
use Postulates 1 and 2 to derive 
the equations that express x' 
and t' in terms of (x, t).

Postulate 1 implies that the 
form of the relationship must be 

  (5.1)

and by symmetry 

  (5.2)

Newtonian physics would have predicted x' =  x −  vt, which is 
called the Galilean transformation, since Galileo also derived it, 
but this doesn’t match the world for large v. Let S denote the ob-
server with coordinates (x, t) and let S' denote the observer with 
coordinates (x', t'). The velocity of the origin in the S system as 
measured by S' is equal and opposite the velocity of the S' origin 
as measured by S. Both velocities have magnitude v = b/a. Now, 
by Postulate 2, the coordinates of a light signal in the two frames 
must be 

  (5.3)

Substituting Equation 5.3 into Equations 5.1 and 5.2, one has

Figure 5.1 A  space- time diagram 
with a  constant- velocity worldline.
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 .

Eliminating t between these last two equations and using v = b/a 
we find

 .

Therefore,

 .

This value of a is precisely what was called γ above, the  length-
 contraction factor! Equations 5.1 and 5.2 now take the more ex-
plicit form 

  (5.4)

 . (5.5)

This reduces to Galileo’s transformation x' =  x −  vt when v is 
much smaller than c, because then γ is close to 1.

Equations 5.4 and 5.5 are called the Lorentz transformation 
equations. Using elementary algebra to turn Equations 5.4 and 5.5 
around and express t, t' in terms of x, x', yields

  (5.6)

 . (5.7)

Equations 5.6 and 5.7 predict the phenomenon of  time-
 dilation. The physics of Galileo and Newton would predict simply 
t = t', which arises as a limiting case of (5.6) and (5.7) by taking 
x << ct and v/c << 1. (The notation A << B means “A is much less 
than B.”)



Consider two events with coordinates (x1, t1) and (x2, t2) as 
seen by observer S. In special relativity (as opposed to Newto-
nian mechanics), we define the  space- time interval between the 
events as 

  (5.8)

where Δt = t2 − t1 and Δx = x2 − x1. Now consider the same two 
events as seen by an observer S’ moving with a constant velocity v 
with respect to observer S. The transformation to the coordinates 
of S' is given by Equations 5.5 and 5.7. Thus we have 

 
 (5.9)

Similarly, 

 
 (5.10)

Now, multiply Equation 5.10 by c2, and subtract it from Equation 
5.9, expand and make all possible cancellations, to find: 

  (5.11)

Equation 5.11 is striking; one should be shocked by it at first sight.
In Newtonian mechanics, the quantity (Δt)2 + (Δx)2 (which is 

the  squared- length of the vector from one event to the other) is 
invariant if we make a Galilean transformation, which is necessar-
ily of the form x' =  x −  vt, t' = t. In relativity (which, lest we forget, 
is the more correct theory), this fails and is replaced by something 
far more interesting. The invariant quantity that doesn’t change 
when we go to the reference frame of a second observer, uniformly 
moving with respect to the first, is c2(Δt)2 − (Δx)2, which was de-
noted (Δs)2 in Equation 5.8.
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The set of all points c2t2 − x2 = k, where k is some constant, 
takes the form of a hyperboloid in the  space- time diagram (that is, 
a plot with two perpendicular axes representing space and time). 
Lorentz transformations can be interpreted as moving us along 
this hyperboloid!

THE TWIN “PARADOX”
Consider a pair of twins, born on Earth. One of them boards the 
starship Enterprise, which quickly accelerates to a velocity of 0.9c 
relative to the Earth. This twin travels for what appears to him 
to be 10 years, then turns around and returns to Earth, where he 
decelerates and stops. To the traveling twin only 20 years have 
passed, while the prediction of relativity is that 46 years will have 
passed to the twin who stayed at rest on the Earth.

One might argue that we could have considered a reference 
frame in which the spaceship remained at rest, while the Earth 
moved away and came back to the spaceship. This should be an 
equivalent physical situation, so why isn’t the twin in the spaceship 
the older one? This argument is incorrect. Only the Earth twin 
stayed in the same inertial frame. The spaceship accelerated upon 
leaving the Earth, at the turn-
around point, and when stopping 
at the end, so the spaceship’s 
frame is not inertial and hence 
Postulate 1 does not apply.

LENGTH OF 
A CURVE
We begin with the simplest ver-
sion of arc length, and one that 
requires no calculus. The tran-
scendental number π is defined 
as the ratio of the circumference 
of any circle to its diameter, 
π = C/D = C/2r, where r is the 

Figure 5.2 In this figure, a  one-
 radian angle is the value of θ when 
s = r = 1.



 radius. Therefore, C = 2πr. This 
suggests a particularly pleasant 
unit of angle measure (much 
nicer than the degree, which is 
completely unnatural). One ra-
dian of angle is defined to be the 
unique angle such that a wedge 
of that angle subtends one unit 
of length on a circle of radius 1 
(Figure 5.2).

Now, still on the unit circle, 
suppose that a ray makes an 
angle of θ radians with the posi-
tive  x- axis. Define the coordi-
nates of the intersection of this 
ray with the unit circle to be 
(cos θ, sin θ). This defines two 
functions from the interval [0, 2π] into the interval [–1, 1]. The 
unit circle is then, by definition, parameterized by

 x(t) = cos(t), y(t) = sin(t), t∈[0,2π ].  (5.12)

Usually, arc length for a curve in the plane is computed by (1) 
choosing a sequence of points lying along the curve, (2) drawing the 
straight line between each two successive points, (3) computing the 
length of each segment using the Pythagorean theorem, (4) adding 
up the lengths of all the segments, and, finally, (5) examining the 
limit as the length of each segment goes to zero simultaneously 
while the number of segments approaches infinity. Schematically, 
the division of a curve into segments is shown in Figure 5.3.

Each of the segments in the approximation may be viewed as 
the hypotenuse of a triangle. One might denote the horizontal and 
vertical sides of each triangle by dx and dy respectively, and the 
hypotenuse by ds. The Pythagorean theorem states: 

 . (5.13)

Figure 5.3 The division of a curve 
into segments in order to calculate 
arc length.
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Adding up the contributions from all the segments and taking 
the limit as the number of segments goes to infinity is called “in-
tegration,” and will not be treated in full detail here (see Spivak, 
1980). To see that our procedure really works, however, let’s use 
it to calculate the length of the unit circle, which we already know 
to be C = 2πr.

Approximate the circle by N equally spaced line segments. 
The jth line segment has its initial point at

 

and its final point at 2π j/N radians. Therefore, the Nth segment 
has its endpoint at 2π radians, corresponding to a full revolution 
around the circle. For N = 4, the segments form a square inscribed 
within the circle.

The first segment goes from the point (1,0) to the point 
(cos(2π /N), sin(2π /N)), so the length of this (and hence every) 
segment is

Therefore, the total length of all the segments is 

  (5.14)

since there are N segments. For small x, however, 1 − cos x is ap-
proximately equal to x2/2. Therefore,

 .

The approximation that we used, 1 − cos x ≈ x2/2, gets better 
and better as x gets smaller. Specifically, we used it for x = 2π /N, 
which gets smaller as N (the number of segments) goes to infinity! 
So our procedure gives 2π as the limiting value for the length of 
the unit circle, just as we suspect.

.



If this seems mysterious, plug Equation 5.14 into a calculator 
with N = 500, and compare it to the numerical value for 2π, which 
is about 6.28.

NON- EUCLIDEAN GEOMETRY
Most geometries on the plane R2 are  non- Euclidean, but first, 
what is Euclidean geometry? Euclid’s The Elements is one of the 
most famous mathematical texts of all time. Although written 
around 300 B.C., its content (often in a simplified form) is still 
taught in every middle school and high school around the world. 
This is truly a testament to the fact that knowledge is cumulative. 
What is truly remarkable about Euclid’s Elements is the fact that 
the entire edifice that is now known as Euclidean geometry was 
built from only five postulates.

One may draw a straight line from any point to any 
other.
One may produce a finite straight line continuously in 
a straight line.
One may produce a circle with any center and distance.
All right angles are equal to each other.
Given a line and a point not on the line, it is possible 
to draw exactly one line through the given point paral-
lel to the line.

There was much controversy over whether the fifth postulate 
could be derived from the other four, though now it is known to 
be independent. One way to prove it is independent is to con-
struct models that satisfy the other four postulates and not the 
fifth. This is easily accomplished once one is willing to generalize 
the notion of arc length.

One could perform the same procedure used to calculate arc 
length in the last section, but with a different definition of ds, and 
one which contradicts the Pythagorean theorem. Clearly, if we’re 
contradicting the Pythagorean theorem, we are moving outside of 
the bounds of Euclidean geometry!

1.

2.

3.

4.

5.
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The most general second degree polynomial in dx and dy that 
one could consider is 

 . (5.15)

Euclidean geometry arises from Equation 5.15 through the very 
special choice A = C = 1, B = 0. Let us now consider a different 
choice, called the Poincaré  half- plane, that arises from Equation 
5.15 by setting B again to zero, and A = C = y-2. This has the coun-
terintuitive property that points on the  x- axis (that is, with y = 0) 
cause the formula for length to give ds = ∞, which is not very help-
ful. Let’s restrict the plane to y > 0, which means we’re restricting 
our attention to the upper  half- plane. Then, at least, Equation 5.15 
with A = C = y2 is  well- defined for all points we’re considering.

Let γ denote a path in the upper  half- plane joining two points 
P, Q. Define the hyperbolic length of this path as follows: ap-
proximate the path with line segments as in Figure 5.3. Then, 
compute the hyperbolic length of each segment by dividing its 
ordinary length by y1, 

  (5.16)

where y1 is the  y- coordinate of the leftmost point of the segment. 
Do this with N segments of equal Euclidean length, let N ap-
proach infinity, and observe what value the sum of the lengths 
of the segments seems to be approaching. Call this value LH[γ], 
where the L is for length, and the H for hyperbolic.

Given points P, Q, consider all paths originating from P and 
ending at Q. It is of interest to know which path γ has the smallest 
value of LH[γ]; such paths are called geodesics. Let’s now consider 
whether or not Euclid’s five postulates, reproduced above, hold 
in this new kind of geometry, assuming that we replace all oc-
currences of the word “line” with the word “geodesic.” For many 
choices of the functions A, B, C in Equation 5.15, one obtains a 
plane geometry that will satisfy the first four of Euclid’s  axioms 



by designating the geodesics to be lines. By the definition of “geo-
desic,” this automatically satisfies the postulate that any two 
points must have a line containing them.

Thinking of lines as geodesics, rather than as perfect straight 
Euclidean lines, is a very natural thing to do. After all, the short-
est path along the surface of the Earth is not a straight line; it is 
rather like traveling along the equator, which is a circle that has 
the same radius as the radius of the Earth. In other words, in a 
general curved space, we will define the word line so that the 
 well- worn and  time- honored adage “A straight line is the shortest 
distance between two points” is still true!

With our generalized definition of a line, it is then straightfor-
ward to generalize all of the definitions of Euclidean geometry: a 
line segment is part of a line; a triangle is the region bounded by 
three line segments, and so on. Angles are defined as usual: When 
two smooth curves intersect, measure the angle between their 
tangent lines at the point of intersection.

For the Poincaré  half- plane model, one can explicitly find all 
of the geodesics (whereas in many curved spaces such simple ex-
plicit solutions for the geodesics are not possible). They come in 
two types: vertical lines, and  Euclidean- circles centered on the 
 x- axis (though remember that the  x- axis is not part of the space). 
Figure 5.4 shows several of the second type of geodesic, which 
combine to form triangles.

It’s easy to see by visual estimation that the angles in ΔABC 
from Figure 5.4 do not add up to π radians (or 180°), as they 
would in Euclidean geometry. As it turns out, somewhat magi-
cally, the difference between π and the sum of the angles will 
equal the area of the triangle, where area is interpreted using the 
 non- Euclidean metric:

 .

For more detail about the Poincaré  half- plane, and for proofs 
of all these statements, see Stahl (1993) and Spivak (1980). 
Once you’ve understood integration, however, why not try to 
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prove some of these properties of the Poincaré  half- plane model 
for yourself?

THE  NON- EUCLIDEAN NATURE 
OF OUR UNIVERSE
The previous section was not only a fun digression into a particu-
larly simple model of a curved geometry; it also contains some 
of the key features of Einstein’s eventual unification of gravity 
with special relativity, and identification of gravity as a kind of 
curvature. This was the celebrated general theory of relativity. 
One of the chapters in Einstein’s 1920 book Relativity: The Special 
and General Theory is titled “The  Space- Time Continuum of the 
General Theory of Relativity Is not a Euclidean Continuum.” The 
general theory of relativity holds that space and time are inextri-
cably linked, both parts of a single  four- dimensional geometrical 
space, which can be (indeed, must be, in the presence of matter) 
curved and whose curvature gives rise to the inf luence we com-
monly know and experience as gravity.

For weak gravitational fields or empty space, the general the-
ory of relativity reduces to the special relativity just discussed. 

Figure 5.4 Several geodesics in the Poincaré  half- plane model of hyperbolic geometry 
combine to form a hyperbolic triangle.



This is because the geometry of the  four- dimensional spacetime 
is set up in such a way that, locally near each  space- time point (or 
“event”) there exists a coordinate system (x, t) similar to the in-
ertial frames we have been using. Also in this local neighborhood 
of a  space- time point, the metric or distance function, can be put 
into the form

 

that we found above for the invariant relativistic interval, thus 
completing the statement that locally, or in situations where the 
gravitational field can be regarded as weak, general relativity re-
duces to special relativity.

Using general relativity, Einstein predicted several phenomena 
that were subsequently found to be accurate by  experiments—
 phenomena that cannot be explained either using Newton’s the-
ory or by special relativity. We now describe an example of one 
such phenomenon. As noted in Chapter 3 (Figure 3.3), the peri-
helion of a planet’s orbit is the unique point on its orbital trajec-
tory when it is closest to the Sun. Let us fix our attention on a 
single planet, say, Mercury. If you draw a ray from the center of 
the Sun to Mercury’s perihelion, it turns out that even in a coor-
dinate system where the center of the Sun is fixed, the ray from 
the center of the Sun to the perihelion of Mercury changes ever so 
slightly as a function of time. The precise nature of this change is 
called precession; roughly speaking, this means that the tip of the 
ray we have drawn follows a circular path, although the length of 
the ray does not change. This phenomenon, called the perihelion 
precession of Mercury, was first explained properly by Einstein 
using general relativity.
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CHAPTER 6 
The  Large- scale Structure 
of the Universe

The universe is believed to have begun about 10 billion years 
ago in what some have visualized as a violent explosion. The fact 
that galaxies are receding from us in all directions is evidence for 
this initial explosion and was first discovered observationally by 
Edwin Hubble.

EXPANSION OF THE UNIVERSE
To begin, let us introduce a  commonly used unit of distance for 
very large scales. One parsec (derived from “parallax of one  arc-
 second”) is defined from the relation

 

where θ is an angle of one  arc- second, i.e. θ = 1'' = 2π /(360° × 602) 
(Figure 6.1).



Table 6.1 clarifies the various measures of distance that we 
have encountered, and their relationships to the meter.

There is now excellent evidence for Hubble’s law, which states 
that the recessional velocity v of a galaxy is proportional to its 
distance d from us, that is,

 

where H0 is called Hubble’s constant, although since it varies in 
time, it fails to meet the criteria for being called “constant.” The 
reason for the terminology “constant” for H0 is that Hubble was 
originally surprised that its value now should be a constant, that 
is, that v and d should be linearly related in this fashion (Figures 
6.2 and 6.3). The Hubble constant frequently also appears in di-
mensionless form, h = H0/100 km s–1 Mpc–1.

The exact value of the Hubble “constant” now is still somewhat 
uncertain, but H0 is generally believed to be around 70 kilometers 
per second for every megaparsec, so it has units of km/sec/Mpc. 
This means that h ≈ 0.7 and a galaxy at a distance of 1 megaparsec 
from us will move away from us at a speed of about 70 km/sec, 
while a second galaxy 100 megaparsecs away recedes at 100 times 
this speed.

Figure 6.1 A triangle illustrating the definition of the parsec unit.
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Astronomers have studied the extrapolations of galactic trajec-
tories backwards in time. The observation was that they converge, 
and this would seem to imply a  high- density initial state. One is 
tempted to say that this initial state would have been exciting to 
see; however, it wouldn’t have been visible at all before the time of 
last scattering! This is something that we will explain shortly, and 
the time of last scattering is defined following Equation 6.2.

The cosmological principle states that the universe appears 
the same in every direction from every point in space. It amounts 

TABLE 6.1  Measures of Distance and Their Relationship 
to the Meter

MEASURE RELATIONSHIP TO THE METER

meter (m)
The fundamental unit of length in the metric system. 
Equal to about 3.3 feet or 1.1 yard.

kilometer (km) Equal to 1,000 meters.

Astronomical Unit (AU)
The commonly used unit of distance in the solar sys-
tem; it is equal to the average Earth-Sun distance, or 
149,000,000 km.

light year (ly)
A commonly used unit of distance on galactic scales, de-
fined to be the distance traveled by light in one year, or 
9,460,000,000,000 km.

parsec (pc)

The preferred unit of distance in astronomy (outside 
the solar system). Defined as the distance at which 
1 Astronomical Unit subtends an angle of 1 second of 
arc (1/3600 of a degree). Equal to 3.26 light years or 
30,800,000,000,000 km.

kiloparsec (kpc) 1,000 parsecs.

megaparsec (Mpc) 1 million parsecs.



to asserting that our position in the  universe— when viewed on 
the very largest distance  scales— is nothing special. One some-
times sees the word “Copernican” associated with this idea, since 
Copernicus was the first to carefully show that our position in 
the solar system is not central. Of course, Copernicus would 
have known nothing of galaxies, or of the  large- scale structure of 
spacetime, but this sort of assertion is in the nature of Coperni-
cus’ defiance of the previously prevailing doctrine that we are in 
the center of anything.

There is considerable observational evidence for the cosmo-
logical principle, including the measured distributions of galax-
ies and faint radio sources, though the best evidence comes from 
the  near- perfect uniformity of the cosmic microwave background 
(CMB) radiation, a type of energy which has its origins in the 

Figure 6.2 An early Hubble diagram, illustrating the approximate linear relationship 
between distance (in parsecs) and recessional velocity, measured with observations 
of galaxies.
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early universe and yet is still passing through the Earth today and 
can be measured by satellites. The cosmological principle means 
that any observer anywhere will enjoy much the same view that 
we have of the  large- scale structure of the universe, including the 
observation that the other galaxies appear to be receding.

The expansion of the universe can be difficult to visualize. 
One analogy that is often used is the following one. Imagine that 
you are a  two- dimensional creature. Like a thin piece of rubber, 
you may bend or curve, but regardless of the curvature, you have 
a certain length and width, but negligible height. Now, imagine 
that your “universe” is the surface of a perfectly spherical balloon, 
which is slowly being blown up. (Real balloons are more oval, and 
have a “neck” where the air goes  in— for the purpose of this illus-
tration, ignore both of these features.)

As the balloon is blown up, the distance between all neighbor-
ing points grows; the  two- dimensional universe expands but there 
is no preferred center. One may also imagine that someone has 

Figure 6.3 Hubble diagram based upon distances to supernovae of type 1a. Note the 
linearity; the slope, or Hubble constant, H0 = 64 km s-1 Mpc-1.



taken a marker and drawn  uniformly distributed points all over 
the surface of the balloon. You (the  two- dimensional version) are 
standing on one of the dots, but you can see a few of the others 
by means of light rays that travel geodesic paths along the curved 
surface to reach you. The other points that you can see appear to 
be receding from you.

Note that, in this analogy, you should most certainly not con-
clude that you are in the center of the universe! Remember that the 
surface of a sphere has no center. The interior of the sphere does, 
of course, have a center, but we have assumed that the universe is 
the boundary. Now, we are not f lat creatures, so it is perhaps more 
useful to think of the “space” part of our universe as also being 
the  (three- dimensional) boundary of some  four- dimensional thing 
that is being blown up. As strange as it may sound, this is the ex-
pansion that Edwin Hubble observed!

This “balloon model” is also very consistent with general rel-
ativity. The  Friedmann- Robertson- Walker solution of Einstein’s 
equations with a perfect f luid  matter- energy distribution (note 
that we are now interpreting the individual galaxies as particles 
in a viscous f luid!) gives a curved geometry that is well described 
by the balloon analogy. A simple form of this geometry has the 
schematic form

  (6.1)

where a(t) is an increasing function of t, such as a(t) = eHt, and 
dx2 + dy2 + dz2 represents the length in the usual f lat  three-
 dimensional geometry. Here, ds2 is a generalization of the  space-
 time interval that we already encountered in the case of special 
relativity. The  time- dependent function a(t) is called the scale 
factor. The definition of the Hubble parameter is H = a'(t)/a(t), 
with H0 defined to be its value today and a'(t) is the derivative 
of a(t).

Note that the ds2 in Equation 6.1 has the property, consistent 
with special relativity, that the squared length of a relativistic 
interval can be negative if the space part of the interval is longer 
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than the time part. This is fine; in practice, one almost never 
needs to consider the square root of this negative quantity!

The stretching of the wavelengths of photons implied by the 
expansion of the universe, and the associated growing of the scale 
factor, accounts for the redshift from distant galaxies: the wave-
length of the radiation we see today is larger by the factor a(now)/
a(then). Astronomers denote this factor by 1 + z, which means 
that an object at redshift z emitted the light seen today when the 
universe was smaller by a factor of 1 + z. Normalizing the scale 
factor to unity today gives a(emission) = 1/(1 + z).

COSMIC MICROWAVE 
BACKGROUND RADIATION
Light currently reaching us from the most distant known quasar 
(as of March 10, 2005), as may be determined from redshift 
measurements, was emitted at a time when the scale factor was 
a = 1/(1 + z) = 0.135. From these statements, one may conclude 
that the light we see from the quasar was emitted when the age 
of the universe was only te = 0.06 H0

–1 = 800 Myr, which is about 
6% of the current age of the universe. Fascinatingly, it was real-
ized fairly recently that it is possible to look still further back 
into the history of the universe. The oldest photons are those 
belonging to the cosmic microwave background, discovered by 
Penzias and Wilson in 1964; collectively these photons form a 
snapshot of the universe at about 300,000 years, long before gal-
axies formed.

About 100,000 years after the Big Bang, the temperature of 
the universe had dropped sufficiently for electrons and protons to 
combine into hydrogen atoms, 

  (6.2)

The symbol γ throughout this chapter denotes a gamma ray, or 
 high- energy photon. At this time, the universe became transpar-
ent, because the photons of the cosmic microwave background 



radiation could no longer scatter with free electrons. This is there-
fore called the time of last scattering.

Following the time of last scattering, radiation was effectively 
unable to interact with the background gas; the radiation has prop-
agated freely ever since, while constantly losing energy because its 
wavelength is stretched by the expansion of the universe. Origi-
nally, the radiation temperature was about 3000 Kelvin, whereas 
today it has fallen to less than 3 Kelvin! The Cosmic Background 
Explorer (COBE) satellite, launched in 1989, measured the spec-
trum of the cosmic microwave background over the entire sky 
for a wide range of wavelengths, and thus ushered in the current 
“golden age” of observational and theoretical cosmology.

At any point on the sky, the spectrum of the CMB is remark-
ably close to an ideal blackbody spectrum, as shown in Figure 6.4. 

Figure 6.4 Intensity versus frequency for the cosmic microwave background, shown 
together with an ideal blackbody curve at temperature 2.7277 K.
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This blackbody spectrum, it is widely believed, could only have 
come from a universe that was hot and opaque in its early stages. 
The expansion of the universe has the effect that the radiation 
cools while its thermal spectrum remains a blackbody. You can 
judge for yourself how closely the match of the CMB power spec-
trum is to a blackbody, but note that the error bars in Figure 6.4 
have been increased by 400 times to make them visible!

Small temperature f luctuations in the CMB result from small 
density f luctuations at the time of last scattering. In more detail, 
a photon that happens to be in a more dense region when the 
universe becomes transparent will lose energy as it climbs out of 
the potential well generated by the excess density. It is widely be-
lieved that the  low- amplitude density f luctuations that, if present 
at the time of last scattering, would give rise to the CMB spec-
trum we observe today, and they arose from quantum mechanical 
f luctuations in the very early universe, which were subsequently 
amplified through a mechanism known as inflation. Inf lation was 
proposed by Alan Guth, and it holds that there was a period in 
the early universe during which the expansion function a(t) (men-
tioned previously) takes the form

 

NUCLEOSYNTHESIS OF THE 
LIGHT ELEMENTS
Although we can’t directly observe the first 400 millennia of the 
universe, we can still deduce indirectly various properties of the 
natural world at those earlier times. For instance, we know that in 
the early universe, neutral hydrogen atoms couldn’t exist because 
some of the cosmic background photons had energies larger than 
the hydrogen ionization energy, which is χ = 13.6eV. An electron 
volt (eV) is the amount of energy gained by a single unbound elec-
tron when it falls through an electrostatic potential difference of 



one volt. This is a very small amount of energy by usual standards, 
1.6 × 10–19J. Just as there was a time when protons and electrons 
combined to form neutral hydrogen atoms (at t ≈ 400,000 years), 
there must have been an earlier time when protons and neutrons 
combined to form atomic nuclei. This time is known as the era of 
Big Bang nucleosynthesis.

Consider, for simplicity, a deuterium (D) nucleus. This is the 
simplest of all compound nuclei; it consists of one proton and one 
neutron, bound together with a binding energy of B = 2.22MeV. 
A  gamma- ray photon with energy ε > B can split deuterium, in 

Helium Isotopes and the Early Universe

Elements in the periodic table are distinguished by the number of 
protons in the nucleus, since this determines the total charge of the 

nucleus, and hence the number of electrons in an electrically neutral 
version of the atom, which in turn mostly determines the chemical bond-
ing properties of the atom. Natural helium is a mixture of two stable 
isotopes, helium-3 and helium-4. In natural helium, about one atom in 
10 million is helium-3. The unstable isotopes helium-5, helium-6, and 
helium-8 have been synthesized. The alpha particles emitted from cer-
tain radioactive substances are identical to helium-4 nuclei (two protons 
and two neutrons).

It is reasonable to expect that there existed a time when bound atomic 
nuclei could not exist, because the cosmic background photons had en-
ergies larger than the nuclear binding energy, so as soon as the nuclei 
bound, they would break apart again. Prior to about one second after the 
Big Bang, matter—in the form of free neutrons and protons—was very 
hot and dense. As the universe expanded, the temperature fell and some 
of these nucleons were synthesized into the light elements: deuterium, 
helium-3, and helium-4.
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a process known as photodissociation, and pictured in the sche-
matic diagram 

 . (6.3)

The Equation 6.3 can also run in the opposite direction; a 
proton and neutron can fuse to form a deuterium nucleus, with a 
 gamma- ray photon carrying off the excess energy: 

 . (6.4)

The process of deuterium synthesis (Equation 6.4) has obvious 
analogies to the radiative recombination of hydrogen, depicted in 
Equation 6.2. In each case, two particles are bound together, with 
a photon carrying away the extra energy. The main difference is 
the energies involved. The photodissociation energy of deuterium 
is B = 2.22MeV = 1.6 × 105χ.

Since the energy released when deuterium is formed is 
160,000 times the energy released when a neutral hydrogen atom 
is formed, we expect the temperature at the time of nucleosynthe-
sis to be 160,000 times larger than the temperature at the time of 
last scattering, when the universe became transparent:

 

In the most widely accepted current model for the early universe, 
the universe had temperature equal to Tnuc when its age was about 
7 minutes. A basic prediction of Big Bang nucleosynthesis is that 
helium contributed 25% of the mass density in baryons, even be-
fore the first generation of stars started to “pollute” the universe 
with heavier elements. The helium mass fraction in the Sun is 
about Y = 0.28, but the Sun contains helium formed in earlier 
generations of stars. When we look at astronomical objects of dif-
ferent sorts, the minimum value found for the helium fraction is 



Y = 0.24, which agrees more closely with the predictions of Big 
Bang nucleosynthesis.

FORMATION OF GALAXIES AND  
LARGE- SCALE STRUCTURE
The  so- called hot Big Bang model (which basically includes all 
of the aforementioned ideas except for the inflation and quan-
tum fluctuations of the very, very early universe) also provides a 
framework in which to understand the formation of galaxies (and 
other  large- scale structures observed today) from more elemen-
tary kinds of matter. At about 10,000 years after the Big Bang, 
the temperature had fallen enough so that the energy density of 
the universe began to be dominated by massive particles, rather 
than the light and other radiation that previously dominated the 
universe’s  matter- energy distribution. This time is called  matter-
 radiation equality, and it is really after this time that general rela-
tivity can be said to govern  large- scale physics.

Interestingly, observations suggest that cosmic structures from 
galaxies ranging in size to the universe itself are held together by 
invisible matter whose presence is only inferred indirectly through 
its gravitational effects (the  so- called dark matter). It is not known 
whether there is truly a new breed of matter that our experiments 
have failed to detect or whether our theoretical understanding of 
the mechanism underlying gravity is missing some crucial piece 
that would unify the theory with measurements.

It would be remiss not to mention that the current time, as 
this book is being written, is a very exciting time for particle phys-
ics and cosmology, in which precision measurements of the cosmic 
microwave background are providing us with much new informa-
tion about the early universe! The references will direct you to 
more information about how to follow the research of current ex-
perts in this exciting field.
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GLOSSARY

ACCELERATION  A vector representing the rate of change of the 
velocity vector.

ACCELERATION DUE TO GRAVITY  The acceleration that an object 
experiences because of gravity when it falls freely close to 
the surface of a massive body, such as a planet (also known as 
the acceleration of freefall).

APPARENT BRIGHTNESS   Observer- dependent measure of the 
amount of light emitted by a distant body that reaches 
the observer.

AVERAGE RATE OF CHANGE  The total change in a quantity, di-
vided by the length of the time interval.

BARYONS  A family of subatomic particles including the proton 
and the neutron (collectively called nucleons), as well as a 
number of unstable, heavier particles (called hyperons).

BIG BANG NUCLEOSYNTHESIS  Era in the early universe when el-
ementary particles first combined to form atomic nuclei.

BLACKBODY  A hypothetical object that absorbs 100% of the ra-
diation that is incident upon it.

BLACKBODY RADIATION CURVES  The graph of energy radiated 
vs. wavelength, drawn for each temperature; see Figure 4.3.

CALCULUS  The mathematics of moving bodies.
CENTER OF GRAVITY  A weighted average of the positions of the 

various objects under consideration; it is weighted so that ob-
jects of higher mass contribute more heavily to the average.

CENTRIPETAL ACCELERATION  The rate of change of velocity in 
the direction tangent to the circle.

CHAIN RULE  Rule in calculus for finding the derivative of a 
composed function:

 

COSMIC BACKGROUND EXPLORER (COBE) SATELLITE  Launched 
in 1989, measured the spectrum of the CMB over the entire 
sky for a wide range of wavelengths.

COSMIC MICROWAVE BACKGROUND (CMB)  The oldest photons 
in the universe, discovered by accident in 1964; collectively 



these photons form a snapshot of the universe at about 
300,000 years, long before galaxies formed.

COSMOLOGICAL PRINCIPLE  The principle that the universe ap-
pears the same in every direction from every point in space.

CROSS PRODUCT  A product that takes two vectors A� and B�, and 
gives back a third vector, denoted A� × B�, which is guaranteed 
to be perpendicular to the original two.

DERIVATIVE  A mathematical tool representing the rate of 
change of one function relative to another.

ELECTRON VOLT (eV)  The amount of energy gained by a single 
unbound electron when it falls through an electrostatic po-
tential difference of one volt.

ELLIPSE  The set of points P satisfying d(P, F1) + d(P, F2) = 2a 
where a is a constant, which is called the  semi- major axis.

EPICYCLE  The curve traced out by a point on a circle rolling 
along the outside of another circle.

EUCLIDEAN GEOMETRY  Geometry based on Euclid’s five 
postulates.

EXTRASOLAR PLANETS  Planets in other solar systems.
FOCI  Two points symmetrically located on the major axis of an 

ellipse either side of the center.
FLUX  For a star, the rate per unit area at which its energy strikes 

a surface held perpendicular to the star’s rays; measured in 
watts per square meter.

FRIEDMANN- ROBERTSON- WALKER SOLUTION  A  four-
 dimensional geometry that solves Einstein’s equations for 
general relativity with a  matter- energy distribution resem-
bling a perfect f luid.

GALILEAN TRANSFORMATION  The statement that in Newtonian 
physics, one may transform from a stationary coordinate sys-
tem to one moving with a constant velocity v, by means of 
the formula x' =  x −  vt and t' = t.

GENERAL THEORY OF RELATIVITY  A theory holding that space 
and time are inextricably linked, both parts of a single  four-
 dimensional geometrical space, which can be (indeed, must 
be, in the presence of matter) curved and whose curvature 
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gives rise to the inf luence we commonly know and experi-
ence as gravity.

GEODESIC  The shortest path in a curved geometry; originally 
the shortest route between two points on the surface of the 
Earth.

GRAVITATIONAL MASS  The mass as determined using scales 
and the local force of gravity; two objects at the same height 
above planet P are said to have the same gravitational mass if 
they have the same amount of attraction to planet P.

HERTZSPRUNG- RUSSELL DIAGRAM  Plot of temperature versus 
magnitude for a large group of stars.

HUBBLE’S LAW  A law stating that the recessional velocity v of a 
galaxy is proportional to its distance d from us.

INERTIAL MASS  Found by applying a known force to an un-
known mass, measuring the acceleration, and then defining 
m to be F/a.

INERTIAL FRAME  A coordinate system (x�, t) in which Newtonian 
physics, and F = ma in particular, is valid.

INFLATION  Proposed by Alan Guth, this theory holds that there 
was a period in the early universe during which the expan-
sion function a(t) takes the form a(t) ∝ eHt.

INTRINSIC BRIGHTNESS  A measure of the amount of light emit-
ted by a distant body in per unit time.

KELVIN  One Kelvin has the same size as a Celsius degree, but 
the  zero- point on the Kelvin scale is absolute zero, rather 
than the freezing point of water at sea level.

LENGTH CONTRACTION  According to Albert Einstein’s special 
theory of relativity, this is the decrease in length experienced 
by people or objects traveling at a substantial fraction of the 
speed of light.

LOGARITHM  By definition, x = loga y if ax = y. For example, 6 = 
log2 64.

LORENTZ FORCE  The force exerted on a particle in the presence 
of a magnetic field.

LORENTZ TRANSFORMATION  A corrected version of the Gali-
lean transformation, which holds that the true transformation 
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law from one coordinate system to another moving at con-
stant velocity v must be x' = γ  (x −  vt) and t' = γ  (t −  vx/c2), 
where γ = (1 − v2/c2) –1/2.

LUMINOSITY  See intrinsic brightness.
MAGNITUDE  The amount of relative force exerted—for exam-

ple, as on an object.
MAIN SEQUENCE  The large group of stars that approximately 

satisfy the linear relationship between the logarithm of 
the energy and the temperature, predicted by the  Stefan-
 Boltzmann law.

MATTER- RADIATION EQUALITY  The time when the energy den-
sity of the universe began to be dominated by massive par-
ticles, rather than light and other radiation.

NET FORCE  The vector sum of all of the forces, which corre-
sponds physically to the statement that all of the forces are 
applied to the same object at the same time.

NEWTON  Defined to be the amount of force required to in-
crease the speed of a 1-kilogram mass by 1 meter per second, 
during each second that the force is applied; named in honor 
of Sir Isaac Newton.

OLBERS’ PARADOX  An argument that concludes that the night 
sky should be very bright, since there should be a star at 
every possible angle.

PARALLAX  The angle between two imaginary lines from two 
different observation points that meets at a star; used to 
measure its distance from the Earth.

PARSEC  Unit of measure in astronomy; one parsec (derived from 
“parallax of one  arc- second”) is defined from the relation 

, where θ is an angle of one  arc- second, i.e., 

θ = 1'' = 2π /(360° × 602).
PERIHELION  In an elliptical orbit, the point at which the orbit-

ing body is closest to the central body.
PERIHELION PRECESSION  Mercury’s orbit is slightly elliptical 

and eccentric, with the closest point to the Sun called the 
perihelion. This perihelion advances around the Sun with 

 Glossary 105



each orbit, in relation to other stars that, for this purpose, 
can be viewed as fixed.

POINCARÉ  HALF- PLANE  The upper half of the  two- dimensional 
Cartesian plane (that is, points with y > 0).

POWER RULE  The rule in calculus for finding the derivative of a 
power function: 

.

PRODUCT RULE  The rule in calculus for finding the derivative of 
a product function: 

.

QUOTIENT RULE  The rule in calculus for the derivative of a quo-
tient of two functions: 

 

 RADIAN  The natural unit of angle measure; one radian is de-
fined to be the unique angle such that a wedge of that angle 
subtends one unit of length on a circle of radius 1.

REDSHIFT  For light from distant galaxies, the wavelength of 
the radiation we see today is larger by the factor 
a(now)/a(then).

REFRACTIVE INDEX  The ratio of c to the speed of light through a 
medium.

RELATIVITY OF SIMULTANEITY  The part of special relativity 
theory asserting that the statement that two events are si-
multaneous (occur at the same time) cannot be made in an 
 observer- independent way.

SCALE FACTOR  An increasing function of time, denoted a(t), 
that describes the expansion of the universe in the commonly 
accepted  Friedmann- Robertson- Walker model.
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SECANT LINE  A line that intersects a curve in exactly two 
points.

SECOND DERIVATIVE  The derivative of a function that has al-
ready been differentiated once: 

.

SLOPE  Defined for a line y = mx + b to be the number m.
SPACE- TIME DIAGRAM  A  two- dimensional graph in which one 

axis represents time and the other represents a spatial coor-
dinate; ideal for plotting trajectories of particles in special 
relativity.

SPEED  Length (that is, magnitude) of the velocity vector.
STEFAN- BOLTZMANN LAW  A law holding that the energy radi-

ated by a blackbody per second per unit area is proportional 
to the fourth power of the temperature, with the latter mea-
sured in Kelvins.

TANGENT LINE  A line that crosses a curve in exactly one point.
VECTOR  In general usage, something that conducts something 

else from one location to another location; in physics, dis-
placements are called vectors.

VECTOR ADDITION  The operation of adding componentwise: 

.

VECTOR PRODUCT  See cross product.
VELOCITY  A vector representing the rate of change of the posi-

tion of an object.
VISUAL MAGNITUDE  Classification of stars based on a logarithm 

of their apparent brightness, invented by the Greek astrono-
mer Hipparchus in the second century B.C. and refined once 
better instruments were available.

WEIGHT  The magnitude of the gravitational force between 
the object being weighed and a much larger object P, which 
could be a planet.
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WORLDLINE  The entire trajectory of a particle in special or 
general relativity, shown on some sort of  space- time diagram. 
Often, this refers to the trajectory of a particle undergoing 
uniform  (constant- velocity) motion.
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Web Sites
The Galileo Project
http://galileo.rice.edu/galileo.html

From Stargazers to Starships
http: //www- spof.gsfc.nasa.gov/stargaze/
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