


1 Stars and the Universe

1.1 Setting the stage

Stars are not distributed randomly in the universe, but are assembled through gravita-
tional interactions into galaxies. Typical distances between stars in a given galaxy are
of the order of 1 parsec (pc) whereas distances between galaxies are typically of the
order of 100 kpc–1Mpc (1 pc is the distance at which the semi-major axis of Earth
orbit subtends an angle of 1 arcsecond; this corresponds to ∼3�26 light years, where
one light year is the distance travelled by light in one year, i.e. 9.4607 × 1017 cm).

There are three basic types of galaxies: spirals, ellipticals and irregulars (see
Figure 1.1). Spiral galaxies (our galaxy, the Milky Way, is a spiral galaxy) constitute
more than half of the bright galaxies that we observe within ∼100Mpc of the Sun.
They generally comprise a faint spherical halo, a bright nucleus (or bulge) and a disk
that contains luminous spiral arms; spirals have typical masses of the order of 1011M�
(1M� denotes one solar mass, i.e. 1.989 × 1033 g). Spirals are divided into normal
and barred spirals, depending on whether the spiral arms emerge from the nucleus or
start at the end of a bar springing symmetrically from the nucleus. Dust and young
stars are contained in the disk whereas the nucleus and halo are populated by older
stars. Elliptical galaxies account for ∼10 per cent of the bright galaxies, have an
elliptical shape, no sign of a spiral structure nor of dust and young stars, a mass range
between ∼105 and ∼1012M�, and in general resemble the nuclei of spirals. There is
no sign of significant rotational motions of the stars within ellipticals, whereas stars
in the disks of spirals show ordered rotational motion.

These two broad types of galaxies are bridged morphologically by the so-called
lenticular galaxies, which make up about 20 per cent of the galaxies, and look
like elongated ellipticals without bars and spiral structure. The third broad group of
galaxies are the irregulars, that show no regular structure, no rotational symmetry
and are relatively rare and faint.
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Figure 1.1 The so-called tuning fork diagram, i.e. the galaxy morphological classification.
Elliptical galaxies are denoted by E (the various subclasses are denoted by the approximate value
of the ellipticity) spirals by S, barred spirals by SB; examples of Dwarf elliptical (dE), Irregular
(Irr) and Peculiar (Pec) galaxies are also displayed (courtesy of P. James)

Many galaxies show various types of non-thermal emission over a large wavelength
range, from radio to X-ray, and are called active galaxies. These active galaxies
display a large range of properties that can probably be explained invoking one
single mechanism (possibly related to accretion of matter onto a black hole); the
difference in their properties is most likely due to the fact that we are observing the
same kind of object at different angles, and therefore we see radiation from different
regions within the galaxy. Examples of active galaxies are the Seyfert galaxies, radio
galaxies, BL Lac objects and quasars. There are also so-called starburst galaxies,
e.g. galaxies displaying a mild form of activity, and showing a strong burst of star
formation.

For many years it was believed that galaxies extend as far as they are visible.
However, starting from the 1970s, the orbits of neutral hydrogen clouds circling
around individual spiral galaxies provided rotation curves (e.g. rotational velocity as
a function of the distance d from the galactic centre) that, instead of dropping as√
d beyond the edge of the visible matter distribution (as expected from Keplerian

orbits after the limit of the mass distribution is reached) show a flat profile over large
distances well beyond this limit. This can be explained only by a steady increase
with distance of the galaxy mass, beyond the edge of the visible mass distribution.
This dark matter reveals its presence only through its gravitational pull, since it does
not produce any kind of detectable radiation.
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Even galaxies are not distributed randomly in the universe, but are aggregated
in pairs or groups, which in turn are often gathered into larger clusters of galaxies.
Our galaxy (often referred to as the Galaxy) belongs to the so-called Local Group
of galaxies, that includes about 20 objects (mainly small) among them the Large
Magellanic Cloud (LMC) the Small Magellanic Cloud (SMC) and Andromeda (M31).
The nearest cluster of galaxies is the Virgo cluster (at a distance of about 20Mpc).
Further away are other galaxy clusters, among them the Coma cluster, located at a
distance of about 100Mpc, that contains thousands of objects. Deep galaxy surveys
(e.g. the APM, COSMOS, 2dF and SDSS surveys) have studied and are still probing
the distribution of galaxies in the universe, and have revealed even more complex
structures, like filaments, sheets and superclusters, that are groupings of clusters of
galaxies.

Dark matter is also found within clusters of galaxies. This can be inferred studying
the X-ray emission of the hot ionized intracluster gas that is accelerated by the
gravitational field of the cluster. A rough comparison of visible and dark matter
contribution to the total matter density of the universe tells us that about 90 per cent
of the matter contained in the universe is dark.

It is evident from this brief description that overall the universe appears to be
clumpy, but the averaged properties in volumes of space of the order of 100Mpc
are smoother, and the local inhomogeneities can be treated as perturbations to the
general homogeneity of the universe.

The dynamical status of the universe is revealed by spectroscopic observations of
galaxies. The observed redshift of their spectral lines shows that overall galaxies are
receding from us (in the generally accepted assumption that the observed redshift is
due to the Doppler effect) with a velocity v that increases linearly with their distance
D, so

v=H0 ×D�

as first discovered by Hubble and Humason during the 1920s (hence the name of
Hubble law for this relationship). The constant H0 is called the Hubble constant.
Taken at face value this relationship seems to locate us in a privileged point, from
where all galaxies are escaping. However, if one considers the overall homogeneity
of the universe, the same Hubble law has to apply to any other location and the
phenomenon of the recession of the galaxies might be looked upon as an expansion
of the universe as a whole; a useful and widely used analogy is that of the two-
dimensional surface of a balloon that is being inflated. If the galaxies are points
drawn on the surface of the balloon, they will appear to be receding from each other
in the same way as the Hubble law, irrespective of their location.

Superimposed on the general recession of galaxies are local peculiar velocities
due to the gravitational pull generated by the local clumpiness of the universe. For
example, the Milky Way and M31 are moving towards each other at a speed of
about 120 km s−1, and the Local Group, is approaching the Virgo Cluster at a speed
of ∼170 km s−1. On a larger scale, the Local Group, Virgo Cluster and thousands of
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other galaxies are streaming at a speed of about 600 km s−1 towards the so called
Great Attractor, a concentration of mass in the Centaurus constellation, located at a
distance of the order of 70Mpc. These peculiar velocities become negligible with
respect to the general recession of the galaxies (Hubble flow) when considering
increasingly distant objects, for which the recession velocity predicted by the Hubble
law is increasingly high.

Another discovery of fundamental importance for our understanding of the uni-
verse was made serendipitously in 1965 by Penzias and Wilson. Observations of
electromagnetic radiation in a generic frequency interval reveal peaks associated with
discrete sources – i.e. stars or galaxies – located at specific directions; when these
peaks are eliminated there remains a dominant residual radiation in the microwave fre-
quency range. The spectrum of this cosmic microwave background (CMB) radiation
is extremely well approximated by that of a black body with a temperature of 2.725K.
After removing the effect of the local motion of the Sun and of our galaxy, the CMB
temperature is to a first approximation constant when looking at different points in the
sky, suggesting a remarkable isotropy which is hard to explain in terms of residual
emission by discrete sources. From the CMB temperature one easily obtains the energy
density associated to the CMB, �CMB, given that �CMB = �CMB/c

2 ∼ 4�64× 10−34 g cm3
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Figure 1.2 Plot of the CMB temperature fluctuations (in units of 10−6 K) as a function of the
angular scale in degrees (upper horizontal axis) and the so-called wave number l∼�/� (lower
horizontal axis); this is also called the power spectrum of the CMB fluctuations
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(c denotes the speed of light, 2�998× 1010 cm s−1). This CMB photon density is the
dominant component of the present radiation density in the universe; a rough com-
parison of �CMB with the present matter density � shows that at the present time the
density associated with the photons is about three orders of magnitude lower than the
matter density, including the dark matter contribution.

In 1992 the COBE satellite first discovered tiny variations �T of the CMB tem-
perature, of the order of �T/T ∼10−5 (where T is the global mean of the CMB
temperature) when looking at different points in the sky. By computing the average
over the sky of the ratio �T/T (temperature fluctuation) measured from any two
points separated by an angle �, one obtains what is called the angular power spectrum
of the CMB temperature anisotropies, displayed in Figure 1.2. This power spectrum
shows the existence of a series of peaks located at specific angular scales.

A comprehensive theory for the structure and evolution of the universe must be able
to explain the basic observations outlined above in terms of evolutionary processes
rooted in accepted physics theories. The following sections introduce briefly the
Hot Big Bang theory, which is the presently widely accepted cosmological theory.
Detailed presentations of cosmology at various levels of complexity can be found in
[11], [57], [118] and [142].

1.2 Cosmic kinematics

A cornerstone of the Big Bang theory is the so-called cosmological principle: it states
that the large-scale structure of the universe is homogeneous and isotropic. Homo-
geneity means that the physical properties of the universe are invariant by translation;
isotropy means that they are also rotationally invariant. Both these properties can be
applied only considering average properties of large volumes of space, where the
local structures (galaxies, clusters of galaxies) are smeared out over the averaging
volumes.

As discussed before, the adequacy of the cosmological principle can be empirically
verified by studying the distribution of clusters of galaxies on scales of the order
of 100Mpc and by the isotropy of the CMB. Locally the universe is clumpy, but
this clumpiness disappears when averaging the matter density over large enough
volumes. In this way the local clumpiness is treated as a perturbation to the general
smoothness of the universe. The universe is then treated as a fluid whose particles
are galaxies, moving according to the Hubble law; within this picture of a cosmic
fluid the cosmological principle implies that every co-moving observer (i.e. moving
with the Hubble flow) in the cosmic fluid has the same history.

A first step when discussing events happening in the universe is to set up an
appropriate coordinate system. For the time coordinate a natural choice is to use
standard clocks co-moving with the cosmic fluid, that will define a cosmic time t; an
operational way to synchronize t for co-moving observers at different locations is to
set t to the same value when each observer sees that a property of the cosmic fluid,
i.e. the average local density of matter �, has reached a certain agreed value. After
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synchronization, by virtue of the cosmological principle, the two observers must be
able to measure exactly the same value (possibly different from the one at the time
of synchronization) of that property whenever their clocks show the same time.

As for the three spatial coordinates, the cosmological principle greatly restricts the
possible geometries. The assumption of homogeneity and isotropy requires that the
tridimensional space has a single curvature, i.e. it must have the same value at all
positions, but can in principle depend on time. The space–time interval ds between
two events in an homogeneous and isotropic static space can be written as follows

ds2 = c2dt2 −
(

dr2

1−Kr2
+ r2d�2 + r2 sin2 �d�2

)

where K is the spatial curvature, dt the cosmic time separation, r the radial coordinate
and � and � the polar and azimuthal angles in spherical coordinates, respectively.
The expansion (or contraction) of the universe can be accounted for by redefining the
radial coordinate r as r ≡R	t
� − � being dimensionless – and the curvature K as
K	t
≡k/R	t
2. The constant k and coordinate � are defined in a way that k=+1 for
a positive spatial curvature, k=0 for a flat space and k=−1 for a negative curvature.
R	t
 is the so-called cosmic scale factor, that has the dimension of a distance and is
dependent on the cosmic time t. With these substitutions one obtains the so-called
Friedmann–Robertson–Walker (FRW) metric:

ds2 = c2dt2 −R	t
2
(

d�2

1− k�2
+�2d�2 +�2 sin2 �d�2

)
(1.1)

The values of the three spatial coordinates ��� and � are constant for an observer
at rest with respect to the expansion of the cosmic fluid. One can easily see that the
factor R	t
 in Equation (1.1) allows a scaling of the spatial surfaces that depends only
on time, thus preserving the homogeneity and isotropy dictated by the cosmological
principle. It is important to stress that it is only by virtue of the cosmological principle
that we can uniquely define a four-dimensional coordinate system co-moving with
the cosmic flow. As an example, the definition of cosmic time would be impossible
in a universe without homogeneity and isotropy, because we could not synchronize
the various clocks using mean properties (that would not be the same everywhere at
a given time t) of the cosmic flow.

The geometrical properties of the three-dimensional space determined by the value
of k can be briefly illustrated as follows. Let us consider at a cosmic instant t a sphere
with centre at an arbitrary origin where �=0, and surface located at a fixed value �;
the difference between the coordinates of the centre of the sphere and the surface is
equal to r=R	t
�. The area A of the spherical surface of coordinate radius r=R	t
�
is, by definition, A= 4�r2 = 4�R	t
2�2. The physical radius Rp of the spherical
surface is the distance between the centre and surface of the sphere measured with
a standard rod at the same cosmic time t. This means that one has to determine the
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interval �s2 between the two events assuming dt= 0, so that Rp=
√−�s2. From the

FRW metric one obtains

Rp =R	t

∫ �

0

d�√
1− k�2

(1.2)

Rp is equal to R	t
 sin−1 ��R	t
� and R	t
 sinh−1 � when k= 1�0 and −1, respec-
tively. When k= 0 one has � =Rp/R	t
, and A= 4�R2

p, i.e. r is equal to Rp and
the area A increases as R2

p, as in Euclidean geometry. When k=+1 one has r =
R	t
 sin	Rp/R	t

 and A= 4�R	t
2 sin2	Rp/R	t

, which reaches a maximum value
A= 4�R	t
2 when Rp = 	�/2
R	t
, then becomes zero when Rp =�R	t
 and has in
general a periodic behaviour. This means that in the case of k=+1 space is closed
and the periodicity corresponds to different circumnavigations. In the case of k=−1
then A= 4�R	t
2 sinh2	Rp/R	t

, which increases with Rp faster than in the case of
a Euclidean space.

It is easy to see how simply R	t
 describes the observed expansion of the universe.
Let us set �= 0 at the location of our own galaxy, that is approximately co-moving
with the local cosmic fluid (hence its spatial coordinate does not change with time)
and consider another galaxy – also at rest with respect to the expansion of the
universe – whose position is specified by a value � of the radial coordinate (the
angles � and � are assumed to be equal to zero for both galaxies). Its proper distance
(defined in the same way as for the proper radius Rp discussed before) D at a given
cosmic time t is given by:

D=R	t

∫ �

0

d�√
1− k�2

As in the case of Equation (1.2) D is equal to R	t
 sin−1 ��R	t
� and R	t
 sinh−1 �
when k=1�0 and −1, respectively. The velocity v of the recession of the galaxy due
to the expansion of the universe is

v= dD

dt
= dR	t


dt

∫ �

0

d�√
1− k�2

= dR	t


dt

1
R	t


D

This looks exactly like the Hubble law; in fact, by writing

H	t
= dR	t


dt

1
R	t


(1.3)

we obtain

v=H	t
×D

H	t
 corresponds to the Hubble constant and one can notice that its value can change
with cosmic time. The value of H	t
 determined at the present time is denoted as H0.
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This result is clearly independent of the location of the origin for the radial coordi-
nate �, since any position in the universe is equivalent according to the cosmological
principle. It is important to notice that locally, e.g. within the solar system or within a
given galaxy, one cannot see any effect of the cosmic expansion, since the local grav-
itational effects dominate. For distances large enough (D>c/H	t
) the last equation
predicts recession velocities larger than the speed of light, an occurrence that seems
to go against special relativity. The contradiction is, however, only apparent, given
that galaxies recede from us faster than the speed of light (superluminal recession)
because of the expansion of space; locally, they are at rest or moving in their local
inertial reference frame with peculiar velocities � c.

In the following section we will briefly describe the observational counterpart of
v=H	t
×D and show how it probes the evolution of the kinematic status of the
universe.

1.2.1 Cosmological redshifts and distances

What we measure to estimate the recession velocity of galaxies is a redshift z, that
can be related to the change of R	t
 with time. Consider light reaching us (located
at � = 0) from a galaxy at a radial coordinate �. Two consecutive maxima of the
electromagnetic wave are emitted at times te and te+�te and received at times t0 and
t0 + �t0; if �te = �t0 we would not observe any redshift since the wavelength of the
electromagnetic wave is given by the spatial distance between the two consecutive
maxima, i.e. the observed wavelength is 0 = c�t0, and the emitted one is e = c�te.
We will now find the relationship between �te and �t0. Since ds=0 for light, we have∫ t0

te

dt

R	t

= 1

c

∫ �

0

d�√
1− k�2∫ t0+�t0

te+�te

dt

R	t

= 1

c

∫ �

0

d�√
1− k�2

for the first and second maximum, respectively. The right-hand side of both equations
is the same, therefore we can write∫ t0+�t0

te+�te

dt

R	t

−
∫ t0

te

dt

R	t

= 0

The first term on the left-hand side of the previous equation can be rewritten as∫ t0+�t0

te+�te

dt

R	t

=
∫ t0

te

dt

R	t

+
∫ t0+�t0

t0

dt

R	t

−
∫ te+�te

te

dt

R	t


and therefore∫ t0+�t0

t0

dt

R	t

−
∫ te+�te

te

dt

R	t

= 0
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The intervals �te and �t0 are negligible compared with the expansion timescale of
the universe, and therefore R	t
 is to a good approximation constant during these two
time intervals; inserting this condition into the previous equation provides

�t0
R	t0


= �te
R	te


The redshift z= 	0 −e
/e is therefore given by

z= �t0
�te

− 1= R	t0


R	te

− 1 (1.4)

In an expanding universe z > 0 (since R	t0
 >R	te
) as observed. If the redshift is
small enough, i.e. te is close to t0 in cosmological terms, we can expand R	te
 about
t0 using the Taylor formula, and retain only the terms up to the second order:

R	te
=R	t0
+ 	te − t0

dR	t0


dt
+ 1

2
	te − t0


2d
2R	t0


dt2

We can now define H0 as

H0 ≡H	t0
=
dR	t0


dt

1
R	t0


i.e. the present value of the Hubble constant, and the so-called deceleration parameter

q0 ≡−d2R	t0


dt2
1

R	t0
H
2
0

(1.5)

Both H0 and q0 are related to the present rate of expansion of the universe. H0

measures the actual expansion rate, whilst q0 is positive if the expansion is slowing
down (hence the name deceleration parameter) or negative if the opposite is true.
With these definitions the second-order expansion of R	te
 can be rewritten as

R	te
=R	t0


[
1+H0	te − t0
−

1
2
q0H

2
0 	te − t0


2

]

and after additional manipulations one obtains the following useful results:

z=H0	t0 − te
+H2
0 	t0 − te


2

(
1+ 1

2
q0

)
(1.6)

t0 − te =
1
H0

[
z−

(
1+ 1

2
q0

)
z2
]

(1.7)

�= c

R	t0
H0

[
z− 1

2
	1+ q0
z

2

]
(1.8)
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These relationships between z�H0 and q0 hold in the case of a redshift due to
the expansion of the universe. Superimposed on the expansion of the universe are
local peculiar velocities (e.g. blue- and redshifts) due to the motions caused by
local anisotropies in the matter distribution; an example is local motions in clusters
and groups of galaxies due to the gravitational potential of the cluster itself. These
effects are minimized by observing suitably distant objects, where the velocities
corresponding to the expansion of the universe become so large that they make local
peculiar motions negligible.

From an observational point of view, the Hubble law needs, in addition to the
measurements of the redshift z, an estimate of galaxy distances. This is usually done
by comparing the observed flux l received from certain standard candles (i.e. objects
of known intrinsic luminosity L) with their intrinsic luminosities. Traditionally one
uses the inverse square law to determine the distance:

d=
(

L

4�l

)1/2

(1.9)

This result is based on the conservation of energy and assumes a flat static space.
In cosmology, the distance obtained through Equation (1.9) is called the luminosity
distance, and is denoted by dL.

Consider a light source located at a radial co-moving coordinate �; at a given
cosmic time te the source emits photons that reach the observer located at � = 0 at
time t0. By the time the light reaches the observer it is distributed uniformly across a
sphere of coordinate radius R	t0
�. The area of the spherical surface at the observer
location centred at the source is therefore given by 4�R	t0


2�2. The photons emitted
by the source are redshifted by the expansion of the universe, and their energy is
therefore reduced by a factor (1 + z) when measured by the observer; this is because
the wavelength is increased by a factor (1 + z) and the photon energy is proportional
to the inverse of its wavelength. There is also an additional reduction by a factor
(1 + z) due to the so-called time dilation effect, i.e. the observer receives less photons
per unit time than emitted at the source. This can easily be understood by means of
the same arguments as were applied in the case of the wave maxima, that led to the
notion of redshift. We found before that the time between two consecutive maxima
at emission is different from that at reception; the same holds for the time interval
between photons emitted by the source, and implies that the rate of reception of
photons is different from the rate of emission. Taking into account these two effects,
conservation of energy dictates that:

l= 1
	1+ z
2

L

4�R	t0
2�2

We now define the luminosity distance dL of the observed source, according to Equa-
tion (1.9); one obtains dL=R	t0
�	1+z
, which can be rewritten using Equation (1.8)
as (retaining the terms up to the second order in z):
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dL =
cz

H0

[
1+ 1

2
	1− q0
z

]
(1.10)

The first term is the empirical Hubble law, with the recession velocity given by
the product cz. The higher-order correction term is proportional to the deceleration
parameter q0 and starts to play a role when z> 0�1.

Another way to determine cosmological distances is to consider objects (e.g.
galaxies) with known diameter Dp, and compare the measured angular diameters �
with the intrinsic ones. One can define a diameter distance dDp

as

dDp
= Dp

�
(1.11)

which is equal to dL for a flat static space. Consider an object located at the radial
co-moving coordinate �, that emits light at time te; if the observer is located at
� = 0 and receives the light from the object at t0, the relationship between Dp and
� can easily be obtained by determining

√
�s2 where �s is obtained integrating the

FRW metric with dt=d�=d�= 0. This provides dDp
=R	te
�. By comparing the

latter equation with dL =R	t0
�	1+ z
 obtained before and using the definition of z
we obtain

dDp
= dL

	1+ z
2

In principle dDp
is different from dL, but the two distances converge to the same

value when z→ 0.
It should be clear from this brief discussion that the empirical study of the trends

of dL and dDp
with redshift z provides an estimate of the kinematical parameters H0

and q0. A third possible method to determine the kinematical status of the universe
involves number counts of galaxies with a flux greater than some specified value
l (N(l)). Assuming there are n galaxies per unit volume, in a static flat universe (with
uniform distribution of galaxies) one expects

N	l
= 4
3
�n

(
L

4�l

)3/2

where L is the intrinsic galaxy luminosity, supposed constant. For an expanding
universe it can be shown that (as a second-order approximation in z)

N	l
= 4�n	t0

3

(
L

4�l

)3/2
[
1− 3H0

c

(
L

4�l

)1/2
]
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where n	t0
 is the number density at the present time (e.g. in the low redshift
universe); notice that by a fortuitous cancellation of terms this relationship does not
depend on q0. The correction term to the static flat case is always negative, so that
in principle one should always observe fewer sources than predicted by the simple
l−3/2 formula.

There are many practical difficulties in implementing these three tests; the reason
is that we are assuming the existence of perfect standard candles and the absence of
evolutionary effects on the size, and brightness of galaxies. Evolutionary effects are
particularly important since a high redshift means a time far in the past, when galaxies
had a very different age from the present one. A detailed discussion of these classical
cosmological tests and the related observational problems can be found in [187]. In
recent years the class of stellar objects called Type Ia supernovae (see Section 7.6)
has been used as an effective standard candle and applied with great success to study
the dL–z relationship (see [146]).

We conclude this section by discussing briefly the concept of particle horizon in
an FRW expanding universe. In general, as the universe expands and ages, a generic
observer is able to see increasingly distant objects as the light they emitted has time
to arrive at the observer’s location. This implies that as time increases, increasingly
larger regions of space come into causal contact with the observer, who will therefore
be able to ‘see’ increasingly larger portions of the universe. We can ask ourselves
what is the co-moving coordinate �H of the most distant galaxy we can see at a given
cosmic time t. Increasing values of �H with time mean that we are actually seeing
more and more distant galaxies (supposed to be at rest with respect to the cosmic
expansion) as the time increases. Consider a radially travelling photon, for which
ds= 0. From the FRW metric we obtain

∫ t

0

dt′

R	t′

= 1

c

∫ �H

0

d�√
1− k�2

and therefore

�H = sin
(
c
∫ t

0

dt′

R	t′


)
k=+1

�H = c
∫ t

0

dt′

R	t′

k= 0

�H = sinh
(
c
∫ t

0

dt′

R	t′


)
k=−1 (1.12)

If the space has k= 0 or k=−1 it is in principle possible, for specific forms of R	t
,
to have an infinite �H ; this means that all galaxies in the universe might eventually
be visible at a certain time t for particular forms of the function R	t
. If k=+1 the
behaviour of �H is periodic, and if the argument of the sine function is equal to or
larger than �, one can sweep the entire universe.
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1.3 Cosmic dynamics

The previous discussion about the kinematics of the cosmic fluid was based exclu-
sively on the properties of the FRW metrics which, in turn, depend only on the
hypothesis of homogeneous and isotropic cosmic fluid. To determine the behaviour
of R	t
 with cosmic time t and the value of k we need to apply a theory for the
physical force(s) governing the evolution of the cosmic fluid. The only fundamental
interaction able to bridge the relevant cosmological scale is the gravitational force,
therefore we need to use a theory of gravity – the general relativity theory – to
describe the evolution of FRW universes.

The case of a space with the FRW metrics provides the equation

(
dR	t


dt

)2

=−kc2 + 8�G�	t
R	t
2

3
(1.13)

where G is the gravitational constant (6�6742× 10−8dyn cm2 g−2) and � is the matter
density. Equation (1.13) was obtained in 1922 by Friedmann, who solved Einstein’s
field equations for an isotropic and homogeneous universe. As we will see in a
moment, these equations predict an expanding universe. A more general form of
the field equations contains the constant � – called the cosmological constant –
introduced by Einstein in 1917 in order to obtain static universes (the expansion of
the universe had not been discovered yet). It is important to notice that the value of
� must be small in absolute terms, since the planetary motions in the solar system
are well described by the Einstein field equations with �= 0. Including � in the
gravitational field equations provides

(
dR	t


dt

)2

=−kc2 + 	8�G�	t
+�
R	t
2

3
(1.14)

It is clear that the evolution of R	t
 is controlled by the density (�), the geometry (k)
and the cosmological constant (�). By using the definition of H	t
 one can rewrite
Equation (1.14) as

H	t
2 =− kc2

R	t
2
+ 8�G�	t


3
+ �

3
(1.15)

It is customary to introduce the critical density �c ≡ 3H	t
2/	8�G
 and define the
density parameter �� = �/�c, an equivalent for the cosmological constant �� =
�/	3H	t
2
, and the sum � =�� +�. With these definitions Equation (1.15)
becomes

	1−�
H	t
2R	t
2 =−kc2 (1.16)

We can immediately see from this form of the Friedmann equation that there is an
intimate connection between the density of matter plus the cosmological constant,
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and the geometry of space. �= 1 gives a flat space, �> 1 a positive curvature, and
�< 1 a negative curvature. It is also important to notice the obvious fact that �
changes with time, since H	t
 and R	t
 both change with t, but the product kc2 is a
constant.

1.3.1 Histories of R�t�

Equation (1.14) enables us to perform a simple analysis of the behaviour of R	t

for various model universes, once an additional equation for the density is obtained;
this equation can be determined by applying the first principle of thermodynamics
to the cosmic fluid. In an isolated system the first law of thermodynamics states that
dU =−PdV where U is the internal energy of the system, V its volume and P the
pressure. The internal energy is �c2 times the volume V (i.e. the energy associated
with the rest mass of the matter) so that the time evolution of the system according
to the first law is

d	�	t
c2V	t



dt
=−P

dV	t


dt

which can also be rewritten as

d	�	t
c2R	t
3


dt
=−P

dR	t
3

dt
(1.17)

using the fact that the volume V scales as R	t
3. Let us now assume that the density
is dominated by matter and not by radiation; this is a very good assumption since
observationally – as discussed before – one finds that at the present time the matter
density is about three orders of magnitude larger than the density associated with
radiation (�r = �r/c

2, where �r is the photon energy density). If the matter is non-
relativistic (a correct assumption for almost the whole evolution of the universe) its
pressure is negligible with respect to �c2 and Equation (1.17) provides

d�	t


dt

1
�	t


=−3
dR	t


dt

1
R	t


(1.18)

which implies

�	t
R	t
3 =�	t0
R	t0

3

where t0 is the present cosmic time and t a generic value. This reflects the simple fact
that the density of non-relativistic matter is decreasing because of dilution as space
is expanding. If photons were to be the dominant contributor to the total density, the
previous relationship would be different. In fact, for photons (and more generally for
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relativistic particles) P = 	�rc
2
/3 and P is no longer negligible with respect to U .

Therefore Equation (1.17) would provide

d�r	t


dt

1
�r	t


=−4
dR	t


dt

1
R	t


(1.19)

and

�r	t
R	t

4 =�r	t0
R	t0


4

The scaling of �	t
 with R	t
4 is firstly due to the decrease of the number density of
photons as R	t
−3 when the universe expands (since the volume increases as R	t
3).
In addition, the energy of individual photons decreases as R	t
−1 because of the
cosmological redshift and therefore both �r and �r decrease with time as R	t
−4,
faster than the matter density.

By considering a matter dominated universe one now can rewrite Equation (1.14) as(
dR	t


dt

)2

=−kc2 + 8�G�	t0
R	t0

3

3R	t

+ �R	t
2

3
(1.20)

Differentiation of this equation with respect to t provides:

d2R	t


dt2
=−4�G�	t0
R	t0


3

3R	t
2
+ �R	t


3
(1.21)

This equation shows clearly how the self gravitation of matter (represented by �)
acts to slow down the expansion of the universe, because it appears as a negative
contribution to the acceleration of R	t
. On the other hand, a positive � acts like a
negative density and tends to accelerate the expansion of the universe; a particular
choice of�makes the universe static (although in a situation of unstable equilibrium).
The term 	�R	t

/3 is often called the cosmic repulsion term.

It is now easy to determine some general properties of R	t
 in a matter dominated
universe. If � is zero or negative the acceleration of R	t
 is always negative; at some
time in the past R	t
 must have reached zero and therefore � was infinite (i.e. a
singularity is attained). It is natural to set the zero point of the cosmic time at this
instant, which can also be considered the origin of the universe. As for the future
evolution, if � is negative, R	t
 will also intersect the t axis some time in the future
(hence a final implosion) since the expansion will slow down, eventually stop and
then reverse to a contraction. If � is zero the acceleration can become zero in the
future if R	t
 becomes infinite, and therefore the expansion can slow down without
ever being followed by a contraction. The precise behaviour depends in this case on
the value of k. If k=−1 or 0 the future collapse is avoided, but not if k=+1.

If � is positive then R	t
 is not always decelerating and there is the possibility
of avoiding a singularity in the past. In fact, if k=+1 one can obtain from Equa-
tions (1.20) and (1.21) that in the past there has been a minimum of R	t
 different from
zero, given by R3

min = 	4�G�	t0
R	t0

3
/� if the cosmological constant satisfies the

following relation: �<	c6
/	4�G�	t0
R	t0

3
2. As for the future evolution, if k= 0
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or −1 the expansion continues forever, whereas if k=+1 the expansion may vanish
and then be followed by a contraction, depending upon the value of �.

For historical interest we show briefly how it is possible to obtain a static universe
by tuning the value of �. In a static universe both R	t
 and �	t
 are constant,
and both velocity and acceleration of R	t
 are equal to zero. With these constraints
Equations (1.20) and (1.21) provide �= 4��	t0
G, k/R2= 	4��	t0
G
/c2, where R
denotes the constant value of R	t
. Since R has to be positive and k can be only equal
to 0, +1�−1, we have that a static universe will have k=+1 and R= c/

√
4��	t0
G.

We conclude by providing analytical relationships between R	t
 and t for the case
of flat geometry, i.e. �= 1 and k= 0, and arbitrary values of �, which are relevant
to the presently favoured cosmological model. With this choice of parameters the
universe began from a singular state (R= 0 and �=� at t= 0) and Equation (1.20)
gives (see also Figure 1.3):

R	t
=R	t0


(
8�G�	t0


�

)1/3

sinh2/3
(
1
2
t
√
3�
)

�> 0

R	t
=R	t0
	6�G�	t0


1/3t2/3 �= 0

R	t
=R	t0


(
8�G�	t0


	�	
)1/3

sin2/3
(
1
2
t
√
3	�	

)
�< 0 (1.22)

For �=0 one obtains the very simple result q0=1/2�H	t
=2/	3t
 and therefore
the age of the universe is t0=2/	3H0
. The quantity 1/H0 is often called Hubble time.

Λ > 0

Λ = 0

Λ < 0

t →

R
 (

t )
 →

Figure 1.3 Qualitative behaviour of the scale factor R	t
 with respect to the cosmic time t for
models with �= 1 and k= 0
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1.4 Particle- and nucleosynthesis

We have already noticed that the density of matter in an expanding universe decreases
with time slower than the density of photons. This means that as we go backwards
in time the radiation density increases faster than the density of matter. Therefore,
there must be a point in time when the two densities were equal and before that the
universe was radiation dominated. If the actual densities of matter and radiation are
�	t0
 and �r	t0
, respectively, the equality is attained at

R	t0


R	tE

= �	t0


�r	t0

= 1+ zE

where tE and zE are, respectively, the cosmic time and redshift of matter–radiation
equality; their values are of the order of 104−105 years and 103, respectively. It is
worth noticing at this stage that the results about the trend of R	t
 with t we gave in
the previous section were obtained assuming a matter dominated universe (negligible
radiation density) at all time. The onset of a radiation dominated universe at the
beginning of the evolution does not, however, alter the general results regarding the
occurrence of an initial singularity, and also the quantitative relationship between
R	t
 and t is not substantially changed, since – as we will soon see – the radiation
dominated era lasts only a short time compared with the timescale of cosmological
evolution.

In case of radiation �r = aT 4
r (where Tr is the radiation temperature and

a= 7�566× 10−15erg cm−3 K−4) Tr	t
∝R	t
−1 and therefore the radiation tempera-
ture was steadily increasing in the past. Calculations of the interaction cross section
between photons and matter and the expansion rate of the universe show that during
the radiation dominated epoch the interaction rate was high enough to ensure that at
each instant there was (to a good approximation) thermodynamical equilibrium (see
Chapter 2) i.e. photons followed a black-body distribution of energies characterized
by the same temperature T = Tr for both radiation and matter. During the radiation
era �r	t
 becomes so large that the contribution of the terms containing k and � in
Equation (1.14) are negligible and we can write

(
dR	t


dt

)2

= 8�G�r	t
R	t

2

3

This equation, in conjunction with �r =aT 4 and Tr	t
R	t
=Tr	t0
R	t0
 does provide

R	t
=R	t0
Tr	t0


(
32�Ga

3c2

)1/4

t1/2

T	t
=
(

3c2

32�Ga

)1/4

t−1/2

�	t
= 3
32�G

t−2 (1.23)
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These formulae for the early evolution of � and T do not contain adjustable constants;
however, they do not strictly apply when approaching tE, since in this case the matter
contribution to � is not negligible, and also the contributions of the curvature and the
cosmological constant may play a role.

There is also a minimum time tP (Planck time) below which we cannot describe the
evolution of the universe with Equation (1.23) due to quantum uncertainty. This stems
from the uncertainty principle applied to the pair of physical variables energy E and
time t, i.e. �E�t>h/	2�
 where h is the Planck constant (h= 6�626× 10−27 erg s).
Consider a length (Planck length) lP = ctP that defines a region in causal contact at
time tP. A mass mP∼�Pl

3
P is associated with this length scale (�P is the density of

matter at t= tP) hence an energy mPc
2=�P	ctP


3c2. The uncertainty relationship can
therefore be rewritten as �P	ctP


3c2tP = �Pc
5t4P > 	h/2�
. From Equation (1.23) we

have �P ≈ 1/	Gt2P
, and consequently �Pc
5t4P ≈ 	c5t4P
/	Gt2P
> 	h/2�
, that provides

tP >		hG
/	2�c5

1/2∼10−43 s. Due to this quantum uncertainty we cannot be com-
pletely sure that there has really been a singularity at t= 0.

When t∼10−43 s the universe was extremely hot, the temperature being of the order
of 1032 K, that corresponds to an energy of ∼1019 GeV (an energy of 1 eV corresponds
to a temperature of 1�1605× 104 K from the relationship E = KBT where KB is
the Boltzmann constant equal to 1�3807× 10−16 erg K). According to the currently
accepted cosmology and particle physics theories, it is during the first epochs after
the singularity that today’s stable particles – the proton–neutron pair, electrons in
a number that compensates for the electric charge of the protons, neutrinos – were
produced. A description of what happened during those first moments of the evolution
of the universe – the so-called Big Bang – has to be based on the knowledge of the
four fundamental interactions (gravitational, strong, weak, electromagnetic) which
we briefly summarize below.

According to the standard model of particle physics, the fundamental interacting
particles – quarks and leptons – are all fermions (particles with spin 1/2). Leptons
are the negatively charged particles electron, � and �, and the associated neutrinos
�e� ��� �� . The rest masses are ∼0�0005GeV for the electron (1 eV = 1�7827× 10−33

g using the relationship E=mc2), 0.106GeV for � and 1.178GeV for �. Neutrinos
are supposed to be massless although recent experiments suggest a mass different
from zero, but not yet well determined. There are six quark species (positively and
negatively charged) called ‘down’, ‘up’, ‘strange’, ‘charm’, ‘bottom’ and ‘top’. Their
mass increases from ∼0�31GeV for the ‘down’ quark up to ∼177GeV for the ‘top’
quark. In addition, there are antiparticles for each lepton and quark.

The gravitational interaction involves all particles, it is described by general rela-
tivity, and is supposed to be mediated by a boson (particle with integer spin) called
graviton. At the moment there is no established quantum theory of gravity, which
is the reason why we cannot try to described what happened at t < tP. The strong
interaction is a short-range interaction mediated by gluons, a family of eight massless
bosons, and involves the so-called hadrons (respectively baryons, like protons and
neutrons, and mesons, the most relevant of them being the pions �0��+��−) which
are made of combinations of quarks. Baryons are made of triplets of quarks, mesons
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of pairs quark–antiquark (e.g. the proton is made by two ‘up’ and one ‘down’ quark,
the neutron by two ‘down’ and one ‘up’ quark). The weak interaction involves all
particles, has short range and is mediated by the W+, W− and Z0 bosons, with masses
of the order of ∼90GeV. The electromagnetic interaction is a long-range interaction
acting among charged particles, and is mediated by the photon (a massless boson).

According to the so-called Grand Unified Theories (GUT) the strong, weak and
electromagnetic interactions were all unified into a single force mediated by super-
heavy bosons with masses of the order of 1015 GeV. This idea stems from the
successful unification of weak and electromagnetic interactions into the electroweak
force that separates into the two components at sufficiently low energies. If it is pos-
sible to unify the strong with the electroweak force at even higher energies has yet to
be seen; there are various theories that are, however, difficult to test experimentally.
Interestingly a GUT prediction is that the proton should decay with a timescale of
∼1032−1033 yr (this hypothetical decay has not been observed yet). A further goal
of physics is to unify gravity with the other three forces (a unification which should
happen at energies higher than GUT). Whether this is possible – in spite of various
attempts – remains to be seen.

If GUT are a viable proposition (at the moment there is no experimental confirma-
tion of their predictions) the physical conditions during the first moments right after
the singularity were adequate to attain the unification of the four fundamental interac-
tions. Following this line of thought one expects that the steady temperature decrease
caused by the expansion of the universe has caused a number of spontaneous symme-
try breaking, that have generated the separate interactions we see today. At t=10−43 s
the gravitational force has separated from the other three interactions which are still
unified into a single force. At energies between 1016 and 1014 GeV (between 10−38 and
10−35 seconds after the singularity) the strong force separated from the electroweak
one. The superheavy bosons disappear rapidly due to annihilation or decay processes.
At this stage the universe is made of leptons, antileptons, quarks, antiquarks, gluons
and four bosons that mediate the electroweak interaction (and probably gravitons).
At energies of the order of 102 GeV (about 10−11 seconds after the singularity) the
electroweak interaction separates into the electromagnetic and weak one. The leptons
(massless until this moment) acquire mass through the Higgs mechanism (probably
also the neutrinos) and the bosons that mediated the electroweak interaction give
rise to the massive W+, W−, Z0 bosons and photons. Below ∼90GeV the massive
bosons disappear through annihilation or decay. At this stage the universe was made
of photons (and probably gravitons) quark–antiquark and lepton–antilepton pairs.

Photons and matter are in equilibrium through absorption and creation–annihilation
processes. Particles and antiparticles continually annihilate each other but more pairs
are produced from the high-energy photon field as long as KBT>2mc2 wherem is the
rest mass of the particle and antiparticle pair, and T is the temperature. This means
that the number of a given particle species with mass m and the photon number are
about the same as long as the previous inequality is satisfied. When the temperature
goes below 2mc2/KB, the particle–antiparticle pairs of mass m annihilate, without
being replaced by newly produced pairs. If there is an asymmetry between the number
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of particles and antiparticles, after the annihilation only the residual number of sur-
viving particles or antiparticles will be left. We do not have, to date, any empirical
evidence for the existence of antimatter in the universe. The antiprotons observed in
the cosmic rays are consistent with the hypothesis of production by interaction of
cosmic rays with the interstellar medium; therefore, at least for the Galaxy, there is no
evidence of antimatter. Absence of � rays from a cluster of galaxies due to nucleon–
antinucleon annihilations is further evidence against the existence of antimatter in the
universe. In order to have a universe populated only by matter, it is necessary to pos-
tulate an asymmetry between matter and antimatter so that the annihilation processes
destroyed all antimatter leaving the excess of matter that we see today. To explain the
observed ratio between photons and matter an initial matter–antimatter asymmetry of
only ∼	1/108
 particles is needed. Proposed mechanisms to explain this asymmetry
involve processes acting when the temperature drops below the threshold for the
separation of the strong force from the electroweak one, but no definitive solution to
this problem (unless one invokes an ad hoc initial condition) has been found yet.

At energies of the order of 1GeV (about 10−5 s after the singularity) nucleons
and antinucleons annihilate, leaving the small excess of nucleons arising from the
asymmetry discussed before. When the energy is down to about 130MeV pairs
�+–�− annihilate and �0 particles decay into photons

The � leptons annihilate with the corresponding antiparticles at about 100MeV
(the more massive � leptons annihilated at higher energies). As for the nucleons,
protons (p) and neutrons (n) were constantly being transformed into each other via
the following reactions:

n↔ p+ e− + �̄e

n + e+ ↔ p+ �̄e

n + �̄e ↔ p+ e−

involving electrons e−, positrons e+, electron neutrinos �e and electron antineutrinos
�̄e. The conversions from one particle to the other were easily accomplished as long
as the energy was above 1.293MeV, e.g. the energy corresponding to the mass
difference between proton and neutron. The direct and inverse reactions were so
frequent that an equilibrium was established between the number densities of protons
and neutrons, given by

nn

np

= e	−1�293MeV
/KBT

At 100MeV nn/np ∼0�99, decreasing down to ∼0�22 when the energy is ∼1MeV.
At about 3MeV the neutrinos decouple, i.e. they do not interact any longer with
the rest of the matter1; their decoupling happens after the annihilation of muons and

1 Neutrinos have a very small interaction cross section. However, right after the singularity the universe was
so dense that neutrinos were also tightly coupled to the other components of the cosmic fluid.
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before the annihilation of electrons and positrons. From this moment on neutrinos
travel essentially undisturbed by the other particles, their temperature still decreasing
(they are relativistic particles) as 1/R	t
. When the energy goes below ∼1MeV
electron–positron pairs annihilate, leaving a small remainder excess of electrons.
Neutrons cannot any longer be replenished fast enough, due to the electron–positron
annihilation and the fast expansion of the universe (it is now about 20 seconds after
the singularity) and the number ratio 	nn/np
∼0�224 attained at electron–positron
annihilation decreases due to the neutron decay (half-life of the order of 10 minutes).
Between 100 and 200 seconds after the singularity the energy has fallen to about
0.1MeV (T ∼109 K) and the nuclear fusion reaction

p+ n→2D+�

becomes an efficient producer of deuterium (at higher energies the deuterium pro-
duced was photodissociated by the energetic photons). Helium production reactions
become efficient when 2D is sufficiently abundant:

2D+2D→3H+ p
3H+2D→4He+ n
2D+ p→3He+�

3He+ n→4He+�

Since there are no stable nuclei with atomic mass 5 to 8, and because of the fast
expansion of the universe that lowers the energies of the particles involved on very
short timescales – the energy drops below ∼30 keV (1 keV=103 eV) e.g. ∼3× 107 K
about 3 minutes after the singularity – the nucleosynthesis leaves about a fraction of
0.75 (by mass) of protons (hydrogen), ∼0�25 of helium, ∼10−4 of deuterium, ∼10−5

of 3He and∼10−10 of lithium. The precise values of these abundances (see Figure 1.4)
are determined by the competition between the expansion rate of the universe and the
nucleon density. The formation of He is limited only by the availability of neutrons; to
a good approximation the helium abundance is therefore set by the neutron abundance
at the beginning of the nucleosynthesis. It therefore depends, albeit only mildly, on
the value of the matter density, increasing for increasing density.

More precisely, the primordial element abundances depend on the density of
baryonic matter that we denote with �b and �b=�b/�c. It is important to notice that
�b is approximately the same as the density of baryonic plus leptonic matter, since
the number of electrons equals the proton numbers to achieve charge neutrality, but
electrons are about 103 times lighter than baryons. From now on we will denote with
baryonic density the density of baryonic plus leptonic matter.

It is generally assumed that the density of dark matter does not play any role
in this cosmological nucleosynthesis, since it is supposed to affect the cosmic fluid
only via its contribution to the gravitational interaction after the end of the radiation
dominated epoch.
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Figure 1.4 Abundances of 4He ((a) in mass fraction), deuterium, lithium and 3He ((b) number
ratios with respect to hydrogen) produced during the primordial nucleosynthesis, as a function of
the product �Bh

2� �B denotes the present (at t= t0) value of the baryon density in units of the
critical density, h=H0/(100 kmMpc s−1)

The primordial abundances of deuterium and 3He are decreasing functions of
�b; this is explained by the fact that the higher the matter density, the higher the
temperature at which these elements reach an abundance high enough to start the pro-
duction of helium, and consequently the higher their destruction rate. The behaviour
of lithium is more complicated; for present values of �b below ≈ 0�0022 lithium
is produced by direct fusion of helium with 3H, whereas at higher densities (for
present values of �b larger than ≈0�02) it is produced by fusion of helium and
3H producing 7Be that transforms into lithium by electron captures. In both cases
the final abundance of lithium increases with �b. However, there is an intermedi-
ate region showing a dip in the abundance, due to the efficiency of a destruction
reaction that involves a proton capture and a consequent decay into two helium
nuclei.

2 Once the present value of the density parameter �b or �r is given, its value at any earlier (or future) epochs
can be obtained from Equations (1.18) and (1.19).
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As the universe expands and cools, one reaches the time when the energy densities
of matter and radiation are equal (at redshift ∼ 3000) and immediately after that the
matter density starts to dominate. Even so, matter and radiation are still tightly coupled
through electron scattering processes. The universe is ionized, and matter is made
mostly of protons (hydrogen nuclei) and free electrons. When the temperature drops
below the ionization energy of hydrogen (13.6 eV) the ionization fraction stays close
to one, due to the large excess number of photons over baryons (photons dominate
by number, although matter dominates energetically and therefore gravitationally) so
that the number of photons in the high-energy tails of the black-body spectrum is high
enough to keep the matter fully ionized. Eventually the temperature, and therefore
the number density, of sufficiently energetic photons drops so low that recombination
prevails. It is at this time, ∼105�5 years after the singularity (i.e. at redshift ∼1000
and T∼4000K) that the first atoms form. The resulting dearth of free electrons has
the immediate consequence of reducing the efficiency of electron scattering, so that
matter and radiation decouple. From this moment on the temperatures of radiation and
matter become different and start to evolve separately; radiation no longer interacts
with matter and can travel undisturbed through space, since the number of particles of
matter is too low to produce significant interactions. The radiation temperature Tr is
reduced according to Tr∝R	t
−1, and the black-body spectrum it had at decoupling is
preserved. This last point can be demonstrated as follows. For a black-body spectrum
the number of photons with frequencies between � and �+d� contained in a volume
of space V	t
 at cosmic time t is given by

dN	t
= 8��2V	t
d�

c3	e	h�/KBTr	t

 − 1

(1.24)

At a later time t′ the frequency will be redshifted to �′ = �R	t
/R	t′
 and therefore
d�′ = d�R	t
/R	t′
. The volume will have expanded to V	t′
= V	t
R	t′
3/R	t
3,
but the number of photons within V	t′
 will be the same as the number within
V	t
 because of conservation (no appreciable interactions with the matter happen);
the temperature Tr	t
 will have also changed according to T	t′
= T	t
R	t
/R	t′
.
By imposing dN	t′
= dN	t
 and rewriting Equation (1.24) expressing ��V	t
 and
Tr	t
 in terms of �′�V	t′
 and Tr	t

′
 according to the relationships given before, one
obtains that

dN	t′
= 8��′2V	t′
d�′

c3	e	h�′/KBTr	t
′

 − 1


i.e. of the same form as Equation (1.24).
This black-body radiation, homogeneous and isotropic (because of the cosmolog-

ical principle) with a temperature Tr nowadays of the order of ∼3K (as obtained
from Tr ∝R	t
−1) is the theoretical counterpart of the observed CMB.
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1.5 CMB fluctuations and structure formation

According to the scenario presented above, the CMB is the relic of the hot phase
before decoupling, and provides us with information about the state of the universe
when its age was only about a few 105 yr. The wealth of structures populating
the universe nowadays suggests the existence of some density inhomogeneities in
the cosmic fluid that have grown with time; if the universe was perfectly isotropic
and homogeneous no structures would have formed with time, whereas in case of
inhomogeneities, regions denser than the background tend to contract and get denser
still, inducing a growth of the initial perturbation.

In 1970 Peebles, Yu, Sunyaev and Zel’dovich predicted that these inhomogeneities
had to be imprinted in the CMB as the tiny temperature fluctuations that have recently
been detected. In very simple terms, fluctuations of the local density of matter would
have behaved as sound waves (with their fundamental mode plus overtones) in the
cosmic fluid before recombination, with the photons providing the restoring force.
The matter we are considering here is the baryonic matter, to which the photons are
tightly coupled, whereas the dark matter did not have any interaction with photons.
At recombination the photons started to travel unimpeded through space for the first
time; photons released from denser, hotter regions were more energetic than photons
released from more rarefied regions. These temperature differences were thus frozen
into the CMB at recombination and are detected today. The shape of the observed
CMB power spectrum is explained when one assumes that the phases of all the
sound waves were synchronized at birth – i.e. that they were all triggered at the
same time – and that the initial disturbances were approximately equal on all scales,
e.g. the fluctuations on small scales had approximately the same magnitude as those
affecting larger regions.

The first and highest peak in the CMB power spectrum (see Figure 1.2) corresponds
to the fundamental wave of this acoustic oscillation; subsequent peaks represent the
overtones. The power spectrum shows a strong drop off after the third peak (an effect
known as Silk damping) due to the process of recombination. Since the recombination
is not instantaneous, during its development the photon mean free path starts to
progressively increase, producing a flow of photons from regions of high densities to
lower density zones, that smooths out the small-scale temperature fluctuations. Most
importantly, amplitude and location of the peaks are closely related to a number of
cosmological parameters (for more details see, for example, the discussion in [112]);
in particular, the location of the first peak is mainly related to the geometry of the
three-dimensional space, whereas the ratio of the heights of the first to second peak
is strongly dependent on �b. Also the values of the Hubble constant and of the
cosmological constant affect both the location and the amplitudes of the peaks albeit
with different sensitivities.

Up to decoupling the density perturbations of the baryonic matter did not grow sub-
stantially (in fact the fluctuations of the CMB temperature are extremely small) due to
the damping effect of the tightly coupled photons, and their evolution can be followed
analytically with linear approximations. However, the perturbations involving dark
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matter are supposed to be able to grow more substantially (no interaction with the
photons and no imprint left on the CMB power spectrum) and after baryonic matter
decoupled from the radiation field, it could fall into and enhance the potential well
of the dark matter condensations, thus starting to build up the structures we see
today. The end point of the evolution of the primordial density fluctuations is the
present statistical distribution of matter. This is generally very complicated, varying
from point to point with objects of different sizes and masses (alternatively, fluctu-
ations of various wavelengths and amplitudes) and its study is fundamental in order
to determine the mechanisms of structure formation. A particular sticking point is
the so-called biasing, i.e. the fact that the light distribution may not faithfully trace
the mass distribution (we can only detect the luminous matter directly, not the dark
matter). Studies not only of the light but also of the gravitational field in the observ-
able structures can overcome this problem, i.e. by determining the peculiar velocities
induced by the mass distribution through the gravitational interaction.

Numerical simulations of the evolution of perturbation and structure formation
(see, for example [110]) have shown that the best assumption about the dark matter
dynamical status is that it is ‘cold’, i.e. it has a negligible velocity dispersion; a ‘hot’
dark matter, i.e. matter with a large velocity dispersion, has been excluded, since
it does not allow the formation of galaxies. As for the nature of this mysterious
dark matter, various hypothetical particles predicted by GUT have been proposed as
viable candidates; at the moment the question is still wide open, since – as mentioned
before – there is no experimental confirmation for any of the proposed GUT and
therefore for their predictions.

1.6 Cosmological parameters

Combining the location and amplitude of the peaks in Figure 1.2 to a number of
constraints obtained from the spatial distribution of galaxies, the dL–z empirical
relationship using Type Ia supernovae as standard candles shown in Figure 1.5, and
the empirical determination of the Hubble law at low redshifts, one can obtain a
consistent picture for the fundamental cosmological parameters, within the framework
of the Big Bang cosmology.

According to these estimates (see Table 1.1) the three-dimensional geometry of
the universe is flat to a high degree of accuracy and the total density is dominated
by the cosmological constant, whereas matter makes only ∼25 per cent of the total.
In addition, the matter density appears dominated by the elusive dark matter, while
the familiar baryonic matter makes only a negligible fraction of the total �. The
estimated (small) value of the present baryonic matter density also agrees with some
determinations of the 2D abundance in high redshift gas clouds (supposed to be of
primordial origin) and recent estimates of the initial He content in Galactic globular
clusters (made of stars formed close to the Big Bang epoch). Since we do not know
what dark matter is and what physical energy is represented by the cosmological
constant, we are in the situation of ignoring the origin of more than 90 per cent of
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Figure 1.5 Empirical dL–z relationship using Type Ia supernovae as distance indicators (filled
and open circles; data from [146] and [164]) compared with the theoretical results for three different
choices of the matter (baryonic plus dark−�M) and cosmological constant (�) density parameters
(but the same value of H0). The luminosity distance dL is related to the displayed (m−M) –
called distance modulus – by 	m−M
= 5 log	dL
 −5, where dL is in parsec and 	m−M
 is in
magnitudes (see Chapter 8)

Table 1.1 Basic cosmological parameters (from [10])

Temperature CMB TCMB (K) 2�725± 0�002
Hubble constant H0 (kmMpc s−1) 71+4

−3

Total density � 1�02± 0�02
Cosmological constant density �� 0�73± 0�04
Baryon density �b 0�044± 0�004
Dark matter density �DM 0�22± 0�04
Photon density ��	10

−5
 (4�800± 0�014)
Age of the universe t0 (Gyr) 13�7± 0�2
Redshift of matter–energy equality zeq 3233+194

−210

Redshift of decoupling zdec 1089± 1
Age at decoupling tdec (10

3 yr) 379+8
−7

the matter/energy content of the universe, although we can ‘feel’ its presence from
its gravitational influence.

1.7 The inflationary paradigm

According to the results reported in Table 1.1 the universe is flat, with�=1 to a very
good approximation. The flatness is potentially a problem because Equation (1.16)
tells us that is an unstable condition. Consider a matter dominated universe. In this
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case one can neglect � in Equation (1.15), multiply both terms by 3/	8�G�	t

 and
obtain

3H	t
2

8�G�	t

− 1=− 3kc2

8�G�	t
R	t
2

which can be rewritten as

	�−1 − 1
�	t
R	t
2 = constant

The right-hand side of this equation is a constant, and therefore we can write, for
two different values of the cosmic time t,

	�−1 − 1
�	t
R	t
2 = 	�−1
0 − 1
�	t0
R	t0


2

where the right-hand side contains the present values and the left-hand side the
corresponding values at a given earlier time t. This latter equation can also be
rewritten as

	�−1 − 1
= 	�−1
0 − 1


�	t0


�	t


(
R	t0


R	t


)2

and since R	t
=R	t0
/	1+ z
� �	t
=�	t0
	1+ z
3, we obtain

	�−1 − 1
= 	�−1
0 − 1


	1+ z


From this equation we can easily see that if � was at the beginning only slightly
different from unity, then it could not possibly be equal to unity nowadays. For
example, about 1 second after the Big Bang (z≈ 1011) � had to be different from
unity by less than ≈2× 10−13, in order to have � within 0.02 of unity today. This is
the so called flatness problem: why was � so finely tuned?

The second problem faced by our understanding of the universe is the so-called
horizon problem. The CMB across the sky is to a very good approximation isotropic,
thus confirming one of the assumptions behind the cosmological principle. However,
the size of the region in causal contact with a given observer increases with time for
a flat universe, and its size at decoupling was much smaller than at the present time,
corresponding to about only one degree in the sky today. Why are two points at the
opposite sides of the sky at the same temperature (apart from the small primordial
fluctuations) even though no information was able to travel from one to the other at
decoupling?

A third question is: what is the origin of the primordial fluctuations and why were
they triggered all at the same time?

One can, in principle, consider these three occurrencies as the initial conditions
of our universe; however, to avoid such a finely tuned choice of initial conditions,
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the so-called inflationary paradigm was proposed in the 1980s by Guth, Linde, Sato,
Albrecht and Steinhardt. The central idea is that there is a period in the early universe
where a term �inf – originated by some hypothetical quantum field – analogous to the
cosmological constant dominates Equation (1.15), that can therefore be rewritten as

H	t
2 = �inf

3

The solution of this equation, after recalling the definition of H	t
, and assuming a
constant �inf , is

R	t
=R	ti
e
√

�inf/3t =Rie
H	t
t

if t is much larger than the cosmic time t= ti of the beginning of the �inf dominated
epoch.

If this exponential expansion (inflation) is long enough, it will drive � towards
1, irrespective of its initial value; this happens because R	t
 increases exponentially,
H	t
 is constant (its value set by the value of �inf ) and therefore, following Equa-
tion (1.16), �→ 1 if R	t
 has increased enough during this phase. Moreover, during
inflation, a very small patch of the universe can grow to enormous dimensions, so that
the isotropy of the CMB temperature, we see today, arose from a very small causally
connected region that underwent an inflationary growth. An expansion by a factor of
≈1030 solves both the flatness and horizon problem without invoking ad hoc initial
conditions. The quantum field that originated �inf is expected to experience quantum
fluctuations that were stretched by the inflation to the scales we see imprinted in the
CMB. Therefore the simultaneous triggering of the primordial fluctuations is due to
the onset of inflation. The general belief is that the inflation occurred when the strong
force separated from the electroweak one, at about t= 10−35 s, and lasted until about
t= 10−32 s.

1.8 The role of stellar evolution

The theory of stellar evolution that we will present in the following chapters is devoted
to unveiling the physical and chemical properties of the stars populating the universe,
and their development with time. The role played by stars in our understanding of
the mechanisms driving the evolution of the matter created during the Big Bang is
paramount. Take the human body as an example. Its chemical composition comprises
∼50 per cent of carbon, ∼20 per cent of oxygen, ∼8�5 per cent of nitrogen plus
∼10 per cent of heavier elements, the remaining fraction being hydrogen. Apart from
hydrogen, no other elements were produced during the primordial nucleosynthesis.

After the groundbreaking study by Burbidge, Burbidge, Fowler and Hoyle ([26])
we know that all elements heavier than helium are produced in stars and injected into
the interstellar medium by mass loss processes and explosions. Out of this chemically
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enriched matter new generations of stars are formed and the cycle is perpetuated until
interstellar gas is available to form new stars. Stellar evolution theory is therefore
a fundamental tool to understand the chemical composition of the present universe
and how it evolved from the Big Bang epoch. It also provides powerful tools to
study the timescale and mechanisms for the formation of the stellar populations and
galaxies we see in the universe, as well as cosmic yardsticks to estimate distances
and investigate the kinematical status of the universe.

Starting from the basics of stellar physics, in the following chapters we will
build up a comprehensive picture of how stars form and evolve, how their physical
and chemical properties change with time, and how one can take advantage of this
knowledge to address broader questions related to galaxy formation and evolution
and the estimate of the main cosmological parameters.



2 Equation of State of the
Stellar Matter

2.1 Physical conditions of the stellar matter

Stars are made of a mixture of gas (molecules, atoms, ions and electrons) plus
radiation. At temperatures higher than 104–105 K the atoms are partly or completely
ionized, i.e. they have lost part or all of their electrons; below a few thousand K
molecules are formed. Free electrons come mainly from the ionization of atoms and,
in the case of very high temperatures and low densities, also from electron–positron
pair production at the expenses of the radiation field. They are distributed among the
ions, and all the gas particles are embedded into a sea of photons.

The thermodynamical properties of the stellar matter are described by the equation
of state (EOS) which uniquely determines the fractions of free electrons, neutral and
ionized atoms (and molecules), their ionization states, the pressure P and all other
thermodynamic quantities as functions of density �, temperature T and chemical
composition of the gas. This chemical composition is parametrized by the so-called
mean molecular weight �, which is the ratio between the average mass of a gas
particle (<m>) and the atomic mass unit (mH = 1�6605× 10−24 g). Changing the
chemical composition of the stellar gas does change the average mass of the gas
particles, with a consequent change of �. The average gas particle mass can also be
written as the ratio between the density � and the number of particles per unit volume
n. From this relationship and �=<m>/mH, we obtain

�= �

nmH

We consider, as an example, a fully ionized gas; by denoting with Xi� Ai and Zi the
mass fraction (normalized to unity), atomic weight and atomic number, respectively,
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of element i, the total number of particles per unit volume is given by

n=∑
i

Xi

AimH

�+∑
i

XiZi

AimH

�

where the first term represents the contribution of the ions, and the second one the
contribution of the electrons. The ion contribution provides the ion mean molecular
weight

�i =
1∑

i

Xi

Ai

whereas the electron contribution provides the mean electron molecular weight

�e =
1∑

i

XiZi

Ar

It is evident from the previous definitions that the molecular weight of the gas is
the harmonic mean of the ion and electron molecular weights

1
�
= 1

�i

+ 1
�e

In stellar astrophysics it is common practice to use the symbols X� Y and Z to
denote the mass fractions of hydrogen, helium and all other elements heavier than
helium (called metals) respectively; these three parameters are related through the nor-
malization X+Y +Z=1. For the metals, the distribution of the individual fractional
abundances has to be specified too. The solar heavy element distribution is considered
to be the standard metal mixture, and is made up of ∼48 per cent (in mass fraction) of
oxygen,∼5 per cent of nitrogen,∼17 per cent of carbon and much smaller amounts of
other metals (see Table 2.1). Representative values of Y� Z are Y ∼0�25� Z∼0 for the
chemical composition of the matter produced during the primordial nucleosynthesis,
Y∼0�25� Z∼10−5–10−2 for the initial chemical composition of oldest stellar pop-
ulations in our galaxy (hereafter referred to as Galaxy) – the so-called Population
II; Y∼0�27� Z∼0�02 for the Sun, Y∼0�30� Z∼ 0�03–0.04 for the more metal-rich
stellar populations in the Galaxy – the so-called Population I.

With the above definition of X� Y and Z, we obtain

n=
(
2X+ 3

4
Y

)
�

mH

+∑
i

Xi

AimH

�+∑
i

XiZi

AimH

�

where the index i runs over all elements heavier than H and He. Since
∑
i

Xi/Ai is

much smaller than 1 and Zi/Ai ∼ 1/2, we have that

n∼
(
2X+ 3

4
Y + Z

2

)
�

mH
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Table 2.1 Solar distribution of the most
abundant metals (abundances in mass
fraction normalized to unity, from [88])

Element Mass fraction

C 1.73285E–01
N 5.31520E–02
O 4.82273E–01
Ne 9.86680E–02
Na 1.99900E–03
Mg 3.75730E–02
Al 3.23800E–03
Si 4.05200E–02
P 3.55000E–04
S 2.11420E–02
Cl 4.56000E–04
Ar 5.37900E–03
K 2.10000E–04
Ca 3.73400E–03
Ti 2.11000E–04
Cr 1.00500E–03
Mn 5.48000E–04
Fe 7.17940E–02
Ni 4.45900E–03

and

�= 1

2X+ 3
4Y + Z

2

When the gas chemical composition has a higher fraction of heavier elements, the
denominator of this formula decreases and � increases.

The EOS of the stellar matter can be directly obtained from the computation of the
Helmholtz free energy F , in the framework of what is usually called the ‘chemical
picture’. An alternative way to determine the EOS – that we do not discuss here – is
to follow the so-called ‘physical picture’ described, for example, in [165].

From the point of view of statistical mechanics the free energy of a gas is given
by F =−KBT ln��� where KB is the Boltzmann constant, and � is the so-called
partition function of the system, defined as

�=
∫
E
g�E′�e−E′/KBTdE′

i.e. an integral over all the available energies E, with g�E′�dE′ giving the number of
states available between E′ and E′ +dE′. When dealing with quantum systems with
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discrete energy levels

�=∑
E

g�E′�e−E′/KBT

where g�E′� is the number of states with energy E′ available to the system.
Given a chemical composition of the stellar matter, one has first to determine

the equilibrium values for the numbers Ns of the various possible particle species s,
e.g. free electrons, neutral atoms, atoms in the various possible ionization states, fully
ionized atoms, molecules, etc.. A very useful property of the free energy F is that
it attains a minimum for the equilibrium values of Ns, once the temperature T and
density � are fixed. To be more specific, we denote with F ′ a generic expression
for the free energy of our system made of a set of arbitrary Ns numbers for the
various particle species s, at a given temperature and density. The equilibrium values
of Ns and the corresponding free energy F are obtained by minimizing F ′, with the
constraints (called stoichiometric constraints)

dF ′

dNj

− dF ′

dNj+1

= dF ′

dNe

for an ionization process of the kind j ↔ ( j + 1) + e, and

dF ′

dNAB

− dF ′

dNA

= dF ′

dNB

for a molecular dissociation process like AB ↔ A + B, plus the total number and
charge conservations. In principle, a term of radiation free energy should be added to
F ′; however, since it does not depend on the particle concentration, it is not required
in the minimization of F ′, and can be added to F after the minimization procedure.

Once the equilibrium values for Ns are determined, one can compute straightfor-
wardly the appropriate value of F for the system, at the given T and �. By expressing
F as the free energy per gram, one obtains all the relevant thermodynamical quan-
tities from the well-known relationships that follow (as usual, subscripts denote the
quantities that are kept fixed in the differentiation; a subscript � means that the
chemical composition is kept fixed). Internal energy per gram E:

E=F −T

(
dF

dT

)
���

(2.1)

pressure:

P=�2

(
dF

d�

)
T��

(2.2)
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specific heats at constant volume, cV and constant pressure, cP

cV =
(
dE

dT

)
���

cP = cV +P
�2
T

�T��

(2.3)

where �� = �d ln�P�/d ln����T��� �T = �d ln�P�/d ln�T�����. By introducing the ratio
	= cP/cV , we can define the adiabatic gradient


ad ≡
d ln�T�
d ln�P�

= 	− 1
	�T

(2.4)

As we shall see a little later, the knowledge of P� �� cP� �T � �� and 
ad is sufficient
for the computation of stellar models.

2.1.1 Fully ionized perfect gas

A very simple EOS is that of a perfect (or ideal) monoatomic gas. We will often use
this EOS to exemplify the thermodynamical behaviour of the matter in stars. Two
conditions define a perfect gas. The first one is that the potential energy of interaction
between the gas particles is negligible with respect to their kinetic energy; the second
one is that de Broglie wavelength (�dB = h/p, where h is the Planck constant and p
the momentum of the particle) associated to the gas particles is much smaller than
their mean separation. This implies that the momenta p and kinetic energies Ekin of
the various particle species follow a Maxwell distribution, with

n�p�dp=√
2�N

(
1

�mKBT

)3/2

p2e−�p2/2mKBT �dp

n�Ekin�dEkin = 2�N
(

1
�KBT

)3/2√
Ekine

−�Ekin/KBT �dEkin

being the number of particles with, respectively, momenta between p and p+dp and
kinetic energy between Ekin and Ekin +dEkin (we assumed nonrelativistic energies as
appropriate for stellar conditions, but see also the discussion later on about quantum
effects). N denotes the total number of particles in the system and m their mass.

The most probable value of Ekin for a particle is equal to KBT , whereas the mean
value is equal to (3/2)KBT . Using these results, the first condition for a perfect gas
implies KBT> �Z2e2�/d where Z is the charge of the dominant ionic species, and d
the average distance between ions. If n is the number of particles per unit volume,
one has that

4�
3
nd3 = 4��

3�mH

d3 = 1
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from which one obtains (neglecting a numerical factor close to unity)

d∼
(
�mH

�

)1/3

The condition involving the de Broglie wavelength can be written as

h

p
= h

�2mKBT�
1/2

�d

where m is the particle mass.
One can immediately see that for a given value of d the electron de Broglie

wavelength becomes comparable to the electron mean distances well before the same
occurs for massive particles like protons and neutrons. The reason is that the electron
mass is three orders of magnitude smaller than the proton and neutron masses. The
free energy F per unit mass of a perfect gas is given by

F =−KBT
∑
s

Ns

[
3
2
ln�T�− ln�Ns��+ ln�Gs�+ 1+ ln�gs�

]
+Fint (2.5)

where Ns is the number of particle species s in the unit mass (e.g. electrons, neutral
molecules and atoms, fully ionized atoms, partially ionized ions), gs is the statistical
weight (the number of states with the same energy available to an individual particle,
i.e. gs = 2 for electrons, because of their spin 1/2) and

Gs = �2�KBms/h
2�3/2

with ms being equal to the mass of the particle species s. Fint is the free energy of
only the particle species with bound states (they are also included in the sum over
the index s) due to their internal degrees of freedom. These particle species – which
we label with the index j – can be in various possible ionization states k, and for a
given ionization state can be in many possible excitation states i. Fint is given by

Fint =−KBT
∑
j�k

Nj�k ln
(
e−Ej�k�o/KBT

gk
�int

j�k

)

This sum involves only particle species j with bound states (e.g. not fully ionized
atoms) and runs over all their ionization states k; the energy Ej�k�0 is the energy of
the ground state of the species j in the ionization state k. �int is the internal partition
function of species j in the ionization state k, that accounts for all possible excited
states i

�int
j�k =

∑
i

gie
�Ej�k�i−Ej�k�0�/KBT
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To Equation (2.5) for the free energy of a perfect gas one has to add the contribution
of the radiation, supposed to be in thermodynamical equilibrium with matter, i.e.

Frad =−4
3
T 4

c�

where  = 5�67051× 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann constant that
is related to the black-body constant a by the relationship a= 4/c.

We consider the case when matter is fully ionized; in this case Fint is equal to zero
because there are no species with bound states. We also neglect Fint when atoms and
molecules are neutral and KBT is much smaller than the smallest possible energy
difference between the internal states of the bound particle species. In this case the
electronic degrees of freedom (and the vibrational and rotational modes of molecules)
are not excited; therefore Fint contributes as a constant to the internal energy E,
but gives zero contribution to all other relevant thermodynamical quantities obtained
from differentiating either F or E.

We can now use Equation (2.1) and write the total number of particles in a unit
mass as 1/(�mH) to obtain the following result for the internal energy E per unit mass
of a perfect monatomic gas of matter plus radiation in thermodynamical equilibrium:

E= 3
2

1
�mH

KBT + aT 4

�
(2.6)

From Equation (2.2), we obtain the well-know relationship between P and �:

P= KB

�mH

�T + aT 4

3
(2.7)

where the second term represents the radiation pressure Prad. If the radiation free
energy is negligible,

�T =�� = 1� cP =
5
2

KB

�mH

� cV =
3
2

KB

�mH

� 
ad = 0�4

In the case of non-negligible contribution from radiation, we define � ≡ Pgas/P,
where P is the total pressure due to the gas plus radiation; with this definition of �
one has that 1− � =Prad/P. The general expression for E will be

E= KBT

�mH

[
3
2
+ 3�1− ��

�

]

from which one obtains

cP =
KB

�mH

[
3
2
+ 3�4+ ���1− ��

�2
+ 4− 3�

�2

]
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and


ad =
1+ �1−���4+��

�2

5
2 + 4�1−���4+��

�2

When �→1 then Pgas→P and cP → 5
2

KB
�mH

� 
ad→0�4. In the case where �→0 then
P→Prad� cP →�, and 
ad → 0�25.

This simple EOS is very useful for heuristic purposes and can be applied to fully
ionized matter as well as to matter where atoms and eventually molecules are neutral
and do not interact with each other.

To describe the stellar matter comprehensively under all possible ranges of physical
conditions encountered during stellar evolution, three additional effects have to be
included in the EOS, namely non-ideal interactions among the charged particles,
the ionization process of atoms (and eventually molecules), and quantum effects on
the momentum and energy distribution of the gas particles.

2.1.2 Electron degeneracy

Quantum effects become important when, as mentioned before, the interparticle
distance is comparable to the de Broglie wavelength, i.e. when the density is high
enough at a given temperature or, conversely, the temperature is low enough at a
given density. It has been shown already that electrons are the first particle species
to be affected, and we will discuss this case in more detail.

When quantum effects are important, the distribution of the individual electron
Ekin values cannot follow the Maxwell distribution any more, because – due to the
Pauli exclusion principle – each individual quantum state can be occupied at most
by one particle. This occurrence modifies the expression that gives the number of
particles per unit volume with momenta between p and p+ dp �n�p�dp� which is
given by the Fermi–Dirac distribution

n�p�dp= 8�p2

h3

(
1

1+ e�−�+Ekin/KBT�

)
dp

where Ekin is the energy associated with the momentum p and � denotes the so-called
degeneracy parameter (electrons are said to undergo ‘degeneracy’ when they obey
this law for the momentum distribution). The degeneracy parameter � is related to
the electron number density ne (which can also be expressed in terms of � and �e as
described above) by the constraint

ne =
8�
h3

∫ �

0

p2dp

1+ e�−�+Ekin/KT�
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In the case of non-relativistic energies the number of electrons per unit volume
with energy between Ekin and Ekin +dEkin is given by

n�Ekin�dEkin =
8
√
2�m3/2

e

h3

(
E

1/2
kin

1+ e�−�+Ekin/KBT�

)
dEkin

It can be demonstrated that in the limit of low density and high temperature
(non-relativistic energies), i.e. when the condition for the onset of quantum effects
is not satisfied, � becomes large and negative and the momentum distribution of the
degenerate electrons becomes the Maxwell distribution of a perfect classical gas.

In case of low temperatures and high densities, � is large and positive; if we define
the so-called Fermi energy EF as �=EF/KBT , the term 1/[1+e�−�+Ekin/KBT�] is equal
to one when Ekin <EF, whereas it is equal to zero when Ekin >EF. The transition
from one to zero when Ekin ∼EF becomes steeper, the larger the value of �. When
� is equal to � it shows as a discontinuity at Ekin =EF (see Figure 2.1). The case
of � approaching � is called complete degeneracy. It is particularly instructive to
consider the idealized case of T = 0. If T = 0 then �=�, and only the quantum
states with Ekin ≤EF are populated since 1/�1+ e�−�+Ekin/KBT�] is equal to zero when
Ekin is larger than EF. From the relationship between ne and � we obtain

ne =
�

�emH

= 8�p3
F

3h3

where pF is the momentum corresponding to the Fermi energy EF. An increase of
the density increases pF and EF, up to a point when relativistic effects have to be
accounted for.
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Figure 2.1 Value of the occupation probability 1/�1+ e�Ekin−EF�/KBT � as a function of the electron
energy in regime of degeneracy, for four different temperatures
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We now give somemore detail for the case where T = 0. If T = 0 the internal energy
of the electrons (equal to their kinetic energy if no other particle interactions are con-
sidered) is equal to the free energy F . For non-relativistic energies EF = p2

F/2me, and
from the previous relationship between � and pF one obtains that �∝E

3/2
F . The internal

energy (hence F ) of the electrons can be determined by integrating n�Ekin�EkindEkin

between 0 and EF:

E= 1
�

∫ EF

0

8
√
2�m3/2

e

h3
E

3/2
kin dEkin

(we need the density � in the denominator if we want to compute the energy per
unit mass) which gives E= F ∝ �1/��E5/2

F . Recalling that �∝E
3/2
F and employing

Equation (2.2) we obtain

P∝�5/3

Inclusion of the neglected constants provides

P= 1
20

(
3
�

)2/3
h2

mem
5/3
H

(
�

�e

)5/3

= 1�0036× 1013
(

�

�e

)5/3

where the numerical constant is given in cgs units. It is very important to realize
that in the case of electron degeneracy the electron pressure does not depend on the
temperature. This has important consequences for stellar evolution, as we will see in
the following chapters. Consider now a mixture of classical ions following the perfect
gas law and non-relativistic degenerate electrons of arbitrary degeneracy parameter;
one can estimate the ratio

Pi

Pi +Pe

≈ 2�5
�e

�i

1
�

where Pi and Pe are the ion and electron pressure, respectively. The higher the degen-
eracy parameter, the lower the contribution of the ions to the total gas pressure (but
the ions provide the main contribution to the density �). As a general rule the electron
pressure always dominates when electrons are degenerate. The electron pressure is
always strong enough to prevent further substantial contractions (hence a substantial
increase in density) of the stellar layers involved (for more detail see Section 3.1.8)
thus averting the onset of quantum effects for the ions, with the exception of the neu-
tron stars. For this same mixture of ions and electrons the internal energy is equal to

E= 3
2
P

�

where P=Pi +Pe,

cP ∼
5
2

P

�T

3�e

2�i�
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and


ad = 0�4

Let us step back to the degenerate electrons and assume now that they have
energies in the extreme relativistic limit, i.e. Ekin =pc; in this case �∝E3

F. By using
Ekin =pc it is easy to see that E can be obtained from

E= 1
�

∫ pF

0

8�p2pc

h3
dp

This provides E= F ∝ �1/��E4
F. By using �∝E3

F and Equation (2.2) we finally
obtain that P∝�4/3. Inclusion of the neglected constants provides

P=
(
3
�

)1/3
hc

8m4/3
H

(
�

�e

)4/3

= 1�2435× 1015
(

�

�e

)4/3

where the numerical constant is again given in cgs units. For a mixture of classical
perfect ions and extremely relativistic degenerate electrons of arbitrary degeneracy
parameter,

Pi

Pi +Pe

≈ 4
�e

�i

1
�
�

Moreover,

E= 3P
�

− 3KBT

2�imH

cP =
4P
�T

3�e

�i

1
�
− 3

2
KB

�imH


ad = 0�5

The most general case of a system made of a perfect fully ionized classical ion gas,
radiation, and electrons that can be relativistically or non-relativistically (partially or
fully) degenerate is more elaborate, and the reader is referred to [62], [81] and [207]
for a detailed discussion on this subject.

2.1.3 Ionization

Up to now we have discussed the EOS of a fully ionized perfect gas including the
effect of electron degeneracy. Another physical process that has to be accounted for
is the ionization of the atoms, since the degree of ionization of the stellar matter
becomes smaller when approaching the cooler stellar surface. In the atmosphere of
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the Sun, for instance, hydrogen and helium are neutral. When the gas is partially
ionized the thermodynamic properties of the stellar matter do depend on the degree of
ionization. As an example, we mention the molecular weight �� 
ad� cP ; in particular,
cP largely increases in ionization regions, with respect to the value determined before
for a fully ionized perfect gas, whereas 
ad decreases below 0.4.

To obtain an equation providing the number of atoms in a given ionization state, we
start by considering a generic free energy computed for a fixed chemical composition

F ′ =−KBT
∑
s

Ns

[
3
2
lnT − ln�Ns��+ ln�Gs�+ 1+ ln�gs�

]
+Fint

with

Fint =−KBT
∑
j�k

Nj�k ln
(
e−Ej�k�0/KBT

gk
�int

j�k

)

and

�int
j�k =

∑
i

gie
�Ej�k�i−Ej�k�0�/KBT

We consider temperatures so high that the electronic degrees of freedom are
excited, and assume that the free electrons are not degenerate. We now impose the
condition

dF ′

dNj�k

− dF ′

dNj�k+1

= dF ′

dNe

for an ionization process of the kind k ↔ (k + 1) + e, and differentiate appropriately
the free energy with respect to the number of electrons, and of the ions in ionization
states k and k + 1. The contribution to dF ′/dNe comes only from the first term in F ′,
whereas dF ′/dNj�k and dF

′/dNj�k+1 have contributions from both the first and second
term (Fint) of the free energy, since both ionic species have internal bound states. By
noticing that mj�k ∼mj�k+1 – i.e. that the masses of atoms of species j ionized k and
k + 1 times are the same – we obtain for the number density of particles of a given
species j in ionization states k and k + 1

nj�k+1ne

nj�k
= �int

j�k+1

�int
j�k

ge�2�meKBT �3/2

h3
e−�j�k/KBT (2.8)

where ne is the number density of electrons, ge=2� �int
j�k the internal partition function

of the ion j in the ionization state k, and

�j�k =Ej�k+1�0 −Ej�k�0
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i.e. the energy (always positive) required to remove an electron from the ground state
of a k-times ionized particle of species j. Equation (2.8) is the so-called Saha equation;
together with the charge and mass conservation the Saha equation determines all the
individual number densities of the various particle species, and therefore the value
of F and other thermodynamical quantities in the ionization regions. In the case
where the free electrons are partially degenerate, the Saha equation can be written as

nj�k+1

nj�k

e� = �int
j�k+1

�int
j�k

e−�j�k/KBT (2.9)

where � is the degeneracy parameter for the free electron gas.
Even a cursory look at Equation (2.8) discloses at least one problem. The partition

function of isolated atoms formally diverges, because of the infinite number of bound
states. Finite values are obtained only when the sum is truncated. A second problem
stems from the fact that Equation (2.8) predicts that an ideal ionizing gas at any
temperature recombines at sufficiently high densities; this yields the unphysical result
that at high densities and high temperatures the gas is predominantly neutral. Both
problems are, however, just artifacts of the ideal gas model, that assumes negligible
interparticle interactions. In reality the atoms in the stellar gas are not completely
isolated, and the Coulomb interaction with neighbouring particles strongly perturbs
the higher quantum states of the ions, which are also the less tightly bound. This is
easy to envisage given that, in order to determine the electrostatic potential acting
on electrons belonging to a given ion, one has to superimpose the electrostatic
potential of all the neighbouring particles. Obviously the higher quantum states are
the most affected, and as the density raises they are broadened into distributions
resembling conduction bands and ultimately destroyed. This phenomenon is often
called depression of the continuum.

As far as the ionization process is concerned, the net effect of Coulomb interactions
with neighbouring particles is to allow only a finite number of bound states. This, in
turn, truncates the partition function avoiding its divergence – since one has to sum
over a finite number of excited states only – and also lowers the value of �j�k, hence
increasing the efficiency of the ionization process (pressure ionization effect). This
continuum depression is often crudely described by the following approximation

� ′
j�k =�j�k −

�k+ 1�e2

RD

when the density exceeds a prescribed value. In this equation RD is the Debye radius
(see our discussion about nuclear reactions for an explanation of the physical meaning
of the Debye radius)

RD =
(

KBTmH

4�e2��2

)1/2
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and

�2 =∑
i

�Z2
i +Zi�

Xi

Ai

where the sum runs over all atomic species i in the stellar matter, and Zi�Ai are the
individual ionic charges and atomic weights.

A more thermodynamically consistent way to approach this problem is to introduce
in the expression for F some additional factors modelling the pressure ionization
mechanism, and derive consistently (as shown before) the degree of ionization and
thermodynamical quantities. Unfortunately we still lack a definitive theory for the
pressure ionization, although various methods can be found in the literature and have
been applied to the computation of the stellar EOS ([74, 100, 132, 192]).

2.1.4 Additional effects

The previous discussion about the ionization process has led us to address the problem
of non-ideal interactions among the charged particles in the stellar matter. One of the
effects of these interactions is to pressure ionize the atoms, but this is not the full
story. In general, the EOS deviates from that of an ideal gas because of the effect of
Coulomb interactions between the charged particles. Due to the tendency of electrons
(negative charge) to cluster around ions (positive charge) additional contributions to
the free energy of the system have to be accounted for, whose net effect is to add
a negative term to the pressure and internal energy of the stellar matter, for a given
pair of density and temperature values. The larger the density at a given temperature,
the smaller the mean interparticle distance and the larger the interactions.

The computation of the non-ideal corrections to the EOS is non-trivial, and there
is no general analytical solution covering the entire range of physical conditions
experienced by the stellar matter. These corrections are usually parametrized as a
function of � ≡ �Ze�2/�dKBT �, where Z is the charge of the ions, and d is the mean
distance between ions. The parameter � measures the ratio between the electrostatic
interactions and the thermal energy of the ions; when the Coulomb interactions are
negligible, i.e. when the density is sufficiently low at a given temperature, � ∼ 0. In
the case of a fully ionized mixture of various chemical species � is defined as

� = <Z>1/3 e2

d′KBT
<Z5/3 >

with

d′ =
(

4��
3�imH

)−1/3
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where �i is the ionic molecular weight and

<Z� >=
∑

l nlZ
�
l∑

l nl

nl and Zl being the number and charge of ions of species l.
As mentioned before, corrections to the free energy F are usually expressed as a

function of � ; from the value of F corrected for non-ideal effects one then obtains,
as usual, all other thermodynamical quantities. When �< 0�05 – a range typical for
stars like the present Sun – the correction to the free energy is proportional to �3/2

(Debye–Hückel correction) whereas at higher densities the dependence on � is more
complicated.

We will discuss with some more detail the properties of the EOS when � is large
in the sections devoted to white dwarfs and neutron stars. Here we just mention that
when � increases the kinetic energy distribution of the ions increasingly differs from
the Maxwell distribution, due to the electrostatic interactions. When � = 1 the stellar
matter behaves like a liquid, and at increasingly larger values the ions tend to form
a rigid lattice. The transition to this state is called crystallization, and is associated
with the release of latent heat, which has relevant implications for stellar evolution,
as we will see later on.

We conclude this section with a very brief mention of two other effects to be
included in the computation of the stellar EOS. The first one is the formation of
molecules, a process efficient only in the external layers of cool stars. When ki neutral
atoms of type i and kj neutral atoms of type j combine to form a molecule x, the
dissociation equilibrium of the molecule x is usually written as

n
ki
i�0n

kj
j�0

nx

=Ki�j�l

where ni�0 and nj�0 are the number densities of the neutral atoms i and j, and nx is
the number density of the formed molecule x. Ki�j�l is called the dissociation rate
and it is a function of the temperature T . Analytical formulae for the computation
of the dissociation rate as a function of T for various molecules can be found in the
literature ([139]). In most cases it is sufficient to consider only the formation of the
H2 molecule, for which

log�Ki�j�l�= 12�5335− 4�9252 �+ 0�0562 �2 − 0�0033 �3

where �= 5040/T and T is in K.
The equation for the molecular dissociation has then to be coupled to the Saha

equation in order to compute all the ion and molecule abundances.
The second effect is the production of electron–positron pairs; this happens at

temperatures higher than ∼109 K, when the photons of the radiation field have
energies larger than 2mec

2. Under these conditions, electron–positron pairs are created
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spontaneously, and since the produced pair annihilates rapidly, an equilibrium is
reached between photons and electron–positron pairs. This reaction adds particles
to the gas, and therefore has to be taken into account in the computation of the
EOS. The inclusion of pair production in the EOS is discussed in, for example, [62]
and [207].

We close this chapter by showing in Figure 2.2 a map of the temperature–density
diagram, according to a modern EOS used in stellar evolution computation. The
temperature–density stratification of selected stellar models is also displayed. The
short-dashed line in Figure 2.2 corresponds to the boundary between the radiation
dominated and matter dominated EOS. The long-dashed line in Figure 2.2 corre-
sponds to the boundary where the Coulomb effect is just beginning to be important
at this metallicity (solar). The Coulomb effect goes as the cube of the nuclear charge
so cores of stars where helium has been substantially processed by nuclear burning
(see Chapter 6) have a much larger Coulomb corrections than implied by this figure.
The alternating short- and long-dashed line corresponds to the boundary where the
pressure ionization is just beginning to be important. The diagonal jagged line con-
tinued by the log�T�= 6 isotherm corresponds to the high-density, low-temperature
calculational limit of FreeEOS. The medium-weight lines labelled H2, H, He, and
He+ correspond to the midpoints of the hydrogen dissociation and ionization zones,
and the mid-points of the helium first and second ionization zones. The thick solid
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Figure 2.2 Mapping of the temperature–density diagram according to the EOS of the stellar
matter, using the publicly available FreeEOS (http://freeeos.sourceforge.net) (courtesy of A. Irwin)
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lines labelled by 0.1, 0.3, 1.0, RGT, and CG correspond to the internal temperature
and density profiles of Zero Age Main Sequence models with 0.1, 0.3, and 1.0 solar
masses, and Red Giant tip (see Section 5.2.2) and clump giant (solar metallicity
analog of Zero Age Horizontal Branch star – see Chapter 6) models with 1M�. These
stellar interior results were calculated using the FreeEOS.



3 Equations of Stellar
Structure

3.1 Basic assumptions

The standard theory of stellar evolution is based on the following assumptions.

• Stars are spherically symmetric systems made of matter plus radiation. The effects
of rotation and magnetic fields are negligible.

• The evolution of the physical and chemical quantities describing a star is slow,
i.e. the temporal evolution of the stellar structure can be described by a sequence
of models in hydrostatic equilibrium. The assumption of hydrostatic equilibrium
(as we will see below) implies that the pressure has to increase toward the centre.
In order to increase the pressure, the equation of state dictates that density and
temperature have to increase too.

• The matter in each stellar layer is very close to local thermodynamic equilibrium.
This hypothesis implies that the average distance travelled by particles between colli-
sions – the mean free path – is much smaller than the dimension of the system, i.e. the
radius of the star, and that the time elapsed between collisions ismuch smaller than the
timescale for the change of themicroscopic properties of the gas. The consequence of
this hypothesis is that, at each point within the star, radiation can be well described by
thePlanck function corresponding to the unique temperature in commonwith themat-
ter. This alsomeans that each stellar layer can be assumed to behave like a black body,
with (almost) no net energy flux absorbed or emitted. In reality there must be a small
outgoingflux,otherwisestarswouldnotshine.Thisasymmetry is,however,extremely
small; in the case of the Sun, the flux at the surface is only ≈10−13 times the flux
emitted by1 cm2 of a black body at the temperature typical of theSun centre (∼107 K).

• The only mechanism of chemical element transport within stars is convection,
i.e. the effect of rotational mixing and atomic diffusion is negligible.

Evolution of Stars and Stellar Populations Maurizio Salaris and Santi Cassisi
© 2005 John Wiley & Sons, Ltd ISBN: 0-470-09219-X
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This set of assumptions suffices to provide a system of differential equations able
to describe the stellar structure and its temporal evolution. The equations of stellar
structure we are going to describe will first be derived – for heuristic purposes –
employing the distance r from the stellar centre as an independent variable, and then
transformed to equations that use the local mass value mr as an independent variable.
This choice is particularly convenient because stars are subject to large changes of
radius during their evolution, so that the local value of r is not always associated to
the same mass layer. The whole solution and analysis is simplified and clearer when
using the local mass as an independent variable. It is important to note that when the
equations are written in terms of mr , the index r in mr is simply an index running
over the stellar mass layers.

The equations of stellar structure are five differential equations which describe the
run of pressure, temperature, luminosity, radius and chemical element abundances as
a function of mr at a given time t, and their evolution with t. The solution of these
equations requires the knowledge of auxiliary functions like the equation of state and
opacity of the stellar matter, and the rate of energy generation.

3.1.1 Continuity of mass

According to the assumption of spherical symmetry all parameters describing the star
depend only on one quantity, i.e. the distance r from the centre. By denoting with �
the value of the matter density at a generic point r within the star, the mass contained
within a sphere of radius r centred on the centre of the star, is given by

mr =
∫ r

0
4�r

′2�dr ′

Differentiating this equation with respect to the distance from the centre provides

dmr

dr
= 4�r2� (3.1)

the ‘continuity of mass’ equation. One can straightforwardly rewrite Equation (3.1)
using mr as an independent variable:

dr

dmr

= 1
4�r2�

(3.2)

3.1.2 Hydrostatic equilibrium

We now determine the equation of motion of a generic infinitesimal cylindrical
volume element with axis along the radial direction, located between radii r and
r+dr. By denoting with dA the area of its base (perpendicular to the radial direction)
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and considering the density � constant within this volume, we can obtain the mass
dm contained in this element according to:

dm=�drdA

We neglect rotation and consider self-gravity and internal pressure as the only forces
in action. The mass enclosed within the radius r acts as a gravitational mass located
at the centre of the star; this generates an inward gravitational acceleration

g�r�= Gmr

r2

Due to spherical symmetry, the pressure forces acting on both sides perpendicular
to the radial direction are balanced, and only the pressure acting along the radial
direction has to be determined. The force acting on the top of the cylinder is P�r +
dr�dA, whereas the force acting on the base of the element is P�r�dA. By writing

P�r +dr�=P�r�+ dP

dr
dr

and remembering that drdA=dm/�, the equation of motion for the volume element
can be written as

d2r

dt2
dm=−g�r�dm− dP

dr

dm

�

We may now divide both sides of this equation by dm and use the definition of
g�r� to obtain

dP

dr
=−Gmr�

r2
−�

d2r

dt2
(3.3)

The condition of hydrostatic equilibrium means that d2r/dt2 = 0, hence

dP

dr
=−Gmr�

r2
(3.4)

the ‘equation of hydrostatic equilibrium’. This equation implies that the pressure
decreases outwards, since the right-hand side is always negative.

We can now try to estimate to what degree the condition of hydrostatic equilibrium
is satisfied in real stars. Let us consider the Sun and suppose that a fraction � of
the local gravitational acceleration g =Gmr/r

2 is not compensated by the pressure
forces. If a mass element at the surface starts at rest with an acceleration �g, its inward
displacement s will be given by s∼ �1/2��gt2. A change by just 5 per cent of the solar
radius R� would happen in a time t≈ 103/�1/2 s. Paleontology tells us that the solar
radius has not changed by that much for at least 106 years (∼3× 1013 s) therefore
� must be less than at least ≈10−20; this means that the hydrostatic equilibrium
condition is verified to a very high degree of accuracy.
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We can easily rewrite Equation (3.4) using mr as an independent variable by
noting that dmr = 4�r2�dr , obtaining

dP

dmr

=−Gmr

4�r4
(3.5)

3.1.3 Conservation of energy

If some energy is produced in a spherical shell of thickness dr, located at distance r
from the centre of the star, the local luminosity is equal to

dLr = 4�r2��dr

where � denotes the coefficient of energy generation per unit time and unit mass.
This gives

dLr

dr
= 4�r2�� (3.6)

the ‘equation of conservation of energy’. In terms of mr we obtain

dLr

dmr

= � (3.7)

3.1.4 Energy transport

If there is energy production and this energy is transported through the star to be
released from the surface, we need an equation that describes this process. Inside a
star energy can be transported either by random motions of the constituent particles,
or by organized large-scale motions of the matter.

In the case of random motions the particles move due to the kinetic energy
associated with their temperature, and interact with surrounding particles having
covered a given mean free path, thereby transferring energy from hot to cold regions
(diffusion approximation).

Radiative transport

Consider a net flux of photons crossing a volume element of unit area and depth
dr located at a distance r from the centre of the star. While crossing this volume
of stellar matter, due to interactions with the neighbouring particles, some photons
will be extracted from the net outgoing flux and redistributed isotropically within the
stellar-structure. By denoting with Frad the flux of energy (energy per unit time and
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unit surface) associated with the outgoing photons, the momentum dp transferred
from the photons to the volume element is equal to

dp= dFrad

c
= Frad

c

dr

l

where l is the photon mean free path. On the other hand dp is also equal to the
opposite of the change dPrad of the pressure exerted by the photons over the length
dr; hence we obtain

dPrad =−Frad

c

dr

l

A basic assumption in this derivation is that the properties of the photons do
not change along their mean free path. We now introduce the opacity coefficient
�rad, defined as �rad�≡ 1/l, which is a measure of the probability that the photons
experience one interaction per unit length. Using the definition of � we obtain

dPrad

dr
=−�rad�

c
Frad (3.8)

The assumption of local thermodynamic equilibrium provides Prad=aT 4/3. There-
fore dPrad/dr = �4/3�aT 3�dT/dr�, and Equation (3.8) becomes

dT

dr
=−3�rad�

4acT 3
Frad (3.9)

This is the equation of radiative transport in stellar interiors, when energy is carried
by photons; �rad is the radiative opacity due to the interactions of photons with the
surrounding particles. Equation (3.9) shows that whenever there is a temperature
gradient there will always be a radiative flux, although the latter may not be the total
outgoing flux. If the total energy flux is carried by photons, Equation (3.9) becomes

dT

dr
=−3�rad�

4acT 3

Lr

4�r2
(3.10)

This equation accounts for the processes of absorption and re-emission of the
photons in the stellar interior through the mean opacity coefficient �rad.

To compute �rad, one needs to take into account the wavelength dependence of
the processes of interaction between stellar matter and photons (see Section 3.1.5)
described by monochromatic opacities ��. The mean radiative opacity coefficient �rad

can be computed from �� as follows.
Equation (3.8) also holds when considering separately photons of various frequen-

cies, i.e.

dPr	�

dr
=−���

c
F� (3.11)
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where F� is the monochromatic flux of frequency �	�� the associated monochromatic
opacity, and Pr	� the corresponding radiation pressure. This equation can be integrated
over the frequency spectrum, providing

dPrad

dr
=−�

c

∫ �

0
��F�d�

This relationship has to be equivalent to Equation (3.8), therefore

1
�rad

=
∫ �
0 F�d�∫ �

0 ��F�d�
(3.12)

This equation shows that �rad depends not only on the monochromatic opacities ��,
but also on the monochromatic fluxes F�. For radiation in thermodynamic equilibrium
Pr	� is given by

Pr	� =
4�
3c

B��T�

where B� (T ) is the Planck function

B��T�= 2h�3

c2
1

eh�/KBT − 1

Equation (3.11) can then be used to obtain

F� =− 4�
3���

dB��T�

dr

When this new expression for F� is inserted in Equation (3.12), and recalling that
dB��T�/dr = �dB��T�/dT��dT/dr�, one obtains:

1
krad

=
∫ �
0

1
k�

dB��T �

dT
d�∫ �

0
dB��T �

dT
d�

(3.13)

The radiative opacity determined by means of this equation is called Rosseland
mean opacity; it is easy to notice that its value is dominated by the frequency intervals
where the monochromatic opacity �� is small.

This treatment of radiative transport is valid only in the case of the stellar interiors,
where collisions are frequent, the mean free path of the various particles is much
smaller than the dimension of the star, and the matter properties do not vary much
along a photon mean free path. To be more specific, we can define a new quantity,
the optical depth 
, given by


 =
∫ �

r
�rad�dr
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This is a measure of the probability that photons interact with the stellar matter before
being radiated away. The diffusion approximation for the radiative transport breaks
down when 
 is lower than ≈1–10. This means that one has to integrate the equations
of stellar structure from the centre up to a point where 
∼1, that will constitute a sort
of ‘surface’ for the stellar model. The layers where 
 is lower than∼1 are called ‘stellar
atmosphere’, and are crucial to both predict the spectrum of the radiation emitted by the
star, and provide the outer boundary condition necessary to solve the equations of stellar
structure.

The mean free path of photons in the solar atmosphere is typically of the order of
107 cm, to be compared with a typical value of the order of 1 cm in the solar interior
(the solar radiusR� is equal to 6�9599× 1010 cm). The treatment of the radiative energy
transport in the stellar atmosphere is much more complicated and we refer the reader to
[138] for a comprehensivepresentationof the topic.Wewill comeback later to this issue.

Conductive transport

Let us now consider the case of energy transport due to the constituents of the stellar
matter other than photons (conductive transport), i.e. free non-degenerate electrons.
The energy flux transferred to a volume element of unit area and depth dr by an
outgoing flux of electrons is given approximately by

Fe ∼−Nevl
dE

dr

where Ne is the number of electrons per unit volume, v their average velocity, l the
mean free path and E their average kinetic energy. Since E∝KBT ,

Fe ∼−KBNevl
dT

dr

which has the same form as Equation (3.9); the quantity that multiplies dT/dr can
therefore also be written as in Equation (3.9), introducing the electron opacity �e.
We will discuss the computation of �e later in this chapter.

This relationship also approximates to the equation for the energy transport due to
heavier constituents of the stellar gas, i.e. ions. A detailed study of the processes of
interaction among the gas constituents shows that electron transport is very inefficient
with respect to radiation, and energy transport due to heavier particles is even less
efficient due mainly to the fact that ions are outnumbered by electrons, and they
move more slowly at a given temperature. However, in the case where electrons are
degenerate, they are able to transport energy much more efficiently (i.e. they have a
longer mean free path than in the case of non-degenerate electrons). Therefore the
total energy flux will be F =Frad +Fe. In its more general formulation the equation
of the radiative plus conductive energy transport for the stellar interiors becomes:

dT

dr
=− 3��

4acT 3

Lr

4�r2
(3.14)
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where � is the total opacity of the stellar matter, given by the harmonic mean

1
�
= 1

�rad

+ 1
�e

If electron conduction is effective, �e � �rad and therefore �∼ �e. We can now
rewrite this equation for the radiative plus conductive transport in terms of mr as an
independent variable:

dT

dmr

=− 3�
64�2ac

Lr

r4T 3
(3.15)

It is useful to transform Equation (3.15) further into a more general expression that
can also be used in the case of convective transport. We consider first a generic log-
arithmic gradient � ≡d ln�T�/d ln�P� that can also be written as � = �dT/dP��P/T�.
This implies that dT/dmr =��T/P�dP/dmr , and therefore

dT

dmr

=−T

P
�

Gmr

4�r4
(3.16)

having used the right-hand side of the equation of hydrostatic equilibrium
(Equation (3.5)) in place of dP/dmr . In the case of radiative plus conductive transport
we denote � with �rad and from Equation (3.15) we obtain

�rad =
3

16�acG

�LrP

mrT
4

(3.17)

The same Equation (3.16) can be employed to describe the convective energy transport
as well, provided that the appropriate value of � is used.

Convective transport

The third form of energy transport efficient in stars, besides radiation and electron
conduction, is convection. Convection is a mechanism of energy and chemical element
transport that involves organized large-scale motions of matter in the stellar interior.

Matter inside the stars is never at rest, but usually the movements of the gas
elements are small, random perturbations around their equilibrium positions. Under
certain conditions, these small random perturbations can trigger large-scale motions
that involve sizable fractions of the total stellar mass. These large-scale motions are
called convection, and are equivalent to the motion of water elements in a kettle
heated from below. Hot gas elements may rise to the top – thereby transporting
energy from the hottest to the coolest regions – where they cool and then fall down
as cold material.

In order to include convective transport in the stellar model computation one needs
to find a criterion for the onset of convection, and the expression of the temperature
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gradient in a convection zone. It is important to be aware that the treatment of
convection in the stellar interior is extremely complicated and needs the introduction
of various approximations. This stems from the fact that the flow of gas in a stellar
convective region is turbulent, in the sense that the velocity and all other properties
of the flow vary in a random and chaotic way. The random nature of the turbulence
precludes computations based on a complete description of the motion of all the fluid
particles, based on the solution of the Navier–Stokes equations for the stellar fluid (an
introduction to the computation of turbulent flows is given in [229]). Instead, we have
to adopt a model for the convective transport, that can provide only mean approximate
values for the properties of the flow of gas in the stellar convective regions. The
model adopted in stellar evolution studies is extremely simple; the gas flow is made
of gas elements with a certain characteristic size, the same in all dimensions, that
move by a certain mean free path before dissolving. All gas elements have the same
physical properties at a given distance r from the star centre. Columns of upward and
downward moving gas bubbles are envisaged; upward moving elements start from a
given layer, cover a mean free path and then dissolve, releasing their excess heat into
the surrounding gas, and are replaced at their starting point by the downward moving
elements, that thermalize with the surrounding matter, thus perpetuating the cycle.

The mean free path and characteristic size of the convective elements are assumed
to be same (they will be denoted by , the so called ‘mixing length’) and equal to a
multiple of the local pressure scale height Hp, defined as

1
Hp

=− 1
P

dP

dr
=−d lnP

dr

Usually  is written as = �mlHp	�ml being a constant to be empirically cal-
ibrated. By using the equation of hydrostatic equilibrium, and denoting with g the
local acceleration of gravity (g= �Gmr�/r

2) one obtains that Hp =P/�g��.
The need for a mean free path in the framework of the mixing length theory can be

easily explained as follows. Consider the cross sections of the rising and falling gas
columns; if originally in a given layer of a stellar convective region the cross sections
were the same, the rising gas (always in pressure equilibrium with the surroundings)
will expand by a factor e after a distance equal to Hp; this means that at this point
within the star there is much less space available for the falling gas. On the other
hand, the amount of falling material must be the same as the rising one, otherwise the
star would either dissolve or concentrate all the mass in the interior, thus violating
the hydrostatic equilibrium condition. The only solution is that after a distance  of
the order of Hp part of the material stops and inverts its motion.

This model for convection (which we will denote as ‘mixing length theory’, and
was developed by [14]) is very different from the properties of convective flows
in laboratory conditions. In this latter case the gas particles have a spectrum of
length scales, some with length comparable to that of the flow boundaries, as well
as elements of intermediate and small size; it is at the scale of the smallest elements
that the energy of the turbulent flow is dissipated. In spite of this difference from
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laboratory experiments (that cannot, however, reproduce the conditions typical of
stellar interiors) the mixing length theory provides a reasonable qualitative picture
of the convective energy transport in stars. By using this simple model we can now
determine a local criterion for the onset of convection following the derivation in
[113]. ‘Local’ means that the criterion can be applied on a layer-by-layer basis to
check its stability, and involves only physical and chemical quantities evaluated at
the layer itself. This is very practical, because in this way there is no need to account
for the behaviour of other parts of the star. In realistic cases convective motions are
not only dependent on the local conditions but, in principle, have to be coupled to the
neighbouring layers. We will see later in this section that the lack of ‘non-locality’
in the convection treatment of stellar interiors causes some relevant uncertainties.

Let us consider a bubble of gas inside a star, at rest at a distance r from the
centre. The bubble will have a pressure P0, temperature T0, density �0 and molecular
weight �0 equal to those of the environment, supposed to be in radiative equilibrium
(in this section ‘radiative’ actually means ‘radiative plus conductive’) as depicted in
Figure 3.1. If the random motions displace the bubble by a small amount �r away
from the equilibrium position, the equation of motion for an element of unit volume
can be written as (assuming the viscosity is negligible)

�
d2�r

dt2
=−g��

where �� is the density difference �bubble − �surr between the bubble (supposed to
have constant density) and the surroundings, and g is the local acceleration of gravity.
One reasonable assumption made in this derivation is that the motion of the bubble is
fast enough so that all time derivatives of the mean stellar properties are equal to zero.

BUBBLE SURROUNDINGS

µ0

P0
ρ0

µ0

P0
ρ0

µsurr

Psurr
ρsurr

µbubble

Pbubble
ρbubble

gravity

r

r + ∆r

Figure 3.1 Illustration of the physical scenario for the onset of convection
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We now assume that along the displacement �r the bubble is always in pressure
equilibrium with the surroundings, i.e. �P = �Pbubble − Psurr�= 0, and that �bubble is
always equal to its initial value �0 (there is no matter exchange with the surroundings).

The assumption of pressure equilibrium means that the motion of the bubble has to
happen with a speed lower than the local sound speed. In the presence of a molecular
weight gradient d�/d� throughout the region, the difference ��= ��bubble −�surr�
will be equal to ��=�0 − ��0 + �d�/dr��r�, that provides

��=−d�

dr
�r

Using the relationship d ln��� = �1/��d� one gets �� =−��d ln���/d ln�P��
�d ln�P�/dr��r . Differentiating with respect to time one obtains

d��

dt
=−�

d ln���

d ln�P�

d ln�P�

dr

d�r

dt

The temperature difference�T =�Tbubble−Tsurr� depends on the difference between
the temperature gradients in the bubble and in the surroundings. It is useful to write
�T in the following form

�T =
[(

dT

dr

)
ad

−
(

dT

dr

)
rad

]
�r −��Tdt

where ��T denotes the rate of temperature change due to energy losses from the
bubble, whose efficiency is governed by the parameter �. If �= 0 the displacement
of the bubble is adiabatic, hence the presence of �dT/dr�ad (adiabatic temperature
gradient – �dT/dr�rad is the temperature gradient for radiative transport assumed
to be efficient in the surroundings). By introducing the logarithmic gradient � and
differentiating with respect to t, one obtains

d�T

dt
=T

d ln�P�

dr
��ad −�rad�

d�r

dt
−��T

If �P = 0, and on the assumption that the differences �T	�� and �� are small,
we obtain from the EOS

��

��

�
+�T

�T

T
+��

��

�
= 0

where

�� = �d ln�P�/d ln����T	�	�T = �d ln�P�/d ln�T���	�	�� = �d ln�P�/d ln�����	T

For a perfect gas with negligible radiation �� =�T = 1, and �� =−1.
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We have derived in this way the following set of four homogeneous equations for
the four unknowns �T	��	�� and �r:

�
d2�r

dt2
+ g��= 0 (3.18)

d��

dt
+�

d ln���

d ln�P�

d ln�P�

dr

d�r

dt
= 0 (3.19)

d�T

dt
+T

d ln�P�

dr
��rad −�ad�

d�r

dt
+��T = 0 (3.20)

��

��

�
+�T

�T

T
+��

��

�
= 0 (3.21)

One can search for solutions of the form �x=Aent; by inserting into the respective
equations this functional dependence for �T	��	�� and �r, one obtains a non-
trivial solution when the determinant derived from the coefficients of At	A�	A� and
Ar is equal to zero, i.e.

n3+n2�+n

[
g
�T

��

d ln�P�

dr

(
�rad −�ad +

��

�T

d ln���

d ln�P�

)]
+
(
�g

��

��

d ln�P�

dr

d ln���

d ln�P�

)
=0

(3.22)

In the case of adiabatic motion of the bubble, �= 0 and the previous equation
reduces to

n2 =−g
�T

��

d ln�P�

dr

(
�rad −�ad +

��

�T

d ln���

d ln�P�

)

The quantity n in the case of adiabatic displacement is called the Brunt–Väisälä
frequency. If the right-hand side of this equation is positive, n is real and positive,
and the amplitude of �r (and �T	��	��) will increase exponentially, therefore
starting a large-scale convective motion. If the right-hand side is negative, n is a
complex number with real part equal to zero; this results in an oscillatory motion
whose frequency would be equal to n, but with amplitude (given by the real part of
n) equal to zero. Therefore, if �= 0, the condition for the onset of convection is

�rad >�ad −
��

�T

d ln���

d ln�P�
(3.23)

This is the so-called Ledoux criterion. In a region of uniform chemical com-
position this condition becomes �rad > �ad, the so-called Schwarzschild criterion.
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If d ln���/d ln�P�>0, as is generally true inside stars (the molecular weight decreases
towards the surface because heavier elements are produced in the centre) the molecu-
lar weight gradient has the effect of stabilizing the matter against convection, because
�� is negative, �T is positive, and the term added to �ad in Equation (3.23) is
overall positive. In the case where the environment shows a gradient in molecular
weight due to the presence of ionization regions, the convection criterion is again the
Schwarzschild one, because the matter inside the convective bubble will also undergo
ionization, and therefore ��∼ 0.

If � > 0, one must find solutions with the real part positive; if we call �i the
coefficient of the ith power of n in Equation (3.22), we obtain solutions with a
positive real part if at least one of the following conditions is satisfied: �0 <0	�1 <0	
�1�2 − �0�3 < 0. This implies that the layer is convective if at least one of the
following conditions is satisfied

d ln���

dr
> 0 (3.24)

�rad >�ad −
��

�T

d ln���

d ln�P�
(3.25)

�rad >�ad (3.26)

The first condition is the so called Rayleigh–Taylor instability. We will briefly
see how this case will be relevant for white dwarf stars (see Section 7.4). In the
case of d ln���/dr < 0 (equivalent to d ln���/d ln�P� > 0) Equation (3.25) implies
Equation (3.26), as discussed before. This means that the criterion for the onset of
convection can be summarized as follows:

d ln�

dr
> 0

or

d ln�

dr
≤ 0 and �rad >�ad

These criteria are valid irrespective of the value of �, i.e. irrespective of the
efficiency of the energy losses, as long as � is not zero.

The physical meaning of the criteria discussed above is easy to grasp. Consider a
uniform chemical composition, �= 0 and temperature increasing towards the centre.
When �rad > �ad, the temperature of the bubble after a displacement �r towards
the stellar surface will be higher than the surrounding; since the pressure within the
bubble is the same as that of the surroundings, its density is lower and consequently
will receive an acceleration towards the surface. If the displacement is towards
the centre, the temperature within the bubble will be lower than the surroundings,
implying higher density and an acceleration towards the centre. In both cases the
displacement will be amplified, thus inducing large-scale motions. If d ln���/dr< 0
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the density of the environment, at fixed pressure and temperature, will be lower
than the case of uniform � for displacements towards the surface, and higher for
displacements towards the centre. This means that the density of the bubble will be
lower (higher) than the density of the surroundings if the radiative gradient is larger
than the adiabatic one minus an additional amount proportional to the value of the
molecular weight gradient.

We now address the case of efficient energy losses and d ln�/dr ≤ 0. The tem-
perature of a rising bubble is higher than the surroundings, but the mean molecular
weight is larger than that of the surroundings and this will prevent upward move-
ments larger than a given length if �rad is just larger than �ad. The bubble is then
pushed downwards, but because of the energy losses the temperature of the bubble
is lower than the surroundings when it is moving towards the starting position, so
that the element returns to the original position with a larger velocity than in the
case of the initial random oscillations in the equilibrium state. On the downward
path the same effect operates but with the opposite sign, and cycle after cycle the
oscillations increase steadily thus inducing large-scale motions. In the presence of
these oscillational motions a less efficient mixing is expected than in the previous
cases. We will come back to this point in the chapter about the hydrogen burning
phases.

As already mentioned, these criteria for the onset of convection are local. The
boundary of the convective regions are fixed by the layer where �rad gets lower than
�ad, that means, at the layer where the random motions of the gas are not accelerated
and amplified. However, bubbles coming from inside the convective region are still
able to cross (overshoot) this formal boundary because they may have a non-negligible
velocity there, and only after crossing the boundary are they slowed down and their
motion is halted. The question is: how far do these convective elements travel inside
the convectively stable region? A definitive answer to this question requires the
adoption of a well tested and established non-local theory of stellar convection that
is, however, still lacking.

One could think of applying the concepts of the mixing length theory but, given
its local nature, this does not provide a satisfactory answer. In fact, at a given point
in the overshoot region the velocity and the temperature excess of a convective ele-
ment depends on both the local quantities and the amount of braking the element
has experienced during the previous path. Rough estimates based on the mixing
length theory provide an overshoot distance �OV (expressed in terms of the pres-
sure scale height Hp at the Schwarzschild convective boundary) either negligible,
e.g. �OV < 0�01HP , or much more extended, e.g. �OV ∼ 0�5HP . What is done in
practice, as for the calibration of the mixing length parameter, is to use empirical
constraints to calibrate �OV.

Having established that the convective transport is efficient when �rad > �ad, we
have to find an equation for the value of the temperature gradient in a convective
region. As a general rule the actual gradient in a convective region, �conv, has to satisfy
the condition �conv > �ad, i.e. it has to be superadiabatic. This is easily understood
by imagining a rising gas bubble that dissolves after a length , and releases an
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amount of heat per unit volume �Q= �cP�T , where cP is the specific heat per unit
mass at constant pressure (surrounding matter has the same pressure of the gas within
the bubble) and �T the temperature difference between bubble and surrounding.
The difference �T – neglecting energy losses along the path – is proportional to the
difference between the adiabatic gradient associated with the motion of the bubble and
the temperature gradient in the environment. If the two gradients were to be the same,
no heat would be released and no energy transport is possible. Heat is exchanged
only if the environment is cooler than the bubble, hence its temperature gradient has
to be larger than the adiabatic one.

In the case of convective regions in the stellar interiors, a good approximation is to
use the value of the local adiabatic gradient, because the density in the stellar core is
so high that the actual convective gradient has to be only negligibly superadiabatic in
order to transport the flux of energy. Unfortunately, this simplification is not possible
when convection involves layers close to the stellar surface. In this case one needs
to find a more complex expression for �conv; the equations for �conv generally used
in stellar evolution computations are based on the so-called mixing length theory
(MLT)1. The reader has to be warned that various approximations and somewhat
arbitrary constant factors enter the MLT; different choices for the values of these
factors are possible, but the resulting superadiabatic gradients can essentially be made
equivalent by simply rescaling the value of the parameter �ml=/HP . An important
assumption, as in the derivation for the convection criteria, is that the difference of
temperature and density between the convective elements and their surroundings is
always small. The goal of the following analysis is to obtain two equations for the
unknown gradient and convective velocity, in the framework of the MLT.

We start by enforcing the condition that at a given layer within the convective
region the total energy flux is the sum of the flux carried by radiation and convection

Fr =
Lr

4�r2
=Frad +Fconv

where the radiative flux is given by (see Equation (3.9))

Frad =−4acT 3

3��

dT

dr

dT/dr being the actual temperature gradient in the convective region. By neglecting
the energy losses during the displacement of the gas bubbles, the convective flux
transported by the matter elements that move upwards with a velocity v is given by

Fconv =
1
2
�vcP

[(
dT

dr

)
ad

−
(

dT

dr

)]


1 A more sophisticated treatment of surface convection used in some stellar evolution models is the so-called
Full Spectrum of Turbulence theory, described in [34].
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where the term (1/2) �v provides the flux of mass per square centimeter per second.
The factor (1/2) takes into account the fact that at each layer approximately half of the
matter is rising and half is moving downwards. One approximates the density of the
bubble with the one of the environment, and all the relevant quantities are evaluated
at the layer r , instead of being averages over the mean free path . One needs now
an expression for the velocity of the convective elements, that can be derived from
the equation of motion. The net force per unit volume fr acting on the convective
element at the layer r is given by fr =−g���r�. If ���r� (the difference in density
between bubble and environment) is approximately zero at r, where the bubble starts
its movement, and increases linearly with r (e.g. ���r�∝�r) at a point r +�r we
will have f�r =−g����r�; in this equation we have assumed g is unchanged along
the path and denote with ����r� the density difference evaluated at r +�r. The
work done per unit volume in moving the bubble through the distance �r is given by

W��r�=−g
∫ �r

0
�����r�′�d��r�′ =−1

2
g����r��r

since we have assumed that ��∝�r. It is now necessary to average W��r� over all
possible values of �r, and the average value is usually set to (1/4)W (). This choice
takes into account the fact that gas bubbles tend to dissolve on average after a length
, and that part of the work goes into energy losses from the bubble, and transfer of
kinetic energy to the surroundings. Therefore the average value for the work done is

<W��r�>= 1
4
W��=−1

8
g����

It is customary to express < W��r� > in terms of the average speed v of the
convective elements as

<W��r�>= 1
2
�v2

where � is the local density of the environment. An extra factor (1/2) is often included
in the left-hand side of the previous equation; this factor takes into account the fact
that the rising bubbles have to force their way through the surrounding matter, and
leaves us with <W��r�>=�v2, whence

v2 =−1
8
g
����

�


(notice that ���� is negative, because the bubble has a density lower than the
environment, therefore v2 is positive).

In this equation the convective speed is related to ����, and we need now to
express this quantity as a function of the convective temperature gradient. This is
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easily done by considering Equation (3.21), that provides

����

�
=−�T

��

�T��

T
− ��

��

����

�

Substituting this equation into the expression for the square of the convective
velocity provides

v2 = 1
8
gQ

�T��

T


where

Q= �T

��

+ ��

��

(
d ln���

d ln�T�

)
P

In the case of a perfect gas with negligible radiation pressure Q =
1− �d ln���/d ln�T��P . The temperature difference �T�� is given by

�T��=
[(

dT

dr

)
ad

−
(

dT

dr

)]


By remembering the definition of HP one can write,

dT

dr
=− T

HP

d lnT

d lnP
=− T

HP

�

and the equation for the convective velocity can be rewritten as

v2 = 1
8
g
2

HP

Q�� −�ad� (3.27)

where � is the unknown temperature gradient in the convective region. In the same
way, the convective flux can be rewritten as

Fconv =
1
2
�vcPT



HP

�� −�ad�

Notice how both the convective velocity and the convective flux depend on the free
parameter �ml =/HP . The condition that the total flux has to be the sum of the
radiative plus the convective one can be thus rewritten as

Lr

4�r2
= 4acgT 4

3�P
� + 1

2
�vcPT



HP

�� −�ad� (3.28)

Once the total flux is specified by the other equations of stellar structure, Equa-
tions (3.27) and (3.28) can be solved to obtain the unknowns � and v. If convection
is efficient in the deep stellar interiors, these two relationships provide � →�ad and
velocities of the order of 1–100m s−1, many orders of magnitude smaller than the
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local sound speed. On the contrary, in convective layers close to the surface the
gradient is strongly superadiabatic and velocities are much larger, of the order of
1–10 km s−1, close to the local sound speed.

We conclude this section on the convective energy transport by briefly discussing
under what conditions �rad >�ad is satisfied inside stars. The value of �ad is provided
by the equation of state of the stellar matter, and is typically equal to ∼0.4, with
the exception of partially ionized regions where it can drop below 0.1. The radiative
gradient is proportional, among others, to the local energy flux and the opacity. When
the nuclear energy production has a steep dependence on the temperature, the energy
source is concentrated in the very central part of the star, where the local flux is
therefore very high and induces a large value of �rad that favours the onset of core
convection. On the other hand, in the partial ionization regions close to the surface
�ad is very small and the opacity high (see below) an occurrence that favours the
onset of envelope convective regions.

3.1.5 The opacity of stellar matter

As we have discussed before, an evaluation of the opacity � of the stellar matter is
necessary for determining the temperature gradient due to radiative and electron con-
duction transport. Radiative opacity mechanisms are all those processes that extract
photons from the outgoing flux and redistribute them isotropically. There is no net
energy loss in the opacity processes; the equation of radiative transport tells us that the
effect of the opacity is simply to resist the flow of radiation, analogous to electrical
resistance. When the opacity is higher, the temperature gradient has to be steeper in
order to force a given flow of photons through the stellar matter. It will be clear from
the discussion below that in general � is a function of the chemical composition of the
stellar matter, its temperature and density, and needs an evaluation of the ionization
states of the various elements. It goes without saying that an accurate determination
of the opacity coefficient rests on the accuracy of the stellar matter EOS.

In the following we summarize briefly the basic processes that contribute to
the radiative opacity �rad. To determine the final value of �rad one has to sum the
contribution of all these processes to the monochromatic opacities ��, and then
perform the integration shown in Equation (3.13).

1. Bound–bound transitions Absorption of radiation by an electron bound to an
ion that causes the electron to move from one bound state to a more energetic one.
After the transition the electron will have to move down to the original bound
state, for the ion has to return in equilibrium with the surroundings. The photon
emitted during this de-excitation will have the same energy of the absorbed one,
but it is re-emitted in a random direction. This process involves only photons of
certain frequencies, corresponding to the energy differences between the initial and
final bound state of the electron. Bound–bound processes can become important
contributors to the total opacity for temperatures below ∼106 K.
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2. Bound–free transitions Absorption of radiation by an electron bound to an
ion, that moves the electron to a free state. The conservation of energy demands
that h� = �0 + �me/2�v

2
e , where � is the frequency of the absorbed photon,

�0 the ionization energy and ve the velocity (relative to the ion) acquired by the
free electron. Again, to regain thermodynamical equilibrium an isotropic photon
emission will follow with the net effect of depleting the outgoing photon flux. The
Rosseland opacity due only to the bound-free process can be approximated by:
�bf = 4�3× 1025Z�1+X��T−7/2 (the constant is given in cgs units). The depen-
dence �∝�T−7/2 is called Kramers’ law.

3. Free–free transitions Absorption of a photon by an unbound electron that is
moving in the field of an ion. These are effectively transitions between unbound
electronic states. An approximate formula for the Rosseland opacity due only to
this process can be written again as a Kramers’ law, i.e. �ff = 3�7× 1022�X+ Y �
�1+X��T−7/2 (constant in cgs units).

4. Electron scattering Collisions between photons and electrons scatter both com-
ponents without loss of energy (Thomson scattering); this process is the dominant
source of opacity when the temperature is high and atoms are fully ionized. The
scattering cross section is inversely proportional to the square of the electron
mass; this explains why nucleon scattering is inefficient, since in this case the
cross section would be of the order of 106 times smaller than for electrons. For
a fully ionized gas the Rosseland opacity due only to electron scattering is given
by �s ∼ 0�2�1+X� in cgs units, i.e. it is independent of temperature and density.
This simple formula neglects relativistic corrections (Compton scattering), e.g. the
transfer of momentum from the photons to the electrons when photon energies are
comparable to the rest mass energy of the electron. The relativistic corrections in
principle reduce the value of �s given before, but their effect is negligible unless
T> 108 K. Even at T = 108 K the reduction is only of about 20 per cent.

In the external stellar layers, where temperature and densities are low, the presence
of molecules also contributes to the stellar opacity through electronic transitions
but also transitions between rotational and vibrational molecular states. The most
important molecules that contribute to the Rosseland opacity of the stellar matter
(when the temperature is below ∼5000K) at different evolutionary stages are H−,
H2, TiO, H2O and CO.

In electron degenerate layers it is also necessary to compute the contribution of
the electron conduction opacities �el. Normally electrons do not transport energy
very efficiently (i.e. their mean free path is much shorter than the photon one) but in
conditions of electron degeneracy all quantum states with momentum p lower than the
Fermi value pF are filled up, and electrons have difficulty in exchanging momentum
when they interact with ions or other electrons. This means that encounters are rare
and therefore the mean free path of degenerate electrons is large; degenerate electrons
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can then transport energy efficiently and the associated opacity is very low (recall
that the opacity is inversely proportional to the mean free path) much lower than
�rad. Since the total opacity � is the harmonic sum of �rad and �el, it is the electron
conduction opacity which mainly determines the value of � in condition of electron
degeneracy. When the degeneracy is very strong �el ∝ �−2T 2. It is interesting to
notice that the larger the density the lower �el, due to the fact that the degree of
degeneracy and the electron mean free path both tend to increase; in the case of
radiative opacities the opposite is generally true, since higher densities favour the
interactions discussed before and therefore increase �rad. In Figure 3.2, we show in
the temperature–density diagram, the regions where the different opacity processes are
important.

Updated tabulations of stellar radiative opacity for various chemical compositions
and the relevant range of T and � are given by [1] and [106]. The former covers only
the lower temperatures where molecules (neglected by [106]) are relevant contribu-
tors to the Rosseland opacity. Accurate electron conduction opacities are provided
by [154].

3.1.6 Energy generation coefficient

In addition to the opacity �, the energy generation coefficient � (see Equation (3.7))
is needed to solve the equations of stellar structure. As we will see in the following,
� is – as in case of the opacity � – a function of chemical composition, T and �.
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Figure 3.2 The regions in the temperature–density plane where the different opacity processes
are important
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The energy generation coefficient � contains the following three terms, which we
are going to discuss separately

�n ≡ energy per unit time and unit mass generated by nuclear reactions;

�g ≡ energy per unit time and unit mass generated by the thermodynamical transfor-
mations experienced by stellar matter during the star evolution – this contribution is
usually (albeit somewhat improperly) named the gravitational energy term;

�� ≡ energy per unit time and unit mass associated to neutrino production processes,
which is effectively subtracted from the stellar energy budget, since neutrinos barely
interact with the surrounding stellar matter.

In general �= �n + �g − ��.

Nuclear reactions

Most observed stars, including the Sun, are powered by thermonuclear fusion. This
term denotes nuclear reactions induced by the thermal motion of the ions, whereby
lighter nuclei combine to form a heavier one. If the combined mass of the interacting
nuclei (denoted as Mint) is larger than the mass of the produced nucleus, Mp, the
difference �M = Mint − Mp is converted into energy according to the Einstein’s
relation E = �Mc2. As an example, when four hydrogen ions combine to form a
helium nucleus, Mint =4�0324 atomic mass units and Mp=4�0039 atomic mass units;
about 0.7 per cent of the original masses has hence been converted into an energy of
about 26.5MeV. This energy, previously locked into the interacting nuclei is therefore
now available to be shared among the various particle species and radiated away.

The mass difference between the interacting protons and the product of their inter-
action stems from the properties of the nuclear binding energy EB. The binding energy
EB of a given nucleus is the energy required to separate the nucleons against their
mutual attraction due to the nuclear forces, and is essentially a measure of the stability
of the nucleus. An approximated semi-empirical formula for EB is the following

EB�A	Z�= a1A− a2A
2/3 − a3�Z

2A−1/3�− 0�25a4�A− 2Z�2A−1 − a5

where Z is the charge of the nucleus and A its atomic weight. The numerical val-
ues of these constants are a1 = 16�918MeV, a2 = 19�120MeV, a3 = 0�7228MeV,
a4=101�777MeVanda5=±132A−1 MeVwhere the+ and− sign correspond, respec-
tively, to the cases where the number of neutrons and protons are both odd or both even.
On the other hand, if the total nuclear massmnuc is known, then EB is simply given by

EB�A	Z�= �Zmp + �A−Z�mn −mnuc�c
2

where mp is the proton mass (1�672× 10−24 g) and mn the neutron mass (1�675×
10−24 g).
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Figure 3.3 Binding energy per nucleon as a function of the atomic weight A

The binding energy per nucleon EB/A is a most interesting quantity; its value
increases with A first steeply – e.g. it is zero for H, 1.11MeV for deuterium, 7.07MeV
for 4He, 7.98MeV for 16O – then more gently, until it reaches a maximum of
8.79MeV around A = 56, corresponding to 56Fe, and then drops slowly down to
7.57MeV for 238U (see Figure 3.3). This means that iron nuclei are the most stable
ones. Elements up to 56Fe will therefore produce energy by thermonuclear fusion,
whereas for higher values of A it is the splitting of heavier nuclei into lighter ones
(nuclear fission) that is able to produce energy.

According to the shell model for the atomic nucleus, protons and neutrons occupy
quantized energy levels characterized by three quantum numbers, n (related to the
number of nodes of the radial wave function) l (related to the angular momentum
vector l) and j (the sum of l plus the spin vector s). For a given value of n, various
states of different energies are available, thanks to the spin–orbit interaction, much
stronger than in the case of electrons in atoms. The largest gaps between energy
levels occur when the number of protons or neutrons arranged in the nucleus is 2, 8,
20, 28, 50, 82, 126. These numbers are called ‘magic numbers’. Nuclei with these
magic numbers of protons or neutrons are especially stable. Some nuclei, such as
4He and 16O, have magic numbers of both protons and neutrons.

We now focus on the determination of the nuclear energy generation coefficient
�n, and consider a reaction of the type A + b → C + d, in which the target nucleus
A interacts with the particle b (typically a proton or a nucleus of another chemical
species) and forms nucleus C plus particle d. Three (or more) body interactions have a
much smaller probability of happening and can be neglected to a first approximation.
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We define a cross section � as the number of reactions per target nucleus (A)
per unit time, divided by the number of incident particles (b) per unit area per unit
time (i.e. the flux of incident particles). By denoting with v the relative velocity of
species A and b, the number of reactions r per unit volume and time is given by
r = v��v�NANb, where NA and Nb are the number densities of A and b. Since the
particles in the stellar gas have a distribution of velocities n�v�, one has to integrate
the previous expression for r over all the allowed range of relative velocities v

r =NANb

∫ �

0
v��v�n�v�dv=NANb <�v>

where n�v� is normalized to one. The product NANb is the number of pairs of
interacting particles, < �v > is a measure of the probability that a pair undergoes
a reaction of the type described before, and must be determined. If A and b are
identical, the number of interacting pairs is N 2

A/2, and the previous equation can be
generalized as

r =NANb

∫ �

0
v��v�n�v�dv= NANb

1+ �Ab

<�v> (3.29)

where �Ab is equal to one if A and b are the same particle species, otherwise it is zero.
We now define R≡ r/�, which corresponds to the number of reactions per unit

time and unit mass. By recalling that the mass fraction of a generic element k is
given by Xk = �NkmHAk�/�, where Ak is its atomic weight, we get the following
expression for R:

RAb =�
XAXb

m2
HAAAb

<�v>Ab

1+ �Ab

and the nuclear energy generation coefficient can be therefore written as

�n =RAbQAb

with QAb being the amount of energy released by a single reaction. The value of
QAb can be determined from the difference between the sum of the masses of the
interacting particles and the sum of the masses of the products. Often nuclear masses
are expressed in atomic mass units, and it is worth recalling that 931.494MeV is the
amount of energy associated with one atomic mass unit (1�6605× 10−24 g).

If a positron is produced by the nuclear reaction, it is customary to add to QAb its
annihilation energy corresponding to 2mec

2=1�022MeV. In the case where neutrinos
are produced, their energy has to be subtracted from the total energy production
budget since neutrinos cross the stellar structure without interacting with the rest of
the stellar matter, hence effectively taking away energy from the star. Typical cross
sections for the interaction of neutrinos with stellar matter are ≈10−18 times smaller
than the cross section for the photon interaction with matter.

As an example, we consider the reaction H + H →2 D+ e+ + �e, that is the
first stage of hydrogen thermonuclear fusion in stars with masses of the order of
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the Sun or lower. The difference between the masses of two hydrogen nuclei and
the mass of the deuterium nucleus plus the annihilation energy of the positron
is equal to 1.442MeV. The energy associated with the neutrino produced by the
reaction (an electron neutrino) is 0.263MeV and must be subtracted from the previous
contribution in order to provide the effective Q value of this reaction.

In order to determine �n we have still to discuss how <�v> can be determined.
Matter involved in nuclear reactions is well approximated by a fully ionized perfect
gas, and the particle velocities and kinetic energies therefore follow the Maxwell dis-
tribution. If the individual particles have a Maxwell velocity distribution, their relative
velocities v also follow the same distribution, and the corresponding kinetic energy
E is given by E= �1/2�mv2, where m is the reduced mass m= �mAmb�/�mA +mb�.
The expression for <�v> thus becomes:

<�v>= 23/2

�m��1/2�KBT�3/2

∫ �

0
��E�E e−E/KBTdE (3.30)

In order to calculate < �v > we need further information about the dependence of
��E� on the energy E; this can be obtained by studying the process of thermonuclear
fusion in more detail.

Whenever a pair of particles A and b interacts (i.e. they come close enough that the
attractive nuclear force tends to fuse them together) a compound nucleus C′ is formed.
The atomic and mass number of this compound nucleus is the sum of, respectively,
the atomic and mass numbers of A and b. The nucleus C′ has no memory of how it
was formed, since its component nucleons are mixed together independently of their
origin, and the energy of the interacting particles is shared among all of them. This
compound nucleus is in a particular excited state for a given time 
, and will then
break up in many possible ways, producing, among various possibilities, the particles
C and d, the same compound nucleus in a stable state with the emission of a photon, or
even the interacting particlesA and b themselves. Conservation of energy, momentum,
angular momentum and nuclear symmetries has to be ensured when determining
the possible outcomes of the the decay of the intermediate compound nucleus C′.

The outgoing particles then obtain an amount of kinetic energy that will be shared
with the surroundings in thermal equilibrium, with the exception of neutrinos. As an
example, we consider an interaction that produces a compound 14N nucleus, with an
excitation energy of, for example, 15MeV. This compound nucleus can then decay
according to these channels

14N→ 13N+ n
14N→ 13C+ p
14N→ 12C+ 2H
14N→ 10B+ 4He

Coming back to our generic reaction A + b → C + d, the probability that
it happens depends on the product of the probability that the interacting particles
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come close enough to experience the effect of the attractive nuclear force, and the
probability that this interaction produces the particles C and d (what we will denote
as the nuclear part of the reaction).

We now examine separately these two probabilities. In order to obtain the fusion
of charged particles like protons, they have to be able to get close enough that
the short-range attractive nuclear forces dominate over the long-range repulsive
Coulomb forces. Nuclear attraction dominates for distances between A and b smaller
than r2 = 1�4× 10−13�A

1/3
A +A

1/3
b � cm (see Figure 3.4). For distances larger than r2

the repulsive electrostatic force prevails, and the potential changes according to
VCoul= �ZAZbe

2�/r, where ZA	Zb are the electric charges of A and b. In the stationary
reference frame of A, a particle b can classically overcome the electrostatic potential
only if its kinetic energy is larger than the Coulomb potential at a distance r2.

However, due to quantum effects first investigated by G. Gamow, there is a small
but finite probability of ‘tunnelling’ through the Coulomb barrier even for parti-
cles with energy E lower than VCoul�r2�. In terms of the energy E of the relative
motion of the colliding particles, this probability is P = p0E

−1/2e−2�� where
�= �m/2�1/2�ZAZb2�e2h−1E−1/2� (not to be confused with the degeneracy param-
eter discussed in the section about the EOS) and p0 a constant that depends on the
value of the relative angular momentum and the reduced mass of the two interacting
particles. This means that nuclear fusion can happen at temperatures much lower than
predicted by classical physics. For a given pair of nuclei the probability of tunnelling
increases with increasing E (for two protons it is about 10−20 at T = 107 K typical
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Figure 3.4 Illustration of the potential seen by particle b when approaching particle A with a
kinetic energy Ekin, and the corresponding wavefunction � ; classically, particle b would reach only
a distance r1 from particle A before being repelled by the Coulomb force
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of the centre of the Sun, and, due to the large number of reacting particles, it is
sufficient to generate the energy needed to support the solar structure). At a given E
the probability decreases for increasing ZA	Zb, and one needs progressively higher
temperatures for nuclear ‘burnings’ as the various nuclear fusion phases are usually
called – involving heavier nuclei.

In astrophysics it is customary to define the quantity

S�E�=��E�E e+2��

called astrophysical factor or S-factor, that is mainly sensitive to the nuclear contri-
bution to the cross section. We may now rewrite Equation (3.30) by including S�E�

<�v>= 23/2

�m��1/2�KBT�3/2

∫ �

0
S�E� e−E/KBT−2��dE (3.31)

which is the form usually found in the astrophysical literature. In many relevant
astrophysical cases, i.e. the so-called non-resonant reactions, S�E� is a slowly varying
function of E in the energy range of interest. An examination of Equation (3.31) (see
Figure 3.5) shows that the first term of the product e−E/KBTe−2�� represents the high
energy wing of the Maxwell distribution – which decreases rapidly for higher ener-
gies – and the second one represents the energy dependence of the tunnelling proba-
bility – which decreases rapidly for small energies. The product produces a strongly
peaked curve, with a maximum at the so-called Gamow peak, which is the most
efficient energy for the nuclear reaction to occur. The energy EG of the Gamow peak is

EG ∼ 0�122�m/mH�
1/3�ZAZb�

2/3�T/109�2/3MeV
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Figure 3.5 Illustration of the location and shape of the Gamow peak (not to scale) as compared
with the functions e−E/KBT and e−2��
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and the full width at half maximum �EG is given by

�EG ∼ 0�237�Z2
AZ

2
bm/mH�

1/6�T/109�5/6MeV

Both EG and �EG increase for increasing temperature, and the rate of increase with
T is very similar (only slightly higher for �EG); the ratio �EG/EG is always below
unity and the shape of the peak region remains nearly the same. It is in the Gamow
peak energy range that S�E� needs to be known in order to derive the reaction rate. This
energy range is at least a factor of about 10 lower than the energies at which the stellar
reactions can be produced in laboratories; therefore one has to extrapolate the measured
S�E� values to much lower energies if an empirical determination of S�E� is sought.

As mentioned above, S�E� is often a slowly varying function of E and <�v> is
usually obtained from Equation (3.31) by considering a second-order Taylor expan-
sion of S�E� and e−E/KBT−2�� around EG, and neglecting all terms of order higher
than KBT/EG. This provides

<�v>∼ Seff

(
32EG

3m

)1/2( 1
KBT

)3/2

e−3EG/KBT (3.32)

with

Seff =S�EG�

(
1+ 5KBT

36EG

)
+S′�EG�

(
EG +

35KBT

36

)
+ 1

2
S′′�EG�EG

(
EG +

89KBT

36

)
(3.33)

S′ and S′′ being the first and second derivatives of S with respect to the energy. The
values for the astrophysical factor and its derivatives are obtained either from labo-
ratory measurements (extrapolated down to the stellar energies) or from theoretical
quantum mechanical computations.

Contrary to the previous assumption of a slowly varying S�E� with respect to E, in
some cases S�E� happens to show very rapid variations, with narrow peaks at specific
values of E (within the Gamow peak range) corresponding to excited energy levels
within the nucleus. In this case a resonance is said to occur, and the approximation
discussed before breaks down. The cross section is generally greatly enhanced in the
presence of a resonance, and it is dominated by the resonance, which occurs at the
resonance energyER, independent ofT (remember that theGamowpeak energyEG does
depend on T ). The width � of the resonance is proportional to the total lifetime 
 of the
excited state according to � =h/�2�
�, and<�v> can be written, in this case ([166])

<�v>=
(

2�
mKBT

)3/2(
h

2�

)2

��e−ER/KBT (3.34)

where �=�Ab�Cd/� and �= �2J +1�/��2JA+1��2Jb+1��, and J is the total angular
momentum of the excited energy level that gives origin to the resonance, JA	 Jb
the angular momenta of the interacting particles; �Ab	 �Cd are defined as � , but
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considering the lifetime for the decay of the compound nucleus into the original
interacting particles A+b, and into the products C+d, respectively. In the case of
heavy compound nuclei many resonances are present in the range of stellar energies.
In this case one has to sum the contribution of overlapping resonances.

Other nuclear reactions effective in stars are neutron captures, whereby a nucleus
of mass A and electric charge Z captures a neutron and becomes a nucleus with mass
A+ 1. Since the electric charge of neutrons is zero, the cross section for neutron
captures is much larger than for charged particles, because neutrons do not have
to overcome the Coulomb potential. Usually the compound nuclei formed by this
process have many resonances in the range of stellar energies, and the resonances are
broad, so that they tend to overlap and make the cross section almost independent of
T . In fact, experimentally one finds that <�v> is almost constant with temperature.
If, however, the target nucleus is light or is magic numbered, there are few resonances
and <�v> is no longer a smooth function of T .

Stars can synthesize chemical elements heavier than iron through two kinds of
processes involving neutron captures, in those evolutionary phases when appreciable
neutron fluxes are produced (see Chapter 7): the s- and r-processes.

Suppose that a sufficient neutron flux is available. This triggers a chain of reactions
with nuclei capturing neutrons and producing heavier isotopes of the same element.
A generic reaction chain is the following

E�A	Z�+ n→E1�A+ 1	Z�

E1�A+ 1	Z�+ n→E2�A+ 2	Z�

E2�A+ 2	Z�+ n→E3�A+ 3	Z� � � �

As long as element Ei is stable, the chain can proceed. Otherwise Ei will decay as

Ei�A+ i	Z�+ n→F�A+ i	Z+ 1�+ e− + �̄

If the element F is stable, a new neutron capture chain can start. Otherwise,
multiple � decays follow until a stable element is produced. In this way, increasingly
heavier stable elements are created.

The comparison between the neutron capture and the � decay timescales marks
the distinction between s- and r-processes. When the timescale for neutron capture
is shorter – which means that a very large neutron flux is available – the unstable
isotopes will capture more neutrons before decaying and the process is called r-process
(‘r’ stands for rapid). If the opposite is true, the unstable isotope decays before
capturing a further neutron. This is the so-called s-process (‘s’ stands for slow). The
practical difference between r- and s-processes is that via the former mechanism
one can produce chemical elements heavier than in case of s-processes.

Extensive tabulations of reaction rates for all the relevant reactions happening in
stars are listed in [4,51].

It is important to notice that in the previous discussion and the cross sections
provided in the literature refer to nuclear reactions happening in vacuum. Instead,
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ions in stellar interiors are surrounded by a sea of free electrons that tend to cluster
near the nuclei and reduce their Coulomb potential. Therefore an approaching particle
will feel a Coulomb potential different from the case of an isolated positive charge.
This shielding effect of the electrons increases the reaction rates <�v> by a so-called
screening factor f that will necessarily be a function of the matter density. Just
to give a brief qualitative introduction to the problem of electron screening, we
may consider a nucleus of charge Ze that causes a polarization in its surroundings.
Negative electrons are attracted by the nucleus and will have a density ne in its
neighbourhood, larger than the average value < ne > without the electric field of
the nucleus. The other positive ions will be repelled and their local density ni will
be lower than the average value < ni > without the field of the ion. In general
terms, given the electrostatic potential u generated by an isolated ion, the surrounding
density of particles of charge q will be changed according to

n=<n> e−qu/KBT

By considering the electrons and the various species of ions present in the stellar
matter, one can determine the effective electrostatic potential u′ at a distance r
from an ion of charge Ze, assuming spherical symmetry for the surrounding charge
distribution; the result is

u′ = Ze

r
e−r/RD

where RD is the Debye radius defined in Section 2.1.3. For r → 0 the potential
becomes the unscreened Coulomb potential. One can say that RD is a measure of the
radius of the electron distribution that shields part of the ion potential to an external
observer. A lower electrostatic potential means a lower Coulomb barrier and a larger
cross section. By considering again the generic reaction A+ b→C+ d and defining
ED = �ZAZbe

2�/RD, the screening effect is considered weak when ED �KBT , and
strong when ED �KBT . In general, the effective cross section for a given reaction
will be given by the unscreened one discussed previously, multiplied by a factor f
that accounts for the screening effects and depends on the charge of the interacting
particles and gas chemical composition. It is possible to estimate if the screening
effect is substantial by comparing RD with the closest distance to which the ions can
classically approach each other if they have the Gamow energy, i.e. rc= �ZAZbe

2�/EG.
In the case of the solar core and most stellar evolutionary phases RD � rc and
screening effects are relatively small (less than 10 per cent for the Sun) because the
electrostatic potential at distances below the Debye radius is only slightly different
from the Coulomb unscreened one.

For non-resonant reactions, the weak screening result provides

f ≈ e0�188ZAZb����
1/2�T/106�−3/2
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(the factor � has been defined in the section devoted to the treatment of ionization in
the EOS) whereas in the case of strong screening

f ≈ e0�205��ZA+Zb�
5/3−Z

5/3
A −Z

5/3
b ���/�e�

1/3�T/106�−1

The intermediate case as well as screening factors for resonant reactions are more
complicated; a full treatment of screening effects can be found in [186,86].

We conclude this section by briefly noticing that the screening factors shown above
both predict an increase of f when the density increases and temperature decreases.
At extremely high densities and low temperatures typical of astrophysical compact
objects, the screening corrections dominate the evaluation of the cross section. In this
case one talks of pycnonuclear reactions, whose rate is strongly dependent on � but
weakly sensitive to the temperature. Pycnonuclear reactions might play a role in very
advanced stages of stellar evolution, when they may constitute an energy source for
very compact objects (see, for example, [31, 186]).

Gravitational energy

Matter inside a star can in principle experience a series of thermodynamical transfor-
mations due to changes in the local radius, pressure and temperature, as well as local
chemical composition. Even in the absence of nuclear reactions these thermodynami-
cal transformations can generate energy due to the first principle of thermodynamics,
that relates the heat dQ added to the star (per unit mass) to the internal energy per
unit mass U and the specific volume v= 1/� (i.e. the volume corresponding to the
unit mass) through the following relationship

dQ=dU +Pdv

Dividing both sides by dt one obtains

dQ

dt
= dU

dt
+P

dv

dt
=−�g

The minus sign arises from the fact that a positive dQ/dt means energy added
to the mass layer, whereas the energy generation coefficient is positive if energy is
released by the mass layer. One can write the total differential of the internal energy
U as

dU =
(

dU

dv

)
T	�

dv+
(

dU

dT

)
v	�

dT +
(

dU

d�

)
T	v

d�

and the gravitational energy generation coefficient can be rewritten as

−�g =
(

dU

dv

)
T	�

dv

dt
+
(

dU

dT

)
v	�

dT

dt
+
(

dU

d�

)
T	v

d�

dt
+P

dv

dt
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The term �dU/d��T	v�d�/dt� gives the variation of U at constant temperature
and volume due to the change of chemical abundances. Its contribution to the stellar
energy budget is usually negligible when nuclear reactions are efficient, but it is
important in the case of white dwarfs where nuclear burnings are inactive. It will be
neglected in the rest of this derivation, but we will discuss its effect in Section 7.4
dealing with white dwarf stars.

Our aim is now to rewrite �g in terms of only P	T	�	�	 cP and �ad and derivatives
of these quantities. In this way one minimizes the number of variables needed as an
input from the EOS and, moreover, �g will be described by a relationship easy to
implement in stellar evolution codes. In the following we will omit the suffix � for the
derivatives of thermodynamical quantities taken at constant chemical composition.
From elementary thermodynamics it is known that �dU/dv�T = T�dP/dT�v −P and
cv = �dU/dT�v; by substituting these results into the previous equation for �g we
obtain

−�g = cv

dT

dt
+T

(
dP

dT

)
v

dv

dt

By recalling the definition of specific volume this equation becomes

−�g = cv

dT

dt
− T

�2

(
dP

dT

)
v

d�

dt

We can again make use of basic thermodynamics and write �dP/dT�v =
�p�′�/�T��, where �′ = −�d ln����/�d ln�T��P and � = �d ln���/d ln�P��T ; more-
over, neglecting the differentiation with respect to �, one can also write �d�/��=
��dP/P�−�′�dT/T�. By substituting these equations into the expression for −�g one
obtains, after some algebra

−�g =
(
cv +

P�′2

��T

)
dT

dt
− �′

�

dP

dt

We now use from thermodynamics the additional relationships �ad= �P�′�/�T�cP�
and �cP − cv�= �P�′2�/��T�� to reach the sought result:

�g =−cP

(
dT

dt
−�ad

T

P

dP

dt

)
(3.35)

It is now natural to ask ourselves what is the energy source responsible for the �g
contribution to the total energy budget. To answer this question we write �g again in
its basic form

�g =−dU

dt
−P

dv

dt
=−dU

dt
+ P

�2

d�

dt
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where we have used the relationship v= 1/�. It is evident that the first term in �g
arises from the variation of the star internal energy. As for the second term, let us
start by considering the total gravitational potential (�) of the star; as we will show
in Section 3.1.8,

�=−3
∫ M

0

P

�
dm

Differentiation of this equation with respect to time does provide

d�

dt
=−3

∫ M

0

dP

dt

1
�
dm+ 3

∫ M

0

P

�2

d�

dt
dm (3.36)

We now differentiate with respect to time the hydrostatic equilibrium equation
(with mass as an independent variable) hence

d�dP/dt�

dm
= 4

Gm

4�r4
dr

dt

1
r

then multiply both sides by 4�r3 and integrate over m, obtaining:

∫ M

0
4�r3

d�dP/dt�

dm
dm= 4

∫ M

0

Gm

r

dr

dt

1
r
dm (3.37)

The right-hand side of this equation is 4�d�/dt� whereas the integration by part of
the left-hand side provides:

[
4�r3

dP

dt

]M

0

− 3
∫ M

0
4�r2

dr

dm

dP

dt
dm

The term in square brackets vanishes at both the centre (m = 0) and the surface
(m=M) since r = 0 at m= 0 and P ∼ 0 independent of time at m=M; using the
equation of continuity of mass the integral can be rewritten as

−3
∫ M

0

dP

dt

1
�
dm

After these transformations Equation (3.37) can be rewritten as

−3
∫ M

0

dP

dt

1
�
dm= 4

d�

dt

which, once inserted in place of the first term in the right-hand side of Equation (3.36)
gives

d�

dt
=−

∫ M

0

P

�2

d�

dt
dm (3.38)



BASIC ASSUMPTIONS 81

The integrand of the right-hand side is the second term contributing to �g (in addition
to the time variation of the internal energy) that now appears explicitely as due to
the time derivative of the gravitational potential of the star.

Neutrino production

As mentioned before, neutrinos do not practically interact with the stellar matter
(apart for extreme conditions encountered during some type of supernova explosion,
as we will see later on) therefore their energy makes a negative contribution to the
total stellar energy budget. We should also point out that only electron neutrinos are
produced in a stellar environment.

In addition to being created during nuclear burnings by the � decays of unsta-
ble nuclei (the negative energy contribution of nuclear reaction neutrinos is already
accounted for in the �g term) neutrinos can be produced in stellar interiors by addi-
tional processes, as shown below. The first four of them are purely leptonic processes,
i.e. a consequence of the electron–neutrino coupling predicted by the unified elec-
troweak interaction theory. In fact, due to this coupling, a neutrino–antineutrino pair
can be produced whenever an electron changes its momentum or an electron–positron
pair annihilates. The last two processes are nuclear processes, however, usually inde-
pendent of the nuclear burnings happening in the stellar centres.

• Pair annihilation process: e− + e+ → � + �̄. In very hot environments, e.g. for
T> 109 K, the energy of a large fraction of photons is high enough to produce
electron–positron pairs e−−e+, that are annihilated to produce photons and, approx-
imately once in 1019 times, a neutrino–antineutrino pair.

• Photoneutrino process: �+ e−→ e− + �+ �̄. When a Compton scattering between
a photon and an electron happens, there is a small probability that after scattering
the photon is replaced by a neutrino and antineutrino pair.

• Plasma neutrino process: �p → � + �̄. When a photon propagates in a dense
ionized gas, it is coupled with the collective motions of the electrons,
and behaves like having an effective mass given by �h�p�/�2�c2�, where
�p = �4�nee

2/me�
1/2 in case of non-electron degenerate matter, and

�p = �4�nee
2/me�

1/2�1 + �h/�2�mec��
2�3�2ne�

2/3�−1/4 when matter is electron
degenerate (ne being the electron number density). Under these conditions photons
are referred to as plasmons, and they can decay into a neutrino–antineutrino pair. In
normal conditions this is not possible because, having the photon a zero rest mass,
momentum and energy cannot be both conserved. This plasma neutrino process is
particularly effective in dense and electron degenerate stellar cores.

• Bremsstrahlung neutrino process: inelastic scattering (e.g. deceleration) of electrons
in the Coulomb field of a nucleus usually leads to the emission of so-called
Bremsstrahlung radiation, i.e. photons. However, at very high densities and low
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temperatures the photons can be replaced by neutrino–antineutrino pairs. This
process shows a strong dependence on the charge of the nucleus involved and can
only be important for nuclei with a large atomic number.

• Recombination neutrino process: e− + �Z	A� → �Z − 1	A�+ �. In this process
neutrinos are produced when a free electron is captured into the K-shell around
a fully ionized nucleus of charge Z and atomic weight A. The efficiency of this
channel for the neutrino production is restricted mainly to part of the white dwarf
star evolution.

• URCA process: �Z	A�+ e− → �Z− 1	A�+ �	 �Z− 1	A�→ �Z	A�+ e− + �̄. In
this process an electron capture on a stable nucleus �Z	A� is followed by a � decay
which results in neutrino production but no change of the chemical composition. In
order for the URCA process to happen, the nucleus �Z−1	A� has to be unstable to
� decay. If the appropriate nuclei are present in the stellar matter, the efficiency of
this process increases with both � and T . In general one needs degenerate matter
at high densities in order for the electrons to have energies high enough to be
captured by nuclei. If only the first part of the URCA process happens (the electron
capture) neutrinos are still produced.

Other possible mechanisms for neutrino production like inelastic electron–electron
scattering or photon–photon scattering (both producing a neutrino–antineutrino pair)
have been found to be completely negligible in stellar conditions. Detailed tabulations
and analytic expressions for the various individual energy loss rates due to these
mechanisms can be found in [8] and [108]. A simple set of equations that provides the
energy loss rate due to the three dominant mechanisms of pair-, photo- and plasma
processes is given by [8]

�=
(

�/�e

109g/cm3

)1/3

�−1

�= T

5�9302× 109K

g���= 1− 13�04�2 + 133�5�4 + 1534�0�6 + 918�6�8

fpl =
�6�002× 1019 + 2�084× 1020�+ 1�872× 1021�2�e−5�5924�

�3 + 9�383× 10−1�−1 − 4�141× 10−1�−2 + 5�829× 10−2�−3

fph =
�4�886× 1010 + 7�580× 1010�+ 6�023× 1010�2�e−1�5654�

�3 + 6�290× 10−3�−1 + 7�483× 10−3�−2 + 3�061× 10−4�−3

fpa =
�2�320× 10−7 + 8�449× 10−8�+ 1�787× 10−8�2�e−0�56457�

�3 + 2�581× 10−2�−1 + 1�734× 10−2�−2 + 6�990× 10−4�−3

�� =
�2

�3
e

fpl +
1
�e

�5fph + g���e�−2/��fpa
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3.1.7 Evolution of chemical element abundances

The chemical composition of the stellar matter at a given point within a star is subject
to changes with time due to the effect of nuclear reactions and convection. Equations
describing the time evolution of the various chemical species have to be added to
the equations of the stellar structure, since the physical inputs (e.g. EOS, opacities,
nuclear reaction rates) needed for the computation of stellar models are themselves
influenced by the local chemical composition. We first discuss the effect of nuclear
reactions, and find the connection between the number of reactions and the variation
of the abundances of chemical elements.

We consider a generic reaction between two nuclei i and j: i + j → k. As already
discussed before, the number of reactions per unit volume and unit time is given by

rij =
NiNj

1+ �ij

<�v>ij

where <�v>ij is the cross section for the reaction between i and j and Ni	Nj are the
numbers of nuclei i and j per unit volume. By recalling that Rij≡ rij/� is the number
of reactions per unit time and unit mass, the temporal variation of the abundance of
element i (that is destroyed in this reaction) is given by

dXi

dt
=−AimHRij =−�

XiXj

mHAj

<�v>ij

1+ �ij

We can now envisage a most general situation where element i is produced by w
reactions of the following kind

nhh+ nkk→ np i

and it is destroyed by l reactions of the following kind

nd i+ njj→ nzz

By a simple extension of the previous relationships one finds that the variation of the
abundance (by mass fraction) of i will be given by

dXi

dt

1
Ai

=∑
w

�nh+nk−1np
X

nh
h X

nk
k

A
nh
h A

nk
k

<�v>hk

m
nh+nk−1
H nh!nk!

−∑
l

�nd+nj−1nd
X

nd
i X

nj
j

A
nd
i A

nj
j

<�v>ij

m
nd+nj−1
H nd!nj!

(3.39)

The first term in Equation (3.39) accounts for all reactions which produce element
i, while the second term involves only the reactions responsible for the destruction
of the same element. A system of algebraic equations of this kind can be written for
all elements involved in the nuclear burnings, and has to be added to the equations
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of stellar structure. In actual stellar evolution calculations Equation (3.39) is usually
much simpler, since in most cases only one particle of each species is involved in
the reactions.

In the case of spontaneous decays involving a generic element i one can write

1
Xi

dXi

dt
= 1


d
(3.40)

where 
d is the decaying constant of the process considered. This equation comes
straightforwardly from the well-known equation of radioactive decay.

A very interesting phenomenon happens when we are dealing with a cyclic chain
of reactions, where two elements a and c are both produced and destroyed by this
kind of reaction chain (an example of this is the CN cycle – see Section 5.2.2 – in
the hydrogen burning phase)

a+ b→ c

c+ b→ a

It is common use to define as ‘primary elements’ the ones which in a cyclic
reaction are just produced or destroyed, as element b in our example; the so-called
‘secondary elements’ are both produced and destroyed, as elements a and c.

The change of the abundance of element a with time can be written as

dXa

dt
=�

(
XcXbAa

mHAcAb

<�v>cb −
XaXb

mHAb

<�v>ab

)

and the change of c is given by

dXc

dt
=�

(
XaXbAc

mHAaAb

<�v>ab −
XcXb

mHAb

<�v>cb

)

We assume that � and Xb are approximately constant during the process, and
introduce the constants A≡ ��XbAa�/�mHAcAb�	B≡ ��Xb�/�mHAb�. With these new
definitions the equation for Xa becomes

dXa

dt
=XcA<�v>cb −XaB<�v>ab

Being secondary elements, the sum of the abundances by number of a and c must be
conserved, i.e.

Xa/Aa +Xc/Ac =X0
a/Aa +X0

c/Ac =K0
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where X0
a and X0

c are the initial values at time t = 0. We can therefore write
Xc =AcK

0 − �AcXa�/Aa and transform the equation for the evolution with time of
Xa into

dXa

dt
=K0AcA<�v>cb −Xa

(
AcA

Aa

<�v>cb +B<�v>ab

)

If the reaction rates are approximately constant during the process we can define the
constant P ≡ AcA

Aa
<�v>cb +B<�v>ab, and the previous differential equation (with

constant coefficients) can be rewritten as

dXa

dt
+PXa =K0AcA<�v>cb

with solution given by

Xa =X0
a e

−Pt +X�
a �1− e−Pt�

with

X�
a = K0AcA<�v>cb

P

In the case of element c one obtains an analogous solution with

X�
c = K0AcB<�v>ab

P

This means that for cyclic reactions, within the conditions described above and
given enough time, the elements that are both produced and destroyed tend to con-
verge to abundances constant with time, called equilibrium abundances. These abun-
dances can be different from the initial ones and are related to the rates of the nuclear
reactions involved. If the elements a and c start from initial abundances different
from the equilibrium values, they will converge to X�

a and X�
c after a time t� 
eq,

where 
eq = 1/P. The conditions of constant � and Xb may be satisfied when, for
example, Xb �Xa	Xc and the timescale 
eq is much shorter than the timescale for
the variation of the physical structure of the star.

Another process able to change the local chemical composition of the stellar matter
is convection. Whenever the convective energy transport mechanism is efficient,
large-scale motions of the stellar gas are excited; these motions transport energy and
matter effectively from one point to another of the stellar interior. In a region where
previous (or ongoing) nuclear reactions have established a chemical stratification,
the chemical abundance profile is completely erased if convection sets in, as matter
becomes fully mixed within the entire convection zone and the timescale for the
convective mixing is very short, much shorter than the timescale for abundance
changes due to nuclear reactions. This latter timescale can be quantified – in analogy
with the radioactive decay constant – by the product �1/Xi��dXi/dt�, where Xi is
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the mass fraction of a given element i, determined by Equation (3.39). Typically, the
timescale of convective motions (that can be estimated from the convective velocity
and typical stellar sizes) is much shorter compared with the inverse of the quantity
�1/Xi��dXi/dt� due to nuclear reactions. This means that even if nuclear burning is
effective in part of the convective region, the chemical composition within the region
is always uniform, because at a given time t the local abundance variation due to
nuclear reactions is instantaneously redistributed all over the convective region.

With this knowledge in hand we can finally provide a general solution to the
problem of the chemical abundance evolution within the stellar structure. In radiative
regions, where there is no exchange of matter between neighbouring mass layers,
the chemical abundances are changed by the effect of nuclear reactions and their
evolution is described by Equations (3.39) and (3.40).

In the case of convective regions, one has to take into account that the newly created
nuclei (if nuclear reactions are effective) and all other elements are dispersed homoge-
neously within the entire convective region. Let us suppose that the convective region
extends frommass layerm1 (inner boundary) to mass layerm2 (outer boundary) within
the star. Inside this region the abundance Xi of a generic element i is constant (and
will be denoted as <Xi >). At the boundaries (one or both of them) one usually has a
discontinuity between the homogeneous convective chemical profile and the profile
in radiative regions, that is usually affected by the nuclear reactions (previous and/or
present). Due to these effects, the time evolution of <Xi > is to a first order given by

d<Xi >

dt
= 1

�m

[∫ m2

m1

dXi

dt
dm+ dm2

dt
�Xi2−<Xi >�− dm1

dt
�Xi1−<Xi >�

]
(3.41)

where �m = m2 − m1	Xi1	Xi2 are the abundances on the radiative side of the
discontinuities at, respectively, the inner and outer boundary of the convective
region. The integral in the right-hand side describes the variation due to the nuclear
burnings, whereas the other two terms in brackets describe the change in composition
when the boundaries of the convective zone move into surrounding regions of – in
principle – inhomogeneous composition.

3.1.8 Virial theorem

The virial theorem plays a fundamental role in stellar evolution theory and here
we provide a derivation suited to our purposes; more general derivations are given
elsewhere (see, for example, [62], [123]).

Consider a bound spherical gas system of mass M in hydrostatic equilibrium,
which can be described by Equation (3.5), and assume that the temperatures are not
high enough to start nuclear reactions. Multiplying both sides of Equation (3.5) by
4�r3 and integrating over dm from the centre to the surface provides∫ M

0

dP

dm
4�r3dm=−

∫ M

0

Gm

r
dm
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An integration by part of the left-hand side of this equation gives

�4�r3P�M0 −
∫ M

0
12�r2

dr

dm
Pdm=−

∫ M

0

Gm

r
dm

Using the fact that P ≈ 0 at the surface and r = 0 at the centre, and applying
Equation (3.2) to the second term on the left-hand side of this equation, we obtain

3
∫ M

0

P

�
dm=

∫ M

0

Gm

r
dm (3.42)

The right-hand side of Equation (3.42) is −�, where � denotes the total gravitational
energy of the system, i.e. the potential energy of a mass element dm integrated over
all the system. The left-hand side is clearly related to the thermodynamics of the
system. In the assumption of a perfect monatomic gas the internal energy per unit
mass E is equal to (see Equations (2.6) and (2.7)) (3/2)�P/�� and Equation (3.42)
can be rewritten as

E=−�

2
(3.43)

which represents the virial theorem.
The total energy Et of the system is given by Et =E +�; given that �=−2E

(Equation (3.43)) we obtain Et =−E (or Et =�/2, which is negative because the
gravitational energy is negative). The total energy is negative, in agreement with
the hypothesis that the system is bound. In the specific case of stars (with no active
nuclear reactions) an initial hydrostatic equilibrium state is perturbed when energy is
radiated away from surface (because stellar surfaces are hotter than the surrounding
interstellar space) hence the total energy Et decreases according to

L=−dEt

dt

Following the result of the virial theorem, this is equivalent to

L=−1
2
d�

dt

and � has to decrease in order to produce a positive luminosity, i.e. the star has
to contract. At the same time the internal energy will increase by an amount �E =
−�Et=−��/2, and thus, somewhat surprisingly, the star heats up (E is proportional
to T ) when energy is lost from its surface. This fact can be described by saying that
stars have a negative specific heat. Summarizing, the loss of energy from the surface
causes the contraction of the system; half of the gain in gravitational energy goes
into internal energy, the other half is radiated away.
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We can use the virial theorem to put constraints on the average internal temperature
and density of the star of mass M . The gravitational energy of a sphere of mass M
and radius R is given by

�=−�
GM2

R

where � is a numerical constant of the order of unity, whose exact value depends on
the density profile within the system. In the case of constant density �= 3/5. If the
gas is a fully ionized monatomic perfect gas, the internal energy E is given by

E∼ 3
2
KT̄

M

�mH

where T̄ is the mean temperature within the star. Introducing now the average density
�̄∝M/R3, and expressing R as a function of �̄, the virial theorem provides

T̄ ∝M2/3�̄1/3

This means that two stars of different mass must have different mean densities in order
to achieve the same mean temperature, i.e. less massive objects have to be denser.

The virial theorem also provides a criterion for the stability of a star. Considering
the equation of state for a generic perfect gas, we can write the internal energy as

E= 1
��− 1�

P

�

where the quantity � has been already defined as � ≡ cP/cv; it is equal to 5/3 for a
perfect monatomic gas. Substituting this equation into Equation (3.42) one obtains a
more general expression for the virial theorem

E=− �

3��− 1�
(3.44)

By using this equation, and remembering that Et =E+�, one obtains

Et =
�3�− 4�
3��− 1�

� (3.45)

Equation (3.45) provides a fundamental criterion for the stability of stellar struc-
tures: a star will be in hydrostatic equilibrium only as long as � is larger than 4/3.

In the case where the pressure at the surface of the gas system (P0) is non-
negligible, it is easy to show that the virial theorem becomes

3��− 1�E+�= 4�R3P0 (3.46)
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3.1.9 Virial theorem and electron degeneracy

We consider now the case of a gas made of degenerate electrons and a perfect
monatomic ion gas (an analogous result holds if Coulomb corrections are included).
A detailed derivation of the virial theorem for electron degenerate configurations,
including the effect of Coulomb corrections can be found in [117].

For highly degenerate electrons (large values of the degeneracy parameter �)
3�� − 1�= 2 in the non-relativistic case and 3�� − 1�= 1 in the relativistic case; in the
case of the ions 3��− 1�= 2. For a mixture of these three cases within the same object,
the average 3�� − 1� is between 1 and 2 and therefore the total energy is negative and
the star can evolve in hydrostatic equilibrium. Let us consider the specific case of non-
relativistic degenerate electrons, which corresponds to 3�� − 1�= 2, as for the perfect
ion gas; this implies (assume P0 = 0) that�=−2E= 2Et and L=−�1/2�d�/dt.

The gravitational energy � is proportional to 1/R, hence to �1/3, so that
�d�/dt��1/��= �1/3��d�/dt��1/��, where � is an average value of the star density.
A contraction increases � hence the internal energy Ee of the electrons that is given
by Ee ≈�2/3 (see Chapter 2). This means that �dEe/dt��1/Ee�= �2/3��d�/dt��1/��,
which gives

dEe

dt
≈ 2

Ee

�

d�

dt
(3.47)

Because of the virial theorem �=−2E, where the internal energy E is given by
E=Ee +Ei	Ei being the energy of the ions. When the electron degeneracy is high
Ee �Ei, hence �∼−2Ee and from Equation (3.47) we obtain

dEe

dt
≈−d�

dt

Using this relationship for the total energy balance provides

L=−dEt

dt
=−dEi

dt
− dEe

dt
− d�

dt
∼−dEi

dt
(3.48)

This discussion shows that the half of the gravitational energy that is not radiated
away increases the internal energy of the electrons, i.e. their Fermi energy, whereas the
thermal energy of the ions, proportional to T , decreases; in particular, the energy lost
by radiation is nearly equal to the rate of decrease of the thermal energy of the ions.
In brief, the virial theorem tells us that the star contracts, the temperature decreases
and EF increases. The contraction of electron degenerate structures is, however, hard
to detect – and they can be safely assumed to evolve at constant radius – since the
equilibrium configuration of these objects is at small radii (see the section about
white dwarf stars) hence ���� = ��R�/R2 is comparable to L (as prescribed by the
virial theorem) for extremely small values of �R.

This qualitative picture does not appreciably change when considering a more
realistic EOS for the degenerate electrons and the ions.
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3.2 Method of solution of the stellar structure equations

We start by summarizing the stellar structure equations derived above (we drop the
index r in the notation)

dr

dm
= 1

4�r2�
(3.49)

dP

dm
=− Gm

4�r4
(3.50)

dL

dm
= �n − �� − cP

(
dT

dt
−�ad

T

P

dP

dt

)
(3.51)

dT

dm
=−T

P
�

Gm

4�r4
(3.52)
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(3.53)

Equation (3.53) is actually a set of I equations (s = 1	 � � � 	 I) for the change of
the mass fraction of the chemical elements considered; the meaning of the right-
hand side of Equation (3.53) has been discussed in the previous section (in case
of convective regions – if present – one has to employ Equation (3.41)). These
equations and the corresponding physical and chemical variables refer to a generic
stellar layer located at a mass coordinate m (m runs from zero to the value of the
total stellar mass M) and have to be applied to all mass layers from the centre to the
stellar surface.

To solve these equations one needs to know the local values of the auxiliary
functions (dependent on the local chemical composition) �n (and the related nuclear
cross sections) ��, the equation of state of the stellar matter P =P��	T� and related
thermodynamical quantities, the opacities � and the appropriate temperature gradient
� (radiative, adiabatic or superadiabatic). If these auxiliary functions are known we
have at each stellar layer a set of 4+ I differential equations for the 4+ I variables
r	P	T	L	Xs (with s= 1	 � � � 	 I); the independent variables are m and t. In general
one needs to specify the total mass M of the star and its initial chemical composition;
then the equations are solved to determine the structure of the star at the initial instant
t0 and its evolution with time.

The equations must be integrated with numerical techniques, since there is no
analytical solution. This means that one can only determine an approximation of the
real solution in a discrete number of points (corresponding to discrete values of the
mass, that is used as independent variable) within the star and at discrete intervals
of time. Equations (3.49) to (3.52) describe the mechanical structure of the star for a
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given chemical composition, while Equation (3.53) describes the chemical structure
and its time evolution.

Time derivatives appear explicitely only in Equations (3.51) and (3.53), i.e. the
time evolution is driven by the energy generation and losses, and the consequent
chemical transformations of the stellar matter. It is important to realize that the
timescales associated with the time derivatives in Equation (3.51) are different from
the case of Equation (3.53). The former derivatives are associated with the rate of
change of the gravitational and internal energy (the two contributors to �g) with time;
the corresponding timescale is called the Kelvin–Helmholtz timescale and can be
estimated by assuming that no nuclear reactions are efficient, and the star physical
conditions evolve according to the virial theorem. In this case gravitational and
internal energy change with the same speed, and the corresponding timescale is
defined as 
KH ≡ ���/L, where L is the star luminosity and � its total gravitational
potential energy. In the case of the Sun, with the approximation �∼GM2

�/R� −M�
being the solar mass and R� its Radius – one obtains 
KH ≈ 107 years. This would
approximately be the solar lifetime in the case where nuclear reactions are not active
and the solar evolution is driven by the virial theorem.

The time derivatives in Equations (3.53) are instead associated with the character-
istic nuclear reaction timescale 
n ≡En/L, where En is the nuclear energy reservoir;
in the case of the Sun the nuclear reactions transform H into He. If the Sun were
made of pure H and only the central 10 per cent of its mass is hot enough to undergo
nuclear reactions, 
n ≈ 1010 years (which is close to a more accurate estimate of the
solar lifetime). A comparison between these two timescales shows that 
n� 
KH; this
holds not only for the present Sun, but for the main part of the lifetime of stars with
different masses.

A third timescale that is useful to consider (and that we have briefly discussed in
Section 3.1) is the so-called free-fall timescale 
ff 
ff is the timescale for the collapse
of the star in the case where the gravitational force is not balanced by the pressure,
i.e. the star is not in hydrostatic equilibrium (see Equation (3.50). In the case of the
Sun 
ff is of the order of 10 minutes, and in general 
n � 
KH � 
ff .

The inequality between 
n and 
KH means that Equation (3.53) can be decoupled
from the other four equations. This is no longer true in the most advanced evolutionary
phases of massive stars, where the speed of the chemical evolution of the stellar
matter becomes comparable to the evolution of the physical variables. Decoupling
Equation (3.53) from the other equations means that one can solve the mechanical
part of the star at a given instant t with a given set of chemical abundances, then apply
a time step �t, solve Equation (3.53) to determine the new chemical abundances
using the value of the physical variables determined at the previous instant t, then
integrate the equation of the mechanical structure again at time t+�t using these
updated chemical abundances, and so on.

In the following we will first deal with the problem of solving Equations (3.49) to
(3.52); the first step is to determine the appropriate boundary conditions. We need four
boundary conditions for r	P	T and L, respectively. As for the chemical composition,
one has to specify the initial abundances of the various elements, assumed at the
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beginning to be homogeneous throughout the star and corresponding to the chemical
composition of the protostellar cloud (nuclear reactions have not yet modified the
stellar chemical abundances).

Boundary conditions need to be given at both the stellar centre (m=0) and surface
(m = M). We recall that the surface for the stellar structure equations is located
at a layer where the diffusion approximation for the energy transport starts to be
applicable, e.g. a layer where 
∼1 (photosphere). The value of the stellar mass at this
layer is practically equal to the total mass M , since the overlying stellar atmosphere
does not contain an appreciable amount of mass, due to its extremely low density.
At m= 0 it is easy to recognize that r = 0 and L= 0. However, we cannot know
in advance the central density and temperature �c and Tc; therefore the other two
boundary conditions must come from the surface.

Care has to be devoted to the treatment of the star centre. The central conditions
described before produce a singularity, and therefore the integration has to start from
a value m very small but larger than zero. It is not difficult (but slightly laborious)
to demonstrate that a first-order Taylor expansion of the equations provides the
following set of boundary conditions at m=m′

r =
(

3
4��c

)1/3

m′1/3

P =Pc −
3G
8�

(
4��c

3

)4/3

m′2/3

L= �cm
′

T 4 =T 4
c −

1
2ac

(
3
4�

)2/3

�c�c�
4/3
c m′2/3 �radiative�

ln�T�= ln�Tc�−
(�

6

)1/3
G

�ad	c�
4/3
c

Pc

m′2/3 �convective� (3.54)

where the suffix c denotes the central values of the physical variables. These relation-
ships are a two parameter set of boundary conditions; by assuming arbitrary values
of Pc and Tc one obtains (using the equation of state and the auxiliary functions �
and Rosseland opacity) all other boundary values.

At the surface m=M and L=Ls, where Ls is the unknown total stellar luminosity,
but we still need a relationship for the temperature, pressure and radius. In fact, it is
true that at the surface P ∼ 0 and T ∼ 0 (the so-called zero conditions) at least when
compared with the deeper stellar layers, yet they are not exactly zero because of the
gradual and extended transition to the values of the interstellar medium happening in
the atmospheric layers.

A more rigorous procedure is to use results from model atmosphere computations
to obtain the outer boundary conditions. In general model atmospheres are computed
considering a plane–parallel geometry, and solving the hydrostatic equilibrium equa-
tion together with the frequency dependent (no diffusion approximation is allowed in
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these rarefied layers) equation of radiative transport (and convective transport when
necessary) plus the appropriate equation of state. Due to the plane–parallel geometry
(some models include the effect of sphericity) a given atmosphere is completely
defined by the chemical composition, acceleration of gravity g=GM/R2 (assumed
constant throughout the atmosphere) and the so-called effective temperature Teff ,
e.g. the temperature corresponding to the black body that yields the same surface
flux of energy as the star. A given pair of Teff and Ls values is linked to the total
radius R by Ls=4�R2�T 4

eff (the so called Stefan–Boltzmann law) and to g (since the
stellar mass is given). With the known chemical composition of the stellar atmosphere
(assumed to be the same as the composition of the stellar outer layers) Teff and g,
model atmosphere computations provide the pressure Ps at the appropriate value of

 where the diffusion approximation starts to be valid (e.g. the layer that defines the
stellar surface from the point of view of the stellar evolution equations).

A simplified yet generally used approach is – for a given chemical composition,
g and Teff – to integrate the atmospheric layers using the following equations

dP

d

= g

�
(3.55)

T 4 = 3
4
T 4
eff�
 +

2
3
� (3.56)

plus the equation of state. The first equation is simply the equation of hydrostatic
equilibrium written in the case of constant mass using the optical depth 
 (computed
from the Rosseland opacity) as independent variable, while the second equation is
an approximation of the atmospheric temperature stratification as a function of 
.
The integration is carried out from 
 = 0 (where T ∼ 0 and P ∼ 0) down to 
 = 2/3
where T = Teff , using the shooting method described at the end of this section. This
approximation for the atmosphere computation is called grey atmosphere; the T�
�
relationship given by Equation (3.56) is obtained from the Eddington approximation
of the grey radiative transfer. In principle this procedure it is not strictly correct,
since one is using Rosseland opacities when a frequency dependent treatment should
be employed; however, it is sufficient to provide reasonable boundary conditions in
most (albeit not all) cases. Some authors use this same procedure, but instead of
Equation (3.56) they employ a T�
� relationship determined empirically on the Sun,
i.e. a so-called solar T�
� relationship.

With the surface boundary conditions described above we have now determined a
relationship among the four surface conditions Teff	 Ps	 Ls and R; as in the case of
the central values they are a two-parameter set of boundary conditions. By assuming
arbitrary values of, e.g., R and Ls all other boundary values are determined.

Having fixed the boundary conditions for four of the equations describing the
mechanical structure, we now briefly present the standard method employed to solve
the system of Equations (3.49) to (3.52), the so-called Henyey method, first described
in [96]. The star is divided into N mass shells with boundaries at mass mj , where
m1 = 0 and mN =M; the structure equations are then replaced by finite difference
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equations, that establish relations between the solution at different mesh points mj .
As an example, Equation (3.49) is replaced by the following

rj+1 − rj

mj+1 −mj

= 1

4�r2j+1/2�j+1/2

(3.57)

where rj+1/2 = �rj + rj+1�/2 and �j+1/2 = ��j + �j+1�/2. The relation between the
physical quantities at m1 and m2 is given by the series expansion discussed before.

As for the time derivatives on the right-hand side of Equation (3.51) one has to
use the following replacements(

dP

dt

)
j+1/2

= 1
�t

�Pt+�t
j+1/2 −Pt

j+1/2�(
dT

dt

)
j+1/2

= 1
�t

�T t+�t
j+1/2 −T t

j+1/2�

We can now write for each mesh j the four finite difference equations for the
mechanical structure in the following compact way

Ei
j ≡

yi
j+1 − yi

j

mj+1 −mj

− fi�y
1
j+1/2	 � � � 	 y

4
j+1/2�= 0 (3.58)

where fi is a generic function of the four unknowns y1 = r	 y2 =P	 y3 = T	 y4 =L
computed at j + 1/2	 i runs from 1 to 4 and j runs from 2 (the equations show a
singularity at the centre i= 1) to N − 1.

The boundary conditions at the surface (j=N ) can be rewritten, in the same vein
as Equation (3.58), as

S1 ≡ y2N − fs�y
1
N 	 y4N �= 0

S2 ≡ y3N − gs�y
1
N 	 y4N �= 0

where fs and gs are two functions of the star total radius and total luminosity. As for
the central boundary conditions Equation (3.54) one can write

Ci�y
1
2	 y

2
2	 y

3
2	 y

4
2	 y

2
1	 y

3
1�= 0

with i running from 1 to 4, j= 1 being the centre and j= 2 the first mass layer after
the centre, i.e. m=m′, as discussed before. The lack of dependence of the functions
Ci on y11 and y41 reflects the fact that y11 = y41 = 0.

After the transformation of the stellar structure equations to finite difference equa-
tions it is wise to check the number of equations available and unknowns. The total
number of unknowns is 4N − 2, since we know that at the centre y11 = y41 = 0. The Ei

j

equations provide 4N −8 (j runs from 2 to N −1) relations, to which we have to add
the two equations provided by S1 and S2, and the four additional relations provided
by the Ci equations. The final budget is 4N − 2 equations for 4N − 2 unknowns.
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Consider now a generic instant t; the run of the chemical abundance is given by
the previous solution of the chemical evolution part, and we now have to solve for
each mesh point j the system of equations Ei

j = 0 using the boundary conditions
Ci =0 and S1=S2=0. We will see that the technique discussed below is very similar
to the standard Newton–Raphson method for the solution of systems of algebraic
equations. Suppose we have a first approximation of the solution �yi

j�1 (the suffix 1
here denotes the first approximation to the solution), e.g. given by the solution of the
mechanical structure at the previous timestep t−�t, where �t is a known quantity,
used for the computation of �g. We use these approximated values as a first guess for
the arguments in the functions Ei

j	 Si and Ci (we notice that in case of the equation
of energy transport and the corresponding central boundary condition one has first to
test the radiative stability by using the trial solution, and then select the appropriate
transport mechanism); since they will not represent the correct solution, we find that
the equations are not satisfied, i.e. �Si�1 = 0	 �Ci�1 = 0 and �Ei

j�1 = 0. The next step
is to determine the correction to this approximate solution, i.e. �yi

j�2 = �yi
j�1 + �yi

j ,
so that the equations are satisfied. Assuming the corrections are small, we can use a
first-order Taylor expansion to express the variations �Si	 �Ci and �Ei

j as functions
of the unknown corrections �yi

j applied to �yi
j�1. A solution for the �yi

j values can be
then found by requiring that �Si�1 + �Si = 0	 �Ci�1 + �Ci = 0 and �Ei

j�1 + �Ei
j = 0.

With this linearization the latter three conditions can be written as

dSi

dy1N
�y1N + dSi

dy2N
�y2N + dSi

dy3N
�y3N + dSi

dy4N
�y4N =−�Si�1 i= 1	2

dCi

dy12
�y12 +

dCi

dy22
�y22 +

dCi

dy32
�y32 +

dCi

dy42
�y42 +

dCi

dy21
�y21 +

dCi

dy31
�y31 =−�Ci�1 i= 1	 � � � 	4

dEi
j

dy1j
�y1j +

dEi
j

dy2j
�y2j +

dEi
j

dy3j
�y3j +

dEi
j

dy4j
�y4j +

dEi
j

dy1j+1

�y1j+1 +
dEi

j

dy2j+1

�y2j+1

+ dEi
j

dy3j+1

�y3j+1 +
dEi

j

dy4j+1

�y4j+1 =−�Ei
j�1 i= 1	 � � � 4 j= 2	 � � � 	N (3.59)

Here, the Si	 Ci and Ei
j and their derivatives are evaluated using the first approx-

imation as arguments. In practical terms the derivatives of these three functions are
determined by varying one at a time the �yi

j�1 values (keeping the others fixed) by a
small amount � (usually a small fraction of �yi

j�1) and determining the variation of
Si	 Ci and Ai

j due to the variation of the given �yi
j�.

The system of 4N − 2 linear algebraic equations for the 4N − 2 unknowns �yi
j

(i= 1	 � � � 4 and j = 1	 � � � N , with �y11 = 0 and �y41 = 0) given by Equations (3.59)
has usually a matrix of the coefficients (the so-called Henyey matrix, with non-zero
elements only near the diagonal) with non-zero determinant, and can be solved by
standard mathematical methods. Because Equations (3.59) have been obtained by a
linear approximation, their solution will provide second trial values �yi

j�2 that may
not yet satisfy the equations of stellar structure. The procedure described above has
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therefore to be repeated in order to determine �yi
j�3 trial values and so on, until

Si <�	 Ci <� and Ei
j <� where � is the accuracy (to be specified a priori) with which

one wants to satisfy the stellar structure equations.
The Henyey method sketched briefly above has the great advantage of being

extremely stable, since small local errors do not propagate to other mesh points and
do not affect appreciably the general solution. In most cases the solution is found
with only a handful of iterations and if a few dozens of iterations are allowed for,
extremely complicated structures, typical of advanced evolutionary phases, can be
also very accurately modelled.

After the mechanical structure at time t has been derived, a new timestep �t is
selected, and the equations of the chemical evolution (Equations (3.53) are solved
again using the mechanical structure determined at the previous timestep. In general,
(Equations (3.53)) are solved after a transformation to finite difference equations,
in the same vein as the equations of the mechanical structure; we will then have at
each mesh point a system of I algebraic equations, where I denotes the number of
chemical elements taken into account. We remember again that within convective
regions one has to use Equation (3.41). The equations of the chemical evolution can
be solved in a manner similar to the case of the mechanical structure. One uses a
trial solution that is then improved following the same procedure described for the
Henyey method.

It is clear, from the previous description, that there is a problem with the com-
putation of the first model of any evolutionary sequence. The method needs a trial
solution that usually comes from the solution at the previous timestep, and the com-
putation of �g requests at each mesh point the values of P and T at the previous
timestep. The latter problem can be overcome by computing a first model with �g
artificially set to zero, and then gradually switching on �g during the next few mod-
els. Provided the timestep is suitably small, this inconsistency does not affect the
rest of the evolutionary sequence. The initial chemical stratification is assumed to
be homogeneous (and equal to the specified initial chemical abundances) since stars
are expected to be fully convective at birth. As for the the lack of a suitable trial
solution, it is customary to evaluate the initial model of an evolutionary sequence
using a different technique, the so-called shooting method. This method is based on
the following idea. Let’s start from the outer mesh point; here we have four boundary
conditions Teff	 Ps	 Ls	 R (Teff and Ps can be expressed in terms of Ls and R, as
discussed before). The value of a generic physical variable yi at mesh j	 yi

j , can be
obtained from the value at the adjacent mesh j−1 or j+1 by a first-order expansion
yi
j = yi

j−1+ �dyi
j−1/dm�dm, or yi

j = yi
j+1+ �dyi

j+1/dm�dm, where dm is the mass step
between two adjacent mesh points, and the derivative is evaluated at mesh point
j − 1 in the first case, and at mesh point j + 1 in the second case. Starting from
the surface mesh point j=N we can therefore determine the values of yi

j−1 at mesh
j=N − 1 by using yi

N−1 = yi
N + �dyi

N /dm�dm. The derivative in the right-hand side
of this equation is computed at j = N and is given by the right-hand side of the
corresponding equation of the mechanical structure, evaluated at j =N . After yi

N−1

is known, one can determine yi
N−2 in the same way, and move further inward, down
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to a given mesh point within the star, for example half way between the surface and
the centre. It is not wise to try to integrate the equations down to the centre, since
the approximate solution that we are seeking can diverge more and more from the
real one, the larger the integration path. Instead, we stop the integration at a given
mesh point j= f , and denote with �yi

f �surf the values of the physical variables at this
point, usually called the fitting point. We then integrate the equations from the centre,
using the central boundary conditions as starting values, up to j= f , and denote with
�yi

f �centre the values of the yi variables at j = f . Since the boundary conditions are
just trial values, �yi

f �centre = �yi
f �surf , and suitable corrections have to be applied to

these trial boundary values. To obtain these corrections we first write the dependence
of the �yi

f �centre and �yi
f �surf values on the boundary trial values as first-order Taylor

expansions, i.e.

��yi
f �surf =

d�yi
f �surf

dy1N
�y1N + d�yi

f �surf

dy4N
�y4N

��yi
f �centre =

d�yi
f �centre

dy21
�y21 +

d�yi
f �centre

dy31
�y31

The numerical values of the derivatives on the right-hand sides of these equations
can be obtained by trial inward and outward integrations applying, one at a time,
small corrections � to the relevant boundary values.

After defining �f ≡ �yi
f �centre − �yi

f �surf , we can find the corrections to the four
boundary trial values solving the following system of four algebraic equations
��yi

f �centre − ��yi
f �surf =−�f . We then follow the previously described procedure

using these corrected boundary values; at the fitting point we will probably still
have �yi

f �centre = �yi
f �surf , since the linear approximation described before. All the pro-

cedure has thus to be repeated until �yi
f �centre − �yi

f �surf <�, where � is the prescribed
accuracy of the solution.

This shooting method is generally used to determine the first model of an evolu-
tionary sequence, or at most the first simpler evolutionary phases, where the run of the
physical variables is reasonably smooth. It completely fails in advanced evolutionary
phases where the physical variables show strong gradients, and the Henyey method
must be the technique of choice. The reason is that the values of the parameters at the
fitting point are too heavily dependent on the assumed boundary conditions, causing
instabilities in the computation of the corrections; also unavoidable small errors due
to the approximations made in the numerical solution tend to add up when moving
from the surface (or the centre) to the fitting point.

3.2.1 Sensitivity of the solution to the boundary conditions

In this section we highlight the sensitivity of the solution to the surface boundary
conditions and consider first the case of radiative envelopes. Dividing the equation
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of radiative transport by the hydrostatic equilibrium gives

dT

dP
= 3�radL

16�acT 3Gm

where in the external layers we can assume m and L are constant and equal to the total
stellar mass and luminosity, respectively. By approximating �rad with �rad =�0�T

−3�5

(�0 being a constant) and using the perfect gas EOS to express � in terms of P, we
obtain an equation of the form

T 7�5dT =APdP

with A being a positive constant. The integration of this equation provides

T 8�5 =A′�P2 +C� (3.60)

where A′ is (8.5/2)A and C is a constant of integration that depends on the boundary
conditions. It is easy to see that, due to the dependence of T on P, the solution
becomes rapidly independent of the boundary value C. In fact, moving toward the
interior P2 gets rapidly much larger than any possible realistic value of C, and the
solution converges fast to the case of C = 0 that corresponds to P = 0 and T = 0 at
the surface. Moreover, by differentiating Equation (3.60) one obtains

�rad =
2
8�5

A′P2

T 8�5

which has to be lower than �ad∼0�4 (in the approximation of fully ionized monatomic
gas) for the envelope to be radiative starting from the surface. Dividing both sides
of Equation (3.60) by A′P2 we realize that the ratio A′P2/T 8�5 is always smaller than
unity when C ≥ 0, hence the hypothesis of radiative envelope is satisfied, because
�rad ≤ 0�235.

If the boundary conditions provide C < 0, one can obtain �rad > 0�4 right at the
surface, so that the external layers are convective. In this case the precise value of C is
important; in fact, for increasing P the contribution of C in Equation (3.60) becomes
progressively negligible – as in the radiative case – and at some point, depending on
the initial value of C, the solution will converge to �rad < 0�4. This means that the
depth of the envelope convection is sensitive to the surface boundary conditions.

3.2.2 More complicated cases

Massive stars evolve very fast, especially in advanced evolutionary phases, and the
acceleration term in the equation of the hydrostatic equilibrium cannot be neglected
any longer. Moreover, due to the short nuclear timescales, it is not possible to compute
separately mechanical and chemical structure, since the involved timescales are now
comparable.
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In this case one has to solve simultaneously (using the Henyey method) the
equations of the mechanical and chemical structure of the star, including the velocity
as an additional variable, so that the acceleration term in the equation of hydrostatic
equilibrium can be rewritten in terms of the differential of the velocity with respect
to time.

The system of algebraic equations to be solved at a given time t now contains
the mechanical structure equations plus the equations related to the evolution of the
chemical elements considered. When the solution is found, a timestep �t is applied,
the previous solution (for all the physical and chemical variables) is used as trial
solution, and the Henyey method is applied again to determine the new solution at
t+�t.

One could ask at this point how to deal with convective mixing if the associated
timescale is also comparable to the nuclear timescale for some particular evolution-
ary phase and/or mass range. We will discuss this point below when dealing briefly
with non-canonical physical processes. We just notice here that if nuclear burning
timescales are comparable to convective ones, the chemical composition of a con-
vective region containing an active nuclear burning region will not be homogeneous.

3.3 Non-standard physical processes

Stellar evolution, like any other field of science, uses the Occam’s razor as guideline,
i.e. the explanation relying on the smallest number of hypotheses is the one to
be preferred. Standard stellar evolution models are very successful at explaining the
main properties of stars neglecting magnetic fields, mass loss, rotation (which are
all observed properties of stars) and other chemical element transport mechanisms
that are predicted by physics; their contribution is somewhat a second-order effect,
although some specific observed properties of stars can be fully explained only with
the inclusion of one or more of these processes in the model computation.

The presence of magnetic fields at the surface of stars is directly revealed by
the Zeeman splitting of spectral lines and the polarization of the light emitted by
many types of stars. The potential importance of magnetic fields for the structure and
evolution of stars is due to the fact that they exert a pressure which could, in principle,
reach a substantial fraction of the gas pressure, and in combination with rotation can
affect the transport of angular momentum in stars (see below). Unfortunately we are
not able to determine empirically the internal magnetic field configuration of stars,
and from the theoretical point of view the modelling of the evolution of magnetic
fields in stellar interiors is a very complicated three-dimensional problem way beyond
present computational capabilities.

One important process not included in the definition of the standard stellar model
is mass loss, although it is routinely included in stellar model computations. The
effect of mass loss processes, whereby mass is lost from the external layers of stars, is
important to explain some observations, although the observed rates are usually low
and do not alter significantly (apart from specific cases) the structural, chemical and
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evolutionary properties of stars. We will show when relevant, the effect of mass loss
on the star evolution. As for the practical implementation of mass loss processes in
stellar model computations, a simple and good approximation is the following. When
solving the mechanical structure equations at time t+�t the total mass of the star is
reduced according to the chosen mass loss rate and the value of �t; the value of the
actual mass corresponding to the more external mass layers (i.e. the layers containing
two or three times the mass lost) is then rescaled (for example linearly) in such a
way that the total mass of the star is reduced by the right amount. The chemical and
physical profiles at time t are unchanged, but of course their distribution in the most
external layers is now altered because of the rescaling of the independent variable
m. These profiles (with the rescaled m) are then used as trial solutions for the new
model at time t+�t and then adjusted by the Henyey method until the equations are
satisfied. As long as the mass change between two consecutive models is kept small
(by adjusting �t appropriately) this procedure converges rapidly.

In the following we will discuss briefly two other main groups of non-standard
physical processes that affect to various degrees the evolution of stars, i.e. atomic
diffusion plus radiative levitation, and rotation plus associated mixings. Our presen-
tation of stellar evolution and related techniques developed in the following chapters
is based purely on standard stellar models with inclusion of mass loss effects. The
efficiency and the interplay between atomic diffusion, radiative levitation and rota-
tional mixings is still under debate and we will not enter into details on this subject.
Introductions to this subject can be found in [46], [52] and [161].

3.3.1 Atomic diffusion and radiative levitation

Atomic diffusion (some authors use the term atomic diffusion to include the radiative
levitation process as well) is a basic physical transport mechanism driven by collisions
of gas particles; if several chemical species are present in the gas, the net effect is
to change the chemical stratification and therefore it is potentially important for the
study of stellar evolution.

Pressure, temperature and chemical abundance gradients are the driving forces
behind atomic diffusion. A pressure gradient and a temperature gradient tend to push
the heavier elements in the direction of increasing pressure and increasing tempera-
ture, whereas the resulting concentration gradient tends to oppose the above processes.
The speed of the diffusive flow depends on the collisions with the surrounding par-
ticles, as they share the acquired momentum in a random way. It is the extent of
these collision effects that dictates the timescale of atomic diffusion once the phys-
ical and chemical profiles are specified. Comprehensive and detailed mathematical
presentations of the theory of atomic diffusion are given in [27] and [55].

The chemical evolution of the mass fraction Xi of an element i at a given mass
layer m due to atomic diffusion can be written as:

dXi

dt
= d

dm
�4�r2�Xiwi� (3.61)



NON-STANDARD PHYSICAL PROCESSES 101

where wi is the diffusion velocity of element i in the centre-of-mass reference frame.
In general Equation (3.61) is treated as an additional term to the equation of the
evolution of chemical species (Equation (3.53)). The velocity wi is determined by the
diffusion coefficients AP(i), AT (i) and AX(i) associated to the pressure, temperature
and chemical abundance gradients, respectively; they are obtained, for a given chem-
ical and physical profile, by imposing the conditions of mass, momentum and energy
conservation, together with charge neutrality. General formulae for the computation
of the diffusion coefficients are given by [197] and [217].

It can be useful to provide the rough dependence of the mean diffusion coefficients
associated with the pressure and temperature gradients on the thermal properties of
the stellar matter

<A>∝ T 5/2

�

In the centre of the Sun, <A> is of the order of 5 cm2s−1. The timescale of atomic
diffusion is given by the relation


diff ∼
R2

<A>

where R is the characteristic length of the system, i.e. the stellar radius in the case
of stars. Therefore, in the case of the Sun, by substituting R with R� and using
the approximate value of <A>, one obtains 
diff ≈ 6× 1013 years. This means that
the effects of atomic diffusion are significant only when the evolutionary lifetimes
are of the order of at least ≈109–1010 years.

Radiative levitation is an additional transport mechanism caused by the interaction
of photons with the gas particles, which acts selectively on different atoms and ions. In
simple terms, since within the star a net energy flux (albeit locally small, to preserve
local thermodynamical equilibrium) is directed towards the surface, photons provide
an upward ‘push’ to the gas particle with which they interact, effectively reducing the
gravitational acceleration. Since we are dealing with interactions of photons with gas
particles, it is clear that the efficiency of radiative levitation is related to the opacity
of the stellar matter, in particular to the monochromatic opacity, and increases for
increasing temperature (more energetic photons).

The effect of levitation on the chemical abundances is simply an additional con-
tribution to wi in Equation (3.61) coming from the computation of the radiative
acceleration, i.e. the acceleration felt by an individual atomic species through the
absorption of a photon and before the momentum change is shared with the other
species of the gas through collisions. The determination of the radiative accelerations
involves the knowledge of the cross sections for absorption and scatter of photons,
and how the momentum of photons is distributed among species and ionization states,
since this modifies the distribution in the rest of the gas. In addition one must also
know how the momentum is shared between the electron and a given ion undergoing
photoionization, since this determines whether the ion is pushed forward or backward
by the photon.
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Equation (3.61) is also suited to treat convection in a time-dependent way, when-
ever this is necessary, as discussed before. In this case one includes in wi the
contribution due to the convective velocity estimated from the mixing length theory.
In general, within a convective region, the convective velocity is always much larger
than the contributions of atomic diffusion and radiative levitation, so that the reho-
mogenization due to convection always prevails over atomic diffusion and radiative
levitation.

3.3.2 Rotation and rotational mixings

Spectroscopic observations of stars tell us that stars rotate, with rotation velocities
being generally higher the higher the stellar mass. In rotating stars centrifugal forces
act on the gas reducing the effective gravity, as a consequence the condition of
hydrostatic equilibrium is achieved at a lower pressure, and hence a lower temperature,
with respect to non-rotating stars. Therefore, for a given stellar mass, the main effect of
rotation is to slightly cool down the stellar interiors in each of the evolutionary phases.

An additional, sometimes very important effect (depending, of course, on the
rotational velocity) is that rotation leads to deviations from spherical symmetry,
although for small and moderate rates the deformations are not large. Inclusion of
stellar rotation into one-dimensional spherical models using the same stellar structure
equations presented before is discussed at length by [70], [114] and [136]. In the
case of a conservative effective potential ! – where ! is the sum of the gravitational
potential plus the centrifugal force contribution – spherical surfaces are replaced by
equipotential surfaces where P	 T and � are constant. This hypothesis of conservative
effective potential is justified for solid-body rotation or for constant rotation on
cylinders centred on the axis of rotation.

In the equations of stellar structure one can then reinterpret the mass dm between
two spherical shells as dm!, i.e. the mass enclosed between two equipotential surfaces
with ! and !+ d! that are in principle non-spherical. The radius r becomes r!,
defined as V! = �4/3��r3!, where V! is the volume enclosed within the equipotential
surface !. With this reinterpretation of r and m the equations look exactly the same
as the ones without rotation, with the exception of a multiplicative factor fp in the
right-hand side of the equation of hydrostatic equilibrium, and ft/fp on the right-hand
side of the equation of radiative transport. These factors fp and ft described in [70]
and [114] are functions of !, and hence of the rotational velocity.

As discussed in [136] a conservative ! is usually not a realistic approximation
since during time the internal rotation generally evolves towards non-conservative
rotation laws. A more realistic picture for the rotation is the so-called shellular rotation
([239]) whereby the rotation rate is constant on isobars (surfaces of constant pressure);
exactly the same equations discussed before can also be used in this more realistic
case, provided that the equipotential surfaces are reinterpreted as the isobars, and the
quantities describing the mechanical structure are reinterpreted as mean values over
the isobars (the chemical abundances are supposed to be homogeneous over isobars).
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An additional equation has then to be added for the transport of angular momentum
within the star due to mixing of chemical elements, contraction and/or expansion of
the stellar layers and eventual mass loss.

In general the hydrostatic effects of rotation have only a very small influence of
the order of a few per cent on the internal evolution of rotating stars; however, the
extra mixing processes associated with rotation can have a more relevant impact.
We cannot discuss here all possible mixing processes associated with rotation, and
refer the reader to [95] for a good introduction and references. At least five processes
(the so-called dynamical shear instability, Solberg–Hoiland instability, secular shear
instability, Eddington–Sweet circulation and Goldreich–Schubert–Fricke instability)
should be taken into account, their efficiency (poorly known) evaluated and the
corresponding mixing velocity w included as additional terms in Equation (3.61), in
the hypothesis that they can be treated as diffusive processes.



4 Star Formation and Early
Evolution

4.1 Overall picture of stellar evolution

Condensation of interstellar matter forms protostars in hydrostatic equilibrium and
at low temperatures. Due to the virial theorem (since nuclear reactions are not yet
efficient) these objects contract and increase their central temperature until the fusion
of hydrogen into helium becomes effective (the so-called H-burning phase). These
burning processes effectively halt the contraction due to the extra energy input that
is enough to keep the star in hydrostatic equilibrium. When hydrogen is exhausted in
the central hot regions (whose chemical composition is now essentially pure helium)
the stellar core starts to contract again and increases its central temperature until
nuclear reactions transforming He (produced by the previous H-burning phase) into
C and O become effective. The evolution is driven by the He-burning until He in
the centre is exhausted, and the sequence repeats again leading to the burnings of
progressively heavier elements which were essentially the products of the previous
burning stage. The burning stages end when Fe is left in the core. Since fusion of
Fe subtracts energy instead of producing it, at this stage the central stellar layers
collapse and the envelope is expelled, giving origin to the supernova phenomenon.
What is left of the iron core is a neutron star or a black hole, depending on the mass
of the remnant.

If the initial stellar mass is below a given threshold, the onset of electron degener-
acy at the end of either the helium or carbon burning phase prevents (according to the
virial theorem) the increase of central temperature that leads to the next burning stage.
Instead, the energy of the non-degenerate ions is radiated away with a consequent
progressive decrease of the star temperature (and luminosity) producing a so-called
white dwarf star.

Evolution of Stars and Stellar Populations Maurizio Salaris and Santi Cassisi
© 2005 John Wiley & Sons, Ltd ISBN: 0-470-09219-X
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Some further general and useful rules of stellar evolution are given below.

• The higher the mass the shorter the lifetime of the star will be.

• The lower the mass, the higher will be the central density and the lower the central
temperature in a given evolutionary phase.

• The higher the metallicity – keeping the initial He abundance fixed – the lower the
luminosity and Teff will be, and the longer the evolutionary timescale of a star of
a given mass during the major evolutionary phases.

• The higher the initial He content – keeping the metallicity fixed – the higher the
luminosity and Teff will be, and the shorter the evolutionary timescale of a star of
a given mass in the major evolutionary phases

This broad sketch of stellar evolution highlights the pivotal role played by the
stellar mass (and to a lesser extent the initial chemical composition) in determining
the evolutionary properties of stars. In the following sections we will start to give
more details of this general picture, a necessary step if we want to use stars as tools
to build a coherent picture of the evolution of the universe as a whole.

4.2 Star formation

The previous chapter has shown that stars can be modelled as gravitating gas spheres
in hydrostatic equilibrium, fuelled by nuclear reactions and gravitational energy
release. Before reaching the hydrostatic equilibrium stage, stars must have formed
out of interstellar matter (ISM) previously in a diffuse form. The enormous volume of
space between stars in our galaxy – and in other galaxies undergoing star formation
activity – is filled with ISM, which is heated and ionized by the photons emitted
by all kinds of stars, and the mechanical energy released during the explosion of
massive stars. The ISM is made of gas plus dust; the relative number of chemical
elements in the gas phase is about 90 per cent of hydrogen, 10 per cent of helium
and traces of heavy elements. Dust is in the form of grains that make approximately
1 per cent of the total ISM mass, mostly silicate and graphite grains. The ISM of
the Milky Way contains several gas phases that exist in rough pressure equilibrium,
at temperatures ranging from ≈100 to ≈106 K, and densities between 10 and 10−3

particles/cm3. Within the ISM one can find large molecular clouds (made mainly
of molecular hydrogen plus dust) of masses in the range 105–106 solar masses,
temperature between 10 and 100K and densities between 10 and 102 particles/cm3,
these clouds are the star forming regions. Without entering into the details of a very
complex problem (with many questions still unanswered) we just sketch the main
ideas behind our understanding of the process of star formation.
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In order to produce energy by means of nuclear reactions, stars have to become
much hotter and denser (at least in the centre) than the typical density of the molecular
clouds. This suggests that some process of gravitational contraction had to be effective
during the star formation phase. We now assume that rotation and magnetic fields
are negligible and make the approximation of spherical symmetry; in this case one
can use the virial theorem to derive easily an approximate criterion for the collapse
of an interstellar cloud. According to the virial theorem, the hydrostatic equilibrium
of a gas sphere requires that the relationship between the internal energy E (equal
to the kinetic energy of the gas particles in the approximation of perfect gas) and its
gravitational potential � is E=−�1/2��. If � is larger than the value prescribed by
the virial theorem the cloud will collapse under its own gravity. For a spherical gas
cloud of total mass M , made of a perfect monatomic gas of approximately constant
density �, temperature T and molecular weight �, Equation (3.42) becomes

3KBTM

�mH

=
∫ M

0

Gm

r
dm

The integral on the right-hand side (i.e. the gravitational potential of the cloud)
can easily be computed if the density is constant. In fact, in this case m/r3 =M/R3,
where R and M are the total radius and mass of the cloud, and r and m their
couterparts at a generic point within the cloud. Using this relationship we can express
r as r = �m/M�1/3R and substitute this expression into the integral whose solution is
3/5(GM2/R). The criterion for gravitational collapse can then be written as

3KBTM

�mH

<
3
5
GM2

R

We can now replace R with R= ��3/4��M/����1/3 and after some rearrangement
one obtains that the cloud will collapse when

M>MJ ≡
(

3
4��

)1/2( 5KBT

G�mH

)3/2

(4.1)

The minimum value of the cloud mass to undergo a gravitational collapse – for
the given chemical composition, � and T – is called Jeans mass (denoted by MJ). It
is very important to notice, for what follows, that once the chemical composition is
fixed, MJ scales as MJ ∝ T 3/2�−1/2. For typical temperatures and densities of large
molecular clouds the value ofMJ is≈105M�. The collapse timescale tff whenM>MJ

is given by the time a mass element at the cloud surface needs to reach the centre.
A mass element at the surface is subject to an acceleration g =GM/R2 and, in
the approximation of constant g during the collapse, the time needed to cover the
distance R is given by (1/2)�GM/R2�t2ff =R. By approximating R using R3≈ �M/��,
we obtain (neglecting the numerical factor (1/2))

tff ≈ �G��−1/2
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We now follow the collapse of a giant molecular cloud with M>MJ. During the
collapse the density has to increase (because the volume gets smaller and mass is
conserved) whereas the evolution of T is affected by the energy exchange between
the cloud and the surroundings. If, as a first approximation, the evolution of the cloud
is adiabatic, the temperature changes as T ∝ �2/3 for a perfect monatomic gas; with
this temperature evolution the value of MJ increases during the collapse phase as

√
�

and the evolution will always reach a point when Equation (3.42) is satisfied. From
this moment on the cloud would start to evolve in hydrostatic equilibrium following
the virial theorem, at which point we assume that a star is born.

This kind of adiabatic evolution is, however, just an idealization; more realistically,
the matter within the cloud is heated and cooled by various mechanisms. Heating
can be due to cosmic rays penetrating the cloud and ionizing the particles, and
the high-energy electrons produced by these interactions may transmit their kinetic
energy to other particles – and eventually ionize them – by collisions. Also X-rays
and eventually the radiation field of the surrounding stars may penetrate the gas and
ionize the cloud particles. On the other hand the cloud is cooled by molecular or
dust radiation, and the more efficient mechanism (i.e. with the shorter timescale) will
prevail. The efficiency (hence the timescale) of cooling and heating is determined,
for a given environment, by the physical conditions of the cloud.

In most cases during the cloud collapse cooling processes are very efficient and
their timescale tcool is much shorter than the collapse timescale tff . Under these
conditions the collapse of the cloud will be to a good approximation isothermal
(the gravitational energy acquired during the collapse is immediately lost due to the
cooling processes) and, since � increases and T stays constant, MJ decreases. If
there are within the clouds inhomogeneities with mass larger than the actual value
of MJ, they will collapse by themselves with their local tff , different from the initial
tff of the whole cloud. This process, called fragmentation, will continue as long
as tcool is shorter than the local tff , and produces increasingly smaller collapsing
subregions. Eventually the density of the various subunits will become so large that
the matter becomes optically thick (i.e. photons are not able to leave the cloud
easily) and the evolution becomes adiabatic. The adiabatic evolution will then lead
all these collapsing subregions to hydrostatic equilibrium. We see that in this way a
giant molecular cloud can originate a group of stars with various masses, the mass
distribution being determined by the fragmentation process, i.e. by the cloud physical
conditions and the efficiency of the undergoing cooling processes.

The typical minimum stellar mass produced by the fragmentation process, that is
the minimum mass of the collapsing subregions when the matter becomes optically
thick, is of the order of 0.01M� (i.e. much larger than the mass of planets that
therefore cannot be formed by this process).

We now cover the evolution of a single collapsing subregion in a bit more detail.
During the collapse the density does not stay uniform in any realistic case, but
increases inwards. Since the core is denser, the optically thick phase is reached first
in the central regions that eventually reach the hydrostatic equilibrium. This leads
to the formation of a core with free falling gas surrounding it; during this phase the
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energy released by the core (now obeying the virial theorem) is absorbed by the
envelope and radiated away as infrared radiation. After the accretion is essentially
completed the whole protostar, as it is called in this phase, increases its temperature
by virtue of the virial theorem. The steady increase of the central temperature causes
first the dissociation of the H2 molecule, then the ionization of hydrogen and the
first and second ionization of helium. During these processes the energy gained by
the contraction mainly goes into the dissociation and ionization of these species
(which almost make the totality of the protostar chemical composition). The protostar
collapses (free-fall timescales) again during these phases until all dissociations and
ionizations are completed and hydrostatic equilibrium is restored. The total energy
involved in a single dissociation or ionization process is given by the product of how
many particles have to be dissociated/ionized times the dissociation/ionization energy
of a single particle. The sum of the energies involved in all four processes listed above
has to be at most equal to the energy available to the star through the virial theorem,
i.e. half the gravitational energy increase due to the contraction between the beginning
of the protostar phase and the moment when the major dissociation/ionizations listed
above are completed. This simple estimate tells us that the maximum initial radius
Ri

max of a protostar of mass M has to be

Ri
max

R�
≈ 50

M

M�

We conclude this section by posing this question. In the light of our knowledge
of the star formation mechanisms, is it possible to predict theoretically the number
of stars with a given mass to be born in a given molecular cloud (the so-called
Initial Mass Function – IMF) ? The answer is – up to now – no, and we have to
apply, for example, stellar evolution based techniques (discussed in later chapters)
to study empirically the IMF in different environments. For example, the effect of
pre-existing magnetic fields can be relevant if the cloud is partially ionized and
therefore the gas is a good conductor (if not, the magnetic lines of force can slide
through the gas without affecting the collapse). In this case the magnetic lines of
force are trapped by the gas and during the cloud collapse the magnetic lines also
contract and increase the strength of the magnetic field proportional to R−2. If at the
beginning the gravitational force (which also increases during the collapse as R−2)
was larger than the magnetic force, it will remain larger during the whole contraction
phase and the picture sketched above is unchanged. If the magnetic forces at the
beginning were larger than the gravitational ones, they will prevent the contraction
of the cloud perpendicularly to the direction of the magnetic lines; therefore the
contraction can only go on along the magnetic lines and the cloud forms a disk that
can then fragment into smaller disks for which cooling processes are more efficient
than for a spherical cloud.

Particularly difficult is the case of primordial matter with the chemical composition
typical of the cosmological nucleosynthesis. In this case the metal content is essen-
tially zero and without metals cooling processes are very ineffective; it is therefore
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difficult to have efficient fragmentation that produces stars with masses comparable
to the solar mass. The general belief is that star formation in primordial matter pro-
duces only very massive, short-lived stars, of the order of 100M� Due to current
uncertainties in the physics of star formation it is, however, not completely clear if
this was really the case. We will discuss this point again briefly in the next chapter.

The classical expression for the IMF – that we will often use in the rest of this
book – determined empirically for the solar neighbourhood, is the so-called Salpeter’s
law ([185]), i.e.

dn/dM =CM−x

where dn is the number of stars born with mass between M and M +dM , x= 2	35,
and C is a normalization constant. Hence, star formation appears to be biased towards
low mass stars, at least in the solar vicinity. More recent evaluations ([120]) confirm
the Salpeter IMF for M ≥ 0	5M�, whereas for 0	1≤M/M� < 0	5
 x appears to be
smaller, i.e. x= 1	3.

4.3 Evolution along the Hayashi track

The evolutionary timescales from the first equilibrium configuration (i.e. from when
we assume that a star is born) until the end of the ionization processes are negligible
with respect to the rest of the star lifetime. At this stage the protostar (which we will
call star from now on) is in a physical state that can be described by the equations of
stellar evolution we have derived above. Stars in this phase are fully convective, Teff

is low, the radius large and the luminosity high relative to subsequent evolutionary
phases.

Traditionally the evolution of the surface (bolometric) luminosity L and Teff of a
star is described by the so-called stellar evolutionary track, i.e. the path described
in the log(L/L�) vs log(Teff ) diagram, the so-called Hertzsprung–Russel diagram
(HRD). By convention the quantity displayed along the horizontal axis (Teff ) increases
towards the left.

During this fully convective phase stars evolve in the HRD along an almost vertical
line, i.e. at approximately constant Teff and decreasing luminosity (since the radius
is decreasing) as shown in Figure 4.1. This almost vertical line is called the Hayashi
track.

4.3.1 Basic properties of homogeneous, fully convective stars

The location of the Hayashi track is sensitive to the chemical composition of the star,
i.e. the track of a given mass moves towards lower Teff when the metallicity increases
or the helium abundance decreases (the dependence on helium is, however, very
small). At a fixed chemical composition the Hayashi track is shifted to lower Teff when
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Figure 4.1 HRD location of Hayashi tracks for various assumptions about the chemical compo-
sition and the stellar mass

the mass decreases, again with a mild dependence. As for the value of �ml, the Hayashi
track moves towards higher Teff when �ml increases; in fact, an increase of �ml makes
convection more efficient, the superadiabatic gradient approaches the adiabatic one
and overall the gradient in the superadiabatic region decreases, producing a higher Teff .

The effect of the total mass and the shape of the Hayashi track on the HRD can be
understood with the following analysis. Consider the stellar structure equations using
r as the independent variable. For a star with a given total mass M , total luminosity
L, total radius R and homogeneous chemical composition with molecular weight �
one can define the following dimensionless variables

x≡ r

R

 q≡ Mr

M

 t≡ T

T0


 p≡ P

P0

where T0 and P0 are constants given by

T0 =
�GMmH

RKB


 P0 =
GM2

4�R4

Using these dimensionless variables the first two equations of stellar structure can be
rewritten as

dq

dx
= p

t
x2 (continuity of mass)

dp

dx
=−p

t

q

x2
(hydrostatic equilibrium)
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In the approximation of adiabatic temperature gradient for the fully convective
star we can add the equation of an adiabatic transformation for a monatomic perfect
gas, P=CT 5/2, with C being a constant that determines the adiabat followed by the
temperature stratification. In terms of the dimensionless variables this equation can
be rewritten as

p=Et2	5

where the constant E is given by

E= 4�G3/2CM1/2R3/2

(
�mH

KB

)5/2

These three dimensionless structure equations are sufficient to describe the
mechanical structure of the star since there are three unknowns (p
q
 t) and three
equations (x is the independent variable). With these new variables the surface
is located at x = 1 and the corresponding boundary conditions can be taken as
qs = 1
 ts =Ts/T0
 ps =Et2	5s .

In general ts and E are two free parameters that have to be appropriately adjusted
for the integration to satisfy the boundary condition at the centre x= 0
 q= 0. When
this condition is satisfied by the right choice of ts and E, the other two central values
for t and p are also obtained. To solve these equations one starts the numerical
integration from the surface with trial values of ts and E, moving towards the centre
using the shooting method. If the boundary condition q = 0 at the centre is not
satisfied the integration is repeated with updated ts and E until agreement is found.
In this way one determines ts and E (hence ps) and the run of q
p
 t from the surface
to the centre. It has been shown by [93] that a star can be fully convective (in the
adiabatic approximation) only when the dimensionless constant E is equal to

E= 4�G3/2CM1/2R3/2

(
�mH

KB

)5/2

= 45	48 (4.2)

We now want to determine the properties of the Hayashi line on the HRD using
the previous result. Let us define the constant C as

C=C ′M−1/2R−3/2

with C ′ being another constant equal to

C ′ = 45	48
4�G3/2

(
KB

�mH

)5/2

whose value depends on the chemical composition of the star, and integrate the
atmosphere using Equation (3.55). This treatment of the atmosphere assumes radia-
tive transport, a reasonable approximation for the more external atmospheric layers
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(because a star radiates energy into space). Even if the convection within the star
reaches layers above � = 2/3, one can always perform the atmospheric integration
down to the point where convection sets in and take the boundary conditions there. For
the discussion that follows, this would simply change a constant entering the solution.

We assume an average constant value of the opacity throughout the atmosphere and
a constant acceleration of gravity g=GM/R2 (the mass contained in the atmosphere
is negligible). The straightforward integration from � = 0 (where P = 0) down to
� = 2/3 provides

Ps =
2
3
GM

R2

1


If we now assume that the constant value of  throughout a given atmosphere is
equal to =0P

aTb where 0
 a and b are constants, and P and T are the values at
� = 2/3 (P=Ps and T =Teff ) the boundary condition on the pressure becomes

Ps =
(
2G
3

)1/�a+1�(
MT−b

eff

0R
2

)1/�a+1�

(4.3)

In the interior we assumed that P = CT 5/2 that gives, at the interface with the
stellar atmosphere

log�Teff�= 0	4 log�Ps�+ 0	4 log�C−1�

= 0	4 log�Ps�+ 0	4
(
3
2
log�R�+ 1

2
log�M�− log�C ′�

)

while from Equation (4.3) (after integration of the atmospheric layers) we can
also write

�a+ 1� log�Ps�= log�M�− 2 log�R�− log�0�− b log�Teff�+ log
(
2G
3

)

These two equations must be satisfied simultaneously along the Hayashi track.
For a fixed total mass M , a generic value of R fixes Teff and Ps through these
two equations. From Teff and R one then gets the luminosity L= 4�R2�T 4

eff . By
continuously varying the free parameter R one can determine the locus on the HRD
occupied by an homogeneous fully convective star of a given mass and chemical
composition that is contracting along the Hayashi track. This procedure yields an
equation of this type

log�Teff�=� log�L�+� log�M�+ � (4.4)

�
� and � being constants determined by the values of a
b
0 and C ′ (which
contains the constant E= 45	48 and the molecular weight �). In particular, � and �
depend on a and b only. Using realistic values a∼ 1 and b∼ 3 (the main opacity
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source is the −H ion, where the necessary electrons are provided by the partially
ionized heavy elements in the external layers) one obtains �< 0	1 and �∼ 0	2.

The slope of the Hayashi line in the HRD is therefore d log�L�/d log�Teff� > 10,
i.e. the Hayashi line is basically vertical; also, since d log�Teff�/d log�M�∼ 0	2, its
location has a mild dependence on the stellar mass, and it moves towards higher Teff

for increasing M . The effect of the chemical composition is included in the constant
� through the value of 0 and �, and one can demonstrate that an increase of the
metallicity (that causes an increase of the opacity) shifts the track to lower effective
temperatures, whereas an increase of helium at constant metallicity (that increases
� and decreases the opacity, because the opacity of He is lower than the hydrogen
opacity) has the opposite (and less relevant) effect.

Two important points may be noticed here. The first one is that this result is
independent of the stellar energy source (we did not make use of the equation of
energy generation). The second point is that the properties of the Hayashi track
are determined by the surface boundary conditions. In the more realistic case of
a superadiabatic gradient in the external layers, the Hayashi track properties are
determined by both the boundary conditions and the superadiabatic zone. The bottom
line is that the external layers where the temperature gradient is either radiative or
superadiabatic, fix the adiabat that describes the inner temperature stratification.

4.3.2 Evolution until hydrogen burning ignition

During the evolution along the Hayashi track the star increases its temperature due
to the virial theorem, a radiative core will form at the centre and grow in mass as
the star evolves. This evolutionary phase is the so called Pre-Main Sequence (PMS).
When the radiative core appears the star is no longer fully convective, and it has
to depart from its Hayashi track; this departure moves the track towards higher Teff

(to the left of the Hayashi track in the HRD) so that the Hayashi track acts as a
rightmost boundary to the evolution of stars in the HRD. In fact, a fully convective
(and consequently homogeneous) star has to lie on its Hayashi track, but whenever a
radiative core is present, the star will have to stay on the left side of its Hayashi track.

When stars are not fully convective E< 45	48, decreasing when the extension of
the convective region gets smaller. The constant E enters Equation (4.4) through the
term �, and it can be shown that � – hence Teff – increases for decreasing values of E.
The path on the HRD is almost horizontal when a sizable radiative core is established,
with a constant increase of the central temperature due to the virial theorem.

During this early evolution some nuclear burnings take place inside the star,
although they are not relevant from the point of view of energy production. When
temperatures reach the order of 106 K deuterium is transformed into 3He by proton
captures and the nuclear energy released through these reactions temporarily slows
down the evolution. When T ∼ 2	5× 106 K lithium is destroyed by proton captures
and produces mainly 4He. Also much less abundant elements like beryllium and
boron are going to be destroyed during these early stellar evolution phases.
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The initial abundances of these light elements are typically very small and are
practically reduced to zero where the reactions are efficient, although they do not
appreciably affect the abundances of the elements they produce (mainly helium). If
stars were fully convective during these first nuclear burnings we would have, for
example, a complete depletion of lithium and deuterium at the surface, since matter
in a convective star is always well mixed and all lithium and deuterium would be
destroyed. However, the convective region will start to shrink at some point. If the
convective region is confined to the external and cooler layers before all the, i.e.
lithium, reservoir has been destroyed in the fully convective phase, some lithium
nuclei will still be present in the convective envelope. This means that the result-
ing surface abundances of these light elements depend on the interplay between the
increase of the stellar temperature, the resulting efficiency of the nuclear reactions
involved and the timescale for the shrinking of the convective envelope. In general,
once the chemical composition is fixed, larger masses have lower surface depletion
of the light elements. For a given mass the depletion increases with increasing metal-
licity. This result depends on the fact that increasing mass or decreasing metallicity
is equivalent to lower (or non-existent) convective envelopes at the beginning of the
hydrogen burning, but also to an earlier retreat of convection from the central regions.

The HRD evolution of selected masses until the start of central hydrogen burning
is displayed in Figure 4.2. The lifetime and selected surface chemical abundances
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Figure 4.2 Evolutionary tracks of stars with different masses and solar initial chemical composi-
tion, until the onset of core H-burning (marked with an open circle)
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Table 4.1 Age and surface chemical abundances of light elements (in mass fractions) at the start of
central hydrogen burning, for selected masses and the two initial chemical compositions. In the case
of Z= 0	02, the initial chemical abundances of the light elements are: X0

2D = 4	78E− 05
X0
3He =

2	94E− 05 and X0
7Li = 1	07E− 08; while for Z= 0	01, the following values have been adopted:

X0
2D = 4	99E− 05
X0

3He = 2	72E− 05 and X0
7 Li = 5	35E− 09 (from [201])

Mass (M�) Age (Myr) X2D X3He X7Li

Z= 0	02
 Y = 0	277

0.2 730 7.82E− 18 1.90E− 04 6.50E− 17
0.5 210 9.88E− 18 1.05E− 04 5.41E− 17
1.0 62 1.64E− 17 1.00E− 04 3.97E− 09
2.0 2.9 1.52E− 17 1.00E− 04 1.07E− 08
4.0 0.5 3.63E− 18 1.00E− 04 1.07E− 08

Z= 0	01
 Y = 0	256

1.0 50 2.08E− 17 1.02E− 4 4.72E− 9

of selected stellar models are shown in Table 4.1. The effect of changing chemical
composition on a 1M� star is also shown.

When the central temperature reaches ∼107 K, hydrogen burning is ignited in the
stellar core and the so called Main Sequence (MS) phase starts.

When the mass of the contracting star along the Hayashi track is below ∼0	08M�,
the contraction and temperature increase due to the virial theorem are halted before
reaching the hydrogen burning temperatures due to the onset of electron degeneracy.
These objects, that will never produce energy from nuclear reactions, are called
brown dwarfs, and their evolution is similar to the much more advanced white dwarf
evolutionary phase typical of stars like the Sun (see Chapter 7).



5 The Hydrogen Burning
Phase

5.1 Overview

One of the most important phases during the evolution of a star is that corresponding
to the H-burning phase (which is actually being experienced by the Sun). The reasons
for its importance are as follows.

• It is the longest evolutionary phase; as a consequence the number of H-burning
stars which can be observed is much larger than the number of stars in any other
phase.

• The structural and evolutionary properties of a star during the central and shell
H-burningphases determine its evolutionary properties through all successive phases.

• The most important astrophysical ‘clock’ is that related to the termination of the
central H-burning phase.

• The final portion of the shell H-burning phase in low-mass, metal-poor stars
provides an accurate distance indicator for old stellar populations.

• The analysis of the central H-burning phase, and in particular the counts of stars
evolving through this phase, offers a unique opportunity for deriving the Initial
Mass Function (IMF) of stellar systems.

We define a star as being on the Main Sequence if its evolutionary rate is controlled
by the timescale of the H-burning process occurring in the core.

Before discussing the main evolutionary and structural properties of low- and
intermediate-mass stars during the central and shell H-burning phases, it is essential
to understand the thermonuclear reactions involved in the H-burning process.

Evolution of Stars and Stellar Populations Maurizio Salaris and Santi Cassisi
© 2005 John Wiley & Sons, Ltd ISBN: 0-470-09219-X
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5.2 The nuclear reactions

The H-burning mechanism is essentially the nuclear fusion of four protons into one
4He nucleus. By adopting the well-known Einstein’s relation for the equivalence
between energy and mass, E=mc2, and accounting for a mass deficit of≈0.7 per cent,
it can easily be verified that the energy produced by the whole set of reactions is equal
to 26.731MeV. This amount of energy is almost a factor of 10 larger than that pro-
duced in any other nuclear reaction process occurring in stars – the nuclear conversion
of H into He is a very efficient, from the point of view of the stellar energy budget,
mechanism. This occurrence has the consequence that the amount of fuel, i.e. hydro-
gen, that is available for the burning process, is consumed at a lower rate than in any
other evolutionary phase. Therefore, for each fixed star mass, the central H-burning
lifetime is longer than that for any other evolutionary phase. For example, the central
H-burning phase is longer by a factor of 100 than the central He-burning stage.

The fusion of H nuclei can be achieved through two reaction chains, namely the
p–p chain and the CNO cycle. These usually occur simultaneously but with relative
efficiencies depending on the total stellar mass.

5.2.1 The p–p chain

The reaction networks involved in the p–p chain are the following:

pp I
1H+1H→2D+e+ + �e
2D+1H→3He+�

3He+3He→4He+1H+1H

pp II
3He+4He→7Be+�

7Be+e− →7Li+ �e
7Li+1H→4He+4He

pp III
3He+4He→7Be+�

7Be+1H→8B+�

8B→8Be+e+ + �e
8Be→4He+4He
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The first reaction in the pp I chain requires that protons experience a �+ decay;
since it is impossible to form a bound system with two protons, this reaction can
occur only if the protons are brought together by a nuclear collision. During the short
timescale of this encounter, one of the protons has a chance to �+ decay, thereby
becoming a neutron, a positive electron, and a neutrino. The neutron can then be cap-
tured by the other proton to form a deuteron. This process is governed by weak inter-
actions and therefore has a low probability of occurring; its nuclear cross section is in
fact quite low (≈10−23 barn; 1 barn=10−24 cm2). The pp I chain therefore begins to be
important only when the core temperature is of the order of 5×106 K. Until a tempera-
ture of the order of 8×106 K is reached, the reactions producing 3He are more frequent
than those consuming 3He and as a consequence the abundance of 3He increases.
When this temperature is achieved, the nuclear reactions 3He+3He and 3He+4He
become effective, so decreasing the 3He abundance. In a short time this element
reaches an ‘equilibrium’ abundance (this point will be discussed in more detail later).

The relative frequency of pp II and pp III depends strongly on the temperature.
In particular, the 3He+4He reaction becomes competitive with respect to 3He+3He
for T ≈ 15× 106 K. As a general rule, with increasing temperature the importance of
pp II and pp III increases with respect to pp I if there is a sufficient concentration of
4He (either produced by pp I or primordial). In addition, pp III gradually becomes
more important than pp II.

Concerning the dependence of the nuclear energy generation of the p–p chain as
a function of the temperature, it holds the relation: �pp ∝ T�, with � ≈ 6 for T ≈
5× 106 K and �≈3�5 for T ≈20× 106 K. The commonly adopted average relation is
�pp ∝T 4, which is the smallest temperature sensitivity of all nuclear fusion reactions
of astrophysical interest. At the centre of the Sun, T ≈ 15× 106 K, thus �pp ∝ T 3�83

and the mean liberated energy per reacting proton is ≈ 6�54MeV.

5.2.2 The CNO cycle

The CNO cycle is the combination of two independent cycles: the CN cycle and the
NO cycle. The presence of some isotopes of C, N or O are necessary for either cycle
to begin. Being both produced and destroyed during these cycles, these elements act
as catalysts. The reaction networks involved are the following:

CN cycle
12C+1H→13N+�

13N→13C+e+ + �e
13C+1H→14N+�

14N+1H→15O+�

15O→15N+e+ + �e
15N+1H→12C+4He
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NO cycle
15N+1H→16O+�

16O+1H→17F+�

17F→17O+e+ + �e
17O+1H→14N+4He

In the CN cycle the isotopes of C and N act as catalysts, and so behave as
‘secondary elements’. As a consequence the cycle can start almost from any reaction
if the involved isotope is present, and during a complete loop around the cycle the
isotope is consumed and then produced again. However, this does not mean that the
concentrations of the different isotopes will be unchanged as the final abundances
depend strongly on the relative rates of the nuclear reactions in the cycle. Only at a
high enough temperature (T ≈15×106 K) will the isotopes achieve their equilibrium
abundance, i.e. the rate of production is exactly equal to the rate of destruction. At
this point, the abundance of each isotope is inversely proportional to the nuclear cross
section of the reaction by which it is destroyed. Since the slowest reaction of the
CNO cycle is 14N(p, �)15O, the most abundant element in the CNO cycle processed
material is 14N.1

The branching ratio between the proton captures on 15N, producing respectively
16O and 12C, is of the order of 10−4, thus the amount of 16O produced by proton
captures on 15N is regligible. Nevertheless, the small production of 16O through this
channel is important because it allows the 16O nuclei originally present to take part
in the cycle as well, as they are transformed into nitrogen via the NO cycle.

In this context it should be noted that for a typical Population I chemical com-
position (i.e. about solar) the global amount of CNO elements is of the order of
XCNO≈0�75Z and XO/XCNO≈0�7, where XO�XCNO and Z are the abundance by mass
of oxygen, of all CNO elements and of all metals in the stellar matter, respectively.
This means that the final (equilibrium) 14N abundance depends not only on the initial
CN abundances but on all CNO element abundances.

In general the NO cycle only becomes efficient for temperatures larger than
≈ 20× 106 K. As a rule of thumb, the change of the CNO element caused by the
different burning channels is:

• CN cycle processed matter – C↓ N↑
• CNO cycle processed matter – C↓ N↑ O↓

where the symbols ↓ and ↑ mean that the final abundance of the element is lower or
larger than the initial one, respectively.

1 Here we have introduced the compact notation 14N(p,�)15O instead of 14N + 1H→15O +�. This example
explains clearly the relationship between the two notations; in the rest of the book we will often use this compact
notation for nuclear reactions.
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The temperature sensitivity of the complete CNO cycle is much larger than that
of the p–p chain, where �CNO ∝ T 18 at T ≈ 10× 106 K. This means that the p–p
chain dominates at low temperatures – T ≤ 15× 106 K – i.e. in stars with mass lower
than ≈1�3M�, while the CNO cycle dominates at higher temperatures, thus for larger
stellar masses. In Figure 5.1, the trends of both �pp and �CNO with temperature are
shown. At the centre of the Sun �pp/�CNO ≈ 10, so that the contribution of the CNO
cycle to the whole energy budget is of the order of 10 per cent.

The quite different temperature sensitivities of the p–p chain and CNO cycle have
an important consequence: if the H-burning process is dominated by the CNO cycle,
it is confined to the central regions of the core. This results in a large central energy
flux, an occurrence which favours the presence of a central convective region (we
discuss this point in more detail later).

5.2.3 The secondary elements: the case of 2H and 3He

It has already been noted that in both the p–p chain and the CNO cycle, there are some
elements which are simultaneously involved in destruction and production processes.
These elements are usually called ‘secondary elements’.
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Figure 5.1 The nuclear energy generation in units of erg g−1 s−1 as a function of the temperature
for the p–p chain and the CNO cycle. A chemical composition and density at the centre of the Sun
have been assumed. The open circle marks the location of the Sun in this diagram
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It is instructive to compute the equilibrium abundances of these elements, in order
to understand their changes with time, i.e. with the evolution of the thermodynamical
properties (temperature and density) and chemical composition. In the following, we
analyse the case of 2H and 3He but the same consideration can be adopted for the
treatment of the isotopes of the CNO elements involved in the CNO cycle.

In Section 3.1.7 it was shown how the variation of the abundance (by mass) of
the element i can be written down by accounting for all the reactions of production
and destruction (Equation (3.39)). By applying this equation to the case of 2H, and
using the relation between the abundance by mass of element i and the number of
the nuclei of element i per volume unit, i.e. Ni = ��Xi	/�mHAi	, one obtains (in the
following the numbers 1 and 2 refer to 1H and 2H, respectively):

dN2

dt
= N 2

1

2
<
v>11 −N1N2 <
v>12

The first term accounts for the reaction which produces 2H (1H+1H) while the
second term corresponds to the destruction process (2H+1H). At equilibrium, by
definition dN2

dt
= 0, therefore(

N2

N1

)
eq

= 1
2
<
v>11

<
v>12

It is evident that if the abundance of 2H is larger than its abundance at equilibrium,
then the destruction process prevails over the production one, and the chemical
abundance of 2H tends to evolve quickly towards its equilibrium configuration. It
is instructive to determine the timescale for equilibrium to be reached, assuming
that N2 � �N2	eq. In this case, the destruction process dominates over the production
one and

dN2

dt
=−N1N2 <
v>12

whose solution is of the type N2 = N2�0e
− t

� with � = 1/�N1 <
v >12	. For typical
temperatures at which the p–p chain is fully efficient, the value of � is of the order
of 1 second. This means that the equilibrium configuration is achieved in a very
short time.

Now consider the case of the 3He, once again using Equation (3.39) altered to
account for the abundance by number per unit volume

dN3

dt
=N1N2 <
v>12 −2

�N3	
2

2
<
v>33 −N3N4 <
v>34

by imposing dN3
dt

= 0 and noting that if 3He is at the equilibrium then deuterium will
also be (the timescale for equilibrium of 2H is shorter than the 3He one) one obtains

�N3	eq =
−<
v>34 N4 +

√
�<
v>34 N4	

2 + 2<
v>11<
v>33 �N1	
2

2<
v>33
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If we assume that N3� �N3	eq (see the discussion in Section 5.3) then the destruc-
tion process is dominant and one can easily estimate the 3He equilibrium timescale.
We find

dN3

dt
≈−2

�N3	
2

2
<
v>33 −N3N4 <
v>34

So the timescale for the 3He equilibrium to be reached is:

�3 =
1

N3 <
v>33 +N4 <
v>34

It is worth noting that these relations are strictly valid only in a radiative region.
They can still be applied in a convective zone, but the various quantities have to be
derived as averages over the whole convective region.

5.3 The central H-burning phase in low main sequence
(LMS) stars

In Section 4.3.2 the evolutionary and structural properties of stars during the Pre-
Main Sequence phase were discussed. During this phase the evolutionary rate of the
stars – neglecting the small contribution to the energy budget provided by the burning
of light elements such as Li and Be – is dictated by the gravitational energy release.
Also, according to the previous discussion on the secondary elements involved in the
H-burning processes, the first model that is fully supported by nuclear burning is not
yet a true Main Sequence (MS) model, because the secondary elements have not yet
reached the equilibrium configuration. The Zero Age Main Sequence (ZAMS) is the
first MS model fully supported by H-burning in which the secondary elements are at
their equilibrium configuration. Therefore, there is an ‘intermediate’ phase between
the Pre-Main Sequence and the ZAMS during which the star attains the chemical
equilibrium of the secondary elements.

Due to the dependence on temperature of the different H-burning processes, in
low-mass stars with M ≤ 1�3M� (the exact value depending on the initial chemical
composition) the main H-burning mechanism is the p–p chain. It is common to define
these stars as belonging to the Low Main Sequence.

It is worth briefly discussing the approach of these stars to the ZAMS. Near the
end of the Pre-Main Sequence phase, due to the lack of 3He nuclei, the dominant
reaction is that of 3He production. As the nuclear processing proceeds, the amount
of this element increases, thus increasing the number of 3He+3He→4He+1H+1H
reactions. The large number of these reactions allows the star to complete the ppI
branch and to produce more energy per burnt H nucleus. During the previous phases,
with only a partially efficient p–p chain, the star was forced to reach a higher
temperature and density in order to satisfy its energy needs. Now, with a more
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efficient p–p chain, the star slightly decreases its core density and temperature, fixing
the number of nuclear reactions to the exact value required by its energy needs. This
situation lasts until 3He equilibrium is achieved.

During the phases preceding the 3He equilibrium, a small convective core is
present, a consequence of the fact that for a short time 3He production is larger
in the central portion of the star, so energy production is more concentrated in the
centre. Due to the large energy flux, F (we recall that �rad ∝ F ) the central region
becomes convective. This convective core vanishes as soon as the abundance of 3He
is increased – by the nuclear burning – in more external regions, as this causes a
redistribution of the energy generation over a larger area.

In general, for any hydrostatic evolutionary phase not affected by electron degen-
eracy, the star regulates its thermonuclear burning rate so that the nuclear energy
production is just enough to enforce the hydrostatic equilibrium condition. If, for
any reason, the number of nuclear reactions is larger than needed, the star reacts
by expanding, thus decreasing the temperature and density, so that the burning rate
decreases and equilibrium is re-established.

Beginning on the ZAMS, a star burns H in a radiative region whereas, due to the
large opacity associated with the presence of partially ionized H and He, the outer
regions are convective. Due to the small temperature dependence of the p–p chain,
H-burning involves a relatively large mass fraction of the star. In Figure 5.2 the H
chemical profile is shown in a 1M� star at various stages, from the ZAMS to the
exhaustion of H at the centre.

During the conversion of H into He the total number of free particles decreases and
so does the pressure. In order to remain in equilibrium, the star-slightly contracts and
heats up. The combined effect of the change in the opacity2 in the stellar interior, the
increase in the mean molecular weight and the temperature increase, causes a slow
but monotonic increase of the star’s luminosity. The evolutionary path in the HRD
of low-mass stars during the central H-burning phase is shown in Figure 5.3. From
this figure, one can notice that during this evolutionary phase, the surface luminosity
and effective temperature increase. The central H-burning phase continues until the
H at the centre is completely exhausted; this stage corresponds roughly to the hottest
point on the evolutionary tracks shown in tracks shown in Figure 5.3, called the turn
off (TO). It marks the end of the central burning phase in low-mass stars. The TO is
the most important ‘clock’ provided by stellar evolution, and its use in comparison
with observations for dating stellar populations will be outlined in Section 9.2.

Evolutionary lifetimes during the central H-burning phase are quite long for low
MS stars, being of the order of ∼10Gyr. This lifetime is a strong function of the
stellar mass, decreasing as the mass increases.

At the exhaustion of H at the centre as the burning process already extends to
a significant portion of the surrounding regions (see Figure 5.2) the core slightly
contracts while H-burning continues in a shell around an He core.

2 The opacity of He is less than that of H in the same thermal conditions.
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Figure 5.2 The chemical profile of hydrogen in a 1M� star at different stages during the core
H-burning phase

5.3.1 The Sun

The importance of studies of the Sun’s internal structure lies not only in its intrinsic
interest, but also in the possibility of testing some of the fundamentals of theory, both
physical and astrophysical. The Sun is the star for which, through helioseismology
and spectroscopic measurements, we can collect the largest amount of empirical data
which can be directly compared to theoretical predictions.

Without going into detail, from the analysis of the spectra associated with
solar non-radial oscillations, it is possible to determine accurately the depth of
the envelope convective zone and the speed of sound, cb = �0�221−0�225	Mms−1,
at the transition radius, Rb = �0�710−0�716	R�, between convective and radiative
regions.

Several determinations of the photospheric helium abundance have been derived
from helioseismology, yielding the estimate Yphot = 0�233−0�268. The interpretation
of data on solar oscillations provides the strongest evidence for microscopic diffusion
in the Sun and, presumably, in any low-mass stars. From spectroscopic measurements,
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Figure 5.3 The HRD for low-mass stars of different mass during the core H-burning phase. The
solid dot marks the location of the turn off along each track

we know that the present ratio of the heavy element abundance over hydrogen in
the solar photosphere is Z/X= 0�0245. Recently, on the basis of new analysis ([6])
performed by adopting realistic time-dependent, three-dimensional models of the
solar atmosphere, the estimated solar heavy element abundance has been significantly
reduced (Z� ∼ 0�013 so by almost a factor of two with respect to the commonly
adopted value). However, these measurements have to be confirmed by additional
investigations.

Coupling this empirical evidence with the other known properties of the Sun,
i.e. its luminosity, L�=3�842×1033 erg·s−1, radius, R�=6�9599×1010 cm and mass,
M� = 1�9891× 1033 g, one can work at obtaining the best stellar evolution model,
based on the most up-to-date physics, able to reproduce the whole set of observational
properties of the Sun at its present age (t�≈4�5Gyr): this would be a Solar Standard
Model (SSM).

When computing an SSM, rotation and magnetic fields are assumed to have a neg-
ligible effect on the evolution. Furthermore, mass loss is almost universally neglected
during the central H-burning phase of solar-like stars because the estimated mass
loss rate is of the order of �dM/dt	∼10−14M�yr−1. Thus, the free parameters which,
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aside from some practical limits, are varied in solar ZAMS models until 4.5Gyr
worth of evolution yields the present-day Sun, are as follows.

• The abundance of heavy elements Z, which affects the structural evolution through
the effect on the stellar opacity and on the efficiency of the CNO cycle (that also
contributes to the energy generation in the Sun).

• The He content, affecting the structure through the change in the mean molecular
weight and, in turn, in the nuclear energy release, and in the opacity. Note that in
constructing the SSM, the adopted initial values of Z and Y (Zini and Yini) are not
independent. This is because (i) the relation X = 1− Y −Z holds, and (ii) after
4.5Gyr and the work performed by atomic diffusion, the Z/X ratio in the SSM
must reproduce the value observed at the surface of the Sun.

• The value adopted for the free parameter ml in the mixing length theory. This
affects the efficiency of convection in the envelope and, in turn, fixes the radius
of the solar model.
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Figure 5.4 The trend with mass coordinate of different physical quantities within a Solar Standard
Model. Each physical quantity has been normalized to its maximum value within the star
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To obtain the appropriate SSM one has to change (see the discussion in Section 5.5)
the values of these free parameters until the model properties agree with the solar
values. Different SSMs computed with similar, up-to-date physical inputs, predict
similar values for these free parameters. Typical values are: Zini = 0�0198� Yini =
0�269�ml ∼ 1�7.

Due to the effect of atomic diffusion, predicted values for the metallicity and He
content in the photosphere of the SSM are: Zphot=0�0182� Yphot=0�238. In Figure 5.4,
the behaviour of the most important physical quantities such as temperature, pressure,
density, luminosity, radius and nuclear energy production coefficient (�N) in the
interior of an SSM are shown.

The calibration of the SSM is a very important topic in stellar evolution. In fact,
it allows not only the prediction of the structural properties of the Sun, which can be
directly compared with helioseismology and spectroscopic measurements, but also
the calibration of the mixing length parameter. It is quite common to use the value
of the mixing length efficiency, ml, obtained by the calibration of the SSM, for
computing the evolution of stars of any mass, chemical composition and evolutionary
stage. Even if there is no a priori reason why this assumption should be correct for
other stars, the comparison between stellar evolution models and empirical evidence
clearly shows that this approach works quite well.

5.4 The central H-burning phase in upper main sequence
(UMS) stars

In the previous section, we discussed the main structural and evolutionary properties
of Lower Main Sequence stars. Here, we address the same topic but for more massive
stars, i.e. structures with a mass larger than ∼1�2−1�3M� (the Upper Main Sequence).
The evolutionary paths in the HRD during the central H-burning phase for these stars
are shown in Figure 5.5: it is characterized by a monotonic increase of the luminosity
and an almost steady decrease of the effective temperature.

The main effect of an increase in the stellar mass is a significant increase in the
interior temperature (in Table 5.1 are listed the main thermal properties in the centre
and evolutionary properties for different stellar masses). The most important effect
of this temperature increase is that the CNO cycle becomes the dominant energy
production mechanism: in a 1.5M� star the CNO cycle contributes 70 per cent of the
nuclear energy budget at the centre and 50 per cent to the total luminosity, whereas
a 1.8M� star is almost completely under the control of the CNO cycle.

The strong dependence of �CNO on temperature has two important effects.

• The nuclear burning process is more concentrated to the centre: in a 10M� star,
more than the 90 per cent of the total luminosity is produced in the innermost
10 per cent of the mass, compared to 70 per cent of the mass in a 1M� star.
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• The concentration of the energy production causes a steep increase of the radiative
gradient towards the centre, as there is a very high energy flux in the innermost
portion of the structure. Due to this, according to the Schwarzschild criterion,
the interior of the star becomes convective and it will remain unstable against
convection throughout the central H-burning phase.

The existence of a convective core means that H is converted into He in a region
which is fully mixed. As a consequence, the chemical gradient inside these stars at
various times during the MS phase is completely different (see Figure 5.6) from that
in less massive stars.

With increasing stellar mass, an additional effect related to the temperature increase
is the increasing contribution to the total pressure provided by the radiation pressure
(Prad∝T 4): in a 1M� star Prad/Ptot ≈0�0001, whereas this ratio is of the order of 0.30
in a 50M� star.

As the stellar mass increases, the same is true for the mass size of the convective
core, a consequence of the larger temperature in the interior which leads to a larger
energy flux. In addition, for massive stars, the decrease of the adiabatic gradient due
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phase. The solid dot marks the evolutionary stage equivalent to the turn off point in less massive
stars
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Table 5.1 Selected properties of core H-burning stars with different masses and solar chemical
composition: surface luminosity, effective temperature, central temperature, central density and
mass-size of the convective core at the ZAMS, and the core H-burning lifetime. The units are K
for temperatures and g cm−3 for the density

M�M�	 log�L/L�	 log�Teff	 log�Tc	 log��c	 Mcc�M�	 tHc (Myr)

0�5 −1�397 3.588 6.948 1.857 – 128543�7
0�6 −1�133 3.613 6.984 1.872 – 77015�7
0�7 −0�860 3.645 7.021 1.887 – 44031�9
0�8 −0�595 3.687 7.062 1.898 – 26952�3
0�9 −0�363 3.723 7.101 1.900 – 17360�2
1�0 −0�161 3.751 7.133 1.890 – 11513�3
1�1 0�018 3.771 7.158 1.874 0.000 7913�1
1�2 0�213 3.790 7.184 1.887 0.000 5640�7
1�3 0�400 3.813 7.217 1.928 0.085 4138�5
1�4 0�556 3.831 7.248 1.932 0.111 3043�3
1�5 0�691 3.851 7.268 1.918 0.136 2312�5
1�6 0�812 3.874 7.284 1.900 0.168 1844�3
1�7 0�923 3.897 7.297 1.879 0.199 1520�8
1�8 1�019 3.919 7.306 1.851 0.232 1333�3
1�9 1�113 3.939 7.315 1.829 0.266 1142�9
2�0 1�207 3.956 7.325 1.807 0.299 946�5
2�1 1�290 3.973 7.332 1.786 0.335 836�0
2�2 1�371 3.988 7.339 1.762 0.358 727�1
2�3 1�448 4.003 7.346 1.742 0.394 637�8
2�5 1�591 4.030 7.357 1.700 0.447 502�3
2�6 1�657 4.042 7.362 1.679 0.492 447�9
2�8 1�783 4.065 7.372 1.640 0.542 360�9
3�0 1�898 4.086 7.380 1.603 0.603 296�6
4�0 2�368 4.171 7.414 1.446 0.922 138�1
5�0 2�724 4.232 7.437 1.325 1.242 78�5
6�0 3�007 4.280 7.455 1.227 1.549 51�0
7�0 3�238 4.320 7.470 1.147 1.887 36�3
8�0 3�433 4.352 7.482 1.079 2.309 27�7
9�0 3�601 4.380 7.493 1.022 2.672 22�1

10�0 3�749 4.404 7.502 0.972 3.159 18�3

to the increasing contribution of radiation pressure to the total pressure also has a
significant effect on the dimension of the convective core. These stars, at odds with
low-mass stars, have a convective core but a radiative envelope. This is because the
regions of partial ionization of H and He (with high opacity and hence large radiative
gradient) are located too high up in the atmosphere – thus at too low a density – to
affect the thermal properties of the envelope.

A remaining open problem for the stars with convective cores during the central
H-burning phase is related to the location of the ‘true’ boundary of the convective
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Figure 5.6 The chemical profile of hydrogen in a 5M� star at different stages during the core
H-burning phase

region: the problem of overshoot (see discussion in Section 3.1.4). The case for a
significant amount of overshoot, i.e. for an increase of the size of the convective core
with respect the value predicted by standard (canonical) models, has been made many
times, theoretically and observationally, but the results have so far been contradictory.
From a purely theoretical point of view, there are at least three physical ‘mechanisms’
which could induce an increase in the size of the convective core: (1) any change
to the physical inputs (opacity, equation of state) which affect the radiative gradient,
(2) stellar rotation, and (3) true mechanical overshoot. Whatever the physical reason,
the effects on the evolutionary and structural properties can be easily predicted from
basic theory as follows.

• The star becomes brighter, because the increase of the mean molecular weight (the
H-burning luminosity depends on � as LH ∝�7, everything else being constant)
related to the conversion of H into He, now involves a larger fraction of the
structure.

• The central H-burning lifetime increases, as there is more H available for nuclear
burning.
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• At the end of the MS phase the mass size of the He core is much larger and, as a
consequence, during the central He-burning phase the star will be brighter and the
He-burning lifetime shorter.

Figure 5.7 shows the HRD of two stellar models computed with and without
overshoot. The more relevant properties of the these models are given in Table 5.2.

The evidence that stars belonging to the Upper MS burn H inside a convective core
has an important effect at the end of central H-burning phase: when the abundance
of H inside the convective core becomes lower than X ∼ 0�05 (which corresponds
to point B in Figure 5.7) the amount of H is not sufficient for providing the energy
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Figure 5.7 The HRD of a 5M� star for two different assumptions about the efficiency of core
overshoot during the central H-burning phase

Table 5.2 Selected properties of two 5M� models with (�OV = 0�25) and
without core convective overshoot (see also Figure 5.7); the mass of the He
core at the core H-exhaustion, the core H-burning lifetime, the mass of the He
core at the onset of core He-burning and the core He-burning lifetime are listed

Model MHe�XH = 0	�M�	 tHc(Myr) MHe�M�	 tHec(Myr)

Canonical 0.573 85.1 0.660 19.9
Overshoot 0.777 100.1 0.854 10.0
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necessary to maintain the structure in equilibrium, and so the star begins to contract.
This evolutionary phase, called overall contraction, corresponds to the path between
points B and C in Figure 5.7. It is important to note that during the overall contraction
phase the dominant energy source is gravitational and so the evolutionary timescale
is shorter than the nuclear one.

Point C marks the end of the central H-burning phase. After this point, while the
central regions contract, the outer layers expand and this occurrence produces an
increase in the stellar radius and a cooling of the external layers. This drastically
increases the opacity of the envelope.

In massive stars, i.e.M≥10M�, there is another phenomenon related to convection
which makes their evolutionary properties near the end of the central H-burning
phase uncertain. When the abundance of H in the core is strongly decreased, the
convective core retreats leaving behind a chemical abundance gradient, with the
He abundance decreasing moving outwards. In the region outside the contracting
core, the radiative flux also increases as a consequence of the large energy flux
produced by gravitation, and therefore exceeds the adiabatic gradient. According to
the Schwarzschild criterion this region should become convective. However, if this
region is mixed with the original convective core, its resulting He abundance should
be larger than the initial one. As a consequence the opacity, hence the radiative
gradient of these layers would decrease, inhibiting convection. We are thus facing a
dilemma: if these layers are not mixed they are unstable against convection; if they
are mixed they appear to be stable and should not have been mixed.

The solution to this problem is related to the choice of the most appropriate thermal
gradient in a chemically inhomogeneous region (see discussion in Section 3.1.4). In
stellar evolution computations, this is commonly reduced to the choice between the
Schwarzschild and the Ledoux criterion. For our purposes, it is sufficient to note that
in models for massive stars, it is a common procedure to adopt the Ledoux criterion.
This usually inhibits the convection in the layers around the convective core. These
models seem better at reproducing the empirical evidence.

5.5 The dependence of MS tracks on chemical composition
and convection efficiency

In previous sections, the main evolutionary and structural properties of Main Sequence
(MS) stars were discussed and it was often emphasized that these properties depend
mainly on the stellar mass. However, in order to better understand how theoretical
predictions allow us to extract from empirical evidence, information on single stars,
stellar clusters and galaxies, one needs to know how stellar evolution models depend
on the adopted inputs.

• The He content: the initial abundance of helium affects the MS evolution through
the changes induced in the radiative opacity and the mean molecular weight. Any
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Figure 5.8 The evolutionary tracks of a 5M� star, computed for different values of the initial He
abundance

increase of He causes a decrease of the opacity and an increase of the nuclear
H-burning reaction rates (LH ∝ �7). As a consequence, the structures become
brighter and hotter, as shown in Figure 5.8. The evolutionary lifetime is conse-
quently affected, decreasing with increasing He content.

• The metallicity: a change in metallicity affects the radiative opacity much more
than the nuclear energy generation. This occurrence is due to the fact that the p–p
chain efficiency is not dependent on the abundance of heavy elements. This is not
the case for the CNO cycle given that CNO isotopes act as catalysts. However,
due to the very strong dependence of the CNO cycle efficiency on the temperature,
even a low CNO abundance is enough to ensure its full efficiency (this is not true
for extremely metal-poor stars as Population III objects – see Section 5.11). Any
increase in the metallicity produces an increase of the stellar radiative opacity and
the structure becomes fainter and cooler. When discussing the evolutionary effect
of metallicity, it is usually assumed that the distribution of the heavy elements
in the mixture is close to solar (the so-called scaled solar mixture). Nevertheless,
empirical evidence shows that the distribution of -elements, i.e. the elements
synthesized by nuclear -capture reactions (O, Ne, Mg, Si, S, Ca, Ti, etc.) are
enhanced with respect to iron in Population II stars, compared to the solar mixture.
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For a fixed iron abundance, the enhancement of the -elements has two effects:
(1) the CNO cycle efficiency is increased because the sum (C+N+O) is larger
due to the increase of the O abundance, and (2) the opacity is increased, and two
opacity bumps are created. The first is at log�T	∼ 6, and is due to absorption
processes involving the K shell electrons of O, and the second is at log�T	∼ 5�5,
and is due to the combined L edges of Mg, Si and Ne. As a consequence, for
a fixed iron content, accounting properly for -elements enhancement produces
MS tracks which are fainter and cooler with respect to the scaled solar one,
with longer central H-burning lifetimes (∼5 per cent for XFe ∼4× 10−5). These
effects continue to increase as the metallicity does. The impact of the inclusion
of -elements enhancement on theoretical isochrones will be discussed further in
Section 9.2.1).

• The efficiency of convection: the effect of core overshoot has already been dis-
cussed. Stellar models are also affected by the treatment of superadiabatic convec-
tion. The most common approach for treating the convection in the outer layers is
the mixing length formalism, which has a free parameter, ml. It has already been
shown that the calibration of the SSM allows one to fix the value of ml. This
notwithstanding, consider the effect of a change of ml on the stellar models: a
change in the value of ml has no effect on the surface luminosity, but it does affect
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Figure 5.9 The HRD for a 1M� star computed adopting different values for the mixing length.
The � symbol marks the location of the Solar Standard Model
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the stellar radius and in turn the effective temperature. An increase of ml corre-
sponds to a larger efficiency of convection – a bubble moves further before losing
its excess energy – so a lower thermal gradient is required, and as a consequence
the effective temperature increases and the radius decreases (see Figure 5.9).

5.6 Very low-mass stars

The evolutionary and structural properties of low-mass stars change significantly
when entering into the realm of very low-mass (VLM) stars, i.e. objects with mass
less than 0.3–0.4M�. Stars below this mass limit are fully convective all along their
MS lifetime. With the exception of the PMS evolution for all stars, this is peculiar to
VLM stars and is due to the huge opacity values characteristic of the matter in these
objects. To point out how peculiar these stars are in the field of stellar evolution
theory, Table 5.3 lists the values of density and temperature at the centre and the base
of the photosphere for three stellar masses: (0.1, 0.6, 1.0)M�, with solar composition
and an age of about 10Gyr.

Within the temperature/density range listed in this table, molecular H and atomic
He are stable in the outermost part of the stellar envelope, while most of the star
(∼90 per cent in mass) is a fully ionized H/He plasma. Due to these peculiar
conditions, the thermodynamical properties are very sensitive to the treatment of
pressure ionization and dissociation, non-ideal Coulomb interactions. In addition,
electron degeneracy becomes very important for masses less than ∼0�12M�.

Theoretical and observational analyses have demonstrated that the emergent radia-
tive flux of VLM stars shows an incredible number of features related to the presence
of several opacity sources in the stellar atmosphere. Due to the large density and
pressure at the photosphere, collision effects become significant and induce molec-
ular dipoles on H2. This produces the so-called Collision Induced Absorption (CIA)
which provides an important contribution to the opacity. The CIA of H2 suppresses
the flux longward of 2�m and causes the redistribution of the emergent radiative
flux towards shorter wavelengths. Around and below Teff ≈ 4000K, the presence of
molecules such as H2O, CO, VO and TiO is very important: TiO and VO govern the
energy flux in the optical wavelength range, while H2O and CO control the spectrum
in the infrared. For effective temperatures lower than ∼2800K, the presence of grains
also becomes important.

Table 5.3 Selected properties at the centre and at the base of the
photosphere of low- and very low-mass stars with different masses

M�M�	 Tc(10
6 K) �c(g cm

−3) Tphot(K) �phot(g cm
−3

1.0 16 100 6000 10−7

0.6 10 150 4000 10−6

0.1 5 500 2800 10−5
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For masses less than ∼0�4M�, only pp I provides a contribution to the energy pro-
duction, due to the low temperatures in their interiors. This means that the destruction
process of 3He is negligible, and this element behaves as a pseudo-primary element,
for which the timescale required for equilibrium is longer than the Hubble time.
It is evident that in such a situation, the definition of ZAMS as given previously
is completely meaningless. In addition, the evolutionary lifetimes of these stars are
so long that their location on the HRD, after they start to burn hydrogen, does not
significantly change within a Hubble time.

Figure 5.10 shows the HRD of VLM stars for various metallicities and for an age
of 10Gyr. One can immediately recognize the usual dependence of the MS location
on the metallicity. It is important to note the sinuous shape of the MS, with two
well-defined bending points:

• the first, located at Teff∼4500K and M∼0�5M�, is due to changes in the adiabatic
gradient related to the recombination process of H2;

• the second, located at Teff∼ 2800K and M∼0�15M�, is related to the increasing
level of electron degeneracy when the stellar mass decreases.
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Figure 5.10 The MS location of very low-mass stars with different initial chemical compositions
at an age of 10 Gyears. The solid dots along each sequence mark the location of the following
masses (from top to bottom): M/M� = 0.80, 0.70, 0.65, 0.60, 0.50, 0.45, 0.40, 0.35, 0.30, 0.25,
0.20, 0.15, 0.12, 0.11, 0.10, 0.095
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The role played by electron degeneracy in VLM stars is very important. For
any fixed chemical composition, it determines the value of the Minimum Mass for
H-burning (MMHB). With decreasing stellar mass, in order to achieve the central
temperatures necessary for the p–p chain to be effective, stars contract more and
more, and so larger and larger central densities are attained. In VLM stars, this
results in such a large density that electron degeneracy becomes important, and for
masses around 0�1M�, the cooling associated with conductive opacity is so efficient
that it decreases the central temperature below the threshold required for H-burning.
For a solar composition, the value of MMHB is ∼0�075M�, and it increases with
decreasing stellar metallicity. Less massive stars are not able to reach the temperature
for H-burning, and so after a burning phase of light elements such as Li and D, they
become fainter and fainter. These are the so called brown dwarfs.

These objects will evolve cooling down in the same way as white dwarfs (see
Section 7.4). The difference is that brown dwarfs have an homogeneous chemical
composition – due to the fact that they are fully convective – where hydrogen is the
dominant species (hence crystallization is not attained) and the degenerate electrons
never become relativistic. The non-degenerate envelope determines the rate of cooling
of brown dwarfs, as in the case of white dwarfs.

5.7 The mass–luminosity relation

Stellar evolution models predict that stars spend a sizeable fraction of their core
H-burning evolutionary lifetime close to their ZAMS location. This theoretical result
is strongly supported by empirical evidence in galactic stellar clusters.

One of the most important empirical properties of stars on or near the ZAMS
is that they display a tight relationship between their total mass and the surface
luminosity, the so-called ‘mass–luminosity’ relation. The existence of this relationship
can be proved, on qualitative grounds, by a simple analysis of the stellar structure
equations.

Let us assume that the energy transport is purely radiative; if in the derivative
in the left-hand side of the radiative transport equation we consider the differences
between the centre and the surface of the star, and use in the right-hand side the
central temperature T , surface radius R and denote with M the total mass of the star,
the radiative transport equation can be written as

L∝ R4

M
T 4

where L is the surface luminosity, R the total radius and T the central temper-
ature. Following the same approach for the hydrostatic equilibrium equation, one
derives

P∝ M2

R4
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Assuming now that the stellar matter behaves as an ideal gas �P ∝ �T	 and remem-
bering that �∝M/R3, one obtains

T ∝ M

R

By substituting this dependence into the first equation, one finds

L∝M3

Due to the several approximations made in this sketchy derivation, one has to expect
that the relation L∝M3 is only roughly followed by ‘real’ stars. Empirical data
for stars of approximately solar chemical composition provide L∝M3·6 for masses
between ∼2 and 20M�� L∝M4·5 in the range between ∼2 and 0�5M�, and L∝M2·6

in the range between ∼0�5 and 0�2M�. Figure 5.11 shows a theoretical mass–
luminosity relation for ZAMS stars in the mass range 0�1M�−10M� provided by
detailed evolutionary computations, that displays trends with mass roughly consistent
with the observations.
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Figure 5.11 The mass–luminosity relation for ZAMS stars in the mass interval 0.1M�–10M�,
for two initial chemical compositions
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For more massive stars (M>10M�), the mass–luminosity relationship becomes
less steep, and one derives that L∝M . It can be shown that this behaviour is due
to the increasing contribution of radiation pressure to the total pressure in massive
stars.

5.8 The Schönberg–Chandrasekhar limit

Regardless of the H-burning mechanism at work during the MS phase, at the exhaus-
tion of central H the star is left with an He core surrounded by an H rich enve-
lope. At the base of this envelope the temperature is high enough for H-burning
which continues in a shell. Given that there is no nuclear burning inside the He
core and the temperature gradient is radiative, its thermal stratification is isothermal
(see Equation (3.15)). In 1942, Schönberg and Chandrasekhar investigated, with a
pure analytical approach, the hydrostatic equilibrium conditions for an isothermal
He core with an ideal gas EOS. They found a fixed limiting value for the ratio
between the core mass and the total stellar mass (Mcore/Mtot) the so-called Schönberg–
Chandrasekhar limit. If this mass ratio is larger then the Schönberg–Chandrasekhar
limit, the core must contract on Kelvin–Helmholtz timescales (virial theorem) because
the isothermal core cannot support the pressure exerted by the overlying envelope
layers.

The existence of an upper limit to the ratio Mcore/Mtot can be qualitatively under-
stood as follows. We first apply to the isothermal core (with mass Mcore, radius Rc

and temperature Tc) the virial theorem in case of non-vanishing surface pressure P0

(Equation (3.46)) and solve for P0. We obtain

P0 =K1

McoreTc

R3
c

−K2

M2
core

R4
c

where the first term in the right-hand side comes from the total internal energy of the
core (this internal energy is ∼ �3/2	�KB/�mH	TcM	 and the second term comes from
the gravitational potential �; K1 and K2 are constants. For a given value of Mcore the
pressure P0 attains a maximum value P0�m =K3T

4
c /M

2
core when the radius is equal to

K4Mcore/Tc (K3 and K4 are constants). It is important to notice that the maximum
pressure P0�m decreases for increasing Mcore. For the star to be in equilibrium P0�m

must be larger than, or at least equal to, the pressure Pe exerted by the non-degenerate
envelope on the interface with the core. If we now apply the dimensional analysis
performed to obtain the mass–luminosity relationship for MS stars – and assume
that the functional dependences found for the central values also hold for any other
point within the star – we can roughly approximate Pe ∝M2

tot/R
4 and Tc ∝Mtot/R,

where Mtot and R are the total mass and the total radius of the star; hence at the
interface with the core Pe ∝ T 4

c /M
2
tot. Therefore, the condition Pe ≤P0�m dictates the

existence of an upper limit to the ratio Mcore/Mtot.
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The exact value of the Schönberg–Chandrasekhar limit depends on the ratio
between the mean molecular weight in the envelope and in the isothermal core

(
Mcore

Mtot

)
SC

= 0�37
(
�env

�core

)2

At the end of the MS phase of a solar chemical composition object �env ∼ 0�6
and �core ∼ 1�3 (the core is essentially made of pure helium); the Schönberg–
Chandrasekhar limit is therefore equal to �Mcore/Mtot	SC ∼ 0�08.

This means that if the He core mass is larger than or equal to about 10 per cent of
the total mass, it must contract. This value is lower than the relative He core mass
of stars with total mass larger than ∼2�5–3M� at the central H exhaustion (the exact
value depending on the initial chemical composition) but larger than the He core
mass of stars belonging to the Lower Main Sequence.

5.9 Post-MS evolution

After exhaustion of H in the core, there remains an He core that does not provide
any contribution to the energy production (the temperature being too low to allow
He-burning). This is surrounded by an H-rich envelope with a shell burning at
its base. The next question to address is how this configuration evolves and what
the evolutionary and structural changes are for the stars. Although all evolutionary
computations provide very similar results, we still lack a definitive explanation of the
precise physical reason(s) that drive the evolution of stars just after the end of central
H-burning to configurations with very large radii and low effective temperatures (see
the fundamental work by [160]).

In the following, the Post-MS evolution of stars is discussed, and we will show
how it strongly depends on the value of the total stellar mass. Stars that are going to
ignite He in an electron degenerate He core are called ‘low-mass’ stars (M ≤ 2�3M�.
As discussed in Chapter 7, stars with larger mass are called intermediate-mass or
massive stars, depending on the thermal properties of the CO core at the end of the
central He-burning.

5.9.1 Intermediate-mass and massive stars

In this mass range the He core mass at the end of the central H-burning phase is
typically larger than the Schönberg–Chandrasekhar limit.3 Numerical computations
show that H-burning continues in an initially rather broad shell around the He core,

3 In stars between ∼2�3M� and ∼3�0M� this limit is reached later, thanks to the increase of the He core
mass caused by the fresh He produced in the overlying H-burning shell.
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which later narrows in mass size. As a general rule, we notice that when H-burning
occurs in a shell, the main burning mechanism is always the CNO cycle.

During this phase the core contracts very slowly and the envelope expands: the
gravitational energy release changes sign at the point where the H-burning efficiency
is largest. Due to the expansion, the outer layers cool and envelope opacity increases
drastically. As a consequence energy trapping in the envelope becomes increasingly
efficient, and supports the expansion of the outer layers. During this phase the
structure moves in the HRD from the blue to the red side at almost constant surface
luminosity. This is called Sub-Giant Branch (SGB). The evolutionary rate during
this phase is roughly the Kelvin–Helmholtz timescale, being of the order of ∼12Myr
for a 3M� and ∼1Myr for a 6M�. This evolutionary phase is so short for stars of
high and intermediate mass that the chance of observing objects in this phase is very
small. This leads to the presence of the so called Hertzsprung gap (a lack of stars
along the SGB) in the HRD of stellar systems populated by intermediate-mass and
massive stars during the post-MS phases.

The most important structural change in these stars is that the stellar envelope
becomes convective, as the outer layers cool due to their expansion. The appearance of
an outer convection zone is very important for the final fate of the star: convection is a
very efficient energy transport mechanism and acts to slow down the expansion of the
star, and thus prevent its complete dissolution. This evolutionary phase corresponds to
point D in Figure 5.7 and it marks the beginning of the Red Giant (RG) configuration.
From now on, any further expansion occurs at almost constant effective temperature,
while the luminosity increases.

For high- and intermediate-mass stars, the central density at the beginning of the
RG phase is low enough to prevent the onset of electron degeneracy. Core contraction
therefore causes an increase of the temperature in the interior of the star. This allows
the structure to reach the thermal conditions (T ≈ 108 K) required for efficient He-
burning. When this occurs (point E in Figure 5.7) the core stops contracting and the
star is fully supported by nuclear burning. This marks the end of the RG phase, which
is very short for these stars, and the beginning of the core He-burning stage which is
the longest phase after central H-burning.

For increasing values of the total mass the core contracts much faster and the
temperature required for He-burning is reached sooner. As a consequence the RG
lifetime is significantly shorter, and the RG phase may even disappear as stars start
to burn He near the MS. This behaviour is also characteristic – but for different
reasons – of less massive stars but with extremely low metallicity, as will be discussed
in Section 5.11.

5.9.2 Low-mass stars

Contrary to the case of more massive stars, for low-mass stars the transition from
core to shell H-burning is not so fast. The fractional mass of the He core at the end
of the MS is below the Schönberg–Chandrasekhar limit, and even when it grows
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(due to the production of He from the H-burning shell) above this limit, the electron
degeneracy of the He core provides the pressure necessary to support the overlying
envelope. In fact, due to the larger central density at the end of the MS phase – with
respect to more massive stars – the electron gas in the He core becomes electron
degenerate (see Figure 5.12).

Low-mass stars approaching central H-exhaustion have a radiative core (or only
small convective cores), and as the central H abundance drops below a critical value,
the maximum in the nuclear energy release ceases to be located at the centre as it
begins to move outward. At the turn off, the maximum in �nucl occurs at Mr ≈0�1M�,
and ∼90 per cent of the nuclear energy is generated in a thick shell of about 0.2M�.
During the evolution from the turn off to the RG phase (the Sub-Giant phase), due to
the large dependence of the CNO cycle efficiency on temperature, the shell becomes
increasingly thinner as H is rapidly depleted in the inner portion of the shell and as
the temperature drops in the envelope. When the star arrives at the base of the Red
Giant Branch (RGB) – the HRD region populated by stars evolving through their RG
phase – (see Figure 5.13) the thickness of the shell is only ∼0�001M� and it will
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Figure 5.13 The HRD for both the core and shell H-burning phases of low-mass stars for the
labelled chemical composition. The RG phase begins when the stars start to evolve at almost
constant Teff and increasing luminosity. The various evolutionary tracks correspond to the following
stellar masses: M/M� =0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2. The arrows mark the
location of the tip of the RGB for the 2.2M� and 2M� models, and for those less massive (that has
an approximately constant luminosity)

continue to decrease, to about 0.0001M� at the tip of the RGB. During the SGB the
evolution – in a similar way to the case of more massive stars – the luminosity is
approximately constant and, due to the expansion and cooling of the outer layers, the
convection already present in the stellar envelope penetrates deeper into the star.

An important property of low-mass stars during the RGB evolution is the tight
correlation between the surface luminosity and the mass of the electron degenerate He
core: the so-called He core mass–luminosity (McHe–L) relation whereby an increase
of the He core mass causes an increase of the surface luminosity. The physical reason
for this is that the surface luminosity is almost fully provided by the H-burning shell
and the thermal properties of this shell and, in turn, the nuclear burning rate are only
determined by the mass McHe and radius RcHe of the He core (see [115]); the initial
chemical composition also has some effect, but it is of secondary importance. The
thermal properties of the envelope have no effect on the H-burning shell because
the mean density inside the He core is very high, whereas that of the envelope is
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very low. The pressure gradient just above the border of the He core is so large that
the pressure decreases by several orders of magnitude as one moves outwards from
the H-burning shell. Therefore, the H-burning shell cannot ‘feel’ the presence of the
expanded envelope. This is also the reason why mass loss from the stellar surface –
which is efficient along the RGB – does not affect the nuclear burning, McHe and
the stellar luminosity. What is affected by mass loss is the star radius; in brief, the
radius (hence Teff , given that the luminosity is unchanged) of mass-losing RGB stars
tends to readjust to dimensions appropriate to the actual value of their total mass. As
we will see later, when evolving at constant M , lower-mass RGB stars at a given
luminosity have larger radii and lower Teff ; therefore mass loss tends to shift the star
Teff towards progressively lower values, without affecting its evolutionary timescale,
luminosity and McHe.

Figure 5.14 shows the behaviour with time of the base of the convective envelope,
and of the boundary of the He core, which roughly coincides with the H-burning
shell. As convection penetrates deeper into the star, some of the He produced during
the central H-burning phase is mixed in. Therefore, the surface abundance of He
monotonically increases until the convection reaches its maximum penetration: this
phase is called the first dredge up. Other chemical species involved in the H-burning
are also mixed in, such as 3He and the CNO elements. The major results are the
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Figure 5.14 The behaviour with time of the base of the outer convective envelope and of the He
core mass for a 0.8M� star
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following: a doubling (roughly) of the surface 14N abundance, a reduction in the
surface 12C abundance by approximately 30 per cent, the formation of a surface
12C/13C ratio of about 20–30, a reduction of the envelope Li and Be abundances by
several order of magnitudes and a very slight change of the abundance of 16O. Any
changes to the parameters which affect the size of the convective envelope, i.e. the
total mass, metallicity, He content, efficiency of the superadiabatic convection, can
produce sizeable differences in the surface abundances of these elements.

Along the RGB (for both low-mass stars and more massive objects) the H-burning
shell moves steadily towards more external mass layers that contain fresh hydro-
gen, and the lower boundary of the envelope convection recedes towards the surface
without overlapping with the shell. As the convective boundary recedes, a chemical
discontinuity is left at the layer of maximum inward penetration of the envelope
convection zone (see Figure 5.15). When the H-burning shell encounters this discon-
tinuity, the rate at which the star climbs the RGB temporarily drops and even reverses
for a while (see Figure 5.16). This behaviour is due to the change in the H-burning
efficiency caused by the increase of H abundance, hence decrease of the mean molec-
ular weight, because LH∝�7. After the shell source has crossed the discontinuity, the
mean molecular weight remains at a fixed value (the envelope is now fully mixed by
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Figure 5.15 Hydrogen abundance profile within a 0.8M� star, after the first dredge up. The
bottom end of the convective envelope at its maximum extension corresponds to the abundance
discontinuity at Mr ∼ 0�26
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Figure 5.16 The HRD of the same 0.8M� star of Figure 5.14. The inset shows the trend of
surface luminosity with the effective temperature when the H-burning shell crosses the chemical
discontinuity produced by the first dredge up (see Figure 5.15). The point along the evolutionary
track corresponding to the first dredge up is marked with an open circle

the convection) and the surface luminosity grows monotonically with increasing core
mass. As a consequence, the star will cross three times the same luminosity interval
(see the inset in Figure 5.16), and hence one can predict an increase of the star counts
in this luminosity interval, i.e. a peak in the luminosity function (see Section 5.10.2
for a discussion on this subject): the so called bump of the RGB Luminosity Function.
The time spent during the RGB Bump phase is a significant fraction (∼20 per cent)
of the total RGB lifetime.

Let us now consider what occurs inside the He core during the RGB evolution.
Since the mass of the He core continuously increases as H is converted into He
in the H-burning shell, the density in the He core also increases. The gravitational
energy generation, �g, is then positive within the core. However when neutrino energy
losses, ��, become relevant, �� may exceed �g at the centre. This usually happens for
Mr ≤ 0�3Mtot, and as �� + �g < 0 in this region, dLr/dMr becomes negative near the
centre, i.e. a temperature inversion develops in the central portion of the He core and
the temperature maximum is no longer at the centre, but in a shell.

An important point concerning the evolution of low-mass stars along the RGB
is related to the electron degeneracy. During the RGB evolution the He core mass
increases, its central density increases, and also the degree of electron degeneracy
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becomes increasingly stronger, causing a large decrease of the conductive opacity in
the He core. This makes the conductive energy transport very efficient and, in turn,
increases the cooling of the central portion of the He core. In spite of the energy losses
from the core associated with the neutrino flux and electron conduction, the maximum
temperature in the core increases monotonically. This is because with growing McHe

the core contracts and the associated gravitational energy release heats up the layers
below the H-burning shell, where the transition from degenerate to non-degenerate
matter takes place and, indeed, the whole He core. When the maximum temperature
reaches a value ≈108 K, He-burning is ignited. This occurs when the mass of the
core is equal to McHe ∼(0.48–0.50)M�, almost regardless of the initial total mass –
a consequence of the fact that stars in this mass range develop very similar electron
degeneracy levels.

Due to the highly degenerate state, the nuclear burning in the He core is unstable
and this causes a thermal runaway at the tip of the RGB: the so-called He flash. This
marks the end of RGB evolutionary phase.

5.9.3 The helium flash

At the moment of He ignition in the core, the central density and temperature
are typically of the order of 106 g cm−3 and 8×107 K respectively. In the core,
He is under conditions of very strong, partially relativistic electron degeneracy. We
have already shown that under such thermal conditions, the gas pressure is not
sensitive to temperature changes. When a nuclear burning ignites in a non-degenerate
core, the new energy source causes a temperature increase and correspondingly, a
pressure increase; to maintain hydrostatic equilibrium the core expands and cools,
and this expansion prevents the continuous increase of the energy generation. The
same does not hold in the case of an electron degenerate core; the initial temperature
rise is not followed by an immediate expansion so the rate at which the He-burning
reactions (triple- reactions) occur increases dramatically, with a continuous increase
of the temperature, a so-called thermal runaway.

During this runaway, there is a huge production of nuclear energy; in a few
seconds an amount of energy of the order of 1010L� is produced (see Figure 5.17).
However, almost none of this energy reaches the stellar surface, as it is absorbed by
the surrounding non-degenerate layers. The expansion of the layers just outside the
shell where He-burning ignites is the first factor which contributes to the moderation
of the He flash strength. The second factor is that convection sets in, a consequence
of the large energy flux, and this dilutes the produced energy over progressively
larger mass. Canonical stellar models have clearly shown that even if, during the
He flash, convection reaches layers very close – both in radius and mass – to the
lower boundary of the convective envelope, the huge jump in pressure and entropy
existing between the two convective zones, due to the presence of the H-burning shell,
prevents the possibility of any mixing. However, this process could occur in stars
igniting the He flash under conditions of extreme electron degeneracy as those stars
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Figure 5.17 The evolution with time of the surface luminosity (Ls) the luminosity produced by
3-reactions (L3) and that from the H-burning (LH) during the onset of He-burning at the tip of
the RGB in a low-mass star. The time has been offset so that zero corresponds to the start of the
main He flash

which experience this event while cooling along the white dwarf cooling sequence
([22],[45]) as well as in extremely metal-poor stars ([196]).

The initial temperature rise at constant density helps to remove the electron degen-
eracy at the point where the He ignites. However, the region of the core interior to
this flash site remains degenerate following the main flash, as there is insufficient
time during the main flash for heat to diffuse inward into this region. The degeneracy
of this inner region is subsequently removed through a series of much lower strength
secondary flashes, until the He burning eventually reaches the star centre. As a con-
sequence of the nuclear burning occurring during the He flash, about 5 per cent of
He in the core is converted into carbon. The whole evolutionary phase from the start
of the main He flash to the beginning of the core He-burning phase lasts ∼106 years.

5.10 Dependence of the main RGB features on physical and
chemical parameters

In this section, we will discuss the effect of the initial He content, metallicity and
efficiency of superadiabatic convection, on the main features of the RGB such as its
location in the HRD, the RGB bump luminosity and the luminosity of the tip of the
RGB (the point of He ignition).
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5.10.1 The location of the RGB in the H–R diagram

The location of the RGB in the HRD strongly depends on any structural and/or
physical parameter which affects the size of the convective envelope, and is similar
to the case of the Hayashi track, discussed in Section 4.3.

Numerical computations show that for each fixed chemical composition, the RGB
becomes cooler with decreasing stellar mass.

The dependence of the RGB location on the chemical composition is due to changes
induced in the radiative, low-temperature opacity by any change in the He content and
metallicity. An increase in the He content at fixed Z causes a decrease of the envelope
opacity, as the He opacity is lower than the H opacity. This occurrence causes a reduc-
tion in the mass extension of the envelope convection zone and, in turn, a hotter RGB.

The abundance of heavy elements is the parameter which most affects the RGB
morphology; any increase of Z produces a larger envelope opacity and, in turn, a
more extended envelope convection zone and a cooler RGB. The strong dependence
of the RGB effective temperature on the metallicity makes the RGB one of the
most important metallicity indicators for stellar systems such as galaxies and galactic
star clusters. An important issue is the dependence of the shape and location of
the RGB on the distribution of the metals; different heavy elements have different
ionization potentials, and contribute differently to the opacity of the envelope. The
abundance of low ionization potential elements such as Mg, Si, S, Ca, Ti and Fe
strongly influences the RGB effective temperature, through their direct contribution
to the opacity due to the formation of molecules such as TiO which strongly affects
the stellar spectra at effective temperatures lower than 5000–6000K, and through
the electrons released when ionization occurs, which affect the envelope opacity via
the formation of the H− ion – one of the most important opacity sources in RGB
structures. As an example, a change of the heavy elements mixture from a scaled
solar one to an -element enhanced distribution with the same iron content produces
a larger envelope opacity and the RGB becomes cooler and less steep. The change in
the slope is due to the increasing contribution of molecules to the envelope opacity
when the stellar effective temperature decreases along the RGB.

The RGB morphology depends also on the efficiency of the convection in the
outer stellar layers. Due to the low density which characterizes these layers, a sig-
nificative fraction of the envelope shows a temperature gradient which is strongly
superadiabatic. Therefore, any change in the efficiency of convection in these layers
has a strong impact on the RGB effective temperature. If the value of the mixing
length is increased, which corresponds to an assumption of more efficient convec-
tion, the thermal gradient decreases and in turn the effective temperatures along
the RGB increase. Due to the larger extension of the superadiabatic region in RGB
stars, the dependence of the RGB temperature on the adopted mixing length value
is much stronger than that for MS stars as is clearly shown in Figure 5.9. The same
figure also indicates that when the mixing length parameter is set to zero, the star
will stop climbing up the RGB, but continues to expand steadily until its complete
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disruption; this is an indirect proof that if the energy transport mechanism associated
with convection did not exist, we would live in a Universe without RG stars.

5.10.2 The RGB bump luminosity

The physical reasons for the occurrence of the bump in the RGB Luminosity Function
(LF) have been previously discussed, and it is clear that the luminosity of the bump
must strongly depend on any parameters which can change the location of the H
abundance discontinuity left over by the envelope convection after the first dredge
up. The bump luminosity decreases as the location of the discontinuity moves deeper
into the star, given that the H-burning shell will encounter it at earlier times, i.e. at
lower surface luminosity.

This occurs with decreasing stellar mass, as the base of the envelope convection
is located deeper in the structure during the first dredge up.
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Figure 5.18 The behaviour of the RGB bump brightness as a function of selected physical
parameters: stellar mass, mixing length parameter, metallicity and helium content (see also data in
Table 5.4)
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A decrease in He abundance, or alternatively an increase in the heavy element
abundance, due to the corresponding changes – previously discussed – in the opacity
of the envelope, moves the location of the chemical discontinuity deeper into the star
and, in turn, reduces the bump luminosity.

The efficiency of superadiabatic convection clearly affects the thermal stratification
of the whole convective envelope. A larger efficiency, i.e. a larger adopted value for
the mixing length, decreases the mass extension of the outer convection zone at the
first dredge up. As a result, the chemical discontinuity is located in more external
layers and the bump luminosity is increased.

Figure 5.18 shows the dependence of the RGB bump luminosity on the discussed
parameters, while in Table 5.4 we report the RGB bump luminosity values for
different choices about these parameters.

5.10.3 The luminosity of the tip of the RGB

The tip of the RGB marks the evolutionary phase corresponding to He-burning
ignition through the He flash, and this (see the discussion in the previous section)
occurs when the He core mass has reached a well-defined value. This means that
the luminosity of the tip is in general a function of the He core mass at the He
flash. Any parameter affecting the size of the He core at the He-burning ignition
affects the luminosity of the RGB tip: if the He core mass at the flash increases, the
brightness of the RGB tip also increases. In Table 5.5 are listed the values of the
surface luminosity and of the He core mass at the tip of the RGB for different initial
chemical compositions and a mass of the RGB star equal to ∼1M�.

The value of McHe does not depend strongly on the stellar mass for masses lower
than ∼1�8M� at solar chemical composition (this limit depends strongly on the
adopted chemical composition, significantly decreasing with decreasing metallicity
and/or increasing He content). In fact, all stars with a mass below this limit develop
very similar levels of electron degeneracy within the He core, and the mass of the
He core has to reach almost the same value before He-burning ignites. When the
stellar mass value exceeds this limit, the electron degeneracy in the core is at a lower
level as a consequence of the larger temperatures and lower densities. This has the
effect that the luminosity of the tip of the RGB is almost constant for masses below
the quoted limit, and strongly decreases at larger masses. This behaviour is shown in
Figure 5.19. After a minimum has been attained, the value of McHe starts to increase
again with increasing total mass (the electron degeneracy is by now removed from
the core) as a consequence of the increasing mass of the convective core during the
core H-burning phase.

The significant changes in the properties of the RGB, which are expected in stellar
systems as a consequence of the differences of the age, and in turn of the masses
evolving along the RGB, is called RGB phase transition after [211].

An increase in the initial He content increases the interior temperatures of a
star through the increase in the mean molecular weight; this, in turn, decreases the
electron degeneracy level in the He core during the RGB evolutionary phase. As a
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Table 5.4 The mean luminosity of the bump
along the RGB as a function of various parameters

Z= 0�002� Y = 0�245�ml = 1�91

M�M�	 log�L/L�	

0.8 1�768
0.9 1�822
1.0 1�897
1.1 1�943
1.2 2�017

M = 0�8M��Z= 0�002� Y = 0�245

ml log�L/L�	

1.00 1�676
1.50 1�725
1.91 1�768
2.50 1�776

M = 0�8M�� Y = 0�245�ml = 1�91

Z log�L/L�	

0.0003 2�099
0.0006 1�977
0.002 1�768
0.004 1�587

M = 0�8M��Z= 0�002�ml = 1�91

Y log�L/L�	

0.200 1�682
0.245 1�768
0.300 1�863
0.400 2�067

result the star ignites He at a lower He core mass and the luminosity of the tip of
the RGB decreases.

With increasing metallicity, for a fixed He content and stellar mass, the He core
mass at the He flash decreases. This is because at a higher metallicity the H-burning
in the shell is more efficient; as a consequence the growth and, in turn, heating of
the He core is faster. In this way the thermal conditions for igniting He are reached
at a lower He core mass. This is shown in Figure 5.20, where the behaviour of the
maximum temperature in the He core as a function of the He core mass is plotted
for structures with same mass and initial He content, but different values of the
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Table 5.5 Bolometric luminosity, He core mass and surface helium abundance at the tip of the
RGB for a low-mass (∼1M�) star for various choices about the initial chemical compositions.
The other two columns report the bolometric luminosity and mass of the star with an effective
temperature equal to log �Teff	= 3�85 belonging to the Zero Age Horizontal Branch locus (see
Chapter 6) whose RGB progenitor has the evolutionary properties listed in the previous columns

Z�Y log�Ltip/L�	 McHe�M�	 Ysurf log�L3�85/L�	 M3�85�M�	

0.0001, 0.245 3.332 0.511 0.253 1.780 0.821
0.0003, 0.245 3.369 0.505 0.256 1.732 0.721
0.001, 0.246 3.405 0.498 0.260 1.687 0.650
0.002, 0.248 3.422 0.495 0.262 1.653 0.619
0.004, 0.251 3.445 0.491 0.269 1.614 0.594
0.008, 0.256 3.463 0.487 0.277 1.561 0.572
0.01, 0.259 3.465 0.485 0.280 1.540 0.565
0.02, 0.273 3.475 0.478 0.296 1.489 0.543
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Figure 5.19 (a) The behaviour of the mass of the He core and (b) of the surface luminosity at the
onset of He-burning as a function of the stellar mass for two selected initial chemical compositions

metallicity. Note that, with increasing metallicity – regardless of the decrease of the
He core mass at the tip of the RGB – the stellar luminosity at He ignition increases,
at odds with the previous general rule. This is because theMcHe–L relation is partially
affected by the initial chemical composition; an increase of the metallicity increase
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Figure 5.20 The behaviour of the maximum temperature off-centre with respect the mass of the
He core, during the RGB phase of a 0.8M� star and for various values of the metallicity

the H-burning rate in the shell and, in turn, the surface luminosity at each fixed value
of the He core mass.

The luminosity of the tip of the RGB is not affected by changes in the efficiency
of superadiabatic convection. This is because the thermal stratification within the He
core does not depend on the thermodynamical properties of the outer envelope.

5.11 Evolutionary properties of very metal-poor stars

According to the standard cosmological model, primeval matter emerged from the
Big Bang as a mixture of H and He with negligible quantities of elements heavier than
7Li. Since then, stellar nucleosynthesis has been at work, progressively increasing
the abundance of metals in the Universe. In this context, the empirical evidence that
disk stars – Population I objects – are more metal rich than halo stars – Population
II objects – has long been considered a proof of the chemical evolution in our own
galaxy. However, when comparing the predictions of Big Bang nucleosynthesis with
the spectroscopic estimates of the metallicity of Population II stars, one has to face
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the evidence that the old halo Population II should have been preceded by an earlier
stellar population, responsible for enhancing the amount of heavy elements from
the cosmological value – Z ∼10−12 –10−10 if not zero – to the typical values of
Population II stars (Z∼10−3–10−4). This primordial stellar population, characterized
by a negligible, if not vanishing, metallicity, is called Population III.

The major difference between Population III stars and those with normal metal
content lies in the efficiency of the H-burning mechanism. Owing to the lack of CNO
elements, even high-mass stars are forced to contract until the central density and
temperature are high enough so that the p–p chain is able to provide all the energy
required by the equilibrium conditions. Because of the small dependence of p–p chain
efficiency on temperature compared with the CNO cycle, very high temperatures
have to be attained in the core. In low-mass stars, the p–p chain can provide the
amount of energy necessary for the star to be in equilibrium, whereas at larger masses
this configuration is achieved only at much higher temperatures.

Once the central temperature reaches T ∼ 108 K, He-burning reactions become
efficient. This occurrence marks a fundamental event: a small amount of carbon is
self-produced by the star. As a consequence, the produced 12C leads to the activation
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Figure 5.21 The behaviour of temperature and density at the centre of the star on the ZAMS, as
a function of mass, for extremely metal-poor stellar populations. For the sake of comparison, the
same trends for metallicities (Z= 10−4 − 10−3) typical of Population II stars are also shown
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of the CNO cycle, which then starts providing nuclear burning energy in competi-
tion with p–p chain. Detailed evolutionary computations ([40]) have shown that the
threshold abundance of C which allows the CNO cycle to begin is of the order of
XC ∼10−10–10−9. The self production of 12C occurs at earlier stages with increasing
stellar mass; in the less massive structures the production of C occurs towards the end
of the central H-burning phase, and it does not occur at all in stars less massive than
∼0�8M�. For massive stars (M> 15–20M�) the He-burning reactions occur even
before the star has burned a significant fraction of its H. In these objects the central
H-burning is then controlled by the CNO cycle, and their evolutionary behaviour is
not very different from that of more metal-rich stars. In order to illustrate this issue
more clearly, Figure 5.21 shows the trend of the core temperature and density as a
function of stellar mass at the ZAMS.

In Figure 5.22 and 5.23 we display the evolutionary path in the HRD for a 1M�
and 5M� model with initial metallicity Z= 10−10. For comparison, the evolutionary
tracks of models with the same mass but different metallicities are also shown.

As soon as the CNO cycle is activated, the stellar core reacts by expanding due
to the additional energy input, with a consequent decrease of the central density.
The activation of the CNO cycle produces sizeable effects on the development and
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Figure 5.22 The HRD for a 1M� star for different values of the stellar metallicity



158 THE HYDROGEN BURNING PHASE

4.5

4.2

3.9

3.6

3.3

3.0

2.7

2.4
4.4 4.2 4.0 3.8 3.6

log (Teff)

Z = 10 

–10

Z = 10 

–4

Z = 10 

–6

Z = 0.002

Z = 0.01

Z = 0.006

lo
g 

(L
 /L

  )

Figure 5.23 The HRD for a 5M� star with different values of the stellar metallicity, from the
ZAMS until more advanced phases following the end of central He-burning

evolution of the convective core during the central H-burning phase. For stars in the
mass range 2–5M�, after the temporary occurrence of the convective core associated
with the 3He equilibrium, H-burning occurs in a radiative region but as soon as the
CNO cycle becomes the main H-burning process, a convective core appears. In more
massive stars, however, the transition of the core from convective to radiative and
back again does not occur (see Figure 5.24).

The most significant difference during the post-MS evolutionary phase with respect
to normal metallicity stars is that, due to the larger central temperatures of low-mass
stars, the level of electron degeneracy is lower, making easier He-ignition. For this
reason, Population III low-mass stars experience the He flash at a lower He core mass
and, in turn, at a lower luminosity of the tip of the RGB compared with Population
II stars. Therefore, at very low metallicity (Z< 10−6) the trend of He core mass at
the tip of the RGB with the metallicity is reversed, as it is shown in Figure 5.20. In
addition, the maximum stellar mass experiencing He ignition through the He flash is
much lower; equivalently the RGB phase transition occurs at a lower mass, i.e. at a
greater age, compared with more metal-rich stellar populations.
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Figure 5.24 The behaviour of the mass of the convective core as a function of the central
abundance of H for various stellar masses and for a very low metallicity (Z= 10−10)

The increase of core temperatures in Population III stars is so great that
intermediate-mass stars do not experience the RGB evolutionary phase; they are able
to ignite He-burning quietly soon after the exhaustion of H in the core, on the blue
side of the HRD (see Figure 5.23).



6 The Helium Burning Phase

6.1 Introduction

In the previous chapter the structural and evolutionary properties of stars during
the main H-burning phase were discussed, as well as their dependence on the most
important parameters such as total mass and initial chemical composition. Here we
will describe the evolution of stars during the next evolutionary phase, the He-burning
phase. It has already been mentioned that all stars with initial total mass larger than
∼0�5M� are able to attain, in their interiors, the thermal conditions required for the
onset of He-burning.

Unlike during the H-burning, the physical processes at work in stars of different
masses during the main core He-burning stage are quite similar. Nevertheless, since
the morphology of the evolutionary tracks during this phase is strongly dependent on
the total stellar mass, we again prefer to discuss separately the low-, intermediate-,
and high-mass stars.

6.2 The nuclear reactions

The first and fundamental reaction in the He-burning process is the production of
12C from the fusion of three 4He nuclei. This reaction is called the triple alpha (3�)
reaction. A triple encounter being of very low probability, this reaction usually occurs
in two separate steps:

4He+4He→8Be
8Be+4He→12C+�

The first reaction is endothermic by about 91.8 keV, meaning that in a short time
(∼10−16 s) 8Be decays back into two � particles. The possibility of the second reaction

Evolution of Stars and Stellar Populations Maurizio Salaris and Santi Cassisi
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is therefore extremely low. In this context, 8Be behaves as a secondary element, being
involved simultaneously in a destruction and a generation process. However, when
the interior temperature rises, the probability of the second reaction increases, due to
these combined effects:

• the number of �+ � reactions increases and, the 8Be decay lifetime remaining
constant, the concentration of 8Be significantly increases,

• the nuclear cross section of the reaction 8Be+� strongly increases.

Both effects increase the probability that a nucleus of carbon is produced before
8Be decay; a temperature of the order of∼1�2×108 K is necessary before 3� reactions
produce a sizeable amount of energy. In addition, any increase in the density strongly
favours this nuclear reaction, �3� being proportional to the square of the density.

The evaluation of the nuclear cross sections for both reactions is complicated by the
presence of several nuclear resonances. The amount of energy which is released for
any 12C nucleus produced is equal to ≈7�27MeV, which corresponds to ∼0�6MeV
per nucleon. This is more than one order of magnitude smaller than the amount of
energy per nucleon released during the H-burning via the CNO cycle. This explains
why, for a fixed stellar mass, the core He-burning lifetime is about a factor of 100
shorter than the core H-burning lifetime.

The temperature sensitivity of the 3� reaction, is quite strong: �3� ∝ T 40 for
T ∼ 108 K and �3� ∝T 20 for T ∼ 2× 108 K. For the same physical reasons discussed
for the CNO cycle, one can foresee that during the core He-burning stage, the stars
have extended convective cores.

The other nuclear reactions involved in the He-burning process are:

12C+�→16O+�

16O+�→20Ne+�

20Ne+�→24Mg+�

24Mg+�→28Si+�

Only the first two reactions, together with the 3� reaction, are really important.
A relevant consequence of the He-burning process is to transform He into a mixture
of 12C and 16O with traces of 20Ne.

It is worth emphasizing that the 12C�����16O reaction is one of the most important
in stellar evolutionary computations for the following reasons.

• The value of the corresponding nuclear cross section strongly affects the C/O ratio
in the core of carbon–oxygen (CO) white dwarfs and, in turn, their cooling times.

• More importantly, when the abundance of He inside the convective core, during the
core He-burning stage, is significantly reduced, the 12C�����16O reaction becomes
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strongly competitive with the 3� reactions (which need three � particles) in con-
tributing to the nuclear energy budget (the two processes produce a similar amount
of energy per reaction). This means that the cross section of this reaction has a
strong influence on the core He-burning phase lifetime.

Unfortunately, this reaction has a resonance and a very low cross section (∼10−17

barn) at low energies, and so the nuclear parameters are difficult to measure experi-
mentally or to calculate by theoretical analysis. According to [51], an uncertainty of
the order of a factor of two is reasonable for this nuclear reaction rate (but see also
the more recent analysis by [121]).

6.3 The zero age horizontal branch (ZAHB)

About one million years after the He-ignition in the core of low-mass stars, electron
degeneracy is fully removed. During this period, a series of recurrent flashes occurs
in the core, each one removing the degeneracy closer and closer to the centre. In
the meantime, the surface luminosity drastically decreases – by about one order of
magnitude – with respect to the luminosity at the RGB tip, because of the huge
expansion of the He core occurring after the main He flash, which cools down the
H-burning shell.

The probability of observing stars during this evolutionary stage is very small, if
not negligible, as the corresponding evolutionary lifetime is very short. This is the
main reason1 why many authors initiate their core He-burning evolutionary sequences
from an equilibrium model, neglecting the computation of the evolution from the
RGB to the beginning of the core He-burning stage (see the discussion in [225]).
In any case, in the computation of this initial model, the effect of the He-burning
occurring during the He flash, is accounted for by considering that a mass fraction
of ∼5 per cent of carbon is produced.

Equilibrium models that burn He in a chemically homogeneous core, and H in a
shell with chemical stratification similar to the one at onset of the He flash (in some
sense this is equivalent to saying that the CNO elements are at their equilibrium in
the H-burning shell) are called Zero Age Horizontal Branch (ZAHB) models.

The structural and evolutionary properties of a ZAHB star are fixed by four
parameters: the He core mass McHe, the total mass M , the abundance of He and
the metallicity in the envelope. It is clear that the value of McHe depends on the
initial chemical composition as well as on the total mass, although for low-mass stars
(M ≤ 1�4M�), i.e. those with an age (at the RGB tip) larger than 4–5 Gyr, McHe

is only weakly dependent on the stellar mass. This means that for low-mass RGB
progenitor, the parameters which characterize the corresponding ZAHB structure are
reduced to the He and the metal abundances in the envelope and the total mass. The

1 One also has to notice that the computation of an evolutionary sequence through the He flash is an extremely
time-consuming procedure.



164 THE HELIUM BURNING PHASE

He abundance in the envelope of ZAHB stars is slightly enriched compared to the
initial value (�Y ∼ 0.02–0.04) because of the first dredge up.

From a structural point of view, a ZAHB star is characterized by two nuclear
burning sources: the He-burning located in the interior of the He core that causes
the presence of a convective core, and the H-burning in a shell surrounding the He
core. For each fixed mass of the He core, the efficiency of the H-burning shell is
modulated by the mass of the envelope – the larger the mass of the envelope, the
hotter the H-burning shell, and thus the more efficient the H-burning process is.

We now consider the location on the HRD of different ZAHB models characterized
by the same He core mass and envelope composition but of different total masses, i.e.
different envelope masses. Detailed numerical computations show that the models
define an almost horizontal locus on the HRD: those with the lowest mass envelopes
are located in the hottest part of the branch, the location moving to cooler values with
increasing envelope mass (see Figure 6.1). This is the reason why this phase is called
the Horizontal Branch (HB) phase ([48]). This theoretical prediction is confirmed by
observations of old stellar clusters.
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Figure 6.1 (a) The HRD of the ZAHB for different values of the metallicity but the same RGB
star progenitor, with M = 0�8M�. (b) The corresponding trend of the envelope mass as a function
of their effective temperature. Solid dots in both (a) and (b) mark the location of selected ZAHB
models
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A close inspection of the theoretical predictions clearly shows that, due to the
dependence of the H-burning efficiency on the envelope mass, the ZAHB locus is not
perfectly horizontal, but becomes slightly brighter with increasing total mass. One can
see that the effective temperature extension of the ZAHB can be quite large, going
from ∼35 000K for the stars with a negligible envelope mass (Menv∼10−4M�) to
∼4000K for more massive envelopes (Menv∼0�4M�).

The reason for the mass spread among ZAHB structures in a real stellar system,
can easily be accomplished when accounting for the evidence that RGB stars lose
a significant (∼0�3M�) portion of their total mass, the amount varying from star to
star as a consequence of the fact that mass loss is an intrinsically stochastic process.

It appears that, for a fixed envelope chemical composition, the luminosity of a
ZAHB star is predominantly fixed by the mass of its He core, and secondly by the
mass of the envelope. Its effective temperature, for a fixed He core mass, depends
only on the envelope mass. The He core mass is almost constant for stars of ages (at
the RGB tip) larger than 4–5Gyr, i.e. initial mass lower than ∼1�4M�. Thus, the fact
that the ZAHB luminosity is predominantly fixed by the He core mass is the main
reason why the ZAHB and, more generally, the HB brightness, is one of the most
important standard candles for Population II stellar systems (see Section 9.2.6).

6.3.1 The dependence of the ZAHB on various physical parameters

In view of the possible use of the ZAHB brightness as a distance indicator, it is
important to know how the observational properties of the ZAHB react to any change
in the most relevant parameters such as helium content, metal abundance and any
additional (non-canonical) process which can change the mass size of the He core at
He-ignition.

An analysis of how the properties of a ZAHB model change when changing either
the initial He abundance or metallicity or the value of McHe, keeping everything else
fixed, provides(

d log�L3�85
ZAHB�

dMcHe

)
Y�Z

∼ 3�04

(
d log�L3�85

ZAHB�

dY

)
McHe�Z

∼ 2�07

(
d log�L3�85

ZAHB�

d log�Z�

)
McHe�Y

∼−0�04

where each derivative is computed at log�Teff�= 3�85, typical of RR Lyrae variable
stars (see Section 6.6.1).

One has to bear in mind that these results serve only as approximate guidelines,
because a change of the abundances of He and metals also cause a change of the
He core mass at the RGB tip (see Section 5.10). In the following discussion about
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the chemical composition effects on the ZAHB location we also include the induced
change to McHe.

• The He content: for a fixed metallicity, an increase in the initial helium content, Y ,
causes a decrease in McHe. This should cause a decrease in the ZAHB brightness.
However, for ZAHB stars with massive enough envelopes and so with efficient
H-burning in the shell, the increase of the envelope He abundance causes a large
increase in the H-burning efficiency, counterbalancing the decrease of the ZAHB
brightness due to the change in McHe. As a final result, with increasing He abun-
dance, the blue part of the ZAHB (populated by stars with low-mass envelopes)
becomes fainter, and the red part brighter as shown in Figure 6.2. For fixed total
mass, the stars become slightly hotter.

• The metal abundance: any increase in the metal abundance, at fixed He abundance,
makes the ZAHB fainter. This occurrence is due to the combination of two effects:
(1) the decrease of the value ofMcHe at the He flash, (2) the increase of the envelope
opacity. For fixed total mass, the increase of the envelope metallicity makes the
ZAHB location cooler.
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Figure 6.2 HRD of three ZAHBs computed with different choices of the initial He abundance
but the same metallicity and progenitor mass. Solid dots mark the location of selected models
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• Non-canonical processes: there are many physical processes such as rotation and
non-canonical mixing processes, commonly not accounted for in standard evolu-
tionary computations, which can produced sizeable effects on the ZAHB properties.
Regardless of the detailed physical description of the process, we can easily pre-
dict, at least qualitatively, the effect on the ZAHB by simply considering the effect
on the parameters characterizing a ZAHB star, i.e. the He core mass and the total
mass. Any physical process able to delay the ignition of the He flash at the RGB
tip, such as rotation2, will cause an increase of the He core mass and, on aver-
age, a decrease in the total mass. This is because mass loss along the RGB then
has more time to work. As a consequence, the ZAHB location will be brighter
and hotter.

Table 5.5 lists the values of the ZAHB luminosity and the ZAHB total mass at a
fixed effective temperature (log�Teff�= 3�85) for different initial chemical composi-
tions.

6.4 The core He-burning phase in low-mass stars

The rule governing the morphology of the evolutionary tracks of HB stars during
their main He-burning phase is, in some sense, the inverse of that described for
the ZAHB. The main characteristic of the HB evolution is that the H-burning shell
efficiency monotonically decreases as the efficiency of the central He-burning steadily
increases. As long as the luminosity produced by the H-burning shell is larger than
that produced by 3� reactions, the star evolves towards larger effective temperatures.
When the central He-burning process becomes dominant in the stellar energy budget,
the evolutionary path reverses towards the red side of the HRD. As a consequence,
the stars perform a loop on the HRD, and the effective temperature extension of this
loop strongly depends on the parameters affecting the H-burning shell efficiency,
mainly the envelope mass and the envelope He abundance (see Figure 6.3).

It has already been emphasized that, because of the large dependence on temper-
ature of the He-burning efficiency, HB stars always burn helium inside a convec-
tive core. This produces further evolutionary properties worth discussing in some
detail.

6.4.1 Mixing processes

The physical processes occurring within the convective core of He-burning low-
mass stars are very important, as their efficiency determines not only the time spent
by the star during the main core He-burning phase, but also its path in the HRD

2 Rotation makes the stellar interiors cooler compared with non-rotating models with the same initial mass
and chemical composition. This causes a stronger electron degeneracy in the He core during the RGB evolution.
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Figure 6.3 The evolutionary tracks of HB stars of various masses for different values of the He
abundance in the envelope

and its lifetime during the subsequent evolutionary phase, i.e. the shell He-burning
stage.

Inside the convective core, the transformation of helium into carbon strongly
increases the free–free opacity, being 	ff ∝XiZ

2
i (where Xi and Zi represent here the

abundance by mass and the atomic charge respectively, of the element i). Because
of this opacity increase due to transformation of helium into carbon, the effect of
chemical evolution on the radiative temperature gradient 
rad overcomes those due
to the changes of other physical quantities within the convective core. As a result,

rad increases monotonically with time in the whole convective region, an occurrence
that prevents any decrease of the mass size of this convective zone. One has also to
notice that convection occurs on a timescale much shorter than the nuclear burning
timescale – which means that nuclear burning has no time to modify the chemical
abundances in the convective core before mixing occurs.

When one neglects convective overshoot at the border of the convective core the
evolution with time of 
rad within the star is shown in Figure 6.4. One immediately
notices the growing discontinuity of the radiative gradient at the boundary of the
convective core, due to the changing chemical composition and, in turn, the radiative
opacity, caused by the He-burning process.
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Figure 6.4 The growing discontinuity of the radiative temperature gradient at the boundary of
the convective core for a core He-burning low-mass star. The numbers mark a time sequence (time
is increasing going from stage 1 to stage 5)

In a realistic case, one can assume that a certain amount of overshoot (albeit
possibly even very small) at the Schwarzschild border of the convective core has
to occur. Due to the presence of the chemical discontinuity previously discussed
and the increasing opacity inside the convective core (because of the conversion
of He into C) the mixing of a radiative shell – surrounding the convective core –
caused by the convective overshoot, causes a local increase of the opacity and, in
turn, a convective boundary instability. As a result, we can expect that a self-driving
mechanism for the extension of the convective core occurs in the star: any radiative
shell which is mixed as a consequence of the convective core overshoot, will definitely
become part of the convective core. This physical behaviour is fully supported by
detailed computations of HB stellar models. Due to this process, at the boundary of
the resulting enlarged convective core, the radiative gradient becomes equal to the
adiabatic one (see Figure 6.5(b)).

After this early phase, during which the extension of the convective core closely
follows the increase of 
rad, the radiative gradient profile shows a minimum (see
profile 3 in Figure 6.6). This is a consequence of the progressive shift outwards –
within an He-rich region – of the convective boundary, due to the self-driving
mechanism. The occurrence of this minimum depends on the complex behaviour of
the physical quantities involved in the definition of 
rad, such as opacity, pressure,
temperature and local luminosity. All numerical simulations show that when this
minimum appears, there is a close coupling between the physical and chemical
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Figure 6.5 Qualitative behaviour of the radiative temperature gradient near the boundary of the
convective core during the core He-burning phase: (a) with an increasing chemical discontinuity
(see also Figure 6.4); (b) in the case where convective overshoot is allowed to occur

evolution of the convective zone outside the minimum and the mass of the surrounding
radiative layers which are engulfed.

The mixing of a radiative shell produces a general decrease of the radiative gradient
in the whole convective core (see profile 4 in Figure 6.6). This effect is mainly
due to the combination of the mixing of He-rich matter and of the change in the
physical properties of the mixed shell. The radiative gradient will eventually decrease
to the value of the adiabatic gradient at the location of the minimum (profile 5 in
Figure 6.6).

The main problem in the computation of HB evolutionary models is related to
the treatment of the intermediate convective zone, located between the minimum
of the radiative gradient and the outer radiative zone. A full mixing between the
convective core located inside the minimum and the external convective shell cannot
occur because at the minumum the radiative gradient is equal to the adiabatic one.
Therefore, the convective shell outside the minimum is no longer mixed with the core.

The result of this decoupling between the convective core and the convec-
tive shell outside the minimum, is the formation of an extended, partially mixed
region – a semi-convective region – around the fully mixed core, between the minimum
of 
rad and the outer radiative zone. The chemical composition at each point within
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Figure 6.6 Qualitative behaviour of the radiative temperature gradient near the boundary of the
convective core during the core He-burning phase, showing the time sequence of the events which
result in the appearance of a semi-convective region. The numbers mark a time sequence (time is
increasing going from stage 1 to stage 6)
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this semi-convective region is that required to fulfill the equality 
rad =
ad (see profile
6 in Figure 6.6). Therefore, HB models that account for the presence of a semi-
convective region are computed following these prescriptions: 
rad � 
ad at the border
of the convective core and 
rad =
ad in the whole semi-convective region ([49],[50]).

This situation is similar to that for massive stars during the main sequence evolu-
tionary phase. However, in massive stars near the end of the core H-burning stage,
an outer zone unstable against convection exists around the convective core, and this
zone tends to be stabilized by mixing. In HB structures, the outer region is by itself
stable against convection and it is the convective core that induces a partial mixing in
the surrounding regions. For this reason, the partial mixing phenomenon that occurs
in HB stars is often called induced semi-convection ([49]).

The mass location of the minimum of the radiative gradient changes (increases)
with time, because of the evolution of the chemical abundances caused by nuclear
burning. As a final result, the region being enriched by the carbon and oxygen
produced by He-burning, increases outwards up to a maximum extension.

The effects of semi-convection on the evolution of HB models are: (1) the evolu-
tionary tracks perform more extended loops on the HRD, (2) the central He-burning
phase lasts longer, since the star has a larger amount of fuel to burn, (3) the mass
size of the He-depleted core at the He-exhaustion is larger.

When the core abundance of He has been lowered by nuclear burning to about
Y ∼0�10, a convective instability can affect the convective core. In fact, when the core
He abundance is lower than this limit, �-captures by 12C nuclei tend to overcome 12C
production by 3� reactions, thus He-burning becomes mainly a 12C+� production
of oxygen, whose opacity is even larger than that of 12C. This causes – as described
above – an increase of the size of the semi-convective region and, in turn, fresh
helium is transferred into the core, which is now nearly He-depleted. As shown by
[210], even a small amount of He driven into the core becomes very important in
comparison with the vanishing amount of He otherwise present in the core. This
enrichment of the He abundance in the core succeeds in enhancing the rate of energy
production by He-burning, and thus the luminosity increases, driving an increase in
the radiative gradient. As a consequence, a phase of enlarged convection zone is
started – the so-called breathing pulse. After a pulse, the star readjusts itself to burn
steadily in the core the fresh He driven there by the convection. Detailed numerical
simulations show that three major breathing pulses are expected before the complete
exhaustion of He in the core. The evolutionary effects of the breathing pulses are:
(1) the star performs a loop on the HRD at each pulse (see Figure 6.7), (2) the
He-burning lifetime is slightly increased, (3) the mass of the CO-core at the He
exhaustion is increased.

The ratio of evolutionary times between the subsequent Asymptotic Giant Branch
phase and the HB is very sensitive to the occurrence of breathing pulses. From the
observational point of view, the ratio of the star counts along these two phases –
the so-called R2 parameter ([36]) – is a measure of the corresponding lifetime ratio
(see Chapter 9). Models without breathing pulses predict R2∼0.12–0.15 whereas
inclusion of breathing pulses gives R2∼ 0�08. The value R2= 0�14± 0�05 observed
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Figure 6.7 The evolutionary tracks of HB stars computed alternatively neglecting or accounting
for the occurrence of breathing pulses at the end of the core He-burning phase. The inset shows
the behaviour of the central abundance of He as a function of time during this evolutionary phase

in a sample of Galactic globular clusters suggests that the efficiency of the breathing
pulse phenomenon is very low, if not zero ([36], [44]). The appearance of breathing
pulses in theoretical stellar models may be related to the approximation of instanta-
neous mixing when convection sets in, that could possibly break down in this late
HB evolutionary stage.

6.5 The central He-burning phase in more massive stars

Section 5.9.1 discussed the evolutionary and structural properties of stars more mas-
sive than ∼ 2�3M�, from the central exhaustion of hydrogen until the ignition of 3�
reactions in the He core, at the tip of the RGB.
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Owing to the absence of electron degeneracy within the He core, the onset of He-
burning is not characterized by the He flash, as in low-mass stars. Helium is ignited
when the central temperature reaches ∼108 K and central density ≈ 104 g cm−3; this
occurrence terminates, and reverses the upward climb along the RGB.

The star now begins an extended phase of He-burning in a steadily growing
convective core (we note that the previous discussion on mixing processes in the
convective core of He-burning low-mass stars also applies to intermediate-mass
stars, although now the semi-convective region is a very small fraction of the whole
convective zone). H-burning in a thin shell continues to provide the bulk of the
surface luminosity, and so the mass size of the He core continues to grow during
this evolutionary phase. The core He-burning lifetime is of the order of ∼20 per cent
of the core H-burning lifetime, and it is ∼22 Myr for a 5M� star and ∼4 Myr for
a 10M� star of solar chemical composition. The duration of the core He-burning
phase is fairly large when one considers that the star is approximately two orders of
magnitude brighter than during the MS phase, and that the specific gain of energy
(per unit of mass of burnt fuel) is one tenth of that for H-burning. This is due to the
very large contribution to the energy budget provided by the H-burning shell.

Figure 6.8 shows the evolutionary track of a 5M� model on the HRD. Looking
at the part of the track corresponding to the core He-burning phase (points E to I)
one can easily note that after point F, the star moves from the RGB to the blue
side of the HRD. The bluest point, G, in a 5M� model, is reached when the central
abundance of He is Y∼0�50. During this period before point G, the energy release
in the H-burning shell has been steadily increasing. The maximum efficiency is
achieved at point G, where the fraction of energy produced by the 3� reactions is
of the order of ∼20 per cent. After this point, the fraction of energy produced via
H-burning decreases steadily. The model then comes back toward the Hayashi line,
so performing a loop in the HRD, the so called blue loop (sometimes the evolution
is still more complicated by the occurrence of secondary loops). At point H, the core
abundance of He is Y∼0�02, while L3� accounts for ∼33 per cent of the energy
produced by nuclear burning. At point K, the fraction of energy produced by the core
He-burning process is ∼60 per cent.

The importance of the blue loop stems from the fact that it occurs during a long-
lasting evolutionary phase, in which the star has a large probability of being observed
(as it really occurs in galactic young stellar clusters and young and intermediate-age
clusters in the Magellanic Clouds). Further details on the blue loop will be given in
the next section.

We close this section with a brief discussion on the core He-burning phase in
massive stars, M> 8–10M�. The evolutionary properties of these stars before the
ignition of the He-burning are quite similar to those of intermediate-mass stars (see
the discussion in Section 5.9.1). However, in massive stars, He is ignited in the
core before the star reaches the RGB configuration, and the star continues to evolve
monotonically to the red on the HRD, while He burns in a growing convective core.
H-burning in a shell continues to supply most of the surface luminosity. Almost
immediately following the exhaustion of He in the core, it attains temperatures and
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Figure 6.8 The evolutionary track of a 5M� model during the H- and He-burning phases. The
different evolutionary stages discussed in the text are marked A–K

densities high enough to ignite carbon in non-degenerate conditions (more will be
discussed in Chapter 7).

6.5.1 The dependence of the blue loop on various
physical parameters

For a long time, the physical reasons for the blue loops challenged our understand-
ing of stellar evolution, and it is still not possible to predict easily the response
of an intermediate-mass star, during this phase, to changes in the physical param-
eters and/or the physical assumptions adopted in the evolutionary computations.
This is in contrast to low-mass stars, for which the induced changes to their HRD
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locations can be easily predicted. The reason for this difference is that in intermediate-
mass stars, the contribution to the stellar energy budget provided by the H-burning
shell is significantly larger than in low-mass stars; in addition, the relative energy
contributions of the He- and H-burning change significantly during the core He-
burning phase (see Figure 6.9). As a consequence, any variation of the physical
inputs which can modify the H-burning efficiency can either trigger, or inhibit,
the loop.

A detailed analysis of the role of several factors known to affect the blue loop was
performed by [160]. Only the problem of the dependence of the blue loop on the most
important physical parameters, such as the stellar mass and chemical composition, and
on the mixing processes accounted for in stellar model computations are addressed
below. It is emphasized that both the morphology, and the actual occurrence itself, of
blue loops has a highly non-linear dependence on the physical inputs and assumptions
made in the evolutionary computations. What is discussed in the following should
be considered only as a rule of thumb for understanding the general behaviour of the
evolutionary tracks during the core He-burning stage.
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Figure 6.9 The evolution of the effective temperature and of the ratio between the energy released
by the H-burning shell and that produced by central He-burning process, as a function of the central
helium mass fraction, for a 0.8M� and a 7M� model during the core He-burning phase
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• Stellar mass: for stars less massive than about 10–12M�, the extension of the blue
loop generally increases with mass (see Figure 6.10). In more massive stars, the
blue loop disappears as the star is able to ignite He before reaching its Hayashi
track.

• Chemical composition: the general rule is that if the initial He abundance is
increased, the extension of the blue loop during the core He-burning phase is larger.
The opposite is true when increasing the heavy element abundance. However, as
already stated, this behaviour is sometimes contradicted by evolutionary compu-
tations which, for example, clearly show that the behaviour of the blue loop with
both helium content and metallicity is non-linear (see Figures 6.11 and 6.12).

• Mixing processes: by increasing the efficiency of the convective core overshoot
during the central H-burning phase, the extension of the blue loops is strongly
reduced (see Figure 5.7). The role played by convective envelope overshoot has
been investigated by several authors (see, e.g. [2], [206] and [160]) although its
effect is still somewhat uncertain. Evolutionary computations suggest that a blue
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Figure 6.10 The HRD of evolutionary tracks for different intermediate-mass stars with solar
chemical composition
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Figure 6.11 The HRD of evolutionary tracks of a 7M� star for various values of the metallicity
but with the same value for the initial He content

loop is apparently favoured by a sharper H profile in the chemical stratification of
the envelope, as a consequence of the change in the H-burning efficiency when
the shell encounters the discontinuity. This means that envelope overshoot, which
can enhance the sharp discontinuity during the first dredge up phase (a deeper
convective envelope reaches regions with more He produced during the MS phase)
may be able to trigger a loop that otherwise would not occur. However, the picture
is more complicated as it also depends on when the H-burning shell encounters
this discontinuity – if this occurs before core He-ignition, envelope overshoot has
no effect at all on the development of the blue loop.

Detailed numerical computations have shown that the effect of semi-convection
on the morphology of the blue loops is negligible. It would be reasonable to suppose
that the presence of a semi-convective region at the edge of the convective core
could have a significant effect on the occurrence of the blue loops by changing the
rate at which He is mixed into the core. One would suppose that the larger the semi-
convective region, the lower the chance for the occurrence of blue loops. The fact
that semi-convection has a negligible effect is because, in intermediate-mass stars,
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Figure 6.12 The HRD of evolutionary tracks of a 7M� star for various values of the initial He
abundance but with the same metallicity (Z= 0�001)

the semi-convective zone is only a small fraction of the whole convective core
(≈10 per cent for a 4M� model and ≈1 per cent for a 7M� model).

6.6 Pulsational properties of core He-burning stars

When stars cross a number of well-defined regions in the HRD, they are affected by
stable radial pulsations. As a consequence, they change their brightness periodically
and become variable stars. These peculiar regions of the HRD are called instability
strips. For a detailed discussion of the different instability strips as well as the
physical reasons for which a star pulsates, the reader is referred to the book by
[61] and the review papers by [79] and [80]. In this section the Cepheids instability
strip, populated by stars in the core He-burning stage, is discussed. This instability
strip is related to the two most important classes of radially pulsating stars, the RR
Lyrae stars and the Classical Cepheid. These represent probably the most important
standard candles for Population II and Population I stellar systems, respectively.
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Before discussing the general properties of these two families of radial variables,
it is useful to provide some information about stellar pulsations. In his 1879 pivotal
work, Ritter demonstrated that the pulsation period P of a homogeneous sphere
experiencing adiabatic radial pulsations is related to its surface gravity and radius
through the relation

P∝√R/g

Since g∝M/R2, we rewrite this relation as

P∝√R3/M

by using the relation between the mean stellar density, mass and radius, we obtain

P
√
�=Q

where Q is the pulsational constant, which depends slightly on the mass of the vari-
able. More detailed investigations have shown that this relation is, in fact, roughly
valid for real stars. The existence of this relation, connecting an empirical quan-
tity such as the period of pulsation, with a structural property such as the mean
stellar density, highlights the importance of stellar pulsations to stellar evolution
theory; the analysis of radial pulsations provides a formidable tool for investi-
gating stars, allowing a quantitative test of the reliability of theoretical evolution
predictions.

The basic theory of pulsating stars was developed by Eddington ([68],[69]) who
showed the physical reasons why some stars pulsate while others do not. In principle,
any star experiencing a transient perturbation in its interior or in the external regions
may experience radial pulsations. However, as demonstrated by Eddington, these
induced pulsations would be damped out very quickly, on a timescale of few thousand
years. For a given stellar mass, the radius of a star is roughly fixed by the energy
flow through the star. In order to have stable radial pulsations, this energy flux and,
in turn, the radius has to vary in a periodic way.

It was recognized early on that the necessary modulation of the outward energy
flux would be achieved if the opacity at some suitable level in the stellar envelope
were to increase during the phase of compression (during which the envelope becomes
hotter) and decrease during the expansion phase, so releasing the energy absorbed
during compression (‘	 mechanism’). Detailed analysis showed that the He- and
H-ionization zones located near the surface (the total mass above the base of the
He-ionization zone is only ≈10−7M� in a RR Lyrae variable) are responsible for
driving the pulsations, during which the stellar luminosity for an RR Lyrae star can
vary by a factor of two and the radius can change by ≈20 per cent.

These ionization zones have to contain a sufficient fraction of the mass of the
star in order to drive the pulsations efficiently, therefore they cannot be too close
to the low-density surface layers; this explain the existence of the hot boundary of
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the instability strip, given that increasing the stellar Teff moves the ionization regions
towards the surface. On the other hand, when the stellar Teff becomes sufficiently
low, envelope convection sets in and the 	 mechanism is no longer able to drive the
pulsation efficiently; this is the reason for the existence of the cool boundary of the
instability strip.

We close this brief introduction pointing out that these radial pulsations involve
only the external layers of the stars crossing the instability strip, without affecting
their interiors and the energy generation efficiency.

6.6.1 The RR Lyrae variables

These variables have periods in the range 0.2 to 0.9 days and light curve (e.g. the
trend of the luminosity with time) amplitudes between 0.2 and 1.6 mag in the B
photometric band (see Chapter 8). They are classified into two groups: the ab type
variables, characterized by asymmetric light curves of large amplitude, and c type
variables with nearly sinusoidal light curves and small amplitude. The ab type RR
Lyrae pulsate in the fundamental mode, and c type variables in the first overtone
mode. There exists also a third group, the d type RR Lyrae, pulsating simultaneously
in both modes. RR Lyrae are low-mass stars, which are crossing the instability strip
during their core He-burning phase.

The topology of the RR Lyrae instability strip is shown in Figure 6.13. One can
note that the hottest, blue edge, of the instability strip is located at an effective
temperature of the order of ∼ 7200K at the ZAHB luminosity level, a value which
slightly decreases with increasing stellar luminosity. The reason for the existence
of a blue edge (and of its change in effective temperature when increasing the
luminosity) has to do with the fact that, for a given mass and luminosity, as the
surface temperature increases, there is progressively less mass above the ionization
zones and, in turn, their contribution to the pulsational driving decreases. Moving
from the blue edge to the red side of the HRD, there is a small region within which
only the first-overtone mode is stable (the so-called FO zone) and on the right of this
on the HRD, both modes can be stable (the OR region). Here a star can pulsate as
fundamental, or first-overtone, or double-mode variable. Moving further to the red, a
region appears where only the fundamental mode is stable (the F zone). The red side
of the instability strip is limited by the so-called red edge, located at Teff ∼ 5900K,
whose existence is related to the presence of envelope convection in the stars; being
an efficient energy transport mechanism, it acts to quench the process of pulsation. It
is also worth noting that both the width and the topology of the RR Lyrae instability
strip is marginally dependent on the stellar metallicity, at least in the heavy element
abundance range appropriate for the old galactic stellar systems which host RR Lyrae
variables.

For a long time ([224]) it has been known that the period of an ab RR Lyrae variable
is connected to the main structural parameters of the star such as the luminosity,
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Figure 6.13 The location of the RR Lyrae instability strip in the HRD. The labels denote the
location of the zones where the various pulsational modes are unstable. The blue and red edges of
the various zones are also labelled (BE and RE)

the effective temperature and the mass. The most up-to-date relation between these
quantities is ([16]):

log�P�= 11�627+ 0�823 log�L/L��− 0�582 log�M/M��− 3�506 log�Teff�

which can be also written in the form:

log�P�= 11�627+ 0�823A− 3�506 log�Teff�

where A is equal to log�L/L��− 0�707 log�M/M��, and depends on the mass-to-
luminosity ratio of the star. A similar relation can be also derived for first-overtone
variables. These analytical relations provide a useful guide for predicting the trend
of the period of pulsation with the luminosity, mass and effective temperature of the
variable stars.

By comparing theoretical results with observations, these relations supply a useful
tool for testing the consistency and reliability of the stellar evolution framework. In
passing, we notice that since the luminosity of an HB star is strongly dependent on



PULSATIONAL PROPERTIES OF CORE HE-BURNING STARS 183

the He content (see the discussion in Section 6.3.1) the relation between the period
of pulsation and the parameter A represents a useful tool for measuring the initial He
content of RR Lyrae stars ([35], see also Section 9.2.4).

It is important to note that RR Lyrae stars provide two other important tools for
checking evolution theory: the Bailey’s and the Petersen’s diagram. From the analysis
of empirical light curves one derives the pulsational period and also the amplitude. The
same information can be obtained by detailed numerical computations of pulsational
models adopting different assumptions about the mass and luminosity of the pulsators.
Therefore, the comparison between theoretical predictions and empirical estimates
for the behaviour of amplitude with period (the Bailey’s diagram) allows one to test
the stellar pulsational and evolutionary models (see Figure 6.14).

The Petersen diagram is a very useful diagnostic for double-mode RR Lyrae
variables, being based on the analysis of the trend of the ratio between the two
pulsational periods with the fundamental period. It has been shown by [149] that this
diagram, reproduced in Figure 6.15, can be used to derive direct information about
the mass of double-mode RR Lyrae variables.

6.6.2 The classical Cepheid variables

Classical Cepheid variables are important because of their famous period–luminosity
(P–L) relation, which is used to establish the basic distance scale of the universe. It
is therefore worthwhile to devote some attention to the main pulsational properties
of these variable stars.

Classical Cepheids are very bright objects, with intrinsic luminosity in the range
from ∼ 300L� to ∼ 25 000L�. Their pulsational periods are mainly confined to the
range 1–50 days, with a few extreme examples of up to 250 days. The shape of
their light curves varies quite smoothly when moving from short-period variable to
long-period ones: the shorter-period ones show steep, narrow maxima, and the longer-
period Cepheids have broader maxima. From the point of view of stellar evolution
Cepheids are intermediate-mass stars going through the stage of core He-burning.
The evolutionary tracks of intermediate-mass stars can cross the instability strip up
to three times. All stars cross the Cepheid instability strip during their expansion
toward the Red Giant configuration, at the point of exhaustion of H in the core, but
this crossing is so rapid that there is almost no chance to observe a star pulsating
as a Cepheid variable in this stage. So the Cepheid behaviour can be observed only
for those stars that experience a blue loop, extended enough to cross the pulsational
instability strip.

On general grounds, the physical reasons determining why an intermediate mass
star is affected by stable radial pulsations, and the morphology of the instability
strip for this class of variables, are identical to the case of RR Lyrae stars. This
notwithstanding, accurate and realistic pulsational models for these variables ([18])
have shown that the topology of their instability strip shows significant differences
to that of RR Lyrae stars. It appears clear from data shown in Figure 6.16 and
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Figure 6.14 The Bailey diagram: the pulsational amplitude in the B photometric band as a
function of the period, for various values of the mass and luminosity (in solar unit) of the RR Lyrae
variable. The solid points correspond to the empirical data for the sample of RR Lyrae variables in
the old galactic cluster M3. The data plotted on the lower left corner refer to first-overtone variables

a comparison with Figure 6.13 that Cepheids present a ‘wedge-shaped’ instability
strip rather than the ‘rectangular-shaped’ strip of RR Lyrae stars. In addition, both
the shape and location of the Cepheid instability strip are significantly affected by
metallicity – the larger the metallicity, the cooler and steeper is the location of the
instability strip on the HRD.

For Cepheid variables, it is possible to derive pulsational relations connecting
the period to the stellar mass, luminosity and effective temperature. For a solar
chemical composition and for fundamental pulsators, the relation derived by [18] is
the following:

log�P�= 0�987− 3�108 log�Teff�− 0�767 log�M/M��+ 0�942 log�L/L��
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All the coefficients of this relation show a non-negligible dependence on the stel-
lar metallicity (but the sign of each numeric coefficient is preserved). At a fixed
luminosity and mass, decreasing the effective temperature produces (according to this
relation) an increase in the pulsational period. Since an increase of the metallicity
has the effect of shifting the Cepheid instability strip towards a lower effective tem-
perature, and therefore longer periods, one should expect that the period–luminosity
relation for Cepheid variables depends on metallicity.

The Cepheid period–luminosity relation has long played a pivotal role in con-
straining Galactic and extra-galactic distances. The existence of this correlation can
easily be understood by considering the dependence of the pulsational period on
stellar luminosity, mass and effective temperature, and the prediction of evolution
theory that there is, for a set chemical composition, a tight relation between the
mass and surface luminosity of stars at the beginning of the core He-burning phase
(luminosity increases for increasing mass) – the so-called mass – luminosity relation
(in analogy with ZAMS stars). As a consequence, for any set chemical composition,
the brightness of a Cepheid variable is a function of its period and effective temper-
ature. Moving into the observational plane (see Chapter 8), this means that a relation
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Figure 6.16 The location on the HRD of the boundaries of the classical Cepheid instability strip.
The labels indicate the location of the zones where the various pulsational modes are unstable. The
lines of constant pulsational period for some selected values are also shown

of the kind <MA >= a+ b logP + c�CI� has to hold, where <MA > is the mean
absolute magnitude in a generic A bandpass and (CI) is the colour index. We refer
the reader to Section 9.3.3, for a detailed discussion about the use of the Cepheid
period–luminosity relation for distance estimates.



7 The Advanced Evolutionary
Phases

7.1 Introduction

This chapter will discuss the evolution of stars during the evolutionary phases after
the exhaustion of helium in the core. We will first outline the evolution of those stars
which develop an electron degenerate carbon–oxygen (CO) core and thus evolve
along the Asymptotic Giant Branch (AGB) and their later evolution as white dwarfs.
The evolution of stars massive enough to ignite the burning of elements heavier
than helium and, at the end, to explode as Type II supernovae is discussed in
Section 7.5, and finally the problem of the evolution of Type Ia supernovae progen-
itors is addressed.

7.2 The asymptotic giant branch (AGB)

When the abundance of He becomes low enough, the stellar tracks, regardless of the
value of the initial mass, move on the HRD towards a lower effective temperature and
larger luminosity. This is the Asymptotic Giant Branch (AGB) which corresponds to
the He-shell burning phase and shows a close similarity with the previous RGB phase.
The designation asymptotic comes from the fact that in low-mass AGB stars, i.e.
less than ∼ 2�5M�, the effective temperature–luminosity relationship is very similar,
albeit slightly hotter, to that of low-mass RGB stars. For more massive stars, the term
asymptotic has no morphological significance.

After He-exhaustion, He-burning shifts to a shell around the CO core, whose
mass-size increases as a consequence of the conversion of He to carbon and oxygen
in the He-burning shell. The overlying H-burning shell, which has burnt outwards for
some time, extinguishes due to the expansion and consequent drop of its temperature,
caused by the onset of He-burning in the shell. In low-mass stars, the onset of the
He-shell burning induces a temporary drop of the surface luminosity and the star
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crosses the same region of the HRD three times (as during the RGB bump phase).
As a consequence, there is a good probability of observing an AGB star during this
phase, which is called the AGB clump; this is indeed the case in well-populated old
galactic stellar systems.

During the first part of the AGB phase (see Figure 7.1) – usually called the early
AGB – while He-burning is progressively moving outwards inside the He core, and
the mass of the CO core is increasing, an important convective episode occurs in
stars more massive than 3−5M�, the precise limit being a function of the initial
composition. In these stars, the large energy flux produced by the He-burning shell
causes the base of the H-rich envelope to expand and cool, so that H-burning in
the shell is immediately switched off. When this occurs, the outer convection zone
penetrates inwards, into the H-depleted zone. This process is known as the second
dredge up. For lower mass objects, H-burning in the shell remains quite efficient,
and prevents the outer convection from penetrating deeper into the star (therefore the
second dredge up does not occur).

In the dredged-up material, which can be as much as ∼1M� for the most massive
AGB stars, hydrogen has been completely converted into helium, and both 12C and
16O have been converted almost completely into 14N. In addition, the second dredge
up has the effect of reducing the mass-size of the H-exhausted region, thus preventing
the later formation of very massive white dwarfs.
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Figure 7.1 Evolutionary track of a 2�5M� star from the PMS (dashed line) to the advanced
TPAGB phase
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In stars less massive than 8–10M�, core He-burning produces a compact CO core.
Soon after core He-exhaustion, the central density rapidly increases, reaching values
ranging from 105 g cm−3 up to 108 g cm−3, depending on the total stellar mass. As
a consequence, electron degeneracy attains a high value and a huge energy loss by
plasma neutrinos occurs. As neutrino energy losses are only partially balanced by the
gravitational energy release associated with core contraction, the thermal content of
the core is used to reduce the energy deficit. As this cooling is larger in the central
regions where the density is larger, the maximum value of the temperature is located
out of the stellar centre and moves progressively outwards.

There is a very important limiting mass value for any stellar population, the
so-called Mup limit, which corresponds to the largest mass at which the electron
degeneracy of the CO core is high enough to prevent carbon ignition. The exact value
of Mup depends strongly on the initial chemical composition, and is of the order of
∼8M� at a solar metallicity and for extremely metal-poor populations, and has a
minimum at ∼4M� for a metallicity of Z∼0�001. Stars more massive than Mup will
ignite (quietly or through a violent flash, depending on the mass) carbon in the core,
while stars less massive than Mup enter the thermally pulsing AGB phase (detailed
in the following section). Stars that ignite He in a non-electron degenerate He-core
but that develop an electron degenerate CO core at the end of central He-burning
are defined as ‘intermediate-mass’ stars. Stars with masses above Mup are so-called
‘massive’ stars.

7.2.1 The thermally pulsing phase

During the early AGB phase, the He-burning shell moves outward in the He-rich
envelope whose mass is not significantly increased since the H-burning shell is
essentially inactive. When the He-burning shell approaches the H/He discontinuity
it dies down and, after a rapid contraction, the H-burning shell becomes fully effi-
cient to supply the energy necessary for the star’s needs. This temporary stop of
the He-burning shell marks the beginning of the thermally pulsating AGB phase
(TPAGB).

As hydrogen burns, the helium ashes which are accreted above the degenerate
CO core, are compressed and heated. When the mass of these ashes reaches a
critical value, of the order of 10−3M� for a CO core mass of 0�8M� (the precise
mass limit depends on the CO core mass – roughly speaking it increases by one
order of magnitude when decreasing the CO mass by ∼ 0�2M�) He ignites and a
thermonuclear runaway occurs. Thermonuclear runaway means that the shell reacts
to the new energy input with an increase of temperature that, in turn, increases the
energy generation even more. This runaway occurs because of the small geometrical
thickness of the shell and, in spite of the low degree of electron degeneracy (one
would expect a runaway in case of strong degeneracy, as in the case of central He
ignition in low-mass stars), in the He layer on top of the CO core. It can be shown
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(e.g. [115], [155]) that in a thin shell of thickness s, located at a radial coordinate r,
pressure and density changes are related through:
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A stable burning requires that the extra energy input induces an expansion of the
layers (decrease of density) and a decrease of temperature in the shell. Given that �
(and �) is positive, this implies that
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When the geometrical thickness s of the shell is sufficiently small, as in the case of
the thermally pulsing phase, this condition is not satisfied and the expansion of the
shell induces an increase of the temperature (notice that in the case of the He flash
the runaway proceeds at constant density).

At the peak of the flash, the rate of nuclear energy release can reach values as
high as LHe ∼107−108L�. Most of this energy goes into heating up the nuclear
burning layers causing them, and the layers above them, to expand against gravity.
As a consequence of being pushed out to very low temperatures and densities, the
hydrogen burning in the shell is switched off.

Stellar models predict the formation of a convective zone extending from the
He-burning shell up to the H/He discontinuity, as a consequence of the huge energy
release during the thermonuclear runaway, as shown in Figure 7.2. As the material
in the convective shell continues to expand outwards, the shell source is now widely
expanded and the condition for the onset of a runaway discussed above is no longer
applicable. The shell starts to cool and the rate of He-burning drops precipitously. In
AGB stars of large enough core mass, say MCO ≥ 0�7M�, the decrease in LHe causes
the convective shell to disappear. At lower masses, the base of the convective shell
reaches into the zone where incomplete He-burning occurs, and so the products of
He-burning (mainly carbon) are mixed into the whole region located in between the
He-burning shell and the H/He discontinuity. Eventually, a steady state is established
between nuclear energy production and energy flow outwards.

The AGB star then continues through a quiescent He-burning phase, which lasts
until the total amount of material which is processed by 3� reactions equals the
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Figure 7.2 Evolution with time of part of the internal structure of a 2M� star with Z= 0�015
and Y = 0�275, during the tenth thermal pulse; the locations of the H-burning shell, the He-burning
shell and the base of the convective envelope are shown. The origin of the time coordinate has
been arbitrarily shifted. The dashed zone shows the development of the convective region during
the thermal pulse. Notice the occurrence of the third dredge up about 200 yr after the onset of the
thermal pulse (courtesy of O. Straniero)

amount of material which was processed by the H-burning prior to the flash. At
this point, hydrogen near the H/He discontinuity is reignited and the star embarks
on another long phase of quiescent H-burning. When the mass of the He-rich layers
reaches the critical value previously specified, another thermal pulse is initiated and
this cycle is repeated many times.

The time dependence of LHe�LH, the surface luminosity and the effective temper-
ature during a series of thermal pulses is shown in Figure 7.3. The pulse amplitude
grows with each succeeding pulse, rapidly for the first five or 10 pulses, then more
slowly for the next ∼10 pulses, until an asymptotic regime is approached.

During the inter-pulse phases, the H-burning shell, whose efficiency is determined
by the mass-size of the H-exhausted core, is able to provide all the energy necessary
to compensate for the surface energy losses. Therefore, as for during the previous
RGB phase, there exists a direct correlation between the surface luminosity and the
mass of the H-exhausted core (i.e. an McHe−L relation).

Due to their importance for explaining the chemical anomalies observed in AGB
stars, it is worth discussing in some detail the convective phenomena that could occur
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Figure 7.3 Evolution with time of the effective temperature, surface luminosity, luminosity asso-
ciated with the He-burning in the shell, and the luminosity produced through the CNO cycle in the
H-burning shell, during the first series of thermal pulses of a 1�8M� star

during the TPAGB phase. The occurrence of an inter-shell convective episode has
been discussed previously; one has to note that, once the H-burning has been switched
off after the He-shell burning reignition, the convection envelope can move inward
in mass, crossing the H/He discontinuity. If this is the case, a new dredge up occurs –
the so-called third dredge up (see Figure 7.2). If this dredge up is able to penetrate
deep enough into the inter-shell region mixed during the previous thermal pulse, then
helium, products of He-burning (essentially carbon) and heavy s-elements (see below)
are thereupon dredged up into the envelope and brought to the surface where they can
be observed. As a consequence of recurrent third dredge up episodes, a carbon-rich
star (C stars are those structures with a photospheric ratio O/C < 1) can be produced.

The third dredge up is driven by the expansion and subsequent cooling of the
envelope which occurs during the thermal pulse. It penetrates deeper when the strength
of the pulse is stronger. The strength of a pulse is fixed by the thermal conditions at
the bottom of the He-rich layers, which are strongly dependent on the rate at which
He is accreted by the H-burning shell: as a general rule, the slower the H-burning
is, the higher the density at the bottom of the He-shell and, in turn, the stronger the
thermal pulse. Therefore, the strength of a thermal pulse is essentially regulated by
the H-burning rate; any parameter, such as initial chemical composition, envelope
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mass and mass of the H-exhausted region, which affects the pace at which H is burnt,
affects the thermal pulse strength.

The amount of material dredged up in each single episode initially increases,
because the core mass increases. After attaining a maximum value, it starts decreasing
because the envelope mass decreases, due to the combined effects of H-burning in
the shell and of mass loss which is extremely effective during this phase.

For each fixed core and envelope mass, the third dredge up can penetrate deeper
into the star as the metallicity decreases. The dependence of the third dredge up
efficiency on the metallicity is very important in explaining the differences in the
surface chemical abundances between Galactic AGB stars and those belonging to
more metal-poor systems.

Evolutionary computations show that there is a minimum envelope mass for the
occurrence of the third dredge up, the value of which is of the order of 0.4M�.
This has the consequence that stars of initial mass below a given limit (of the order
of 1.2–1.5M�) cannot experience the third dredge up since at the beginning of the
TPAGB phase they already have a residual envelope mass which is too small. As a
consequence, we do not expect to observe C-rich stars in very old stellar populations.

In more massive AGB stars, with M> 6–7M�, a peculiar physical process, first
recognized by [209], can occur at the base of the convective envelope: the temperature
can be so large (T ∼ 8× 107 K) that significant burning can occur at the bottom
of the convective zone, the so-called hot-bottom burning. The consequences of the
coupling between nuclear burning and convective mixing are many: (1) the surface
luminosity increases significantly, breaking the core mass–luminosity relation; (2)
the surface chemical composition is strongly affected – carbon is converted into
nitrogen, preventing the formation of C-rich stars and an enhancement of lithium can
occur through the so-called Cameron–Fowler mechanism ([33]). The general idea is
that when the envelope is mixed down to temperatures of the order of 108 K, 3He is
transformed very efficiently into 7Be, according to the reaction

3He+ 4He→7Be+�

The produced 7Be is then transformed into 7Li through

7Be+ e− →7Li+ �e

The only lithium that can survive, however, is the one that stays below its burning
temperature of ∼2�5× 106 K. The amount of surface lithium preserved after the
envelope retreats towards the surface is therefore determined by the balance between
the 7Be transported out towards the surface by the convective mixing, and the 7Li
produced at low enough temperatures that it is then transported back inward by the
convection.

Thismechanismmayexplain the empirical evidence ([231]) that almost all thebright-
est Long Period Variables (commonly identified as bright TPAGB stars experiencing
large amplitude radial pulsations) are super-lithium rich objects, their surface lithium
abundance being about three orders of magnitude larger than normally expected.
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7.2.2 On the production of s-elements

Spectroscopical observations show that the surface of AGB stars is strongly enriched
in s-process elements, i.e. those elements beyond the iron peak, such as Sr, Y, Zr,
Ba, La, Ce, Pr and Nd, which are produced through slow neutron captures (slow
compared with beta decay). The spectroscopic detection of unstable 99Tc, whose
half-life is of the order of 2× 105 yr, provides clear evidence that this enrichment
cannot be accounted for by pollution of the primeval stellar material from which
these stars formed, but is rather due to the production of these elements in the stellar
interiors.

The key ingredient in activating the s-process reactions is the neutron source. In
AGB stars, Cameron ([30], [32]) first recognized two major neutron sources: those
from the reactions 22Ne(�, n)25Mg and 13C(�, n)16O.

During the early phase of the convective episode occurring in the inter-shell region,
the material is fully mixed and 14N, which is present in this region as a consequence
of the previous H-burning process (whose abundance is almost equal to the sum of
the initial abundances, by number, of the CNO elements), is converted into 22Ne by
means of the nuclear reaction branch

14N����	18F��+� �	18O����	22Ne

If, during the thermonuclear runaway, the temperature at the base of the inter-shell
region attains a high enough value (T ∼ 3�5× 108 K) the reaction 22Ne(�, n)25Mg
can occur, so providing a sizeable flux of neutrons. It has been demonstrated ([103])
that this is the case for intermediate-mass AGB stars. In AGB stars with M< 3M�
the base of the inter-shell region does not attain a high enough temperature – at
maximum it is T ∼ 3× 108 K – to provide enough neutrons in this way.

In low-mass AGB stars, an alternative source of neutrons is provided by the
reaction 13C(�, n)16O. In order to be effective, this reaction requires a temperature of
∼9×107 K, which can easily be attained in the inter-shell region. Model computations
predict that between two consecutive thermal pulses, some 13C is created at the top
of the inter-shell region due to the reactions in the H-burning shell. Nevertheless,
the burning of this 13C is not an efficient neutron source: in a region which has
been processed by H-burning 14N is more abundant than 13C, and so any neutrons
released by 13C would be immediately captured by 14N. An alternative source of
13C is necessary in a region where 14N has already been exhausted. A possible way
out is as follows. In the inter-shell region, after the convective shell episode, there
is a huge amount of 12C, and 14N is missing, having been converted into 22Ne. 13C
is then produced via the nuclear chain 12C(p, �)13N(�+� �)13C. This appears to be
the most promising approach for having 13C at the right place. However, there is
a problem with this solution. How is it possible to have sufficient protons in the
He-rich inter-shell region after the convective shell episode?

Numerical simulations ([104]) have shown that a more promising phase for the
formation of a 13C pocket within the inter-shell, is the one corresponding to third
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dredge up and during the so-called post-flash dip, which is the period that immediately
follows the third dredge up. At the time of the third dredge up, a sharp discontinuity
between the H-rich envelope and the He- and C-rich inter-shell is produced, and this
situation holds until H-burning is ignited again, i.e. for a time of the order of ∼104

yr. If, during this time, a few protons can diffuse into the underlying layers, at the
reignition of the H-burning shell the upper layers of the He-rich inter-shell region heat
up and a 13C pocket can be formed. However, it is important to avoid an excess of
protons, because in this case the production of 13C is followed by its destruction via
13C(p, �)14N reaction. It has been shown by [208] that the 13C produced according to
this scenario is fully burned via the 13C(�, n)16O reaction in a radiative region during
the time between two consecutive thermal pulses, when the temperature attains a
value of ∼9× 107 K. As a consequence of this process, the neutron density would
be of the order of 107 cm−3.

Many different processes have been proposed as the physical mechanisms produc-
ing the ingestion of the right amount of protons at the right place: atomic diffusion,
mechanical overshoot, rotational mixing, gravity waves and so on. However, we
still lack a firm explanation of the process and, for this reason, current evolutionary
computations treat it as an ad hoc mechanism with free parameters to be calibrated
on observations.

7.2.3 The termination of the AGB evolutionary phase

Once the star settles into the thermally pulsating phase, in principle it can experience
a huge number of thermal pulses, the number being limited only by the mass of the
H-rich envelope or by the mass of the CO core. If the CO core mass exceeds the
value ∼1�4M� (the so-called Chandrasekhar mass limit, see Section 7.3) the ignition
of carbon burning can occur and this marks the end of the AGB phase. In reality,
due to mass loss during the TPAGB, we do not expect that any star will reach the
Chandrasekhar limit – as a consequence of the increase of the mass of the CO core
during the TPAGB evolution – and ignite carbon. The H-burning shell source cannot
burn further when it reaches a few 10−3M� below the surface; when this minimum
mass limit for the envelope is achieved, additional thermal pulses cannot occur and
the star leaves the AGB, moving towards hotter effective temperatures.

The mechanism(s) driving mass loss during the AGB phase and the occurrence
of a ‘super-wind’ ([157]) – with extremely high mass-loss rates – that terminates the
AGB phase, are topics which have been addressed for a long time and for which
we do not yet have a full explanation. What we know is that stars climbing along the
AGB can experience large amplitude pulsations (the so calledMira variable stars) and
that it has to be expected that a strong correlation between pulsations and mass-loss
efficiency exists. The gas compression due to the pulsation and, in turn, the density
increase, makes the formation of molecules and dust grains easier. These easily trap
the outgoing radiation flux, so driving a strong wind (this is the radiation-driven wind
scenario). Even if empirical evidence shows a correlation between mass-loss rate and
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pulsational period, it has to be considered that there is a quite large spread in the data
at each given period, and that these empirical data refer to stars with a large range in
core mass, total mass and composition. Thus, any detailed conclusions achieved by
adopting a single period–mass-loss rate relation could be very uncertain. Observa-
tional measurements do, however, provide a clear indication of the real mass-loss rates
of AGB stars; a range from a few 10−8M�yr−1 to a few 10−4M�yr−1. In addition, it is
clear that the brightest AGB stars in different systems, such as the Magellanic Clouds,
show essentially the same luminosity. This evidence can be explained only by assum-
ing that the mass-loss rate strongly increases to a much higher value (∼10−4M�yr−1)
than the average rate towards the end of the AGB phase (the super-wind?). Some
commonly used relationships for the mass loss along the AGB phase are ([134]):

log
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Figure 7.4 Evolutionary tracks from the MS to the WD cooling sequence. The dashed line is the
evolutionary track of the 0�9M� object left at the end of the AGB, whose initial MS mass was
equal to 5M�; the solid line labelled 0�6M� is the evolutionary track of an object whose initial
mass was equal to 1M�. This star experiences a final He flash in the shell before reaching the WD
cooling sequence. The location of the observational counterpart represented by the star FG Sagittae
is also shown
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where the mass-loss rate is given in solar masses per year, and

ve =−13�5+ 0�056P (7.3)

log�P	=−2�07+ 1�94 log�R	− 0�9 log�M	 (7.4)

where P is the pulsation period in days, the stellar radius R and mass M are in solar
units, and ve denotes the terminal velocity of the stellar wind in km s−1.

It is now worth discussing briefly the evolution of low-mass stars from the end
of the TPAGB phase to the beginning of the following evolutionary phase, i.e. the
white dwarf (WD) stage (the corresponding evolutionary track on HRD is shown in
Figure 7.4). As a consequence of radial pulsations (or any other mechanisms) the
star loses a lot of its mass during the brightest part of the AGB. Once the mass
of the H-rich envelope decreases below a critical value, the remnant star evolves
rapidly towards hotter effective temperatures. It continues to burn hydrogen in a thin
shell until the bluest point along its evolutionary track at almost constant luminosity.
At this point, H-burning is switched off and both the H-rich envelope and He-rich
layer contract rapidly. Depending on thermal conditions of the envelope, different
evolutionary channels can be followed.

1. Nuclear burning definitively dies out and the remnant cools as a white dwarf.

2. Heating of the He-rich layers leads to an He-burning thermonuclear runaway in
the He shell, the consequence of which is to carry the star back to the AGB.
This is the so called born-again AGB scenario, the most remarkable empirical
evidence for which is provided by the object FG Sagittae (see Figure 7.4). During
the subsequent quiescent He-burning phase, the star evolves to the blue side of the
HRD on a timescale approximately three times longer than that of the previous
shell H-burning phase. At the end of this, the star becomes a white dwarf.

3. If heating of the H-rich envelope induces an H-burning thermonuclear runaway,
the stellar remnant becomes a self-induced nova. To outline the final fate of
a self-induced nova is not an easy task, due to the difficulties encountered in
the numerical simulations. This notwithstanding, it is possible to make some
predictions: (a) if the process is very violent and dynamic, this can produce the
ejection of the whole H-rich envelope and so the star becomes a white dwarf
with no trace of H on its surface (the so called DB white dwarf or non-DA white
dwarf) (b) if the process is only mildly dynamical and only a small portion of the
H-rich envelope is lost, the mass of this envelope will be decreased by nuclear
burning. After a phase of quiescent H-burning, the star will start to cool down
the white dwarf cooling sequence. It is possible that another H flash event occurs
leading to a further reduction through nuclear burning of the H-rich envelope mass.
This process could, in principle, be reiterated many times until there is too little
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hydrogen left to burn. During the subsequent WD evolution, even a very modest
wind could cause the loss of this layer, so the WD would appear as a non-DA
white dwarf.

Before closing this section, it is worth mentioning that the evolutionary path
followed by a star from the end of the AGB to the beginning of the cooling phase
along the WD sequence is the one corresponding to the formation of Planetary
Nebulae. After the super-wind phase has finished, the material ejected during the
mass-loss process – whose composition is that of the envelope near the termination of
the TPAGB phase – keeps expanding, while the remnant star continues its evolution
towards higher temperatures. When the effective temperature reaches a large enough
value, Teff ∼30000K, the ejected material is ionized by the photons from the central
star remnant, and it assumes the characteristics (and the shape) of a Planetary Nebula.

7.3 The Chandrasekhar limit and the evolution of stars
with large CO cores

At the beginning of this chapter we introduced the mass limit Mup. This corresponds
to the highest mass where, after the central He-burning stage, the electron degeneracy
level in the CO core is strong enough to prevent the non-explosive ignition of carbon
burning. Now we discuss the final fate of stars with mass around the Mup limit, and
define the Chandrasekhar mass limit.

Chandrasekhar developed a fundamental theory of white dwarf stars and discovered
that there exists an upper mass limit for a fully relativistic electron degenerate core
in hydrostatic equilibrium ([54]). This value is equal to

Mch =
(

2

e

)2

1�459M�

or the Chandrasekhar mass (see Section 7.4 for an approximate derivation of this
limit). For any given chemical composition, this relation allows the computation of
the maximum mass for a fully relativistic electron degenerate structure. In the case of
a CO core, 
e = 2, so the Chandrasekhar limit is equal to Mch = 1�46M�. This limit
is only strictly valid for the ideal case of a fully relativistic electron degenerate core.
Nevertheless, it is quite important and its physical meaning is that one cannot expect
to observe stars with degenerate CO cores more massive than ∼1�4M�. Indeed, so
far, no WD with mass around this limit has ever been discovered. The Chandrasekhar
limit is also very important when analysing the evolutionary channels which could
produce explosive outcomes, resembling Type Ia supernova events.

The evolutionary behaviour of a degenerate CO core closely resembles that of a
degenerate He-core during the RGB stage for low-mass stars. The physical properties
of the core are almost completely unaffected by the envelope – at least until the mass
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of the envelope is so small that it does not allow further nuclear burning, at the end
of the AGB phase.

While the CO core mass increases because of the He-burning in the shell, it also
contracts and becomes denser. The release of gravitational energy should heat the
core, but the increasing densities in the core strongly favour neutrino energy losses,
and the central portion of the core cools. However, with increasing CO core mass,
the nuclear burning of carbon is activated – although at this stage �C is less than ��.
When, and if (see below), the CO core mass approaches the Chandrasekhar limit,
�C becomes comparable to ��. Ultimately, the carbon burning energy release will
overcome the neutrino energy losses, and a thermonuclear runaway occurs.

If this thermonuclear runaway occurs at the centre of the star, we expect an
explosive process that would cause its complete destruction (the so-called Type I 1/2
supernova event). In the case where the carbon burning starts in a shell far enough
from the centre, after one – or more – flash(es) carbon burning quietly settles in the
centre of the star. The final fate of these stars is eventually to experience thermal
pulses at a very high luminosity and finally to become white dwarfs with a degenerate
O–Ne core.

Whether a star can develop an electron degenerate CO core of the order of the
Chandrasekhar mass during its evolution along the AGB, depends not only on its
initial mass but also on the efficiency of mass loss along the previous evolutionary
phases. In the absence of mass loss all stars more massive than about 1.4M� and
less massive than the Mup value, should be able to ignite C-burning under degenerate
physical conditions. In the real world, mass loss significantly reduces the stellar mass
so that very few, if any, stars with mass around Mup (or slightly larger) are able to
reach the conditions for the ignition of carbon.

All stars more massive than about Mup do not develop electron degeneracy in the
CO core at the end of the He-burning phase. They are able to start non-explosive C-
burning in their cores and will experience all the subsequent nuclear burning phases
until an iron core is created.

7.4 Carbon–oxygen white dwarfs

As discussed in the previous sections, stars with initial masses up to M∼6–8M� (the
precise value depends on the initial chemical composition and the extension of the
overshoot from the convective cores during the previous evolutionary phases) lose all
their envelope during the thermal pulses and continue the evolution with an electron
degenerate core made almost exclusively of carbon and oxygen (whose stratification
is determined by the nuclear transformations of the previous evolutionary phase) plus
a residual non-degenerate envelope, with thickness of about 10−2Mtot, where Mtot is
the total mass of the white dwarf (WD). No nuclear energy processes are active, since
temperatures are not high enough, and the stars evolve at approximately constant
radius and decreasing luminosity.
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The faintest WDs detected to date have L≈10−4�5L�, the observed WD mean
mass is ∼0�55–0�60M�, in agreement with the CO masses of WD progenitors at
the beginning of the thermal-pulse phase. Due to our imperfect knowledge of the
mass-loss processes during the AGB phase (and, more generally, along all the various
evolutionary phases) we cannot exactly predict the final WD mass produced by a
progenitor with a given initial total mass M . In general, the CO core mass at the
beginning of the TPAGB phase is a reasonable approximation since one does not
expect a large increase of the core during the thermal pulses. The location of WD
tracks in the HRD and a relationship between initial mass on the MS and final WD
mass (for an initial solar chemical composition) are shown in Figure 7.5.

The large range of WD progenitor masses encompasses the vast majority of stars
formed in the Galaxy, and thus WD stars represent the most common end-point of
stellar evolution. It is probable that more than 95 per cent of the stars in the Galaxy
will eventually end up as white dwarfs.

As mentioned above, the typical mass of these objects is of the order of 0.6M�,
while their size is more similar to that of a planet. Their compact nature gives rise
to large average densities, large surface gravities and low luminosities. The main
properties of WD stars obtained from the full system of equations of stellar structure,
can be highlighted using some simplified physics, as follows.
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Figure 7.5 (a) shows an approximate relationship between the initial stellar mass (MMS) and the
final WD mass (MWD) for a range of low- and intermediate-mass stars. (b) displays the HRD
location of WD evolutionary tracks for different values of MWD (between 0.54 and 1M�) compared
with previous evolutionary phases
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The equations of continuity of mass and hydrostatic equilibrium can be rewritten
in an approximate form as

M

R3
∝ �

Pc ∝G
M2

R4

Here we have considered the differentiation between two points, i.e. the centre of
the star where m= 0�P=Pc and r = 0 and the surface, where m=M�P∼ 0� r =R,
and used the total mass, radius and an average density in the right-hand side of the
equations.

When we approximate the gas pressure with the degenerate electron pressure in
the non-relativistic case and request that this pressure must balance the gravitational
potential, we get from the second of the previous equations:

M5/3

R5

5/3
e

∝ GM2

R4

This equation provides the mass–radius relation:

R∝ 1

G

5/3
e

M−1/3 (7.5)

Hence, WDs with non-relativistic degeneracy have a hydrostatic equilibrium radius
inversely proportional to their mass. Also, for a given mass, the radius tends to
decrease for increasing 
e (i.e. for WDs made of heavier nuclei). If a WD of mass
M1 has a radius R1, increasing its mass up to a value M2 causes an increase of the
gravitational energy that is balanced by the pressure forces for a decrease of R (the
pressure increases with decreasing R faster than the gravitational effects) hence its
equilibrium radius is smaller. Typical radii of WD stars are of the order of ∼0�01R�,
and densities are of the order of 106 g cm−3. Figure 7.6 shows a comparison between
the mass–radius relationship from theoretical models ([176]) and observations ([156]).

Given that increasing mass implies a decrease of R, the density of the WD will
increase withMWD. When the density is high enough the electron degeneracy becomes
relativistic and the hydrostatic equilibrium requires that

M4/3

R4

4/3
e

∝ GM2

R4

This equation provides

M ∝ 1
G3/2
2

e
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Figure 7.6 Comparison of the theoretical mass–radius relationship predicted by theoretical models
([176]) with observations ([156])

independent of R. The meaning of this relationship for the case of relativistic degener-
acy is the following. If the equilibrium configuration is independent of R, hydrostatic
equilibrium can be found only by adjusting the mass to a specific value M that we
denote with Mch. If M>Mch the pressure forces due to gravitation increase and they
cannot be balanced by the decrease of the radius as in the non-relativistic case. If
M<Mch the gas pressure makes the star expand, the EOS becomes less relativis-
tic, and the star recovers a mass–radius relationship, hence a suitable equilibrium
radius. This means that there exists a limiting mass Mch – called the Chandrasekhar
mass – for a WD to be in hydrostatic equilibrium. A rough numerical estimate of Mch

may be obtained along the same lines of the previous derivation, after including the
constants entering the relationships between P and � and considering an average den-
sity �= �3/4�	�M/R3	 instead of simply �∼ �M/R3	. The condition of equilibrium
between gravitational and pressure forces becomes

GM2

R4

1
4�

∼K0

34/3M4/3

�4�	4/3R4

4/3
e

where

K0 =
(
3
�

)1/3
hc

8m4/3
H

= 1�2435× 1015 �cgs	
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This relationship gives

Mch ≡M ∼ 9
(
K0

G

)3/2( 1
4�

)1/2 1

2

e

∼ 2�54

2

e

1�27M�

The numerical constants that multiply the factor �K0/G	3/2 are very approximate, due
to the simplifications made in dealing with the structure equations. A more precise
value for the Chandrasekhar mass is

Mch =
(

2

e

)2

1�459M� (7.6)

Mass loss during the AGB evolution is expected to prevent the CO cores of WD
progenitors to reach Mch.

These general properties of WDs are also valid when one takes into account the
existence of the thin non-degenerate envelope. Different thicknesses of the envelope
change the mass–radius relationship slightly at a given WD mass, but the effect is
largely a second-order effect. Instead, when studying the evolution with time of the
WD luminosities, the envelope plays a fundamental role, as we will see below.

According to the virial theorem, a star with a degenerate electron component and
ideal ions radiates the thermal energy of the ions and lowers its temperature. The
evolution of a WD is therefore often labelled as a cooling process, and we are now
going to obtain an approximate relationship for the evolution of the WD luminosity
with time. We consider first the non-degenerate envelope and suppose it is radiative.
If we divide the equation of hydrostatic equilibrium (with r as independent variable)
by the equation of radiative transport we obtain

PdP= 4ac
3

4�GMKB

0L
mH

T 7�5dT

having used the EOS of a perfect gas, = 0�T
−3�5, and assumed that mr ∼M (M

being the total mass) in the envelope. This equation can easily be integrated from the
surface to a generic point within the envelope using as surface boundary conditions
P∼ 0 and T ∼ 0, and assuming the luminosity L is constant throughout the envelope
and equal to the surface value. The integration provides P as a function of T plus
constants. After using the ideal gas EOS to replace P with � we finally obtain

�=
(
32�acGM
mH

8�5 30LKB

)1/2

T 3�25 (7.7)

with 
 being the molecular weight of the matter in the envelope. We consider the
base of the envelope, i.e. the transition point to the electron degenerate interior, to
be the point where the degenerate electron pressure equals the pressure of the ideal
electron gas in the envelope (ions are an ideal gas at both sides of this transition
point). This means that at the interface (the values of density and temperature at this
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point are denoted with the subscript b, 
e is the electron molecular weight of the
degenerate core)

�bKBTb


emH

= 1�0036× 1013
(
�b


e

)5/3

�cgs	 (7.8)

Equating the densities given by Equation (7.7) (evaluated at the base of the envelope)
and (7.8) provides

L

L�
= 6�4× 10−3 



2
e

M

M�

1
0

T 3�5
b (7.9)

This temperature Tb at the transition from degenerate core to envelope is approxi-
mately equal to the temperature at the centre. In fact, due to the very low opacity
of degenerate electrons the core is practically isothermal. Therefore Equation (7.9) is
actually a relationship between the surface luminosity and the central temperature Tc

of the WD. As one can easily see, this relationship depends on the chemical composi-
tion (through the value of 
) and opacity of the envelope. The typical luminosities of
faint WDs (L≈ (10−3–10−4)L�) imply cold interiors, with T< 107 K. More detailed
L–Tc relationships determined from the solution of the full system of stellar evolution
equations ([177]) are displayed in Figure 7.7.
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Figure 7.7 Detailed L–Tc relationships for WDs



CARBON–OXYGEN WHITE DWARFS 205

The size of the envelope can easily be derived as follows. If we insert in the
equation of radiative transport the Kramers’ opacity =0�T

−3�5 we obtain

dT

dr
=− 30�

2

4acT 6�5

L

4�r2

Now using Equation (7.7) for the density � we obtain the simple differential equation

dr

r2
= 4�25

KB


GmH

1
M

dT

which can easily be integrated from the surface (where r = R) to the base of the
envelope (where r = rb). The solution (considering that at the surface T 	Tb) is

Tb =
1

4�25

GmH

K

M

R

(
R

rb
− 1

)

Temperatures Tb of the order of 10
6–107 K imply a negligible radial extension of the

envelope, of the order of ∼1 per cent of the total WD radius.
These simple properties of WD stars allow one to determine a good approximation

of their cooling law easily, i.e. how the WD luminosity changes with time. The virial
theorem applied to degenerate objects tells us that the energy radiated away by a WD
is equal to the rate of decrease of the thermal energy of its ions (we neglect here any
contribution from the non-degenerate envelope). Considering a perfect monatomic
ion gas, the thermal energy per ion in the electron degenerate core is given by
cVT = �3/2	KBT , where T is the temperature of the isothermal core. The total thermal
energy is

Ei =
3
2
KBT

M


imH

where the term M/�
imH	 gives the number of ions contained in the core (
i is the
ionic molecular weight in the core). For a temperature T ∼ 107 K E is ∼1048 erg.

We now rewrite Equation (7.9) in the form L=�MT 7/2, where � is a constant;
recalling that the WD luminosity is governed by

L=−dEi

dt

we substitute in the left-hand side the expression for L obtained from Equation (7.9)
which yields

�T 7/2 =−dT

dt

(
3KB

2
imH

)
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The integration of this equation between an initial time t0 (when the WD stage starts)
and a generic time t provides

�t− t0	=
3KB

5�
imH

�T−5/2 −T
−5/2
0 	

where T0 is the temperature of the core at t0 and T the temperature at time t. When
the WD has cooled down significantly, T0 
T and therefore

�t≡ �t− t0	∼
3KB

5�
imH

�T−5/2	

This simple relationship relates the WD cooling time to its core temperature. A
relationship between t and the luminosity L can be obtained using L=�MT 7/2 (from
the envelope integration) to write T in terms of L, which provides

�t∝
(
L

M

)−5/7

≈ 4�5 107


i

(
LM�
ML�

)−5/7

(7.10)

where �t is in years. This approximated cooling law is called Mestel law ([137])
and shows for example that higher WD masses evolve more slowly; this is easy to
understand in terms of more ionic thermal energy stored because of the higher mass.
Also, increasing the ionic molecular weight at a given M decreases the evolutionary
times, since there are less ions in the star. This simple law predicts cooling ages
(i.e. ages from the beginning of the WD phase) of the order of 109 years when
L≈ 0�001L�.

Although the Mestel law is a good zero-order approximation of the real WD
cooling law, complete models are more complicated, and in the following we will
discuss physical effects not included in Equation (7.10).

7.4.1 Crystallization

The main difference between the complete WD cooling law and the Mestel law (apart
from corrections to the degenerate electron EOS accounting for the fact that T is not
zero) is due to the treatment of the EOS for the ions. To derive the Mestel law, ions
have been approximated with an ideal gas with cV = �3/2	KB per particle. The specific
heat cV is obviously a crucial quantity for the determination of the cooling time, and
we will now see that the simple approximation of the ideal gas is not good when the
core cools down. Due to the steady decrease of the temperature, the ions in the core
tend to move less freely because the Coulomb interactions play an increasingly major
role in determining their thermal properties. During the cooling the core gets cooler
whereas the density is almost constant, hence � increases; when � becomes larger
than 1 the ions tend to behave like a liquid, and with still decreasing temperatures,
approaching � ∼ 180, they form a periodic lattice structure that minimizes their total



CARBON–OXYGEN WHITE DWARFS 207

energy. This latter phenomenon is called crystallization, and when � > 180 ions
behave like a solid.

The Coulomb interactions obviously affect the free energy of the ions, hence their
EOS and the derived value of cV . In general, the total free energy F will be the sum
of the ideal part plus a Coulomb correction part FC. In the case of a single chemical
species, FC is given ([202]) by

FC=NKBT�−0�89752 �+3�78176 �1/4−0�71816 �−1/4+2�19951 ln�−3�30108	

when 1<�< 180 (liquid phase) and

FC =NKBT�−4�29076+ 4�5 ln� − 1490
�2

	

when � ≥ 180 (solid phase) with N being the number of particles per unit mass.
During the solid phase there is an additional term to the total free energy F ,

due to the oscillations of the ions around their equilibrium positions in the lattice
configuration; at increasingly lower temperatures somewhat uncertain ionic quantum
corrections have to be added to F . The quantum corrections become important when
the dimensionless parameter �= �D/T is larger than 1, where �D ≈ 4× 103�1/2 K is
the so called Debye temperature.

The influence of these non-ideal effects on the value of cV for the ions can be
summarized as follows. When �< 1 the specific heat per ion is well approximated
by cV = �3/2	KB. Above this threshold a lattice starts progressively to form and cV
increases with increasing � reaching a maximum value cV ∼ 3KB at about crystal-
lization (� = 180). Upon further cooling the temperature reaches �D and from this
moment on cV starts to decrease according to cV ∝ T 3.

This variation of cV with � (hence temperature) is the first modification of the
Mestel cooling law due to a realistic treatment of the ion EOS. There are, however, two
other major effects. The first one is the release of latent heat during the crystallization
process. When the WD cools down, since the density is higher in the centre than at
the boundary of the core and T is almost uniform, � =180 will first be reached in the
centre and then, with decreasing T , this crystallization front will move progressively
towards the core boundary. At �=180 a phase transition occurs, like water solidifying
into ice. As a consequence, the solid usually has a different density and latent heat
q is released, that is the difference in entropy between the two phases. Typically
q ∼ KBT per ion. This means that during the core crystallization extra energy is
released, first at the centre and then at progressively more external core layers. This
latent heat (that in a full stellar evolution computation is included as an additional
term to the energy generation coefficient �) slows down the cooling of the WD with
respect to the Mestel law, given that it is an extra energy contribution to the ionic
energy budget. Crystallization starts in the centre at log�L/L�	∼−2�7 and reaches
the boundary of the degenerate core at log�L/L�	∼−4�2 for a WD of 1M�. Less
massive WDs start crystallizing at lower luminosities, hence lower core temperatures,
because they are less dense and reach � = 180 when their cores are cooler. As an
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example, a WD of 0�6M� starts to crystallize at the centre when log�L/L�	∼−3�6,
and the whole core is in the solid phase when log�L/L�	∼−4�5. It is important to
notice that the earlier the crystallization, the shorter the delay �t of the cooling (with
respect to the Mestel law) caused by the extra energy input, since �t∼�E/L, where
�E is the energy injected during the crystallization and L the WD luminosity; earlier
crystallization means higher L hence shorter �t for a given �E.

There is an additional energy release during the crystallization process, due to
the phenomenon of chemical separation ([77], [107]). The physical principle behind
this phenomenon is that, given a CO binary mixture with a given abundance ratio
XC/XO in the gas and liquid phase, at crystallization the same abundance ratio cannot
be maintained, because the two elements are not fully miscible in the solid phase.
As an example, consider a WD core made of a mixture of two elements with mass
fractions X1 and X2 in the liquid phase, uniform throughout the core. The abundance
of the lighter element is X1, and X1 <X2; this situation reflects the abundance ratios
in the central parts of the WD core, where oxygen is more abundant than carbon.
A representative phase diagram for this binary mixture is displayed in Figure 7.8;
the shape of this phase diagram (there are many possible shapes, depending on the
element mixture) is similar to the shape of the diagram for a CO mixture, so that
the qualitative results of the discussion that follows also hold for a realistic WD
composition.

In general, the phase diagram tells us how the abundances of the two elements have
to be changed during the phase transition at a given point within the WD, because

Liquid phase

Solid phase

T
 –

 –
>

1.0 0.8 0.6

X1

0.4 0.2 0.0

Figure 7.8 Representative phase diagram for the mixture of two elements with mass fractions X1

and X2. The graphical method to determine the abundances in the solid phase is also illustrated
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of the non-miscibility of their mixture. Assume that X1=0�4 when the mixture starts
to crystallize at the centre. To determine graphically the chemical composition in the
solid phase, one has to draw a vertical line with horizontal coordinate equal to 0.4,
that runs through the region belonging to the liquid regime until it intersects the upper
line describing the phase diagram, as shown in Figure 7.8. The vertical coordinate of
the intersection point corresponds to the crystallization temperature of the WD centre.
From this point one draws an horizontal line until the point where it intersects the
lower line of the phase diagram. The horizontal coordinate of this latter intersection
point gives the mass fraction of element X1 ∼ 0�14 in the solid phase, and of course
X2 = 1−X1. Since X1 in the now crystallized centre is lower than the initial value,
X1 in the liquid phase at the crystallization boundary is necessarily increased with
respect to the original value, due to conservation of mass. This means that right above
the crystallized boundary the molecular weight is lower than in the overlying layers
still in the liquid phase (where the ratio X2/X1 is higher). According to Equation (3.4)
an increase of molecular weight for increasing distance from the centre causes a
convective instability to develop. The convective mixing rehomogenizes the liquid
phase very fast, overall enhancing the average X1 value. This mixing region extends
outwards in mass as long as the new rehomogenized average X1 abundance is higher
than the abundance of the following unperturbed layer.

Let us suppose the new value of X1 at the boundary of the solid core is equal to
0.55. When this layer crystallizes, at a lower temperature than the core because of
lower density, the abundances in the solid phase can be derived in the same way as
before, and it is equal X1 = 0�25 with our hypothetical phase diagram. This implies
that right outside the centre the abundance of X2 is lower than at the centre. The
convective instability in the liquid phase ensues again (for the same reasons explained
before) and the cycle is repeated until the whole degenerate core is crystallized. The
final profile of X1 and X2 will not be homogeneous any longer, but X2 will decrease
from the centre outwards, and the opposite will be true for X1.

The local change of chemical composition – hence molecular weight – due to this
process of chemical separation at crystallization causes a release of energy (in addition
to the latent heat discussed before) by virtue of the term �dU/d
	T�v�d
/dt	 in the
�g coefficient, that we have until now discarded because it is negligible when nuclear
reactions are efficient. In the case of WDs, when there are no active nuclear reactions,
this term is important and causes an increase of the cooling times by ∼10 per cent.

In realistic WD computations the CO profile is not flat and the process of rehomog-
enization of the liquid phase during crystallization is slightly more complicated, but
the main idea and the qualitative effect are the same as discussed before. Figure 7.9
shows the oxygen profile within the core of WDs of different masses and solar initial
chemical composition (the carbon mass fraction XC is essentially equal to 1−XO).
Different initial metallicities change the CO ratio but not too much. The initial chem-
ical profile at the end of the AGB phase displays a constant oxygen mass fraction
in the inner core, out to a point that marks the maximum extension of the central
convective region during the core helium burning phase. The bump in the abundance
just above this point (Figure 7.10) is produced when the He burning shell crosses
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Figure 7.9 Oxygen profile within the core of two WD models

the semi-convective region partly enriched in carbon and oxygen, and carbon is con-
verted into oxygen through the 12C+�→16 O+� reaction. Beyond this region, the
oxygen profile is built when the helium burning shell is slowly advancing towards
more external layers. A convective instability at the beginning of the WD phase (the
bump causes an increase of molecular weight for increasing distance from the centre)
mixes all the inner region of the WD, producing a flat central profile (see Figure 7.10)
that is maintained until the onset of crystallization. At the end of crystallization the
oxygen profile is modified as shown in Figure 7.10.

7.4.2 The envelope

The generally accepted ideas about WD envelopes envisage the existence of a helium
layer with mass MHe ∼ 10−2Mtot (Mtot being the total WD mass) on top of the CO
core, surrounded by an external hydrogen envelope of mass MH ∼ 10−4Mtot. The
uncertainty is due to our poor knowledge of the mass-loss processes that drive the
evolution of stars to the WD stage.

Observations show that the external WD layers are either made of pure hydrogen
(DA white dwarfs) or helium (non-DA) sometime with traces of metals, but typically
Z∼ 0 at the WD surface. The explanation for the lack of metals at the surface is the
efficiency of atomic diffusion. The typical observed ratio of DA to non-DA WDs is
4:1, but there is strong observational evidence for an evolution of the surface chemical
composition among WDs, i.e. some of the DA WDs stars become non-DA objects,
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Figure 7.10 Oxygen profile within the core of a 0�6M� WD at the end of the AGB phase (dotted
line) after the convective instability at the beginning of the WD cooling (dash-dotted line) and after
crystallization is completed (solid line)

and vice versa, during the cooling sequence; in fact the ratio of DA to non-DA white
dwarfs changes as a function of effective temperature along the cooling sequence.
Moreover, there exists a Teff interval from ∼45 000K to about 30 000K in which no
WD with helium atmospheres has been found, while at Teff >70 000K no DA objects
are observed, in spite of the fact that helium rich WDs are observed well over Teff >
100 000K. Well-established explanations for these phenomena have not been found
yet, although it seems reasonable to assume that at least some of the WD stars change
their surface chemical composition from helium to hydrogen and back to helium again
as evolution proceeds. It is suspected that a complicated interplay between diffusion,
radiative levitation and convective mixing is responsible for this. Another possibility is
that these two broad classes of WDs are produced at birth, i.e. the exact phase between
the thermal pulses when a star leaves the AGB due to mass loss, determines whether
or not it retains its hydrogen envelope. This idea, however, encounters difficulties to
explain the existence of Teff regions devoid of either DA or non-DA WDs.

In the practical case of computing extended sets of WD evolution models for
various masses (and eventually different initial chemical compositions of their progen-
itors) it is usually assumed that DA WDs have a pure helium layer of MHe∼10−2Mtot

on top of the CO core, and an external pure hydrogen envelope with MH ∼ 10−4Mtot.
In the case of non-DA WDs it is considered that there is only a pure helium layer
with MHe ∼ 10−2–10−3Mtot.
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This non-degenerate envelope contributes to the energy budget by slowly con-
tracting according to the virial theorem. In addition, since they are extremely opaque
to radiation with respect to the highly conductive isothermal core, they essentially
regulate the energy outflow from the star (we have already seen in the simplified
cooling law described previously, that it is the structure of the envelope that provides
the link between the progressive decrease with time of the core ionic thermal energy
and the surface luminosity). Hydrogen envelopes are more opaque than helium ones,
therefore the existence of an H layer on top of the helium envelope in DA WDs
produces longer cooling times at fixed mass. This can easily be seen from Equa-
tion (7.9) which shows how an increase in opacity (the constant 0) induces higher
central temperatures at a given luminosity.

It is important to notice that if the external hydrogen layer (whose thickness cannot
be precisely predicted by stellar evolution theory) is above ∼10−4M�, WDs with
mass ∼1M� or above can experience some H-burning through the proton-proton
chain at the hotter and denser bottom of the hydrogen envelope, when the WD is
bright. This burning would produce an extra energy input and reduce the initial
thickness of the hydrogen layer (see Section 7.2.3).

During the cooling of a WD at constant radius, its luminosity decreases hence its
Teff also decreases, and convection develops in the envelope, so that our simplified
assumption of radiative transport is no longer valid. When convection is established,
the boundary conditions and the superadiabatic gradient calibration will play an
important role in determining the envelope structure and extension, and the cooling
time. When Teff < 6000K boundary conditions based on grey T��	 relationships are
no longer good approximations, and the results from full non-grey model atmospheres
have to be used ([91], [177]).

7.4.3 Detailed WD cooling laws

In this section we compare the cooling law (time spent along theWD cooling sequence
as a function of the luminosity) obtained from full stellar evolution models of DA
WDs, with the Mestel law. At high luminosities (log�L/L�	>−1�0) and high central
temperatures, energy is lost from the star not only as radiation from the surface but
also through neutrino emission from the degenerate core. Plasma neutrino emission,
in particular, is very efficient during the hot WD phase, and the cooling is very
fast, faster than the results given by the Mestel law (Equation (7.10)) because there
is an additional energy loss. When the luminosity drops below log�L/L�	∼−1�0
neutrino losses are negligible and the cooling slows down. After this stage cooling
times become longer than the result from Equation (7.10) due to the energy gained
from the slow contraction of the non-degenerate envelope, and the increase of cV
during the liquid phase. With the onset of crystallization latent heat and chemical
separation provide extra energy sources with respect to the Mestel law (hence even
longer cooling times) whereas at lower luminosities and temperatures, when �D is
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Figure 7.11 (a) This shows a comparison between the cooling law of a 1M� DA WD obtained
from a full model computation (solid line) and the Mestel law (dotted line); (b) this compares the
cooling laws obtained from a full model computation of two DA WDs with different masses

attained in the core, cV starts to decrease, cooling times tend to approach the Mestel
law again and eventually become shorter.

Figure 7.11 shows a detailed cooling law for two WDs of different masses, and
also a comparison between the complete cooling law and the Mestel approximation
(we assumed in this latter case an average homogeneous value of 
i for the whole
core) for the more massive object. The zero point of the cooling time tcool is set by
the moment the WD starts on its cooling sequence. If one wants to know the total
age of the WD star, one has to include the evolutionary time of the progenitor until
the WD formation.

The more massive WD has typically longer cooling times as predicted by the
Mestel law; however, the core of the more massive WD reaches its Debye temperature
�D at higher luminosities (because it is denser and �D increases with �) and, due to the
decreasing cV , the cooling times get increasingly fast, so that tcool at low luminosities
becomes shorter than the Mestel law and also shorter than the value for the lower
mass, whose core will reach �D at lower L.

7.4.4 WDs with other chemical stratifications

Oxygen–neonWDsare theend-pointof theevolutionof starswith initialmassesbetween
∼8M� and ∼11M�. At the end of the central carbon burning (see Section 7.5.1) the
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ONe core becomes electron degenerate; due to mass loss, the envelope mass is strongly
reduced and the ONe core, surrounded by a thin non-degenerate envelope, settles on
its cooling sequence. The masses of ONe WDs are between ∼1�0 and ∼1�2M� ([78])
again the efficient mass loss preventing the core from reaching Mch; typical chemical
abundances in the core are about 64 per cent of oxygen (by mass) and 25 per cent of
neon, and minor fractions of other elements, including some unburnt carbon.

The cooling of ONe WDs is similar to the CO case, but with shorter timescales (for
a fixed envelope chemical composition) because of the reduced thermal content of
the core. In fact, the atomic weight of a mixture of oxygen and neon is larger than the
case of carbon and oxygen mixtures, and the number of ions in the core – hence the
thermal content of the core at a fixed temperature – is lower, even accounting for their
slightly higher masses. Moreover, the average charge of the ONe mixture is larger
than the CO case and the onset of crystallization happens at higher temperatures.

Helium core WDs correspond to the electron degenerate He core of RGB stars
that have lost their envelope through mass transfer in an interacting binary system
or extremely high mass loss due to stellar winds or dynamical interactions in dense
stellar systems. The expected masses of this class of WDs range from 0.15M� up
to about 0.5M�. Above the electron degenerate helium core there is a thin hydrogen
envelope with mass thickness of the order of 10−4M�. The qualitative properties of
helium WDs are similar to the CO counterpart. The limiting mass Mch is marginally
larger because the electron molecular weight in the degenerate core is slightly smaller;
radii are larger than for the CO counterpart, due to the fact that helium WDs have
smaller masses, but also because 
e in the core is smaller.

Their cooling is conceptually similar to the case of CO WDs. The main difference
being that the atomic weight of He is lower than C and O by a factor of three and four,
respectively, and therefore helium WDs contain more heat (at a given temperature)
than carbon or oxygen cores, even accounting for their lower masses. Thus the helium
core WDs are brighter at a fixed age than the CO counterpart of the same mass ([91]).
Due to the lower charge of He with respect to the CO mixture, helium WDs do not
crystallize within cosmological ages.

7.5 The advanced evolutionary stages of massive stars

In the previous chapters we have discussed the evolution of low- and intermediate-
mass stars during the H- and He-burning phases. The evolution of stars more massive
thanMup during these early stages (see Figure 7.12) is quite similar, the only exception
being the sensitivity of the location on the HRD to the mass loss – which can be huge
for these stars – as well as to the treatment of convection (the use of the classical
Schwarzschild criterion versus the Ledoux one, see Section 5.4). In particular, the
choice of the convection criterion affects the ratio between the time spent on the blue
and the red side of the HRD by these stars. In more detail, stellar models based on
the Schwarzschild criterion spend more time on the blue side of the HRD compared
with models based on the Ledoux criterion.
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Figure 7.12 Evolutionary tracks of massive stars with different masses (courtesy of M. Limongi)

An additional peculiarity is that while, as in less massive stars, the mass of the
He core is fixed both by the mass-size of the convective core during the central
H-burning phase and by the amount of hydrogen processed by the H-burning shell
during the core He-burning stage, the mass of the CO core is essentially fixed by
the size of the convective core during the central He-burning phase. This is because
the evolutionary phases subsequent to the core H-burning stage, are so fast that the
He-burning shell has no time to advance significantly outwards. In addition, the
chemical profiles of carbon and oxygen in the core are flat, being the result of the
fully efficient mixing into the core during the central He-burning phase.

As has been known for some time ([5]) the core abundance of carbon is a fun-
damental quantity that strongly affects all the successive evolutionary stages, since
it essentially determines the amount of carbon available for the core and shell C-
burning. Needless to say, the amount of carbon is strongly sensitive to the nuclear
cross section for the 12C��� �	16O reaction – this is the reason for which the rate
of this nuclear reaction adopted in stellar computations strongly affects the predicted
final nucleosynthesis – and to the efficiency of all mixing processes which can occur
inside the convective core.

In this section, the late evolutionary stages which precede the core collapse and the
explosion of these stars as Type II supernovae will be discussed briefly. It is worth
emphasizing that the evolution of massive stars in the advanced pre-supernova stages
is quite a hot topic in stellar astrophysics and so many changes and improvements
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are expected in the next few years. For this reason, only the most important and well-
established properties of these stars are discussed (see [234] for a detailed review).

In Table 7.1 are listed the main structural and evolutionary properties of stars with
masses 15, 20 and 25M� during the evolutionary phases from the H-burning stage to

Table 7.1 Selected quantities for 15M�, 20M� and 25M� stars with
solar chemical composition ([130]). The evolutionary lifetimes refer
to the core burning phases andMcc corresponds to the maximum mass
of the convective core, MHec and MCO are the mass of the He core
and CO core at the central exhaustion of H and He, respectively. MFe

is the mass of the iron core of the last model computed by [130]

Quantity 15M� 20M� 25M�

H-burning

tH (Myr) 10�70 7�48 5�93
Mcc�M�	 6�11 9�30 13�77
MHec�M�	 4�10 5�94 8�01

He-burning

tHe (Myr) 1�40 0�93 0�68
Mcc�M�	 2�33 3�63 5�23
MCO�M�	 2�39 3�44 4�90

C-burning

tC (103 yr) 2�60 1�45 0�97
Mcc�M�	 0�41

Ne-burning

tNe (yr) 2�00 1�46 0�77
Mcc�M�	 0�66 0�50 0�50

O-burning

tO (yr) 2�47 0�72 0�33
Mcc�M�	 0�94 1�12 1�15

Si-burning: radiative core

tSi−rad (10
−2 yr) 29�00 2�80 1�94

logTc 9�420 9�443 9�434
log�c 8�092 7�818 7�798

Si-burning: convective core

tSi−conv (10
−3 yr) 20�00 3�50 3�41

Mcc�M�	 1�14 1�11 1�12
MFe�M�	 1�43 1�55 1�53
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the silicon burning stage as given by [130]. From these data, one can easily see how
fast the advanced evolutionary stages are with respect the H- and He-burning lifetimes.

The timescale needed for these stars to move from the red side of the H–R
to the blue side and vice versa, which is of the same order of magnitude as the
Kelvin–Helmholtz timescale for the envelope, is about 102–103 years, the exact
value depending on the stellar mass and on its location on the HRD. This has the
important consequence that as the advanced evolutionary phases – successive to
the core He-burning stage – are extremely fast, the surface evolution is, in some
sense, frozen out, and so the surface luminosity and effective temperature do not
change significantly until the star explodes. For this reason, as recognized by [5],
the advanced evolutionary phases of massive stars can be described as the neutrino-
mediated Kelvin–Helmholtz contraction of the CO core.

7.5.1 The carbon-burning stage

At the exhaustion of central helium, the CO core immediately starts to contract so that
gravitation can supply the energy necessary to support the star. During this phase,
the core temperature of these massive stars exceeds the value ∼5× 108 K, entering
into a region of the density–temperature (� – T) plane (see Figure 7.13) where
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Figure 7.13 Evolution of the core of selected massive stars in the central temperature–central
density plane. The loci corresponding to the onset of the various burning stages are marked (courtesy
of M. Limongi)
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neutrino losses from pair annihilation start to dominate the stellar energy budget.
Radiative energy transport and convection are still important in determining the stellar
structure, but it is the neutrino luminosity that mainly balances the energy generated
by the gravitational contraction and by nuclear burning. To elaborate this point, in
Figure 7.14 we show the evolution with time of the surface luminosity, neutrino
luminosity and of the nuclear luminosity for two massive stars. From this figure, it
is evident that up to C-ignition, the main energy losses are from the surface but later
neutrino energy losses dominate. Since the energy produced by nuclear burning has to
supply the energy lost from the stellar surface, the nuclear luminosity initially follows
the behaviour of the surface luminosity, but from the ignition of carbon it closely
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Figure 7.14 Behaviour with time of various luminosities (in erg s−1) for two massive stars: the
dashed line corresponds to the surface luminosity, the solid one to the energy produced by the
nuclear burning, while the dotted lines refers to the neutrinos’ energy. The solid dot marks the
ignition of the core C-burning (courtesy of M. Limongi)
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follows the neutrino luminosity. One should also note that for the 25M� model,
from the ignition of C-burning until the start of Ne-burning, the neutrino luminosity
exceeds the nuclear luminosity. This means that in these stages, nuclear burning is
not able to provide all the energy required by the star. As a consequence, the star
rapidly contracts to produce the missing energy through the work of gravitation.

For stars with mass in the range 15–30M�, C-burning ignites when the core
temperature attains a value in the range (0.3–1.2) ×109 K. The principal nuclear
reaction is the fusion of two 12C nuclei to produce a compound 24Mg nucleus in a
highly-excited nuclear state, which then decays through three channels:

12C+ 12C−→ 24Mg−→ 23Mg+ n

−→ 20Ne+�

−→ 23Na+ p

The properties of the C-burning phase depend strongly on the amount of carbon
in the CO core produced during the central He-burning phase. The abundance of
C has a large influence on the size of the convective core during this phase. In
fact, a convective core forms only if a positive energy generation rate (nuclear rate
minus neutrino rate) exists, and a larger fraction of C implies more efficient nuclear
burning. The interplay between the nuclear energy generation rate and the neutrino
loss rate is the key to understanding the decrease of the mass of the convective
core with increasing stellar mass. With increasing stellar mass, the core temperature
increases and does the neutrino emission rate. As a consequence, at large enough
stellar masses, the convective core during this stage will disappear. This occurrence
can also break the correlation existing between the mass of the convective core and
central abundance of C.

Once carbon is exhausted in the core, the burning shifts quietly to a shell.
C-burning in the shell is characterized by the occurrence of one (or three, depending
on the total mass and on details of the numerical simulations) convective episode(s),
e.g. a convective shell appears. During the C-burning stage, particularly during the
shell burning, a significant fraction of s-elements are also produced the most efficient
neutron source being – during shell C-burning – the reaction 22Ne���n	25Mg.

7.5.2 The neon-burning stage

Following carbon burning, the stellar core contains mainly 16O (∼0�7 by mass
fraction) 20Ne (∼ 0.2–0.3 by mass fraction) and 24Mg. It is worth noting that oxygen
has the smallest Coulomb barrier, but before the temperature necessary for O-burning
is achieved, the reaction 20Ne����	16O (which is endothermic) is allowed thanks
to the presence of high-energy photons. The �-particle separation energy of 16O
is almost a factor of two larger than that requested for 20Ne, so 20Ne is the more
fragile nucleus. Even if the 20Ne����	16O reaction is endothermic, the whole set
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of exothermic nuclear reactions occurring during this evolutionary phase makes the
Ne-burning an exothermic process.

For stars in the same mass range considered previously for C-burning, core Ne-
burning occurs in the temperature range (1.2–1.9) ×109 K. A characteristic of this
burning phase is that a convective core is always formed, regardless of the stellar mass,
but it exists only for the short time during which the nuclear burning rate overcomes
neutrino energy losses. Thus core Ne-burning occurs partially in a radiative region
and it lasts only for a short time.

As the central abundance of neon is vanishing, Ne-burning shifts into a shell whose
evolution is limited to the short time intervals between two consecutive core burning
stages. In fact, the various central burning stages are so fast (see Table 7.1) that the
neon shell has no time to significantly advance through the star.

7.5.3 The oxygen-burning stage

At the end of coreNe-burning, the chemical composition of the core ismainly 16O, 24Mg
and 28Si. In the mass range 15–30M�, O-burning ignites when the core temperature
attains a value in the range (1.5–2.6) × 109 K. The oxygen fusion reaction produces a
compound 32S nucleus that can decay following one of the following channels:

16O+16O−→ 32S−→ 31S+ n

−→ 31P+ p

−→ 30P+2 D

−→ 28Si+�

At low temperatures the channel producing deuterium is inhibited, whereas at the
high temperatures characteristic of oxygen burning, all the produced deuterium is
promptly photo-disintegrated into a neutron and a proton.

Oxygen burning always occurs in a convective core, owing to the nuclear burning
rate being able to overcome the neutrino losses. Its mass is ∼1M�, regardless of
the total stellar mass. The O-burning lifetime decreases as the total mass increases,
a consequence of the fact that more massive stars burn oxygen at higher core tem-
peratures. In any case, the core O-burning lifetime is so short that at this stage – and
from now on – the various burning shells present in the star remain practically frozen
out until the final core collapse. The only exception to this general rule (see also
previous discussion) is represented by the Ne-burning shell, which being located in
a zone strongly affected by gravitational contraction and, in turn, by heating during
the time between two successive core burning processes, can move outwards.

Core O-burning produces neutron-rich nuclei such as 30S, 35S and 37Cl as a
consequence of the large efficiency of weak interactions such as 30P�e+� �	30S,
35Cl�e−� �	35S, and 37Ar�e−� �	37Cl. The production of neutron-rich nuclei affect the
so-called level of neutronization of the stellar matter, that is an indicator of how
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neutron rich the constituents of the gas are, and is related to the difference between
the number density of neutrons and the number density of protons, both bound in
nuclei and free. The higher the number density of neutrons with respect to protons,
the higher the level of neutronization.

At the exhaustion of oxygen in the core, the burning moves outwards and a shell
is activated. As for the C-burning shell, this O-burning shell can experience one (or
two) convective episode(s). Near the end of the core O-burning, another interesting
feature is that as the central temperature is very high, T ∼ (2.5–2.8)×109 K, a number
of isolated quasi-equilibrium clusters of nuclei exist. These are groups of nuclei
coupled by strong electromagnetic interactions which occur at rates nearly balanced
by their inverse, and the time derivative of their abundances is approximately zero;
for example the rate of the 29Si�p� �	30P reaction is equal to the rate of the reversed
reaction 30P��� p	29Si. During the subsequent evolutionary phases, as the temperature
increases, these initially separate groups merge into a single one and involve more
chemical species.

7.5.4 The silicon-burning stage

When the central temperature attains the value T ∼ 2�3× 109 K, silicon-burning can
start. Silicon-burning does not occur predominantly as a nuclear fusion reaction, but
it occurs in a unique fashion: a portion of 28Si experiences a sequence of photo-
disintegration reactions by the chain

28Si����	24Mg����	20Ne����	16O����	12C���2�	�

Si-burning is strongly affected by the level of neutronization in the stellar core, as
this largely affects the nucleosynthesis of the various nuclear species. It is worth not-
ing that, since the oxygen-burning ignition, the neutron density increases significantly
as a consequence of the increasing efficiency of weak interactions.

Numerical simulations ([130]) disclose that the core Si-burning stage can be
divided in two distinct episodes: a radiative one and a later convective one. During
the first radiative episode, depending on the initial total mass, 28Si is largely destroyed
and 30Si produced (the lower the mass, the more complete the 28Si destruction is). At
a certain moment, when the nuclear energy release overcomes the neutrino energy
losses (which in this phase are no longer dominated by pair production but receive
a large contribution from weak interactions – mainly electron captures on heavy
elements) a convective core appears. The convective core mass at its maximum is
of the order of ∼1M�, being practically independent of the stellar mass. During this
convective core episode, regardless of the stellar mass, the 28Si abundance increases.
This is because the convection penetrates into a region where the abundance of this
element is quite high, due to the previous core O-burning, and it becomes the most
abundant Si isotope. As a consequence of Si-burning, the core of the star is composed
mainly of 56Fe and 52Cr, with similar abundances by mass.
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At the exhaustion of Si in the core, the burning moves into a shell surrounding
the Si-exhausted core. This Si-burning shell usually experiences recurrent convective
episodes, the first ones always extending at most up to the border of the previous con-
vective core. However, the final episode(s), whose exact behaviour strongly depend(s)
on the stellar mass, can extend beyond the border of the former convective core. This
occurrence is very important as the maximum extension of this convective region
fixes the location of the boundary between the part of the star that has experienced
a strong neutronization process (inside the boundary) and the one that has not been
affected significantly (if any) by this process (outside the boundary). This boundary
determines the mass of the so called iron core: this is a fundamental quantity for the
subsequent explosive phase, determining the mass within which the shock wave (see
Section 7.5.5) loses the largest part of its energy through the photo-disintegration of
heavy elements. Thus, the lower the mass of this iron core is, the larger the possibility
of obtaining an explosive outcome.

At the end of Si burning, all nuclear reactions between different elements become
fully balanced by their inverses. The last reaction to achieve equilibrium is the 3�
reaction, which finally occurs at a rate balancing that of carbon photo-disintegration.
When this occurs, the stellar material has achieved the Nuclear Statistical Equilibrium
(NSE).

7.5.5 The collapse of the core and the final explosion

Once NSE has been achieved in the stellar core, the star has really reached the
very end of its evolution. Only the final explosion is still missing. The physical
process which sets off the final collapse of the inner core can easily be understood
by considering the Virial theorem. It has already been shown in Section 3.1.8 that
a stable physical configuration is allowed until the specific heat ratio (� = cP/cV )
is larger than 4/3. In the core of a massive star after reaching NSE, both photo-
disintegration processes and relativistic effects decrease the value of � below the
critical value 4/3, and as a consequence the core becomes dynamically unstable and
begins to collapse.

At the beginning, the core collapse is not a dramatic event. It occurs on a Kelvin–
Helmholtz timescale due to the huge neutrino flux which carries away the core
binding energy. However, soon after, the occurrence of two instabilities causes the
collapse to accelerate strongly: (1) due to the increase in density, the neutronization
process becomes increasingly efficient, this process removing free electrons which
are the main contributors to the pressure, and (2) photo-disintegration becomes more
efficient, producing a large number of free � particles. The binding energy of the
core resulting from this new composition, is lower than before, and so the star cannot
gain enough energy from its contraction. As a consequence, the collapse accelerates.
The collapse process is very short, lasting only a few milliseconds, the exact value
depending on the initial core density.
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When the core density becomes of the order of 1014g cm−3, which is the density
of a neutron star, the material becomes incompressible and the collapse of the central
regions stops. As the compression phase ends abruptly, the core rebounds and the
(supersonic) impact with the external layers that are continuing to contract produces a
shockwave. In a perfectly elastic collision, the energy of the infalling outer portion of
the core would bounce back after reflection to its position before the collapse. If one
compares this energy (∼1052−53 erg) with the binding energy of the outer envelope
(∼1050−51 erg) it seems possible that the rebounding core could be responsible for
the expulsion of the whole stellar envelope, the so-called prompt explosion scenario.
There are, however, two reasons why this is impossible. As the shock wave moves
through the infalling layers, it heats them up and induces photo-disintegration; owing
to this process the shock wave loses about 1051 erg for each 0.1M� crossed. In
addition, the emission of neutrinos from behind the shockwave is a quite efficient
shock-wave cooling process.

For a successful explosion, an additional energy source is required. As first pro-
posed by [59], it is now commonly assumed that this essential energy source is
provided by the neutrino energy deposition (the neutrino-powered explosion). Due
to the high density in the collapsing core, the mean free path of neutrinos becomes
comparable to the core radius. This means that the neutrinos produced via the neu-
tronization processes cannot escape from the star without interacting. With increasing
density, the material in the collapsing core becomes more and more opaque to neu-
trinos, which experience multiple scattering processes. In the inner core, the density
is so large that the neutrino diffusion velocity becomes less than the velocity of
the collapse. Under these conditions, the neutrinos cannot leave the star, they are
trapped. The point at which the neutrino diffusion velocity equals the velocity of the
collapsing core is defined as the neutrino-trapping surface: below this point neutrinos
are forced to deposit their own energy in the material, whereas in the more external
layers they can diffuse outwards until they reach the so called neutrino photosphere.
Similar to the photons photosphere, this represents the surface at which neutrinos
have a probability exactly equal to one of experiencing an interaction. This process is
considered to be responsible for providing the outgoing shock wave with the energy
necessary to produce an explosive event with the characteristics of a core-collapse –
or alternatively Type II supernova.

The details of the shock propagation inside the structure are very complicated,
due to the interplay between the neutrino energy flux and convection as well as the
occurrence of mixing instabilities such as the Rayleigh–Taylor instability. Due to
the uncertainties associated with the explosion mechanism and the related physical
processes, it is a difficult task to predict firmly the mass of the remnant and the
products of the explosive nucleosynthesis, given the mass of the progenitor. Roughly
speaking, it is commonly estimated that stellar progenitors less massive than ∼25M�
produce as a remnant a neutron star whose mass should be about that of the iron core
at the beginning of the core collapse. More massive stars should produce black holes.

The scenario outlined above holds for massive stars with mass less than about
100M�. More massive structures, and in general supernova progenitors which produce
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a He core with mass larger than about 40M�, can experience a different explosive
process, one sustained by nuclear burning ([232]). After He-burning, due to the
peculiar thermal conditions, the production of electron–positron pairs can occur. This
process significantly reduces the value of the specific heat ratio below 4/3 and a
runaway collapse develops. The advanced burning processes described previously are
not able to halt the collapse which has become dynamic. The final fate of these pair-
instability supernovae is to experience a prompt explosion (due to the huge kinematic
energy of the rebounding core) and to produce a black hole. It is worth emphasizing
that this kind of supernovae is receiving remarkable attention in the literature, as it
is a common belief that super-massive stars could be the major component of the
primeval stellar population, the Population III.

Concerning the chemical composition of the material burnt during the explosion
of a Type II supernovae, one has to note that this burning is explosive, and the
conditions for explosive nucleosynthesis are mainly determined by the maximum
value of the temperature achieved during the passage of the shock wave and by how
long the material remains at this temperature. The products of explosive burning
of O, Si, Ne and C are quite similar to those produced during the corresponding
hydrostatic burning stages, the only significant difference being that the isotopic ratio
between different species is modified by the different burning timescales. It is also
worth noticing that during the explosion, the presence of a huge flux of neutrinos can
produce a transmutation of certain elements – obviously, of those elements present
in large amount, being the cross section of these reactions very small. In particular,
detailed numerical simulations have shown that a significant production of 7Li, 11B,
19F and 26Al is possible via neutrino processes. Core collapse supernovae, essentially
the most massive ones, are also considered a possible site for the production of
r-elements, i.e. those elements which are produced by r-processes which require a
very large neutron flux.

A firm description of the chemical composition of the material ejected into the
interstellar medium by the explosion as well as the exact abundances of the various
elements is very difficult, due to our poor understanding of the details of the explosion.
In particular, for each given supernova progenitor, we are not able to properly
estimate the location inside the star of the point beyond which the whole envelope is
ejected during the explosion; the so-called mass-cut parameter. Present evaluations
of supernovae yields (see for instance [129]) are based on a free-parametrization of
this quantity. Without entering into details, one can safely estimate that core-collapse
supernovae are the main contributors to the production of �-elements (O, Ne, Mg,
Si, S, Ca, Ti) and helium.

7.6 Type Ia supernovae

A supernova event is classified spectroscopically as a Type I supernova if it does not
show any hydrogen feature in its spectrum. The Type I supernova class is further
divided in three additional sub-classes: Type Ia, Ib and Ic, according to the features
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observed in their early spectra, i.e. the spectra obtained a few days after the explosion.
In more detail, Type Ia supernovae are characterized by the presence of a clear Si II
absorption line around 6150Å and their late spectra show many lines associated with
Fe emission; Type Ib and Ic supernovae do not show this Si II absorption line and
are distinguished according to the presence or not, respectively, of moderately strong
He I lines around 5876Å. The favoured scenario for Type Ib and Ic supernovae is
that both are a consequence of the explosion of massive stars that, owing to mass
loss by strong stellar winds and/or mass exchange in a binary system, have lost the
whole H-rich envelope.

To date, there is no doubt that Type Ia supernovae originate from CO WDs which
have been able to accrete mass from a companion in a binary system, until the critical
mass for triggering a thermonuclear runaway is achieved.

Even if Type Ia supernovae are, perhaps, the most important distance indicators
at large distances (this issue is addressed in Section 7.6.3) one has to bear in mind
that a number of outstanding issues related both to the progenitor evolution and
the explosion mechanism(s) still remain to be solved. They include: (1) the double-
degenerate versus the single-degenerate scenario, which means that it has to be
fully understood if a Type Ia supernovae originates from the binary evolution and
coalescence of two degenerate WDs or from the mass exchange between a WD and
a non-degenerate star (an MS or RGB star); (2) the exact critical mass required
to trigger the thermonuclear runaway, i.e. Chandrasekhar mass models versus sub-
Chandrasekhar mass ones; (3) the explosive mechanism(s). In any case, it is largely
agreed that a thermonuclear runaway is at the origin of the disruption process. In
this section all of these topics will be briefly addressed. For more details, we refer
the interested reader to several reviews addressing these important topics, e.g. [232]
and [126].

7.6.1 The Type Ia supernova progenitors

As pointed out earlier, stars less massive than Mup develop a CO core, becoming
WDs with luminosity decreasing with time as the core cools. In a close binary system,
however, the WD evolution can be remarkably different. When the companion star
expands, as will occur at the end of the core H-burning phase or during the RGB
and the AGB, it can efficiently transfer material to the WD. Depending on its initial
mass, on the accretion rate and the chemical composition of the accreted matter, the
accreting WD will face a number of different evolutionary channels.

The accretion of H-rich matter onto WDs is the commonly adopted scenario for the
production of classical and symbiotic novae. It was also suggested ([230]) as a promis-
ing evolutionary channel for Type Ia supernovae. The observed absence of H lines
in Type Ia supernovae spectra, which does not necessarily imply the complete lack
of H in the progenitor, has motivated the search for progenitor systems in which the
H-rich material has been lost during the prior evolution. One scenario ([105]) that has
emerged consists of a primordial system formed by two intermediate-mass stars that
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evolve through a series of common-envelope episodes (i.e. a process during which
the envelopes of the two stars are physically in contact, and a sizeable amount of
envelope mass can be lost from the system) into a final system of two very close CO
WDs whose combined mass is larger than the Chandrasekhar mass limit. A subse-
quent merging of the two WDs will occur if there is sufficient angular momentum loss
through the emission of gravitational waves. As the resulting object is more massive
than the Chandrasekhar mass, the object cannot stay in hydrostatic equilibrium and
will be disrupted. This is the so-called double degenerate (DD) scenario.

There are several difficulties in modelling this scenario, mainly related to the
necessary fine tuning of the properties of the progenitor system (such as initial
masses, initial separation and efficiency of the mass-loss process during the common-
envelope episodes) and to the explosive mechanism (quiescent C-burning could result
as a consequence of the merger, resulting in turn in a core-collapse supernovae with
observational properties different to those of a Type Ia supernovae). However, the
most widespread doubts about the DD scenario arise from the lack of empirical
evidence for DD systems ([20]) with a combined mass greater than the Chandrasekhar
mass. Until recently, this scenario has had an undisputable advantage: it naturally
explained the empirical evidence that all Type Ia supernovae have almost the same
observed spectra and light curves. However, in the last decade ([127]) it has became
clear that Type Ia supernovae are, in fact, not as homogenous as generally believed.
The morphology of the light curve and the peak brightness can show remarkable
differences between various supernovae (this issue is discussed in Section 7.6.3).
These latest observations have stimulated the investigation of alternative evolutionary
scenarios.

In the so-called single degenerate (SD) scenario, accretion of H- or He-rich material
at an appropriate rate from the companion star onto the WD would be responsible for
increasing the mass of the WD above the Chandrasekhar limit, through either quiet or
violent burning adding fresh CO-rich material to the WD. Accretion of H-rich matter
onto massive (∼1M�) WDs has been extensively investigated. It has been found that
for quite low accretion rates, dM/dt≤ 10−9M� yr−1, the accreting WD experiences
strong He-pulses – stronger than those occurring during the AGB phase – which
cause so much mass to be ejected during the thermonuclear runaway that the time
needed to bring the WD to the Chandrasekhar mass will exceed the Hubble time. In
this case, the accreting WD behaves as a strong Nova object. The physical reason
for this behaviour is that, due the very low accretion rate, H-burning on top of the
He-rich layer proceeds so slowly that the helium shell builds up as a strongly electron
degenerate layer. At larger accretion rates, an explosion can occur. The resulting
peculiar explosive nucleosynthesis and the large abundance of H which should be
accumulated on the surface of the WD and, in turn, be observable in the early spectra
of the supernova are, however, incompatible with Type Ia supernova observations. In
spite of this, current uncertainties on the accretion and mass loss during the explosive
nova-like outbursts and on the explosive mechanisms, do not yet allow definitive
conclusions on this issue. It is important to notice that it is improbable to find WDs
with initial mass (before accretion) larger than about ∼1�1M�. This is because the
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progenitor would have been able to ignite C-burning before a definitive CO core WD
configuration is attained, although a possible way out, accounting for core rotation,
has been proposed by [66]).

In recent years, the search for possible progenitors of Type Ia supernovae has
focused on CO WDs of low-mass accreting H-rich material at an appropriate rate.
Numerical computations show that it is possible to obtain a thermonuclear explosion
that delivers some 1051 erg, which is the typical energy released by a Type Ia
supernova, without the requirement that the mass of the accreting WD exceeds the
Chandrasekhar limit. This is the so-called sub-Chandrasekhar scenario. It was shown
as early as 1977 ([141]) that this outcome is possible when the total mass of a very
cold WD accreting He at an appropriate (see below) rate exceeds ∼0.65–0.8M�. If
He is accreted onto a CO WD at a rate ∼3× 10−8M� yr−1, a violent He-ignition
occurs after the accretion of ∼ 0�15M� of He-rich material, nearly independent of the
initial mass of the WD. If the WD was also initially massive enough, this He-burning
could result in a detonation, and an inward moving compression wave would then
lead to the detonation of carbon in the core ([233]).

The development of a critical He layer above the CO core can be achieved as
a consequence of the burning of accreted H-rich material, as well as of the direct
accretion of helium from a He-rich star. The mass of the critical He layer, as well
as the violence of the explosion differ in the two cases because of the injection of
energy from the H-burning shell into the accreted layer, which modifies the thermal
properties of the He-rich layer.

Figure 7.15 shows a diagram summarizing the different outcomes experienced by
WD accreting H-rich matter, as a function of the initial mass and of the accretion
rate. For H-accretion rates near to, or larger than, the so-called Eddington limit1 the
accreted matter achieves an expanded configuration, typical of an RGB star ([101]).

As the accretion rate is lowered, a range of accretion rates is encountered where
H is burned at the base of the accreted layer at the same rate as it is accreted.
Lowering the accretion rate still further, a regime is encountered where recurrent
H-shell flashes take place. The accretion rate at the borderline between steady-state
burning and flashing behaviour decreases as the initial mass of the WD is decreased.
As the accretion rate is lowered below the borderline, the flashes become stronger and
stronger, changing from mild, non-dynamical events to strong, nova-like outbursts.
During these violent, nova-like outbursts, a sizeable amount of material is ejected from
the system (through a combination of dynamical acceleration, wind mass loss and,
perhaps, common envelope action). For about two-thirds of the observed events for
which spectroscopic measurements are available, huge overabundances of elements
heavier than helium are found in the ejecta. This is a clear evidence that the mass of
the CO WD is decreasing with time.

1 The Eddington luminosity limit represents the maximum surface luminosity of a star with the outer layers
in radiative equilibrium: LEdd ∝ �M/	 where M is the total stellar mass and  is the mean radiative opacity in
the external layers. Larger luminosities imply a radiative pressure too strong to be balanced by the gravitational
force.
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Figure 7.15 Accretion rate – initial WD mass diagram for H-accreting stars, from [41]. Various
symbols mark the different possible outcomes of the accretion process, that depend on the initial
WD mass and the accretion rate. The shaded area marks the region where, according to [151], the
H-accreting WD would experience an explosive event resembling a sub-Chandrasekhar supernova.
(courtesy of L. Piersanti)

Extensive evolutionary investigations of the possible outcomes experienced by
low-mass H-accreting WDs were performed by [41]. The main result was that within
the explored parameter space, H-accreting WDs were not able to reach the Chan-
drasekhar mass or to experience a sub-Chandrasekhar detonation in their He layers.
However, it was conjectured that WDs of small mass, accreting hydrogen to rates
which place them in the mild H-flash regime, but approaching the strong H-flash
regime, might eventually experience a dynamical He-shell flash. This scenario was
later validated ([151]) by following the long-term evolution of a WD of initial mass
equal to ∼0�516M� accreting H at a rate of ∼2× 10−8M� yr−1, whose final out-
come will be an explosive event resembling a sub-Chandrasekhar supernova (note
the shaded area in Figure 7.15).

To discriminate between the DD and SD scenarios for both Chandrasekhar and
sub-Chandrasekhar events, a fundamental diagnostic is provided by photometry and
spectroscopy: if any H or He were to be detected, the DD model could be ruled out.
Even if hydrogen has never been observed in Type Ia supernovae spectra, the upper
limit to the H abundance (∼10−4M�) is still too large to discard the SD scenario.
Therefore, no firm conclusion has yet been achieved.
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7.6.2 The explosion mechanisms

Once an explosive thermonuclear runaway is ignited, it induces the thermonuclear
disruption of the WD. The properties of this explosion strongly depend on how the
shock wave propagates inside the WD, bearing in mind that these characteristics are
different for the case of a Chandrasekhar progenitor or sub-Chandrasekhar progenitor.
Due to the difficulties in treating several physical processes involved in the explosion
as well as to the numerical difficulties in performing a detailed modelling of the
explosion, we are still faced with non-negligible uncertainties on what really occurs
in an exploding WD.

The fundamental properties which have to be properly accounted for by an explo-
sion model are: (1) the amount of energy which has to be delivered, which is of
the order of ∼1051 erg; (2) the nucleosynthesis of a sizeable amount (in the range
0.4–1.0M�) of 56Ni, necessary for powering the energy of the observed light-curves;
(3) the production of a significant amount of intermediate-mass elements moving
with an expansion velocity of the order of 10 000 km s−1 when the supernova is at
its maximum brightness.

In the case of a Chandrasekhar WD progenitor, carbon burning is ignited in the
central regions of the structure at a density of the order of 109 g cm−3. Owing to the
extremely strong level of electron degeneracy, the burning of carbon is explosive
and it causes the incineration on the material into Fe-peak elements. Soon after,
the explosive burning flame starts to propagate outwards; since its velocity is sub-
sonic this process has the characteristics of a deflagration. During its crossing of the
structure, the deflagration wave is affected by several kinds of instabilities, such as
the Rayleigh–Taylor instability. The properties of the flame propagation are strongly
influenced by these instabilities, and on how their presence is managed in the numeri-
cal simulations (which are quite complicated and not yet completely reliable). Behind
the flame front, the stellar material undergoes explosive nuclear burning of Si, O, Ne
and C. The exact composition of the nuclear processed material depends strongly on
the maximum temperature achieved inside the burning front, which is strongly related
to the density of the layers crossed by the explosive wave. For density values in the
range ∼1010–106 g cm−3, the chemical composition of the burnt material ranges from
elements of the Fe-peak (mainly 56Ni) to intermediate-mass elements such as S and
Si, and to C and O in the more external layers.

During its propagation, the explosive flame encounters regions whose density is
decreasing as a consequence of the expansion of the WD structure. So it is evident
that the densities encountered by the shock wave and, in turn, the resulting explosive
nucleosynthesis depend on the flame velocity, which is indeed quite uncertain. Since
sizeable changes to the explosive nucleosynthesis, mostly in the 56Ni mass, can be
achieved by changing the velocity of the outgoing flame front, various mechanisms
for changing the flame velocity have been investigated in order to reproduce the
empirical evidence better.

It has been suggested that the characteristics of the propagating flame could
change from deflagration to a detonation, i.e. achieve a supersonic velocity, due to
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a compression shock resulting from the crossing of the low-density outer layers.
This process could be of some help in explaining the existence of extremely bright
supernovae such as SN1991T, as they form a larger amount of 56Ni.

In contrast, in the so-called delayed detonation scenario, the initial speed of the
flame is so low that only a very little amount of 56Ni (∼0�1M�) is produced, and
the transition from deflagration to detonation occurs at densities of the order of
∼107 g cm−3 when the star has already significantly expanded. This scenario allows
a better reproduction of the typical velocities of intermediate-mass elements observed
in the spectra of typical Type Ia supernovae.

In the pulsating delayed-detonation scenario, it is assumed that the transformation
to a detonation does not occur during the propagation of the deflagration wave. If the
initial flame speed is low enough, burning is quenched by the expansion of the outer
layers before the binding energy of the structure becomes positive. As a consequence,
the WD remains bound and experiences a strong pulsation. At maximum compression,
the burning can be reignited and the speed of the new-born burning flame is now
supersonic, so it becomes a detonation. As in the delayed-detonation, this scenario
predicts that the detonation flame starts at low density (∼107 g cm−3 or lower) so
allowing better reproduction of the velocities of intermediate-mass elements in the
spectra.

In the case of a sub-Chandrasekhar progenitor for Type Ia supernovae, it is com-
monly assumed that the central explosive C-burning, which should have the charac-
teristics of a detonation, is induced by the shock wave generated by the He-detonation
on top of the degenerate CO core.

From these considerations, it is evident that a detailed prediction of the nucleosyn-
thesis produced during the Type Ia supernovae explosion is strongly dependent on sev-
eral issues which still have to be fully investigated. Nevertheless, the nucleosynthesis
expected for a pure deflagration model has been calculated by many groups (see [215]
and references therein). The dominant products are iron peak nuclei. Important minor
synthesis of lighter elements such as silicon, sulphur, argon and calcium, also occurs.

7.6.3 The light curves of Type Ia supernovae and their use as distance
indicators

Light curves, e.g. the change of brightness with time, are one of the main sources
of information on supernovae. In recent years, a large effort has been devoted to
collecting Type Ia supernova light curves in many photometric bands (we refer
the reader to Chapter 8 for a detailed discussion on the photometric systems and
magnitudes) from the near-UV to the near-IR. In order to show the dependence
of the light curve shapes on the adopted photometric bands, typical light curves in
different bands are shown in Figure 7.16. The most commonly used feature of Type Ia
supernova light curves is the value of the maximum brightness in the optical B band.

The rising time of the light curve is very fast and, for this reason, very few
observations have been collected so far. It is clear from the existing empirical data
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Figure 7.16 UBVRIJHK light curve of SN2001el (data from [119]). The different bands are offset
for the sake of clarity. Note that maxima in red and near-infrared bands occur earlier than in the
UBV bands (courtesy of K. Krisciunas)

that they rise to maximum B magnitude in about 18 days. The rise is very steep, with
about ∼0�5 mag day−1 increase until about ∼10 days before maximum.

The maximum bolometric magnitude does not coincide with the maximum B mag-
nitude, anticipating it by about 5 days, in coincidence with the maximum brightness
in the near-IR bands. The colours evolve very quickly and non-monotonically around
the maximum: they appear almost constant during the rising phase, but change from
blue, �B−V	∼−0�1 at 10 days before, to red, �B−V	∼ 1�1 about 30 days after the
maximum B magnitude

After reaching the maximum B magnitude, the supernova starts to fade slowly
and becomes increasing fainter in the near-UV and optical B bands. At longer
wavelengths, the behaviour is different: in the V band the fading slows down after
about 20 days, in the R band a plateau appears, and in the IJHK bands a secondary
maximum occurs. The rise of this secondary maximum, from the dip to the peak, is
quite large, being of the order of ∼0�5 mag in the near-IR. The explanation of this
empirical evidence is still uncertain.

After about 50 days, regardless of the considered photometric band, the supernova
fades monotonically with time. The decline rate in the interval ∼50–120 days, is
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Figure 7.17 Bolometric light curve of a Type Ia supernova. The dotted line is the observed
bolometric light curve. The solid lines represent the 56Ni and 56Co decay lines. The dashed line
represents the expected light curve if all �-rays from the radioactive decay escape the SN ejecta
and only positrons are converted into optical emission. The dash-dotted line shows the light curve
expected in the case where all photons resulting from the radioactive decay are fully trapped in the
ejecta ([60]) (courtesy of B. Leibundgut)

almost the same for all Type Ia objects and is: ∼0�014 mag day−1 in the B band,
∼0�028 mag day−1 in the V band, and ∼0�04 mag day−1 in the I band.

Due to the significant dependence of the light curve characteristics on the adopted
photometric band, which is an evidence of the interaction between the expanding
ejecta and the outgoing radiative flux, it is more meaningful to analyse the behaviour
with time of the bolometric light curve (see Figure 7.17). The peak of the bolometric
light curve is slightly asymmetric, with the rising branch steeper than the fading
branch. The rise to and fall from maximum is slowest for the brightest SNe (see the
discussion below). In the later stages, the decline rate is similar for all supernovae
(but some exceptions do exist) amounting to ∼0�026 mag day−1 in the time interval
∼50–80 days after maximum.

The most important parameter is the luminosity at maximum, as it is the essential
ingredient for the use of these objects as distance indicators. Since their identification,
Type Ia supernovae have been considered to be good standard candles ([128]) due
to the constancy of their maximum B magnitude. However, with the increasing
amount of observational data and with the more accurate distance evaluations of
galaxy hosting supernovae of this type, it has became evident that some objects
(up to ∼30 per cent of the sample) show sizeable deviations from the common
behaviour, appearing as sub-luminous or super-luminous. The scatter of the maximum
B magnitude is in the range 0.2–0.4 mag. Nevertheless, despite these differences,
Type Ia supernovae have a few invariants in their appearance: the most important
one is the linear correlation between the absolute magnitude at maximum and the
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decline rate �m15 (the magnitude difference in B between the time of the maximum
and 15 days later) discovered by [150]

MB =−21�726+ 2�698�m15�B	

MV =−20�883+ 1�949�m15�B	

MI =−19�591+ 1�076�m15�B	

The application of these (or similar) correlations has allowed the continued use
of Type Ia supernovae as distance indicators. Different implementations of this
correlation between brightness at maximum and light curve shapes do not provide
the same correction to the maximum luminosity (for a detailed discussion on this
important issue we refer to reviews by [126] and [127]) with offsets of the order of
0.25 mag.

As envisaged by [58], the light curves of these supernovae are powered by the
decay of radioactive 56Ni and its radioactive daughter nucleus 56Co: 56Ni is synthesized
during the explosive burning, and decays through electron capture with a half-life
time of 6.1 days to 56Co. 56Co decays mostly (∼80 per cent) via electron capture
and also (∼20 per cent) through �+ decay to 56Fe, with a half-life time of 77 days.
The final shape of the light curve (see Figure 7.17) depends on the balance between
the release of photons generated as �-rays in the radioactive decays and the fraction
of �-rays that escape (a fraction that increases with time as the ejecta expand and
become more and more optically thin). During the late phases, it also depends on
the fraction of positrons (coming from the minor channel of the 56Co decay) that are
annihilated in the ejecta after losing their kinetic energy.

7.7 Neutron stars

Neutron stars are the remnant of the supernova explosion of massive stars, with
initial mass between ∼11M� and ∼25M�. Neutron star masses, determined by the
evolutionary history of the supernova progenitor, are generally above ∼1�2M�, up
to ∼2�5M�; the average mass of neutron stars detected in binary systems is of about
1.4M�. A typical 1.4M� neutron star has a radius of 10–15 km, central density of the
order of 1014–1015 g cm−3 and temperatures below ∼5× 106 K.

The main source of the pressure needed to counterbalance the gravitational force
is the degenerate neutrons, since electron degeneracy cannot support objects more
massive than Mch. Being degenerate objects, neutron stars follow a mass – radius
relationship like WDs; reasonable approximations are given by

R= 14�6
(

�c

1015g cm−3

)−1/6

km

M =
(
15�2km

R

)3

M�
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where �c is the central density. In the following we will give just a very brief summary
of the main properties of neutron stars. A thorough discussion can be found in [199]
and [238].

In order to understand qualitatively the internal structure of neutron stars, we can
notice that at densities of the order of 107 g cm−3 and temperatures typical of the iron
cores of massive supernova progenitors, the reaction

e− + p→ n

is energetically favourable, because the electrons have a total energy larger than
the energy associated to the mass difference between neutrons and protons. Having
isolated neutrons seems to lead to an unstable situation, since free neutrons decay
into a proton–electron pair after about 12 minutes in a vacuum. However, at this
stage electrons are degenerate and, due to their high Fermi energy, when released
by the neutron decay they would not be able to find an empty and sufficiently low-
energy state, to make the decay energetically favourable. This means that the neutron
decay cannot happen and the level of neutronization of the stellar matter strongly
increases.

If matter is squeezed even more, at densities above ∼1015 g cm−3 the Fermi energy
of the degenerate neutrons and electrons is high enough that reactions between neu-
trons and electrons leading to the production of hyperons are energetically favourable.
At even higher densities more massive particles can be produced (possibly leading
to the formation of quark matter).

Neutron stars have an extremely thin atmosphere and a non-degenerate envelope,
whose extension is of the order of 1m. The temperature drops by a factor of about 100
over the length of the envelope. Below this envelope typical densities are already in
the WD regime, and the stellar matter is made of ionized nuclei arranged in a lattice
configuration and degenerate electrons. One kilometer inside the star the density has
already reached ∼1011 g cm−3, steadily increasing moving towards the centre, so that
first one encounters layers where neutron production has been efficient, and deeper
inside matter where hyperons have been produced. It is possible that in the cores
even heavier particles are present, like quarks. Overall, one expects a composition
made predominantly of free neutrons and a small percentage of protons and electrons,
apart from the surface, dominated by iron nuclei. Electrons and neutrons are highly
degenerate, hence the conductivity is high and the star is practically isothermal, apart
from the non-degenerate atmospheric layers. The maximum mass for having a stable
neutron star is of the order of 2.5M� (not the value predicted by Equation (7.6) for

e = 1, i.e. ∼5�8M�, because of the effect of nuclear forces and general relativity
corrections) the uncertainty mainly due to uncertainties in the EOS at very high
density.

It is not difficult to grasp the complexity of modelling the structure of neutron
stars, in particular its EOS. An additional complication is that, since the gravitational
energy of a neutron star is comparable to its rest-mass energy, general relativity
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corrections to the hydrostatic equilibrium equation are necessary. The equation of
hydrostatic equilibrium in case of a neutron star becomes

dP

dr
=−G

�mr + 4�r3P/c2	��+P/c2	

r2�1− 2Gmr/�rc
2	�

Comparing this equation with Equation (3.4) we can see that the mass mr and the
local density are effectively increased, whereas the local radius is decreased. Thus,
for a given mass the general relativistic hydrostatic equilibrium condition requires a
higher pressure gradient compared to the classical hydrostatic equilibrium.

The evolution of neutron stars is a cooling process, like WDs. At formation,
neutron stars have temperatures of the order of 1011–1012 K; due to neutrino emission,
the temperature drops to ∼1010 K within minutes, and below 106 K in about 105

years. When T> 109 K neutrinos are produced mainly through the URCA reactions

n→ p+ e− + �̄

e− + p→ n+ �

where neutrinos are electron neutrinos. When the temperature drops below ∼109 K
the main reactions producing (electron) neutrinos are the so-called modified URCA
reactions

n+ n→ n+ p+ e− + �̄

n+ p+ e− → n+ n+ �

The same reactions involving muons and muon neutrinos in place of electrons and
electron neutrinos can be also efficient. A discussion of additional neutrino production
processes that are possibly efficient in neutron stars can be found in [199]. One can
write an equation for the evolution of the luminosity like for WDs case, i.e.

L� +L� =−dE

dt

where we have added the neutrino luminosity to the photon one, since the large rate
of neutrino emission in the initial cooling phase. After about 105–106 years it is the
photon emission that is the main mechanism of cooling, and L� can be neglected.
The energy E is largely the thermal energy of the degenerate (mainly non-relativistic)
neutrons and (relativistic) electrons. This energy contribution stems from the fact that
neutrons and electrons are not a zero temperature degenerate gas, therefore there are
still some available energy states below the Fermi energy (see Figure 2.1); in the
absence of a consistent contribution of thermal energy from non-degenerate ions (as
in WDs) this is the main energy source for neutron stars. The cooling timescale is
shorter compared to the WD cooling; typically, the luminosity of a 1.4M� neutron
star goes down to log�L/L�	∼−6 in just ∼107 years.
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7.8 Black holes

When the remnant of the supernova event is above ∼2�5M� (initial progenitor
mass above ∼25M�) matter is too compact to establish a hydrostatic equilibrium
configuration of finite density. General relativity applied to these compact objects
predicts the existence of a so-called black hole, i.e. an object (or a place in space)
into which anything can fall but out of which nothing can escape, because the density
of matter is so high that space is curled around itself carrying matter, light and any
other form of energy with it. This is equivalent to saying that the escape velocity vesc
out of the gravitational well generated by a mass M of radius R is larger than the
speed of light, i.e.

v2esc = 2
GM

R
>c2

this relationship provides the typical radius Rs (Schwarzschild radius) for which the
escape velocity equals the speed of light

Rs = 2
GM

c2
= 2�95× 105

M

M�
(7.11)

in cgs units.
If the mass of the remnant of a supernova event exceeds the neutron star limit,

nothing can stop the continuous collapse of the core; the ever increasing density
steadily increases the curvature of space until the escape velocity at the collapsing
object exceeds the speed of light. This happens when the object radius decreases
below Rs. The Schwarzschild radius is a surface in the geometry of space–time
beyond which we can see no events; due to this property it is also called an event
horizon. The remnant will continue collapsing within its Schwarzschild radius (and
eventually will produce a point singularity of zero radius) but the information we
may get can never come from within Rs.

The space–time metric in the empty space outside a spherical non-rotating object
(we won’t discuss here the more general case of rotating black holes) can be described
by the Schwarzschild metric

ds2 =
(
1− Rs

r

)
c2dt2 − dr2(

1− Rs
r

) − r2d�2 − r2 sin2 �d�2 (7.12)

where r� ��� are spherical space coordinates whose origin is at the centre of the
object.

Consider the proper time d�1 read by a standard clock stationary (dr=d�=d�=0)
at radial coordinate r1; if the same standard clock were to be located at r2, this time
interval d�1 would correspond to a time interval d�2 given by:

d�2
d�1

=
(
1− �Rs/r2	

1− �Rs/r1	

)1/2

(7.13)
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We can notice from Equation (7.13) that d�2/d�1→ 0 when r2 →Rs and r1→�,
i.e. time slows down to a complete stop at the Schwarzschild radius with respect to a
standard clock at infinite distance. This occurrence has very important observational
consequences. Suppose that a light source at r2 emits signals at regular intervals d�2,
so that its frequency is �2= 1/d�2; a receiver at location r1 will measure a frequency
�1 = 1/d�1. If we again consider r1 →� (i.e. an observer very far from the black
hole) and r2 →Rs, we have that the resulting frequency redshift z is given by

z≡ �2 − �1
�1

= �2
�1

− 1=
(
1− Rs

r2

)−1/2

− 1→�

i.e. a distant observer cannot detect signals coming from Rs.
In addition to this redshift caused by the curvature of space, one has to add the

redshift due to the acceleration of the infalling particles; if one applies these two
combined effects to the light emitted by a collapsing stellar remnant, the timescale
for the object to reach the typical limiting magnitude of the largest telescopes is
very short, much smaller than 1 s. Therefore, although in principle the object never
reaches Rs, in practical terms it becomes undetectable almost instantaneously after
the collapse begins.

An external observer cannot receive any information from within the
Schwarzschild radius; however, it is actually possible to describe mathematically the
region with r <Rs with other coordinate systems (see, for example, [11] and [115]
for elementary discussions on this subject) and hence follow the approach to the
black-hole singularity from the point of view of the infalling object that will smoothly
cross the event horizon around the black hole. One can also demonstrate again in this
different coordinate system that no information can reach the external world from
r ≤Rs.

To summarize, from a viewpoint of a distant observer a black hole does not emit
any signal and interacts with the external world only through its gravitational field.
This is why black holes can be detected only indirectly, from the X-ray radiation of
infalling accelerated ionized hot gas accreted from a binary companion or from the
surrounding interstellar matter.



8 From Theory to
Observations

8.1 Spectroscopic notation of the stellar chemical
composition

Until now we have always specified the chemical composition in terms of X�Y and Z
and a given heavy element abundance distribution. This is a customary and convenient
choice from the theoretical point of view which is not, however, directly related to
what is determined from spectroscopy. The helium abundance, for example, cannot
be determined for all stars, since low-mass objects are generally too cold to show
helium spectral lines, and the metal abundances are usually determined differentially
with respect to the Sun. The traditional metal abundance indicator is the quantity
�Fe/H�≡ log�N�Fe�/N�H��∗ − log�N�Fe�/N�H���, i.e. the difference of the logarithm
of the Fe/H number abundance ratios observed in the atmosphere of the target star
and in the solar one. The choice of iron as the metal abundance indicator (in spite of
the fact that in the Sun iron is not one of the most abundant metals – see Table 2.1)
stems from the fact that iron lines are prominent and easy to measure. For the Sun
�Fe/H�= 0, whereas stars more metal poor than the Sun have [Fe/H]<0. If one
assumes that the solar heavy element distribution is universal, the conversion from
Z to [Fe/H] is given by

�Fe/H�= log
(
Z

X

)
∗
− log

(
Z

X

)
�

(8.1)

because XFe/Z is the same in the Sun and in the target star. When accounting for the
solar value of (Z/X) it becomes

�Fe/H�= log
(
Z

X

)
∗
+ 1�61= log

(
Z

1− Y −Z

)
∗
+ 1�61 (8.2)
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The previous equation provides the observational counterpart of the chemical
abundances used as input for a given stellar model, in terms of the chosen Z and Y ,
assuming a solar metal distribution. As an example, Z= 0�001 and Y = 0�25 provide
�Fe/H�=−1�26, whereas Z= 0�04 and Y = 0�30 provide �Fe/H�= 0�39. Generally,
the helium and heavy element abundance variations are negligible with respect to the
hydrogen abundance that largely dominates the stellar atmospheres apart from specific
cases (like non-DA WDs). This means that X can be considered approximately a
constant and Equation (8.2) can be simplified into

�Fe/H�∼ log
(
Z∗
Z�

)
(8.3)

With this approximation the two previous numerical examples provide �Fe/H�=
−1�24 and �Fe/H�= 0�36, respectively. Typical errors of the spectroscopic determi-
nations of [Fe/H] are of the order of at least 0.10 dex.

If one relaxes the assumption of a universal scaled solar heavy element distribution,
the correspondence between [Fe/H] and X�Y�Z obviously changes because the ratio
between the iron abundance and Z is different from that in the Sun, and depends
on the exact metal distribution in the observed star. In this case, one can still use
Equation (8.1), but the left-hand side refers to the ratio of the ‘total’ abundance of
metals to hydrogen

�M/H�= log
(
Z

X

)
∗
− log

(
Z

X

)
�

which is equal to Equation (8.1) for a scaled solar metal mixture.
A very important case is the �-enhanced metal distribution typical of old metal-

poor ([Fe/H] below about −0�6) objects in the halo of our galaxy (and presumably
in the haloes of all spiral galaxies) and metal-poor objects in the Magellanic Clouds.
Determinations of O, Ne, Mg, Si, S, Ca and Ti (the so-called � elements) abun-
dances in the halo of our galaxy disclose that these elements (denoted collectively
by �) display a distribution characterized by [�/Fe]∼ 0.3–0.4, while for metal-poor
(spectroscopic [Fe/H] values lower than ∼−1�0) Magellanic Cloud stars [�/Fe]∼0.2
(here we employed the spectroscopic notation described before, but considering the
number ratio of � elements to Fe instead of Fe to H), i.e. they are enhanced with
respect to Fe compared with the scaled solar distribution, by a factor approximately
constant (i.e. a factor 2–3) for each of these elements.

The simplest explanation for this occurrence is related to the chemical composition
of the ejecta of Type II and Type Ia supernovae. The former inject into the interstellar
medium matter rich in �-elements, with a minor amount of Fe, while Type Ia
supernovae eject mainly Fe, with a minor �-element component. Since Type II
supernovae progenitors are massive, short-lived objects, the metal mixture of the
most metal-poor stars born at the beginning of the formation of the Galaxy was
produced essentially by Type II supernovae; at later times Type Ia supernovae started
to explode and contribute to the chemical composition of the interstellar medium, so
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that younger stellar generations (like our Sun) are characterized by a metal mixture
with a smaller �/Fe ratio with respect to the oldest stars.

For these �-enhanced mixtures the general relationship between [M/H] and [Fe/H]
is well approximated by

�M/H�∼ �Fe/H�+ log�0�694f� + 0�306�

where f� = 10��/Fe�. For [�/Fe]∼0.3 this equation gives [M/H]∼[Fe/H] + 0.2. It is
easy to understand why with this specific non-scaled solar metal mixture [M/H]>
[Fe/H]. The ratio �/Fe is larger than the solar counterpart at a given Fe abundance,
and therefore the same Fe abundance corresponds to a total metal abundance larger
than the case of a scaled solar one.

8.2 From stellar models to observed spectra and
magnitudes

Stellar evolution models provide the run of physical and chemical quantities from
the centre up to the photosphere of a star of given initial mass, and initial chemical
composition, and their evolution with time. Almost all the information we gather
from observations of stars comes from the detection and analysis of the photons they
emit; observations of the stellar radiation provide low- and high-resolution spectra
and broadband photometry that have to be related to the properties predicted by stellar
models.

A fundamental tool in stellar evolution is the HRD, i.e. the plot of a star bolometric
luminosity versus its effective temperature, which we have widely used in the previous
chapters. The observational counterpart of the HRD is the Colour Magnitude Diagram
(CMD), i.e. the plot of a star magnitude in a given photometric band versus a colour
index (that is the difference between the magnitudes in two different photometric
bands). In this section we discuss the definition of magnitudes and colour indices,
and how they are related to the bolometric luminosity and effective temperatures
predicted by the stellar evolution models.

Given the monochromatic flux f� (energy per unit time, unit area and unit wave-
length) received at the top of the Earth’s atmosphere, what is generally observed at
the telescope is the portion of the flux within a generic photometric band A that cov-
ers the wavelength range between �1 and �2, from which a quantity called apparent
magnitude is defined as

mA =−2�5 log

(∫ �2
�1

f�S�d�∫ �2
�1

f 0
�S�d�

)
+m0

A (8.4)

Here f 0
� denotes the spectrum of a reference star that produces a known appar-

ent magnitude m0
A and S� is the response function of a given photometric filter
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(i.e. a measure of the efficiency of photon detection within the filter wavelength
range) in the wavelength interval (�1��2). It is clear from this definition of mA that
the apparent magnitudes are relative quantities defined with respect to some reference
star. This reflects the historical development of stellar photometry.

Many photometric systems exist, covering several different wavelength ranges,
from the ultraviolet to the infrared part of the spectrum.1 Figure 8.1 shows the
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Figure 8.1 Response functions S��� for filters of various photometric systems. The bottom panel
shows the spectra (in arbitrary units) of Vega and the Sun (courtesy of L. Girardi)

1 See http://ulisse.pd.astro.it/Astro/ADPS/Systems/index.html.



FROM STELLAR MODELS TO OBSERVED SPECTRA AND MAGNITUDES 243

response functions S��� of some widely used filters. A measure of the ‘representative’
wavelength of a given photometric band is the effective wavelength �eff , given by

�eff =
∫ �2
�1

�f�S�d�∫ �2
�1

f�S�d�

It is interesting to notice that the effective wavelength depends not only on the
response function S�, but also on f�, i.e. on the spectrum of the star under scrutiny
(in the following, when we consider �eff for some photometric system, we refer to
the case of a solar-like star).

The difference between the apparent magnitudes of a star in two different bands A
and B�mA −mB ≡ �A−B�, is called colour index and it is completely defined when
the flux and apparent magnitude of the chosen reference star in the A and B bands
are fixed.

It is obvious that the apparent magnitude of a star depends on its distance, and
therefore it is not a quantity directly associated with the intrinsic properties of the
star itself. To overcome this problem one defines the absolute magnitude in a given
band A�MA, as the apparent magnitude the star would have at a distance of 10 pc,
that is given by (if the radiation travels undisturbed from the source to the observer)

MA =mA − 5 log�d�+ 5 (8.5)

where d is the distance in parsec. The difference �mA−MA�≡ �m−M�A is called the
distance modulus. A comparison of the absolute magnitudes provides a measure of the
stellar intrinsic luminosities in a given wavelength range. The colour index �A−B�
is obviously unaffected by the distance. The distance obtained from Equation (8.5)
is what is called luminosity distance dL in a cosmological context (see Chapter 1
and Equation (1.9)). In the case of distances to objects co-moving with the Hubble
flow one can combine Equation (1.10) with the definition of magnitude in order to
express dL in terms of a distance modulus.

The surface properties predicted by theoretical stellar evolution models are Teff and
bolometric luminosity L (plus chemical element abundances) which are, however, not
directly determined by observations. In fact, as shown above, observations measure
the flux of a star (energy per unit area and unit time) received at the top of the
Earth’s atmosphere, in a given wavelength range determined by the detector and
filter employed. Here we describe the transformation from effective temperatures
and bolometric luminosities to observed magnitudes and colour indices following the
simple and general formalism presented in [84].

If light travels undisturbed from the star to Earth, the flux f� at a given wavelength
� received at Earth is related to the flux F� at the stellar surface by

f� =F�

(
R

d

)2

(8.6)
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When transforming the prediction of stellar models into observational magnitudes,
we first need to determine from the surface luminosity L and Teff the flux F� at the
stellar surface. This is done by using results from model atmosphere computations;
a model atmosphere is uniquely determined by its chemical composition, gravity
and effective temperature, and provides the monochromatic fluxes F� (i.e. the stellar
spectrum at a given resolution) at the stellar surface that can be transformed into f�
for a given distance d according to Equation (8.6). The L�Teff and surface gravity
g of the stellar model can therefore be used to determine the appropriate model
atmosphere, hence the expected F� for the star. Notice that if stars were to radiate as
perfect black bodies, F� would depend only on Teff .

Figure 8.2 displays the fluxes (in units of erg cm−2 s−1 hz−1 ster−1) computed from
theoretical model atmospheres with the same chemical composition (solar) the same
gravity (the solar gravity, log�g�∼4.5) and two different Teff values. The hotter
spectrum is shifted towards shorter wavelengths and has in general higher fluxes as
expected from black-body radiation; however, the shape is not exactly like a black
body, due to the absorption lines produced by the chemical elements in the stellar
atmospheres. These absorption lines subtract energy from some wavelengths and
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Figure 8.2 Comparison of the energy fluxes (units of erg cm−2 s−1 hz−1 ster−1) emitted by two
stars with the same solar chemical composition and solar gravity, and two different values of Teff .
The effective wavelength of some photometric filters is also marked
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redistribute it to other parts of the spectrum. One can, in general, think of the stellar
spectrum as a black-body spectrum emerging from the stellar photosphere, that is
then modified during the crossing of the less dense and cooler atmospheric layers,
that also induce a dependence of F� on both metallicity and surface gravity.

The absolute magnitude of a star, as discussed before, is equal to the apparent
magnitude of the object when it is located at d= 10 pc, i.e. (see Equation (8.5))

MA =−2�5 log

[(
R

10 pc

)2
∫ �2
�1

F�S�d�∫ �2
�1

f 0
�S�d�

]
+m0

A (8.7)

By using Equations (8.7), assuming S� = 1 at all wavelengths, �1 = 0 and �2 =
�, and adopting as reference star the Sun, we introduce the absolute bolometric
magnitude of a star as

Mbol =Mbol�� − 2�5 log�L/L��=Mbol�� − 2�5 log�4	R2Fbol/L�� (8.8)

where Mbol�� is the solar absolute bolometric magnitude (see below). The surface
bolometric flux of a star is related to its effective temperature according to the relation

Fbol =
∫ �

0
F�d�= ac

4
T 4
eff

We define the bolometric correction BCA to a given photometric band as

BCA ≡Mbol −MA (8.9)

If we now substitute Equations (8.7) and (8.8) into Equation (8.9) we obtain

BCA=Mbol��−2�5 log
[
4	�10 pc�2

acT 4
eff

4L�

]
+2�5 log

(∫ �2
�1

F�S�d�∫ �2
�1

f 0
�S�d�

)
−m0

A (8.10)

The bolometric correction to a given wavelength band A depends therefore on the
stellar energy distribution F� (that depends on surface gravity, effective temperature
and chemical composition) its effective temperature, the solar luminosity and solar
bolometric magnitude, spectral distribution and apparent magnitude of the reference
star that defines the apparent magnitude scale.

The value of L� is known and, once the bolometric magnitude of the Sun is fixed
(e.g. Mbol�� = 4�74 following [12]) what is left in order to convert Teff and L into
magnitudes is the choice of f 0

� and m0
A, which we call (following [84]) ‘zero points’

of a given photometric system. Various choices are possible, here we discuss briefly
the more widely used one.

The very popular Johnson–Cousins–Glass UBVRIJHKLMN – that will be called
simply the Johnson system in what follows – and HST/WFPC2 VEGAmag systems
(see Figure 8.1) for example, make use of the star Vega to fix the zero points.



246 FROM THEORY TO OBSERVATIONS

The Johnson system assumes that the apparent magnitude of Vega in the V band is
mV = 0, and all its colour indices are equal to zero, whereas the HST system defines
some colours with slightly different values. These choices determine the m0

A constant
in Equation (8.10). We stress that this definition of Vega apparent magnitudes is
purely operative; it sets the zero point of the various magnitude scales but it does
not mean that the fluxes received from Vega are the same at all wavelengths, since
they of course change with �. As for Vega spectral energy distributions f 0

� , there
are observations that do not, however, cover the full wavelength range of the entire
photometric system. What is often done is to take the spectral distribution F

Vega
�

from an appropriate model atmosphere for the star (Teff = 9550K, log�g�= 3�95 in
cgs units, [Fe/H] =−0�5). The F

Vega
� has then to be multiplied by the factor �R/d�2

in order to obtain the value at the Earth’s atmosphere; this factor is easily derived
by taking the ratio of the observed to the theoretical flux at a given wavelength –
e.g. at 5556Å, where there is a precise empirical determination – that provides
�R/d�2 = 6�247× 10−17.

The procedure outlined above allows us to determine the bolometric correction
BCA to a given photometric band A; hence, if the stellar bolometric luminosity is
known, one can determine the corresponding MA from Equations (8.9) and (8.8). In
practice, tables of bolometric corrections and colour indices (it is easy to realize from
Equation (8.9) that a given colour index (A−B) is simply equal to BCB −BCA) are
available, for a grid of gravities and Teff that cover all the major phases of stellar
evolution, and for a number of chemical compositions (e.g. [122]). Interpolations
among the grid points provide the sought BCA for the surface gravity, Teff and
chemical composition at the surface of the theoretical stellar model. From the model
luminosity one determines Mbol and then MA is immediately computed using the BCA

obtained before.
Figure 8.3 displays, as an example, the evolution of a 1M� star with chemical com-

position typical of the halo of the Galaxy, from the ZAMS up to the He flash ignition.
Figure 8.3(c) shows the evolutionary track in the HRD, whereas Figure (8.3)(a),(b)
and (d) display various CMDs obtained with different filter combinations. As a gen-
eral rule the colour index (displayed on the horizontal axis) tracks the model Teff ,
whereas the magnitude in a given wavelength band (vertical axis) tracks the stellar
luminosity; however, the shape of the evolution in the CMD is completely dependent
on the filter selection. In these plots the V − �B− V� combination follows closely
the HRD, whereas the U − �B−V� and especially the V − �U −B� CMD produce a
different shape. The reason for these differences is twofold. On the one hand, once
the chemical composition of the stellar surface, surface gravity and Teff are fixed, the
bolometric correction depends on the filter considered, since the wavelength band
coverage (and hence the portion of the stellar spectrum included in Equations (8.7)
and (8.10)) changes with the filter selection. The other reason is that the sensitivity of
a generic colour index to Teff is a function of Teff itself. This is qualitatively illustrated
by Figure 8.2, that shows two spectra of different Teff and the effective wavelength
of some widely used filter. Consider a decrease of Teff and, for example, the �U −B�
colour index. The spectrum is shifted to longer wavelengths, more flux is found in
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Figure 8.3 Evolution of a 1M� star with Z= 0�001 and Y = 0�246, from the ZAMS until the tip
of the RGB, displayed in the HRD and various CMDs

the B band with respect to the U band, and the value of �U −B� increases (remember
that more flux means lower magnitude). If, however, the temperature becomes too
low, the U and B filters will sample a wavelength region where the flux is negligible
and then the contribution of the integral in Equation (8.10) to the final values of BCU

and BCB tends to zero. This means that �U − B� loses sensitivity to Teff , the only
dependence left being the term in T 4

eff in Equation (8.10). The same can be said of,
for example, �J −K� when the temperature is too high.

In Figure 8.4 we show analogous CMDs for two DA WDs of masses equal to 0.55
and 1M�. The less massive WD is always the cooler one in the bright part of the
CMD, because its radius is larger. Three of these colour indices show a pronounced
turn to the blue (lower values of the colour index) at low luminosities, in spite of the
fact that the model Teff is constantly decreasing and therefore one expects a steady
increase of the colours with decreasing luminosity. Only the �B− V� index closely
mimics the behaviour of the track in the HRD. The reason for this turn to the blue
is the blocking effect in the infrared of the H2 molecule collision-induced absorption
([91], [193]) that redistributes the energy towards lower wavelengths (for the flux
conservation). This is another important example of how the shape of evolutionary
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Figure 8.4 Evolution of two DA WDs with 0.55M� and 1M�, respectively, displayed in various
CMDs

tracks in the CMD can be substantially altered with respect to the HRD counterpart,
when using specific filter combinations.

8.2.1 Theoretical versus empirical spectra

The transformation from theoretical luminosity and Teff to observed magnitudes and
colour indices has been described assuming that F� at the stellar surface is obtained
from the appropriate theoretical model atmospheres. It is, however, well known that
current theoretical model atmospheres suffer from at least two main shortcomings as
follows.

• Although broadband colours (like the Johnson discussed before) of stars with solar
chemical compositions appear to be reasonably reproduced, many spectral lines
predicted by the models are not observed in the Sun, and also the relative strength
of many lines is not well reproduced. This affects narrowband filters (like the so
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called Strömgren filters, that cover a spectral range a factor of ∼10 smaller than
the UBV system) in which individual metallic lines can significantly affect the
bolometric corrections.

• In convective model atmospheres the energy transport is usually treated with
the mixing length theory; this approximation introduces an uncertainty in the
predicted spectra hence bolometric corrections and colour indices. Recent two- and
three-dimensional hydrodynamical simulations of stellar model atmospheres aim
at addressing this shortcoming, but they have not yet produced libraries of stellar
spectra that cover all the relevant evolutionary phases, mass ranges and chemical
compositions.

These shortcomings cause an uncertainty of several hundredths of magnitude on
the BCA values. An alternative solution is to use empirical spectra of a sample of
nearby stars with independently determined Teff , gravities and chemical composition.
A fundamental problem with this approach is that stars for which empirical Teff

values can be determined are local objects, that cover a narrow range of chemical
compositions, masses and evolutionary phases (reflecting the local population of the
Galactic disk) and would not allow the modelling of different stellar populations. The
only direct method (i.e. without the use of some information from theoretical model
atmospheres) for the empirical determination of Teff is based on the relationship
between bolometric luminosity L and effective temperature of a star of radius R (see
the extensive discussion about the effective temperature scale in [15])

L= 4	R2
T 4
eff

and the relationship between the bolometric flux Fbol measured at the Earth and the
star distance d

Fbol =
L

4	d2

From these two relationships one obtains

Teff =
(
Fbol




)1/4(
d

R

)1/2

=
(
4



)1/4

F
1/4
bol �

−1/2 (8.11)

where � is the angular diameter of the star. Interferometric observations can in prin-
ciple determine � for local stars, while spectrophotometric observations (ground- and
space-based) covering the relevant portion of the wavelength spectrum can provide
an empirical value for Fbol; once these two quantities are known, Equation (8.11) is
employed to obtain Teff . This method (observationally very expensive) can be applied
only to a very small sample of local object. Moreover, the determination of � and
Fbol need (apart from the case of the Sun) both some input from model atmospheres
to estimate, respectively, the limb-darkening correction, and account for interstellar
extinction (see next section).
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8.3 The effect of interstellar extinction

The previous discussion about the calibration of photometric systems has assumed
that the starlight travels undisturbed from the source to Earth. This is essentially the
case of the reference star Vega, and also the theoretical absolute magnitudes MA

must be computed with this assumption if they were to be a measure of the intrinsic
luminosity of the model in the A photometric band.

However, interstellar space is not empty, instead it is permeated by the ISM. The
ISM interacts with the stellar radiation and its effect on the observed magnitudes
and colours of stars must be allowed for if the stellar intrinsic properties are to
be recovered. We have already seen that the main components of the ISM are gas
and dust. Interstellar gas tends to absorb and radiate at a different wavelength and
direction, and dust to scatter the stellar radiation. These effective losses are known
collectively as extinction. In general, the observed flux f� is related to the intrinsic
one in the case of no interaction with the ISM, f��0, by

f� = f��0 e
−��

where �� is the optical depth of the ISM at the observed wavelength. Extinction is not
uniform across the whole spectrum, because �� varies approximately as �−1 in the
visual part of the spectrum. The observed apparent magnitude in some photometric
band is the sum of its intrinsic apparent magnitude and a factor AA (in units of
magnitude) called extinction, which is dependent on the wavelength of observation.
Stars within a distance of about 70–100 pc from us (like Vega) are largely unaffected
by extinction; however, the light from more distant stars and in external galaxies may
cross a substantial amount of ISM which affects its spectral energy distribution.

It is common to denote by mA�0 the apparent magnitude of a star corrected for
the effect of extinction, and by mA its observed value. The extinction A� at a given
wavelength is defined by the following relation:

mA =−2�5 log

(∫ �2
�1

f�10
−0�4A�S�d�∫ �2

�1
f 0
�S�d�

)
+m0

A (8.12)

If A� is constant in the wavelength interval (�1��2) (the shorter the wavelength range
the better this approximation is) then the relationship between intrinsic and observed
apparent magnitude is simply

mA =mA�0 +AA (8.13)

where with AA we denote the constant value of A� within the wavelength range
covered by the filter A. In the presence of extinction, the absolute magnitude of a
star (Equation (8.5)) has to be rewritten as

MA =mA −AA − 5 log�d�+ 5=mA�0 − 5 log�d�+ 5 (8.14)
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The difference between MA and the apparent magnitude mA uncorrected for the
extinction, �m−M�A, is called the apparent distance modulus, while the real distance
modulus �m−M�0 is given by

�m−M�0 =mA�0 −MA = 5 log�d�− 5= �m−M�A −AA (8.15)

The effect of extinction on a colour index (A−B) is

�A−B�=mA −mB =mA�0 −mB�0 +AA −AB ≡ �A−B�0 +E�A−B� (8.16)

where E�A− B�= AA −AB is called colour excess or reddening. What is usually
determined empirically is the so-called extinction law, i.e. the values of the ratio
A�/AV of the extinction at wavelength � to that in the Johnson V band. For example,
in the Johnson system mentioned before the reddening law is well approximated by

AU = 1�53AV �AB = 1�32AV �AR = 0�82AV �AI = 0�60AV

AJ = 0�29AV �AH = 0�17AV �AK = 0�11AV �AL = 0�06AV

The ratio AV/E�B−V� is usually denoted by RV . Moving from the blue part of the
spectrum (B) to the infrared (L) the extinction greatly decreases, because extinction
affects the shorter wavelengths preferentially. The observed flux is overall shifted
to the red part of the spectrum with respect to the intrinsic one. This means that
observed colours of stars are usually ‘redder’ than their intrinsic ones due to the
wavelength dependent effect of extinction.2

In practice one can determine empirically for example E�B− V� or some other
colour excess (we will discuss some methods to obtain this information in the next
section) and then use AV =RVE�B− V� and the previous relationships to compute
the extinction in the desired wavelength band. For E�B− V� values up to a few
tenths of a magnitude the assumption of constant A� within a given photometric
band in the Johnson system does not produce substantial errors in the computation
of the extinctions. However, for larger reddenings one has to take into account the
non-constancy of A� in the given filter wavelength range. According to [12] this
adds a colour term to the equation for AV , leaving unchanged the extinction ratios
given above.

A generic extinction law valid for our galaxy that covers a very large wavelength
range and assumes AV = 3�12E�B− V� is displayed in Figure 8.5 (obtained from
the analytical formulae given in [38]. See also [163].). The effective wavelength of
some filters is also displayed. The bump in the extinction law seen at �∼ 218 nm is
attributed to absorption by graphite particles.

2 In the rest of this chapter, to simplify the notation and unless otherwise specified in the text, we will adhere
to the following guidelines. We generally omit the subscript ‘0’ when referring to the intrinsic colours and
magnitudes of theoretical models, unless otherwise specified; observed colours and magnitudes without the
subscript ‘0’ are referred to as quantities not corrected for extinction.
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Figure 8.5 Extinction law valid for our galaxy. The effective wavelengths of some Johnson filters
are also marked

In a few specific directions RV differs from the standard value given above, and
especially the extinction in the ultraviolet is affected substantially. It is not known
in general how different the extinction laws produced by the ISM of other galaxies
are; in the specific case of the Magellanic Clouds there appear to be variations with
respect to the case of our galaxy, especially for the ultraviolet extinction ([85]).

We will discuss in the next chapter various methods to determine reddening and
extinction of observed stellar populations. Here we mention briefly the classical
method that employs UBV colour–colour diagrams. Figure 8.6 displays the theoretical
�U −B�0 − �B−V�0 diagram of MS stars with solar chemical composition; the mass
of the stars increases moving from the lower-right corner towards the upper-left one.
The open circle displays the position of a hypothetical reddened MS star of solar
chemical composition.

Since the chemical composition is the same, if this object is an MS star, its intrinsic
colours have to lie on the standard sequence (in the position marked by the symbol )
described by the unreddened stars. Its reddening can therefore be easily determined
by shifting the observed �U −B� and �B−V� colours until the standard sequence is
reached. The direction of this shift (the so-called reddening vector) must correspond
to the ratio E�U −B�/E�B−V�= 0�66, that satisfies the reddening law given above.
The amount of the shift, e.g. in �B−V�, provides E�B−V�.

The location of the MS in this colour–colour plane is strongly affected by the
chemical composition of the parent stars. Metal-poor sequences are located above
the solar standard sequence displayed in Figure 8.6, i.e. their �U −B� colour at fixed
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Figure 8.6 The theoretical �U −B�0 – �B−V�0 diagram of MS stars with solar chemical compo-
sition. The open circle marks the location of a hypothetical reddened MS star with solar chemical
composition, the symbol  displays its unreddened location after the correction for interstellar
extinction has been made, while the arrows show the direction of the reddening vector and the
amounts of extinction in �B−V� and �U −B�

�B−V� is smaller. The colour differences due to the metallicity have therefore to be
taken into account when this technique is applied to stars with a non-solar chemical
composition.

8.4 K-correction for high-redshift objects

There is an important effect that has to be taken into account when observing objects
(typically galaxies) whose cosmological redshift z is not negligible. If the object is
moving rapidly away from us, the photons received in a generic photometric band
A have been emitted at shorter wavelengths, and then redshifted by the expansion
of the universe to the wavelength range covered by the filter A. To give a practical
example, light emitted in the wavelength range of the filter U by an object located at
redshift z= 1�21, is detected by us in the I filter. For the same object, light emitted
in the V wavelength range is received in the J filter. The filter mismatch obviously
worsens with increasing redshift; i.e. light emitted in the U wavelength range at
redshift z= 5�0 is detected at Earth in the K filter.
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As a consequence, the apparent magnitude observed within the filter A is not
immediately related to the absolute magnitude MA through luminosity distance dL as
shown by Equation (8.5), but a correction has to be added, the so-called K-correction.
In the case of our fictitious object at z= 1�21, with a measured apparent magnitude
mV , the K-correction takes into account the difference between the fluxes in V (what
we need to compare with the theoretical MV ) and J (what we observe now as mV )
emitted at the source; after its inclusion, the observed apparent magnitude in V will
be the real counterpart of the flux emitted at the source in the V wavelength range.

It is also obvious from this example that, in order to determine appropriate
K-corrections, one needs to know the shape of the object intrinsic spectrum at its
redshift (i.e. at its age). Given that the stellar content of galaxies evolves with time,
using local galaxies as templates to determine K-corrections for distant objects is not
fully adequate. A theoretical modelling of integrated galaxy spectra and their evolu-
tion with time is therefore required to determine accurate K-corrections for various
redshifts and galaxy types (see, for example, the discussion in [153]). We will discuss
the modelling of integrated galaxy spectra in the final chapter of this book.

8.5 Some general comments about colour–magnitude
diagrams (CMDs)

Figures 8.7 and 8.8 display the CMDs of two different stellar populations (respec-
tively, the open cluster Praesepe using data by [111], and the globular cluster M3
using data by [24]) that belong to our galaxy, employing the widely-used BV filters.
The spatial extension of these stellar systems (as for the case of galaxies) is much
smaller than their distance from Earth, so that their stars can safely be assumed to be
located all at the same distance from the observer.

The two most striking features are probably the fact that stars occupy a well-
defined locus in the mV – (B−V ) plane without being spread randomly all over the
diagram, and that the morphologies of the two CMDs are very different. The first
occurrence is related to the fact that, as shown in the previous chapters about stellar
evolution, stars move in the HRD following well-defined paths. The difference in
the CMD morphology (setting aside the fact that the faintest limit is dictated by the
magnitude limit of the photometry, and the vertical and horizontal scales are affected
by the distance modulus and, potentially, reddening and extinction) is caused by
the different properties of two stellar systems, that stellar evolution has to be able
to explain in terms of different physical and/or chemical parameters. Figures 8.9
and 8.10 show the Praesepe CMD in other photometric bands; the morphology of
observed CMDs displays a strong dependence on the chosen photometric filters,
exactly as expected from the theory. There is also a third dimension to the CMDs,
i.e. the number of stars populating its various sections. This number is not constant,
and this has also to be accounted for by some physical explanation rooted in stellar
evolution theories.
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Figure 8.7 CMD of the open cluster Praesepe using the BV Johnson filters
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Figure 8.8 CMD of the globular cluster M3 using the Johnson BV filters
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In general, the interpretation of the observed CMDs of the stellar populations in
our galaxy and in external galaxies in terms of the evolutionary properties of the
parent stars is one of the main goals of stellar evolution. This, in turn, allows the
determination of the star formation and chemical enrichment histories of the popu-
lation under scrutiny, which provides a wealth of information about the formation
and evolution of galaxies and of the universe in general. The next three chapters will
present a number of techniques based on the comparison of observed CMDs and spec-
tra with their theoretical counterparts, aiming at determining fundamental properties
like distance, ages, chemical evolution and IMF of the observed populations.



9 Simple Stellar Populations

9.1 Theoretical isochrones

The most elementary population of stars is the so-called Simple Stellar Population
(SSP) consisting of objects born at the same time in a burst of star formation activity
of negligible duration, with the same initial chemical composition. Although this may
seem just a theoretical toy model, there are very good observational counterparts
of SSPs, namely globular and open clusters, elliptical galaxies and some dwarf
galaxies.

The theoretical CMD for an SSP is called an isochrone, from the Greek word
meaning ‘same age’. The computation of an isochrone is conceptually very simple.
Consider a set of evolutionary tracks of stars with the same initial chemical composi-
tion and various initial masses; different points along an individual track correspond
to different values of the time t′ and the same initial mass. An isochrone of age
t is simply the line in the HRD that connects the points belonging to the various
tracks (one point per track) where t= t′. This means that when we move along an
isochrone, time is constant whereas the value of the initial mass of the star popu-
lating the isochrone at each point is changing. A generic point along an isochrone
of age t is therefore determined by three quantities: bolometric luminosity, effective
temperature and the value of the evolving mass. Once an isochrone of a given age
and initial chemical composition is computed from stellar evolution tracks, it can be
transferred to an observational CMD by applying to each point a set of appropriate
bolometric corrections.

Figure 9.1 shows the HRD of two isochrones with solar metallicity and ages
of 600Myr and 10Gyr, respectively. Selected tracks of the parent stellar models
are also displayed. Different sections of a generic isochrone are named after the
evolutionary phases experienced by the stellar masses evolving at that location. The
MS of an isochrone is therefore the branch populated by objects that are still burning
hydrogen in their cores. The bluest and brightest point along the isochrone MS is

Evolution of Stars and Stellar Populations Maurizio Salaris and Santi Cassisi
© 2005 John Wiley & Sons, Ltd ISBN: 0-470-09219-X



260 SIMPLE STELLAR POPULATIONS

4.0

3.0

2.0

1.0

0.0

4.00 3.80 3.60 3.40

lo
g(

L/
L 

 ) 3.0M

2.8M
2.4M

2.2M
2.0M

1.5M

1.0M

0.9M
0.8M

log(Teff)

Figure 9.1 HRD of selected stellar evolutionary tracks (dashed lines) with the same initial solar
chemical composition and the labelled masses (from [152]). The heavy solid lines display two
isochrones for the same chemical composition and ages of 600Myr (the brighter sequence) and
10Gyr

called TO, because it is populated by objects in which the central hydrogen abundance
is reduced to zero. The susequent SGB, RGB, helium burning and AGB phases are
also obviously represented and accordingly named.

It is clear from Figure 9.1 that the mass of the objects evolving at a given location
along an isochrone (i.e. the mass of the individual evolutionary track intersecting
the isochrone at that point) increases when moving towards more advanced phases.
This increase is due to the fact that lower masses age more slowly, and at a given
time they are less evolved than higher-mass objects. Another important property that
is evident from Figure 9.1, is that the isochrone MS is populated by a large range
of masses (the lower limit being the minimum possible stellar mass) whereas the
mass evolving along the RGB and successive phases is approximately constant, given
that the isochrone stays very close to the evolutionary track of the mass at the MS
end-point (the TO).

A formal explanation of this occurrence is the following. Consider a curvilinear
coordinate s (function of L and Teff ) whose value defines a position along a generic
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isochrone of age t, i.e. starting from zero at the bottom of the ZAMS and increasing
when moving towards more advanced phases. The value of s at a given point is
uniquely determined by the isochrone age t and the value of the evolving mass M
at that point; this means that s is a function of only t and M�s= s�t�M�. We can
invert this function and write t as a function of s and M . By definition of isochrone
(constant age)

dt�M� s�=
(

dt

dM

)
s

dM +
(
dt

ds

)
M

ds= 0

from which we obtain

(
dM

ds

)
t

=−
(
dM

dt

)
s

(
dt

ds

)
M

(9.1)

where the left-hand side represents the change of the mass for a change of position
along the isochrone. If the right-hand side of this equation is close to zero some-
where, the mass evolving in that particular evolutionary phase is practically constant.
Consider the derivative �dt/ds�M ; its inverse, �ds/dt�M , represents the change of
position of a star with initial mass M along the isochrone, when the age changes by
an amount dt (for example, a change from the ZAMS to the TO, when age increases).
This corresponds to the evolutionary speed of mass M along a given phase specified
by the value of s� �ds/dt�M tends to large values for fast evolutionary speeds. In this
case, a small variation of age moves the star a long way along the isochrone, for
example down to the WD cooling phase, so that the variation of s is very large, i.e.
�ds/dt�M →� and its inverse �dt/ds�M → 0. As an example, consider a 1M� star
with solar chemical composition during its MS evolution: at any point along the MS
an age change dt= 1Gyr hardly changes the star luminosity and effective tempera-
ture, whereas the same age difference moves the model from the TO to approximately
the ignition of central He. In addition, stellar evolution computations show that the
value of �dM/dt�s is always finite. This means that for post-MS phases the range
of evolving masses is small (see Figure 9.2) and a good approximation is to use a
constant value of the post-MS evolving mass, equal to MTO (the mass evolving at the
isochrone TO).

In addition to the HRD and CMD location of an SSP, theoretical isochrones enable
us to predict the relative number of stars along the different evolutionary stages.
Given that each point along an isochrone is populated by stars with a certain value
of the mass M , one needs to adopt an IMF that provides the number of stars dn
born with mass between M and M +dM , hence the number of objects populating a
generic interval between two consecutive points along the isochrone. When using an
IMF of the form dn=CM−xdM , the normalization constant C can be constrained
by specifiying either the total mass �Mtot� or the total number �Ntot� of stars born
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Figure 9.2 HRD of two isochrones (from the bottom of the MS until the end of the AGB phase)
with ages equal to 2 and 3Gyr �Z= 0�001�. The value of the stellar mass (in solar mass units)
evolving at representative points is also shown (isochrones from [84])

when the SSP formed. It is easy to show that when x �= 2, the value of the constant
C is given by

C= �2− x�
Mtot

M2−x
u −M2−x

l

(9.2)

where x is the exponent of the IMF,Mu andMl are, respectively, the lower- and upper-
mass limits of the stellar mass spectrum, e.g.∼0�1 and∼100–200M�. If x= 2

C= Mtot

ln�Mu/Ml�
(9.3)

This normalization guarantees that the total mass of stars formed stays constant,
independent of the value of x, but the initial number of stars formed changes with
changing value of the slope of the IMF. In the case where Ntot is given instead of
Mtot, the previous relationships have to be rewritten as

C= �1− x�
Ntot

M1−x
u −M1−x

l

(9.4)
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if x �= 1 and

C= Ntot

ln�Mu/Ml�
(9.5)

if x= 1.
If we now use again the curvilinear coordinate s introduced before, the number of

stars dN in a generic interval between s and s+ ds along an isochrone of age t is
given by

dN = dn

dM

(
dM

ds

)
t

ds

which can be rewritten as

dN =− dn

dM

(
dM

dt

)
s

(
dt

ds

)
M

ds (9.6)

after using Equation (9.1). The term �dt/ds�ds corresponds to the stellar lifetime in
the interval ds. For a generic post-MS phase the first two terms in the right-hand side
of Equation (9.6) are constant, because the evolving mass is to a good approximation
equal to the mass at the isochrone TO. This means that the ratio between the number
of stars in two different post-MS points along the isochrone will be simply equal to
tPMS1/tPMS2 where tPMS1 and tPMS2 are the evolutionary timescales (of the TO mass)
at these two locations.

For the purpose of comparing theory with observations one usually computes star
number counts as a function of the magnitude in a given wavelength band along
an isochrone, called differential luminosity function or simply luminosity function.
From the previous discussion it is easy to see that the number of stars dN between
magnitudes MA and MA +dMA along a given isochrone is given by

dN = dn

dM

dM

dMA

dMA =CM−x dM

dMA

dMA

where the derivative dM/dMA is evaluated along the isochrone.
If mass-loss processes are included in the individual stellar tracks, the situation is

slightly more complicated, because along each track the total mass is changing with
time. The procedure to compute the isochrones is the same, i.e. one connects the
points of equal age along tracks with various initial masses. However, the value of
the mass evolving at a given point along the isochrone is now smaller than the initial
mass of the parent track. It is important to remark that, when computing the number
of stars populating a given point along an isochrone, one has to use in the IMF the
value of the initial mass of the stellar track originating that point, not the actual mass.
Also the entire discussion about the number of stars populating the isochrone makes
use of the initial values of the mass, since the initial mass determines the evolutionary
timescales and the IMF.
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In the case of isochrones including the WD cooling, one has to consider necessarily
the mass loss along the AGB phase, at least in the form of the initial–final mass
relationship, even in case of isochrones where the mass loss is not included in
the previous evolutionary phases. For the WD sequence the assumption of constant
initial mass (corresponding to the assumption of constant progenitor mass equal
approximately to the value of the TO mass) breaks down at low luminosities, due to
the long WD cooling times and the finite age of the SSP, which ensures that at the
bottom of the WD sequence of a given age one finds objects produced by the more
massive low- and intermediate-mass stars evolved past the AGB phase in the earlier
stages of the SSP evolution.

When determining the bolometric corrections to a generic photometric system it is
always the value of the evolving mass that must be considered, since it is this quantity
that, together with Teff and L, determines the value of the actual surface gravity –
needed to determine the appropriate bolometric corrections – not the initial mass.

In the following sections we will show in detail how quantitative and qualitative
general properties of theoretical isochrones can be used to obtain relevant information
about both old and young SSPs.

9.2 Old simple stellar populations (SSPs)

When studying the universe at any redshift, it is the properties of the oldest stellar
populations that are the most relevant for unveiling the first stages of cosmic evolu-
tion, because they are the objects formed closer in time to the Big Bang. As a first
step we will study the properties of old SSPs; ‘old’ here denotes ages larger than
∼4Gyr, corresponding to SSPs populated by low-mass stars far from the mass range
of the RGB phase transition.1 The CMD of these old SSPs is always characterized by
prominent and well-populated SGB, RGB and HB phases. The age range of these old
populations encompasses the age of the universe from redshift z=0 up to z∼1�5–2�0,
according to the parameters of the cosmological model shown in Table 1.1.

9.2.1 Properties of isochrones for old ages

Figure 9.3 shows a 10Gyr isochrone for a metal-poor chemical composition (i.e.
chemical composition with metallicity lower than the solar value) typical of the
globular clusters in the Galaxy, from the MS until the end of the AGB phase.
The isochrone has been computed including a Reimers mass-loss law �dM/dt ∝
��LR�/M� along the RGB with the free parameter � fixed at 0.2. Due to the mass
loss, the mass of the objects evolving along the RGB is reduced by ∼0�1M� when

1 The following alternative definitions can often be found in the literature. SSP ages older than ∼10Gyr are
defined as ‘old’ ages, whereas the interval between ∼1Gyr and ∼10Gyr is defined as ‘intermediate’ age. Ages
lower than ∼1Gyr are denoted as ‘young’ ages.
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Figure 9.3 HRD of a 10Gyr metal-poor isochrone. The ZAHB (dashed line) and the location of
stars with selected masses along the ZAHB are also displayed

the tip of the RGB is reached. Increasing � leads to a higher mass loss, and while
the RGB phase is practically unaffected, the portion of the isochrone corresponding
to the beginning of the He-burning phase would move along the dashed line, towards
lower masses, i.e. higher values of Teff (see Section 6.3).

Figure 9.4 shows two pairs of isochrones (from the ZAMS until the ZAHB)
in the HRD and the MV − �B− V� CMD, computed for Z= 0�0001 and Z= 0�02
respectively, and ages of 10 and 12.5 Gyr. For �B− V� above ∼0.0 the ZAHB is
approximately horizontal, whereas at lower values of �B− V� it becomes almost
vertical, due to the steep increase of the bolometric correction to the V band with
increasing Teff . Along the ZAHB, in the colour range between �B−V�∼0�2 and ∼0�5
lies the RR Lyrae instability strip, where stars pulsate radially (see Section 6.6.1). The
brightness values obtained from stellar evolution models in hydrostatic equilibrium
correspond to a good approximation to the average magnitudes over a pulsation cycle
(this is the quantity we refer to, when discussing the magnitude of RR Lyrae or
Cepheid stars). This average magnitude is obtained by determining the average value
of the flux received from the star over a pulsation period, and transforming this flux
into the corresponding magnitude.

A number of important properties of the isochrones displayed in the HRD and
CMD of Figure 9.4 have to be noted. First, the lower MS – starting from ∼2 mag
below the TO – and RGB are unaffected by age, but are sensitive to the metallicity.
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Figure 9.4 HRD and CMD of two pairs of isochrones from the ZAMS to the ZAHB, with ages
t=10 and 12.5Gyr, Z=0�0001 (solid line) and 0.02 (dashed line). The various evolutionary stages
along the most metal-poor isochrone are marked

Second, the brightness of the ZAHB is unaffected by age but depends on Z. Third,
the brightness and colour of the TO are affected by both age and metallicity. This
qualitative behaviour of the isochrones with varying age and metallicity is the same
in both the HRD and CMD (and also does not generally depend on the choice of
the photometric bands used in the CMD). This means that it is related mainly to the
properties of the stellar models (L and Teff ) although the variations of the bolometric
corrections with metallicity also plays a part in determining the relative CMD location
of the isochrones.

The independence of age of the lower MS is easily explained by the fact that
objects populating this CMD region have very long evolutionary times and are still
on the ZAMS. The location of the TO at a given chemical composition is determined
by the value of the stellar mass evolving at the stage of central hydrogen exhaustion.
Increasing the SSP age means that lower masses are in this evolutionary stage, hence
the lower TO brightness. The metallicity dependence at a fixed age is caused by the
lower luminosity of MS stars with higher metallicity, which more than compensates
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for the fact that higher metallicity SSPs of a given age display larger masses at the
TO because of their longer evolutionary timescales.

As for the RGB, we have already discussed how its location is weakly dependent
on the stellar mass, and this is true especially for the mass range corresponding
to ages above a few Gyr. On the other hand, as remarked in previous chapters,
the chemical composition strongly affects the temperatures of RGB stars, hence the
dependence of the colours of the isochrone RGB on Z. The ZAHB brightness is
mostly determined by the value of the He core mass at the He flash, which decreases
with increasing metallicity, and therefore more metal-rich ZAHBs are fainter. Age
does not appreciably affect the He core mass when the age of the evolving RGB star
is above ∼4Gyr (corresponding to masses lower than 1�3–1�2M�, the precise value
depending on the initial chemical composition) and therefore the ZAHB brightness
is independent of age for old SSPs.

It is also important to discuss briefly the effect of different metal mixtures on
theoretical isochrones. Figure 9.5 displays two pairs of 10Gyr isochrones for two
different values of the metallicity Z, one pair computed with a scaled solar mixture,
the other with a ��/Fe	=0�4 metal mixture, typical of the halo of our galaxy. At low
metallicities the scaled solar and �-enhanced isochrones are identical (as expected
on the basis of the short discussion about single evolutionary tracks) whereas sizable
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Figure 9.5 CMDs of two pairs of 10Gyr isochrones from the ZAMS to the ZAHB, computed
with metallicities Z= 0�0001 and 0.02, both scaled solar (solid line) and �-enhanced ���/Fe	=
0�4 – dashed line)
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differences in both luminosities and effective temperatures are present when Z=0�02
(see [175], [184]).

When the isochrones are transformed to an observational CMD by using bolometric
corrections for the appropriate metal distribution, there is still good agreement at low
metallicity between scaled solar and �-enhanced isochrones with the same Z, but this
deteriorates when Z increases (large differences start to appear when Z>0�001, [42])
scaled solar isochrones being generally redder and fainter at a given Z. This means
that the use of ��/Fe	= 0�4 bolometric corrections further amplifies the differences
found in the HRD. We also recall that a given value of Z corresponds to different
values of [Fe/H] for scaled solar and �-enhanced mixtures.

Our ability to predict the observed CMD of SSPs of varying ages and initial
chemical compositions, opens the door to the possibility of using quantitative and
qualitative properties of theoretical isochrones as tools to determine a number of
fundamental parameters of SSPs. In the next sections we will focus our attention on
techniques aimed at determining ages, initial chemical abundances and distances to
young and old SSPs; these are important parameters needed to study the processes
of cosmic evolution that have lead to the formation of the structures we see in
the universe today, and test the consistency of the cosmological model with the
constraints coming from stellar evolution theory.

9.2.2 Age estimates

A direct lower limit to the age of the universe and information about the first stages
of galaxy formation may be obtained by determining the age of the oldest objects
in the Galaxy, that is, the metal-poor ([Fe/H]<0) stars located in the halo. Galactic
globular clusters are particularly useful for this purpose, since they are SSPs located
at distances much larger than their spatial extent, so that their stars are, to a very
good approximation, all at the same distance from us. This enables us to apply simple
methods based on the stellar evolution theory. The fact that globular clusters are
SSPs is established by the striking correspondence between isochrones for old SSPs
and globular cluster CMDs (see Figure 9.6; the ZAHB in the cluster CMD is the
lower envelope of the observed HB star distribution) and spectroscopic measure-
ments that provide remarkably uniform [Fe/H] values for stars belonging to the same
cluster.

It is, however, also evident that observed CMDs at a given magnitude display
a non-negligible colour range, at odds with theoretical isochrones. This broadening
of the observed colour sequences is due to photometric errors and blending effects
(due to unresolved neighbouring stars in the cluster) plus the presence of unresolved
binaries. In the latter two cases the fluxes we receive from the unresolved components
add up, producing brighter magnitudes at a given colour when compared with the
isochrone prediction, hence widening the expected MS colour distribution at a given
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Figure 9.6 Comparison of the CMDs of (a) a 12Gyr old metal-poor isochrone and (b) the globular
cluster M15 (data from [67]). The position of the RR Lyrae instability strip is marked on the cluster
CMD

magnitude (these unresolved objects are located to the right-hand side of the single
star MS).

It is customary to determine from the empirical CMD a ‘fiducial line’ correspond-
ing to the observed CMD in the case of negligible photometric errors, blending and
unresolved stars. What is done in practice is to divide the observed CMD in magni-
tude bins (whose size is dictated by the need to have a large enough sample of stars
in each bin to allow a statistical analysis) and determine the colour distribution of
the objects in each bin. This colour distribution usually shows a very clearly-defined
peak and the corresponding value (the mode of the distribution) is usually taken as
representative of the fiducial point at that bin. In the case of the SGB, which is almost
horizontal in the CMD, colour bins are considered and the mode of the magnitude
distribution in each bin is assigned to the SGB fiducial line. In this way the observed
CMD is reduced to a line, that can be more easily compared to theoretical isochrones
(see Figure 9.7).
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Figure 9.7 Fiducial line for the MS, SGB and RGB of the globular cluster M5 (filled circles)
superimposed on the observed CMD (data from [190])

A natural approach to the age determination would be to fit the whole theoretical
isochrone to the observed CMD of a generic SSP. If the stellar models were to be
largely free of uncertainties, a global fit of isochrones to observations (for example
through a 
2 minimization procedure) would provide a series of parameters, i.e. age,
distance and initial chemical composition. However, uncertainties hard to quantify
especially on Teff and colours of theoretical models still exist, related mainly to the
treatment of superadiabatic convection (stars populating old SSPs are low-mass stars
with convective envelopes) molecular opacities at low temperatures and theoretical
spectra for cold stars. A global isochrone fit could therefore lead to inaccurate
solutions for the parameters of the best-fitting isochrone if some of the theoretical
predictions are largely in error. It is therefore customary to focus on some age-
sensitive features of the models that are less affected by current shortcomings in the
model computation. We will see in the next chapter that, for the specific case of
composite stellar populations, one cannot avoid the use of the whole isochrones to
gain information about the observed CMD.

Figure 9.4 has already shown the effect of varying age on isochrones. The TO
region is clearly the point to be used for age determinations; it becomes redder and
dimmer for increasing age. One could, in principle, compare either the observed TO
brightness or the TO colour with the appropriate theoretical isochrones after correcting
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the observed quantities for the effect of distance and extinction. Differential quantities
like the magnitude (usually V ) difference between ZAHB and TO or the colour
(usually either �B−V� or �V − I�) difference between TO and the base of the RGB
have been devised in order to overcome this problem. Since distance and extinction
affect TO, RGB and ZAHB in the same way, magnitude or colour differences are
insensitive to these parameters.

Recent results about absolute and relative age determinations of large samples
of Galactic globular clusters ([170], [183], [226]) based on the methods described
below provide a broadly consistent picture in which the metal-poorer clusters ([Fe/H]
below ∼−1�6) are coeval (have the same age) within ∼1Gyr, their age being
∼12�5± 1�5Gyr. More metal-rich clusters display an age spread up to ∼4–5Gyr.
Among these non-coeval clusters an age–metallicity relationship is present, with the
mean age decreasing by ∼0�2Gyr for a 0.1 dex increase in [Fe/H]. The oldest clusters
in the Magellanic Clouds appear to be coeval with the clusters in our galaxy, and in
general the age of the oldest star clusters for which we can detect the TO region is
in good agreement with the age of the universe predicted by the currently favoured
cosmological model (see Chapter 1).

The vertical method

The so-called vertical method (see, for example [53], [205]) for the age determination
of old SSPs is based on the comparison between observed and theoretical values of
the quantity �V =VTO−VZAHB (see Figure 9.8) the magnitude difference between the
TO point and the ZAHB at the instability strip region, around log�Teff�=3�85��B−V�
∼0�3�. The precise reference point along the ZAHB is not crucial, as long as the
horizontal part of the ZAHB is considered.

Given that the ZAHB brightness is largely unaffected by age, a change of age at
a given [Fe/H] changes the value of �V through the change of the TO brightness;
for increasing ages �V increases, because the TO gets dimmer. This method works
well mainly in the V band (or photometric bands at a similar wavelength) where the
ZAHB is mostly horizontal. Figure 9.9 shows how in different wavelength bands the
ZAHB is no longer horizontal, due to the behaviour of the corresponding bolometric
correction with Teff ; in these cases the observed value of �V is affected by the
choice of the reference colour along the ZAHB and, as a consequence, by the SSP
reddening.

We have displayed in Figure 9.10 the run of �V with [Fe/H] for different ages of
the SSP. At a given [Fe/H] a 0.1 mag variation of �V (that is, a 0.1 mag variation of
VTO) corresponds to ∼1Gyr age change in this age range typical of the oldest objects
in our galaxy. Once an observed value of �V is fixed, an 0.4 dex uncertainty in the
cluster [Fe/H] causes an age uncertainty by only ∼1Gyr. This makes the vertical
method relatively insensitive to uncertainties in the cluster [Fe/H]. This occurrence
stems from the fact that at a given age both the ZAHB and the TO brightness scale
with [Fe/H] in approximately the same way. Typical errors of the observed �V values
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Figure 9.8 Graphical representation of the �V (vertical) and ��B−V� (horizontal) age indicators
for old SSPs

for the best-observed clusters are of the order of 0.10 mag, mainly due to the fact
that the TO region in the CMD is approximately vertical (large V range at almost
constant colour) making somewhat difficult the precise detection of the TO point.
Some authors (i.e. [25], [53]) try to circumvent this problem by using the magnitude
of a point close to the TO but 0.05 mag redder, either on the MS or on the SGB.
The brightness of this reference point along the MS or the SGB is still sensitive to
the SSP age (see the isochrones in Figure 9.4) and in principle is better defined than
the TO one. However, some information on the MS or SGB theoretical colours are
being introduced in the calibration of its brightness with age, and they depend on
more uncertain quantities, like the superadiabatic convection treatment and the colour
transformations.

Uncertainties in the isochrone VTO predictions are expected to be of the order of a
few hundredths of a magnitude, due to both the bolometric luminosity and bolometric
correction predictions.

Sometimes the observed HB magnitude considered does not correspond to the
ZAHB, instead it is the mean level <VHB > of objects in the RR Lyrae instability



OLD SIMPLE STELLAR POPULATIONS (SSPS) 273

0.0

2.0

4.0

M
A

–0.20 0.00 0.20 0.40 0.60

(B – V )

K

I

V

B

Figure 9.9 CMDs in various photometric filters of a ZAHB computed for a metallicity Z=0�001

3.0

3.5

∆V
 T

O

–2.5 –2.0 –1.5 –1.0 –0.5

[Fe/H]

8.0

9.0

10.0

11.0

12.0

13.0

14.0

H
B

Figure 9.10 Theoretical values of �V as a function of [Fe/H] and age, compared with the
observational counterpart data for a large sample of Galactic globular clusters

strip or at its red side. In this case one can use empirical relationships between the
observed mean HB level and the ZAHB one, as in the following one (from the data
published in [188]):

VZAHB =<VHB >+0�05�Fe/H	+ 0�20 (9.7)
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This empirical relationship clearly shows that the HB becomes wider (in magnitude)
when the metallicity increases.

Practical difficulties are encountered when trying to apply the �V technique to
clusters with an HB populated only in the blue part (see the discussion about the
second parameter problem later on) or when the observed CMD includes only a few
HB stars. In the former case the ZAHB is almost vertical, thus making its use to define
the �V parameter difficult, and again its value would depend on the choice of the
reference colour at which the ZAHB level is determined. In the latter case, when only
a few stars populate the observed HB, it is impossible to define the lower boundary of
the star distribution that corresponds to the ZAHB, and also the determination of the
mean magnitude of HB stars may be subject to biases due to the small star sample.
In both these situations one can determine the age difference with respect to clusters
with well-behaved HB, using the horizontal method discussed in the next section.
Alternatively, in the case of a poorly populated (and non-blue) HB another possibility
is to determine the relationship between the ZAHB (or mean HB) level and the
observed mean value by performing Monte-Carlo (MC) simulations of the observed
HB population ([143]). By employing an MC algorithm, it is possible to distribute
randomly along the HB portion of the theoretical isochrone, a number of objects
equal to the observed sample, and also include their photometric errors. In brief, the
location of one star in the CMD of the MC simulation is obtained by drawing a mass
value (within the range of the initial masses of the HB stars) according to a prescribed
IMF, and interpolating between the colours and magnitudes of neighbouring points
along the isochrone (corresponding to initial masses bracketing the value drawn with
the MC algorithm). One can then determine magnitude and colour values that include
photometric errors by drawing a number from a Gaussian distribution with mean
value equal to the magnitude (or colour) determined from the isochrone, and � equal
to the prescribed photometric error.

After the mean magnitude of this synthetic sample is determined, simulations are
repeated many times, and the final distributions of mean values (say 100) is analysed.
The difference between the mean (or the mode) of this distribution and the theoretical
ZAHB level provides the best estimate of the correction to be applied to the observed
HB mean magnitude, to determine the observational value of �V .

The horizontal method

The horizontal method for age determination (see, for example [191], [227]) involves
the comparison of the observed and theoretical values of the quantity ��B− V�=
�B−V�RGB− �B−V�TO (or equivalently in �V − I� colours), i.e. the colour difference
between the TO and the base of the RGB (see Figure 9.8). There are various possible
definitions of �B−V�RGB; here we denote with �B−V�RGB the colour of the RGB 2.5
mag above the TO magnitude. This horizontal parameter is sensitive to age through
the variation of �B−V�TO with t, given that the RGB colour is unaffected by age for
old populations. This means that an increase of the SSP age decreases the value of
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Figure 9.11 Theoretical values of ��B−V� as a function of [Fe/H] and age (from [181])

��B−V� (or ��V − I�) because the TO gets redder. Figure 9.11 displays the run of
��B−V� with [Fe/H] for some representative ages.

As in the case of the vertical method, ��B− V� at fixed age is weakly sensitive
to the metallicity. This may appear surprising, given the strong dependence of the
RGB colour on Z. However, the change of the RGB location with Z is compensated
by the corresponding change of the TO colour; in fact the dependence of the TO
colour on the metal content (at fixed age) has the same sign as for the RGB, e.g.
they both become redder when the metallicity increases. The derivative ��B−V�/�t
is ∼0.010–0.015 mag Gyr−1 around t = 12Gyr (the precise value depends on the
value of the absolute age); this means that one needs an extremely high accuracy
in both the observational determination and theoretical prediction of this quantity
to keep the error on the estimated age low. Theoretical uncertainties (due to colour
transformations and treatment of superadiabatic convection) are surely higher than
0.01–0.02 mag, and therefore the horizontal method is hardly used for absolute age
determinations. However, as discussed, for example, in [181] and [227], one can
employ this horizontal method to determine age differences (for example in the
case of clusters with a very blue vertical HB or with a few HB stars in the CMD,
as discussed before) with respect to template clusters whose absolute age is well
established using the �V technique. The reason is that the value of ��B− V�/�t
around a given age t appears to be weakly affected by the use of different sets of
colour transformations, different values of the mixing length and also by a change of
the initial He content of the stellar models.
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Ages from Strömgren photometry

The Strömgren system has been designed to isolate parts of the stellar spectra from
which to build colour indices sensitive to specific properties of the stars; it consists
of four filters uvby, each covering a wavelength range of typically ≈200Å, plus a
narrower pair n and w centred at 4860Å, with a bandwidth of 30Å and 150Å, that
measure the strength of the Balmer H line and its adjacent continuum. From these
filters the colour indices �b− y�� c1 ≡ �u− v�− �v− b��m1 ≡ �v− b�− �b− y��≡
w −n are usually computed.

The reddening effect on the �b− y� colour due to extinction, E�b− y�, is related
to E�B− V� according to E�B− V�= 1�4 E�b− y�; the dereddened values of c1
and m1 are related to the reddened ones by �c1�0 = c1 − 0�20 E�b− y� and �m1�0 =
m1 + 0�32E�b− y�. The  index is insensitive to reddening due to the very narrow
spectral range covered.

Figure 9.12 displays two pairs of isochrones (MS and part of the RGB) for ages
of 12 and 14Gyr and two different values of [Fe/H], in the c1 − �b− y� plane. The
morphology of the isochrones resembles the CMDs determined from the BVI filters;
the MS is on the lower part of the diagram, the TO is again the age-sensitive region
(lower c1 for increasing age) whereas the RGB is on the right side of the diagram,
at high values of �b− y�. The TO position can be used for age determination –
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Figure 9.12 Isochrones in the c1 − �b− y� CMD for the labelled values of age and [Fe/H] (from
[181]). The older isochrone at each metallicity has a lower value of c1 at the TO
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by comparing observed TO colours with predictions from theoretical isochrones –
without the need to know the SSP distance (only reddening corrections are needed)
since c1 and �b− y� are both colour indices. Transformations to Strömgren colours
have still large uncertainties, larger than the case of wider filters like the Johnson’s
ones, and therefore ages derived from this kind of diagram have to be treated with
caution.

Ages from WD isochrones

The age-dating methods discussed above are based on isochrones that cover the
evolutionary phases from the MS until the HB. Isochrones can, however, be computed
until the final WD stages if the thermal pulsing phases and associated mass-loss
processes are accounted for. Figure 9.13 shows isochrones extended to the WD
evolutionary stages (hereinafter WD isochrones; we consider here only DA objects).
The brighter part of each WD isochrone overlaps with the cooling track of the single
WDmass corresponding to the WDs produced by stars evolving at the end of the AGB
phase. Due to the behaviour of the mass loss and evolution along the AGB phase,
the mass of the WD produced by stars evolving along the AGB in old populations
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Figure 9.13 HRD of a set of WD cooling tracks with masses between 0.54 and 1.0M� (dashed
lines). The heavy solid lines display isochrones with ages of 2, 4, 6, 8, 10 and 12Gyr (from [177])
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is practically constant; this explains the fact that the bright part of all isochrones in
the figure is exactly the same. At the bottom end of the isochrone one must finally
recover the objects produced by all stars already evolved past the AGB phase, which
entered the cooling sequence earlier. This explains the left turn of the WD isochrone
at the bottom of the sequence, since higher-mass WDs (produced by larger progenitor
masses) evolve at smaller radii.

Figure 9.14 displays the same WD isochrones in various CMDs. The shape of the
isochrones mirrors the shape in the log�L/L��− log�Teff� plane; for �J −K� colours
and high ages the situation is more complicated, and the overall isochrone shape is
due to the combined effect of both a blue turn of individual cooling tracks when
a certain low temperature is reached, due to the effect of the H2 collision-induced
absorption on the spectrum, and the increase of the WD mass at the bottom of the
isochrone.

An important property is that the brightness of the bottom end of the WD isochrone
decreases with increasing age, because of a more advanced cooling stage of the WDs.
This property suggests the use of the bottom luminosity of the WD sequence of an
SSP as an age indicator, if its distance is known. Matching the observed end of the
sequence to theoretical WD isochrones provides an estimate of the SSP age.
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Figure 9.14 Various CMDs of the WD isochrones shown in Figure 9.13. The dashed lines display
the effect of including chemical separation upon crystallization
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Figure 9.15 Luminosity functions for WD isochrones with ages of 8, 10 and 14Gyr. The WD
progenitors have solar metallicity, and the adopted IMF is the Salpeter one

This procedure is, however, performed better considering the LF of the WD pop-
ulation. From the theoretical point of view the LF is easily determined by computing
the number of progenitor stars – hence the number of corresponding WDs – pop-
ulating a given point along the WD isochrone, using an IMF. Figure 9.15 displays
theoretical LFs (for an arbitrary total number of WDs) using a Salpeter IMF. The peak
of the LF and the subsequent cut-off correspond approximately to the bottom end of
the isochrone, where WDs of different masses pile up due to their finite cooling time.
Increasing the age of the SSP moves the peak and cut-off towards fainter magnitudes,
mirroring the behaviour of the underlying isochrones. A match of the position of the
observed LF cut-off with theoretical LFs (once the SSP distance modulus is known)
provides an estimate of the SSP age.

At present, this technique only provides an approximate age estimate for old
SSPs, due to both theoretical and observational problems. On the observational side
it is difficult to detect the bottom end of the WD sequence, due to its very low
luminosity when ages are above a few Gyr; a clear-cut detection has only been
possible up to now for a few open clusters. On the theoretical side there are still
sizable uncertainties in the input physics (EOS of the CO core and envelope, opacities
of the hydrogen and helium external layers, boundary conditions) for cool WDs. Also
our very approximate knowledge of mass-loss mechanisms for RGB and AGB stars
introduces a large uncertainty in the predictions of the relationship between the final
WD mass and the initial mass of its MS progenitor, and the trend with metallicity.
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The initial–final mass relation and the adopted IMF probably only have a small
impact on the derived WD ages ([162]).

HB colour and second parameter problem

There is potentially another relative age indicator for old stellar populations, that
makes use of HB stars. As mentioned before, as a first approximation one expects
that the mass loss along the RGB can be described by the Reimers formula with a
fixed mean value of � plus a given spread �� around this mean value. With this
approximation one can determine the ZAHB location and HB evolution of the SSP
stars after the He flash; once � and �� are fixed, for increasing metallicity and
fixed age stars are located at lower Teff , hence redder colour. The reason is that,
although for a fixed � more metal rich RGB stars tend to lose relatively more mass
(higher luminosities at the tip of the RGB and lower Teff along the RGB) this effect
is compensated for and reversed by the larger evolving mass in more metal-rich RGB
isochrones of a given age (because of large TO masses at a given age, due to the
longer MS lifetime of stars with a given mass when metallicity increases). The net
result is that isochrones with larger metallicity have larger evolving masses (at a
fixed isochrone age) on the HB phase, hence redder HBs. In addition, due to the
higher envelope opacity, even if the HB mass were to be the same, more metal-rich
stars are redder along the HB phase. Therefore, the metallicity is the main (‘the first’)
parameter controlling the HB stellar distribution.

On the other hand, if metallicity is kept fixed and the age changed, the HB becomes
redder (bluer) for an age decrease (increase) due to the larger (smaller) mass evolving
along the HB (the mass loss along the the RGB is practically independent of age at
fixed metallicity, for old ages).

This means that the colour distribution of HB stars in principle depends on age,
once the metallicity is known. If at the same metallicity one cluster has a redder HB,
one expects it to be younger. The HB colour is very often quantified by the parameter
HBtype= �NB−NR�/�NB+NV+NR� where NB�NR and NV denote the number of stars
at the blue side, red side and within the RR Lyrae instability strip, respectively. The
value of HBtype degenerates for clusters populated only at the red or blue side of the
instability strip; in these cases different colour distributions provide the same value
of this parameter. Figure 9.16 displays HBtype and [Fe/H] data for a large sample
of globular clusters, together with theoretical predictions for various age differences
with respect to a reference age of 13 Gyears.

The problem with the colour of HB stars is that some pairs of globular clusters
with the same metallicity (inferred from spectroscopy) – like M3–M13 or NGC288-
NGC362 – seem to have a negligible age difference (as estimated from the vertical
or horizontal method) but not the same value of HBtype. This is the origin of the
so-called ‘second’ parameter phenomenon, i.e. the fact that at a given metallicity
clusters of apparently the same age have different HB colours. What is the second
parameter that, beside age, can change the HB colour at a given [Fe/H]? A different
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mass-loss law, maybe caused by fast stellar rotation or dynamical interactions within
the cluster? A different initial He abundance (the He abundance changes the Teff

location of a given stellar mass along the HB)? These questions are still unanswered,
although probably the initial He abundance is not the main culprit.

9.2.3 Metallicity and reddening estimates

We have already discussed how the colours and slope of the RGB of an old SSP are
affected by the cluster metallicity and are insensitive to age. In principle the compar-
ison of the dereddened colours of RGB stars in an SSP with theoretical isochrones
can provide an estimate of the SSP metallicity. Due to the mentioned uncertainties in
the theoretical prediction of the colours of cold stars, it is customary to use empirical
relationships – based on clusters with good photometry and spectroscopic determi-
nations of [Fe/H] – linking [Fe/H] to appropriately chosen parameters that measure
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location and shape of the RGB. Recent calibrations (see [194]) based on V − �V − I�
photometries (similar relationships in infrared colours are given by [73]) of a sample
of globular clusters provide a number of useful relationships between the parameters
S��V1�4� �V − I�−3�5� �V − I�−3�0 and [Fe/H]. S is the slope in the V – �V − I� plane of
the line connecting the RGB point at the level of the HB and a point 2.5 magnitudes
brighter; it is reddening and distance independent. �V1�4 is the magnitude difference
between the HB and the RGB at fixed (dereddened) colour �V − I�= 1�4; it needs
an estimate of the reddening. �V − I�−3�5 and �V − I�−3�0 are the RGB colours at
MI =−3�0 and −3�5, respectively. These two parameters require the knowledge of
reddening and distance; due to the approximately vertical shape of the RGB, a rough
distance estimate is sufficient. These four parameters are related to [Fe/H] through
the following numerical relationships (the � error on the [Fe/H] estimate is also
given):

�Fe/H	=−0�24 S+ 0�28� � = 0�12

�Fe/H	=−0�85 �V1�4 + 0�77� � = 0�16

�Fe/H	=−2�12�V − I�2−3�5 + 8�81�V − I�−3�5 − 9�75� � = 0�15

�Fe/H	=−3�34�V − I�2−3�0 + 12�37�V − I�−3�0 − 11�91� � = 0�15 (9.8)

valid for [Fe/H] between ∼−2�2 and ∼−0�7.
The Strömgren photometry is also very useful to determine separately the metallic-

ity of stars, and their reddening. Reddening of low-mass MS stars can be determined
by applying the following relationship derived empirically by [198] using a sample
of about 250 local MS stars, close enough to be negligibly affected by interstellar
extinction. After introducing the quantity �≡ 2�720−, it is possible to determine
E�b− y� for a given star – hence E�B−V� and all other extinctions – by comparing
its observed �b− y� with the intrinsic value �b− y�0 given by the following empirical
relationship ([198]).

�b− y�0 = 0�579+ 1�541�m1�0 − 1�066�c1�0 − 2�965���

+ 9�64���2 − 4�383�m1�0���− 3�821�m1�0�c1�0

+ 6�695�c1�0���+ 7�763�m1�0�c1�
2
0 (9.9)

This relationship covers the range of low-mass MS stars with �b− y�0 between
0.254 and 0.550, �m1�0 ranging from 0.033 up to 0.470, �c1�0 between 0.116 and
0.540,  between 2.550 and 2.681. It is obvious that this equation has to be iterated
in order to obtain a self-consistent value of �b− y�0 since one cannot know from the
start the dereddened counterpart of the observed c1 and m1. One usually starts with
the observed c1 and m1. One usually starts with the observed c1 and m1, determines a
first estimate of �b− y�0, hence E�b− y�= �b− y�− �b− y�0. With this first estimate
of E�b− y� one corrects the observed values of m1 and c1 and the procedure is
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repeated until �b− y�0 changes by less than a specified (small) amount (i.e. 0.001
mag) between two consecutive iterations.

Starting from the dereddened Strömgren colours of MS stars, it is also possible to
estimate their [Fe/H] making use of the following relationships derived by [94] cali-
brated on a sample of object with spectroscopic estimate of [Fe/H] ranging between
−2�0 and 0.5 (in the following we drop the subscript 0 for conciseness, and all
Strömgren colour indices are assumed to be extinction corrected):

�Fe/H	=−2�0− 43�90m1 + 353�4�b− y�m1

+ 18�0�b− y�m2
1 − 612�6�b− y�2m1

+ �6�0− 48�0m1 − 7�85�b− y�	�log�m1 − c3�	 (9.10)

where c3 = 0�627− 7�04�b− y�+ 11�25�b− y�2. It is valid when �b− y� is between
0.22 and 0.37.

�Fe/H	=−1�64+ 11�09m1 − 29�29m2
1 − 57�40�b− y�m1 + 116�96m2

1�b− y�

+ �128�0m1 − 22�231c1 − 206�48m2
1�c1 (9.11)

valid when �b− y� is between 0.37 and 0.47.

�Fe/H	=−1�64+ 16�75m1 − 12�61m2
1 − 52�17�b− y�m1 + 66�026m2

1�b− y�

+ �47�98m1 − 3�99c1 − 65�06m2
1�c1 (9.12)

applicable when �b− y� is between 0.47 and 0.59.
In the case of RGB stars with �b− y� between 0.5 and 1.1 and [Fe/H] ranging

from −2�0 to 0.0, the following relationship calibrated by [98] can be used

�Fe/H	= m1 + a1�b− y�+ a2

a3�b− y�+ a4

(9.13)

with a1 =−1�277� a2 = 0�331� a3 = 0�324� a4 =−0�032.
By employing these techniques based on SSP photometry one can derive an

estimate for the initial [Fe/H] abundance of the parent stars. This value of [Fe/H]
is also a measure of the total initial metallicity Z, once the metal distribution is
given. It is very important to notice that these empirical relationships are based
on local stars with their own trends of metal abundance ratios with [Fe/H]. In the
case of the calibrating field halo population with [Fe/H] below ∼−1�0 and globular
clusters, the parent stars are characterized by [�/Fe	 > 0. The formulae given above
are appropriate only for objects with the same metal abundance ratios, since colours
of scaled solar and �-enhanced SSPs are not the same for a fixed [Fe/H] value. In the
case of a hypothetical scaled solar metal-poor star, the previous relationships would
therefore not provide the correct value of [Fe/H].
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9.2.4 Determination of the initial helium abundance

The initial He abundance is another important quantity that affects the evolution
of stars, and in particular the properties of SSPs. In the previous sections we have
discussed mainly the effect of a change of the initial metallicity, but a variation of
the initial He mass fraction also affects the CMD of an SSP. In Figure 9.17 we
display two isochrones with the same initial metallicity and the same age, but initial
values of Y that differ by 0.02. The mass evolving at the TO and in post-MS phases
is lower (by about 0.03M�) for the helium-rich isochrone; the helium increase also
slightly shifts to the blue the overall location of the isochrone, from the MS up to
the tip of the RGB. Even more importantly, an increase of Y increases the ZAHB
brightness and decreases slightly the TO luminosity at a fixed age. This means that
the age estimated from the observed �V value for an SSP decreases. A variation
�Y = 0�02 causes a decrease of the estimated age by ∼1 Gyr for ages typical of
globular clusters. It is therefore important to determine the initial helium abundance
of an SSP, to employ isochrones with the correct chemical composition. An additional
reason to estimate the initial helium content in old SSPs accurately is the fact that
these estimates provide a strong constraint on the amount of helium synthesized
during the primordial nucleosynthesis, and consequently on the cosmological baryon
density.

0.0

2.0

4.0

6.0

0.60 0.80 1.00

M
V

(B – V )

t = 12 Gyr, [Fe/H] = –0.7

Figure 9.17 Two isochrones with the same age and metallicity, Y equal to 0.25 (solid line) and
0.27 (dashed line)
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When dealing with old SSPs, it is generally not possible to measure spectroscop-
ically the stellar surface helium abundance because stars are in general too cold to
show He lines in their spectra. Estimates of Y in old SSPs make use of results from
stellar evolution, taking advantage of the fact that the evolution of stars is affected
by the initial Y value.

The parameter R

The so-called R parameter ([102]) is defined as the number ratio of HB stars
to RGB stars brighter than the HB level (here we consider the ZAHB level) –
R=NHB/NRGB – and can be employed to determine Y . As discussed before, post-
MS phases are populated by stars with approximately the same initial mass, and
the star counts along a generic post-MS stage are proportional to the evolutionary
timescale along that phase. Since the value of the masses evolving along the RGB
and HB and their lifetime are weakly affected by realistic variations of Y , the basic
idea behind the use of R as helium indicator is that a higher initial Y (at fixed
metallicity) makes the HB brighter and, in turn, produces a lower value of NRGB

(a smaller fraction of the RGB is contained between the HB level and the tip of
the RGB) with the consequent increase of R. The value of the derivative dR/dY
is ∼10.

As shown in Figure 9.18, at fixed age and Y the theoretical value of R is very slowly
decreasing up to [Fe/H] ∼−1�15. Between [Fe/H] ∼−1�15 and [Fe/H] ∼−0�85, R
increases steeply; this increase happens when the RGB bump, previously located at
luminosities larger than the ZAHB, moves below the ZAHB level due to the higher
metallicity, causing an abrupt decrease in the number of RGB stars brighter than
the ZAHB (see Section 5.9.2). At higher [Fe/H] values R is again only very mildly
decreasing with increasing [Fe/H]. It is also interesting to notice how the dependence
of R on age is restricted to the interval ranging from [Fe/H] ∼−1�15 to [Fe/H]
∼−0�85, which is exactly the metallicity range where the RGB bump crosses the
ZAHB level. This is easily explained by the fact that the RGB bump luminosity
depends on the stellar age; higher ages shift the RGB bump location towards lower
luminosities. Typical errors affecting the empirical determination of R are of the
order of 0.1–0.2, due mainly to determination of the ZAHB level and to Poisson
statistics for the number counts; these observational errors cause an uncertainty of
the order of ��Y�∼0.01–0.02 in the estimate of Y for a single cluster.

The theoretical values of R displayed in Figure 9.18 do not depend on the mor-
phology of the HB as long as it is populated in the RR Lyrae instability strip or
redward, because for this mass range the evolutionary timescales along the HB phase
are practically constant. In the case of SSPs with an HB populated at the blue side
of the RR Lyrae region, evolutionary timescales along the central He-burning phase
increase with decreasing mass, and corrections to the theoretical values of R displayed
in Figure 9.18 have to be applied. At the bluest end of a typical HB, corrections up
to about 20 per cent have to be taken into account.
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Figure 9.18 R-parameter values as a function of [Fe/H] for the labelled values of the helium
mass fraction Y and age (in Gyr)

Recent analyses ([44], [178]) of the R parameter values for a large sample of
Galactic globular clusters provide individual values of Y consistent (within the error
bars) with a constant helium abundance whose weighted mean is Y = 0�250± 0�005,
in good agreement with the abundance predicted by the currently accepted value of
the cosmological baryon density (see Chapter 1).

The parameter �

Figure 9.17 suggests the possibility of employing another parameter – independent
of distance and reddening estimates – as a helium abundance indicator for old
SSPs, i.e. the magnitude difference between the ZAHB and the MS at a given
colour. This quantity, usually called the � parameter, is sensitive to Y because at
a given colour the MS becomes fainter and the ZAHB brighter when Y increases.
The exact definition of � varies among authors (see, for example, [189]) but it
is important to consider a colour that corresponds to the lower MS, unaffected
by age.

The value of d�/dY is ∼6 mag, but its dependence on metallicity is quite high,
d�/d�Fe/H	 ∼ −0�5 mag dex−1. A typical [Fe/H] uncertainty of 0.1–0.2 dex is
therefore equivalent to a 0.01–0.02 change in the SSP helium mass fraction. This
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strong dependence on metallicity renders the � parameter badly suited for absolute
Y determinations, although it is sometimes used for relative Y scaling.

The parameter A

The pulsational properties of RR Lyrae stars provide a third helium indicator for old
SSPs populated in the instability strip region, the so-called mass-to-luminosity ratio
A (see Section 6.6.1). The mass-to-luminosity ratio for stars inside the instability
strip can be written as

A= log�L/L��− 0�707 log�M/M�� (9.14)

where L and M are the luminosity and mass of the single RR Lyrae star. When the
chemical composition is fixed, A depends only on the mode of pulsation, i.e. funda-
mental or first overtone. If the mode of pulsation is known, A is affected by Y because
increasing He increases the luminosity of the HB (hence the luminosity of RR Lyrae
stars) and also the value of themeanmass populating the instability strip. The two effects
tend to compensate for each other and A has a small sensitivity to Y , i.e. dA/dY ∼1.4;
however, in the case of large numbers of RR Lyrae stars, the mean value of A can be
determinedwith ahighaccuracy, of theorder of∼0.01, that allowsestimatesofY with an
accuracy of∼0.01. The dependence ofA on [Fe/H] is practically negligible (an increase
of metal abundance decreases the luminosity but also the mean mass at the instability
strip, and the two effects compensate for each other) as shown in [35].

Determinations of A from RR Lyrae observations make use of the relationship
between the stellar effective temperature and the pulsation period P

log�P�= 11�627+ 0�823A− 3�506 log�Teff� (9.15)

Equation (9.15) shows that in order to determine A from observations, one has to
measure the pulsation periods (only marginally affected by systematic uncertainties)
and estimate the effective temperature. It is mainly the uncertainties in the Teff scale
that hamper the use of A as a helium abundance indicator.

9.2.5 Determination of the initial lithium abundance

Empirical estimates of the amount of lithium produced during the primordial nucle-
osynthesis are another powerful constraint of the baryon mass density �b. In the
following discussion we denote the abundance of Li by [Li], defined as [Li] =
12+ log�N�Li�/N�H�	, and consider only the main isotope 7Li, since the cosmolog-
ical production of 6Li is negligible in comparison with 7Li.2

2 Spectroscopic observations of lithium abundances in stars determine the sum 7Li+ 6Li.
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Spectroscopic measurements of Li abundance in the atmospheres of nearby old
metal-poor MS field stars provide a qualitative picture that is basically consistent
among the different authors, but which can differ in the details (see [171], [182],
[217]). The main result (see Figure 9.19 with the data by [217] as an example)
is that metal-poor MS stars with Teff larger than approximately 5800K show a
remarkably constant [Li] value (Spite-plateau) while there is a larger depletion at
lower temperatures, increasing for decreasing temperature. Moreover, in the plateau
region, a handful of stars show a much lower [Li] than the plateau counterpart. The
exact Teff location, the extent of the plateau, as well as the existence of some weak
trend of [Li] with Teff and [Fe/H] are still debated. Also the absolute average value of
[Li] for plateau stars shows differences between different authors, ranging between
[Li] ∼ 2�1 and [Li] ∼ 2�4.

The simplest empirical explanation for the existence of this plateau is that it mirrors
the primordial Li abundance (due to the low metallicity of the observed stars) and
therefore the measured plateau [Li] should put strong constraints on the value of �b.
An accurate interpretation of these observed abundances must, however, take into
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Figure 9.19 Trend of [Li] abundance values with, (a) [Fe/H] for a sample of metal-poor MS stars
and (b) Teff . The flat part of the [Li] distribution in (b) is called the ‘Spite-plateau’
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account the constraints posed by stellar evolution models. Lithium is a very fragile
element, easily destroyed in stellar interiors when T ≥2�5×106 K. Such temperatures
are already attained in the stellar cores during the contraction to the MS phase, and
whenever surface convective regions extend down to these Li burning regions, the
surface value of [Li] is rapidly decreased. For decreasing stellar mass at a fixed
chemical composition, or for increasing metallicity at a given mass, PMS stellar
models show that convection extends from the surface down to Li burning regions;
although the bottom of this convective region is rapidly retreating towards the surface,
there is time to burn a substantial amount of Li. If the stellar mass is low enough,
the bottom of the convective envelope continues to overlap with the lithium burning
regions during the MS phase as well, and the surface lithium depletion is much larger.

Table 9.1 shows the surface lithium depletion for selected masses and three metal-
poor chemical compositions typical of Spite-plateau stars, as obtained from stellar
models. Objects below ∼0.65M� continue to deplete the surface lithium during
the MS, whereas masses larger than ∼0.70M� do not deplete their surface lithium
appreciably even along the PMS. Figure 9.20 displays the run of [Li] as a function
of Teff along a metal poor isochrone with an age of 14 Gyr (a so-called lithium
isochrone); it is obtained simply by displaying the Li abundance at the surface of
the stars populating the various points of the isochrone MS, as a function of their
Teff . The shape of the Li isochrone closely mirrors the observations (the inclusion
of isochrones with different metallicity spreads the theoretical points mainly in the
horizontal direction) with an almost flat part and a sudden decrease of [Li] at the
lowest temperatures. This sharp decrease can easily be explained in terms of lower-
mass (cooler) MS stars that substantially deplete their surface Li during both the PMS
and MS phases. The flatter part (that is the theoretical counterpart of the Spite-plateau)
corresponds to those MS stars massive enough not to deplete Li substantially during
the PMS phase, and therefore reflects the initial [Li] abundance in these objects. The
uncertainties in the empirical [Li] values and the possibility of additional depletion
due to non-canonical element transport mechanisms (see, for example, [182]) make
it difficult to use the Spite-plateau as a constraint on �b at present.

9.2.6 Distance determination techniques

Direct geometrical distance determinations are based on the concept of parallax. The
idea is to employ measurements of a star angular position with respect to a stationary
background of much more distant objects made 6 months apart. The parallax is defined
as one-half of the change in angular position obtained from these observations, and
the distance d to the star is easily obtained from trigonometry

d= 1 AU
tan�p�

∼ 1
p
AU

i.e. the ratio between the Sun–Earth distance (1 Astronomical Unit, 1AU, is equal to
1�4960× 1013 cm) and the parallax angle p (in radians). If the parallax is measured
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Table 9.1 Surface lithium depletion �[Li] (in dex) due to
nuclear burning along the PMS and MS (from [182]) for
various selected masses and initial metallicities (Z). The
four lines for each case correspond to the depletion after 10
and 100 Myr (PMS) 1 and 10 Gyr (MS)

�[Li]

Z= 2�5× 10−5 Z= 2× 10−4 Z= 6× 10−4

0.6M�

−0.75 −0.63 −0.42
−1.03 −0.90 −0.79
−1.36 −0.96 −0.89
−1.83 −1.83 −1.76

0.65M�

−0.19 −0.20 −0.19
−0.19 −0.21 −0.23
−0.19 −0.22 −0.25
−0.19 −0.22 −0.26

0.7M�

−0.03 −0.06 −0.07
−0.04 −0.06 −0.07
−0.04 −0.06 −0.08
−0.04 −0.06 −0.08

0.75M�

−0.01 −0.02 −0.03
−0.01 −0.02 −0.03
−0.01 −0.02 −0.03
−0.01 −0.02 −0.03

0.8M�

−0.00 −0.01 −0.01
−0.00 −0.01 −0.01
−0.00 −0.01 −0.01
−0.00 −0.01 −0.01

in arcseconds, the unit distance is the parsec; the distance corresponding to a parallax
of 1 arcsecond is 1 parsec, equal to 2�063× 105 AU, or 3.26 light years. Parallax
distances, even after the most recent results from the Hipparcos satellite ([148])
are limited to relatively nearby objects in our galaxy, including a handful of open



OLD SIMPLE STELLAR POPULATIONS (SSPS) 291

2.5

2.0

1.5

1.0

0.5

0.0

t = 14 Gyr
Z = 0.0001

6600 6400 6200
Teff

6000 5800 5600

[L
i]

Figure 9.20 Trend of [Li] with Teff along the MS of a theoretical isochrone with Z= 0�0001 and
t= 14Gyr, for an initial lithium abundance [Li]=2.5

clusters, like Hyades and Pleiades. Among the methods presented in this section
only the MS- and WD-fitting techniques can be calibrated empirically using direct
parallax distances. The situation will, without doubt, improve in the near future with
the launch of the GAIA satellite that will provide distances to about 1 billion stars
in our galaxy, including a large sample of open clusters and even some globular
clusters.

The techniques discussed in this section are based on properties of theoretical
isochrones and make good use of the concept of a stellar standard candle. A perfect
stellar standard candle is a class of objects for which the known absolute magnitude
does not change with changing properties (e.g. age, metallicity) of the parent stellar
population. When this class of objects is detected in another stellar system, the
difference between their observed apparent magnitude and the absolute one provides
the distance modulus of the system. Perfect standard candles may not really exist
(although Cepheid stars are often considered to be a perfect candle) but what stellar
evolution can do is to single out various classes of stellar objects whose brightness is
predicted to depend only on the initial chemical composition – a quantity that can be
estimated more easily than age, i.e. even when the TO region cannot be detected – and
provide a calibration for their absolute magnitude. The classes of objects discussed
below allow the determination of distances within our galaxy, between Local Group
galaxies and out to the Virgo Cluster.
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Main sequence fitting

Figure 9.4 shows how the brightness of the lower MS (i.e. when MV is larger than
∼5.0–5.5) of old SSPs is unaffected by the age of the stellar population, even for
old SSPs, because stars in this magnitude range are essentially still on their ZAMS
location. It is only the initial chemical composition that determines the location
of the lower MS, that becomes redder for increasing metallicity and/or decreasing
helium mass fraction. Once the Y�Z values are fixed, the lower MS can be used as a
template and compared to the observed MS in an SSP with the same initial chemical
composition; the difference between the absolute magnitudes of the template MS and
the apparent magnitudes of the observed one immediately provides the population
distance modulus, hence the distance in parsec. This is the so-called MS-fitting
method.

In order to determine SSP distances using the MS-fitting method, one needs the
observed CMD of the SSP MS in some filter combination (e.g. V–(B− V )) and a
template one for the same chemical composition of the SSP, which may be either
theoretical or empirical. In order to derive accurate distances, anything which may
systematically affect the intrinsic and observed colours and magnitudes of either
the cluster or the template MS must be accounted for. The lower MS has a slope
of about 5.0–5.5 in the much used V–(B− V ) or V–(V − I) planes, and therefore
even a small error on the colour quickly becomes a larger error on the magnitude,
hence the derived distance modulus. One must therefore know in advance the SSP
initial chemical composition, in order to select the appropriate template MS, plus the
extinction along the line of sight, to correct the observed magnitudes and colours to
the intrinsic values (see Figure 9.21).

The choice of the template MS is obviously extremely important, and the preferred
method is to build an empirical template MS instead of using theoretical isochrones,
due to the existing uncertainties in the stellar Teff scale and colour transformations.
In fact, an uncertainty of only 0.02 mag in colours (not due to the uncertainty in the
reddening) translates into an uncertainty of∼0.10mag in the derived distance modulus
(and a consequent uncertainty of about ∼1Gyr in the ages obtained from the absolute
magnitude of the observed TO). The uncertainty related to the error on the reddening
estimate ��E�B− V�� is smaller, of the order of ��m−M�0 ∼ 2�0�E�B− V�; this
value is derived taking into account the slope of the MS and the fact that a given
value of E�B−V� increases the observed mV by a factor ∼3�2E�B−V�.

An empirical MS is built by considering local field stars of known [Fe/H] (e.g.
determined from spectroscopy) with distances determined geometrically from paral-
lax measurements, and known or negligible reddening (see, for example, the detailed
discussions in [143], [145]).3 The main problem with this approach is that only
a few of these stars with parallax distances have the exact metallicity of the SSP
under scrutiny; therefore it is difficult to determine the appropriate template MS. To

3 Template empirical MS loci are often also used to compare theoretical MS isochrones and models with
observations.
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Figure 9.21 Example of MS-fitting distance determination applied to the old open cluster M 67
(see [143]). (a) This displays the absolute magnitude and intrinsic colours of the template MS (large
open circles) for the cluster metallicity ([Fe/H]=+0�02) and the observed magnitudes and colours
of the cluster (small filled circles). The effect of extinction on the cluster CMD �E�V − I�= 0�05�
and the effect of the distance modulus are also shown. (b) This shows the best fit of the (reddening
corrected) cluster MS to the template one, and the derived distance modulus

overcome this problem one has to shift the position of many template field stars of
various [Fe/H] values to the location they would have at the metallicity of the SSP.
The procedure of shifting these template stars should in principle preserve mass, in
the sense that they have to be shifted both in colour and magnitude because stars of
a given mass change both their ZAMS Teff and luminosity when the metallicity is
changed (e.g. cooler Teff and fainter luminosity for increasing Z). However, for not
too large metallicity ranges – i.e. ranges of the order of ∼1 dex – the observed CMDs
of globular and open clusters show that the shape of the lower MS is approximately
constant; if this is true, one needs only to apply colour shifts – that take into account
the change of Teff – because, even without the appropriate magnitude correction, the
shifted location will lie on the right MS. Making use of this property of constant MS
slope, derivatives � (colour)/� [Fe/H] for the lower MS can be derived empirically
(see [145], [144]) for metallicities around solar. At lower metallicities one has to
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determine those derivatives by using differentially theoretical isochrones, e.g. com-
puting the colour difference between the MS of isochrones of different metallicities
(hence hoping that systematic errors in isochrone colours are minimized) because of
the very small number of field MS stars with known parallax (e.g. [87]). In the range
−0�45≤ [Fe/H] ≤ 0.35 and 5�5≤MV ≤ 7�0 one finds empirically

��B−V�= 0�154��Fe/H	

��V − I�= 0�103��Fe/H	

��V −K�= 0�190��Fe/H	

For −2�0≤ [Fe/H] ≤−0�7 and 5�5≤MV ≤7�0 theoretical isochrones (from [181])
provide

��B−V�

��Fe/H	
= 0�062�Fe/H	+ 0�207

A fundamental assumption behind the use of these colour shifts is that the initial
helium content at a given metallicity and the metal distribution of template field stars
is the same as that of the observed SSP.

Typical errors on the best MS-fitting distances to date are of the order of ∼ 0.07–
0.08 mag (neglecting possible systematic errors in reddening and metallicity of both
the SSP under scrutiny and template MS stars).

White dwarf fitting

The WD-fitting ([158], [174]) is analogous to the MS-fitting, but in this case the
bright part of the WD cooling sequence between MV ∼10 and ∼12 is used (10000≤
Teff�K�≤ 20000) instead of the MS. The WD sequence in this magnitude range is
independent of age for old stellar populations, as shown in Figure 9.14. In brief, a
template local WD sequence made of objects with precise parallax-based distances
is determined, and compared to the WD sequence in the SSP under scrutiny. The
difference between the apparent magnitude of the SSP and the absolute magnitude of
the template sequence provides the SSP distance modulus, and hence its distance. As
in the case of the MS-fitting, the SSP WD sequence has to be corrected for the effect
of extinction and reddening, before the determination of the distance modulus (the
effect of reddening uncertainties on the derived distances is approximately the same
as for the MS-fitting). The advantage of this technique over the MS-fitting is that it
is in principle independent of the knowledge of the SSP initial metallicity, since all
WDs are virtually metal-free at their surfaces, hence no colour corrections have to
be applied.

There are, however, a number of points to be noticed. One has first to realize that
the location of the WD sequence in this magnitude range can be affected by different
initial–final mass relationships for the local WDs and the objects in the SSP under
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scrutiny. WDs in this bright part of the cooling sequence of old SSPs have been
produced by stars just evolved out of the AGB phase, hence of mass ∼0�55M�.
The variation of the WD brightness MV with mass is �MV/��M/M��∼2�3 mag
at fixed colour (because of the smaller radius of more massive WDs) for masses
around 0.5–0.6 M�, typical of the lower end of the WD mass spectrum; therefore,
a difference of ∼0�05M� between the template and SSP WD mass causes a bias of
∼0.10 mag in the distance modulus.

A second potential problem relates to the existence of WDs with different envelope
compositions. DA and non-DA objects do not share the same position in the CMD,
and their relative location depends on the colour filters used (see Figure 9.22). This
is due to the very different behaviour of the bolometric corrections between H and
He atmospheres; in the HRD the non-DA object displayed in Figure 9.22 is slightly
underluminous ���L/L��∼ 0�1� at a given Teff , with respect to the DA one.

Local field WDs in this magnitude range display a number ratio of DA versus
non-DA objects of the order of 4:1 and the template WD sequence used in globular
cluster distance determinations ([158]) is usually a DA sequence. In a distant SSP
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Figure 9.22 CMDs of various WD cooling sequences, in the magnitude range used for the
WD-fitting method. The mass of the DA and non-DA CO WDs is equal to 0.55M�, while the mass
of the He WD is 0.45M�



296 SIMPLE STELLAR POPULATIONS

like a globular cluster in our galaxy we are not yet able to determine spectroscopicaly
the composition of the WD atmospheres, and typical 1� photometric errors of ∼0.05
mag suffice to overlap DA and non-DA sequences in the VI and BV plane. What
we observe might therefore be a mixture of both WD types. This causes (in the case
where the DA to non-DA ratio is the same as in the local neighbourhood) a very
small systematic error by −0�03 mag in the WD-fitting distance modulus obtained
from the VI plane, whereas the systematic error is of +0�20 mag in the BV plane. A
larger fraction of non-DA objects would increase this bias.

A variation of the thickness of the surface hydrogen layer in DA objects can
alter their radius, hence their CMD location. If we denote by q(H) the ratio between
the mass of the H envelope and the total WD mass, the magnitude MV of the WD
sequence scales with q(H) as �MV/� log�q�H��∼−0�035, for log(q(H)) ranging
between −4 and −7.

Contamination from WDs with He core can also introduce a systematic error, due
to their brighter luminosity at fixed colours (because of larger radii). The amount
of this bias is difficult to quantify, given that we are not able to predict the mass
distribution of He core WDs in a generic SSP. Another potential source of uncertainty
is the thickness of the H layer in the DA WDs, which is another quantity we cannot
predict with confidence; different H masses in the template and SSP WDs can bias
the distance modulus at the level of ∼0.05 mag because the H envelope mass affects
(albeit slightly) the WD mass radius relationship.

Tip of the RGB

The bolometric luminosity of the tip of the RGB (TRGB) is determined by the mass
of the He core at the He flash, once the initial chemical composition is fixed. Since
low-mass stars ignite He all with similar core masses (slightly increasing for decreas-
ing initial mass) MTRGB

bol changes by a few hundredths of magnitudes in the age range
between ∼4 and 12–14 Gyr (see Figure 9.23). When approaching the RGB phase
transition MTRGB

bol increases sharply (L decreases) due to the lifting of the electron
degeneracy in the He core, that causes He ignition to occur at significantly smaller core
masses. On the other hand, once age is fixed, MTRGB

bol decreases for increasing metal-
licity, in spite of the decrease of the He core mass at the TRGB (see Section 5.10.3).
The net effect is that, for ages larger than ∼4 Gyr, MTRGB

bol ∝ −0�19 [Fe/H] for
metallicities well below solar, with an almost negligible dependence on the age.

Considering now the TRGB magnitude in various photometric systems for ages
above ∼4 Gyr, one notices that in the I-band the dependence of the TRGB brightness
on [Fe/H] is minimized. In fact dMTRGB

bol /d[Fe/H] ∝ −0�19, and from empirical
determinations of bolometric corrections for bright RGB stars in globular clusters one
obtains that dBCI/d�V − I�=−0�243 ([64]). Empirically, the colour of bright RGB
stars in globular clusters is related to their [Fe/H] according to d�V − I�/d[Fe/H]=
1�162[Fe/H] +2�472 ([9]). Combining these relations one finds dMTRGB

I /d[Fe/H]
∝−0�15 about [Fe/H]=−2�0, and dMTRGB

I /d[Fe/H] ∝+0�20 about [Fe/H] =−0�7,
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Figure 9.23 Bolometric magnitude of the TRGB for various ages andmetallicities (data from [82])

with an almost negligible dependence on [Fe/H] at intermediate metallicities. For
[Fe/H] >−0�7 the dependence of MTRGB

I on [Fe/H] becomes very large so it cannot
be used safely as a standard candle. Figure 9.24 shows the most recent empiric and
semi-empiric calibrations of the I-band brightness of the TRGB as a function of
the metallicity as well as a fully theoretical calibration of this standard candle. For
a detailed discussion about the reason(s) of the significant disagreement between
empiric calibrations and the theoretical one we refer the reader to the references
quoted in the figure caption.

This kind of relationship between MTRGB
I and [Fe/H] is matched by theoretical

models coupled to theoretical bolometric corrections ([173]). At both shorter and
longer wavelengths the TRGB brightness displays a stronger dependence on [Fe/H]
and also on age. For example, in the K-band dMTRGB

K /d�Fe/H	=−0�60 and a change
of age from 12 to 6Gyr at fixed [Fe/H] causes an ∼0.10 mag increase of MTRGB

K .
The weak and well-established dependence ofMTRGB

I on [Fe/H], plus the practically
negligible influence of age (for ages larger than ∼4 Gyr) has prompted the use of the
TRGB as a distance indicator for old and metal poor SSPs.

The first step towards obtaining distances is the detection of the TRGB. From what
we know about stellar evolution, one expects TRGB stars basically to overlap with
AGB objects, that populate the CMD from below the TRGB level up to magnitudes
brighter than the TRGB. However, AGB evolutionary times are shorter than RGB
ones, and the LF of bright red stars in an old SSP is expected to show a discontinuity
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Figure 9.24 Various empirical and semi-empirical calibrations of the I-band brightness of the
TRGB as a function of the metallicity. The different labels correspond to the works by [73] (F00),
[72] (Fe00), [125] (L93). The circle with error bars denotes the empirical determination of the
absolute magnitude of the TRGB in the Galactic globular cluster � Cen obtained by [9]. The
theoretical calibration by [173] (SC98) is also displayed

in correspondence of the TRGB location, as shown in Figure 9.25. The position of
this discontinuity marks the level at which the contribution of the longer-lived (in
comparison with AGB objects) RGB stars vanishes, and corresponds to the TRGB
magnitude. A very popular technique to determine the location of the discontinuity is
to employ an edge-detection algorithm, i.e. a kernel [−1�−2�0�+2�+1]. Convolution
of this kernel with the observed LF gives a spike in its output, at the magnitude
where a discontinuity is present (see Figure 9.25). For a given magnitude Mi

I the
result of the convolution is simply the weighted sum outputi =−1N�i− 1�− 2N
�i− 1�+ 2N�i+ 1�+ 1N�i+ 2�, where N�i� denotes the star counts at magnitude Mi

I .
Due to the fast evolution of stars along both the RGB and AGB phases, one

needs large samples of stars to have the TRGB region populated with a sizable
number of objects. Too small a star sample would leave the TRGB level almost
or completely devoid of stars, and the LF would show a smooth decrease towards
increasing brightness, without displaying any kind of discontinuity. An additional
complication is that, when the number of objects in the magnitude bins is small,
Poisson statistics causes large oscillations in the star counts between consecutive
points of the LF. In this case the output of the edge-detection algorithm becomes
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very noisy, showing many large spikes not associated with the location of the TRGB.
These constraints on the number of detected objects rules out the use of the TRGB
to determine distances to individual globular clusters because the number of objects
is too low. Only the most massive globular cluster of our galaxy, � Centauri, has an
unambiguous detection of the TRGB ([9]).

On the other hand, the TRGB can usefully be applied to the field halo population
of external galaxies (generally supposed to be an old and metal-poor SSP) and with
present observational capabilities it has been possible to detect the TRGB in objects
belonging to the Virgo galaxy cluster.

Once the I-band apparent magnitude of the TRGB is determined from the dis-
continuity in the observed LF, and an extinction correction (to be independently
determined) is applied to the observed magnitudes and colours, the distance modulus
is determined from

�m−M�0 = I0�TRGB −MTRGB
I

where I0�TRGB is the extinction corrected TRGB magnitude, and MTRGB
I is obtained

using an MTRGB
I – [Fe/H] calibration. In order to use this calibration one needs a

metallicity estimate for the TRGB stars. Given that in general we cannot determine
spectroscopically the chemical composition of RGB stars in external galaxies, one
applies the following procedure. Assuming an arbitrary metallicity, we estimate a
preliminary distance and determine the dereddened �V − I�0 colour at the observed
MI =−3�5, denoted as �V − I�0�−3�5. An empirical relationship between �V − I�0�−3�5

and [Fe/H] (based on Galactic globular clusters) has been provided by [125]:

�Fe/H	=−12�64+ 12�6�V − I�0�−3�5 − 3�3�V − I�20�−3�5

This relationship, together with the first approximation of �V − I�0�−3�5 gives an
initial estimate of [Fe/H] that is then used in conjunction with the MTRGB

I – [Fe/H]
calibration to obtain a second approximation to the real distance modulus. This pro-
cedure is iterated until the difference between the distances moduli of two successive
iterations is smaller than a prescribed amount e.g. 0.01–0.02 mag. Because of the
weak dependence of MTRGB

I on [Fe/H] and the almost vertical shape of the RGB,
convergency is usually achieved within about three iterations. The case of TRGB
distances when the observed population has an age and metallicity spread will be
dealt with in the next chapter about composite SSPs.

Theoretical MTRGB
I – [Fe/H] calibrations (see Figure 9.24) suffer from a zero point

uncertainty of the order of ∼0.2mag, related the prediction of the value of the He
core mass at the TRGB and, to a lesser extent, to the BCI scale. At [Fe/H] =−1�3
current results provide MTRGB

I ∼−4�1± 0�1. The following relationship ([173]) is
approximately at the brighter end of the existing calibrations

MTRGB
I =−3�953+ 0�437�Fe/H	+ 0�147�Fe/H	2

valid for [Fe/H] in the range between −2�35 and −0�3.



300 SIMPLE STELLAR POPULATIONS

TRGB

150

100

50

2.0

1.0

0.0

0

F
ilt

er
 r

es
po

ns
e

N

–4.5 –4.0 –3.5 –3.0
MI

Figure 9.25 (a) Example of LF of a globular cluster-like stellar population around the TRGB
plus (b) the response of the edge-detection algorithm applied to the same LF. The location of the
TRGB is marked by the strong spike in the filter response, located at MI =−4�05

Horizontal branch fitting

Horizontal branch fitting is historically one of the traditional methods to estimate
the distance to old SSPs. The technique is conceptually very simple. The observed
ZAHB, or the level of the ZAHB at a given colour (typically at the RR Lyrae
instability strip) is compared to a theoretical counterpart; the magnitude difference
between the observed and theoretical values provides the SSP distance modulus. Of
course, the effect of extinction has also to be accounted for.

As in case of TRGB stars, the ZAHB brightness is determined by the value of
the He core mass at the He flash; theory predicts a dependence only on the initial
metallicity – and to a minor extent helium content – not on the age, for ages between
∼4Gyr and the age of the universe. To date, theoretical calibrations of the ZAHB
luminosity suffer from the same zero point uncertainty as TRGB models, relating
to the prediction of the value of the He core mass at the TRGB. The following
theoretical relationship ([181])

MV�ZAHB�= 0�17 �Fe/H	+ 0�78 (9.16)
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has been shown to provide distances that agree with present MS-fitting distances
([39]) for a sample of globular clusters spanning the relevant [Fe/H] range of the
globular cluster system of our galaxy.

9.2.7 Luminosity functions and estimates of the IMF

Luminosity functions of SSPs are a traditional tool to assess the level of agreement
between theoretical stellar evolution models and real stars (see discussions in [43],
[56], [159]). The reason is that star counts as a function of the stellar magnitudes
contain information about the timescale of stellar evolution – that are not provided
by the comparison of isochrones with observed CMDs – and are largely free of the
uncertainties related to the treatment of the surface superadiabatic convection. In
particular, the shape of the LF of post-MS evolutionary phases of an SSP is, as we
have discussed before, fully determined by the evolutionary times of the single mass
evolving along those phases, independently of the choice of the IMF.

Tests of post-MS phases involving the use of LFs are usually restricted to globular
clusters, because they contain sizable samples of stars (typically 105–106 objects)
and, being old, post-MS phases are relatively long and well populated. Figures 9.26
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Figure 9.26 Luminosity functions covering MS, SGB and RGB for three isochrones (computed
using a Salpeter IMF, dn/dm∝m−2�35) with, respectively, t=14Gyr, Z=0�008� Y =0�254 (dotted
line); t= 12Gyr, Z= 0�008� Y = 0�254 (solid line); t= 14Gyr, Z= 0�002� Y = 0�254 (dashed line).
All LFs are normalized to the same number of RGB stars at MV = 2�0
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Figure 9.27 As in Figure 9.26 but for isochrones computed for, respectively, t= 14Gyr, Z=
0�008� Y = 0�254 (solid line); t = 14Gyr, Z = 0�008� Y = 0�254 and an IMF dn/dm∝m−1�35

(dashed line), t= 14Gyr, Z= 0�008� Y = 0�273 (dotted line)

and 9.27 show the effect of changing Z, age, Y and IMF on the shape of theoretical
LFs for old metal-poor SSPs, like Galactic globular clusters. We display the LF for
MS, SGB and RGB, with the total number of stars normalized in order to have the
same star counts at MV =2, a point along the RGB that is not affected by the LF age.

The MS phase is on the right-hand side of the figure; moving towards brighter
magnitudes one encounters the TO region at around MV ∼ 4, before a steep drop in
star counts representing the SGB phase. The shape of the TO region (and of course its
brightness) are affected by the age; younger ages cause a more peaked shape before
the drop corresponding to the SGB. The RGB phase is reached when the number
count decrease follows a more gentle slope; the local maximum along the RGB is
the so-called RGB bump (see Section 5.10.2). Comparison of the predicted bump
brightness with SSP observations provides a powerful test for the extension of the
surface convection ([43]).

The slopes of the various LFs are essentially independent of age and of the
initial chemical composition. This reflects the universality of the relationship between
electron degenerate He core mass and star luminosity along the RGB.

The observational counterpart of Figures 9.26 and 9.27 are the observed LF
of Galactic globular clusters, like the one displayed in Figure 9.28. One cannot
avoid noticing the extremely good agreement between the observed LF shape, and
theoretical predictions for old SSPs. Also the RGB bump is found, as predicted by
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Figure 9.28 Observed LF for the MS, SGB and RGB of the globular cluster M3 ([168])

stellar evolution theory. Once the cluster distance modulus is fixed and a theoretical
LF for the appropriate metallicity is computed, the agreement with theory is very
good for an age of the order of ∼12 Gyr ([168]).

It is very important to consider in Figure 9.27 the effect of the choice of the IMF.
As expected, post-MS phases are insensitive to the IMF, but not the star counts along
the MS, due to the large range of masses populating the MS. As we know, the value
of the stellar mass evolving along the MS decreases towards fainter magnitudes; this
explains the fact that a decrease of the exponent of a Salpeter-like IMF produces a
flatter LF along the MS, because the number of stars increases more slowly when
moving to fainter magnitudes. After the observed and theoretical LFs are normalized
to the same number of stars along the RGB (the shape of the LF along the RGB
phase is unaffected by age and choice of the IMF) the IMF of an SSP (old or young)
can be determined by comparing the shape of the observed LF along the MS with the
theoretical counterparts, computed for various types of IMF. This conceptually very
simple technique rests on the accuracy of the theoretical mass–luminosity relationship
for core H-burning stars.

In practical applications one has to be careful when interpreting the results of this
method for the case of old and spatially compact SSPs. The basic problem is that,
e.g. in globular clusters, dynamical interactions among the stars, over the course of
time, tend to alter the initial spatial distribution of masses, slowly moving more-
massive objects toward the cluster centre (mass segregation), and diffusing outwards
less-massive stars. Dynamical interaction with the galactic gravitational field can also
contribute to alter the star distribution within a stellar system. This means that the
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LF of a particular cluster region has probably been affected by dynamical effects and
instead of the IMF one determines the so-called Present Day Mass Function (PDMF),
i.e. dn/dm at the present time. The relationship between PDMF and IMF has to be
carefully deduced from the dynamical modeling of the observed population.

9.3 Young simple stellar populations

9.3.1 Age estimates

We define as ‘young’ SSPs those opulations younger than ∼4 Gyears. Figure 9.29
displays three young isochrones with solar metallicity in the MV − �B− V� CMD.
A typical observational counterpart of young SSPs are Galactic open clusters like
Praesepe, whose CMD was shown in Figure 8.7. The morphology of the TO is
different from the case of globular cluster-like isochrones, because in this latter case
MS stars burn hydrogen mainly through the p–p chain, whereas at young ages it is
the CNO cycle that is relevant to the energy production, hence the appearance of
the overall contraction (the hook-like feature at the isochrones’ TOs). Also the TO
luminosity is higher, because more massive stars are still evolving along the MS,
and for very young ages the vertical TO region covers a large luminosity (hence
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Figure 9.29 Three isochrones for a solar chemical composition and ages of 100Myr, 500Myr
and 1.8Gyr, respectively
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magnitude) range. As for older SSPs the TO is the age indicator, although the location
of the He burning phase is also now age dependent, due to the fact that for ages below
2–3Gyr the He core along the RGB is progressively less degenerate until eventually
the degeneracy is lifted. In these conditions the He core mass is no longer constant
and the luminosity at the beginning of the core He-burning phase (for a fixed initial
chemical composition) does depend on the age of the isochrone. The effect of Z and
Y is the same as for older SSPs.

For ages between ∼0.5 and ∼4Gyr the He-burning phase is usually a red clump
of stars (not only for metal rich SSPs) close to the position of the (depopulated) RGB
sequence, because the RGB evolution is very fast and stars lose a small amount of
matter. When ages are below∼0.5Gyr the helium burning phase moves progressively
to the blue side of the CMD, because stars describe increasingly larger loops to the
blue, and the longer evolutionary times are when He-burning objects are close to the
blue end of the loops.

Precise age determinations for young SSPs are difficult, also due to the fact
that the SGB and RGB phase is almost completely depopulated because of the
much faster evolutionary timescale (the He core mass at the end of the central
H-burning reaches the Schönberg–Chandrasekhar limit). In these conditions the hor-
izontal method described before is of no use.

If the distance to the observed SSP can be determined, a fit of theoretical isochrones
to the TO brightness provides an estimate of the age. Otherwise the vertical method
can be used, considering the luminosity of the He-burning red clump stars, whenever
a sizable sample is present; the dependence of �V on age and metallicity is different
from the case of ‘old’ SSPs, because of the dependence on age of the He-burning
phase (see Figure 9.30). A poorly populated cluster may suffer from the lack of a
sizable number of stars in the He-burning phase (evolutionary timescales are shorter
than for old SSPs) that hampers the use of the vertical method for age dating.

Another way to determine ages of young SSPs is, like for the old ones, to use
the bottom end of the WD cooling sequence as an age indicator. This method can
be applied to objects older than ≈50Myr, the minimum age for the production of
WDs by the more massive intermediate mass stars. In the case of SSP ages of the
order of 50–200Myr the use of this method is hampered by the possible paucity of
WDs (because the IMF largely favours less massive stars) and also by the uncertain
duration of the first cooling phases, that can be affected by the details of the transition
from the AGB to the WD phase and is strongly dependent on the efficiency of
neutrino energy losses (irrelevant at older cooling ages).

Young stellar populations also provide a mean to calibrate the efficiency of the
overshoot from the convective core along the MS phase. As shown in Figure 9.31, the
shape of the TO region in young SSPs can constrain the efficiency of the overshoot,
because it is affected by the extension of the fully mixed central regions (also notice
that ages obtained from isochrones including overshoot are systematically higher).
Another possibility to constrain core overshoot is to compute the number ratio of
MS stars to He-burning stars, NMS/NHe. Due to the larger convective cores, models
including core overshoot have larger He cores during the He-burning phase, hence



306 SIMPLE STELLAR POPULATIONS

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0
–1.2 –0.7 –0.2

log(t )(Gyr)
0.3 0.8

∆V

Z = 0.004, Y = 0.238
Z = 0.008, Y = 0.25
Z = 0.004, Y = 0.238, OV = 0.25
Z = 0.004, Y = 0.27

Figure 9.30 Values of the parameter �V as a function of age for young isochrones with various
initial chemical compositions. Results for a set of isochrones including overshoot from the convec-
tive cores (extension of 0.25Hp) are also shown (data from [47])

larger luminosities that cause shorter timescales in spite of the larger mass of the
convective core; on the other hand the MS lifetime is longer because of the larger
reservoir of hydrogen in the more extended central convective regions, and the ratio
NMS/NHe is higher than in the case of models without overshoot.

Age estimates from the lithium depletion boundary

The lithium depletion boundary (LDB) technique is another independent method to
determine the age of young SSPs with ages between ∼50 and ∼200 Myr, not based
on MS or WD stellar models. As discussed in the sections about PMS evolution
and the Spite plateau, proton reactions destroy lithium around a temperature of
∼2�5× 106 K. The low mass fully convective objects (M below ∼0�3−0�4M�,
VLM) reach the ZAMS having already completely destroyed their initial Li content
due to the very fast and efficient mixing associated with convection, and therefore
spectroscopic observations of their photosphere do not detect any lithium. However,
if the cluster is young enough (age below ∼200 Myr) these VLM objects are still
evolving along the PMS phase, and the lithium might not have completely disappeared
from their photosphere. The rate at which the core temperature increases to the Li
burning temperature is a strong function of stellar mass; higher-mass stars reach this
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Figure 9.31 Comparison between two theoretical isochrones with [Fe/H]=−0�44 and the CMD
of the open cluster NGC2420. The solid line represents a 3.2Gyr isochrone computed including an
overshoot of 0.2Hp from the boundary of the convective cores along the MS; the dashed line is a
2Gyr old isochrone that does not include overshoot. A distance modulus �m−M�0 = 11�90 and a
reddening E�B−V�= 0�06 have been applied to the isochrones

temperature at an earlier age and higher luminosity than lower-mass stars (see, for
example, [13]). Therefore, for a fixed value of the SSP age, one expects to find VLM
PMS stars with surface fully depleted of Li only down to a certain luminosity (e.g.
mass). Below this level – called the lithium depletion boundary – stars will again
display some photospheric Li, because they are not hot enough to have burned this
element in their interiors. Increasing the SSP age shifts the LDB to lower luminosities,
because lower masses had time to reach the Li burning temperature. This property
is not valid for ages lower than ∼50 Myr, because below this age limit VLM stars
have not yet started to burn Li.

Figure 9.32 shows the CMD of PMS stars in the young open cluster � Persei
(age around 100 Myr); the location of the LDB can be inferred by the brightest
magnitude at which lithium is detected in the PMS objects. Once the LDB is detected
and corrected for the cluster distance modulus, its location can be compared with
theoretical results. In practice, one can compute theoretical isochrones of various ages
for PMS stars (see Figure 9.33) and determine the expected level of the LDB from the
Li abundances predicted by the models of the evolving masses; the theoretical LDB
for various ages can then be compared with the observed one to find the best match.
Analyses of the uncertainties involved in this age-dating method provide values of
the order of 10–20 per cent, due mainly to the difficulty of detecting the LDB and
theoretical bolometric corrections (see, for example, [28]).
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Comparison of LDB with TO ages is an additional method to constrain the exten-
sion of the overshoot from the convective cores of MS stars. At the present time
the LDB ages of some clusters (e.g. Pleiades, IC 2391) are higher than the TO ages
determined from isochrones without overshoot, suggesting a non-negligible value for
this parameter.

9.3.2 Metallicity and reddening estimates

Metallicity and reddening of young SSPs can be estimated using the methods
described before that make use of faint MS stars, since these objects are also present
in young populations. Strömgren uvby photometry provides an additional technique to
determine the reddening of a young SSP. If the age of the SSP is of ≈107–108 years,
the CMD is populated below the TO byMS stars of masses between∼3 and 20M� that
are still close to their ZAMS location (B-stars of luminosity class IV–V in the spec-
troscopists’ terminology). Local objects in this age range describe in the c1 − �b− y�
diagram a standard sequence (see Table 9.2) which, according to the theoretical
isochrones, is largely independent of the star metallicity for [Fe/H] >−1 ([89]).

In Figure 9.34 we show the standard sequence obtained from local stars with
negligible reddening and approximately solar metallicity, plus the direction of the
reddening vector. This vector is nearly horizontal, given that �c1�0 = c1 − 0�20E

Table 9.2 Standard sequence for B-stars in the
Strömgren filters (from [147])

�b− y� c1 �b− y� c1

−0.134 −0�250 −0.050 0.578
−0.126 −0�128 −0.046 0.619
−0.120 −0�075 −0.044 0.656
−0.118 −0�025 −0.042 0.693
−0.114 0�022 −0.041 0.724
−0.109 0�065 −0.040 0.755
−0.105 0�108 −0.039 0.785
−0.100 0�150 −0.038 0.811
−0.096 0�192 −0.037 0.833
−0.091 0�235 −0.035 0.856
−0.086 0�278 −0.034 0.878
−0.080 0�321 −0.032 0.900
−0.075 0�362 −0.029 0.925
−0.070 0�404 −0.026 0.950
−0.065 0�448 −0.023 0.975
−0.061 0�491 −0.020 1.000
−0.055 0�535
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Figure 9.34 Standard sequence for unreddened local B-stars. The arrow shows the direction of
the reddening vector

�b−y�, as obtained from the extinction curve. Once one or more B-stars are observed
in the Strömgren filters, comparison of their position in the c1 − �b− y� CMD with
the local sequence provides the reddening E�b− y�. The value of E�b− y� can be
obtained by shifting the colours of the observed stars along the reddening vector, until
the standard sequence is reached. The amount of the shift, e.g. in �b− y�, provides
E�b− y�. To the first order, E�b− y� is simply the difference between the observed
�b− y� and the standard sequence value corresponding to the observed c1, because
the reddening vector is almost parallel to the horizontal axis.

Once E�b − y� is known, extinctions and reddenings in all other photometric
bands and colour indices can easily be derived according to the extinction curve; for
example, E�B−V�= 1�4E�b− y�.

9.3.3 Distance determination techniques

Distances to young SSPs can be determined using the MS-fitting and WD-fitting
techniques described before. The TRGB and He-burning phases are of less use
because they are both affected by the SSP age (the TRGB does not exist for ages
below ∼0.5–1 Gyr).

A very important technique that can be applied to young SSP makes use of
the Cepheid period–luminosity (P–L) relationships, whenever a number of Cepheid
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variable stars is detected in the SSP under scrutiny (see [89] for an application to
an LMC star cluster). The typical age range of SSPs harbouring Cepheid stars is
between ≈10 and ≈100 Myr.

As already discussed, Cepheid stars show both empirically and theoretically well-
defined relationships between their average intrinsic luminosity along a pulsation
period (hence average absolute magnitudes in various wavelength bands) and the
period itself. The main idea of this method is to measure the periods (from their
observed light curves) of the Cepheid stars in the observed SSP and fit these values
to a standard P–L relationship of the kind

MA = a log�P�+ b

for the photometric band A employed. The magnitude shift to be applied to the
SSP objects in order to fit the standard P–L relationship provides the SSP dis-
tance modulus. Distances out to ∼25 Mpc ([75]) have been determined in this way
using photometric data taken with the Hubble Space Telescope. The use of P–L
relationships in two (or more) different photometric bands allows one to determine
simultaneously the distance modulus and extinction. Consider, as an example, the
much used V and I filters; the apparent magnitudes mV and mI of the observed
Cepheids are related to their absolute magnitudes MV and MI as follows:

mV =MV + �m−M�0 +AV

mI =MI + �m−M�0 +AI

Computation of the apparent distance moduli in V and I provides

�m−M�V = �m−M�0 +AV

�m−M�I = �m−M�0 +AI = �m−M�0 + 0�60AV

where we made use of the relationships betweenAI andAV coming from the extinction
curve. Therefore, the difference between the two apparent distance moduli provides
an estimate of AV , that can be used to determine �m−M�0 from �m−M�V . If
additional photometric bands (for example B� K or other filters) are available for both
the SSP Cepheid observations and the P–L standard relationship, this procedure can
be performed making use of additional P–L relationships and extinction coefficients.

Standard Cepheid P–L relationships

The key ingredient to determine distances using Cepheid stars is the P–L relationship
that links measured periods to absolute mean magnitudes. One outstanding problem
to date, is the following: what provides the most reliable calibration of the P–L
relationships?
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Historically it has been customary to employ empirical calibrations which, how-
ever, are not usually based on Galactic Cepheids. In fact, only a few Cepheids in the
Galaxy have parallax error below 30 per cent, i.e. a photometric error below ∼0.6
mag (��MX�= 2�17�(p)/p) and moreover Galactic Cepheids – which are necessarily
located in the disk – have usually high and uncertain reddening. Independent dis-
tances to young clusters harbouring Cepheids are also difficult to estimate, because of
the high reddening and the fact that these clusters are sparsely populated and highly
contaminated by field disk stars.

The template P–L relationship traditionally used has been determined on the
Cepheids in the LMC, which to a good approximation are all at the same distance,
and reddenings are thought to be relatively low and easier to estimate. Assuming
individual extinctions from reddening maps of the LMC, the following relationships
are obtained

<V0 >=−2�760 log�P�+ 17�042� � = 0�159 (9.17)

<I0 >=−2�962 log�P�+ 16�558� � = 0�109 (9.18)

(the period is in days) where the dispersions around these mean relationships are
given ([222]). These equations refer to Cepheid stars pulsating in the fundamental
mode. For first overtone Cepheids the observed periods (P1) can be transformed into
a corresponding fundamental one (P0) according to ([71]):

P1/P0 = 0�716− 0�027 log�P1� (9.19)

In this way one can use the calibrations given by Equations (9.17) and (9.18) for first
overtone pulsators as well.

The non-negligible dispersion around the calibrations given by Equations (9.17) and
(9.18) are due not only to photometric errors and some small depth effect of the LMC
(i.e. the spatial dimensions of the galaxy are not completely negligible with respect to
its distance) but also to an intrinsic property of Cepheid stars. The morphology of the
Cepheid instability strip is shown in Figure 6.16, where lines of constant periods are
also displayed. It is clear from this plot that at a fixed value of P there is a range of
luminosities (hence magnitudes) allowed to the Cepheid variables, due to the intrinsic
width of the strip and the slope of the constant period lines. This occurrence provides a
natural explanation for the observed dispersion around themeanP–L relationship of the
LMC Cepheids. As a general rule, the value of the P–L slope becomes more negative
moving towards longer wavelength filters, and the dispersion decreases.

The dispersion around the P–L relationship can be reduced if one introduces
a colour term which takes into account the width of the strip at constant period,
effectively determining a period–luminosity–colour (P–L–C) relation. In the case of
the LMC and for the VI filters one obtains ([222])

<I0 >=−3�246 log�P�+ 1�409�V − I�+ 15�884� � = 0�074 (9.20)

with a reduced dispersion.
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The use of the previous P–L empirical calibrations determines only the relative
distance between the observed SSP and the LMC. The distance from Earth can be
obtained only assuming a distance to the LMC, whose most accepted value to date
is �m−M�0 = 18�50± 0�1, corresponding to ∼50 kpc.

On the theoretical side, we report here V and I P–L relationships for log(P) <
1.5 (the upper limit of the period range in the LMC empirical calibration) obtained
from the sophisticated pulsational models published in [17], [37]

<MV�0 >=−2�94 log�P�− 1�32� � = 0�17� �Fe/H	=−0�7

<MV�0 >=−2�75 log�P�− 1�37� � = 0�18� �Fe/H	=−0�3

<MV�0 >=−2�20 log�P�− 1�62� � = 0�14� �Fe/H	= 0�0

<MI�0 >=−3�11 log�P�− 1�92� � = 0�12� �Fe/H	=−0�7

<MI�0 >=−2�98 log�P�− 1�95� � = 0�13� �Fe/H	=−0�3

<MI�0 >=−2�58 log�P�− 2�14� � = 0�10� �Fe/H	= 0�0

These relationships agree well with the LMC result for an LMC distance modulus
of 18.50 mag, taking into account that the typical chemical composition of LMC
Cepheids is [Fe/H] ∼−0�4.

We also note that the same theoretical models predict that the K-band P–L relation
is almost completely unaffected by the metallicity and show a smaller dispersion due
to the reduced width of the instability strip

<MK�0 >=−3�33 log�P�− 2�61� � = 0�06� �Fe/H	=−0�7

<MK�0 >=−3�27 log�P�− 2�61� � = 0�06� �Fe/H	=−0�3

<MK�0 >=−3�09 log�P�− 2�67� � = 0�04� �Fe/H	= 0�0

A further advantage is that the K-band is also negligibly affected by interstellar
extinction.

These theoretical models predict a metallicity dependence of the P–L relationships
in V and I , in the sense that at a given period an increase of the metallicity decreases
the Cepheid mean brightness. This means that one has to correct the distances obtained
with LMC-based empirical relationships for this chemical composition effect, in case
the target population displays a [Fe/H] �=−0�4.

Empirical analyses of the metallicity corrections to Cepheids distances obtained
assuming a universal LMC-based P–L ([116], [167], [172], [213]) have not yet
achieved a firm results. To complicate the problem is the fact that not only a change
in Z but also a change in Y appear to affect the theoretical P–L, and it is fair to
say that to this day the question of chemical composition effects on Cepheid P–L
relationships is far from being conclusively settled.
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Ages from Cepheids

We briefly mention here another application of the Cepheid P–L relations. Together
with the determination of distance and reddening, it is in principle also possible to
estimate the age of a young SSP using the P–L relationships. The main idea is that –
for a fixed chemical composition – at a given period there is a corresponding value of
the stellar mass crossing the instability strip, with a certain age t. One can therefore
determine a mean period–age (P–A) relationship using stellar evolution models ([19])

log�t�=−0�79 log�P�+ 8�49� � = 0�09� �Fe/H	=−0�7

log�t�=−0�78 log�P�+ 8�41� � = 0�10� �Fe/H	=−0�3

log�t�=−0�67 log�P�+ 8�31� � = 0�08� �Fe/H	= 0�0

where t is the Cepheid age in years.



10 Composite Stellar
Populations

10.1 Definition and problems

A Composite Stellar Population (CSP) is a collection of stars formed at different
times and with different initial chemical compositions. The observational counterparts
of this theoretical concept are galaxies, that in many cases are made of multiple
generations of stars, and often show clear signs of current star formation activity.
Figure 10.1 displays the CMD of the solar neighbourhood, that appears clearly to be
a CSP, due to the coexistence of a bright MS and well-populated SGB and RGB,
that reveal the presence of both young (the bright MS objects) and old (the SGB and
RGB objects) stars.

The fundamental information that characterizes a CSP is its Star Formation History
(SFH), that is the evolution with time of the amount (i.e. total mass) of stars formed
(Star Formation Rate – SFR) and their initial chemical composition (Age Metallicity
Relation – AMR). We will formally denote the SFH as the function ����t���t��
where ��t� is the SFR and ��t� is the AMR. The SFR and AMR are not independent,
given that each generation of stars will eventually inject in the interstellar medium –
through supernova explosions and mass-loss processes along the AGB and RGB
phases of stars with the appropriate mass range – large quantities of gas chemically
enriched by nuclear processes.

If the SFR is known, together with the IMF and the efficiency of accretion and
gas loss from the galaxy, stellar evolution theory would then provide the necessary
information to follow the chemical evolution of the gas and therefore the chemical
composition of the various stellar generations, i.e. the function ��t�. In the most
generic case 2+ N quantities have to be calculated: the gas mass g�t�, the mass
existing in form of stars s�t�, and the mass fraction Xi�t� of the ith element (i=
1� � � � �N ). The evolution with time of the total mass of the system M�t� (excluding

Evolution of Stars and Stellar Populations Maurizio Salaris and Santi Cassisi
© 2005 John Wiley & Sons, Ltd ISBN: 0-470-09219-X
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Figure 10.1 Extinction-corrected CMD of stars in the solar neighbourhood with precise parallax
measurements from the Hipparcos satellite

the dark matter whose amount is not affected by the star formation activity) is
described by the following equations

M�t�= g�t�+ s�t� (10.1)

dM�t�

dt
= F�t�−E�t� (10.2)

where F�t� is the rate of accretion of gas from outside the system, and E�t� the rate
of ejection of gas from the system (neglecting possible loss or accretion of stars due
to dynamical effects). The evolution of the gas mass g�t� is described by

dg�t�

dt
=F�t�−E�t�+ e�t�−��t� (10.3)

where e�t� is the rate of ejection of gas from the stars due to mass loss during the
stellar evolution and supernova events (an information coming from stellar evolution
models), and ��t� is the SFR (in units of mass per year). The evolution of the mass
in stars s�t� can be written as

ds�t�

dt
=��t�− e�t� (10.4)
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The evolution with time of the mass fraction Xi�t� of a generic (non-radioactive)
element i is described by

d�g�t�Xi�t��

dt
= eXi

�t�−Xi�t���t�+XF
i �t�F�t�−Xi�t�E�t� (10.5)

where eXi
�t� is the total mass of element i ejected from stars during their evolution,

Xi�t���t� is the mass locked into stars due to star formation (that depends on the IMF,
the stellar evolutionary timescales and the stellar evolution processes), XF

i �t�F�t� is
the addition of mass due to inflowing material (the abundance of element i in this
inflowing material, XF

i �t� is a priori different from the abundance within the system)
and XiE�t� is the mass lost due to ejection from the system. These equations can
be applied to the galaxy as a whole – and in this case all the quantities involved
are mean values over the whole galaxy – or the system can be divided into various
regions (like a stellar model is divided into many layers) and the equations applied
to each individual region. The chemical abundances at a given time t are then used
as input parameters to compute the evolution of stars formed out of the interstellar
medium at t.

A simplified toy model for the chemical evolution of a CSP is the simple model
with instantaneous recycling, also called the closed-box model (see, for example,
[212]) that we will briefly discuss for heuristic purposes. Its simplicity makes it a
useful standard for comparison with more sophisticated models, even if it is of limited
applicability in galactic haloes and possibly elliptical galaxies and bulges.

This model is based on a series of simplifying assumptions. The first one is
that F�t� and E�t� are equal to zero, i.e. no material leaves and enters the system
(M�t�=M is constant) and at time t=0 all matter is in the form of a gas (g�0�=M).
Second, the gas is always assumed to be homogeneous (i.e. well mixed at any
time, like gas in a stellar convective zone that always has a homogeneous chemical
stratification). Third, the delay between the formation of a generation of stars and the
injection of freshly produced heavy elements into the interstellar medium by those
stars is assumed to be negligible. This latter assumption is called the instantaneous
recycling approximation and it is reasonable at least for Type II supernovae, whose
progenitors have short lifetimes. We define the yield pi of a generation of stars as
the mass of a generic element i freshly produced, divided by the amount of stellar
mass that remains locked in long-lived low-mass objects and compact remnants (i.e.
white dwarfs, neutron stars). Typical values of pi are of the order of 10−1−10−2. In
the closed-box model the yield pi of any element is assumed to be the same for any
generation of stars (i.e. independent of their initial chemical composition).

Suppose that at a certain time t there is a mass of stars s, a gas mass g and a
mass Zi of a generic element i in the gas. The mass fraction Xi of element i in the
interstellar gas is given by Xi =Zi/g. Consider now the effect of forming a mass �s′

of stars. Because of the instantaneous recycling approximation, a certain amount of
matter chemically enriched by this generation of objects is instantaneously injected
into the interstellar medium. If the amount of mass remained locked into low-mass
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stars and remnants is denoted by �s, the total change �Zi in the mass of element i
arising from these new stars is

�Zi =pi�s−Xi�s (10.6)

where the first term on the right-hand side gives the amount produced and given back
to the interstellar medium by the new generation of stars, whilst the second term is
the negative contribution due to the amount of gas locked into the long-lived object.
A second equation needed to close the system is the fact that the total mass of the
system has to be constant, hence

�s=−�g (10.7)

The third equation is obtained by writing down the change of the abundance Xi in
terms of the variation of the ratio Zi/g, i.e.

�Xi = �

(
Zi

g

)
= �Zi

g
− Zi

g2
�g= 1

g
��Zi −Xi�g� (10.8)

Combining Equations (10.6), (10.7) and (10.8) we finally obtain the very simple
equation

�Xi =
1
g
�pi�s−Xi�s−Xi�g�=−pi

�g

g

that connects the change of Xi�t� to the gas content of the system. Integration of this
equation, assuming a constant pi (constant at least in the time interval of integration)
provides the mass fraction of element i at a generic time t

Xi�t�−Xi�0�=pi ln
(
g�0�
g�t�

)
(10.9)

Since g(0) is the total mass of the system (no stars are formed at time t=0) according
to the closed-box model the mass fraction of a generic element i in the gas and
in stars formed at time t increases with decreasing gas fraction. This result is not
surprising since, as time goes on, stars are formed from the interstellar gas and
massive stars return chemical elements to the interstellar medium. The supply of
interstellar gas is steadily consumed and the remaining gas is enriched in chemical
elements. Equation (10.9) is obviously subject to the constraint that Xi�t� can be at
the most equal to one. This means that the yields cannot always stay constant, but
have to become extremely small when the gas fraction is approaching zero.

One can also determine the Xi abundance distribution of the stars still surviving
at time t. The mass of stars formed with abundance smaller than Xi�t� is given by

s�Xi <Xi�t��= g�0�− g�t�= g�0��1− e−Xi�t�/pi �
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where we have used Equation (10.9) to express g�t� as a function of g(0) (in this
example we assumed Xi�0�= 0, as in the case of metals). Application of this closed-
box model to the solar neighbourhood reveals a severe lack of long-lived metal-poor
stars (the so-called G-dwarf problem) with respect to the theoretical predictions.
More sophisticated chemical evolution models have therefore to be used for the local
Galactic disk, relaxing at least some of the simplifying assumptions built into the
closed-box model.

In principle, the full set of Equations (10.1)–(10.5), coupled to stellar evolution
calculations, should be able to describe both the chemical and spectrophotometric
evolution with time of a generic CSP. In practice, because of the lack of solid
predictions concerning the efficiency of galactic star formation, inflow and outflow
processes, and also uncertainties in the stellar evolution prescriptions for the yields
of each stellar generation, the chemical evolution equations are actually only used to
partially constrain the form of the functions ��t��F�t� and E�t� in real CSPs. This
is done by comparing the predicted chemical abundance trends with observed ones,
whenever spectroscopic abundance determinations for samples of stars belonging to
the CSP are available.

A very powerful way to provide the empirical foundations upon which to build a
comprehensive theory of galaxy formation, is to determine the SFR and AMR of a
galaxy stellar population from their observed CMD, when available. Stellar evolution
theory provides the appropriate tools to unveil the SFH of a generic CSP that can be
resolved into its parent stars. The necessary ingredients are a CMD of the observed
population, and a set of theoretical isochrones spanning a large range of ages and
initial chemical compositions. The main idea1 is to simulate theoretically the CMD of
the observed CSP as a linear combination of CMDs of elementary populations with
a homogeneous age and metallicity distribution within a small age and metallicity
range, centred around discrete values of t and Z. The contribution of these elementary
populations to the observed CMD is then determined by varying the coefficients of
the linear combination until the best match of the synthetic CMD with the observed
one is achieved, taking advantage of the fact that to a large extent stars of different
ages and initial chemical compositions cover different regions in the CMD. Of course
some degeneracies are in principle possible, but can be avoided by detecting stars in
both the MS and more advanced evolutionary phases. As an example, consider an
observed CMD that samples only the upper RGB of an unknown stellar population.
If the chemical composition of the observed stars is the same but their age spans
a range between for example, 13 and 8 Gyr, the observed RGB will be almost
indistinguishable from an RGB produced by, for example, 13 Gyr old coeval stars
with the same chemical composition. This is due to the very weak dependence of the
RGB properties on age, at least in the age range of globular clusters. If, however, the
MS phase is also sampled, an age range translates into multiple TOs, hence an SGB

1 A different approach from the one described in this section is described in [97]; it is essentially based on
searching the SFH that has the maximum likelihood to produce the observed CMD.
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that covers a large magnitude range, whereas the coeval population will have a very
narrow (in magnitude) SGB.

The approach briefly sketched above, which we call the ‘inverse approach’ to the
determination of the SFH of a CSP, i.e. of a galaxy, will be the main subject of the
rest of this chapter.

10.2 Determination of the star formation history (SFH)

Methods to determine the SFH of a generic CSP are based on the following general
assumptions.

1. The stellar models accurately predict the observed properties of stars of different
masses as a function of their age and metallicity.

2. The IMF used in the computations – either independent of age and metallicity or
variable – is a realistic counterpart of the true IMF.

3. The observational errors can be accurately measured and modelled.

4. The theoretical stellar populations employed in the analysis represent all the pop-
ulations present in the observed CSP.

We will give in the following more details about the method to determine the
SFH of a CSP using photometric observations of its stellar content. Details and
implementation of this technique vary from author to author (see, for example, [65],
[76], [92], [219]) and a comparison of the results of different implementations applied
to the same galaxy (the dwarf irregular IC 1613 in the Local Group) can be found
in [200].

First, the observed CMD is divided onto a grid with N cells of a specified width
(a variable cell size is often used, as discussed at the end of this section) in both
the colour and magnitude directions (see Figure 10.2); the width of the cells – e.g.
0.1 mag – is dictated by the need to have a sizable sample of stars in each cell, and
to resolve with more than a few cells the various evolutionary phases displayed by
the observed CMD. The number of stars in a generic grid cell (i) of the observed
CMD is denoted No�i�; the index i runs from one to the total number of grid
cells N .

Second, a number of synthetic CMDs of elementary stellar populations is created.
Each elementary population j is computed considering a collection of stars (for a
specified value of their total mass) with a uniform distribution of ages and metal-
licities within intervals 	t and 	Z, centred around n discrete values of age t and
m metallicities. This corresponds to constant SFR and AMR within each 	t and
	Z bin. The synthetic CMDs can easily be computed using MC techniques to draw
randomly stellar mass values (according to the prescribed IMF) plus the corresponding



DETERMINATION OF THE STAR FORMATION HISTORY (SFH) 321

16

18

20

22

24

0 0.5 1.0 1.5
(V – I )

V

Figure 10.2 Observed CMD of a generic CSP, divided onto a grid with bin size equal to 0.1 mag
in (V − I) and 0.5 mag in V

age and metallicity (with a uniform distribution) and determining their CMD location
by interpolating within a grid of isochrones. It is important to remark that these elemen-
tary stellar populations have to be determined using a very large number of synthetic
stars (hence a large value of the total initial mass of the population) in order to avoid
non-negligible statistical fluctuations of the number of objects populating the more
advanced, short-lived evolutionary phases. As an example, using only 10 000 stars in
a theoretical SSP with ages above ∼108 yr would produce only a handful of objects
along the AGB, and this number will be subject to large variations (in some cases
will even be zero) if different MC realizations of the same population are computed.

The discrete values of t and Z need in principle to span the largest possible range;
ideally t should range from a few Myr (to describe the youngest stellar generations) to
the age of the universe (13–14 Gyr) and Z from∼0 to a few times solar. It is, however,
possible to put some limits to the range of t and Z of the elementary populations,
when an approximate distance and reddening are available; in this case the brightness
of the youngest TO and the colour range of the MS and RGB displayed by the
observed CMD can constrain the minimum age and the metallicity range spanned by
the CSP under scrutiny. Even without any prior knowledge, the morphology of the
CMD can tell us if the CSP is made exclusively of stars with ages of at least a few
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Gyr (i.e. it displays a well-populated SGB and RGB) or young objects (i.e. there is
no evident RGB).

For each of the n age values a set of CMDs for all m metallicities has to be
produced. The total amount of elementary populations will therefore be equal to
n×m.

Given that one has to be able to match the distribution of stars in the observed
CMD, it is necessary to include in the synthetic CMDs of the elementary populations
the photometric errors and completeness fractions determined from the reduction of
the photometric data.2 This can again be done using MC techniques. The size of the
photometric errors constrains the width 	t and 	Z of the elementary populations. In
fact, if the age and metallicity resolution is too fine compared with photometric errors,
elementary populations with adjacent ages (and or metallicities) would be completely
degenerate. This point is well illustrated by Figure 10.3, which shows an example of
elementary populations before and after the inclusion of the appropriate photometric
errors. Notice also how the morphology and distribution of the star counts along
the various evolutionary phases is affected by the age range covered. The oldest
population displays an extended HB and all evolutionary phases are well populated,
while with decreasing age the SGB and RGB tend progressively to be depopulated
until they virtually disappear (because of the Schönberg-Chandrasekhar limit). The
location of He-burning stars is also greatly affected by age; it first becomes a red
clump for ages down to 1–2 Gyr, then it is reduced to sparsely populated groups
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Figure 10.3 CMD of a set of elementary stellar populations covering the labelled age ranges, (a)
without and (b) with the inclusion of photometric errors (courtesy of C. Gallart)

2 For each given magnitude, the completeness fraction provides a measurement of the number fraction of
stars recovered with the photometric data reduction with respect the actual number in the observed field.
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of stars (due to very short timescales) that move towards increasing brightness and
bluer colours.

The effect of unresolved binaries and blending must also be included in the
synthetic populations, because, as an example, they broaden the observed MS. If
the fraction of unresolved binaries is treated as a free parameter to be determined
through the minimization procedure described below, additional CMDs with varying
unresolved binary fractions for each elementary population j have to be produced.
One possibility to include unresolved binaries is to select randomly some of the stars
generated according to the prescribed IMF; the total number of the selected binary
stars is fixed by the assumed value of the binary fraction. To these selected stars
(whose mass is denoted by Mpr) it is assigned a companion (with the same age and
metallicity of Mpr) whose mass Mcomp is drawn according to

Mcomp = 
ran�1− qc�+ qc�Mpr

where qc is the minimum value of the ratio Mcomp/Mpr, whose typical value is usually
assumed to be ∼0�7 (see below). The variable ran is a random number with a flat
distribution between zero and one, so that the previous relationship provides values of
Mcomp with a uniform distribution between Mpr and 0.7Mpr. For unresolved binaries
or blended stars the magnitude of the composite object is evaluated by simply adding
the fluxes of the components; in a generic band A the magnitude of an unresolved
binary is given by MA=−2�5 log�10−0�4MA�1�+ 10−0�4MA�2��, where MA�1� and MA�2�
are the magnitudes of the two system componentsMpr andMcomp. Unresolved binaries
with Mcomp < 0�7Mpr would have magnitudes and colours almost indistinguishable
from the values appropriate for Mpr.

It is also possible to account for foreground contamination in a consistent manner.
The common procedure is to observe a second field (of the same size) near (in terms
of position in the sky) the object field, but well beyond the limits of the object being
studied; the resulting CMD is then divided into the same grid as the object CMD,
and the number of objects f�i� in a generic cell i is determined. The number counts
f�i� of this field CMD can then be added to the contribution of the synthetic partial
populations, as described below.

The distance modulus and extinction of the observed CSP are often assumed a
priori, but can in principle be determined through the minimization procedure. In
this case they appear as constants added to the magnitudes and colours of the stars
belonging to the elementary populations.

A synthetic CMD for the observed CSP is created as a linear combination of the
elementary CMDs described above (plus the foreground population) and divided into
the same grid as the observed CMD. The number of stars in grid cell i of the synthetic
CMD is denoted by Ns�i� and is given by

Ns�i�=
∑
j

ajN
j
e �i�+ f�i�
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where Ni
e�i� is the contribution of elementary population j to the grid cell i; the index

j runs from 1 to n×m. The number of observed and synthetic stars present in each
cell are compared using some merit function, e.g.

2 =∑
i

�No�i�−Ns�i��
2

No�i�
(10.10)

with the index i running from 1 to N . This comparison is done, for each assumed
value of distance and extinction, considering the magnitude and colour intervals
populated by the observed CSP.

The weights aj of the linear combination (and eventually distance, reddening and
unresolved binary fraction) are varied until the merit function is minimized; the
resulting values of the coefficients aj provide the best-fit model for the SFR and
AMR. In Figures 10.4 and 10.5 we display the results of this procedure for the LMC
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Figure 10.4 (a) AMR and (b) SFR estimated for the LMC, following the methods discussed in
the text. An age equal to zero corresponds to the stars currently forming. The vertical axis in (b)
provides the relative weights of the elementary stellar populations used in the derivation of the
SFH. A scaled solar heavy element mixture has been employed in the adopted theoretical models
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Figure 10.5 As in Figure 10.4 but obtained from an analysis of 351 regions within the SMC

and SMC (from [92] and [99]). Once the best-fit model has been found, one can
estimate empirically the confidence interval of each coefficient aj by exploring the
2 parameter space surrounding the location of the minimum value 2

min. The 1�
confidence interval on each parameter is then defined by the appropriate value of
	2 = 2 − 2

min. It is important to notice that the denominator in Equation (10.10)
should correspond to a Gaussian error ��i�2 for the 2 statistics to be meaningful. This
is only approximately true when No�i� is large (since we are comparing star counts
and the error is essentially Poissonian). This problem can be avoided by using more
complicated merit functions ([65]). One possibility is to minimize what is defined in
[65] as the equivalent of 2 in the presence of Poisson errors, e.g.

−2 ln �PLR�= 2
∑
i

Ns�i�−No�i�+No�i� ln
(
No�i�

Ns�i�

)

In general, one will not be able to estimate the age and metallicity of individual
stars in the observed CSP, but it is possible to study the statistical distribution of the t
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Figure 10.6 Age and [Fe/H] distribution for LMC stars populating the He-burning phase. In each
panel, the total number of stars is normalized to unity

and Z along the CMD. In Figure 10.6 we show, as an example, age and metallicities
of LMC stars along the HB phase obtained from the best-fit synthetic CMD. If some
high resolution spectroscopic abundance determinations are available (this is the case
of only the Milky Way and a few nearby galaxies) one can compare – as a test of the
SFH – the metallicity distributions inferred from the derived SFH with observations.
These measurements can also be used a priori to constrain the range of metallicity to
use for the synthetic elementary populations.

There are a number of considerations to be made regarding the procedure outlined
above. The first obvious point is that in principle the photometry should reach the
faintest possible stars in the observed CSP, also to constrain the SFH for the first
phases of galaxy evolution. To give some quantitative estimates, the typical TO
magnitude in the V band for ages comparable to the age of the universe is MV ≈ 4,
and this is the level to be reached (for a given distance modulus) in order to be sure
to detect the SGB of the oldest stellar population in the CSP under scrutiny. Also, the
method described before rests entirely on the accuracy of the colours (and magnitudes)
predicted by the theoretical isochrones. As discussed in the previous chapter, there are
non-negligible uncertainties affecting the predicted stellar colours that can be to some
extent bypassed when studying SSPs, but cannot be avoided when inferring the SFH
of a CSP from synthetic CMDs. The effect of these uncertainties on the estimated
SFHs of galaxies is up to now largely unexplored. It is in principle possible to ignore
in the sum of Equation (10.10) CMD cells for which theoretical models have the
largest uncertainties, as in the case of stars with convective envelopes, but of course
one cannot ignore all CMD regions populated by stars with surface convection, or
else no information about the oldest CSP components (if present) can be obtained.
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Another possibility to minimize the impact of badly modelled evolutionary stages,
is to use variable-sized grid cells, by choosing the relative sizes in a way that gives
less weight to the more uncertain phases.

It is useful to notice the following point. If bright MS stars exist in the observed
CSP, a young population must be present; if these stars are vastly outnumbered by
older stars, when using equal sized grid cells the fitting procedure will do its best to
fit the older stars, even if it means sacrificing a good match to the younger objects. A
way to circumvent this kind of problem is, again, to use grid cells with variable sizes,
although this may introduce another degree of arbitrariness in the fitting procedure.

An additional warning concerns the fact that usually one employs scaled solar
isochrones to determine the SFH of external galaxies, although in principle the metal
mixture in the observed stellar population could be different. Different metal mixtures
can alter the stellar colours at a given total metallicity, and lead to erroneous estimates
of the SFH.

10.3 Distance indicators

In most cases the resolved CMD of a CSP is not deep enough to allow a meaningful
determination of the SFH. However, it may still be very important to estimate
the distance to the CSP, e.g. for cosmological distance scale calibrations, study
of local deviations from the Hubble flow, relative distance analysis for groups of
galaxies or comparisons of the intrinsic properties of some classes of stars in different
environments.

If at least the bright part of a well-populated RGB is detected, one can employ
the TRGB method to estimate the CSP distance. A note of warning is, however,
necessary. Whenever a well-developed RGB is observed, it is natural to assume that
it represents the counterpart of the Galactic globular cluster RGBs, with globular
cluster-like ages. Therefore the TRGB method discussed in the previous chapter is
applied, using calibrations for globular cluster stars, and the mean metallicity and
distance of the observed RGB stars are estimated. Unfortunately, as shown in [180],
appearances can be deceptive. An SFH like the LMC (or SMC) produces a CMD
with an RGB that closely resembles the RGB of galactic globular clusters (see, for
example, Figure 10.7). However, RGB stars in the LMC have a mean age of only
∼4 Gyr, much younger than the typical globular cluster age. This is essentially due
to the fact that in low-mass stars the ratio between RGB and MS timescale increases
for increasing stellar mass until the mass is ≈1�6M�. In the case of a constant SFR
(or of an SFR increasing for decreasing age) the statistical weight of the RGB stellar
sample related to the younger population is therefore larger than that of older RGB
stars.

When applying the TRGB method to the LMC red giants one obtains a mean
[Fe/H] much lower than the real one because, although the RGB dependence on age
is weak, 4 Gyr old RGB stars are appreciably bluer than their ∼12 Gyr counterpart
at a given metallicity. If the real – unknown, in case of CSPs lacking estimates of



328 COMPOSITE STELLAR POPULATIONS

14

15

16

LMC

SMC

17

14

15

I
I

16

17

1.0 1.5
(V – I )

2.0 2.5

Figure 10.7 CMDs of the RGB observed in the LMC and SMC (from [223])

their SFH – metallicity is larger than ∼−0�7, the dependence of MTRGB
I on the metal

content is high, and an erroneous metallicity determination causes a large error on
the inferred distance. When the a priori unknown RGB age gets closer to ∼2 Gyr, the
TRGB brightness starts to decrease at a given metallicity, because of the approach to
the transition from electron degenerate to non-degenerate He core ([7]) thus inducing
erroneous distance determinations when the globular cluster TRGB calibration is
applied.

Detection of a sizable sample of RR Lyrae stars could in principle be used to
determine the average value of their mean apparent magnitudes, and estimate the CSP
distance by applying the HB absolute magnitude calibrations described in the previous
chapter. Given that the HB level is strongly affected by the metallicity, without
[Fe/H] estimates this kind of distance determination technique is inapplicable. The
same holds in the case of non-variable HB stars when detected in the observed CSP.
The HB region of a CSP can be populated by objects with a mixture of metallicities
and ages, as shown in Figure 10.6 for the LMC. Not only the metallicity but also the
age of the He-burning objects affects the HB level, when t is lower than a few Gyr.
The only way to estimate the expected absolute magnitude of He-burning stars in a
CSP is to build a synthetic CMD with the population SFH. This approach has shown,
as an example, that the difference between the mean V magnitude of the He-burning
phase in the solar neighbourhood (for which accurate parallax-based determinations
provide MV = 0�73± 0�03 – see [3]) and in the LMC, as predicted by the current
SFH estimates, is equal to 0.26 mag (the LMC stars being brighter). For a fixed
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globular cluster-like age, the same magnitude difference predicted by considering
only the difference of the mean [Fe/H] of the two HB populations (i.e. neglecting
age effects) is of the order of ∼0.10 mag in V (again LMC stars being brighter).
The effect of the SFH on the HB brightness is expected to be generally smaller if
one employs the I , and especially the K (when metallicities are around solar) filters,
but some knowledge of the SFH is absolutely necessary for a meaningful distance
determination using HB stars ([83], [179]).

Cepheid stars are probably the most used objects to determine the distance to
CSPs harbouring a young stellar population, from the fit of the observed periods and
apparent magnitudes to a reference P–L relationship, in the same way as described
in the previous chapter. In this case, there are potential uncertainties related to the
not well-established metallicity (and probably also helium) dependence of the P–L
relationship. If the P–L relationships are not universal, an estimate of the chemical
composition of the observed Cepheids is necessary.

An important point to notice is that given the relatively narrow age range covered
by Cepheid stars, one does not expect a substantial chemical evolution of a generic
CSP during this time interval. This means that Cepheids in a CSP are expected to
be characterized by the same mean metallicity (apart from an intrinsic spread around
this constant mean value). This situation is simpler than the case of HB and TRGB
stars discussed above.

10.3.1 The planetary nebula luminosity function (PNLF)

Planetary nebulae are bright objects, with bolometric luminosities typically higher
than the tip of the RGB, and are sometimes used as distance indicators for stellar
populations harbouring low- and/or intermediate-mass stars, e.g. with ages larger than
≈108 yr. Empirical determinations of the number of planetary nebulae as a function
of the flux they emit in the OIII line at 5007 Å (F5007) has disclosed a remarkable
homogeneity among galaxies of various types (see, for example, [109]). When the
flux F5007 is transformed into a magnitude according to

m5007 =−2�5 log�F5007�− 13�74

the number of objects N�m5007� with a given value of m5007 is well reproduced by the
following empirical relationship

N�m5007�= e0�307m5007
1− e3�m
∗−m5007�� (10.11)

the so-called Planetary Nebula Luminosity Function (PNLF). The key quantity is the
cut-off magnitude m∗. When comparing the PNLF of objects with known distances,
a remarkably constant value of the absolute cut-off magnitude M∗ =−4�48± 0�036
is found.

AssumingM∗ is universal, a distance estimate using the PNLF is straightforward. It
is necessary to determine empirically the PNLF of the observed stellar population, fit
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the empirical star counts with Equation (10.11), and compare the apparent magnitude
of the observed cut-off with its absolute value M∗ given above. The difference
between these two values gives an estimate of the distance modulus.

The reason for the existence of the PNLF cut-off is related to the combination
of different effects. First, the brightness of the planetary nebulae increases with the
increasing mass of the central star, essentially a CO electron degenerate core; since
observations are made in the OIII emission line at 5007 Å, details of the emission
processes also play a non-negligible role ([135]). Second, the evolutionary timescales
along the PN phase sharply decrease with increasing stellar mass. Third, in CSPs with
multiple stellar generations one has to take into account the interplay between the
progenitor MS mass–final PN mass relationship (essentially defined by the mass-loss
processes along RGB and AGB) and the IMF.

A modelling of the PNLF is extremely complicated; the most recent and sophis-
ticated theoretical simulations ([135]) show that M∗ depends strongly on the age of
the latest episode of star formation, and on the oxygen abundance in the envelope of
the observed PNe (determined not only by the initial metallicity of the progenitor,
but also by the effect of the dredge-up episodes). In galaxies with a continuous SFR
until the present time, or with a burst of star formation 1 Gyr ago, the cut-off is
expected at M∗ between −4 and −5, as observed. In galaxies without recent star
formation the cut-off is expected to be about five magnitudes fainter. This is due to
the lack of PNe with MS progenitor masses above 2M�, that produce the brightest
PNe. The empirical agreement between M∗ found in spiral, irregular galaxies and
in some elliptical galaxy (of known distances) also seems to suggest a recent burst
of star formation in this latter type of objects – traditionally expected to be SSPs –
unless there is some additional effect not accounted for in theoretical models, or the
cut-off absolute magnitude M∗ is not really universal.



11 Unresolved Stellar
Populations

11.1 Simple stellar populations

Stellar populations in distant galaxies cannot in general be resolved into individual
stars. In this case photometric and spectroscopic observations can provide only inte-
grated magnitudes, colours and spectra that include the contribution of all the stars
belonging to the population. To study the evolutionary status of these unresolved
stellar populations we cannot apply the techniques discussed in the last two chapters,
given that they were based on the properties of individual stars in specific evolution-
ary phases. Alternative methods for dealing with unresolved populations have been
devised in the last decades, starting with the works by [23], [29], [63], [90], [203],
[218], until more recent investigations by [21], [133], [228], [235], [236]; in this
section we first discuss techniques applied to unresolved SSPs.

The monochromatic integrated flux F I
� received from an unresolved SSP of age t

and metallicity Z can be written as

F I
��t�Z�=

∫ Mu

Ml

f��M� t�Z���M�dM (11.1)

where f��M� t�Z� is the monochromatic flux emitted by a star of mass M , metallicity
Z and age t���M�dM is the IMF (in the following we will always use the Salpeter
IMF)M1 is the mass of the lowest-mass star in the SSP,Mu is the mass of the highest-
mass star still alive in the SSP. The value of Mu is typically the initial mass of the
object evolving towards the WD sequence at the SSP age, and can be approximated
to the TO mass at that age. The contribution of WDs to the integrated flux, especially
that of the faintest more massive ones, produced by low- and intermediate-mass stars
that started to evolve along the cooling sequence in the earlier evolution of the SSP,
is usually negligible.

Equation (11.1) simply says that the integrated flux is the sum of the individual
fluxes of the stars belonging to the SSP, represented by the term f��M� t�Z�; the
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IMF gives the number of stars formed with a given mass M . In the hypothesis of a
universal IMF the effect of age and chemical composition is included in f��M� t�Z� –
since the energy output of a star of mass M and its wavelength distribution depend
on both t and Z – and also in Mu. In a similar fashion the integrated magnitude in a
generic photometric band A received from an unresolved SSP can be written as the
sum of the energy fluxes within the appropriate wavelength range, i.e.

MA�t�Z�=−2�5 log
(∫ Mu

Ml

10−0�4MA�M�t�Z���M�dM

)
(11.2)

Integrated colours follow directly from Equation (11.2) applied to two different
photometric bands.

Before discussing how to use integrated colours and spectra to estimate the age
and metallicity of unresolved SSPs, one has to learn more about the contribution
of individual evolutionary phases to the integrated properties of an SSP. We start
discussing the case of the bolometric luminosity LT, the integral of F

I
� over the whole

wavelength range.
Figure 11.1 displays the fractional contribution of various evolutionary phases to

the integrated bolometric luminosity LT of solar metallicity SSPs spanning a large age
range. In general the MS is the most populated evolutionary phase, due to its very long
timescale compared with later phases; however, its contribution to LT also depends
on the maximum luminosity reached at the TO, compared with post-MS phases.
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Figure 11.1 Contribution of different evolutionary phases to the total bolometric luminosity of an
SSP (Li/LT is the ratio of the integrated bolometric luminosity produced by stars in the evolutionary
phase i to the total integrated bolometric luminosity LT of the population) with solar initial chemical
composition and varying ages (data from [133]). Here the acronym HB denotes the phase of core
He-burning, regardless of the value of stellar evolving mass. The contribution to LT of phases not
displayed in this diagram is negligible
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For t below ∼300Myr the MS contributes the largest fraction of LT, approximately
70 per cent at t= 30Myr and ∼ 40 per cent at t= 300Myr. This happens because at
young ages the MS reaches extremely bright luminosities. Between ∼300Myr and
∼2Gyr the AGB becomes the largest contributor to LT, due to the appearance of AGB
stars with progenitor masses between ∼7 and ∼2M�, that reach high luminosities
due to their large final CO core mass, and are much brighter than the TO. Above
2–3 Gyr the RGB takes over as major contributor to LT, since it now harbours low-
mass stars with relatively long lifetimes (hence it is extremely well populated) and
reaches much brighter luminosities than the MS. The fractional contribution of the
He-burning phase is approximately constant, at about 20 per cent, and the SGB is
even smaller and almost negligible at young ages, when it is severely depopulated.

Let us repeat the previous analysis by considering the luminosity in various wave-
length ranges (see Figure 11.2). We choose four representative photometric bands
covering a wide wavelength range, from the near ultraviolet to the near infrared,
namely U�B�V andK. The contribution of the individual evolutionary phases depends
clearly on the filter considered. The U and B bands are always dominated by the
contribution of MS stars, mainly the hotter objects close to the TO, even at ages
of the order of 10 Gyr. The second most relevant phase in U and B is the central
He-burning at low ages, while SGB stars become the second largest contributor to
the integrated luminosity when the age is above ∼1 Gyr. At these ages the HB and
RGB contribute about 15–20 per cent each to the total integrated magnitude in B.
We notice that the actual morphology, i.e. the colour extension of the HB, strongly
affects its contribution to the blue and ultraviolet portion of the spectrum. In this
example we are considering an HB populated only in the red part of the CMD, an
assumption generally true for the solar metallicity stellar populations in the Galactic
disk. Bluer HBs would provide a larger contribution to the flux in the U and B filters.

In V the situation is similar to the B filter, but in this case the RGB takes over
as the second more relevant phase when the age is above ∼1 Gyr. In the K filter
things are very different. For ages below ∼200 Myr the He-burning phase dominates
the integrated luminosity due to masses below ∼12M� that experience the onset of
central He-burning at the red side of the CMD (notice that below ∼107 yr He-burning
starts at the blue side of the CMD). Between ∼200 Myr and ∼3 Gyr it is the TPAGB
phase along the AGB that mainly determines LK

T and at higher ages it is the RGB.1

The change of behaviour when considering different filters is easily understood
when we recall that bluer filters are more sensitive to the hottest evolutionary phases,
like MS and He-burning phases for SSPs below∼109 yr, because higher temperatures
shift the peak of the energy spectrum towards shorter wavelengths. Redder filters are
necessarily more sensitive to cooler objects like RGB and AGB stars, that also happen
to reach extremely high luminosities. It is therefore very important to bear in mind
that the integrated flux in different wavelength bands may be dominated by different
evolutionary phases. This has relevant consequences for the case of unresolved CSPs.

1 It should be pointed out that post-AGB stars and hot, bright WDs contribute to the flux in the ultraviolet,
at wavelengths much shorter than the U and B bands discussed in this section.
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Figure 11.2 As in Figure 11.1 but for the luminosity in various wavelength bands (data from
[133]). The AGB has been split into the phase up to the onset of thermal pulses (EAGB) and the
thermal pulse phase (TPAGB)

The initial chemical composition can affect the fractional contribution of the
various phases to integrated luminosities L�

T, although this is in general a second-
order effect. What is important to consider is that in old SSPs with Z below ∼0�001
the HB is also populated at its blue side; the contribution of He-burning stars to
the total luminosity mainly in U and B will then be larger than the case of a solar
metallicity SSP, which has a red HB.

11.1.1 Integrated colours

From an observational point of view it is much more convenient to measure broadband
magnitudes and colours of distant unresolved SSPs, than performing spectroscopic
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observations to determine F I
� to some chosen resolution. It is therefore important

to study the predicted behaviour of integrated magnitudes and colours to devise,
if possible, theoretical tools able to infer the age and chemical composition of the
observed SSP.

Figure 11.3 displays the behaviour of the integrated magnitudes in B�V� I and
K for SSPs with solar metallicity (normalized assuming the constant factor in the
Salpeter IMF equal to unity) and varying ages. The overall property is a general
fading of the magnitudes for increasing age when t is larger than ∼107 yr. The fading
in B�V and I is approximately linear with log�t�, with a slope of ≈2 mag dex−1. For
the K band there is a sudden brightening of the SSP luminosity at t∼200 Myr due
to the onset of the AGB, followed again by a steady decrease of the luminosity. At
ages of the order of 107 yr the K magnitude and, to a minor extent, also B�V and I
show a brightening due to the appearance of He-burning stars located at the red side
of the CMD.

The general fading of the integrated magnitudes in B�V and I arises mainly from
the decrease of the MS extension (fainter TO) with increasing age, as well as the
overall general decrease of the He-burning luminosity for increasing ages, at least
until reaching old ages where the HB level is approximately constant. In the case of
K the situation is complicated by the interplay between AGB and RGB, that give the
most relevant contribution to the integrated magnitude, for ages above ∼108 yr.

In practice, the absolute values of the integrated magnitudes of an unresolved SSP
are not very useful, because of the unknown total stellar mass of the observed SSP
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Figure 11.3 Time evolution of the integrated magnitudes in selected filters for solar metallicity
SSPs (data from [84])
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and also its possibly unknown distance. Integrated colours are more helpful, given
that they are unaffected by the distance and also, in principle (but see below), by the
mass of the SSP.

The run of three selected SSP integrated colours with age is displayed in
Figure 11.4, where the effect of metallicity is also considered. Their behaviour is
generally complex, non-monotonic at young ages, mirroring the trends shown by
the relevant integrated magnitudes. Also the dependence on the initial metallicity is
affected by the considered age range. At ages above ∼1 Gyr, however, when SGB
and RGB become important contributors to the integrated U�B�V and I magnitudes,
all three colours show the same monotonic increase with age, and the metallicity
dependence is overall the strongest. At these ages, increasing the metal content always
produces redder colours.

For ages above ∼1 Gyr, all displayed colours become redder in cases of both
increasing age at a fixed metallicity, and increasing metallicity at a fixed age. This
is the so-called age–metallicity degeneracy. For many colours the degeneracy fol-
lows the approximate rule ��t/t�∼1�5− 2�0��Z/Z� for ages around 12 Gyr and
metallicities around solar. The meaning of this relationship is the following. Suppose
a generic colour index �A− B� varies by an amount ��A− B�. One can explain
��A−B� by either a �Z variation, or a �t variation related to �Z through the previ-
ous rule. To give a practical example of the implications for the age and metallicity
estimate, consider the case of a 12 Gyr old stellar population with solar metallicity
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Figure 11.4 Time evolution of selected integrated colours of SSPs with various metallicities (data
from [84])
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�Z∼ 0�02�. A decrease of Z by, for example, 20 per cent, will cause a change in
colour that can be compensated by a 30–40 per cent increase of the age. This means
that the same observed colour �A−B� can be reproduced with Z= 0�016 and age
t= 15�6–16.8 Gyr.

It is obvious that observing only one integrated colour of an unresolved SSP is
not sufficient to determine univocally its metallicity and age. An additional colour
is in principle needed in order to disentangle the effects of these two important
evolutionary parameters.

Figure 11.5 shows two colour–colour diagrams that make use of the colours
displayed in Figure 11.4. Some reference ages are marked. The paths described in
these diagrams are very complicated when the age is young, a mirror of the non-
monotonic metallicity and age dependence of the individual colours at low ages.
When the age is older than ∼100–300 Myr the behaviour is smoother. Notice how
the lines of different metallicity tend to overlap, and the points of constant age tend
to be displaced along this same line. This means that the observed pair of colours
for a given SSP can be reproduced, taking into account observational errors of even
only a few hundredths of a magnitude, by different metallicites for different ages. For
example, the �U −B� and �B−V� pair corresponding to 10 Gyr and �Fe/H	=−0�7 is
also virtually equivalent to the colours of an SSP with solar metallicity and lower age.

Searching for pairs of colours able to break the age–metallicity degeneracy is one
of the main goals of modern research in this field. One generally tries to devise
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Figure 11.5 Colour–colour diagrams for the data displayed in Figure 11.4. Symbols denote some
reference age. More specifically, filled circles correspond to an age of 30 Myr, open circles to
100 Myr, open squares to 350 Myr, filled squares to 1 Gyr, open triangles to 10 Gyr
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colour–colour diagrams where the lines of constant age and constant metallicity are
approximately orthogonal to each other, not parallel as in Figure 11.5.

Figure 11.6 displays the theoretical �B−K�− �J −K� diagram for unresolved
SSPs in the labelled age and metallicity range. The difference from Figure 11.5 is
striking; this combination of colours, at least in the displayed age range, is able to
largely disentangle age and metallicity effects. In fact, the colour �B−K� appears
to be mainly sensitive to age, whereas �J −K� is weakly affected by age but very
sensitive to the metal content. Studying the contribution of the individual phases to
the B�J and K integrated magnitudes one finds that the J and K integrated fluxes
are dominated by AGB stars when the SSP age is below ∼1 Gyr, and by upper RGB
objects for higher ages. As for the integrated B flux, the main contribution always
comes from the upper MS and TO stars. This means that the integrated �J −K� is
mainly determined by the colour of AGB and/or bright RGB stars, whose location
is strongly affected by the initial metallicity, whereas �B−K� is sensitive to the
magnitude and colour of the TO, hence to the SSP age. Although the TO colour is
also affected by the metallicity, the dominant effect is the age one. Concerning RGB
and AGB stars, their colours are also affected by the age, when age is below a few
Gyr, but the strongest sensitivity is to metals.
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Figure 11.6 Theoretical �B−K�− �J −K� diagram for the labelled selected ages (marked by
open circles) and metallicities. Lines of constant metallicities are displayed with solid lines; lines
of constant age are shown as dashed lines. Metallicity increases towards increasing �J −K�, age
increases towards increasing �B−K�. The direction of the reddening vector is also displayed
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Figure 11.7 As in Figure 11.6 but including younger ages (i.e. two additional ages of, respectively,
300 and 40 Myr, the latter being the bluest point on the constant metallicity lines) that display the
age–metallicity degeneracy

At younger ages (see Figure 11.7) below ∼300 Myr the full age–metallicity
degeneracy is again present, since the lines of different metallicities tend to overlap,
as in the case of the diagrams in Figure 11.5.

As a practical application of this colour–colour diagram to real unresolved SSPs,
we compare in Figure 11.8 the theoretical calibration shown in Figure 11.6 with
the integrated colours of a sample of elliptical galaxies (generally considered to be
SSPs) in the Coma cluster. The mean values of the observed �B−K� and �J −K�
correspond, without ambiguity, to an age of ∼10 Gyr and �Fe/H	=+0�06.

Statistical fluctuation

Given that the fast evolving upper RGB and AGB stars are the main contributors to
the J and K integrated magnitudes, it is very important to assess the effect of small
number statistics on the integrated �B−K� and �J −K� colours. When the mass of
the SSP under scrutiny is small – by ‘small’ we mean total masses up to ∼105–
106M�, which correspond approximately to the upper end of the mass spectrum of
star clusters – the number of stars in these fast evolutionary phases (populated by
objects within an extremely narrow mass range) is subject to sizeable fluctuations
from one SSP to another with the same age and metallicity. This can cause large
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Figure 11.8 Theoretical �B−K�− �J −K� diagram displayed in Figure 11.6 compared to the
observed colours (corrected for extinction and K-correction) of a sample of elliptical galaxies in
the Coma cluster

fluctuations of the integrated magnitudes and colours. To quantify this effect we
show in Figure 11.9 the results of a series of MC simulations. For a metallicity
�Fe/H	=−1�27 and ages of 600 Myr and 10 Gyr, respectively, we have drawn stars
randomly from a Salpeter IMF and placed them in their evolutionary phases along the
isochrone at that age, until a cluster mass of 105M� is reached. In general we found
that the fluctuations are negligible in B since this wavelength range is dominated by
the much more populous MS phase, whereas they are large in both J and K.

The open squares in Figure 11.9 represent the integrated colours obtained from
100 realizations each for the two adopted ages. Each realization corresponds to a
different SSP with the same mass, age and metallicity. The �J −K� colours show
a very large spread due to statistical fluctuations of the number of stars along the
upper RGB and AGB phases. This spread increases for decreasing age because of the
shorter timescales – hence larger number fluctuations – along the AGB phase that
dominates the �J −K� colours at 600 Myr. This colour spread causes a 3
 uncertainty
of ≈2 dex in the inferred metallicity at 600 Myr, and of ≈1 dex at 10 Gyr. The
fluctuation of �B−K� is entirely due to the fluctuation of the K magnitudes and it
is interesting to notice that the path in the colour–colour plane described by the 100
realizations follows a vector that is almost parallel to lines of constant age. At 600
Myr the fluctuations cause a small uncertainty in the age, while the effect is more
important at 10 Gyr, due to the lower sensitivity of �B−K� to age in this regime.
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Figure 11.9 Distribution of the integrated �B−K� and �J −K� colours for two SSPs with a total
actual mass of 106M�� �Fe/H	=−1�27 and ages of 10 Gyr and 600 Myr, respectively

HB colour

When dealing with integrated colours (and spectra) of SSPs, one has to take into
account that colours and spectral features involving the blue part of the spectrum
are seriously affected by the possible presence of blue HB stars not accounted for
in the theoretical calibration (this issue was discussed in Chapter 9). Such stars have
high temperatures and can add an appreciable contribution to the flux, i.e. in the
B filter. As an example we consider a synthetic 10 Gyr old SSP with �Fe/H	=
−1�27, whose integrated �B−K� and �J −K� colours are given by the reference
calibration displayed in Figure 11.7. If we now compute the colours for the same
population but considering a much bluer HB than the one previously used, the SSP
will appear to be ∼6 Gyr old when the age is evaluated using the diagram of
Figure 11.7, i.e. the reference calibration. The metallicity estimate is only minimally
affected – slightly reduced – because of a small contribution of the HB to the J and
K colours.

11.1.2 Absorption-feature indices

Another way to gain information about unresolved SSPs makes use of observa-
tions of their integrated spectra with resolution of the order of a few Angstroms.
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From these spectra one tries to identify individual absorption features that are sen-
sitive to the age and metallicity of the underlying unresolved stellar component.
The observed spectrum of a galaxy is the convolution of the integrated spectrum
of its stellar population (Equation (11.1)) by the instrumental broadening and the
distribution of line-of-sight velocities of the stars. The instrumental and velocity-
dispersion effects broaden the spectral features, which causes absorption features to
appear weaker than they are intrinsically. Correction for these effects is therefore
necessary before using the integrated spectrum of an SSP to study the properties of
its parent stars.

In general, absorption-feature indices are composed of measurements of rela-
tive flux in a central wavelength interval corresponding to the absorption feature
considered, and two flanking intervals (called sidebands) that provide a reference
level (called pseudocontinuum) from which the strength of the absorption feature
is evaluated. The average fluxes in the pseudocontinuum ranges are found and a
line is drawn between the mid-points to represent the reference pseudocontinuum
level. The difference in flux between this line and the observed spectrum within
the feature wavelength interval determines the index. It must be noted that the side-
bands themselves contain absorption features and consequently the value of an index
is dependent on the strength of the lines present in the sidebands as well as that
of the central feature. A graphical sketch of the index definition is displayed in
Figure 11.10.

For narrow features, the indices are usually expressed in Angstroms; for broad
molecular bands, in magnitudes. Specifically, if FC�� represents the straight line
connecting the mid-points of the flanking pseudocontinuum levels, and FI�� the

F
lu

x

HδA

HδF

λ (Å)
4100 4200 4300 4400

HγA
HγF

Figure 11.10 Sketch of the definition of four Balmer line indices and a representative stellar
spectrum. The central passbands are shown as boxes (filled in for the case of the narrower F
definition); pseudocontinuum sidebands are displayed as horizontal strokes at the average flux
level. The pseudocontinuum used for the index measurement is drawn as a dashed line between the
flanking sidebands. The blue sideband is the same for the A and F definitions of the H� index
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observed flux per unit wavelength in the central wavelength range �1 − �2, the
numerical value for a narrow absorption-feature (IÅ) is defined as

IÅ =
∫ �2

�1

(
1− FI��

FC��

)
d� (11.3)

The value of an index measured in magnitudes �Imag� is

Imag =−2�5 log
[(

1
�2 −�1

)∫ �2

�1

FI��

FC��

d�

]
(11.4)

A widely used set of absorption-feature indices is the so-called Lick system (e.g.
[235]), that we will employ in the rest of this chapter. Alternative sets of indices can
be found in the literature, see [124] and [169].

Definitions of the Lick indices are given in Table 11.1, together with the main
chemical elements that contribute to their strength. It is perhaps interesting to notice
that many of the indices do not in fact measure the abundances of the elements for
which they were named. An important bonus is that, due to their narrowness, these
indices are largely unaffected by interstellar extinction.

The theoretical computation of the values of the indices for an unresolved SSP
is based on the following procedure. Consider an isochrone representing an SSP of
a given age and initial chemical composition; the isochrone is populated according
to a prescribed IMF, and if a spectral library of the adequate resolution is available
(i.e. [124], [140]) one can determine the SSP integrated spectrum by applying Equa-
tion (11.1) to all relevant wavelengths. It is then straightforward to determine the
strength of a given index from the integrated spectrum, by following the appropriate
index definition.

To date, it has been traditional to use semi-empirical methods to determine the
strenght of the absorption-line indices in an SSP. In brief, the values of the Lick
indices have been measured from observations of samples of local stars to which
a surface gravity, metallicity and effective temperature have been assigned. These
measured values of the indices have been then parametrized as functions of Teff ,
surface gravity g and [Fe/H], to produce a series of fitting functions. As an example
we give here fitting functions for the H�A and H�A Balmer lines, applicable to stars
with = 5040/Teff between 0.75 and 1.0 ([237])

H�A = 99�846− 180�61+ 74�5642 − 0�02066 log�g�3 − 2�562�Fe/H	

H�A = 35�982− 39�599− 0�4963�Fe/H	2 − 0�01241 log�g�3

− 2�83492�Fe/H	

These fitting functions can be used to compute the expected index strengths of an
SSP, starting from a theoretical isochrone populated according to a prescribed IMF.
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Table 11.1 Various spectral indices (Lick indices) used in age and metallicity determinations of
unresolved stellar populations. The chemical elements contributing to the strength of each index
are given in column five. Elements in brackets increase the line strength when their abundance
decreases

Name Index band Blue continuum Red continuum Units Measures

H�A 4083.500-4122.250 4041.600-4079.750 4128.500-4161.000 Å
H�F 4091.000-4112.250 4057.250-4088.500 4114.750-4137.250 Å
CN1 4142.125-4177.125 4080.125-4117.625 4244.125-4284.125 mag C, N, (O)
CN2 4142.125-4177.125 4083.875-4096.375 4244.125-4284.125 mag C, N, (O)
Ca4227 4222.250-4234.750 4211.000-4219.750 4241.000-4251.000 Å Ca, (C)
G4300 4281.375-4316.375 4266.375-4282.625 4318.875-4335.125 Å C, (O)
H�A 4319.750-4363.500 4283.500-4319.750 4367.250-4419.750 Å
H�F 4331.250-4352.250 4283.500-4319.750 4354.750-4384.750 Å
Fe4383 4369.125-4420.375 4359.125-4370.375 4442.875-4455.375 Å Fe, C, (Mg)
Ca4455 4452.125-4474.625 4445.875-4454.625 4477.125-4492.125 Å (Fe), (C), Cr
Fe4531 4514.250-4559.250 4504.250-4514.250 4560.500-4579.250 Å Ti, (Si)
C24668 4634.000-4720.250 4611.500-4630.250 4742.750-4756.500 Å C, (O), (Si)
H� 4847.875-4876.625 4827.875-4847.875 4876.625-4891.625 Å
Fe5015 4977.750-5054.000 4946.500-4977.750 5054.000-5065.250 Å (Mg), Ti, Fe
Mg1 5069.125-5134.125 4895.125-4957.625 5301.125-5366.125 mag C, Mg, (O), (Fe)
Mg2 5154.125-5196.625 4895.125-4957.625 5301.125-5366.125 mag Mg, C, (Fe), (O)
Mgb 5160.125-5192.625 5142.625-5161.375 5191.375-5206.375 Å Mg, (C), (Cr)
Fe5270 5245.650-5285.650 5233.150-5248.150 5285.650-5318.150 Å Fe, C, (Mg)
Fe5335 5312.125-5352.125 5304.625-5315.875 5353.375-5363.375 Å Fe, (C), (Mg), Cr
Fe5406 5387.500-5415.000 5376.250-5387.500 5415.000-5425.000 Å Fe
Fe5709 5696.625-5720.375 5672.875-5696.625 5722.875-5736.625 Å (C), Fe
Fe5782 5776.625-5796.625 5765.375-5775.375 5797.875-5811.625 Å Cr
NaD 5876.875-5909.375 5860.625-5875.625 5922.125-5948.125 Å Na, C, (Mg)
TiO1 5936.625-5994.125 5816.625-5849.125 6038.625-6103.625 mag C
TiO2 6189.625-6272.125 6066.625-6141.625 6372.625-6415.125 mag C, V, Sc

The value of a generic index Wi for an SSP can be well approximated as follows.
First, for each star with a given metallicity, temperature and gravity, one obtains
the value of FC���M� t�Z� from an appropriate low resolution spectrum (theoretical
or empirical) as the flux at the central wavelength of the absorption feature (e.g.
FC���M� t�Z� is treated as a constant over the wavelength range spanned by the
index). Second, one calculates the valueWi�M� t�Z� of the indexWi for the same star,
as given by the appropriate fitting function. Once FC���M� t�Z� and Wi�M� t�Z� are
known, it is possible to invert Equations (11.3) and (11.4) to determine an effective
value (assumed constant in the wavelength range of the index) of FI���M� t�Z� that
reproduces the observed Wi�M� t�Z�. This is repeated for all the stars in the SSP, and
all the individual FC���M� t�Z� and FI���M� t�Z� values are summed up, to provide the
integrated FC�� and FI��. These integrated fluxes are then inserted in Equations (11.3)
and (11.4) to compute the line strengths for the SSP.
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Breaking the age–metallicity degeneracy

Table 11.1 shows how to break the age–metallicity degeneracy with the Lick indices.
Many of the indices are affected by the abundances of certain heavy elements, hence
they are sensitive to the SSP metal content; however, the H�, H� and H� indices
that measure the strength of the Balmer lines are largely unaffected by the chemical
abundances. The strength of these lines is mostly sensitive to the temperature of hot
TO stars. Although decreasing metallicity at a given age in principle produces stronger
Balmer lines because of the hotter TO, the effect is somewhat muted compared with
the effect of age. On the other hand, the indices affected by metal abundances are
mainly sensitive to the temperature of cool stars, like RGB, AGB and in some cases
the lower MS (like the Mg2 index) which suffer from comparably minor changes due
to age, at least in the regime of low-mass stars (i.e. ages above ∼1 Gyr).

A graphical sketch of these properties is given in Figure 11.11. This figure com-
pares the observed values of the indices H� and Fe5270 for a sample of Galactic
and extragalactic globular clusters, with a theoretical calibration for different ages
and initial [Fe/H] values. The H� index appears to be largely insensitive to [Fe/H]
for ages above ∼1 Gyr, whereas the Fe5270 index is clearly unaffected by age. This
kind of diagram clearly allows one to estimate independently age and [Fe/H] of the
observed SSP.

There is a very important point to discuss in connection with the metallicity
estimated from the absorption-feature indices. Table 11.1 shows how different metal
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Figure 11.11 Theoretical calibration of the H�–Fe5270 diagram for the labelled values of age
and metallicity, compared with observed data for a sample of Galactic and extragalactic globular
clusters (data from [221]). The typical observational error bars are also shown
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indices are actually affected by different elements. For example, Fe5270 is sensitive
to Fe, C and Mg whereas Fe4531 measures the abundances of Ti and Si. Isochrones
and spectra with scaled solar metal distributions will provide a calibration of the
strength of the various indices parametrized as a function of [Fe/H] (or of the total
metal content [M/H]) that is strictly accurate only if the observed SSP has the same
metal mixture. In other words, let us imagine observing an SSP with a non-scaled
solar metal distribution, and try to determine its [Fe/H] from metal indices calibrated
with our scaled solar models. Due to the non-solar metal ratios, different metal
indices will provide different values of [Fe/H]. For example, if the metal distribution
is �-enhanced one expects to find a higher [Fe/H] estimate from the observed value
of the Mg2 feature, than from the Fe5270 one.

A consistent [Fe/H] from all indices can only be obtained using both spectra
and/or fitting functions for the appropriate metal distribution, together with theoretical
isochrones also computed with the appropriate metal mixture. In fact, different metal
mixtures change the stellar spectra at a given gravity and effective temperature, but
also the values of gravity and Teff at a given evolutionary stage along an isochrone
of fixed age. The combination of these two effects change the theoretical calibration
of the index strengths. Figure 11.12 shows, as an example, the theoretical calibration
of the H�–Fe5270 diagram for a scaled solar and �-enhanced metal mixture, respec-
tively. The first noticeable effect, as expected, is a decrease of the Fe5270 strength
at fixed age and [M/H] in the case of the �-enhanced mixture, because of its lower
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Figure 11.12 Effect of an �-element enhancement on the theoretical calibration of the H�–
Fe5270 diagram (data from [214]). Ages range from 2 Gyr to 14 Gyr at steps of 0.05 in log(t(yrs))
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iron content. The second result is that that the [�/Fe] > 0 calibration leads to higher
age estimates for old stellar populations.

Hot HB stars

As for the case of integrated colours, the presence of a number of hot HB stars,
unaccounted for in the theoretical index calibration, can boost the strength of Balmer
lines mimicking the signature of young stars in the integrated spectra of old SSPs.
As shown by [195] the strength of the index H�F is more affected than H� by the
presence of blue HB stars. As a result, the spectroscopic ages look younger according
to H�F than H�. The presence of hot HB stars not included in the index calibration
can therefore be inferred whenever the ages using these two different Balmer line
indices differ.

11.2 Composite stellar populations

In the case of composite stellar populations of unknown SFH, one can only estimate
some sort of mean age and mean metallicity when comparing the observed integrated
colours or line indices with the corresponding calibrations for SSPs.

The mean age will, however, be strongly weighted towards any young population
that might be present. The reason is that young MS stars have larger luminosity in
the blue part of the spectrum, and stronger Balmer line indices than old populations.
To give a quantitative estimate, for a uniform metallicity CSP just ∼1–2 per cent of
a young (i.e. ∼300 Myr old) stellar population are sufficient to dominate the (B−K)
colour of a composite SSP. Similar results hold for the Balmer line strengths. In
the case of a CSP with mixed age and metallicity, the dominant population will be
the younger or metal-poorer one, since lower metallicities produce hotter stars at a
given age.

An additional problem is that whereas blue colours and Balmer lines are sensitive
to the hotter subpopulations, the metal line indices are dominated by the cooler
and/or more metal-rich stars, since they produce stronger metal lines. The average
metallicity estimated for an unresolved CSP will then be biased towards the older or
more metal-rich population, i.e. a different component from the one controlling the
strength of the age-sensitive colours and indices.

11.3 Distance to unresolved stellar populations

If a stellar population is sufficiently close for its individual stars to be resolved,
we can apply a host of techniques to determine its distance, as discussed in the
previous two chapters. A commonly used standard candle for unresolved stellar
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populations is the Type Ia supernova luminosity at the maximum of the light curve
(see Section 7.6.3). These Type Ia SNe are so bright that they allow their detection
at cosmological distances, when all the other stellar standard candles are too faint
to be resolved. In addition, the discrete nature of the stars allows us to devise
another distance-determination method based on photometric observations, the so-
called Surface Brightness Fluctuation (SBF) technique ([220]), that with present
capabilities is applicable out to distances in the range 10–100 Mpc.

The underlying idea is very simple. If we take an image of the target population
with an angular resolution ��, each resolution element will contain an average
number of unresolved stars N̄ = n�D���2, where n is the number of stars per unit
area across the observed face of the target population and D its distance. The average
total flux F̄ received from the stars in each resolution element will be

F̄ = N̄ f = nL��2

4�

where f is the flux at the Earth of a single star, and we have assumed that all stars
have the same intrinsic luminosity L. Because of Poisson fluctuations in the number
of objects populating a given resolution element, F̄ will not be constant, but will
fluctuate from one element to another, with variance


F̄ = N̄ 1/2f = n1/2L��

4�D

This fluctuation of the surface brightness scales as the inverse of the distance. Com-
bining 
F̄ with F̄ we obtain


2
F̄

F̄
= L

4�D2
(11.5)

This means that one can use the theoretical value for the representative stellar
luminosity L together with the observed 
2

F̄
/F̄ in order to estimate the distance D.

The approximation of constant stellar luminosity is, however, not realistic because,
as we have seen in detail in the last two chapters, stars in real SSPs and CSPs display
a large range of luminosities. For an average number N̄i of stars with luminosity Li

per resolution element, Equation (11.5) can be generalized as


2
F̄

F̄
= L̄

4�D2
with L̄=

∑
i N̄iL

2
i∑

i N̄iLi

(11.6)

From theory one can determine L̄ (the so called ‘SBF luminosity’) for an SSP or
CSP, provided its age and metallicity or the SFH are known, and an IMF is adopted.
Once L̄ is determined, the observed 
2

F̄
/F̄ immediately provides the distance.

The method clearly works best when observing the external parts of galaxies,
where the number of stars is low and Poisson fluctuations are larger. However, one
cannot go too far away from the centre, because the brightness of the night sky places
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a limit on how far out it is possible to observe the galaxy stellar populations. To
give a rough estimate of the photometric accuracy needed to apply this technique,
measurements accurate to 1 per cent are needed to detect fluctuations in galaxies at
a distance of ∼20 Mpc.

In general L̄ will depend on the SFH of the population under scrutiny; moreover, it
is heavily weighted towards the brightest stars, since L2

i appears in the numerator of
Equation (11.6). Given that observations are performed using photometric filters, it
is the value of L̄ in the chosen photometric band (the SBF magnitude) that has to be
provided by the theoretical models. For a given stellar population the value of the SBF
magnitude will depend on the adopted filter because, the brightest stars, e.g. in B, are
not the same as in e.g. K. As an example, in populations containing intermediate- and
low-mass stars, the RGB and AGB are much brighter in the infrared, and dominate
the value of L̄ in the near-infrared filters (e.g. I� J�H�K). On the other hand, for the
same populations, L̄ in the B filter is controlled by hotter (and fainter) stars and the
contribution of the AGB is of merely ≈10–20 per cent. After transforming L̄ into
magnitudes, in case of SSPs of solar metallicity and ages older than 1 Gyr, these
typical SBF magnitudes are derived: M̄K ∼−6� M̄J ∼−4� M̄I ∼−1�5� M̄V ∼ 1�0 and
M̄B ∼ 2�5.

It is important to notice that metallicity(ies) and age(s) of the observed SSP or
CSP in general affect the predicted value of the SBF magnitudes. According to recent
theoretical SBF computations ([131]) for metallicities around solar and ages larger
than ∼1 Gyr, the SBF in the K filter is very weakly dependent on age, with variations
of the order of ∼0.2 mag for a change of age from 1 to 15 Gyr. On the other hand,
the same age variation changes the SBF in B�V and I by, respectively, ∼0�7�∼1.0
and ∼1.2 mag (in the sense of increasing the SBF magnitude when moving to
higher ages).



Appendix I: Constants

Physical Constants

Quantity Symbol Value Units

Speed of light c 2�998× 1010 cm s−1

Electron charge e 1�602× 10−19 C
Planck’s constant h 6�626× 10−27 erg s
Gravitational constant G 6�6742× 10−8 dyn cm2 g−2

Atomic mass unit mH 1�6605× 10−24 g
Electron rest mass me 9�109× 10−28 g
Proton rest mass mp 1�6726× 10−24 g
Neutron rest mass mn 1�6749× 10−24 g
Boltzmann’s constant KB 1�3807× 10−16 erg K−1

Radiation constant a 7�5659× 10−15 erg cm−3 K−4

Stefan–Boltzmann constant � 5�67051× 10−5 erg cm−2 K−4 s−1

Astronomical Constants

Quantity Symbol Value Units

Solar mass M� 1�989× 1033 g
Solar radius R� 6�960× 1010 cm
Solar luminosity L� 3�846× 1033 erg s−1

Solar effective temperature Teff� 5770 K
Astronomical unit AU 1�496× 1013 cm
Light year ly 9�4607× 1017 cm
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© 2005 John Wiley & Sons, Ltd ISBN: 0-470-09219-X



352 APPENDIX I: CONSTANTS

Conversions

Quantity Symbol Value Units

Electron volt eV 1�6022× 10−12 erg
1�1604× 104 K

Parsec pc 3�0857× 1018 cm
3.2616 ly



Appendix II: Selected Web Sites

List of selected web sites (updated to March 2005) containing complete stellar evo-
lution codes, input physics data and routines for stellar modelling, databases of evo-
lutionary tracks, isochrones, integrated colours, and on-line software for generating
CMDs of synthetic Single and Composite Stellar Populations.

STELLAR EVOLUTION CODES

http://chandra.as.arizona.edu/ dave/tycho-manual.html
The stellar evolution code TYCHO and all necessary physics inputs. The code
TYCHO has been developed by D. Arnett.

STELLAR PHYSICS

http://www.webelements.com/
Extensive information about chemical elements.

http://www-phys.llnl.gov/Research/RRSN/
Reaction rates for stellar nucleosynthesis from the Lawrence Livermore National
Laboratory.

http://www-phys.llnl.gov/Research/OPAL/index.html
Tables of radiative opacities from the Lawrence Livermore National Laboratory.

http://www.osc.edu/hpc/opacities/
Tables of radiative opacities from the Opacity Project database.

http://kurucz.harvard.edu/
Model atmospheres, low-temperature opacities and colour transformations computed
with the ATLAS code.

http://webs.wichita.edu/physics/opacity/
Low-temperature opacities computed at Wichita State University.
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http://www.ioffe.rssi.ru/astro/conduct/
Tables of electron conduction opacities at the Department of Theoretical Astrophysics
of the Ioffe Physico-Technical Institute, St. Petersburg.

http://freeeos.sourceforge.net/
EOS of the stellar matter by A.W. Irwin.

http://www.cococubed.com/code pages/codes.shtml
A collection of free computer codes to compute EOS, neutrino energy loss rates,
simplified model atmospheres, nuclear reaction networks and supernova explosions.

BOLOMETRIC CORRECTIONS AND COLOUR TRANSFORMATIONS

http://www.astro.mat.uc.pt/BaSeL/
University of Basel interactive server for bolometric corrections and colour transfor-
mations.

EVOLUTIONARY TRACKS, ISOCHRONES, INTEGRATED COLOURS OF SSPs
http://pleiadi.pd.astro.it/

Padova database of stellar evolutionary tracks and isochrones.

http://dipastro.pd.astro.it/galadriel/
The Padova GALaxies AnD Single StellaR PopulatIon ModELs. Tables of integrated
colours and absorption feature index strength for SSPs.

http://www.te.astro.it/BASTI/index.php
A Bag of Stellar Tracks and Isochrones (Teramo Astronomical Observatory). Tables
of evolutionary tracks and isochrones.

http://astro.df.unipi.it/SAA/PEL/Z0.html
Database of Pisa stellar models, tracks and isochrones.

http://webast.ast.obs-mip.fr/stellar/
Database of Geneva stellar evolution tracks and isochrones.

http://www-astro.physics.ox.ac.uk/ yi/yyiso.html
Tables of evolutionary tracks and isochrones (collaboration between the universities
of Yonsei and Yale).

http://www.bo.astro.it/ eps/models.html
Tables of integrated colours and absorption feature index strength from A. Buzzoni’s
stellar population synthesis code.

http://www.cida.ve/ bruzual/bc2003
Database of integrated colours and absorption feature index strength using the stellar
population synthesis code by G. Bruzual and S. Charlot.
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POPULATION SYNTHESIS SOFTWARE

http://iac-star.iac.es/iac-star/
IAC-STAR, Synthetic CMD computation algorithm (Instituto de Astrofisica de
Canarias). On-line software to compute CMD and integrated magnitudes of stellar
populations with an arbitrary SFH.

http://www.cida.ve/ bruzual/bcXXI.html
On-line software to compute CMD and integrated magnitudes of SSPs (Centro de
Investigaciones de Astronomia, Mérida).
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