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Preface

This book is directed at the student undertaking a course in star formation
for the first time. This may be in the later years of an undergraduate
degree in physics, astrophysics, or physics with astronomy. Alternatively,
it may be that the student only meets this subject for the first time during
the first years of a masters degree. In either case we have assumed that the
student already has a grounding in physics and mathematics, including,
for example, Maxwell’s equations, quantum mechanics and the laws of
thermodynamics. Nevertheless, we find from teaching experience that
brief reminders to students of things they learnt in other courses are
generally welcomed as helpful. Hence, we remind the reader of some
of the important points from other branches of physics where they are
relevant.

We assume only a minimal knowledge of astronomy, and we derive
the necessary astrophysical equations as we go along. We assume no
prior knowledge of the subject of star formation itself and begin from
first principles. Throughout the book we attempt to stay on ground that
is firmly established, and try to avoid that which is trendy or the latest
discovery. Experience has taught us that these matters often become
outdated much more quickly than the solid foundations on which the
subject is based. In cases where we stray onto less sure footing, we
inform the reader that we are doing so.

The book does not aim to be a comprehensive encyclopedia of star
formation, but merely an introductory text, as the title suggests. The
biggest problem when compiling such a work is knowing what to leave
out. We have tried largely to include topics that lend themselves to math-
ematical demonstration, even if that leads to slight over-simplification
of cases encountered in the real Universe in this very complex field. We
therefore apologise in advance if we have omitted any reader’s favourite
topic or detail. However, we hope that the reader will nevertheless find
the book useful.

The ordering of the book is that we first assemble the necessary tools,
and then we cover all aspects of star formation in the order in which they
occur for solar-type stars in an evolutionary sense. Then we look at some
of the ways in which higher-mass stars differ from this picture. Chapter 1

xix



xx Preface

sets the scene with some introductory and background material. Chapter
2 discusses the electromagnetic radiation that we receive from star-
forming regions, and how we use this to discover the physical properties
of those regions. Chapter 3 looks at the interstellar medium, where
the raw materials exist for the formation of future generations of stars.
Chapter 4 studies molecular clouds, where the majority of star formation
takes place, to discover the initial conditions for star formation.

Chapter 5 describes the issues associated with collapse and frag-
mentation on the way to forming a star. Chapter 6 covers the growth of
a star from the seed of a protostar to a main-sequence star of roughly
solar mass, through its pre-main-sequence evolution. Chapter 7 exam-
ines some of the issues peculiar to higher-mass stars and the effects they
have on their surroundings. Finally, Chapter 8 gives a few ‘tasters’ of
subjects that flow from star formation, which will hopefully lead the
reader into further related topics.

There is an index as well as a list of symbols, to aid the reader.
Where possible we have tried to avoid the use of the same symbol for
two different meanings. However, we have also tried to use the symbols
that are most commonly used in the scientific literature, so that the
student is not lost when moving on from this book. Occasionally this
leads to clashes. So we have made it clear in each case, when defining
every symbol, what meaning we are using for that symbol, and wherever
possible we have used a different font or subscript to remove ambiguities.

Our aim is that a student who has read and understood this book
should be ready to undertake a higher degree in this field, to read and
understand more advanced research texts in the subject, and to embark
upon research of their own.

There are many people we would like to thank, who helped in the
fashioning of this book, including many students, both undergraduate
and postgraduate, who have given helpful feedback and comments on
the text. We wish to thank a number of our postdocs, who have also
read the text and commented on it, including Annabel Cartwright, Jason
Kirk, David Nutter and Dimitris Stamatellos. We would also like to thank
Peter Brand, Shantanu Basu and Jonathan Rawlings, who each read and
commented on parts of the book, although any mistakes that may remain
are entirely our own. We wish to thank Cambridge University Press for
their patience, especially Simon Mitton, Adam Black, Jacqueline Garget,
Vince Higgs and Claire Poole. Finally, we wish to thank our wives and
families for putting up with us!

Derek Ward-Thompson
Anthony Whitworth
Cardiff
March 2010



Chapter 1

Introduction

1.1 About this book
It can be argued that astronomy is the oldest science. Since pre-historic
times humans have gazed at the night sky and wondered about the nature
and origin of stars. We now believe we understand a great deal about the
nature of stars, but many aspects of the origin of stars remain the subject
of intense study to this day.

In this book we aim to introduce the reader to the fundamentals
of the subject of star formation. We describe the background physics
underlying theories of star formation, and take the reader to the frontiers
of current knowledge of this subject. However, we will make clear
as we go along the points where we reach material that is less well
established.

One of the most fundamental observations in astronomy is the fact
that the night sky appears to be full of stars. Yet the processes which
lead to the formation of those stars have taken astronomers many years
to work out. Unlocking the mysteries of star formation has required the
use of new techniques and the opening of new wavelength regimes to
astronomy. We describe the chief physical processes which are believed
to be important for star formation, and point out the role which each
branch of observational astronomy has played in solving the various
problems associated with star formation.

In this chapter we begin by introducing some of the main constituents
of a galaxy, namely the stars, the medium between the stars and the
gravitational and magnetic fields. We discuss their spatial distribution,
and introduce the life-cycle of a star and the way in which the formation

1



2 Introduction

Fig. 1.1. A rough sketch of
the Hertzsprung–Russell
diagram, illustrating the main
sequence, where a solar-type
star spends the majority of its
life.

of a star fits into this cycle. We introduce the sites where stars are formed
and give a description of the initial mass function of stars, the explanation
of which is one of the major challenges for any star-formation theory.
We finish with a list of some of the chief objectives of star-formation
theory.

1.2 The stellar life-cycle

The most important diagram for stellar evolution is known as the
Hertzsprung–Russell (HR) diagram. The HR diagram plots the lumi-
nosity of a star against its colour. In this diagram it is seen that
the majority of stars lie in a single strip along the diagram, known
as the main sequence, wherein the brightest stars are also the bluest,
while the faintest stars are the reddest.

Figure 1.1 sketches an HR diagram to illustrate the approximate
position of the main sequence, and the position of the Sun, which is
simply an ordinary main-sequence star. In the Universe today, a star
of roughly solar mass spends the majority of its life-time as a main-
sequence star, during which time its energy source is the fusion of
hydrogen to helium, deep in the core of the star. A star that has not yet
reached the main sequence on the HR diagram is known as a pre-main-
sequence star. However, before a star reaches the main sequence it has to
be formed from the material in interstellar space. This involves a series
of stages of contraction and growth by accretion under the influence of
gravity.
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Later in its life, when the majority of the hydrogen in its core has
been processed by fusion into helium, a star leaves the main sequence,
expands to become a giant or supergiant star, and undergoes various
stages of losing mass. The most violent and best known of these mass-
losing stages occurs for the most massive stars, and is known as a
supernova explosion. However, lower-mass stars also undergo phases
when they eject material. This ejected material can then form some of
the ingredients for subsequent generations of stars.

Hence we see that stars undergo a life-cycle in which new genera-
tions of stars are formed in part from the debris of previous generations
of stars. In fact almost all of the material which forms a new generation
of stars, apart from hydrogen and helium, is the product of fusion in the
centres of stars of previous generations. Thus the formation of stars is
not the beginning of a linear process, but is an integral part of a cyclic
process. The subject of this book is that part of the stellar life-cycle
which occurs prior to the main sequence. In this book we start at the
birth-place of stars, and follow the progress from there all the way to the
point at which a star joins the main sequence.

1.3 The space between the stars

The space between the stars is known as the interstellar medium, or the
ISM. The principal constituents of the interstellar medium are matter
(gas, dust and cosmic rays), electromagnetic radiation, a gravitational
field, and a magnetic field. The composition of the matter is typically
70% hydrogen, 28% helium, and 2% heavier elements, such as oxygen,
carbon and nitrogen. Most of the matter – around 99% – is in the gas
phase.

The gaseous ISM can be modelled with four phases: regions of
very diffuse, hot, ionised gas which form a network of interconnecting
stellar-wind bubbles and supernova remnants; a warm, partially ionised
gas filling most of the rest of the volume of the Galactic disc; small
clouds of cool, neutral, mainly atomic gas; and larger clouds of cold,
dense, mainly molecular gas.

These larger clouds are known variously as ‘dense clouds’, ‘dark
clouds’ or ‘molecular clouds’, depending on the context. Even in the
centres of these clouds, the densities are only about 1012 molecules per
cubic metre, so the term ‘dense cloud’ may be somewhat misleading.
However, this density is still much greater than the average ISM, where
there are typically only about 106 atoms per cubic metre. The largest
clouds of molecular gas are known as ‘giant molecular clouds’ (GMCs),
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Fig. 1.2. An optical image of
the dark cloud Barnard 68.
Note how the background
stars are not visible through
the cloud.

or GMC complexes, and can contain masses up to a few million solar
masses† and extend for tens of parsecs.‡

The term dark cloud arose because at optical wavelengths these
clouds can be completely opaque. Figure 1.2 shows a picture of a dark
cloud taken at visible wavelengths. Note how the light from the back-
ground stars, which can be seen across this field, is obscured by the mate-
rial of the cloud in the centre of the image. However, modern astronomy
utilises many more wavelengths than the optical. The infrared and radio
wavelength regimes have become more important than the optical in
studying star formation, as the regions in which stars form are not so
opaque at these longer wavelengths.

The reason that clouds are dark is that they contain not only gas,
but also dust, which is opaque to visible light. This dust consists of
very small grains, i.e. particles of solid matter, less than a micron in
size, and consisting mostly of silicates (sand), and carbon compounds,
probably including graphite. Dust grains have similar sizes to the parti-
cles of cigarette smoke. By mass, the dust grains only represent about
1% of the total mass of the ISM, but this is still sufficient to block out
much of the visible light.

The gas in the ISM is in a constantly changing chemical state.
However, in the densest clouds most of the gas is normally molecular.
This is firstly because the processes forming molecules in interstellar
space – primarily two-body gas-phase reactions and catalysis on the
surface of dust grains – proceed faster at higher density, and secondly

† 1 solar mass (M�) = 2 × 1030 kg.
‡ 1 parsec (pc) = 3 × 1016 m.
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Fig. 1.3. A map of the
Ophiuchus molecular cloud
complex. The contours
represent brightness of carbon
monoxide (CO), which is
taken as a tracer of the
molecular gas as a whole.

because dust effectively shields the interior of a dense cloud from the
ultraviolet (UV) radiation which destroys molecules.

Consequently the majority of the gas within the clouds is in molec-
ular form, and the majority of a molecular cloud’s mass is in the form of
molecular hydrogen, H2. Figure 1.3 shows a map of a molecular cloud
in the constellation Ophiuchus. The sizes of molecular clouds range
from ∼0.1 pc to ∼100 pc in diameter, and their densities range from
106 atoms per m3 at their edges to greater than 1012 atoms per m3 in
their densest parts. GMCs are among the largest entities that we know
of within galaxies.

In addition to gas and dust there are cosmic rays in the interstellar
medium. Although these particles constitute a minute fraction of the rest
mass in the interstellar medium, they travel at speeds approaching the
speed of light, and consequently they have in total about as much kinetic
energy as the rest of the matter put together.

The electromagnetic radiation in the interstellar medium comes from
various sources. The principal sources of optical radiation are stars, but
at longer wavelengths there is also continuum radiation from interstel-
lar dust, line radiation from interstellar gas, and the cosmic microwave
background (CMB – a relic of the Big Bang). Stellar radiation is dom-
inated by optical and UV photons (λ ∼ 100–1000 nm), corresponding
to stellar surface temperatures in the range 3000–30 000 K. The cosmic
microwave background is characterised by millimetre and submillimetre
photons (λ ∼ 0.3–3 mm ≡ 3–30 ×10−4 m). Infrared continuum radi-
ation from dust falls in between the stellar radiation and the cosmic
microwave background, with λ ∼ 30–300 µm, corresponding to dust
temperatures in the range Tdust ∼ 10–100 K.
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10 kpc

GALACTIC
CENTRE

STELLAR
BULGE WE SHALL CONCENTRATE ON

THIS VERY THIN LAYER OF
(MAINLY) COOL INTERSTELLAR
GAS AND DUST

STELLAR HALO
(Pop.II, globular clusters)

STELLAR DISC(Pop.I)+HOT CORONAL GAS

SUN

Fig. 1.4. Schematic view of
the Galaxy from the side,
showing the principal stellar
components, the locations of
the Galactic Centre and the
Sun, and the location of the
interstellar medium.

The gravitational field on large scales is the gravitational field of the
Galaxy, which we believe to be dominated by stars and ‘dark matter’
(the precise nature of which is uncertain). Locally, the gravity of the
interstellar gas may become important; this is particularly true in GMCs
where the gas density is high and self-gravity may cause the interstellar
gas to condense into new stars.

The interstellar medium is in a continual state of dynamical and
chemical change, hence it is not in mechanical or chemical equilib-
rium. Additionally, the mean free paths for photons and cosmic rays in
the interstellar medium are normally much longer than the typical dis-
tances over which the physical conditions change. Hence the interstellar
medium is also not in local thermodynamic equilibrium (LTE). How-
ever, the mean free path of gas particles is short, so the gas is normally in
thermal equilibrium, in the sense that there is a well-defined gas-kinetic
temperature, T , characterising the distribution of gas particle velocities.

1.4 The distribution of the stars

We can identify several components of our Galaxy (the Milky Way).
If we could view it from the side we would see a distribution such

as is shown in Figure 1.4. We start by describing how the stars are
distributed. The oldest, most metal-poor stars† are known as Population
II stars, and are distributed in a spheroidal (almost spherical) halo, which
is at least 30 kpc across.‡ This component includes the globular clusters.

There is also a roughly spherical bulge near the centre of the Milky
Way, about 3 kpc in radius. The stars in the bulge are also old, but they
have higher metallicity than the halo stars. Finally the youngest, most

† In astronomy, a metal is defined as any element other than hydrogen or helium. Any star

with significantly fewer metals than the Sun is referred to as metal-poor. Any star with

significantly more metals than the Sun is referred to as metal-rich.
‡ 1 kpc =1000 pc =3 × 1019 m.



1.4 The distribution of the stars 7

Fig. 1.5. The Orion Nebula,
containing the Trapezium
Cluster, as seen by the Hubble
Space Telescope.

metal-rich stars (the Population I stars) are concentrated in a disc close
to the midplane of the Milky Way. This stellar disc is at least 30 kpc
across, and about 800 pc thick in the solar neighbourhood, although the
more massive stars appear to be concentrated in a central layer only
about 200 pc thick.

The Sun appears to be close to the midplane of the Milky Way
(perhaps 10–20 pc above it), and about 8 kpc from the centre of the Milky
Way. Most of the interstellar gas and dust is confined to an extremely
thin layer, about 200 pc thick, inside the stellar disc. The radial extent
of the gas disc is at least 20 kpc – i.e. at least 100 times its thickness –
so the interstellar medium is like a very thin pancake.

There is some interstellar gas further from the midplane of the Milky
Way. This is the coronal gas, very hot rarefied gas which is presumed to
have escaped from the interiors of old supernova remnants, and which
extends to about 3 kpc above and below the midplane. However, the
total mass of the coronal gas is very small compared with the cooler
interstellar gas near the Galactic midplane.

Stars and star clusters are observed to have a wide range of ages,
from less than a million years for young stars like the Trapezium Cluster
in Orion (see Figure 1.5), up to of order 1010 years for the oldest globular
clusters. This implies that star formation has occurred since very early
times – the age of the Universe is estimated to be ∼1.3 ± 0.3 × 1010

years – and is still continuing.
Star formation converts diffuse interstellar gas clouds into star clus-

ters. The rate at which interstellar gas is converted into stars has a
profound effect on the overall dynamics of a galaxy, and hence on its
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Fig. 1.6. The polarisation of
starlight projected onto
Galactic coordinates. This is
believed to be tracing the
large-scale magnetic field in
the interstellar medium of our
Galaxy.

formation, structure and evolution. Thus, the star formation within a
galaxy is crucial to that galaxy’s overall evolution.

1.5 The magnetic field
The origin of the interstellar magnetic field is uncertain. Usually it is
assumed to be generated by a galactic-scale dynamo, and amplified
locally by gas-dynamical processes, but the details of the underlying
mechanisms are not well understood. The strength of the magnetic field
is typically |B| ∼ 3 µgauss† and so its energy density is |B|2/4π ∼
10−13 J m−3, which is comparable with the energy densities of the gas,
of the radiation field, and of the cosmic rays. Therefore the magnetic
field is likely to play an important role in determining the structure and
evolution of the interstellar medium.

A number of observations lead astronomers to believe that magnetic
fields are ubiquitous in the ISM. This is not a totally surprising result
given that magnetic fields are caused by moving charges and that the ISM
appears to be in constant motion. One of the main pieces of evidence we
have for magnetic fields comes from observations of the polarisation of
starlight. When such polarisation measurements were first carried out,
astronomers were surprised to find that the light from stars was partially
plane polarised in a pattern across the sky (see Figure 1.6). Furthermore,
this pattern appears to trace out large-scale structures along the plane of
the Galaxy.

If the polarisation were a property purely of the stars themselves
it would be very difficult to explain this apparent structure. However,

† 1 gauss =10−4 tesla, so 1 µgauss =10−10 tesla.
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astronomers believe that the polarisation is not a property of the stars
themselves but of the ISM between the stars and us, and that it is caused
by an interstellar magnetic field.

To understand how this mechanism works we must realise that inter-
stellar dust grains are not spherically symmetrical, but typically have
very complex shapes. We usually try to simplify our consideration of
their shapes by thinking of them either as needle-like cylinders or prolate
spheroids (rugby ball or American football shaped). In this way we can
think of their asymmetry simply in terms of a ‘long axis’ and a ‘short
axis’.

Put simply, the long axis of a grain extinguishes the background
starlight more efficiently than the short axis. Hence if a large ensemble
of non-spherical dust grains is aligned preferentially in one direction,
the background starlight is preferentially extinguished along one axis,
causing the transmitted light to be partially plane polarised.

The manner of the alignment is still a matter of debate, and many
theories have been put forward to explain it. However, most theories
predict that the grains spin around the direction of the magnetic field,
with their long axis perpendicular to the field. The original version of
this mechanism is known as the Davis–Greenstein effect. The basis of
this effect is as follows:

The dust grains in a molecular cloud are in random motion and
undergo frequent collisions. These collisions set the grains spinning.
The grains are typically composed of silicate material which is para-
magnetic in nature. If the cloud is threaded by a magnetic field, then the
presence of this external field causes an induced internal field within
the paramagnetic dust grain material, whose strength depends on the
magnetic susceptibility of the material. Normally these two fields would
be parallel to one another, but because the grain is spinning, the internal
field cannot respond quickly enough, so it always ‘lags’ behind the
external field direction. This causes a net torque which tends to cause
the grain to spin with its long axis perpendicular to the external magnetic
field direction. Further collisions of course serve to misalign the grains
once more.

This mechanism may not be exactly correct in practice as it requires
a field strength about an order of magnitude higher than that which is
measured (see below). However, a number of alternatives have been
proposed. One plausible mechanism is super-paramagnetic alignment,
which requires inclusions of a ferromagnetic substance within the dust
grain material to increase the alignment efficiency. Another possibility
is suprathermal alignment in which molecules being ejected from the
grain surface help to spin up the grain and hence shorten the align-
ment time-scale and increase the mechanism’s efficiency. Whichever of
these mechanisms ultimately proves correct, all agree that the grains
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become preferentially aligned perpendicular to the magnetic field direc-
tion. Hence the background starlight is preferentially extinguished in
this direction. The transmitted light is therefore partially plane polarised
parallel to the magnetic field direction.

Linear polarisation allows us to measure the orientation of the mag-
netic field in the plane of the sky. To measure the strength of the magnetic
field we use the Zeeman effect, which relies on the splitting of degen-
erate atomic or molecular energy levels in the presence of a magnetic
field. The amount of the splitting is proportional to the field strength,
thus allowing the field strength to be measured.

Consider the simplest case of a hydrogen atom. The electronic
ground state (s state) has principal quantum number n = 1 and angular
momentum quantum number l = 0. The first excited state (p state) has
n = 2 and l = 1. The magnetic quantum number ml must obey the rela-
tion |ml | ≤ l. Hence the allowed values for ml in the p state are 0, +1
and −1, and the state is said to have triple degeneracy. In the presence
of a magnetic field the degeneracy is lifted and the p state becomes a
triplet. Hence the spectral line of the transition between p and s states
becomes a triplet. Each level is shifted in energy E by an amount

E = µBml B, (1.1)

where the constant µB is known as the Bohr magneton and has a value of
9.27 × 10−24 J/T, and B is the magnitude of the magnetic field strength
along the line of sight to the observer.

Hence by observing such a multiple line whose values of ml are
known, we can measure the magnetic field strength in one direction.
Typical values that have been measured in the ISM are ∼10−10–10−9 T.
These values are so small that the typical splitting is too small for
most spectrometers to measure. However, the two levels have opposite
circular polarisations and can therefore be split by a polarimeter, which
is sensitive to circular polarisation. This means therefore that only the
field strength along the line of sight is measured and various geometric
assumptions have to be made to infer the three-dimensional magnetic
field configuration. In Chapter 4 we will discuss the effects that magnetic
fields have on the dynamics of the ISM.

1.6 Star formation in a galactic context

Star formation converts diffuse interstellar gas clouds, which undergo
highly dissipative collisions and are therefore very inelastic, into star
clusters, which are effectively collisionless and therefore much more
elastic. What this means is that when two clouds of interstellar gas
collide, the mean free path for collisions between the individual gas



1.6 Star formation in a galactic context 11

Fig. 1.7. Infrared image of
the spiral galaxy M81 showing
the star-formation regions
strung out along the spiral
arms of the galaxy. Inset is an
optical image illustrating that
these regions are much less
clear in the optical. This is
because optical wavelengths
are extinguished by the dust
in star-formation regions.

particles is very short. Consequently, the bulk kinetic energy of the
clouds is converted into random thermal energy of the gas particles and
then radiated away – i.e. the gas is first heated by the collision, and then
it cools by emitting radiation. Therefore, the bulk kinetic energy of the
clouds is lost irreversibly and entropy is created. The collision between
the two clouds is extremely inelastic and dissipative.

By contrast, when two clouds of stars – i.e. two star clusters – collide,
the mean free path for collisions between individual stars is extremely
long, in fact there is virtually no chance that two stars will collide.
Therefore a collision between two clouds of stars is non-dissipative and
elastic. We should distinguish two limiting cases.

(i) If there is only a small number of stars in each cloud, and they collide at

high speed, the two clouds pass straight through one another.

(ii) Conversely, if there is a larger number of stars in each cloud, and the clouds

collide at lower speed, long-range gravitational interactions between the

stars produce significant deflections of their individual orbits. In this limit,

the bulk kinetic energies of the two clouds can be randomised, and the

result is a single merged cloud of stars. This merged cloud is more extended

and cooler than either of the original clouds, in the sense that the random

motions of the individual stars are slower than they were in the original

clouds. However, no energy has been radiated away; it is still all invested in

the kinematics of individual stars.

Figure 1.7 shows an infrared image of the spiral galaxy M81. The
spiral structure of the galaxy can be clearly seen, as can the bright
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Fig. 1.8. An optical image of
the globular cluster M80.

regions of star formation delineating the spiral arms. Inset is an optical
image of the same galaxy, in which the spiral structure can still be seen,
but the star-formation regions are less clear. This is because the optical
emission is more efficiently extinguished than the infrared by the dust
in the star-formation regions.

1.7 Known sites of contemporary star formation

Stars form in molecular clouds, which are concentrated in the discs of
galaxies like the Milky Way, particularly in their spiral arms; in irregular
galaxies, like the Magellanic Clouds; in starburst galaxies, like M82; and
in interacting and merging galaxies, like the Antennae. In the Milky Way,
there are modest star-formation regions, like Taurus, and more prolific
ones, like Orion, W3 and W49. In external galaxies there are even more
vigorous star-formation regions like 30 Doradus in the Large Magellanic
Cloud, and the active galaxy Arp 220.

Most stars – and possibly all stars – are born in clusters† (see
Figure 1.8), although these clusters may involve as few as 10 members
or as many as 107. Some clusters are relatively small and nearby, such as
the Pleiades Cluster (see Figure 1.9). On a larger scale, violently inter-
acting galaxies trigger the formation of very large clusters, reminiscent
of the old globular clusters found in the halo of the Milky Way, with
105–106 stars and diameter ∼40 pc (see Figure 1.8).

† We shall use the term cluster to mean any collection of stars whose formation appears

to have been related.
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Fig. 1.9. An optical image of
the Pleiades open cluster.

In the neighbourhood of the Sun, the largest coherent clusters of
young stars are called OB associations. OB associations are so called
because they contain significant numbers of massive O and B stars,
and they are therefore also the locations of extended HII regions. These
are regions of ionised gas around massive stars (HII is singly ionised
hydrogen).

A typical OB association contains between 3000 and 105 stars, and
has a diameter between 10 and 200 pc. OB associations are unbound, so
their diameter increases with age. By the time the O and B stars have
burnt out, after a few tens of Myrs, an association is largely dispersed,
and hard to discern. OB associations represent the aftermath of star
formation in a large molecular cloud complex, which is then dispersed
by the action of the O and B stars. Nearby examples include Orion,
Upper Scorpius and Upper Centaurus–Lupus.

Within an OB association, there may be several subgroups and/or
embedded clusters, representing local regions of star formation at dif-
ferent stages of evolution. Embedded clusters are the youngest regions
of star formation, where the stars are still surrounded by the residual
gas and dust from which they formed, and therefore they can only be
observed at infrared wavelengths; a good example is the embedded
cluster NGC 2024 in the Orion B molecular cloud (see Figure 1.10).
Subgroups are optically visible clusters, which have dispersed most
of the residual gas and dust from which they formed. There is evi-
dence for self-propagating star formation in many OB associations – see
Figure 1.11.
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Fig. 1.10. Sequential,
self-propagating star
formation, as seen in the
Orion region (see also
Figure 1.5). The solid contours
show the molecular cloud.
The dashed contours encircle
the main OB association
subgroups, which are labelled
as 1a, 1b and 1c. Orion 1a is
the oldest, 1b is the next
oldest, and 1c is the youngest.
Compare this with the
theoretical picture in
Figure 1.11.

This is presumed to occur when the massive stars of one subgroup
excite HII regions, blow stellar winds, and finally explode as supernovae.
The resulting expanding nebulae compress the surrounding gas, thereby
triggering the formation of the next subgroup. This process can repeat
itself recursively, thereby generating a spatial and temporal sequence of
ever younger subgroups. A nearby example is the sequence of subgroups
terminating at the Trapezium Cluster in Orion; in order of decreasing
age, these subgroups are Orion 1a, Orion 1b and Orion 1c. This is shown
in Figure 1.10.

Most subgroups are unbound from the outset, but a few are initially
bound. These are the open (or Galactic) clusters. Typically they contain
between 30 and 1000 stars, and have diameters between 1 and 20 pc.
They normally survive for several crossing times, but eventually they
too are dispersed, due to evaporation and/or the tidal perturbations of
passing clouds. Few last beyond about 109 years. Famous examples are
Praesepe, the Hyades and the Pleiades (see Figure 1.9).

Finally there are T associations containing 30–300 stars, in a region
of diameter 3–30 pc. T associations are so called because they contain
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MOLECULAR
CLOUD

Fig. 1.11. Theoretical,
sequential, self-propagating
star formation, driven by the
expansion of an HII region.

no O or B stars, but only much lower-mass T Tauri stars. The archetype
is the Taurus–Auriga T association, at a distance of ∼140 pc.

1.8 The initial mass function

We define the initial mass function (IMF) for star formation, φ(M), such
that, if a net mass �S is converted into new stars, the number of stars in
the mass interval (M, M + d M) is given by

NM d M = �S φ(M) d M. (1.2)

φ(M) is normalised such that∫ Mmax

Mmin

φ(M) M d M = 1. (1.3)

The first person to derive an IMF was Salpeter. In 1955, he fitted the avail-
able observational data with a power law between 0.4 M� and 10 M� .
He found that

φ(M) d M 	 K M−2.35 d M, (1.4)

where K is a constant.
Today the IMF can be measured, both in clusters, and in the field, to

below the hydrogen-burning limit at ∼0.075 M� , and significant depar-
tures from equation 1.4 are found in this limit. The IMF is usually fitted
with piece-wise power laws. For example, one commonly accepted form
for the IMF is

φ(M) d M 	 K M−2.3 d M : M
>∼ 0.5M� (1.5)

φ(M) d M 	 K M−1.3 d M : 0.5M�
>∼ M

>∼ 0.08M� (1.6)

φ(M) d M 	 K M−0.3 d M : 0.08M�
>∼ M

>∼ 0.01M�, (1.7)

where we note that the Salpeter-like form still holds for higher masses.
This form of the IMF is shown in Figure 1.12.
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Fig. 1.12. The initial mass
function, here plotted as
log(ξ ), where ξ = Mφ(M),
against log(m), where
m = M/M�.

The IMF can also be fitted with a log-normal distribution. For exam-
ple, recent work finds

φ(M)d M 	 0.584M−1
� exp

{
−1.54 log2

[
M

0.22M�

]}
d M

M
(1.8)

where we have normalised in accordance with equation 1.3.
One of the goals of star formation is to understand why the stellar

IMF appears to vary very little from one star-formation region to another,
and to explain any variations in terms of environmental effects. We now
list some of the main goals for any star-formation theory.

1.9 Objectives of star-formation theory
The overall goal of star-formation research is to develop a complete
theory for the whole process. However, we are far from this overall goal,
so it is appropriate to define some more specific objectives, in the form
of questions. We list these questions chronologically, in the order that
the events implicit in the questions are presumed to occur, rather than
according to any hierarchy of importance.

1. Is there a threshold for star formation to occur? For instance, it
has been suggested that a galactic disc cannot fragment unless

Q ≡ a0 κ

π G 

< 1, (1.9)

and hence that this is a threshold for star formation in a galactic disc.
Here Q is known as the Toomre parameter, a0 is the effective sound
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speed in the disc, κ is the epicyclic frequency in the disc, or the fre-
quency of oscillation of matter about its mean orbital radius, G is the
gravitational constant and 
 is the surface density of the disc. There
is some observational evidence to support this idea, but it is certainly
only part of the full star-formation story. On a smaller scale it has been
suggested that within individual molecular clouds (see Chapter 4) there
is a density threshold below which star formation cannot occur. This has
been explained theoretically in terms of external ionisation of a molec-
ular cloud and subsequent magnetically regulated collapse. We return to
this in Chapter 5.

2. If there is a threshold for star formation, what is the efficiency of
star formation once this threshold is passed? We define the star-formation
efficiency ηSF as

ηSF = �S

G0

, (1.10)

where G0 is the total initial mass of interstellar matter involved, and �S is
the mass converted into new stars. The answer to this question is related
to the detailed mapping between the core mass function and the stellar
initial mass function discussed in Chapter 5.

3. If there is no threshold, then what determines the mean rate of
star formation? We define the star-formation rate R̄SF as

R̄SF ≡
〈

1

G
d S

dt

〉
, (1.11)

where G is the current total mass of interstellar matter, and d S/dt
is the current rate at which that matter is being converted into stars.
We look at this in the context of Galaxy-wide star formation in
Chapter 8.

4. What causes the initial mass function (IMF) for star forma-
tion, φ(M) ? One interesting aspect of the IMF is that it appears to
differ very little from one region to another, and therefore it may be
essentially universal. If so, then this must be telling us something fun-
damental about the star-formation process. In Chapter 5 we discuss
this in terms of the mass function of the cores from which stars are
formed.

5. What fraction of all stars is born in clusters, as opposed to being
born in isolation? The dividing line between a very sparse cluster and
truly isolated star formation may be hard to define precisely. This ques-
tion cannot presently be answered by theory alone. Detailed observations
are required. Current thinking is that most stars are formed in clusters,
but the exact percentage remains unclear.
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6. When stars are born in a cluster, what factors determine whether
it is a massive tightly bound globular cluster, a medium-mass loosely
bound open cluster, or a low-mass unbound association? This question
is related to the star-formation efficiency question above, and is a matter
of ongoing research.

7. What determines the statistics of binary systems? By this we mean
the distributions of mass ratio, period, and eccentricity as a function of
the mass of the primary star.

Concentrating first on Sun-like primaries, with masses in the range
of ∼0.5–2 M�, the following facts must be explained: (i) about 60%
of Sun-like field stars† are in binaries or higher hierarchical multiples;
(ii) the components in Sun-like field binary systems appear to pick their
partners more-or-less at random as regards mass; (iii) there is a wide
distribution of periods from less than an hour to nearly 105 years with a
peak around 200 years; and (iv) there is a wide range of eccentricities,
except for the very short-period systems (P

<∼ 10 days) which almost
always have circular orbits, due to tidal circularisation.

Turning now to the full range of primary star masses, it appears
that, as the primary mass decreases, the binary fraction decreases, the
mean mass ratio increases (tending towards approximately equal-mass
components for brown dwarf binaries), and the mean period and range
of periods both decrease.

Furthermore, there is a growing body of evidence which suggests
that newly formed stars have an even higher binary fraction than field
stars. In fact, conceivably, all stars may be formed in binaries or higher
multiples, and then some of these binaries are subsequently disrupted to
produce singles. Thus the formation of binaries appears to be an integral
part of the formation of stars. We return to the topic of binary stars in
Chapter 5.

8. Do most stars have planetary systems? The formation of our
planetary system appears to have occurred at the same time as the
formation of the Sun. The material which went into the Sun is presumed
to have done so by transferring most of its angular momentum to a
circumsolar disc of gas and dust. The planets then condensed out of
this disc. Discs with the appropriate dimensions and masses have been
seen around many young stars. A related question is what fraction of
planetary systems include Earth-like planets? This topic is related to the
physics of circumstellar discs. We discuss this further in Chapter 8.

9. How do all these various aspects of star formation depend on
environmental factors? These may vary enormously with epoch. By

† By ‘field stars’ we mean stars not currently associated with a given cluster or association.
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‘environmental factors’ we mean external factors such as: (i) mergers
of galaxies and close interactions between galaxies; (ii) the strength of
the shock waves associated with spiral modes in galaxies, and the depth
of the galactic potential well in which the star formation occurs; (iii)
the level of turbulence in the interstellar medium, and the strength of
the interstellar magnetic field; (iv) the ambient intensity of high-energy
ionising radiation such as UV and X-ray photons, and cosmic rays; (v)
the temperature of the cosmic microwave background radiation field;
and (vi) the heavy-element abundance in the interstellar gas. This latter
abundance is usually referred to as the ‘metallicity’, Z , expressed as the
fraction of the total mass in elements other than H or He. We discuss
galaxy mergers in Chapter 8. Turbulence, magnetic fields and ionisation
are discussed in Chapters 4 and 5. The star-formation rate as a function
of epoch, metallicity and microwave background variations is discussed
in Chapters 7 and 8.

10. What implications does star formation have for other areas of
research? Specifically, these include: (i) the formation, structure and
evolution of galaxies; (ii) cosmochemistry (the origin and distribution
of the chemical elements) – heavy elements are both formed in stars,
and locked up in low-mass or dead stars, and so the yield of heavy
elements from a generation of stars depends critically on its initial mass
function; (iii) the existence of life elsewhere in the Universe is dependent
on whether there are other Earth-like planets out there; since planet
formation appears to be a by-product of star formation, the answer to
this question is intimately linked to star-formation theory; (iv) the heat-
death of the Universe – since stars are the most ubiquitous and efficient
manufacturers of entropy in the Universe, star formation controls the rate
of heat-death. We return to some of the consequences of star formation
in Chapter 8.

The reader should be aware that none of these questions has a defini-
tive answer. This field is one of continuing research and discovery. How-
ever, in this book we hope to give the reader some idea of how these
questions are being addressed.
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Chapter 2

Probing star formation

2.1 Introduction
In the preceding chapter we discussed the main constituents of a galaxy.
In this chapter we describe the ways in which we detect and measure
those constituents. We also discuss the chief component that we have
not yet mentioned – the radiation field.

We describe the various ways in which we learn about the Universe.
We introduce fundamental concepts such as intensity, flux and opacity,
and we show how these can be applied to both continuum radiation and
spectral line radiation. These ideas are then used to illustrate how we can
learn about the physical properties of the gas and dust in the interstellar
medium.

2.2 Properties of photons

The majority of what we know about the Universe comes as a direct result
of the electromagnetic (EM) radiation we receive from the Universe.†

The other ways in which we learn about the Universe are space
probes that travel to other bodies in the Solar System to discover the
details of their composition, and from the meteors and meteorites that
fall to Earth from time to time. Space probes can help us to learn about
the formation of our own star, the Sun, and its planets, from which
we may be able to extrapolate to the formation of other stars and their
planets. The study of meteors can tell us about inter-planetary dust,

† Other potential sources of information include cosmic rays, neutrinos and gravitational

waves, but these are generally of little use in studies of star formation.
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but it is by the study of EM radiation that we learn the most about the
Universe.

EM radiation consists of individual quantised particles known as
photons. Each photon has only four properties: the direction from which
it emanates; the time of its arrival; its polarisation; and its associated
energy E .† The energy of a photon is related to its frequency ν by
the simple relation E = hν and to its wavelength λ by the equation
E = hc/λ, where c is the speed of light in a vacuum and h is Planck’s
constant. The direction of travel of a photon helps us to determine from
which region of space it originated; the time of arrival is used in the study
of variability of stars; polarisation can give us information on magnetic
fields; and the energies of the photons determine the conditions in the
object being studied.

When we have large numbers of photons we can study the statistical
properties of this radiation. We will distinguish between two types of
radiation, which we will refer to as ‘continuum’ and ‘line’ radiation.
Continuum radiation is distributed over a wide range of frequencies.
Line radiation peaks at specific frequencies. The study of continuum
radiation is known as photometry, and the study of line radiation is
referred to as spectroscopy.

2.3 Intensity

A steady unpolarised radiation field is completely described by the
monochromatic intensity Iν . Intensity is a useful quantity, as in a vacuum
it is conserved along a ray. Iν gives the amount of radiant energy in unit

† Our knowledge of both the energy and arrival time simultaneously are of course limited

by the uncertainty principle.
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frequency interval about ν, crossing unit area, in unit time, into unit
solid angle about the normal to that area. Alternatively,

Iν(r, k̂) dν d A(r, k̂) dt d�(k̂) (2.1)

gives the amount of radiant energy in the infinitesimal frequency interval
(ν, ν + dν), passing through the infinitesimal element of area d A(r, k̂)
having position r and unit normal k̂, into the infinitesimal element
of solid angle d�(k̂) about direction k̂, during the infinitesimal time
interval (t, t + dt) – see Figure 2.1.

Here ‘monochromatic’ means that Iν describes the intensity at ‘one
colour’, i.e. a single frequency ν. Remember that the frequency inter-
val dν is infinitesimal, so by implication dν → 0. The monochromatic
intensity Iν must be distinguished from the integrated intensity I (with
no subscript ν). I is given by

I (r, k̂) =
∫ ν=∞

ν=0

Iν(r, k̂) dν, (2.2)

and measures the amount of radiant energy, summed over all frequencies,
passing through unit area at position r, in unit time, into unit solid angle
about the unit normal k̂ to that area.

When we speak about the integrated intensity of a spectral line,
we subtract the underlying continuum intensity before performing the
integration over all frequencies (see Figure 2.2). Additionally, the limits
of integration are reduced to avoid contamination by other lines:

I line(r, k̂) =
∫ ν=ν0+�ν/2

ν=ν0−�ν/2

[
I observed
ν (r, k̂) − I continuum

ν (r, k̂)
]

dν. (2.3)

Here ν0 is the frequency at the line centre, �ν is the linewidth, I observed
ν

is the observed intensity, and I continuum
ν is the background continuum.
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I continuum
ν is estimated by interpolation, as indicated by the dashed line in

Figure 2.2.

2.4 Flux

We can also define the monochromatic flux, Fν , such that

Fν(r, k̂) dν d A(r, k̂) dt (2.4)

gives the net amount of radiant energy in the infinitesimal frequency
interval (ν, ν + dν), crossing the infinitesimal element of area d A(r, k̂)
having position r and unit normal k̂, during the infinitesimal time interval
(t, t + dt), irrespective of the direction of the radiation relative to k̂.†

The integrated flux is then given by

F(r, k̂) =
∫ ν=∞

ν=0

Fν(r, k̂) dν. (2.5)

Strictly speaking, the monochromatic and integrated fluxes are vec-
tor fields, Fν(r) and F(r), which give the direction in which the flow of
energy is a maximum. The scalar fluxes we have defined are then related
to the vector fluxes by

Fν(r, k̂) = Fν(r) · k̂ , F(r, k̂) = F(r) · k̂. (2.6)

The relation between flux and intensity is

Fν(r, k̂) =
∫

Iν(r, k̂′) k̂′.k̂ d�(k̂′), (2.7)

where we have introduced a second unit vector k̂′ to denote the direction
of the intensity (see Figure 2.1).

2.5 Radiant energy density

The monochromatic radiant energy density, uν , is defined so that

uν(r) dν dV (r) (2.8)

gives the amount of radiant energy in the infinitesimal frequency interval
(ν, ν + dν), in the infinitesimal volume element dV (r) at position r.

The integrated radiant energy density is then given by

u(r) =
∫ ν=∞

ν=0

uν(r) dν. (2.9)

The monochromatic volume emissivity, jν , is defined so that

jν(r) dV (r) dt d�(k̂)

† Note how this definition differs from the definition of the intensity.
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gives the amount of radiant energy emitted from the infinitesimal vol-
ume element dV (r) at position r, during the infinitesimal time interval
(t, t + dt), into the infinitesimal element of solid angle d�(k̂) about the
direction k̂. We are implicitly assuming that the emission is isotropic, so
jν does not depend on k̂.

The integrated volume emissivity, j(r), is given by

j(r) =
∫ ν=∞

ν=0

jν(r) dν. (2.10)

The monochromatic volume opacity, κν , is the total effective absorp-
tion cross-section presented by all the matter in unit volume to photons
of frequency ν. We say effective because it is corrected to include stim-
ulated emission (which is equivalent to negative absorption). κν is the
same as the inverse of the mean free path lν for photons of frequency ν.
Hence,

κν(r) =
∑

X

{nX (r) σX (ν)} = l−1
ν (r). (2.11)

Here nX (r) is the number density of particles of species X at position r,
σX (ν) is the cross-section presented by a single particle of species X to
radiation of frequency ν, and the sum is over all species X . At certain
frequencies the sum is dominated by the contribution from a single
species, which has a strong absorption cross-section at that frequency.
For stimulated emission the effective cross-section is negative.

2.6 Continuum radiation – studying the dust
Interstellar dust consists of very small grains, less than a micron in size,
that are mostly silicates and carbon compounds (see Section 1.3). By
mass, the dust represents about 1% of the total mass of the ISM. It
is possible to study the emission from dust by observing at particular
wavelengths.

Dust in the ISM emits radiation over a broad range of wavelengths,
and in the range from ∼10 µm to ∼103 µm (= 1 mm) dust emission
dominates the radiation from the ISM. In order to analyse the emis-
sion from interstellar dust, we first introduce the notion of blackbody
radiation.

A blackbody radiation field is a uniform and isotropic radiation
field in thermodynamic equilibrium. The monochromatic intensity of a
blackbody radiation field is given by the Planck function, Bν(T ), where

Iν(r, k̂) = Bν(T ) = 2hν3

c2

{
exp

[
hν

kT

]
− 1

}−1

, (2.12)

where k is the Boltzmann constant and h is the Planck constant.
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The monochromatic energy density of a blackbody radiation field is
then given by

uν(r) = 4π Bν(T )

c
, (2.13)

and the monochromatic flux is zero (Fν = 0) because a blackbody radi-
ation field is isotropic.

The integrated intensity of a blackbody radiation field is given by

I = σSBT 4

π
, (2.14)

where σSB is the Stefan–Boltzmann constant

σSB = 2π 5k4

15c2h3
= 5.7 × 10−8 J m−2 s−1 K−4. (2.15)

The integrated energy density is

u = aT 4, (2.16)

where a is a constant equal to

a = 8π5k4

15(hc)3
= 7.6 × 10−16 J m−3 K−4. (2.17)

The integrated flux is zero (F = 0) because the integrated intensity
is isotropic.

When we speak of a stellar surface radiating like a blackbody at
temperature T∗, we mean that immediately above the surface of the star
the intensity over outward directions is like a blackbody radiation field
at temperature T∗, and the intensity over inward directions is negligible.
Hence the monochromatic and integrated fluxes are given by

Fν(r) 	 π Bν(T∗) r̂, (2.18)

and

F(r) 	 σSB T 4
∗ r̂, (2.19)

where r̂ is the unit radial vector.
Blackbody radiation has one other relevant property, which relates

the temperature, T , of the blackbody to the wavelength at which its
emission peaks, λmax, according to the equation

λmaxT = 2.898 × 10−3 K m. (2.20)

This is known as Wien’s displacement law. Note that the units of the
constant on the right-hand side are kelvins × metres.
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2.7 Radiative transfer
The manner in which radiation interacts with the medium through which
it travels on its way to an observer is known as radiative transfer. We
consider transfer of radiation through a medium which extends from l =
0 to l = L along the direction of propagation (see Figure 2.3). Radiation
enters the medium at l = 0 with intensity Iν(0), and emerges at l = L
with intensity Iν(L). Iν(0) is called the background intensity. Iν(L) is
what the observer sees.

The equation describing the change in the intensity of radiation as
it passes through a medium is

d Iν

dl
(l) = −κν(l) Iν(l) + jν(l). (2.21)

The first term on the right-hand side represents attenuation of the inten-
sity due to the effective absorption (the difference between true absorp-
tion and stimulated emission). The second term represents the increase
in intensity due to spontaneous emission in the medium – see equations
2.10 and 2.11.

The reason why the stimulated emission is included with the true
absorption is that both processes have rates (per unit volume) which
depend on the incident intensity. By contrast, the rate of spontaneous
emission (per unit volume) is independent of the incident intensity.

Equation 2.21 can be simplified if we introduce two new quantities.
The first is the optical depth τ ′

ν , which is defined by

dτ ′
ν(l) = κν(l) dl, (2.22)

=⇒ τ ′
ν(l) =

∫ l ′=l

l ′=0

κν(l ′) dl ′. (2.23)
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If we recall that κν is the inverse of the mean free path for a photon of
frequency ν, we see that the optical depth measures distances through
the medium in units of the local mean free path. Hence the optical depth
is dimensionless. The total optical depth through the medium is

τν = τ ′
ν(L). (2.24)

The second new quantity is the source function, Sν , where

Sν = jν
κν

. (2.25)

With these definitions, equation 2.21 reduces to

d Iν

dτ ′
ν

(
τ ′
ν

) = −Iν

(
τ ′
ν

)+ Sν

(
τ ′
ν

)
. (2.26)

We note parenthetically that in thermodynamic equilibrium (TE) the
intensity is uniform (d Iν/dτ ′

ν = 0) and given by the Planck function
Bν(T ), so

Sν = Iν = Bν(T ) (in TE), (2.27)

and

jν = κν Bν(T ) (in TE). (2.28)

The general solution of equation 2.26 is obtained by invoking the inte-
grating factor eτ ′

ν

Iν

(
τ ′
ν

) = Iν(0) e−τ ′
ν +
∫ τ ′′

ν =τ ′
ν

τ ′′
ν =0

Sν

(
τ ′′
ν

)
eτ ′′

ν −τ ′
ν dτ ′′

ν . (2.29)

The first term on the right-hand side of equation 2.26 is the background
intensity Iν(0), attenuated by the optical depth τ ′

ν to the point in question.
The second term represents emission from the medium, i.e. a sum of
contributions from all the infinitesimal elements of the medium between
τ ′′
ν = 0 and τ ′′

ν = τ ′
ν , each one attenuated by the intervening optical depth

τ ′
ν − τ ′′

ν .
If the medium is uniform, and hence its emission coefficient and

source function are uniform, i.e. jν
(
τ ′
ν

) = j 0
ν and Sν

(
τ ′
ν

) = S0
ν , the

integral in equation 2.29 is trivial, and we obtain

Iν

(
τ ′
ν

) = Iν(0) e−τ ′
ν + S0

ν

{
1 − e−τ ′

ν

}
. (2.30)

If the background intensity dominates over emission from the medium,
then the observed intensity is given by

Iν (τν) 	 Iν(0) e−τν (2.31)

⇒ τν 	 ln [Iν(0)/Iν (τν)] . (2.32)
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If the background intensity is negligible, and emission from the
medium dominates, then the observed intensity is given by

Iν (τν) = S0
ν

{
1 − e−τν

}
. (2.33)

Optically thin emission: If the medium is optically thin, τν � 1, the
observer receives emission from right through the medium

Iν (τν) 	 S0
ν τν = j 0

ν L . (2.34)

Optically thick emission: If the medium is optically thick, τν � 1,
almost all the emission received by the observer comes from a thin layer
at the front of the medium

Iν (τν) 	 S0
ν . (2.35)

In the case where we are studying the continuum emission from
dust, the background intensity is usually negligible. If the emitting dust
is all at a single temperature, then we can replace S0

ν in the last equation
with the Planck function Bν(Tdust)

Iν = Bν(Tdust)[1 − e−τν ]

= 2hν3

c2

[1 − e−τν ]

[e(hν/kTdust) − 1]
, (2.36)

where Tdust is the temperature of the dust (i.e. the temperature charac-
terising the internal vibrations of a dust grain). If we have sufficient
measurements of Iν at different frequencies, we can use this equation to
determine the temperature and optical depth of the dust we are observing.
This equation is sometimes known as the equation of a greybody.

Observations suggest that in the low-frequency (long-wavelength)
limit τν can be approximated by

τν =
(

ν

νc

)β

, (2.37)

where νc is the critical frequency at which the optical depth τν = 1, β is
the dust emissivity index, and typically 1 ≤ β ≤ 2. Hence the dust which
is optically thick at visible wavelengths becomes optically thin at longer
wavelengths. Figure 2.4 shows this effect in the Horsehead Nebula.

2.8 Calculating the dust mass

Study of the emission from dust in the ISM allows us to calculate the
mass of the emitting dust as follows. A single, spherical grain of radius
a has a monochromatic luminosity Lν given by

Lν = 4πa2π Bν(Tdust)Qν, (2.38)
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Fig. 2.4. Two pictures of the
Horsehead Nebula in Orion.
On the left is an optical
image, while on the right is a
millimetre-wave image
(shown in negative, so that
bright emission is black). The
dust which is absorbing light
in the optical image is
re-emitting in the millimetre-
wave. Furthermore, a bright
object in the horse’s throat
becomes visible in the
millimetre-wave, which was
obscured in the optical.

where 4πa2 is the surface area of the grain, π Bν(Tdust) is the monochro-
matic flux at frequency ν from a blackbody-like surface with tempera-
ture Tdust, and Qν is the emission efficiency of the grain (i.e. how well it
approximates to a blackbody at frequency ν).

If the total mass of dust in the cloud is Md and the mass of a single
dust grain is md , then the total number of dust grains in the cloud, Nd ,
is given by

Nd = Md

md
= 3Md

4πa3ρd
, (2.39)

since md = 4πa3ρd/3, where ρd is the density of the material in a single
dust grain.

If the dust emission is optically thin (i.e. the grains at the front of
the cloud don’t shield the grains at the back) then the flux Fν received
by an observer at distance D is

Fν = Nd Lν

4π D2
, (2.40)

Substituting from equations 2.38 and 2.39 into equation 2.40 gives

Fν = 3Md Bν(Tdust)Qν

4aρd D2
. (2.41)

Rearranging this equation to make Md the subject, we have

Md = 4aρd Fν D2

3Bν(Tdust)Qν

, (2.42)

and we can estimate the mass of emitting dust. This is sometimes written
as

Md = κd (ν)Fν D2

Bν(Tdust)
, (2.43)
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where κd (ν) is known as the dust mass opacity coefficient, given by

κd (ν) = 4aρd

3Qν

. (2.44)

Long-wavelength emission from dust grains is normally optically thin,
and in general the optical depth τν is given by

τν = Ndπa2 Qν, (2.45)

where Nd is the number of dust grains per unit area, also known as the
column density. Substituting from equation 2.39 gives

τν = 3Md Qν

4aρd D2�
, (2.46)

where � is the solid angle subtended at the observer by the emitting
dust, and we have used Nd = Nd/D2�.

Rewriting equation 2.30 for the case of negligible background radi-
ation, and putting Sν = Bν(Tdust), gives

Iν = Bν(Tdust)[1 − e−τν ]. (2.47)

Recalling that Fν = Iν�, we have

Fν = Bν(Tdust) � [1 − e−τν ], (2.48)

and inserting from equation 2.46, gives

Fν = Bν(Tdust)�

[
1 − exp

(
− 3Md Qν

4aρd D2�

)]
. (2.49)

Rearranging for Md gives

Md = −4aρd D2�

3Qν

ln

(
1 − Fν

Bν(Tdust)�

)
. (2.50)

This general equation for all τν reverts to the form of equation 2.42 in the
optically thin regime. This is because, from equation 2.48, for small τν ,
the fraction [Fν/Bν(Tdust)�] ∼ τν , and in the optically thin limit τν � 1.

These very powerful equations illustrate that by measuring the flux
from the dust in a molecular cloud we have the potential to calculate
the total mass of dust in the cloud. Of course, many assumptions have
to be made. In reality the dust grains are not all the same size and
are not spherical. However, it can be shown that the effects of these
considerations can be minimised if one observes at a frequency such
that the wavelength λ � a, and if a mean grain size ā is used.

Mean grain sizes can be estimated in various ways, such as from their
refractory and polarisation properties, as can the bulk material properties
of the dust, such as ρd . Measurements at many different frequencies can
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help tie down Tdust and τν , and so an estimate of the mass of dust in a
cloud can be made.

2.9 Line radiation – studying the gas

Consider a species X (atom or ion or molecule) which has two energy
levels, labelled i and j , having energies Ei and E j , where E j is the
higher level, and hν0 = E j − Ei is the energy difference between the
levels – see Figure 2.5. For simplicity, we assume that these are the only
energy levels, but this does not affect the generality of the results we
obtain. Now suppose that there is a gas of this species together with
free electrons having number density ne and continuum radiation having
energy density uν0 .

2.9.1 Population transfer

Transfer of population directly between these energy levels occurs by a
variety of processes:

Spontaneous radiative de-excitation (also called spontaneous emis-
sion) transfers population downward at a rate per unit volume equal to
(nX ; j A ji ), where nX ; j is the number density of particles of species X in
the upper level j , and A ji is the Einstein A-coefficient.

Induced radiative de-excitation (also called induced or stimulated
emission) transfers population downward at a rate per unit volume equal
to (nX ; j B ji uν0 ), where B ji is one of the Einstein B-coefficients.

Collisional de-excitation transfers population downward at a rate
per unit volume equal to (nX ; j C ji (T )ne), where C ji (T ) is the collisional
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de-excitation coefficient due to electrons, and ne is the number density
of free electrons. We have assumed that electrons are the main agents
of collisional de-excitation, and this is usually the case, unless there
are very few free electrons. If the density of free electrons is low, then
the job must be done by hydrogen atoms, helium atoms, or hydrogen
molecules.

Note that spontaneous de-excitation does not require an external
agent. It happens at the same rate irrespective of environment. In con-
trast, the rate of induced radiative de-excitation depends on the ambient
intensity of the radiation field at frequency ν0, and the rate of collisional
de-excitation depends on the density and temperature of the colliding
particles (e.g. electrons).

Radiative excitation (also called radiative absorption) transfers pop-
ulation upwards at a rate per unit volume given by

nX ;i Bi j uν0 = nX ;i σ0

c uν0

hν0

, (2.51)

where Bi j is the second Einstein B-coefficient, and σ0 is the integrated
absorption cross-section.

Collisional excitation transfers population upwards at a rate per unit
volume equal to (nX ;i Ci j (T )ne), where Ci j (T ) is the collisional excitation
coefficient, and again we are assuming that collisions with electrons are
the dominant collisional excitation mode.

2.9.2 Population distributions

In thermodynamic equilibrium (TE), the gas particles have a velocity
distribution that is Maxwellian in form, i.e. the number of particles
of species X in unit volume having velocity components in the range
(ux , ux + dux ; uy, uy + duy ; uz, uz + duz) is given by

nX ; ux ,uy ,uz dux duy duz = nX

[ m X

2πkT

]3/2

× exp

[
−m X

(
u2

x + u2
y + u2

z

)
2kT

]
dux duy duz,

(2.52)

where nX is the total number density of particles of species X , and
m X is the mass of a single particle of species X . Similarly, the number
of particles of species X in unit volume having speed in the range
(u, u + du) is

nX ;u du = nX

[ m X

2πkT

]3/2

exp

[
−m X u2

2kT

]
4πu2du. (2.53)
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If the species X has two internal energy levels i and j (see Fig-
ure 2.5), having energies Ei and E j , and statistical weights gi and
g j , the relative populations of the two levels in TE are given by the
Boltzmann equation

nX ; j

nX ;i
= g j exp[−E j/kT ]

gi exp[−Ei/kT ]
= g j

gi
exp

[
− (E j − Ei

)
kT

]

= g j

gi
exp

[
− hν0

kT

]
, (2.54)

where we have simplified the expression using the frequency of the
transition.

It follows that the fraction of particles of species X in level j is
given by

nX ; j

nX
= g j exp[−E j/kT ]

Z X (T )
, (2.55)

where Z X (T ) is called the partition function of species X (Z stands for
Zustandsumme, which is German for ‘sum of states’), and is given by

Z X (T ) =
∑

all levels i

{gi exp[−Ei/kT ]} . (2.56)

2.9.3 The Einstein relations between coefficients

We now consider only a single species. In thermodynamic equilibrium
(TE) for our two-level atom we have

nX ;i

nX ; j
= gi exp [−Ei/kT ]

g j exp
[−E j/kT

] = gi

g j
exp

[
hν0

kT

]
, (2.57)

from the Boltzmann equation, and

uν0 = 4π Bν0 (T )

c
= 8πhν3

0

c3

{
exp

[
hν0

kT

]
− 1

}−1

, (2.58)

but statistical equilibrium requires an exact balance between the rate at
which population is transferred upwards from level i to level j and the
rate at which population is transferred downwards from level j to level i

nX ; j

{
A ji + Bji

4π Bν0 (T )

c
+ C ji (T )ne

}

= nX ;i

{
Bi j

4π Bν0 (T )

c
+ Ci j (T )ne

}
. (2.59)

Moreover, this balance must hold at all temperatures, and all densi-
ties, i.e. for all T and all ne.
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Since the coefficients A ji , B ji , Bi j , C ji (T ) and Ci j (T ) are intrin-
sic properties of the particles, i.e. properties which remain the same,
whatever the surrounding density, we can argue as follows.

First, suppose that, with the temperature held fixed (but at an arbi-
trary value), we vary the density. The collisional terms in equation 2.59
involve the square of the density, and so they must balance indepen-
dently, i.e. irrespective of the radiative terms. This is because we can
increase the density, and thereby make these collisional terms arbitrarily
large compared with the other terms, but the balance still has to hold.
Therefore we must have

C ji (T ) = nX ;i

nX ; j
Ci j (T ) = gi

g j
exp

[
hν0

kT

]
Ci j (T ), (2.60)

at all temperatures T (where we have substituted for nX ;i/nX ; j from
equation 2.57).

Second, if the collisional terms in equation 2.59 balance indepen-
dently, the radiative terms in equation 2.59 must also balance indepen-
dently. After all, we can make the collisional terms arbitrarily small by
decreasing the density. Therefore we have

A ji + 8πh

λ3
0

{
exp

[
hν0

kT

]
− 1

}−1

Bji

= nX ;i

nX ; j

8πh

λ3
0

{
exp

[
hν0

kT

]
− 1

}−1

Bi j

= gi

g j
exp

[
hν0

kT

]
8πh

λ3
0

{
exp

[
hν0

kT

]
− 1

}−1

Bi j , (2.61)

where again we have substituted for nX ;i/nX ; j from equation 2.57. Then
multiplying this equation throughout by the term in curly brackets, we
obtain

A ji

{
exp

[
hν0

kT

]
− 1

}
+ 8πh

λ3
0

Bji = gi

g j
exp

[
hν0

kT

]
8πh

λ3
0

Bi j , (2.62)

again at all temperatures T .
Third, the terms in equation 2.62 which involve the temperature

must balance independently of the others. This is because the terms
involving the temperature can be made arbitrarily large by decreasing
the temperature. Therefore we have

Bi j = λ3
0

8πh

g j

gi
A ji . (2.63)
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Fourthly (and finally), the terms in equation 2.62 not involving the
temperature must also balance independently, giving

Bji = λ3
0

8πh
A ji = gi

g j
Bi j . (2.64)

Equations 2.60, 2.63 and 2.64 are known as Einstein’s relations.
They are very useful, because they mean that quantum physicists only
need to compute one collisional coefficient – say Ci j (T ) – and one
radiative coefficient – say A ji . The other three coefficients are then
obtained trivially using Einstein’s relations.

2.9.4 Emission and absorption coefficients

The absorbing power of a transition can be measured by its integrated
cross-section, σ0, which is related to Bi j (see equation 2.51) by

σ0 = h Bi j

λ0

. (2.65)

The integrated emission coefficient for line radiation (due to the
transition discussed above) is given by

j = nX ; j A ji hν0

4π
, (2.66)

where nX ; j is the number of particles of species X in level j , in unit
volume. A ji is the rate at which these particles de-excite radiatively and
spontaneously to level i , and so nX ; j A ji is the number of line photons
emitted spontaneously, from unit volume, in unit time. The factor hν0

converts this into the amount of radiant energy emitted in the line, from
unit volume, in unit time (see Section 2.1). The factor 1/4π converts this
into the amount of radiant energy emitted in the line, from unit volume,
in unit time, into unit solid angle (on the assumption that the emission
is isotropic). This is, by definition, the integrated emission coefficient.

The monochromatic emission coefficient is then given by

jν = j × φ (ν − ν0) , (2.67)

where φ(ν − ν0) is called the profile function, and measures how the
emission is distributed about the central frequency. Since

j =
∫

line

jν dν =
∫

line

j φ (ν − ν0) dν = j

∫
line

φ (ν − ν0) dν, (2.68)

the profile function must be normalised,∫ ν=∞

ν=0

φ (ν − ν0) dν = 1, (2.69)

and so φ (ν − ν0) has the dimensions of ‘one over frequency’, i.e. time.
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The opacity coefficient is given by

κν = nX ;i σ0 φ (ν − ν0)

{
1 − nX ; j B ji

nX ;i Bi j

}

= nX ;i σ0 φ (ν − ν0)

{
1 − nX ; j gi

nX ;i g j

}
. (2.70)

Here, nX ;iσ0φ(ν − ν0), gives the true absorption. The terms inside the
curly brackets represent a correction factor to account for stimulated
emission, which acts like negative absorption. To obtain the final expres-
sion, we have used equation 2.64 to replace B ji/Bi j with gi/g j .

In thermodynamic equilibrium, nX ; j/nX ;i is given by the Boltzmann
equation (equation 2.57), and so the correction factor for stimulated
emission reduces to{

1 − nX ; j gi

nX ;i g j

}
→
{

1 − exp

[
−hν0

kT

]}
. (2.71)

If hν0 � kT , then this approximates to{
1 − exp

[
−hν0

kT

]}
	
{

hν0

kT

}
� 1, (2.72)

and so under this circumstance the effective opacity coefficient is much
smaller than the true absorption coefficient; in other words, almost every
true absorption is balanced by a stimulated emission.

Recommended further reading
We recommend the following texts to the student for further reading on the topics

presented in this chapter.

Emerson, D. (1996). Interpreting Astronomical Spectra. New York: Wiley

Krugel, E. (2003). The Physics of Interstellar Dust. Bristol: Institute of Physics

Press.

Shu, F. H. (1991). The Physics of Astrophysics – Radiation, vol. 1. Mill Valley:

University Science Books.

Whittet, D. (1992). Dust in the Galactic Environment. Bristol: Institute of Physics

Press.





Chapter 3

The ISM – the beginnings of
star formation

3.1 Introduction
In this chapter we take a more detailed look at the interstellar medium
(ISM). We consider first the most abundant element in the Universe,
hydrogen. We discuss the atomic hydrogen transition which occurs at
21 cm. We look at the 21-cm line in both absorption and emission. We
then go on to consider the molecular gas and, in particular, the most
abundant gas-phase molecule after hydrogen, carbon monoxide (CO).
We also look at the use of absorption lines in the study of the ISM. In
this context we consider some features of spectral lines, such as their
equivalent widths, and we describe the curve of growth of a spectral
line. In the next chapter we will go on to study the denser parts of the
ISM, known as molecular clouds.

3.2 The 21-cm line of atomic hydrogen

The most abundant element in the Universe is hydrogen. We here dis-
cuss the main signature of cool atomic hydrogen, 21-cm line radiation.
Figure 3.1 shows 21-cm images of some nearby galaxies, illustrating
how the 21-cm radiation traces the atomic gas in the interstellar medium
of these galaxies.

The electronic ground level of atomic hydrogen has quantum num-
bers: n = 1, l = 0, ml = 0 and ms = ±1/2. To first order the energy of
this level is determined solely by the principal quantum number n

En = −2π 2mee4

h2n2

n=1−→ E1 = −2π 2mee4

h2
. (3.1)

39
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Fig. 3.1. Images of other
galaxies taken in the 21-cm
line of atomic hydrogen (HI).
The images are tracing the
atomic gas in the interstellar
medium of these galaxies.

This level is fourfold degenerate, because not only does the electron
have spin (s = 1/2, giving ms = ±1/2), but the proton also has spin
(i = 1/2, giving mi = ±1/2).

3.2.1 21-cm energy levels

The fourfold degeneracy of the ground level is partially raised by hyper-
fine splitting due to the interaction between the magnetic moments of
the electron and the proton. We now explain how the hyperfine splitting
works.

In the true ground state, which we denote with a subscript 0, the spins
and magnetic moments are antiparallel, so the total angular momentum
f0 is zero and the statistical weight g0 is one

f0 = |s − i | = 0, =⇒ m f = 0, g0 = 1. (3.2)

In the excited level, which we denote with a subscript 1, the spins
and magnetic moments are parallel, so the total angular momentum f1

is one and the statistical weight g1 is three

f1 = |s + i | = 1, =⇒ m f = 0, ±1, g1 = 3. (3.3)

We note parenthetically that one cannot think of the magnetic
moments associated with the electron and proton as current loops due
to extended rotating distributions of charge. If this were the case, the
magnetic moment of the electron would be antiparallel to its spin, and
the magnetic moment of the proton would be parallel to its spin. In fact,
in both cases the magnetic moment is parallel to the spin.
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The interaction energy due to the magnetic moments is very small

�E ≡ E1 − E0 	 10−24 J

	 k [0.07 K] 	 h [1.4 GHz] 	 hc

[21 cm]
, (3.4)

where the last three expressions give the energy in terms of (i) tempera-
ture (using the Boltzmann constant k), (ii) frequency and (iii) wavelength
(21 cm =0.21 m).

The spontaneous radiative de-excitation coefficient (Einstein A-
coefficient) is

A10 	 3 × 10−15 s−1 	 [107 years
]−1

. (3.5)

In other words, a typical hydrogen atom spends on average ∼ 107 years
in the upper level j before it de-excites spontaneously, with the emission
of a 21-cm photon. One might conclude that this radiation would be
undetectable. However, the weak emission rate per hydrogen atom is
compensated by the enormous amount of atomic hydrogen in interstellar
space.

3.2.2 21-cm level populations

For any transition, we define the excitation temperature, Tex, as the
temperature at which the Boltzmann distribution of population between
the two levels (i.e. the thermodynamic equilibrium distribution) equals
the actual distribution. In this case we have

n1

n0

= g1

g0

exp

[
− �E

kTex

]
= 3 exp

[
− 0.07 K

Tex

]

	 3 − 0.21 K

Tex

∼ 3. (3.6)

In the equation above, we have introduced two stages of approximation,
which are valid as long as Tex � 0.07 K. Typically Tex

>∼ 80 K, so this is
a safe assumption. The first stage, denoted by 	, retains only terms of
zeroth and first order in (1/Tex). The second stage, denoted by ∼, retains
only zeroth-order terms.

Since collisions dominate the transfer of population between the two
levels, we have Tex 	 T . In other words, the frequency and energetics
of collisions reflect the velocity distribution of the particles, and this
approximates closely to its thermodynamic equilibrium form, which is a
Maxwellian distribution at temperature T . Consequently the distribution
of population also approximates to its thermodynamic equilibrium form,
which is a Boltzmann distribution at the same temperature T .

After the two levels involved in the 21-cm transition, the next excited
level is the level with principal quantum number n = 2 and energy E2,
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where

E2 − E1 	 1.6 × 10−18 J 	 k
[
1.2 × 105 K

]
. (3.7)

Therefore, for T
<∼ 103 K, we can neglect the population in this and

higher levels, and put

n0 + n1 = nHI, (3.8)

where n0 is the number of particles per unit volume in the true ground
state ( f = 0), n1 is the number of particles per unit volume in the excited
level ( f = 1), and nHI is the total number of neutral hydrogen (HI) atoms
per unit volume.

The partition function is therefore given by

Z X 	 g0 + g1 exp

[−�E

kT

]
= 1 + 3 exp

[−0.07 K

T

]

	 4 − 0.21 K

T
∼ 4, (3.9)

where we have again employed the two stages of approximation defined
earlier.

It follows that the level populations are given by

n0

nHI

	 g0

Z X
	 1[

4 − 0.21 K
T

] 	 0.25 + 0.01331 K

T
∼ 0.25,

and

n1

nHI

	 g1 exp
[−�E

kT

]
Z X

	
[
3 − 0.21 K

T

][
4 − 0.21 K

T

]
	 0.75 − 0.01331 K

T
∼ 0.75. (3.10)

In other words, slightly more than a quarter of the population is in the
true ground state ( f = 0), and slightly less than three quarters is in the
excited level ( f = 1).

3.2.3 Radiative transfer in the 21-cm line

The monochromatic volume opacity coefficient for 21-cm line radiation
can be derived from equations 2.70 and 3.6 to be

κν = n0 σ0 φ(ν − ν0)

{
1 − exp

[−0.07 K

T

]}
. (3.11)

With the first stage of approximation, this becomes

κν = n0 σ0 φ(ν − ν0)

{
0.07 K

T

}
, (3.12)
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so we see that the correction for stimulated emission, the term in braces,
is usually rather significant. At T 	 100 K, a typical temperature for
atomic hydrogen in the interstellar medium, there are about 1400 stim-
ulated emissions for every 1401 true absorptions.

Putting

n0 ∼ nHI

4
, (3.13)

from equation 3.10, and

σ0 = g1c2 A10

8πg0ν2
	 1.6 × 10−17 m2 s−1, (3.14)

from equations 2.64, 2.65 and 3.5, equation 3.12 becomes

κν 	 C
nHI

T
φ(ν − ν0), (3.15)

with

C = g1c2h A10

32πg0kν0

= 3 × 10−19 m2 s−1 K. (3.16)

For a line of sight dominated by a single uniform cloud (in particular, a
cloud with uniform temperature), we obtain

τν 	
∫ l=∞

l=0

κν(l) dl 	 C
NHI

T
φ(ν − ν0), (3.17)

where NHI is the column density of hydrogen atoms through the cloud,
defined as the number of atoms in a column of unit area that extends
along the line of sight through the entire cloud. This is often a more useful
concept than the volume density because it is more directly related to
what is actually observed, and does not rely on assumptions about the
distribution of the emitting gas along the line of sight.

Equation 3.17 shows that cool clouds absorb more effectively than
warm ones. This is because the imbalance between stimulated emission
and true absorption increases with decreasing temperature (see equa-
tion 3.12). Conversely, as the temperature is increased to sufficiently
large values,

n1

n0

−→ g1

g0

, (3.18)

and the net absorption (true absorption minus stimulated emission) tends
to zero.

From equations 2.66 and 2.67, the monochromatic volume emission
coefficient, giving the rate of spontaneous emission of energy from unit
volume into unit solid angle, is

jφ(ν − ν0) = n1 A10 hν0 φ(ν − ν0)

4π
. (3.19)
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small,
bright,
background
continuum
source

transferring
medium
(cloud)

observer

Iν(0)

Iν(τν)

Fig. 3.2. Lines of sight
through an atomic hydrogen
cloud in the ideal case.

If we combine equations 3.19 and 3.11, we find, after a little algebra,

Sν = jν
κν

= ..... −→ ..... Bν(T ) 	 2kT ν2
0

c2
. (3.20)

Here Bν(T ) is the Planck function for the intensity of blackbody radia-
tion at the excitation temperature T (remember that the thermodynamic
temperature is equal to the excitation temperature, since collisions dom-
inate the population transfer). The last expression gives the Rayleigh–
Jeans limit, which is valid when hν � kT . We have substituted ν → ν0

because the range of frequency across a line is very small.
It is not coincidental that the source function approximates to the

Planck function at temperature T . It happens because the levels have a
population corresponding to thermodynamic equilibrium at temperature
T (see Section 3.2.2). Since the source function is determined entirely by
the level populations, it must adopt the value corresponding to thermo-
dynamic equilibrium at temperature T – i.e. the Planck function Bν(T ).

3.2.4 The 21-cm line in absorption

Figure 3.2 illustrates the ideal situation in which there is a small but
resolved bright background continuum source behind a single cool cloud
(denoted on the figure as the transferring medium). We make observa-
tions on the line of sight to the resolved background source, and on a
line of sight which misses the background source. We assume that the
cloud is uniform, in particular the volume emission coefficient, volume
opacity coefficient, and source function are independent of position

jν(l) = j 0
ν , (3.21)

κν(l) = κ 0
ν , (3.22)

Sν(l) = S 0
ν . (3.23)



3.2 The 21-cm line of atomic hydrogen 45

Iν

Iν (0)

Iν (τν)

ν0 ν

Fig. 3.3. 21-cm absorption
line in the spectrum of a
bright background continuum
source.

From equation 2.30, the general solution of the equation of radiation
transport through a uniform transporting medium is

Iν(τν) = Iν(0) e−τν + S 0
ν

[
1 − e−τν

]
. (3.24)

Here Iν(0) is the background intensity incident on the far side of
the medium, and Iν(τν) is the intensity of the radiation emerging on
the observer’s side of the medium. The first term on the right-hand
side represents the background radiation attenuated by passing though
the medium (see Section 2.7). The second term represents emission from
the medium itself. This emission is a sum of contributions from each
infinitesimal layer of the medium, with each such layer being attenuated
by the amount of medium which lies in front of it.

On the line of sight to the bright background continuum source,
the emission from the medium can be neglected. Therefore we see an
absorption line (as illustrated in Figure 3.3) with

Iν(τν) = Iν(0) e−τν . (3.25)

From equation 3.17, we deduce that

τν 	 C
NHI

T
φ(ν − ν0) 	 ln

[
Iν(0)

Iν(τν)

]
. (3.26)

By integrating over frequency, we obtain

C
NHI

T

∫
line

φ(ν − ν0) dν = C
NHI

T
=
∫

line

ln

[
Iν(0)

Iν(τν)

]
dν

=⇒ NHI

T
	 1

C

∫
line

ln

[
Iν(0)

Iν(τν)

]
dν. (3.27)

Then, if we measure the observed intensity Iν(τν), and estimate
the background intensity Iν(0) (by interpolating across the line – see
Figure 3.3), we can perform the integral on the right-hand side of equa-
tion 3.27, and hence evaluate the combination NHI/T on the line of sight
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Iν

Iν (τν)
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ν0 ν

Fig. 3.4. Optically thin 21-cm
emission line.

to the background source. However, if the line is very optically thick,
so that the centre is completely wiped out, Iν(τν) will be poorly known,
and so the estimate of NHI/T will be rather uncertain.

3.2.5 The 21-cm line in emission

If we now point our telescope just to the side of the bright background
continuum source, the background intensity is much smaller, and so we
see the line in emission (see Figure 3.4). From equation 3.24 we have

Iν(τν) = Iν(0) e−τν + S 0
ν

[
1 − e−τν

]
. (3.28)

If the line is optically thin, τν � 1, the observed intensity Iν(τν) will be
given by

Iν(τν) − Iν(0) 	 S 0
ν τν = j 0

ν

κ 0
ν

κ 0
ν L = j 0

ν L

= 3NHI A10�E

16π
φ(ν − ν0). (3.29)

In other words, we will see emission from throughout the emitting
medium; there will be no significant shielding of the emission from
the HI atoms at the back of the cloud by those at the front. Equation 3.29
shows that the line shape will echo the profile function φ(ν − ν0) – see
Figure 3.4.

If we now integrate over the line, we obtain the integrated intensity
of the line

Iline ≡
∫

line

[Iν(τν) − Iν(0)] dν

= 3NHI A10�E

16π

∫
line

φ(ν − ν0) dν

= 3NHI A10�E

16π
. (3.30)
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Fig. 3.5. Optically thick
21-cm emission line.

Hence we can evaluate the column density of atomic hydrogen from the
equation

NHI 	 16π

3A10�E
Iline 	 [5 × 1039 s ster J−1

]
Iline. (3.31)

Because this is a vital aspect of the discussion, we reiterate that the
integrated intensity is proportional to the column density of emitting
particles only if the line is optically thin (no shielding).

As long as we are happy to assume that the column of atomic
hydrogen on the line of sight to the bright background continuum source,
and the column on the nearby line of sight which misses this source, are
similar (as we have drawn them in Figure 3.2), then we can combine the
results from equations 3.27 and 3.31 to obtain both the column density
of atomic hydrogen NHI and the gas kinetic temperature T .

If the line is optically thick, τν � 1, over a substantial range of
frequencies at the line centre, equation 3.24 can be approximated by

Iν(τν) 	 Sν(0) 	 Bν(T ) 	 2kT ν2

c2
. (3.32)

In this case, the intensity at the centre of the line is approximately
independent of frequency (see Figure 3.5). In the centre of the line we
are only seeing emission from the front layers of the cloud; the layers
behind are shielded. From equation 3.32, we can write

T 	 c2 Iν0

2kν2
0

	 [1.6 × 1021K ster m2J−1
]

Iν0 , (3.33)

where Iν0 is the intensity at the centre of the line.
Again, as long as we are happy to assume that the columns of atomic

hydrogen on the two lines of sight are similar, then we can combine the
results from equations 3.27 and 3.33 to obtain both the column density
of atomic hydrogen NHI and the gas kinetic temperature T . However, as
we have already noted, in this case the combination NHI/T will be rather
uncertain, and so NHI will also be uncertain. Thus we require several
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independent mass estimates to agree before we can be confident that we
have accurately measured the mass of a region of the ISM.

3.3 Molecular gas

Stars form in regions of the ISM where the gas is predominantly molec-
ular. These regions are known as molecular clouds, and they will be
discussed in more detail in the next chapter. Here we describe how the
physical parameters of such regions are derived from observations.

The angular momentum of a molecule can only have certain dis-
crete values, and therefore its rotational energy is quantised. These val-
ues, E(J ), are described by the angular momentum quantum number
J : E(J ) = h̄2 J (J + 1)/2I, where I is the moment of inertia of the
molecule. The usual method of observing molecular gas in the ISM is
by way of the rotational transitions of the molecules between different J
levels. The most common transitions are the electric dipole transitions,
for which �J = ±1.

3.3.1 The problems of detecting H2

Since hydrogen is the most abundant element in the Universe, the
most abundant molecule is H2. However, H2 is a homonuclear diatomic
molecule (a symmetric dumb-bell) so it has no permanent electric dipole
moment. Therefore its electric dipole transitions are forbidden, and we
must look to the next set of allowed transitions.

The selection rules for electric quadrupole transitions in H2 are
�J = 0,±2. Consequently there are two forms of H2: para-H2, which
can only occupy the rotational states with even quantum numbers J =
0, 2, 4, 6, etc.; and ortho-H2, which can only occupy the rotational states
with odd quantum numbers J = 1, 3, 5, etc. Conversion of para-H2 into
ortho-H2, or vice versa, occurs only very slowly at low temperatures (in
the absence of a catalyst).

The first rotationally excited state of para-H2 is at

�E ≡ E(J = 2) − E(J = 0) = 3h2

4π 2IH2

	 7.5 × 10−21J 	 k [540 K] , (3.34)

where

IH2 	 5 × 10−48 kg m2 (3.35)

is the moment of inertia of an H2 molecule. At the typical temperatures
observed in regions of molecular gas in the ISM (T ∼ 10–40 K) H2 is
not significantly excited. Therefore it does not in general emit much
radiation.
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Fig. 3.6. Carbon monoxide
(CO) image of the molecular
cloud in the constellation
Taurus. CO is used as a tracer
of molecular gas in general. A
great deal of structure can be
seen in the cloud.

H2 can be detected via its UV absorption lines (the same lines that
are involved in its destruction), but only on the lines of sight to a few
suitably positioned bright, hot, background stars. These lines of sight are
too few and far between to make this an effective means of conducting
either a global search for, or a survey of, H2.

3.3.2 Using CO to trace H2

Since H2 is so hard to observe, carbon monoxide (CO) is used as a
tracer of molecular gas. The advantages of CO are that it is an abundant
and relatively stable molecule, and therefore it has a high abundance
compared with most other molecules. In addition, it has a small dipole
moment, so its transitions are electric-dipole allowed. Finally, because
it is quite a massive molecule, it has a large moment of inertia, and
so its rotational energy levels are closely spaced and easily excited at
the low temperatures encountered in molecular cloud regions of the
ISM. Figure 3.6 shows an image made of the molecular cloud in the
constellation Taurus, using the CO molecule as a tracer.

The first rotationally excited level of CO has energy

�E ≡ E(J = 1) − E(J = 0) = h2

4π 2ICO

	 7.6 × 10−23J = k [5.5 K]

	 h
[
1011 Hz

] 	 hc [0.0026 m]−1 (3.36)

where

ICO 	 1.5 × 10−46 kg m2 (3.37)
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is the moment of inertia of a CO molecule. This line can be easily excited
at low temperatures (T ∼ 10–40 K).

Furthermore, at volume number densities n
>∼ 109 H2 molecules

per m3, such as are found in molecular clouds, collisions tend to dom-
inate the transfer of population between the levels J = 1 and J = 0.
This establishes a Boltzmann-like distribution of population, so that
the excitation temperature approximates closely to the gas kinetic tem-
perature, Tex 	 T , and the source function approximates to the Planck
function at temperature T

Sν 	 Bν(T ). (3.38)

Suppose that we observe line emission at λ 	 2.6 mm, which we
attribute to the J = 1 → 0 transition of CO. The integrated intensity of
the line is related to the monochromatic intensity by

I =
∫

line

Iν dν. (3.39)

However, observers find it convenient to replace the intensity Iν with the
brightness temperature TB, which is the temperature at which a blackbody
radiation field has the same intensity. In other words Bν(TB) = Iν . For
the relatively low frequencies of millimetre lines like the CO J = 1 → 0
line, the Planck function approximates to Bν(TB) 	 2kTBν

2/c2, and so

TB 	 c2 Iν

2kν2
, (3.40)

although the results we shall present below do not depend on this approx-
imation. Likewise, the frequency ν is usually replaced with the corre-
sponding radial line-of-sight velocity v, which is related to the frequency
by the Doppler shift, v/c = (ν0 − ν)/ν0, where ν0 is the rest frequency
of the line.

Making the above replacements, the integrated intensity of the CO
(J = 1 → 0) line becomes

ICO =
∫

line

TB(v) dv, (3.41)

which is normally quoted in units of K km s−1.
For the 12C16O (J = 1 → 0) line, the line centre is usually opti-

cally thick.† Therefore the intensity approximates to the source func-
tion, which is Sν 	 Bν(T ) (see equation 3.38), giving TB 	 T . Hence
the integrated intensity can be approximated by

ICO ∼ T �v (3.42)

† 12C16O is the common isotopic variant of CO. Additional information can sometimes

be obtained by also observing the 13C16O, 12C17O and 12C18O variants, which are less

abundant, and therefore tend to be less optically thick.
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where �v is the width of the line. �v is usually taken to be the width of
the line at an intensity level equal to half of the line’s maximum intensity.
This ‘full width at half maximum’ (FWHM) is a commonly encountered
observable parameter.

If we assume that the emitting cloud is such that its internal velocity
dispersion is sufficient to support it against self-gravity, then this requires
that �v 	 (G M/R)1/2 (see Chapter 4, Section 4.4), and so

ICO ∼ T

(
G M

R

)1/2

, (3.43)

where we have assumed that the cloud is approximately spherical with
mass M and radius R.

3.3.3 The CO to H2 conversion factor

What we really want to know is the total amount of matter in the cloud
producing the observed CO emission, and most of the matter is in the
form of molecular hydrogen. Therefore we would like to be able to
relate the column density of molecular hydrogen (NH2 ) to the integrated
intensity of the CO line emission (ICO). We call this ratio X . If molecular
hydrogen is the dominant form of hydrogen in the cloud (and we can
usually safely assume this, if the cloud is detected in CO), then the mean
column density of molecular hydrogen through the cloud is given by

NH2 = (0.7M/2mp)

π R2
, (3.44)

where mp is the mass of a proton. Here the quantity in brackets is the
total number of hydrogen molecules in the cloud, i.e. 70% of the cloud’s
total mass divided by the mass of a hydrogen molecule.

Combining this with equation 3.43, we obtain

X ≡ NH2

ICO

∼ 0.7

2πmpT

(
M

G R3

)1/2

∼ 4 × 1024m−2

K(km s−1)

(
T

10 K

)−1 ( nH2

109 m−3

)1/2

. (3.45)

Since the temperatures in molecular clouds observed in the CO line are
typically T ∼ 10 K, and the mean densities are typically n ∼ 109 m−3,
the ratio of NH2 to ICO should not vary much from one cloud to another.
Thus ICO is a good tracer of the total amount of molecular gas, in the
sense that it is approximately proportional to the total column density of
gas, provided that the CO line remains optically thin.

We have presented here a theoretical treatment. In reality, the approx-
imate correlation between ICO and NH2 was established observationally,
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and the theory sketched above was then offered as an explanation for
the observed correlation.

We note that in order to obtain an estimate for the mass of a cloud,
we also need to know its distance D. Then the angular size of the cloud,
�c, gives its cross-sectional area, A = �c D2, and the mass of the cloud
Mcl is given by

NH2 = (0.7Mcl/2mp)

A
. (3.46)

Rearranging gives

Mcl = ANH2 (2mp/0.7) = �c D2 ICO(2mp/0.7)χ. (3.47)

In fact, any molecular species X can be used to infer the mass of a cloud
from the measured intensity IX of that species, provided the mass ratio
is known between species X and molecular hydrogen H2.

3.4 Line shapes and the motion of the gas
If species X has two energy levels i and j , with

E j − Ei = hν0, (3.48)

an absorption line is produced by the reaction

Xi + γν −→ X j . (3.49)

The cross-section σ (ν) presented by a particle of species Xi to a photon
γν of frequency ν is

σ (ν) = σ0 φ(ν − ν0), (3.50)

where σ0 is the integrated absorption cross-section, given by

σ0 = hν0 Bi j

c
= g j c2 A ji

8πgiν
2
0

, (3.51)

and φ(ν − ν0) is again the profile function (see Section 2.9.4). In other
words, a particle of species X in level i has a fixed amount of absorbing
power measured by the integrated absorption cross-section σ0. The pro-
file function φ(ν − ν0) simply determines whether this absorbing power
is spread thinly over a wide range of frequencies or concentrated inten-
sively in a narrow range. Hence it determines the shape of the spectral
line.

3.4.1 Line broadening

There are two main factors determining the form of the profile function
φ(ν − ν0), known as natural broadening and Doppler broadening.
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Natural broadening arises because the emitting particles have a finite
life-time in the upper level of the transition, and so the energy of the upper
level is uncertain, due to the uncertainty principle. At low densities, the
mean life-time in the upper level is given by

�t ∼ A−1
j i , (3.52)

where A ji is the Einstein A-coefficient for spontaneous radiative de-
excitation. The corresponding uncertainty in the energy of the upper
level is given by the uncertainty principle

�E ∼ h A ji

4π
, (3.53)

and this translates into an uncertainty in the frequency of the transition

�νN ∼ A ji

4π
, (3.54)

where �νN is the linewidth due to natural broadening.
When the process is analysed properly, the natural line profile is

found to adopt a Lorentzian form

φN(ν − ν0) = �νN

π
[
�ν2

N + (ν − ν0)2
] . (3.55)

A large A ji makes for a large �νN, and hence for a broad, flat profile
function φN(ν − ν0).

If the density is sufficiently high that population is removed from
the upper level by collisional de-excitation more rapidly than by spon-
taneous radiative de-excitation, the life-time in the upper level is signif-
icantly reduced and the line is broadened further. This is called pressure
broadening. Pressure broadening is seldom important in interpreting
observations of the interstellar medium, but can be very important in
analysing stellar spectra, because of the higher densities that occur in
stellar atmospheres.

3.4.2 The Doppler effect

An absorption line can be both shifted and broadened by the Doppler
effect. To separate the two effects, we divide the radial velocity u rad of an
individual absorbing particle into a systematic part u0, which is due to
the bulk motion of the cloud in which the particle resides, and a random
part u1, which is due to the random motion of the individual particle
relative to the centre of mass of the cloud

urad = u0 + u1. (3.56)

The bulk radial velocity of the cloud (u0) shifts the line centre to

ν0 = νrest

[
1 − u0

c

]
, (3.57)
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where νrest is the rest frequency of the line. This is why discrete clouds
having different bulk radial velocities should produce groups of lines
with different central frequencies.

The random motion of the particles relative to the centre of mass of
the cloud is characterised by a velocity dispersion

�uD =
[

kT

m X
+ �u2

T

]1/2

. (3.58)

�uD is compounded by thermal motions at a level of ∼ [kT/m X ]1/2,
where m X is the mass of a particle of species X , and turbulent motions
at a level of ∼�uT. By turbulent motions we mean random bulk motions
involving fluid elements which are microscopic from the perspective of
the whole cloud, but macroscopic from the perspective of the individual
gas particles. For simplicity, we shall not discuss turbulent motions
further here and we shall assume

�uD −→
[

kT

m X

]1/2

, (3.59)

although in many clouds turbulent motions are the dominant source of
velocity dispersion, and we shall return to a discussion of turbulence in
the next chapter.

Since the thermal motions have a Maxwellian distribution, the dis-
tribution of radial velocities is Gaussian

nX,u1 du1 = 1

(2π )1/2 �uD

exp

[
− (u1 − u0)2

2 �u2
D

]
du1. (3.60)

Hence the Doppler line profile function, φD(ν − ν0), is also Gaussian

φD(ν − ν0) = 1

(2π )1/2 �νD

exp

[
− (ν1 − ν0)2

2 �ν2
D

]
, (3.61)

where �νD is the frequency broadening due to the Doppler effect, given
by

�νD = ν0�uD

c
. (3.62)

From equations 3.59 and 3.62, we see that a high temperature and/or a
low particle-mass of the relevant species (m X ) produce a large �uD and
�νD, and hence a broad, flat profile function φD(ν − ν0).

3.4.3 Convolving line profiles

To obtain the overall combined profile function, φC(ν − ν0), we must
convolve the natural and Doppler profile functions, to obtain

φC(ν − ν0) dν =
∫ ν′=∞

ν′=0

φN(ν − ν ′) φD(ν ′ − ν0) dν ′ dν. (3.63)
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φ

φD

φC

φN

ν – ν0

Fig. 3.7. Convolution of the
natural profile, φN (dotted
curve), with the Doppler
profile, φD (dashed curve), to
produce the overall profile φC

(full curve).

This is a good example of the use of convolution, so we should try to
understand the underlying principles.

The combined profile function φC(ν − ν0) dν measures the fraction
of the (fixed) total absorbing power of a particle of species X in level i
which falls in the frequency range (ν, ν + dν). Absorbing power arrives
at this frequency range in two steps. The first step, with probability
φD(ν ′ − ν0) dν ′, Doppler-shifts the centre of the natural line into the
intermediate frequency range (ν ′, ν ′ + dν ′). The second step, with prob-
ability φN(ν − ν ′) dν, delivers absorbing power into the frequency range
of interest (ν, ν + dν) by natural broadening. The location of the inter-
mediate frequency range (ν ′, ν ′ + dν ′) does not concern us, and so we
add up all the different possibilities by integrating the product of the
probabilities

φD(ν ′ − ν0) dν ′ × φN(ν − ν ′) dν

over ν ′, which gives equation 3.63.
Usually, the natural width is significantly less than the Doppler width

�νN � �νD, (3.64)

in which case the core (central part) of the combined profile is very close
to the Doppler profile, and the wings (outer part) of the combined profile
are very close to the natural profile, as illustrated in Figure 3.7. There is
an intermediate part around

|ν − ν0| ∼ �νC > �νD, (3.65)

where the switch-over is located.
This occurs because for small arguments |ν − ν ′|, i.e. near the cen-

tre, the natural profile is much more sharply peaked than the Doppler
profile, and so the convolution integral approximates to convolving the
Doppler profile with a delta function, which would leave the Doppler
profile unchanged. Conversely, for large arguments |ν ′ − ν0|, i.e. far
from the centre, the Doppler profile falls off more steeply than the
natural profile, and so here the convolution integral approximates to
convolving the natural profile with a delta function. Careful study of the



56 The ISM – the beginnings of star formation

circumstellar

interstellar

*
Fig. 3.8. The line of sight to a
bright, distant star intercepts
both the general interstellar
medium, and the immediate
circumstellar medium of the
star.

shapes of spectral lines can thus tell us about the kinematics of the gas in
the ISM.

3.5 Absorption lines – searchlights
through the ISM

Yet another powerful technique for studying the ISM is to use absorption
lines. In this method we use distant luminous stars or other bright sources
(e.g. active galactic nuclei) to act as beacons shining through the ISM
between themselves and us – see Figure 3.8. The matter in the ISM
between us and the distant star then absorbs light from the star at specific
frequencies, allowing us to obtain information on the constitution of
the ISM. However, we must be careful to differentiate between matter
close to a star, which we call ‘circumstellar’, and matter spread between
the stars, which we call ‘interstellar’.

3.5.1 Selection effects

In order for there to be sufficient interstellar matter in front of a star to
produce a measurable absorption line in its spectrum, the star must be
quite distant, and therefore it must be quite luminous. This introduces a
selection effect. Luminous stars, by their nature, tend to have a strong
influence on their immediate surroundings, ionising the surounding gas
and blowing off powerful stellar winds, which produce stellar-wind bub-
bles by sweeping up the surrounding gas into a dense shell.

So some of the absorption lines we see in the stellar spectrum will
be due to ionised gas, stellar-wind bubbles, and the dense shells of gas
which they sweep up. This gas is not representative of the interstellar
medium at large, but of the immediate surroundings of a luminous star.
In other words, it is circumstellar rather than interstellar. It is not always
straightforward to distinguish absorption lines due to circumstellar gas
from those due to interstellar gas.

Of course, this problem only arises because we do not normally have
any direct way of ascertaining how the material producing an absorption
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line is distributed along the line of sight to the star. In principle, it could
be concentrated in a thin layer anywhere along the line of sight, or it
could be spread out uniformly between the observer and the star.

An additional selection effect arises because luminous stars are rel-
atively rare. Therefore we can only measure absorption lines along a
few particular lines of sight. Moreover, if we are interested in the cool
components of the interstellar medium, which are concentrated in a thin
layer near the Galactic midplane, we must observe stars at low Galactic
latitude, otherwise only a small part of the line of sight to the star will
intercept this layer.

There are other effects which can alter our column density estimates
of the interstellar medium, and which can be difficult to account for.
One such effect is that we do not know what fraction of a given element
is in the gaseous phase and what fraction is in the solid phase, i.e. dust
grains. This is especially true for elements such as Si and Ca. This effect
could be dependent upon environment in ways we don’t understand, and
hence could introduce unknown selection effects.

The overall result is that deducing reliable information about the
general interstellar medium from such observations is a painstaking
business, and in the end rather model-dependent.

3.5.2 Circumstellar and interstellar lines

We now list the factors which point to some of the absorption lines seen
in stellar spectra being produced in the interstellar medium at large,
rather than in the stellar atmosphere or in a strictly circumstellar region.

Certain absorption lines are seen in the spectra of distant stars,
but are not seen in the spectra of otherwise very similar nearby stars.
Certain absorption lines seen in stellar spectra are due to species which
are not stable under the conditions occurring in a stellar atmosphere.
Usually they are species which would be ionised or dissociated at the
temperatures and densities of a typical stellar atmosphere.

Certain absorption lines seen in stellar spectra are too narrow to have
been produced in a stellar atmosphere. If T∗ is the surface temperature
of the star, m X is the mass of a single particle of the absorbing species,
and ν0 is the frequency at the centre of the line, then the width of an
absorption line produced in a stellar atmosphere should be

�ν
>∼ (8 ln[2])1/2 ν0

c

(
kT∗
m X

)1/2

, (3.66)

where the inequality arises if there is additional broadening of the
line over and above thermal broadening (i.e. turbulent or pressure
broadening).
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The central frequency ν0 of an absorption line may indicate that
the absorbing gas has a different radial velocity from the background
star. The existence of interstellar gas was first unambiguously confirmed
from observations of a spectroscopic binary. The central frequencies
of the absorption lines produced in the stellar atmosphere shifted with
a regular period, as the star orbited its companion, sometimes moving
away from the observer and sometimes towards. The central frequencies
of the absorption lines produced in the intervening interstellar medium
were constant.

Often close groups of absorption lines are observed, with all the lines
in a group being attributable to the same transition in the same species.
The inference is that the absorbing particles are not distributed uniformly
along the line of sight to the background star, but are concentrated in
discrete clouds having different bulk radial velocities.

The number of lines in a group tends to be larger for more dis-
tant stars. The inference is that, on average, the number of intervening
clouds increases with the distance to the background star. This fact is
particularly important in distinguishing lines produced in the general
interstellar medium from lines produced in circumstellar material. All
of these factors help to identify which lines are due to absorption in the
ISM.

3.5.3 Equivalent width of a line

Observed absorption lines are often noisy and confused, so that it is not
possible to fit the shape of the line in detail. The equivalent width of an
absorption line is a measure of its total strength that is independent of
the detailed shape, and therefore can be determined accurately, even for
lines which are quite noisy and confused.

Figure 3.9(a) illustrates a fictitious group of five absorption lines, all
due to the same transition, and thereby presumably attributable to five
different clouds along the line of sight. The plotted quantities are the
observed (measured) monochromatic flux, F obs

λ , where

F obs
λ ∼ L∗

λ

4π D2
exp [−τλ] , (3.67)

against the wavelength λ. The lines are noisy, in the sense that the
variation of F obs

λ with λ is not smooth. The lines are also confused, in the
sense that they overlap. The first thing to do is to smooth the observed
flux to produce a smoothed flux F sm

λ

F obs
λ −→ F sm

λ = L∗
λ

4π D2
exp [−τλ] . (3.68)
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Fig. 3.9. (a) A group of
absorption lines, all due to
the same transition, but in
different clouds along the line
of sight to the background
star. (b) The same set of lines
after smoothing and
normalising to the
background continuum.

This is normally done numerically, taking care to choose a smoothing
algorithm which effectively removes the noise without destroying the
signal.

Next one estimates the background continuum flux, F cont
λ , which

would have been measured if there were no interstellar absorption

F cont
λ = L∗

λ

4π D2
. (3.69)

This is done by choosing points on either side of the absorption lines
where there appears to be no absorption, and interpolating across the
absorption lines by fitting them with a low-order polynomial. Again this
is normally done numerically.

Finally one divides the smoothed flux by the continuum flux, to
obtain the normalised flux fλ

fλ ≡ F obs
λ

F cont
λ

= exp [−τλ] = exp
[−NX,i σ (λ)

]
, (3.70)

where NX,i is the column density of absorbing particles (i.e. particles of
species X in the lower level i), and σ (λ) is the cross-section presented by
a single particle of species X in level i to photons of wavelength λ. After
smoothing and normalisation, the plot looks like that on Figure 3.9(b).

Figure 3.10 illustrates three types of absorption line on a plot of
normalised flux fλ against wavelength λ. The first line is unsaturated. In
other words, even at the centre of the line there is still measurable flux.
The second line is beginning to saturate – right at the centre the flux is too
weak to measure accurately. The third line is strongly saturated – there is
a wide band of wavelengths over which the flux is too weak to measure.

The equivalent width Wλ of an absorption line is the width of a
rectangle which has the same area as that enclosed by the line on a
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Wλ
unsaturated

Wλ
beginning

to
saturate

Wλ
strongly
saturated

λ

f (λ) ≡ F0(λ)/Fc(λ)Fig. 3.10. Three different
types of absorption line. From
left to right, unsaturated,
beginning to saturate,
strongly saturated.

plot of normalised flux against wavelength. This is illustrated by the
rectangular areas on Figure 3.10. Mathematically this is given by

Wλ =
∫

line

{1 − fλ} dλ

=
∫

line

{
1 − exp

[−NX,iσ (λ)
]}

dλ

=
∫

line

{
1 − exp

[−NX,iσ0φ(λ)
]}

dλ. (3.71)

Since the equivalent width Wλ depends on the column density of absorb-
ing particles NX,i , and on the radial velocity dispersion �uD (via the
profile function φ(λ)), we have

Wλ −→ Wλ(�uD, NX,i ).

Since the normalized flux is dimensionless, the units of the equiva-
lent width – as defined here – are the units of the abscissa, i.e. the units
of wavelength. The convention is to measure equivalent widths in wave-
length units, because the equivalent widths of optical lines are often of
order 0.1 nm. Unfortunately, most other aspects of radiation and radiative
transfer are normally calculated and described in terms of frequency.

The equivalent width of a spectral line should not be confused with
other measures of linewidth that we shall use. For example, the full width
at half maximum (FWHM) is often used by astronomers to describe the
width of a spectral line. The half-maximum points of a line are the posi-
tions at which the line intensity has fallen to half of its peak intensity. The
FWHM is simply the width of the line between the two half-maximum
points, expressed in some appropriate units, such as a difference in fre-
quency �ν, or wavelength �λ (= c�ν/ν2). Alternatively we can use
the Doppler formula to convert frequency width to velocity width �v

�v = c�ν

ν
. (3.72)
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LINEAR
(unsaturated)
Wλ ≈ σ0NX,i
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∆uD: large, small
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Fig. 3.11. A curve of growth.

In this way we can convert �ν into velocity units, and hence express the
FWHM in terms of velocity �v. For a Gaussian line shape the FWHM
can be related to the standard deviation σ of the Gaussian by the standard
formula

�v = (8 ln[2])1/2σ. (3.73)

In this case the standard deviation σ of the line is more commonly
referred to as the velocity dispersion. We will return to the use of the
velocity dispersion in Chapter 4.

3.6 The curve of growth
A plot of equivalent width Wλ against the column density of absorbing
particles NX,i is called a ‘curve of growth’. It is normally plotted on a log-
log graph. A curve of growth divides into three sections (see Figure 3.11).

For small column densities, the absorption line is unsaturated and
the curve of growth is linear

Wλ ∝ NX,i . (3.74)

For intermediate column densities, the absorption line is beginning
to saturate and the curve of growth is flat – i.e. Wλ is only weakly
dependent on NX,i . In addition, this is where the dependence on velocity
dispersion, �uD, is strongest.

For large column densities, the absorption line is strongly saturated
and the curve of growth has a square-root form

Wλ ∝ N 1/2
X,i . (3.75)

3.6.1 Low optical depth

When the column density of absorbing particles is sufficiently small,
the optical depth is low even at the line centre, and the argument of the
exponential in equation (3.71) is much less than unity. So we can use the
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approximation 1 − e−ε 	 ε to simplify the expression for the equivalent
width

Wλ =
∫

line

{
1 − exp

[−NX,iσ0φ(λ)
]}

dλ

	
∫

line

NX,iσ0φ(λ) dλ = NX,iσ0. (3.76)

What this means is that when the line is optically thin and therefore
unsaturated, the absorbing particles do not shield one another. Conse-
quently, if we add one more absorbing particle to the column between
the observer and the star, the resulting increase in the equivalent width
reflects the full absorbing power of the particle, as measured by the
integrated absorption cross-section σ0, hence the curve is linear

dWλ

d NX,i
= σ0. (3.77)

Note that if we work in wavelength units, the integrated absorption
cross-section is different from the one defined in equation 3.51. In fre-
quency units, the cross-section presented to a photon of frequency ν is
given by σ (ν) = σ0φ(ν − ν0). Remember that σ (ν) has the dimensions
of area, and φ has the dimensions of one over frequency (in order to
ensure normalization – see equation 2.69), so σ0 has the dimensions of
area × frequency – e.g. m2 Hz.

In wavelength units, the cross-section presented to a photon of wave-
length λ is given by σ (λ) = σ0φ(λ − λ0). Here σ (λ) again has the dimen-
sions of area, but now φ has the dimensions of one over wavelength (in
order to ensure normalisation), so σ0 now has the dimensions of area ×
wavelength – e.g. m2 nm – and equation 3.51 must be replaced by

σ0 = hλ0 Bi j

c
= g jλ

4
0 A ji

8πgi c
. (3.78)

3.6.2 Intermediate optical depth

When the column density of absorbing particles is intermediate, the
optical depth is only significant near the line centre. In the wings of the
line, the optical depth is low. If we add a new particle to the column
between the observer and the star, the particle is shielded from the
radiation near the line centre and presents a very small cross-section to
the radiation in the line wings.

Hence the effect of the additional particle on the equivalent width,
dWλ/d NX,i , is very small and the curve of growth is flat (see Fig-
ure 3.11). This means that estimating NX,i from Wλ is difficult, because
a small uncertainty in Wλ converts into a large uncertainty in NX,i .
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Furthermore, the flat portion of the curve depends strongly on the
radial velocity dispersion �uD, and this increases the uncertainty further.
In order to overcome this problem, it is necessary to measure at least two
absorption lines, preferably from the same level of the same species. We
can then estimate the velocity dispersion, �uD, as well as the column
density.

3.6.3 High optical depth

When the column density of absorbing particles is large, the optical
depth is large over a wide range of frequencies and the line is strongly
saturated. If we add a new particle to the column between the observer
and the star, the only radiation which is left for the particle to absorb is
so far out in the wings of the line that the profile here approximates to
the natural form

φN(λ − λ0) = �λN

π
[
�λ2

N + (λ − λ0)2
] 	 �λN

π (λ − λ0)2
. (3.79)

It is straightforward to show that in this limit

dWλ

d NX,i
∝ N−1/2

X,i , (3.80)

or in other words, the more absorbing particles there are in the column,
the smaller the effect of adding one more absorbing particle. Therefore

Wλ ∝ N 1/2
X,i . (3.81)

The foregoing shows us that an understanding of the growth of spec-
tral linewidths with increasing column density is essential to interpreting
measurements of spectral lines.

3.7 The use of absorption lines
As an example of the use of absorption lines, suppose that we have
measured Wλ for the H and K lines† of Ca+ in the spectrum of a distant
star. What we really need to estimate is the column density N of hydrogen
in all forms on this line of sight, and hence the mean volume density
n of hydrogen in all forms. To do this there are several steps we must
carry out.

� Perform a curve of growth analysis to determine the column density of absorb-

ing particles NCa+,i .

† These lines have λH = 396.85 and λK = 393.37 nm.
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� Consider the excitation balance to estimate what fraction of all the Ca+ is in

level i and correct for the rest to obtain the total column density of Ca+, NCa+ .

Since level i is the ground state of Ca+, most of the Ca+ is probably in this

level, so this is not usually a significant correction.
� Consider the ionisation balance to estimate what fraction of the gas-phase

calcium is in the singly ionised state and correct for the rest to obtain the total

column density of gas-phase calcium, N gas
Ca . This is a much more difficult and

model-dependent correction.
� Consider depletion to estimate what fraction of the calcium is locked up in

dust grains (and therefore absent from the gas phase), and correct for it to

obtain the total column density of calcium N tot
Ca . Again this is difficult to do.

We don’t know what fraction of the Ca is locked away in dust grains.
� Adopt the cosmic abundance of calcium relative to hydrogen and hence

convert N tot
Ca into N (the column density of hydrogen in all forms).

� Consider how uncertain the final result is, in particular how critically it

depends on the assumption (implicit in the above analysis) that conditions in

the interstellar medium are completely uniform along the line of sight.

This shows how the study of absorption lines can be used to estimate
the mass of gas in the ISM – and how uncertain such estimates can be.

Recommended further reading
We recommend the following texts to the student for further reading on the topics

presented in this chapter.

Banwell, C. N. and McCash, E. M. (1994). Fundamentals of Molecular

Spectroscopy, 4th edn. New York: McGraw-Hill.

Dyson, J. E. and Williams, D. A. (1997). The Physics of the Interstellar Medium,

2nd edn. Bristol: Institute of Physics Press.

Spitzer, L., Jr (1978). Physical Processes in the Interstellar Medium. New York:

Wiley.



Chapter 4

Molecular clouds – the sites of
star formation

4.1 The equation of state
Star formation takes place predominantly in large clouds of gas and
dust which inhabit the interstellar medium of our Galaxy and of other
galaxies. Therefore, to understand the process of star formation, we
must first understand the physical processes which take place in these
clouds. In this chapter we will look at the stability of molecular clouds
and begin to assess what might be needed to make such clouds collapse
under gravity and form stars.

4.1.1 The ideal gas approximation

The behaviour of a gas under different physical conditions is described
by the equation of state of the gas. The simplest assumption we can adopt
is that a molecular cloud behaves as an ideal gas at constant temperature,
obeying the equation

PV = N kT, (4.1)

where P is the pressure, V is the volume, N is the total number of
molecules, k is the Boltzmann constant, and T is the temperature. If we
eliminate N and V using the equation for the density

ρ = NµmH

V
, (4.2)

where mH is the mass of a hydrogen atom and µ is the mean molec-
ular weight of the gas (which would be two if the cloud were entirely
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composed of molecular hydrogen), then we obtain

P = ρkT

µmH
, (4.3)

which relates the pressure to the temperature and density of the gas.
It is often convenient when treating astrophysical problems relating to
molecular clouds to assume that the gas temperature and chemical com-
position remain constant. This is known as the isothermal assumption,
under which equation 4.3 becomes

P

ρ
= kT

µmH
= a2

0 = constant, (4.4)

where a0 is the isothermal sound speed in the gas at temperature T .

4.1.2 Adiabatic equation of state

The next simplest assumption we can adopt is the adiabatic equation of
state

pρ−γ = K , (4.5)

where K is constant and γ is the ratio of specific heats at constant
pressure, cp, and volume, cv , respectively: γ = cp/cv . We will derive
more general forms of the equation of state later in this chapter.

4.2 Fluid mechanics of molecular clouds

The material in molecular clouds is rarely stationary, and we must take
this into account. To achieve this, we use the basic equations of fluid
mechanics, which we first derive. In general, there are two methods
commonly used to model gas flow. One method is to use a fixed set of
coordinates in space and calculate the parameters of the gas as it flows
through the coordinate frame. This is known as the Eulerian method. An
alternative is to choose a set of coordinates fixed to a particle of the gas,
moving with that particle, and to calculate the varying parameters in that
coordinate frame (referred to as comoving coordinates). This technique
is known as the Lagrangian method.

4.2.1 The continuity equation

Consider a non-viscous fluid in which the density and velocity are func-
tions of position and time, i.e. ρ = ρ(r, t) and v = v(r, t). Now focus
on an arbitrary volume V contained by a closed surface S, as shown
in Figure 4.1. V and S are fixed in space, so we are here adopting the
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V

v

dS

S

Fig. 4.1. An arbitrary volume
V , contained by a closed
surface S. dS is an
infinitesimal vector area
element, whose direction by
convention is normal to the
surface S and out of V . At the
position of dS the density of
the fluid is ρ and its velocity is
v, so matter flows out of V
across dS at a rate ρv.dS.

Eulerian viewpoint. The mass flowing out of V through the element of
area dS is given by

ρv.dS,

and so the net rate at which mass flows out of V through S is given by∮
S

ρv.dS =
∫

V

∇.(ρv)dV,

where we have obtained the right-hand side by invoking Gauss’s diver-
gence theorem.

The rate at which the mass in V decreases is given by

− ∂

∂t

(∫
V

ρdV

)
=
∫

V

(
−∂ρ

∂t

)
dV, (4.6)

where we can take ∂/∂t inside the integral because V is fixed in space.
Obviously, the rate at which the mass in V decreases (equation 4.6) must
equal the rate at which mass flows out of V across S, so∫

V

[
∂ρ

∂t
+ ∇.(ρv)

]
dV = 0, (4.7)

and since the volume V is arbitrary, it follows that

∂ρ

∂t
+ ∇.(ρv) = 0 (4.8)

everywhere. This is known as the continuity equation, and is one of the
fundamental equations of fluid mechanics. We can expand this equation
and rewrite it as

∂ρ

∂t
+ ρ∇.v + v.∇ρ = 0. (4.9)
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The significance of this equation is that it represents the principle of con-
servation of mass for a fluid flow. We shall return to this equation shortly.

We stress that ∂ρ/∂t is the Eulerian time derivative of the density
(i.e. the rate of change of density at a fixed point in space). If we want
the Lagrangian time derivative of the density (i.e. the rate of change of
density moving with the fluid) we must include the contribution due to
the displacement, dr = vdt , which occurs during the time interval dt .
The net density change is

dρ = ∂ρ

∂t
dt + dr.∇ρ, (4.10)

and hence the Lagrangian time derivative of the density is

dρ

dt
= ∂ρ

∂t
dt + v.∇ρ = −ρ(∇.v), (4.11)

where the final expression is obtained by substituting from equation 4.9.
dρ/dt is sometimes called the comoving time derivative of the density.

4.2.2 The equation of motion under pressure

Consider once again the volume of fluid V in Figure 4.1. If the non-
viscous fluid in this volume has pressure P(r, t), then the total force
acting on the volume is the sum of the external pressure on the surface.
This is given by the surface integral

−
∮
S

PdS.

Transforming this into a volume integral, the net pressure force exerted
on the arbitrary volume V is

−
∮
S

PdS = −
∫

V

∇ PdV, (4.12)

and hence the net pressure force per unit volume is simply −∇ P .
The equation of motion of this volume can be derived by equating

the force per unit volume with the mass per unit volume multiplied by
its acceleration. This is simply Newton’s third law. The mass per unit
volume is defined as the density ρ, and the acceleration is the time
derivative of the velocity dv/dt . So we have

−∇ P = ρ
dv

dt
, (4.13)

and hence

dv

dt
= −∇ P

ρ
. (4.14)

Here dv/dt is the comoving acceleration of the fluid, so equation 4.14
is the Lagrangian formulation of the equation of motion.
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The Eulerian formulation is obtained by substituting for dv/dt using

dv

dt
= ∂v

∂t
+ (v.∇)v. (4.15)

Compare this with the Lagrangian time derivative of the density (equa-
tion 4.11). Substituting this into equation 4.14 gives

∂v

∂t
+ (v.∇)v + ∇ P

ρ
= 0. (4.16)

This is sometimes referred to as Euler’s equation. Its significance is that
it is the equation of motion of an ideal fluid, acted on only by its own
pressure.

If the fluid has significant viscosity, there are additional terms, and
the Euler equation becomes the Navier–Stokes equation. However, in
the interstellar medium the viscosity is very low, and therefore the extra
terms can normally be omitted. The Navier–Stokes equation is the gen-
eral equation of motion of a viscous incompressible fluid (an extra term
must be included for compressible fluids).

4.2.3 Fluid motion under gravity

If the fluid is also in a gravitational field, then an extra term must be
included in equation 4.14 to account for this. The force on unit volume
due to a gravitational acceleration g is simply ρg, and so equation 4.14
becomes

ρ
dv

dt
+ ∇ P − ρg = 0 , (4.17)

and hence Euler’s equation becomes

∂v

∂t
+ (v.∇)v + ∇ P

ρ
− g = 0. (4.18)

These are then the basic equations of fluid mechanics.

4.3 Gravitational instability

If a star is to form in a molecular cloud, then the cloud must become
gravitationally unstable, and subsequently collapse. In this section we
consider the question of a cloud’s stability.

4.3.1 Uniform density medium

Consider an infinite static three-dimensional medium, with initial uni-
form density ρ0 and uniform isothermal sound speed a0. Now suppose
that due to a random statistical fluctuation a portion of this medium
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becomes slightly more dense. For simplicity we assume that the portion
is spherical, with radius r , and that it responds isothermally.

We wish to know whether the spherical portion continues to become
denser and condenses out due to its self-gravity, or whether its internal
pressure causes it to expand back to the same density as the surrounding
medium. The answer depends upon the size of the spherical portion. For
a large portion the self-gravity overcomes internal pressure, while for a
small portion the internal pressure resists gravity.

To see this we write an equation for the radial excursions of the
portion of gas in question. The outward acceleration due to its pressure
is ∇ P/ρ0. Since ∇ P ∼ P/r and P = a2

0ρ0, we have

∇ P

ρ0
∼ a2

0

r
. (4.19)

The inward acceleration due to self-gravity is −G M/r2, where M is the
portion of gas under study. Since M = r3ρ we have

−G M

r 2
∼ −Gρ0r. (4.20)

Thus the equation of motion controlling radial excursions is

r̈ ∼ a2
0

r
− Gρ0r. (4.21)

For continued increasing density, and hence condensation, we require
r̈ < 0 and therefore

Gρ0
>∼ a2

0

r 2
, (4.22)

leading to the condition for condensation

r > rJ ∼ a0

(Gρ0)1/2
. (4.23)

rJ is called the Jeans length. This is the minimum initial radius for a
spherical portion of a uniform medium (characterised by a0 and ρ0),
which can condense out due to its own self-gravity.

4.3.2 The Jeans mass

There is an equivalent minimum initial mass, M , associated with the
Jeans length, such that

M > MJ ∼ 4

3
πρ0r 3

J ∼ 4πa3
0

3(G3ρ0)1/2
. (4.24)

MJ is called the Jeans mass. It is the minimum mass of a spherical
portion of a uniform medium which can condense out due to its own
self-gravity. We note that MJ depends on a3

0 , and from equation 4.4 we
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see that a0 depends on T 1/2. Hence the temperature dependence of
the Jeans mass (assuming all other parameters are held constant) is
given by

MJ ∝ T 3/2. (4.25)

To give the reader some feel for the orders of magnitude of the values of
the Jeans length and mass encountered in studies of molecular clouds, we
can insert some typical values into equation 4.24. The densest regions
of molecular clouds in which no stars have yet formed are typically
observed to have temperatures of around 20 K, densities of around 1011

hydrogen molecules per m3, and a mean molecular weight of 2.3 (i.e.
mainly molecular hydrogen).

For such a region we apply equation 4.23 and derive a Jeans length
of about 0.05 parsec. Using equation 4.24 we find that the Jeans
mass would be roughly 3 M�, where M� represents the Solar mass
(	2 × 1030 kg).

So if, for instance, we observed a uniform density region at 20 K
which was 0.1 pc in diameter, and contained 5 M� of matter, we would
note that this was greater than its Jeans mass. Therefore, we would say
that it was Jeans-unstable, and we would predict that it was about to
collapse to form a star.

4.3.3 Structure in molecular clouds

One problem with the Jeans picture is that no extended, uniform, static
clouds in the earliest stage of fragmentation have ever been observed.
All molecular clouds are inhomogeneous and clumped on all scales.
So if the theoretical situation of a large, uniform density, static cloud
actually occurs, it must be such a short-lived phase that we seldom
have the chance to observe it. In addition, many clouds show supersonic
motions, indicating that the sound crossing time is not the relevant time-
scale for the passage of information across a cloud – one of the basic
assumptions of the Jeans theory.

Figure 4.2 shows an image of the Ophiuchus molecular cloud
region taken at a wavelength of 100 microns. Even a cursory glance at
Figure 4.2 shows that this region is extremely inhomogeneous. Structure
can be seen on all scales from the resolution of the telescope to the full
size of the image. The picture clearly shows a situation which is far from
the constant-density cloud envisaged by Jeans.

The approximately circular or elliptical features seen in the image
are often referred to as dense molecular cloud cores, and it is in some of
these regions that the highest column densities of gas are observed. The
elongated features are usually referred to as filaments. The dense cloud
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Fig. 4.2. Image of the
molecular cloud in the
constellation of Ophiuchus,
taken at a wavelength of 100
microns. Structure in the form
of cores and filaments can be
seen on all scales within the
image.

cores are the sites where star formation is believed to take place. There-
fore, to deal with clouds of such complexity, we need a more detailed
theoretical model than the Jeans mass of a uniform-density gas cloud.

We would also like to be able to answer questions such as whether
the structures are symptomatic of cloud fragmentation; whether the
observed gas motions are due to collapse, rotation, systematic or random
motions; and what the dominant physical processes are which are causing
the structure and motion which we observe.

4.4 The virial theorem
We now consider the energy balance in an isolated cloud, which is in
equilibrium. We place no constraint on the density and velocity distri-
butions. We look for a general theorem for the stability of such a cloud.

4.4.1 Cloud stability

We treat the cloud as an ensemble of particles, having mass mi , posi-
tion ri, and velocity vi, moving in their mutual gravitational field. The
moment of inertia of the cloud I is given by

I =
∑

i

(mi ri.ri). (4.26)
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Then in the case of a molecular cloud in equilibrium, the time derivative
of I must be zero. So we have

İ = 2
∑

i

(mi vi.ri) = 0, (4.27)

since ṁ = 0, ṙi = vi, and vi.ri = ri.vi. Furthermore, in equilibrium, the
second time derivative must also be zero. So we have

Ï = 2
∑

i

(mi v̇i.ri) + 2
∑

i

(mi vi.vi) = 0. (4.28)

Let us call the first term on the right-hand side of equation 4.28, Ï1. This
can be rewritten, using Newton’s second law, as

Ï1 = 2
∑

i

(mi v̇i.ri) = 2
∑

i

(Fi.ri), (4.29)

where Fi = mi v̇i is the force acting on the i th particle. For an isolated
cloud, Fi represents the forces acting on i due to all the other particles
j , i.e.

Fi =
∑

j �=i

(Fij), (4.30)

where Fij is the force on particle i due to particle j . Thus

Ï1 = 2
∑

i

∑
j �=i

(Fij.ri), (4.31)

and, since the ordering of summation is immaterial,

Ï1 =
∑

i

∑
j �=i

(Fij.ri + Fji.rj) . (4.32)

Using Newton’s third law, Fij = −Fji, this becomes

Ï1 =
∑

i

∑
j �=i

(Fij.[ri − rj]) . (4.33)

We can therefore neglect short-range forces with ri − rj � 1 and put

Fij = − Gmi m j

|ri − rj|3 (ri − rj). (4.34)

whence

Ï1 =
∑

i

∑
j �=i

(
Gmi m j

|ri − rj|3 [ri − rj]

)
= 2�G, (4.35)

where �G is the self-gravitational potential energy of the cloud. The
factor of 2 arises because the summation in equation 4.35 counts the
mutual potential energy of each pair of particles twice.
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If we now call the second term on the right-hand side of equa-
tion 4.28, Ï2, this can be rewritten as

Ï2 = 4K (4.36)

where K is the net translational kinetic energy of the particles of the
cloud, due both to random thermal motions, and to bulk motions (such
as turbulence and rotation).

Combining these results we have

1

2
Ï = �G + 2K = 0. (4.37)

This relation is called the virial theorem. It is a necessary (but not
sufficient) condition for equilibrium. It can be modified to include the
effects of a magnetic field or external pressure by adding extra terms.
For example, an external pressure PEXT introduces a term −3PEXTV ,
where V is the volume of the cloud, so that

�G + 2K − 3PEXTV = 0. (4.38)

We now proceed to describe some of the consequences of the virial
theorem.

4.4.2 The virial mass

For a spherical cloud of mass M , radius R, and velocity dispersion σ

(see equation 3.73), we have

K = 1

2
Mσ 2, (4.39)

and

�G ∼ − G M2

R
. (4.40)

Substituting these into the virial theorem, one obtains

σ 2 ∼ G M

R
. (4.41)

This form of the virial theorem leads to the concept of a virial mass,
Mvir, given by

Mvir ∼ σ 2 R

G
. (4.42)

If the mass of a cloud is roughly equal to its virial mass, then it is close
to virial equilibrium. If a cloud has a mass greater than its virial mass,
then it will collapse unless supported by some other mechanism.

If a cloud has a mass less than its virial mass, then it is not gravi-
tationally bound and will probably disperse under the action of its own
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internal motions, unless it is confined by an external pressure. Note that
the virial mass is proportional to σ 2, so molecular clouds may be dis-
persed by stellar winds and other similar effects, once star formation has
begun.

4.4.3 Theoretical core life-times

Consider a molecular cloud core whose mass significantly exceeds its
virial mass. In the absence of any mechanism of support, the core will
collapse under self-gravity. The time-scale which characterises this col-
lapse is known as the free-fall time-scale, tff , and is given by

tff =
(

3π

32Gρ

)1/2

. (4.43)

Alternatively consider a molecular cloud core whose mass is much less
than its virial mass. In the absence of external pressure the core will
disperse. The dispersion time-scale is given by

tdisp 	 R

σ
, (4.44)

where R is the core radius and σ is its internal velocity dispersion.

4.5 Observations of molecular clouds
We now introduce some observations and attempt to interpret these in
terms of the foregoing theory.

4.5.1 Larson’s scaling relations

Observations of molecular clouds have revealed approximate scaling
relations between their masses, M , radii, R and internal velocity disper-
sions, σ .† We use radius here, and elsewhere, as a notional measure of
the linear extent of a cloud.

These relations are strictly empirical, and appear to apply both to
whole clouds, and to substructures within clouds, over a wide range
of masses and environments. For example, Figure 4.3 shows that the
statistical correlation between velocity dispersion and radius can be fit by

σ ∝ R0.5. (4.45)

Another similar relation is seen for the cloud mass, such that

σ ∝ M0.25, (4.46)

† Remember that σ is related to the FWHM velocity, �v, of an observed spectral line, by

σ =�v/(8 ln 2)1/2.
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Fig. 4.3. Graph of σ versus
radius (here labelled S), on a
log-log scale, for 273 different
molecular clouds. The straight
line illustrates one of the
Larson relations.

hence

M ∝ R2, (4.47)

and thus we have a relation for density ρ = M/R3, given by

ρ ∝ R−1. (4.48)

All of the data appear to show that equations 4.45–4.48 provide a
reasonably good fit to molecular clouds over a range of size-scales from
roughly 0.05 pc to 100 pc.

One explanation for equation 4.46 could simply be that more massive
clouds will tend to form more massive stars, and hence the massive stars
will cause a greater disruption to the clouds in which they form, via their
stellar winds. However, this explanation does not appear to be correct,
since it holds equally true for clouds which have not yet begun to form
stars, as for those in which the first star formation has begun.

Let us compare the relations derived from the data with the theoret-
ical predictions of the virial theorem. From equations 4.45 and 4.46 we
see that R ∝ σ 2 and M ∝ σ 4, hence

M

R
∝ σ 2, (4.49)

and therefore

M

Rσ 2
= constant. (4.50)

From the virial theorem (equation 4.41), we have

M

Rσ 2
∼ 1

G
. (4.51)
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Thus the equivalence of equations 4.50 and 4.51 shows that the data for
molecular clouds, such as those illustrated in Figure 4.3, appear to be at
least dimensionally consistent with the virial theorem.

4.5.2 Cloud life-times from observations

We can estimate the life-times of the largest giant molecular clouds
(GMCs) from the data illustrated in Figure 4.3, using equation 4.44.
If we use R = 100 pc and its appropriate velocity dispersion, σ ∼
10 km s−1, we derive a value for the dispersion time-scale tdisp of the
order of 1.5 × 107 years. Thus, on this basis we would expect GMC
life-times of typically fifteen million years. This is consistent with the
crossing times of spiral arms within our Galaxy, which is the typical
length of time for which we might expect a GMC to survive.

Alternatively, looking at the disruptive effects of star formation
within molecular clouds, we find that the spread in age of the young
stars observed in a newly formed cluster within a molecular cloud is
typically around 107 years. Hence on the largest scales tdisp probably
gives a reasonable estimate of molecular cloud life-times.

We can estimate the life-time of molecular cloud cores before they
form stars using the relative statistics of cores with and without embed-
ded young stars within them – although this method can only produce
an order of magnitude estimate. The results of such surveys are that
there are roughly equal numbers of cores both with and without embed-
ded infrared sources. We can deduce therefore that the cores probably
spend a roughly similar length of time before forming stars, as they
subsequently spend with embedded stars in their centres.

The infrared sources can be mostly identified as T Tauri stars, which
are pre-main-sequence stars whose evolution has been modelled (see
Chapter 6) and consequently their life-times have been calculated. On
the basis of this we can infer that the life-time of a core is of the order
of a few million years before it forms a star in its centre.

4.5.3 Are cores in free-fall collapse?

We can compare the life-times of cores without stars (or starless cores)
with their free-fall time-scales. The volume number density, n(H2), of a
typical core is around 1010 H2 molecules per m3 (∼4 × 10−17 kg m−3).
Using equation 4.43 above yields a free-fall time-scale of ∼1013 s, or
∼3 × 105 years.

Hence the typical life-times of starless cores, inferred on the basis
of the statistics of the numbers of cores observed, are roughly an order
of magnitude longer than their free-fall life-times. Thus these cores
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cannot be undergoing free-fall collapse, and some physical process must
be preventing them from collapsing. Processes which we have not yet
considered include the effects of an interstellar magnetic field or of
turbulence.

Measurements such as polarisation observations have shown that
magnetic fields are to be found everywhere in the Galaxy, and clearly
they will have an effect on the interstellar medium. This effect acts as
an additional pressure resisting collapse, and the time taken for this
pressure to dissipate is a few 106 years, consistent with starless core
life-times. This is just one piece of evidence suggesting that magnetic
fields play a role in regulating star formation in molecular cloud cores.
We will return in the next chapter to the place occupied by starless cores
in the evolutionary process of star formation.

4.6 Turbulence in molecular clouds

In this section we show evidence that turbulent velocity structure is prob-
ably present in molecular clouds. The stable flow of a fluid was discussed
above. However, an unstable or turbulent flow is more complex. A fluid
flow problem can typically be characterised by the Reynolds number,
R, of the flow. A critical Reynolds number exists for most flows, above
which the flow becomes unstable to small perturbations, and turbulence
develops.

When molecular clouds are observed in molecular line radiation, the
line profiles cannot be explained by thermal broadening alone. There is
additional broadening which must be attributable to bulk motions within
the cloud, including turbulence.

4.6.1 Non-thermal linewidths

Spectral line profiles which are Gaussian in shape can often appear
broader than they would be if the linewidth were due simply to thermal
broadening. The thermal velocity dispersion of a spectral line emitted
by a gas at temperature T is simply given by σT = (kT/m)1/2, where
k is Boltzmann’s constant and m is the mean molecular weight of the
observed species.

Most molecular clouds have observed velocity dispersions σ0 greater
than the predicted thermal velocity dispersion σT. This excess is
referred to as the non-thermal velocity dispersion σNT, and is given by
σ 2

NT = σ 2
0 − σ 2

T , since the velocity dispersions add in quadrature. For
the smallest cores σT dominates, but for cores above a certain radius
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Fig. 4.4. Graph of linewidth
versus size on a log-log plot
for molecular cloud cores in
the Orion region.

(which is typically between 0.01 and 0.1 pc) σNT is greater than σT. Note
that none of the other line-broadening mechanisms can have a sufficient
effect to cause the observed linewidths.

Figure 4.4 shows a linewidth–size plot for an ensemble of massive
molecular cloud cores in the Orion molecular cloud region. The hori-
zontal line on the plot corresponds to the thermal linewidth which would
be observed if all the cores were at a temperature of roughly 20 K (a
typical average core temperature in a region such as Orion). The sloping
line corresponds to �v ∝ R0.5 (cf. equation 4.45).

Figure 4.4 illustrates how almost all cores of radius greater than
about 0.1 pc have linewidths above the horizontal line corresponding
to their thermal linewidth. Furthermore, the cores appear to follow the
sloping line of equation 4.45. Hence the cores with radius more than
0.1 pc are dominated by the non-thermal velocity dispersion. Thus
it is the turbulent motions of molecular clouds which increase with
increasing cloud mass and which apparently generate Larson’s scaling
relations.

We can therefore understand the empirical Larson relations in terms
of turbulence and the virial theorem as follows: molecular cloud regions
which have greater turbulent internal motions can virially support a
greater mass. Hence higher mass cores tend to be seen in these regions
(lower mass cores would be preferentially dissipated by the turbulent
motions). Lower mass cores on the other hand can more easily survive
in regions where the turbulent motions of the interstellar medium are
less pronounced. Thus Larson’s laws are consistent with a manifestation
of the virial theorem in a turbulent medium.

4.6.2 Intermittency

Often spectra require at least a two-Gaussian fit – one for the core of
the spectral line shape and one for the wings. Figure 4.5 shows some
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Fig. 4.5. Spectral line profiles
of molecular clouds plotted in
such a way that a Gaussian
line profile would appear as a
straight line (the spectra are
also shown as two pairs of
half-profiles). The fact that
none of the spectra can be
fitted by a single straight line
indicates that there is excess
emission in the line wings,
which is interpreted as
evidence of turbulent motions
in the clouds.

typical spectral line profiles, together with a two-Gaussian fit to each
spectrum. A single-temperature thermal line spectral profile should be
consistent with a single Gaussian. The excess emission in the line wings
(i.e. furthest from the ambient velocity of the cloud) indicates that there
is a significant amount of high-velocity gas in excess of that which would
be predicted by purely thermal motion.

If the wing emission were due to a high-temperature thermal compo-
nent, the temperatures required would be up to 104 K, for which there is
no evidence in these molecular clouds. However, one predicted property
of turbulent motion in fluids is the presence of temporarily high-velocity
material in highly localised regions in time and space. This property is
known as the intermittency of the turbulent fluid. The high-velocity spec-
tral line wing emission observed in Figure 4.5 may thus be attributed to
the intermittent behaviour of turbulence in molecular clouds.

4.6.3 Turbulent cascades

Turbulent behaviour occurs across a range of size-scales and is predicted
to lead to a scale-free geometry. As was seen in Figure 4.2 molecular
clouds do show structure on all scales, from the resolution of modern
telescopes to the scale of Galactic features such as spiral arms, consistent
with the turbulent picture.

One particular form of turbulence involves a scale-free turbulent
cascade of eddies in which energy is input on the largest scales (e.g.
by supernovae or other mass-losing stars), and cascades down to small
scales, where it is dissipated by heating the molecular cloud. The motion
of a turbulent cascade in an incompressible fluid produces a characteris-
tic relation between the size-scale of a turbulent eddy L and the velocity
dispersion σ of that eddy, of the form

σ ∝ L1/3. (4.52)

This is known as the Kolmogorov–Obhukov law.
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4.6.4 Fractal structure

Scale-free turbulence predicts the formation of scale-free, or fractal,
structure. A fractal is a pattern which repeats on all size-scales, such
that it contains no intrinsic scale, and any observation of a fractal should
look similar, regardless of the resolution of the observation.

In two dimensions one can define a fractal dimension, D, relating
the perimeter, P , of a closed contour in an image, such as that shown in
Figure 4.2, with the area, A, enclosed by that contour, such that

P ∝ AD/2. (4.53)

Laboratory experiments on turbulent flows typically show that where
turbulence is the dominant process for forming structure within a fluid,
then the fractal dimension of that fluid will be D ∼ 1.36 ± 0.05. Like-
wise, observations of meteorological clouds in the Earth’s atmosphere
reveal them to have a fractal dimension of D ∼ 1.35.

Observations of molecular clouds on size-scales from ≤0.1 pc, up
to ≥100 pc, in various CO isotope transitions, as well as far-infrared
dust continuum images, show that they all have a very narrow range of
fractal dimension, D ∼ 1.3–1.4. This is interpreted as yet more evidence
that turbulence is a significant physical process in molecular clouds.

4.6.5 Very small-scale structure

A near-infrared survey of the molecular cloud IC 5146 in Cygnus was
carried out (see Figure 4.6), which used a method of counting stars in
discrete bins and measuring their colours to determine the extinction AV

in each bin.
Figure 4.6 shows a plot of the dispersion in the measurements of

visual extinction AV versus AV itself, taken from this survey (do not
confuse this dispersion with the velocity dispersions discussed above). It
was seen that the ‘error’ in the measurement of visual extinction AV was
greater than could be accounted for by experimental errors. Furthermore,
this ‘error’ was itself a function of extinction, which increased with
increasing AV . Thus the ‘error’ is in fact a true dispersion of AV within
each measured bin.

This exact form of the variation of AV can be explained as being
caused by substructure in the extinction on spatial scales smaller than
the counting bins. Furthermore, only structure obeying a power law
in density in the two directions of the projection of the cloud on the
sky would reproduce the exact form of the σ–AV distribution seen in
Figure 4.6. This form of density distribution is what would be predicted
by intermittent turbulent behaviour in molecular clouds.
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Fig. 4.6. Plot of the
dispersion in extinction
against extinction AV for the
IC 5146 molecular cloud.

Clearly there are many indicators in observations of molecular
clouds which point towards turbulence as one of the dominant physical
processes taking place in molecular clouds. There are some difficulties
however. Gravity cannot be ignored and this confuses attempts at direct
analogies between laboratory studies of turbulence and the astrophysi-
cal case. Clear differences exist between the two. For example, normal
turbulence is inherently rotational, and an eddy of a particular size has a
rotational velocity of the same order as the velocity dispersion. Studies
of molecular cloud rotation show that this may not be the case, with
observed rotational velocities being less than the typical velocity disper-
sion. However, it is clear that turbulence does have an important effect
on molecular clouds.

4.6.6 Shock fronts

Under certain extreme circumstances in the ISM a shock can occur in the
gas. These circumstances include the vicinity of a supernova, or when
two turbulent flows of gas collide, for example. A shock occurs when
a compression wave advances supersonically into the gas. The com-
pression wave steepens and forms a narrow shock front, a few particle
mean-free-paths wide. Gas flows into the shock front supersonically at
low density, and out of the shock front subsonically at high density.

There are different types of shocks observed in the ISM. A jump
shock, or J-shock, is a shock in which the gas properties change abruptly
from one side of the shock to the other. A continuous shock, or C-shock,
is one in which the properties vary more gradually from one side to the
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other. C-shocks tend to occur in regions where the magnetic field plays
a significant role in spreading out the effects of the shock over a greater
distance.

4.7 Magnetic fields in molecular clouds
We saw in Chapter 1 that there is observational evidence for magnetic
fields in the ISM. Figure 4.7 shows a polarisation map of a molecular
cloud core in which the polarisation is believed to be due to the magnetic
field aligning the dust grains in the core. In this section we will introduce
some of the relevant theory of magnetic fields. The branch of physics
which deals with magnetic fields in fluids is known as magnetohydro-
dynamics (MHD). We will discuss how MHD may be relevant to star
formation.

We begin with two of Maxwell’s equations. Firstly we use Ampère’s
law

∇ × B = 4π

c
J − 1

c

∂E

∂t
(4.54)

where B is the magnetic flux density, J is the current density, E is the
electric field strength, and c is the speed of light in a vacuum. Secondly
we use Ohm’s law, which for a fluid of conductivity σ becomes

J = σ

[
E + 1

c
(v × B)

]
. (4.55)

In this equation the first term on the right-hand side describes the con-
ductivity of a static fluid and the second term incorporates the motion
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of that fluid at velocity v. In the limit of infinite conductivity we have

E + 1

c
(v × B) = 0. (4.56)

In a conducting fluid there are electric currents which can flow and give
a force per unit volume fm given by

fm = 1

c
(J × B). (4.57)

We can eliminate J from this force equation by using Ampère’s law, and
remembering that in the limit of high conductivity, such as the ISM, the
only electric fields present are those that are induced by motions in the
gas with velocity v (� c), and hence the second term on the right in
Ampère’s law can be ignored, simplifying it to the magnetostatic case

∇ × B = 4π

c
J, (4.58)

which gives us

1

c
J = 1

4π
(∇ × B). (4.59)

Substituting into the force equation we have

fm = 1

4π
(∇ × B) × B (4.60)

or

fm = − 1

4π
B × (∇ × B). (4.61)

We can simplify this equation using the vector identity

1

2
∇(B.B) = (B.∇)B + B × (∇ × B), (4.62)

and thus

B × (∇ × B) = 1

2
∇(B.B) − (B.∇)B. (4.63)

Then the force equation becomes

fm = −∇
(

B2

8π

)
+ 1

4π
(B.∇)B. (4.64)

We can obtain an intuitive physical feel for the meaning of equa-
tion 4.64, if we compare it with the Euler equation 4.17. We notice that
in the first term on the right-hand side of equation 4.64 the quantity
(B2/8π ) enters the equation in an identical way to the gas pressure in
equation 4.17. Hence this term is known as the magnetic pressure. Any
gradient in the magnetic pressure results in a net force on the fluid, just
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as in the case of the gas pressure. Hence a region of the ISM with a high
B value tends to be over-pressured relative to neighbouring regions with
lower B, and will tend to expand.

The second term on the right-hand side of equation 4.64 can be
understood as follows. We can write

B = Bs, (4.65)

where s is a unit vector in the direction of the field. Then we have

(B.∇)B = Bs
d

dx
(Bs)

= B2s
ds

dx
+ Bs2 d B

dx
, (4.66)

where x is the direction along the field. For a constant magnetic field,
d B/dx is zero and the second term vanishes.

Furthermore, if the field lines are straight, then ds/dx is zero and
the first term vanishes. Hence this term clearly relates to how ‘bent’
the magnetic field lines are. Furthermore, it is found that the more
bent the field lines, the stronger the restoring force. This term is some-
times referred to as the magnetic tension.

The idea that magnetic field lines have a tension rather like tightened
strings on a bow leads to the idea that tranverse waves could travel along
the field lines like waves on a string. These waves are known as Alfvén
waves. Such tranverse waves can have two orthogonal polarisation states,
or in general a sum of both at random phase and hence ‘torsional’ waves.
Alfvén waves are believed to play an important role in the turbulent
support of the ISM, and torsional Alfvén waves play an important role
in star formation by carrying away excess angular momentum, and hence
allowing a cloud core to collapse.

In a highly conducting medium such as the ISM we can assume ‘flux
freezing’ – that is, that the magnetic field and the gas move together as
a single magnetised fluid, or plasma. Hence, if we take a unit volume
of that fluid and compress it orthogonal to the field, the magnetic field
strength increases – i.e. B ∝ 1/volume. Hence

B ∝ ρ. (4.67)

Note that this assumes a compressible medium. Thus if we have an initial
density ρ0 and field strength B0, we have

B

B0
= ρ

ρ0
. (4.68)

Thinking of the ISM as a single fluid plasma allows us to also consider
compression waves travelling through the ISM, known as magnetosonic
waves by analogy with sound waves in a non-magnetised fluid.
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We note that the sound velocity a0 in a compressible fluid is given
by

a2
0 = d P

dρ
. (4.69)

If we assume that the magnetic pressure dominates and we remember
that the magnetic pressure Pm is given by

Pm = B2

8π
= B2

0 ρ2

8πρ2
0

, (4.70)

we find that the wave velocity vA is given by

v2
A = d

dρ

(
B2

0 ρ2

8πρ2
0

)
= B2

0 ρ

4πρ2
0

. (4.71)

Thus in the case of B = B0, as we have here, we can put ρ = ρ0, and
we have

vA = B0

(4πρ0)1/2
. (4.72)

This is known as the Alfvén wave velocity.
The virial theorem (equation 4.37) in the presence of a magnetic

field requires an extra term for the magnetic energy, Em , so that

�G + 2K + Em = 0. (4.73)

By analogy with thermodynamics, in which the quantity PV has the
dimensions of energy, we deduce that the magnetic energy Em is given
by

Em = Pm V = B2V

8π
. (4.74)

We can use this to estimate the stability of a molecular cloud core. Note
that we are ignoring surface terms for simplicity.

Consider a uniform density, spherically symmetric cloud of mass M ,
initial radius R0 and volume V0, threaded by a magnetic field of strength
B0, and consider a slight perturbation to compress the sphere to a radius
R. If the magnetic pressure is the dominant support mechanism (i.e.
Em � K), then for equilibrium, the magnetic virial theorem reduces to

Em 	 −�G . (4.75)

For a uniform sphere the gravitational potential energy is given by

�G 	 −3G M2

5R
. (4.76)

A slight compression forces the field lines closer together, and hence
increases the magnetic field strength. From consideration of conserva-
tion of magnetic flux we know that the total flux threading a given area
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is a conserved quantity. Hence

B0 R2
0 = BR R2, (4.77)

where BR is the new magnetic field strength after the sphere has been
compressed slightly to radius R. Thus

BR = B0

(
R0

R

)2

. (4.78)

Hence, within R, the magnetic energy is given by

Em = B2V

8π
= 1

8π
B2

0

(
R0

R

)4
4

3
π R3 = B2

0 R4
0

6R
. (4.79)

In actual fact there is an extra term of the same magnitude for the
magnetic field strength between R and R0 such that the magnetic energy
is

Em = B2
0 R4

0

3R
. (4.80)

So for equilibrium we require that

B2
0 R4

0

3R
= 3G M2

c

5R
. (4.81)

Therefore

Mc =
(

5B2
0 R4

0

9G

)1/2

= B0 R2
0

(
5

9G

)1/2

. (4.82)

The mass Mc is known as the magnetic critical mass. We can also define
a critical mass-to-flux ratio in terms of

Mc

B0 R2
0

=
(

5

9G

)1/2

. (4.83)

The significance of Mc is that if the mass of the cloud is less than Mc

then the cloud is stable against collapse. However, if the magnetic field
is the dominant mechanism of support, and the cloud mass is greater
than Mc, then it is unstable to collapse. In the next chapter we will study
the manner in which this collapse proceeds.

4.8 Chemistry in molecular clouds
4.8.1 Gas-phase chemistry

We have already mentioned that molecular clouds contain molecules
other than H2. The most abundant of these in the gas phase is carbon
monoxide, CO. We know about this because of the molecular rotational
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transitions that we detect in the millimetre waveband and the molecular
vibrational transitions that we detect in the infrared.

However, for many years it was a mystery as to how molecules
could form in the relatively low-density environments of the interstellar
medium in molecular clouds. The problem is that when two atoms collide
in the gas phase the most likely outcome is that they will simply bounce
off. A third body is normally required to carry away the excess energy.

The most common atom is hydrogen, and hence the most common
molecule is H2. The majority of molecular hydrogen in fact forms on
dust grains. The grain acts as a sink for the excess energy. Molecules
can then be released from the grains back into the gas phase. Molecular
hydrogen is formed on the surface of dust grains by means of the reaction

H + H → H2. (4.84)

We will deal further with grain surface chemistry in the next section,
but first we deal with gas-phase reactions.

A way of increasing the collisional cross-section in the gas phase
is if one of the participants in the reaction is ionised. The source of
the ionisation may occur by means of UV ionisation by the interstellar
radiation field, or perhaps more importantly in molecular cloud interiors,
ionisation by cosmic rays (see section 1.3), such as

H2 + cr → H+
2 + e− + cr, (4.85)

where we have denoted the cosmic ray as cr. The ionisation helps to
drive the subsequent chemistry. For example

H+
2 + H2 → H+

3 + H, (4.86)

which produces the highly reactive molecular ion H+
3 . This can drive the

oxygen chemistry, leading to the formation of the water molecule, H2O,
and the OH radical by the following route

H+
3 + O → OH+ + H2. (4.87)

An alternative formation mechanism for OH+ could be by means of
ionised oxygen, using

H2 + O+ → OH+ + H. (4.88)

Then

OH+ + H2 → H2O+ + H, (4.89)

followed by

H2O+ + H2 → H3O+ + H, (4.90)
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and

H3O+ + e− → OH + 2H, (4.91)

or

H3O+ + e− → H2O + H. (4.92)

The carbon chemistry follows a similar route. For example

C+ + H2 → CH+
2 + hν, (4.93)

where we have denoted an emitted photon by hν, and then

CH+
2 + H2 → CH+

3 + H, (4.94)

and

CH+
3 + e− → CH + 2H, (4.95)

or

CH+
3 + e− → CH2 + H. (4.96)

The major pathways to forming CO appear to be

C + OH → CO + H , (4.97)

or

C+ + OH → CO+ + H . (4.98)

These are known as exchange reactions. The latter proceeds to CO via

CO+ + H2 → HCO+ + H , (4.99)

and

HCO+ + e− → CO + H , (4.100)

although in fact HCO+ can be the dominant ion in molecular clouds.
Other neutral exchange reactions are important for sulphur chem-

istry, such as

OH + S → SO + H, (4.101)

and also for nitrogen chemistry

CH + N → CN + H. (4.102)

This can then go on to form N2 by means of

CN + N → N2 + C. (4.103)



90 Molecular clouds – the sites of star formation

−50 0 50

Offset (arcsec)

21

21.5

22

22.5

lo
g 1

0 
N

H
2 (

cm
−2

)

Fig. 4.8. Column density
profile across a molecular
cloud core, computed in two
different ways. The crosses
represent measurements
made in dust continuum
observations, and the circles
are measurements of CO.
Note how the CO profile lies
below the dust continuum
profile, implying that there is
much less CO (by a factor of
2–3) in the gas phase at the
centre of the core than would
be predicted. This is believed
to be due to the CO freezing
out in solid form onto the
surfaces of dust grains in the
densest part of this core.

An alternative route is

N + OH → NO + H, (4.104)

followed by

NO + N → N2 + O. (4.105)

All of these different types of reaction are believed to take place in the
gaseous interstellar medium.

4.8.2 Grain surface chemistry

However, astronomers have now observed more than 100 different
molecular species in the ISM, requiring far more complex reaction
chains than the simple reactions outlined above. Some of the larger
molecules have abundances much higher than can be explained by gas-
phase reactions alone.

The problem was solved when it was realised that molecules could
form on the surfaces of interstellar dust grains, with the grain acting
as a heat sink for the excess energy. Grain surface reactions are thus
important for interstellar chemistry. Figure 4.8 shows an example of
some of the evidence we have for molecules being depleted in the gas
phase, and hence by inference existing in solid phase on the surfaces
of dust grains. Figure 4.8 shows two profiles across a molecular cloud
core, one computed from continuum measurements of the dust and the
other from spectral line measurements of the gas, in this case CO. The
CO profile lies below the dust profile in the centre of the core, hence
implying a reduction in gas-phase CO as it depletes onto dust grains.

The main physical processes involved in grain surface chemistry are
still a subject of intense research, but they can be divided into four main
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types: accretion of the atom or molecule onto the dust grain surface;
movement of the atom or molecule across the surface; reaction between
atoms and/or molecules; and the return of the new molecule to the gas
phase.

If an atom hits a dust grain and sticks it is said to be ‘adsorbed’
onto the grain surface. If it strikes a site where it can bind, the process
is known as ‘chemisorption’. If it is held by van der Waals forces the
process is known as ‘physisorption’. The latter kind of binding allows
an atom to move across the surface easily and interact with another atom
either by ‘hopping’ or quantum tunnelling. This is known as ‘diffusion’
and is dominated by hydrogen chemistry, hydrogen being the lightest
and most mobile atom. This turns O into H2O, C to CH4, N to NH3 and
S to H2S.

CO formed in the gas phase is also adsorbed onto grain surfaces,
and the chief chemical components observed on grain surfaces are in
fact CO and H2O. The chemicals built up on grain surfaces are known
as grain mantles, and the thickness of water and CO ice mantles can be
such as to more than double the size of the original grain. Whilst CO is
more common in the gas phase, it appears that CO2 is more common on
grain surfaces, where it is presumably formed.

Atoms or molecules which are strongly bound, or chemisorbed, are
not nearly so mobile as those which are physisorbed, and they can only
interact with other atoms or molecules which happen to land very close
by. These processes are therefore slower and less efficient.

Finally, the removal of molecules from grain surfaces and back
into the gaseous phase is known as ‘desorption’. At high densities UV
induced desorption is inefficient due to the high extinction. However, as
soon as a star forms and heats its surroundings then the process known
as ‘thermal desorption’ becomes significant. Temperatures of ∼100 K
or more are required to return significant grain mantle material to the
gaseous ISM.

Other desorption processes include the action of cosmic rays or UV
photons from the interstellar radiation field to remove molecules from
grain surfaces. These provide a background, continuous desorption, and
the latter is most significant on the edges of molecular clouds, or near
newly formed high-mass stars. Heating caused by molecule formation
on dust grains can also lead to desorption.

The destruction of molecules by UV photons in the general inter-
stellar radiation field is the main mechanism responsible for returning
molecular material to the atomic state. Two processes reduce the effects
of this in molecular cloud interiors. One is the process of ‘self-shielding’,
whereby molecules at the edges of a cloud absorb the photons with high
enough energy to dissociate molecules, thereby shielding the molecules
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in the cloud interiors. The other is absorption of high-energy photons
by dust grains, the so-called ‘extinction’ which renders the centres of
molecular clouds ‘dark’.

4.8.3 Carbon chemistry

Particular mention should be made of carbon chemistry in the ISM. It
is of interest as the basis of all life as we know it, although no such life
elsewhere has yet been found. Nonetheless the ISM appears to contain
a rich carbon chemistry.

Carbon is observed in many forms in the ISM. The first to be discov-
ered was CN, followed by CO, and then long chain compounds such as
the alcohols CH3OH, C2H5OH, etc., of the form CnH2n+1OH. These are
the common molecules methanol and ethanol and so on. Astronomers
sometimes amuse themselves by calculating the amount of naturally
occurring alcohol in a molecular cloud. The answer can be quite a sig-
nificant quantity.

Another important form of carbon in the ISM is in molecules derived
from multiple benzene rings of C6 and their various hydrides – the so-
called ‘aromatic’ compounds. These can grow to very large sizes, with
molecules containing tens or even hundreds of atoms being observed.
These multiple C6 rings can form large sheet-like molecules known as
polycyclic aromatic hydrocarbons, or PAHs for short.

One particular variant of a PAH occurs when a sheet-like molecule
folds over into a spherical shape, forming C60, known as a Buckminster
fullerene. There are many types of Buckminster fullerene, depending on
the level of hydrogenation, up to C60H60. These are sometimes known
as buckyballs, and some astronomers believe that up to ∼1% of all
interstellar carbon may be in this form.

Another major form of carbon believed by many astronomers to
exist in the ISM is graphite. The so-called extinction curve which plots
interstellar extinction as a function of wavelength has a peak at around
220 nm, which matches laboratory measurements of graphite. This leads
some astronomers to think that not all dust grains are silicates, and some
may be graphitic. This carbon may alternatively exist in amorphous form
on the surfaces of dust grains. In this form it is known as hydrogenated
amorphous carbon (HAC).

However, there have been claims that this spectral feature can also
be matched by a simple PAH, C24, known as coronene. The hydrides of
C24 may also be responsible for other interstellar spectral features known
as diffuse interstellar bands (DIBs). These features have been observed
for many years in the ISM, but the exact molecules responsible for them
remain a matter of debate. For example, it is highly likely that much of
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the carbon in the interstellar medium could be amorphous, more like
soot. The debate over the nature of the interstellar carbon will no doubt
continue for some years to come.

4.8.4 Chemistry and star formation

The study of interstellar chemistry could occupy a whole textbook in its
own right, so we refer the reader to the list of further reading at the end of
the chapter for more information. However, we conclude this section by
noting that chemistry impinges directly upon the star-formation process
in a number of different ways.

Chemistry affects the ionisation level of a molecular cloud. This in
turn affects the manner in which the matter couples to the magnetic field,
which may be responsible for retarding the collapse that forms a star.

Chemistry affects the optical properties of dust grains in the ISM by
coating the grains with mantles containing water ice, CO ice and many
other molecules. This must be accounted for when using measurements
of the millimetre and submillimetre continuum to calculate the mass of
a molecular cloud.

Chemistry helps the study of star formation by providing many
different molecules whose spectra can be studied. Remember that it is
very difficult to observe molecular hydrogen, H2, directly, due to it not
having a permanent dipole moment. Therefore most molecular clouds
are studied in transitions of CO or other molecules.

Chemistry affects the micro-physics of a molecular cloud. In par-
ticular, it alters the equation of state of a cloud in complex ways that
are still not fully understood. Most importantly for star formation, this
affects the ability of a cloud to cool and radiate away its internal energy,
allowing collapse and star formation to proceed.

Finally, it is the carbon chemistry discussed in the previous section
that provides the building blocks for life itself. We do not know how
this occurred on Earth, but without it there would be no astronomers to
study star formation.
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Chapter 5

Fragmentation and collapse – the road
to star formation

5.1 The road to star formation
Thus far we have studied the places where stars form – molecular clouds.
We have discussed the ways in which molecular clouds can be observed.
We have explored the various constituents of molecular clouds – gas,
dust, magnetic fields, cosmic rays and electromagnetic radiation. We
have, so to speak, assembled the ingredients. In this chapter we dis-
cuss how these ingredients might come together to begin to form a
star.

In the first half of the chapter we discuss theoretical considerations.
We consider the collapse of an isothermal sphere of gas, ignoring the
effects of rotation and magnetic fields, and we examine qualitatively
what happens. We describe the method of solving the problem using
similarity solutions.

We go on to discuss hierarchical fragmentation, as a means of break-
ing a large molecular cloud into an ensemble of stars. We also discuss the
thermodynamics of protostellar gas, and explain how the minimum mass
for star formation might be determined by the protostellar gas becoming
optically thick to its own cooling radiation. We discuss the manner of
the collapse to form a star and the possible effects of a magnetic field on
this process.

In the second half of the chapter we examine some of the obser-
vational evidence. At the end we consider the initial mass function for
stars. Note that in this chapter we concentrate mainly on relatively low-
mass stars, i.e. stars of less than a few times the mass of the Sun. In
Chapter 6 we continue to discuss relatively low-mass star formation.

95
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Then in Chapter 7 we turn to the questions associated with high-mass
star formation.

5.2 Theoretical collapse solutions
We begin by considering an isothermal, uniform-density, non-rotating,
non-magnetised, spherically symmetric cloud. If we also assume that the
cloud is initially pressureless, then it will collapse in a free-fall time, tff ,
as we saw in the previous chapter (equation 4.43), given by

tff =
(

3π

32Gρ0

)1/2

(5.1)

where ρ0 is the initial density. The equation of motion for material within
the cloud is given by

d2r

dt2
= − G M

r 2
(5.2)

at any radius r . Recall also from the previous chapter (equation 4.76)
that the gravitational potential energy, �G , of a sphere of mass M and
radius R is

�G 	 −3G M2

5R
. (5.3)

At any given radius the continuity equation (equation 4.9) is

∂ρ

∂t
+ ρ∇.v + v.∇ρ = 0, (5.4)

giving us the density at that point as a function of time.
Once the sphere starts to collapse we can no longer ignore the

pressure. The motion of the fluid as a whole is then given by Euler’s
equation (equation 4.18), which takes the form

∂v

∂t
+ (v.∇)v + ∇ P

ρ
− g = 0, (5.5)

where g is the gravitational acceleration experienced by a parcel of gas.
These equations can be solved numerically to follow the collapse of a
theoretical cloud.

One of the key considerations in all such theoretical calculations is
knowing how to deal with the boundary conditions. One solution is to
hold the edge of the cloud fixed in space and follow the evolution. We
can obtain a qualitative understanding of what might happen. As the
material falls towards the centre, the density at the edge of the cloud
(which is held fixed) drops, while the density nearer to the centre of the
cloud rises.
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Fig. 5.1. The logarithmic
variation of density with radius
as a function of time in one
model of a collapsing
isothermal cloud, in which the
outer boundary is held fixed.
Each curve is labelled with the
time elapsed since collapse
began (in arbitrary units).
Note how the density profile
approximates to r −2 in the
outer parts.

This sets up a pressure gradient in the outer parts of the cloud. This
in turn slows the collapse in the outer parts with respect to the free-fall
solution. The density therefore rises more rapidly still in the inner parts
and the pressure gradient continues to retard the collapse further out.
The collapse in the centre continues in a roughly free-fall manner.

We can see from equation 5.1 that the free-fall time has an inverse
dependence on density. Hence the higher-density regions collapse more
quickly and the density distribution becomes more centrally peaked. In
fact the density distribution follows the form shown in Figure 5.1. It can
be seen that in this case the density profile approximates to the form

ρ ∝ r−2 (5.6)

in the outer parts of the cloud. This is one of a family of solutions that are
known as similarity solutions or self-similar solutions. The name arises
because the solution appears similar on different size-scales. Note that
in the model in Figure 5.1, at late times the r−2 dependence extends over
three orders of magnitude in radius. Hence, it is said to be self-similar
across these size-scales. The similarity solution breaks down at the
centre, since ρ → ∞ as r → 0, which is clearly non-physical. Hence this
is also sometimes known as the singularity solution, and equation 5.6 is
sometimes known as the equation of a singular isothermal sphere, or SIS.

However, the model breaks down before this occurs for another
reason. The collapse generates heat due to the compression of the gas
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(sometimes known as P-V work). This heat can be radiated away as
long as the cloud remains optically thin. But at sufficiently high density
the cloud becomes optically thick, and it can no longer radiate away
the excess heat. Hence the densest parts of the cloud heat up and the
assumption of isothermality breaks down.

When the central part of the cloud becomes optically thick it rapidly
heats up. The internal energy of the central region increases until it
balances the sum of the gravitational potential and the infall kinetic
energy of the central region (this is similar to the virial condition – see
equation 4.37). At this point collapse at the centre of the cloud stops.

The optically thick, non-collapsing region at the centre is sometimes
referred to as the ‘first core’. Material from the rest of the infalling cloud
continues to fall onto the surface of the first core, where it is brought
to an abrupt halt at a shock front. The heat generated at this shock is
radiated away in the infrared.

The predicted subsequent evolution of the collapsing cloud is highly
model-dependent. In fact, the model discussed above is so highly ide-
alised that it is unlikely to resemble any real clouds. For the same reason,
similarity solutions on the whole are no longer generally used to model
collapsing clouds. They have largely been replaced by more sophisti-
cated computer models. We return to the topic of cloud collapse and the
subsequent evolution in Chapter 6.

5.3 The minimum mass of a star

5.3.1 Hierarchical fragmentation

In Chapter 4 we discussed the stability of a cloud against collapse in
terms of the Jeans criterion and the virial theorem. Given a uniform three-
dimensional background medium, having density ρ0 and isothermal
sound speed a0, the Jeans radius, RJ, given by

RJ 	
(

15

4 π G ρ0

)1/2

a0, (5.7)

and the Jeans mass, MJ, given by

MJ 	
(

375

4 π

)1/2
a3

0

G3/2 ρ
1/2
0

, (5.8)

define the smallest lump which can collapse (i.e. the smallest lump for
which it is thermodynamically viable to collapse). Collapse will actually
occur only if there are no other competing processes with shorter time-
scales. Apart from purely numerical factors, these expressions are the
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same as those we derived in Chapter 4, where we considered the Jeans
instability in one dimension.

Suppose now that an interstellar cloud becomes gravitationally
unstable (M0 > MJ) and starts to contract, but remains isothermal (and
therefore a0 is constant). Because the density in the cloud increases,
the Jeans mass decreases, since MJ ∝ ρ

−1/2
0 . Consequently, parts of the

original cloud become gravitationally unstable in their own right. There-
fore they can start to contract on themselves, causing the original cloud
to fragment. Moreover, the process can repeat itself again and again, as
long as the gas remains isothermal – see Figure 5.2.

Fig. 5.2. Hierarchical fragmen-
tation breaks up a large cloud
into smaller fragments.

The gas remains isothermal as long as it can radiate away energy
as fast as it is being released by gravitational contraction. Once the
fragments become sufficiently opaque, their cooling radiation becomes
trapped, and they heat up until they are close to hydrostatic equilibrium;
that is to say that the mass of an individual fragment, Mfrag, becomes
comparable with its Jeans mass, MJ. Fragmentation then ceases. We now
derive mathematically the density at which this occurs.

5.3.2 Contraction of a marginally unstable fragment

We consider a uniform density, spherically symmetric, cloud fragment,
which is initially in equilibrium and surrounded by a medium with the
same uniform density. To test the fragment’s stability against collapse
we consider what happens when it experiences a slight perturbation. We
introduce φ(R), which is a function controlling radial excursions of the
cloud fragment away from equilibrium and is a function of radius R
from the fragment centre.†

Consider a marginally Jeans-unstable fragment with mass M0 = MJ

and initial radius R0 = RJ, starting to collapse. In this case the function
φ(R) can be shown to have the form

φ(R)

a2
0

= −
[(

R

R0

)−1

− 1

]
− ln

(
R

R0

)
+ 1

3

[(
R

R0

)3

− 1

]
. (5.9)

We have

R̈ = − dφ

d R
, (5.10)

and hence

2 Ṙ R̈ = −2
dφ

d R
Ṙ. (5.11)

† Do not confuse φ(R) with the IMF, φ(M), or the profile function, φ(ν − ν0).
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This can be integrated to give

Ṙ2 = 2 [φ(R0) − φ(R)] = −2 φ(R), (5.12)

since by definition φ(R0) = 0. Substituting for φ(R) from equation 5.9,
and putting R0 = RJ, we have

Ṙ2 = 2a2
0

{[(
R

RJ

)−1

− 1

]
+ ln

(
R

RJ

)
− 1

3

[(
R

RJ

)3

− 1

]}
. (5.13)

Then, introducing the compression factor, f , where

f = RJ

R
, (5.14)

we obtain

Ṙ = g( f ) a0, (5.15)

where g( f ) is simply a function given by

g( f ) = 21/2

{
[ f − 1] − ln[ f ] + 1

3

[
1 − f −3

]}1/2

. (5.16)

Thus we have a relation between the rate of compression, Ṙ, and the
compression factor, f , in terms of the Jeans radius, RJ, and the isother-
mal sound speed, a0.

5.3.3 The compressional heating rate

For a spherical cloud with mass M0 and isothermal sound speed a0, the
compressional heating rate, Hcomp, is

Hcomp = −P
dV

dt
= − 3 M0 a2

0

4 π R3
4 π R2 d R

dt
= −3 M0a2

0

Ṙ

R
. (5.17)

Substituting for R and Ṙ from equations 5.14 and 5.15, and putting
M0 = MJ, we obtain (after a little algebra)

Hcomp = f g( f )
15 a5

0

G
. (5.18)

5.3.4 Radiative cooling rate

The fragment cannot radiate more efficiently than a blackbody at the
same temperature. Therefore its luminosity satisfies

L <∼ Lmax = 4 π R2 σSB T 4, (5.19)

where σSB is the Stefan–Boltzmann constant, given by

σSB = 2 π 5 k4

15 c2 h3
. (5.20)
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In reality the optical depth is of order unity and so we can put L = Lmax.
Then if we put R = RJ/ f , equation 5.19 becomes

L = Lmax = f −2 15 a2
0 σSB T 4

G ρ0
. (5.21)

5.3.5 Condition for isothermality to be maintained

Isothermality can only be maintained in a fragment if the compressional
heating rate is less than, or on the order of, the radiative cooling rate

Hcomp

<∼ Lmax. (5.22)

Substituting from equations 5.18 and 5.21, we obtain a constraint on the
density in the background in which the fragment is trying to collapse

ρ0
<∼ ρmax = σSB T 4

f 3 g( f ) a3
0

. (5.23)

Above the density ρmax the fragment can no longer radiate away its
compressional luminosity and so it must heat up.

5.3.6 The minimum mass

This upper limit on the density translates into a lower limit on the Jeans
mass, MJ

MJ > Mmin = [ f 3 g( f )
]1/2 75

π 3
c

(
h

2G

)3/2 (
kT

m̄9

)1/4

, (5.24)

where we have substituted σSB from equation 5.20.
We consider compression factors f in the range 2–4, since this

translates into an increase in ρ by between 8 and 64, and hence a
reduction in MJ by between ∼3 and 8. In other words, we assume that
at each level of the hierarchy, an individual fragment spawns between
three and eight subfragments. Then

3
<∼ [ f 3 g( f )

]1/2 <∼ 11, (5.25)

and we adopt [
f 3 g( f )

]1/2 ∼ 4 (5.26)

as a representative value. Equation 5.24 then becomes

Mfrag > Mmin 	 10 c

(
h

2G

)3/2 (
kT

m̄9

)1/4

. (5.27)

For contemporary, Population I star-forming gas, T ∼ 10 K and
m̄ ∼ 4 × 10−27 kg, so Mmin 	 0.015M�. We note that this is less than
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the hydrogen-burning limit for a star, which is approximately 0.08M�.
Stars with mass below this limit are known as brown dwarf stars (see
Chapter 8). So this theoretical calculation predicts the existence of brown
dwarf stars.

5.4 Effects of the magnetic field
In Section 4.7 we discussed the presence of magnetic fields in molecular
clouds. There we assumed that the magnetic field is frozen into the
gas. There is evidence in some regions that this is in fact the case.
Remember that even ionised material can flow along the field lines
relatively freely. In theory this would tend to produce a collapse which
proceeds preferentially parallel to the magnetic field, with there being
more resistance to collapse perpendicular to the field.

Hence collapsing clouds should roughly resemble flattened oblate
spheroids, with their long axes perpendicular to the magnetic field. If
these oblate spheroids were then to begin to contract perpendicular to
their field directions, dragging the field with them, then this would lead
to a pinching, or narrowing of the field lines at the centre. Further out
along the magnetic field, no such pinching would be seen.

This leads to a shape of the magnetic field lines known as the ‘hour-
glass’, or ‘egg-timer’ shape. In some regions that is exactly what is
seen. Figure 5.3 shows a polarisation map tracing the magnetic field in
the star-forming region NGC 1333. In this map one can clearly discern
the hour-glass shape of the magnetic field, indicating that collapse has
happened first along the field lines, and subsequently perpendicular to
the field lines at the centre. This is exactly as predicted from magnetic
flux freezing into the gas.

5.4.1 Ion-neutral drift

When the fraction of ionised particles is very low, the assumption of
magnetic flux freezing can break down. The reason is that in a real gas
there is a mix of ions and neutral molecules. The ions are influenced by
the magnetic field, and gyrate around the lines of force with the cyclotron
frequency. Since they are free to move along the field lines, their general
motion is roughly helical.

However, the neutrals are free to cut across field lines and drift
according to pressure gradients or gravitational acceleration. Thus dif-
ferential motion between ions and molecules is possible, and is called
ambipolar diffusion. In most environments the two components are
closely coupled through collisions, so that any motion of the ionic com-
ponent is quickly transferred to the neutral molecules through collisions,
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Fig. 5.3. Map of the magnetic
field in the star-forming region
NGC 1333. The magnetic
field direction is implied from
polarisation measurements.
The two sets of vectors are
simply measurements at two
different wavelengths. Note
the hour-glass, or egg-timer,
shape, indicating that some
collapse has occurred
perpendicular to the field
direction, causing the field to
be pinched in at the centre.
This is a characteristic
indicator of magnetic flux
freezing, where the field and
the matter move together.

and vice versa, and negligible diffusion occurs. But in some cases the
coupling breaks down and the ionic and neutral components can drift
past each other.

The effects of this can be understood with a simple model. Consider
a quasi-equilibrium configuration where a magnetic field is supporting a
gas in a gravitational field. The ions are tied to the field lines and gyrate
around them. The neutrals, however, are free to accelerate in the direction
of the gravitational force. The velocity reached by a neutral (before it
collides with an ion and has its velocity randomised) is given by

v ∼ gt (5.28)

where v is the neutral’s velocity, g is the gravitational acceleration and
t is the time between collisions. Under the assumption that the thermal
velocities greatly exceed the drift velocity, the collision time can be
estimated by averaging the cross-section (which is in general a function
of the collision energy) and the thermal velocity distribution. Then

t = 1

ni 〈σu〉 (5.29)

where ni is the number density of ions, and 〈σu〉 is the average
over a Maxwellian velocity distribution of the product of the collision
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cross-section and the thermal velocity. These two equations define the
drift velocity.

5.4.2 Ambipolar diffusion

To put this into context, consider a cloud of radius R and gas density nH

(mainly neutral H and H2). Then the time for the neutrals to drift past
the ions is given by the ambipolar diffusion time-scale

τAD ∼ R

v
= Rni 〈σu〉

(G M/R2)
= 3〈σu〉

4πGmH
x, (5.30)

where x = ni/nH is the fractional ionisation and mH is the mass of
the hydrogen atom. Note that the diffusion time-scale depends only on
the fractional ionisation and the temperature of the gas (through 〈σu〉).
Inserting values appropriate for T = 10 K yields

τAD = 7.3 × 1013 yr . x (5.31)

Thus ambipolar diffusion is a very slow process except in regions of
very low ionisation.

However, it turns out that the ionisation expected in dense cores of
molecular clouds is indeed very low. In dark interstellar clouds from
which the background UV interstellar radiation is excluded (because of
high extinction), ions are produced mainly by cosmic ray (CR) ionisation
of H2 via the reaction

H2 + cr → H+
2 + e− + cr. (5.32)

This is followed rapidly by the formation of H+
3 , by means of

H+
2 + H2 → H+

3 + H (5.33)

followed by protonation reactions which yield carbon and oxygen bear-
ing molecules, such as HCO+. Dissociative recombinations with elec-
trons then produce neutral species such as CH2 and H2O. The rate of
production of ions per molecule by cosmic rays is independent of the gas
density, but the recombination rate depends on the density of electrons.
Making the simplifying assumption that only one type of ion is present,
the recombination rate per unit volume is given by

RR = 8.2 × 10−7 m3 s−1 ni ne = 8.2 × 10−7 m3 s−1 x2n2
H2

(5.34)

where ni , ne and nH2 are the volume number densities of ions, electrons
and H2 molecules respectively, and the rate cofficient is that for HCO+.

The rate of cosmic ray ionisation per unit volume is estimated to be

ICR = 10−11 s−1 nH2 . (5.35)
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Balancing the two rates so that ICR = RR gives

x = 3.5 × 10−3√
(nH2/m−3)

, (5.36)

and hence the ambipolar diffusion time-scale (see equation 5.31) is given
by

τAD = 2.5 × 1011 yr√
(nH2/m−3)

. (5.37)

This shows that in cloud regions of high density (
>∼1010 m−3), the frac-

tional ionisation will be of order 10−8, and this is so low that the
ambipolar diffusion time-scale can be 106 years or less. This clearly
shows that ambipolar diffusion must be taken into account when study-
ing the effects of magnetic fields in regions of high gas density, and that
strict flux freezing cannot be assumed to hold in such regions except on
time-scales much shorter than the ambipolar diffusion time.

5.4.3 Decrease of magnetic flux with time

Ambipolar diffusion has very important implications for subcritical
clouds supported by magnetic fields. Consider a cloud of initial radius
R0 and density nH2 . As we have seen, the neutrals (which constitute
the bulk of the gas mass) will drift inwards at a velocity given by
v = R0/τAD. This inward drift also increases the central density, thus
decreasing the time-scale, and increasing the drift velocity. This has an
important effect on the critical mass, as defined in equation 4.82. Note
from that equation that

Mc ∝ B0 R2. (5.38)

That is, the critical mass is proportional to the magnetic flux threading
the cloud. Now as the neutrals drift past the ions and the field lines, the
radius of the cloud decreases but B0 does not change. So the magnetic
flux decreases, and hence the critical mass also decreases. In fact, the
magnetic flux (and hence the critical mass) will tend to zero in a time of
order (less than) τAD. So in a time less than τAD, the actual cloud mass
must exceed Mc and the cloud will then start to collapse.

Thus the entire effect of magnetic fields on the equilibrium of clouds
turns out to be quite subtle, and can be summarised as follows: Density
perturbations which exceed the magnetic critical mass will undergo col-
lapse immediately; for subcritical masses which are sufficiently dense,
the magnetic field will hold up collapse for a time given by the ambipo-
lar diffusion time, after which collapse occurs; for subcritical clouds of
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sufficiently low density and consequently high ionisation, the magnetic
field can support the clouds almost indefinitely.

However, in addition to the cloud support role discussed previously,
magnetic fields also introduce another important effect into the theory of
star formation. They introduce a possible solution to a problem that has
been known for a long time, the so-called angular momentum problem.

5.4.4 The angular momentum problem

Consider a cloud of mass M and initial radius R0, which is rotating with
angular velocity ω0. It has an initial rotational kinetic energy, ignoring
factors of order unity, of

T0 ∼ Mω2
0 R2

0, (5.39)

and an initial gravitational energy

�0 ∼ G M2

R0
. (5.40)

The angular momentum, which is conserved, is given by

Mω0 R2
0 = MωR2, (5.41)

where ω and R are the angular velocity and radius at a later time. Thus as
the cloud collapses, R decreases, ω increases, and the rotational kinetic
energy increases until it may balance the gravitational energy. In that
case a rotationally supported cloud results. The ratio of rotational to
gravitational energy at an arbitrary time is given by

TR

�G
= Mω2 R3

G M2
= Mω2

0 R3
0

G M2
× R0

R
= T0

�0
× R0

R
. (5.42)

For equilibrium, TR/�G ∼ 1. So the amount of contraction that a cloud
will undergo before reaching this equilibrium state depends entirely on
the initial ratio of rotational to gravitational energy.

Rotation is an inherent part of motions in the Galaxy. Not only do
all clouds orbit about the centre of the Galaxy, but turbulence itself is
an inherently rotational phenomenon involving the formation of vor-
tices. Indeed, molecular cloud cores are found to be rotating with typi-
cally T0/�0 ∼ 0.01, which is insufficient to stabilise the clouds them-
selves.

However, this is still a substantial amount of rotational energy. We
can see from equation 5.42 that the cloud radius need only decrease by
a factor of about 100 before rotation supports the cloud. A typical cloud
might start with a radius of 0.1 pc (3 × 1015 m). After it has contracted
by a factor of 100 it would still have a radius of 3 × 1013 m. Compare this
to the solar radius of ∼7 × 108 m, and it can be seen that this is still five
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Fig. 5.4. Schematic picture
illustrating how cloud core
rotation can lead to twisting
of the magnetic field lines.
Torsional twists travelling
along the field lines can carry
away excess angular
momentum.

orders of magnitude away from forming an object of stellar size! This
angular momentum problem is a serious impediment to star formation.
Some mechanism needs to be present that allows a rotating cloud to
slow down by losing angular momentum, or it could never form a star.

5.4.5 Magnetic braking of rotating clouds

Once it was known that magnetic fields could play important dynamical
roles in molecular clouds and cloud cores, it was realised that they could
also be an important mechanism for carrying away angular momentum.
Intuitively, we expect this since the magnetic fields emerging from a
rotating cloud core are tied like rubber bands to the larger Galactic
magnetic field, and so would be expected to produce a torque as they are
wound up.

Note that this assumes that the rotation axis is parallel to the magnetic
field direction. If they are not parallel to one another, then a more
complex geometry ensues. However, there are reasons to believe that
if they were not initially parallel, then the rotation axis would migrate
during the collapse to be parallel to the magnetic field.

As the cloud rotates it starts to twist the field lines – see Figure 5.4.
However, as we have seen, such transverse disturbances of the field are
known as Alfvén waves (see Section 4.7), which propagate along the
field lines at a velocity known as the Alfvén velocity vA, and would
therefore begin to spin-up the lower density gas outside the cloud itself.
Since angular momentum must be conserved, this results in a slowing
down of the cloud’s rotation.

An approximate calculation of the time-scale for this magnetic brak-
ing is straightforward. Consider a cloud of mass M , radius R, rotating
with angular velocity ω0, about an axis which is parallel to the prevail-
ing magnetic field B0. After time t the mass of exterior matter which is
co-rotating with the cloud is given by

Mext = π R2vAtρext. (5.43)
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Since the angular momentum is conserved overall we therefore have that
at time t

(M + π R2vAtρext)ω(t)R2 = Mω0 R2, (5.44)

and so finally, the angular velocity is given by

ω0

ω
= 1 + π R2vAtρext

M
. (5.45)

Thus the angular velocity halves in the time it takes for the amount of
rotating external gas to equal the mass of the cloud itself. Hence we can
calculate a characteristic magnetic braking time tMB, given by

tMB = M

π R2ρextvA
= 2M

π 1/2 R2ρ
1/2
ext B0

. (5.46)

Thus we see that, by carrying away the angular momentum of a rotating
core, the magnetic field can solve the angular momentum problem of
star formation.

In this section we have seen the significance of the critical mass, and
how even initially subcritical masses can eventually exceed the critical
value and undergo contraction. In the next chapter we consider how the
cloud evolves after it has exceeded its critical mass. But first we compare
the theory of fragmentation we have presented so far in this chapter with
observations.

5.5 Observations of the initial
conditions of collapse
Observing the initial conditions for collapse and the formation of a star
is by definition a tricky undertaking. The formation process takes a long
time in human terms, and so we are essentially trying to predict the
future evolution of a region in order to say whether or not it will go
on to form a star. In so doing we can use the theoretical tools we have
developed earlier to test whether a region is gravitationally bound and
hence whether it is likely to proceed to form a star.

In searching for these regions we naturally concentrate on the densest
cores within molecular clouds. These are variously known as ‘starless
cores’, or (for the most dense cores) ‘pre-stellar cores’.† Note that for
the remainder of this chapter we will concentrate mainly on relatively
low-mass stars, i.e. stars of less than a few times the mass of the Sun.

† The term ‘pre-stellar cores’ is an abbreviated form of the original name ‘pre-protostellar

cores’. They are the same.
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(a)

(c) (d)

(b) Fig. 5.5. A typical pre-stellar
core seen at four different
wavelengths from the
far-infrared to the
submillimetre regime:
(a) 170 µm; (b) 200 µm;
(c) 450 µm; (d) 850 µm. The
resolution and scale of the
images are somewhat
different. The upper two
images cover an area of
∼0.6 × 0.4 pc (where 1 pc =
3 × 1016 m) with angular
resolution equivalent to
∼0.05 pc at the distance of
the cloud. The lower two
images cover a field ∼0.1 pc
in extent with angular
resolution ∼0.007 pc, or
∼1400 AU (where 1 AU =
1.5 × 1011 m), and only show
the most dense, inner region
of the core, which is a few
thousand AU in extent.

5.5.1 Starless and pre-stellar cores

A pre-stellar core is defined as the phase in which a gravitationally bound
core has formed in a molecular cloud, and evolves towards higher degrees
of central condensation, but no protostar (see Chapter 6) exists yet within
the core. The term starless core is a broader category that includes pre-
stellar cores, but also includes cores that may not be gravitationally
bound. As the name implies, it simply does not contain a star or protostar.
Sometimes it is difficult to tell observationally whether or not a starless
core will go on to form a star.

Figure 5.5 shows images at different wavelengths of a typical pre-
stellar core, which is embedded within the cloud known as Lynds dark
cloud 1544 (or L1544 for short). It is shown at wavelengths of 170,
200, 450 and 850 µm, respectively. The images show that the core is
not spherically symmetric, but is fairly amorphous. In addition it is not
strongly centrally peaked. Even at the highest resolution the densest part
of the core still seems to be a few thousand AU in extent.

In fact, pre-stellar cores have density profiles which have a flat inner
region, steepening towards the edge. Figure 5.6(a) shows the radial
intensity profile of the pre-stellar core L1544 at 850 µm, illustrating
this effect. This is similar to the form of radial profile that has been
predicted, for example, in magnetically supported cores contracting by
ambipolar diffusion.
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(a) (b)Fig. 5.6. Observed radial
profile of pre-stellar core
L1544 (left) compared to the
theoretical predictions of a
model of an initially
pressure-supported core,
subsequently contracting
under self-gravity, moderated
by ambipolar diffusion (right).
The observed profile is plotted
as flux density vs radius on a
log-log plot. The dashed line
shows how a point source
would look on the same plot.
The theoretical profiles are
plotted as volume density vs
radius on a log-log plot at a
sequence of predicted times
labelled t0 to t6, showing how
a core is predicted to evolve
under this model. The shapes
of the theoretical predictions
are qualitatively similar to the
observations, with a flat inner
region of the core and a
steeper profile towards the
edge.

Figure 5.6(b) shows the theoretical profile of a core, which was origi-
nally a pressure-supported sphere, subsequently evolving under ambipo-
lar diffusion. The profiles can be seen to be qualitatively similar to the
observed profiles. Hence pre-stellar cores are consistent with some of the
theoretical predictions of the star formation models outlined in Section
5.4 above.

5.5.2 Physical properties of pre-stellar cores

Pre-stellar cores emit almost all of their radiation at far-infrared and
longer wavelengths, indicating that they must be very cold. Observing
this long-wavelength continuum emission allows us to study the dust,
and use this as a tracer of the total mass in the cores (see Chapter 2).

The core seen in Figure 5.5 is clearly detected at 170–850 µm. This
shows that the core is very cold, and its dust temperature can be obtained
by fitting a modified blackbody (sometimes known as a greybody) curve
to the observed emission (see Chapter 2). Continuum emission from the
core seen in Figure 5.5 can be fitted in this way. Figure 5.7 shows the
emission from a typical pre-stellar core. The solid line is a greybody
curve of the form

Fν = Bν(Tdust) [1 − exp(−τν)] �, (5.47)

where Bν(Tdust) is the Planck function at frequency ν for a dust temper-
ature Tdust, τν is the dust optical depth and � is the source solid angle
(compare this with equation 2.48).

A scaling law for the optical depth is often used, of the form τ ∝ νβ

with β 	 1.5–2. This is found to be the range of values appropriate
in this wavelength regime. In Figure 5.7 a good fit is obtained with
Tdust = 13 K and β = 2. Similar results are obtained in other pre-stellar
cores. They have a typical temperature range of ∼7–15 K. This confirms
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Fig. 5.7. Broadband
continuum emission from a
typical pre-stellar core. The
data points are measurements
made at various far-infrared
and submillimetre
wavelengths. The smooth
curve is a fit to the data of the
form described by
equation 5.47.

the lack of any warm dust in such cores, and consequently the lack of
any embedded star or protostar.

Dust emission is generally optically thin at these long wavelengths,
and hence is a direct tracer of the mass content of molecular cloud cores.
For an isothermal dust source, the total mass of dust Md is related to the
flux density, Fν , by the equation (see equation 2.42)

Md = 4aρd Fν D2

3Bν(Tdust)Qν

. (5.48)

See Chapter 2 for the derivation of this equation. Following this method,
typical masses in low-mass star-forming regions such as Taurus and
Ophiuchus ranging from ∼0.5M� to ∼10M� are derived for different
pre-stellar cores.

5.6 Pre-stellar cores and the IMF
In regions of multiple star formation, dust continuum imaging has
revealed many cloud fragments, cores and filaments. Figure 5.8 is an
850 µm image of the Ophiuchus molecular cloud showing many cores
with characteristic size-scales of ∼2000–4000 AU,† some of which are
starless cores and some of which are cores containing embedded stars.

Comparison of the masses derived from the continuum emission
with Jeans masses suggests that most of the starless cores are close to
gravitational equilibrium and will probably form stars. The typical frag-
mentation length-scale derived from the average projected separation
between cores is ∼6000 AU in this region. Other regions have different
length-scales, depending on their degree of clustering.

† 1 AU =1 astronomical unit =1.5 × 1011 m.
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Fig. 5.8. An 850-µm
continuum image of the Oph
main molecular cloud. The
image extent is half a degree,
which corresponds to a linear
scale of ∼1.2 pc at the
distance of this cloud. This
cloud contains a number of
pre-stellar cores and protostars
(see Chapter 6). One of each
type of core is labelled: the
pre-stellar core SMM1; and
the protostar VLA1623.

Figure 5.9 shows the mass distribution of the pre-stellar cores seen
in Orion. It can be fitted by a function that follows approximately the
form (dotted line)

φ(Mcl) d Mcl ∝ M−2.3
cl : Mcl

>∼ 2.4M� (5.49)

φ(Mcl) d Mcl ∝ M−1.3
cl : 2.4M�

>∼ Mcl
>∼ 1.3M� (5.50)

φ(Mcl) d Mcl ∝ M−0.3
cl : 1.3M�

>∼ Mcl
>∼ 0.4M�, (5.51)

where φ(Mcl) for cores is defined in the same way as the IMF for stars
and the mass of each core is Mcl (see Chapter 1). This pre-stellar core
mass function is then seen to resemble the shape of the stellar initial
mass function (IMF). Compare these equations with equation 1.5 et
seq. The power-law indices are the same, although the mass ranges over
which they hold true are shifted. So the pre-stellar core mass distribution
appears to mimic the shape of the stellar IMF, although there is an offset
between the peak mass of the two distributions. This offset probably
represents the star-forming efficiency within pre-stellar cores.

This resemblance has also been seen in some other regions. It appears
to suggest that the IMF of stars may be determined at the pre-stellar core
stage of star formation. We stated in Chapter 1 that the explanation
for the stellar IMF appearing universal is one of the chief goals of any
star-formation theory. These observations may represent the first clue in
trying to understand this phenomenon.

A molecular cloud complex will typically form a cluster of stars.
We have been discussing the Ophiuchus star-forming region above.
Figure 5.10 now shows a picture of this molecular cloud region, with
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Fig. 5.9. The mass
distribution of the pre-stellar
cores in Orion. It is plotted
simply as a histogram of
number versus mass. The
histogram can be fitted by
three functions very similar
to those for the IMF
(equation 1.5), which is
shown as a thinner solid line.
The vertical dashed line shows
the point below which the
data are incomplete, due to
the instrumental sensitivity.

the positions of the newly formed stars marked as crosses. The young
stars were detected in the infrared by IRAS (the Infra-Red Astronom-
ical Satellite). The contour marks the approximate edge of the dense
molecular cloud material, as traced by the 13CO(1→0) emission.

The cluster of recently formed stars is clearly correlated with the
position of the molecular cloud. Hence it can be seen that in this case
clustered star formation is taking place within this molecular cloud.
Thus we can ask how the molecular cloud’s core mass spectrum affects
the mass distribution of the stars formed. A great deal of interest centres
around the IMF of clusters, and indeed of whole galaxies. This is because
the IMF of a galaxy determines the evolution of that galaxy. We now
briefly discuss binary and multiple star formation.

5.7 Binary and multiple star formation
Roughly two-thirds of all solar-mass main-sequence primary stars are
in binary or multiple systems. The primary star is defined as the most
massive star in a binary or multiple system.

Furthermore, high-resolution infrared observations of young stars
appear to show that most very young solar-mass stars are also in binary
systems. Therefore it follows that a significant fraction of stars must be
formed in binary systems. There have been many theories put forward
to try to explain binary and multiple star formation.

One explanation that was proposed was the capture of one star by
the gravitational field of another. This theory has the advantage that it
is relatively simple to understand and model. However, it would tend
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Fig. 5.10. The Ophiuchus
molecular cloud region. The
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to produce an increasing binary fraction with age. Such a trend has not
been observed. Furthermore, the chance of a close encounter between
two stars is too low to produce the observed binary fraction at typical
stellar densities in most star-forming regions.

A solution to surmount the latter problem is that discs around the
young stars would make interactions between stars more dissipative, thus
increasing the frequency of capture. This method may produce some
of the observed binary stars, but it has difficulty producing sufficient
binaries to match the observations.

One theoretical explanation for the formation of binary and multiple
stars is the fragmentation of a collapsing cloud core. Fragmentation
occurs as the core collapses, either due to the turbulence within the core,
or due to the angular momentum of the core.

If an initially turbulent cloud begins to collapse under its own self-
gravity, it will probably fragment in the process, and eventually form a
binary or multiple star system. We discussed turbulence and the scale-
free nature of interstellar turbulence in Chapter 4. This produces higher-
order multiple stars as a natural consequence of the process, as well
as binary systems. Furthermore, it also produces binary systems with
a large variety of orbital separations and periods. This matches the
observations, where there is a wide range of binary separations seen.

If a core, which has a significant initial angular momentum, col-
lapses under its own self-gravity, then it will either form a flattened disc
structure, or if it has sufficient angular momentum it will fragment into
two or more components. These components can then each go on to
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number of binary systems
versus log(P ), where P is the
orbital period in days.

form a separate protostar. The result is likely to be a binary or multiple
star system.

Another popular explanation for the formation of binary stars is
by means of gravitational instability in circumstellar discs. This topic
is expanded further in Chapter 8. For now, it can be said that if a
gravitational instability occurs in a circumstellar disc, then it can go
on to form a star orbiting the primary star. This could be an important
mechanism for binary star formation.

Figure 5.11 shows a histogram for binary stars of number of stars
observed versus log(P), where P is the orbital period of the binary
system in days. The histogram can be approximated by a broad Gaus-
sian distribution – the smooth curve on Figure 5.11. The peak of the
Gaussian occurs at around a few times 104 days – roughly 200 yrs. This
corresponds to a peak orbital separation of roughly 30 AU. The width of
the Gaussian extends from less than 1 hr to roughly ∼105 yrs.

We note that these statistics were derived for stars similar to the Sun
– G-dwarf stars. Other stars show somewhat different statistics. In par-
ticular, very low-mass stars show different binary properties. We discuss
possible formation mechanisms of very low-mass stars in Chapter 8.

Recommended further reading
We recommend the following texts to the student for further reading on the topics

presented in this chapter.

Mannings, V., Boss, A. and Russell, S. (2000). Protostars and Planets IV. Tucson:

University of Arizona Press.

Reipurth, B., Jewitt, D. and Keil, K. (2007). Protostars and Planets V. Tucson:

University of Arizona Press.

Ward-Thompson, D. (2002). Isolated star formation: from cloud formation to core

collapse. Science, 295, 76–81.





Chapter 6

Young stars, protostars and
accretion – building a typical star

6.1 Pre-main-sequence evolution
In this chapter we follow the evolution from a collapsing core in a molec-
ular cloud to a newly formed star as it approaches the main sequence on
the Hertzsprung–Russell (HR) diagram. Figure 6.1 sketches the paths
followed during the various evolutionary stages on an HR diagram. In
this section we briefly outline the various evolutionary stages, and in
successive sections we deal with each stage in more detail.

6.1.1 Isothermal collapse

Once a pre-stellar core becomes gravitationally unstable and starts to
collapse, then initially the released gravitational energy is freely radiated
away and the collapsing fragment stays at roughly the same temperature
(isothermal). Its temperature would place it on the right-hand side of
the HR diagram (cool), and it has a relatively large radius and hence
luminosity. Consequently, it should begin its evolution at the upper right
of the HR diagram. Its luminosity is supplied by contraction and the
consequent release of gravitational potential energy.

The isothermal collapse phase produces a central concentration of
matter and ends with the formation of an opaque, hydrostatic object at
the centre, surrounded by a gaseous envelope. We define a hydrostatic
object as one which supports itself against gravity by its own internal
pressure.

With the increasing density of the gaseous envelope, it becomes
increasingly hard for the gravitational potential energy being released

117
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Fig. 6.1. Theoretical
pre-main-sequence tracks on
the Hertzsprung–Russell
diagram.

in the interior to diffuse to the outside and escape, and so the luminos-
ity decreases steadily. This part of the evolution is called the Hayashi
track. During this phase the interior remains convective. Since the tem-
perature at the outer edge is roughly constant while the luminosity is
decreasing, the Hayashi track is roughly vertically downwards on the HR
diagram.

The object then enters the main accretion phase during which the
central object builds up the majority of its mass (M�) from a surrounding
infalling envelope (of mass Menv) and accretion disc, while progressively
warming up.

The youngest objects have Menv � M�, and radiate by accretion
luminosity, given by

Lacc = G M� Ṁ

R�

. (6.1)

This accretion phase is accompanied by the ejection of a fraction
of the accreted material at high velocity in well-collimated flows along
two aligned and opposite directions, known as bipolar outflows. These
outflows are believed to help carry away the excess angular momentum
of the infalling matter, although the outflow mechanism is still not fully
understood. When the central object has accumulated most of its final,
main-sequence mass, it is known as a pre-main-sequence (PMS) star.
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6.1.2 Radiative interior

Eventually the interior becomes hot enough for radiative energy transport
to dominate, and it ceases to be convective. It continues to supply most
of its luminosity by contracting and releasing gravitational potential
energy, but now its luminosity and its surface temperature both rise, and
it moves to the left and upwards on the HR diagram, until it reaches the
main sequence. This part of the track is called the Henyey track.

When a star reaches the main sequence, the central density and
temperature become high enough for hydrogen burning to supply the
luminosity, and the star stops contracting. It can be demonstrated that
the maximum mass for star formation may be set because, as a star
accretes matter, its luminosity increases faster than its mass, and so
eventually the force of radiation pressure acting on accreting dust grains
reverses the accretion flow.

6.1.3 Protostars and PMS stars

We will continue to use the term pre-stellar core to refer to the ini-
tial region of the molecular cloud that starts to collapse, but we here
introduce the term ‘protostar’ to refer to the central hydrostatic object
in the middle of the core which forms early in the collapse phase and
continues to grow by accretion of the surrounding material to eventu-
ally form a star. We refer to the surrounding material as the envelope.
Once the envelope has essentially all accreted onto the central proto-
star (and its circumstellar disc) we will refer to the remaining central
object as a pre-main-sequence (PMS) star. We note that these definitions
are not unique and the reader may come across different definitions
elsewhere.

There are other components of the system that we have not yet
discussed. One is the circumstellar disc. This is a by-product of the
angular momentum of the accreting material, and is the precursor of
planet formation. The other is a bipolar outflow. This is seen in many
systems and is high-velocity material flowing away from the protostar
along the poles of the system. We discuss circumstellar discs and bipolar
outflows in Chapter 8. Figure 6.2 shows a sketch of all of the different
components of a protostellar system. It gives the relative positions of the
components and their approximate size-scales.

6.2 Hayashi tracks

We now calculate the path that a pre-main-sequence star might follow
on the HR diagram.
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6.2.1 Quasi-static contraction

Once the central protostar becomes too opaque to radiate energy away
as fast as energy is being released by gravitational contraction, it rapidly
heats up until it is close to hydrostatic equilibrium. At this stage, the
main source of opacity is the dust which is mixed in with the gas. After
the central protostar has reached approximate hydrostatic equilibrium,
it remains there, and thereafter it contracts quasi-statically.

From the virial theorem, we deduce that half of the gravitational
potential energy released goes to heat up the gas and maintain approxi-
mate hydrostatic equilibrium. We have

k T̄

m̄
≡ a2 ∼ v2

escape, (6.2)

where T̄ is the mean temperature, m̄ is the mean particle mass, a is
the sound speed within the star and vescape is the escape speed from the
surface of the star. Since

v2
escape ≡ 2G M∗

R
∼ G M2/3

∗ ρ1/3, (6.3)

the temperature is given by

T̄ = Gm̄

k
M2/3

∗ ρ1/3. (6.4)

The other half of the gravitational potential energy, �G , released supplies
the luminosity

L∗ 	 1

2

[
− d�G

dt

]
. (6.5)

Quasi-static contraction of a star is sometimes referred to as Kelvin–
Helmholtz contraction.
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We will now treat the central hydrostatic protostar like any other star
and consider its stellar structure. In this context we divide the star into
its outer layers, or atmosphere, and its interior. Do not confuse the stellar
atmosphere within the outer layers of the protostar with the surrounding
envelope of accreting material.

6.2.2 The stellar atmosphere

Eventually the central protostar becomes so hot (T
>∼ 2000 K) that

the dust evaporates. The main source of opacity is then the H− ion (a
proton with two electrons bound to it – albeit that the second electron
is only very weakly bound). The mean opacity, κ̄V , for the H− ion is
approximately given by

κ̄V 	 κ1ρ
3/2 T 9/2, (6.6)

where the subscript V indicates that this is the volume opacity
coefficient – the total cross-section per unit volume – and κ1 is a nor-
malisation constant.

We know that in the atmosphere of the protostar, transport of energy
has to be by radiation, because ultimately the energy escapes from the
star in the form of radiation. Moreover, since most of the gravitational
potential energy is released deep down in the interior of the protostar, we
know that the flux of radiation through the atmosphere is approximately
constant, and we can write

F 	 − 4 σSBT 3

κ̄V (ρ, T )

dT

d R
	 σSB T 4

∗ , (6.7)

where T∗ is the star’s surface temperature. Equation 6.7 is sometimes
termed the radiative equilibrium condition. To solve this equation, we
introduce an optical depth variable τ , defined by

dτ = −κ̄V d R, (6.8)

⇒ τ (R) = −
∫ R′=R∗

R′=R

κ̄V (R′) d R′. (6.9)

Note that the optical depth τ is measured inwards from the surface of
the star. The radiative equilibrium condition now reduces to

F 	 −σSB

d

dτ

[
T 4
] 	 σSB T 4

∗ , (6.10)

which has the solution

T 4(τ ) = T 4
∗ (τ + 1) . (6.11)



122 Young stars, protostars and accretion

This gives us the variation of temperature in the stellar atmosphere,
and we see that the temperature increases inwards from T = T∗ at the
surface, where τ = 0.

Hydrostatic balance in the atmosphere requires that

d P

d R
= − G M(R) ρ(R)

R2
	 − G M∗ ρ(R)

R2∗
, (6.12)

where we have put M(R) → M∗ and R → R∗, because the atmosphere
is only a very thin layer at the surface of the protostar. If we divide
equation 6.12 by κ̄V (τ ) ≡ κ̄(ρ(τ ), T (τ )), it becomes

d P

dτ
= − 1

κ̄V (τ )

d P

d R
	 G M∗ ρ(τ )

R2∗ κ̄V (τ )
. (6.13)

Substituting for the mean opacity from equation 6.6, and for the density
ρ from the ideal gas equation of state

P = ρ k T

m̄
(6.14)

=⇒ ρ = m̄ P

k T
, (6.15)

we obtain, after some algebra

d P

dτ
	 G M∗

R2∗ κ1

[
k

m̄ P(τ )

]1/2
1

T 4(τ )
,

=⇒ P1/2 d P

dτ
	 G M∗

R2∗ κ1

[
k

m̄

]1/2
1

T 4∗ (τ + 1)
, (6.16)

which can be integrated to give

P3/2(τ ) 	 3 G M∗
2 R2∗ κ1 T 4∗

[
k

m̄

]1/2

ln (τ + 1) ,

=⇒ P 	
[

3 G M∗ ln (τ + 1)

2 R2∗ κ1 T 4∗

]2/3 [
k

m̄

]1/3

. (6.17)

This tells us how the pressure varies in the stellar atmosphere as a
function of optical depth.

6.2.3 The transition point

Equations 6.11 and 6.17 describe how the temperature and the pressure
rise as one penetrates into the outer layers of a star. Convection will
develop if the temperature gradient required to drive the radiative flux
out of the star becomes too steep. Formally, the condition to prevent
convection is

dln[P]

dln[T ]
<

γ

(γ − 1)
. (6.18)
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But, from equations 6.11 and 6.17,

dln[P]

dln[T ]
≡ T (τ )

P(τ )

d P/dτ

dT/dτ
	 4

ln (τ + 1)
, (6.19)

and

γ

(γ − 1)
	 5

2
, (6.20)

where γ is the local adiabatic exponent (see Chapter 4), and we have
adopted the value γ 	 5/3 appropriate for a monatomic gas. It follows
that convection develops once

τ > e8/5 − 1 	 4, (6.21)

which is just below the surface – four photon mean free paths below the
surface in fact. By substituting for τ in equation 6.19, we find that at the
transition point, the pressure and temperature reach the values Ptrans and
Ttrans, given by

Ptrans 	
[

24 G M∗
10 R2∗ κ1 T 4∗

]2/3 [
k

m̄

]1/3

, (6.22)

Ttrans 	 1.4 T∗. (6.23)

This then defines the transition point from radiative to convective energy
transport.

6.2.4 The convective interior

The entire interior of the star (inside τ 	 4) is convective, so we have{
dln[P]

dln[T ]

}
interior

	 γ

(γ − 1)
	 5

2
,

hence {
P

T 5/2

}
interior

= constant. (6.24)

This ratio holds true at the transition point, so

Ptrans

T 5/2
trans

= constant = P̄

T̄ 5/2
, (6.25)

where P̄ and T̄ are mean values of the pressure and temperature in the
stellar interior. So this ratio remains roughly constant throughout the
stellar interior.
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In addition, global hydrostatic equilibrium requires that the internal
energy is roughly equal to the gravitational energy, so

P̄ R3
∗ ∼ G M2

∗
R∗

,

and

P̄ 	 G M2
∗

R4∗
, (6.26)

and hence

kT̄

m̄
∼ G M∗

R∗
,

thus

T̄ 	 G M∗ m̄

k R∗
. (6.27)

This gives us the mean pressure and temperature in the interior of the
protostar.

6.2.5 The surface temperature

Substituting into equation 6.25 for Ptrans, Ttrans, P̄ and T̄ , from equations
6.22, 6.23, 6.26 and 6.27, we obtain (after some algebra) an expres-
sion for the surface temperature, T�, of the protostar on its Hayashi
track

T∗ 	 {G13 [k/m̄]17 κ−4
1 M7

∗ R∗
} 1

31 . (6.28)

It follows that the luminosity, which is given by

L∗ 	 4 π R2
∗ σSB T 4

∗ , (6.29)

is

L∗ 	 {G52 [k/m̄]68 κ−16
1 M28

∗ R66
∗
} 1

31 σSB. (6.30)

Eliminating R∗ between equations 6.28 and 6.30, we obtain an expres-
sion for the luminosity in terms of the star’s mass and surface
temperature

L∗ ∝ M−14
∗ T 66

∗ , (6.31)

or, in other words

dln[L∗]

dln[T∗]

∣∣∣∣
M∗

	 66. (6.32)
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Rearranging

T∗ ∝ M0.212
∗ L0.015

∗ , (6.33)

or, alternatively

dln[T∗]

dln[M∗]

∣∣∣∣
L∗

	 0.212. (6.34)

These equations define the position and evolution of a protostar on the
HR diagram. From equation 6.32, it follows that the tracks for a star of
given mass are almost vertical on the HR diagram. From equation 6.34
it follows that tracks for more massive stars are hotter (but only slightly
hotter) than those for lower-mass stars (see Figure 6.1).

Since the luminosity is supplied by gravitational contraction, the
evolution is in the direction of decreasing R∗, and hence of decreasing
L∗. Thus stars evolve downwards on the HR diagram on their Hayashi
tracks.

6.3 Henyey tracks

6.3.1 Radiative equilibrium

As the protostar continues to contract and heat up, the dominant source of
opacity becomes the opacity due to bound–free and free–free transitions,
κ̄ , given by

κ̄ 	 κ2 ρ2 T −7/2, (6.35)

where κ2 is a normalisation constant, and ρ and T are the density and
temperature, respectively. This part of the protostellar evolution is known
as the Henyey track.

The temperature dependence of the opacity switches rather abruptly
from κ̄ ∝ T 4 to κ̄ ∝ T −7/2, and as the temperature continues to rise,
the opacity falls. At the same time the luminosity is decreasing, and the
mean internal temperature is increasing, so the star eventually becomes
radiative. In other words, the temperature gradient which is required to
drive pure radiative energy transport, dT/d R ∝ κ̄L/T 3, is reduced and
consequently the gas becomes stable against convection.

For a star in radiative equilibrium, we have

L∗ 	 R2
∗ σSB T 4

∗ , (6.36)

and

L∗ 	 R∗ σSB T̄ 4

κ̄
, (6.37)
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therefore

T∗ ∼ T̄ [κ̄ R∗]−1/4 ≡ T̄ τ̄−1/4, (6.38)

where these are standard results from stellar structure.
Substituting for the opacity from equation 6.35, for the mean internal

temperature from equation 6.4, and taking the density to be roughly
ρ ∼ M∗/R3

∗ , we obtain the optical depth in the form

τ̄ ∼ κ̄ R∗

	 κ2

[
M∗
R3∗

]2 [
G M∗m̄

k R∗

]−7/2

R∗

∼ κ2

[
G m̄

k

]−7/2

[M∗ R∗]−3/2 . (6.39)

This gives us the optical depth in the interior of the protostar.

6.3.2 The surface temperature

Substituting from equations 6.4 and 6.39 in equation 6.38, we obtain an
expression for the surface temperature of the star on its Henyey track

T∗ 	 κ
−1/4
2

[
G m̄

k

]15/8

M11/8
∗ R−5/8

∗ . (6.40)

It follows that the luminosity, which is again given by

L∗ 	 4 π R2
∗ σSB T 4

∗ (6.41)

is

L∗ 	 4 π σSB κ−1
2

[
G m̄

k

]15/2

M11/2
∗ R−1/2

∗ . (6.42)

Eliminating R∗ between equations 6.40 and 6.42, we obtain

L∗ ∝ M22/5
∗ T 4/5

∗ , (6.43)

so

dln[L∗]

dln[T∗]

∣∣∣∣
M∗

	 4/5, (6.44)

and

dln[L∗]

dln[M∗]

∣∣∣∣
T∗

	 22/5. (6.45)

From equation 6.44, it follows that the Henyey tracks for a star of given
mass are diagonal (from bottom right to top left) on the HR diagram.
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From equation 6.45, it follows that the Henyey tracks for more massive
stars are above (well above) those for less massive stars (see Figure 6.1).

Since the luminosity is supplied by gravitational contraction, the
evolution is in the direction of decreasing R∗, and hence in the direction
of increasing T∗ and increasing L∗ (see equations 6.40 and 6.42), in other
words a protostar evolves upwards and to the left on the HR diagram on
its Henyey track.

6.3.3 Very massive stars

For very massive stars, the opacity switches to electron scattering,

κ̄ 	 κ3 ρ, (6.46)

where κ3 is a normalisation constant, and so the mean optical depth is

τ̄ = κ̄ R∗ ∼ κ3 M∗
R3∗

. (6.47)

Substituting from equations 6.4 and 6.47 in equation 6.38, we obtain an
expression for the surface temperature of a massive star on its Henyey
track

T∗ 	 T̄ τ̄−1/4

	 G M∗ m̄

k R∗

[
κ3 M∗

R2∗

]−1/4

	
[

G m̄

k

]
κ

−1/4
3 M3/4

∗ R−1/2
∗ . (6.48)

It follows that the luminosity is again

L∗ 	 4 π R2
∗ σSB T 4

∗ (6.49)

and so

L∗ 	 σSB

[
G m̄

k

]4

κ−1
3 M3

∗ . (6.50)

From equation 6.50, we see that Henyey tracks for the most massive
stars should be approximately horizontal on the HR diagram. In other
words, for a star of given mass, the star evolves onto the main sequence
at approximately constant luminosity (see Figure 6.1).

Since the luminosity is supplied by gravitational contraction, the
evolution is in the direction of decreasing R∗, and hence (from equa-
tion 6.48) in the direction of increasing T∗.

Consequently we see that the most massive stars simply evolve
horizontally to the left on the HR diagram.
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6.3.4 The Kelvin–Helmholtz contraction time-scale

As a newly formed star evolves quasi-statically down its Hayashi track
(in approximate convective equilibrium), and across its Henyey track
(in approximate radiative equilibrium), its luminosity is supplied by the
release of gravitational potential energy (see equation 6.5)

L∗ 	 1

2

[
− d�G

dt

]
, (6.51)

and the time-scale for evolution is known as the Kelvin–Helmholtz
contraction time-scale, tKH, which is given by

tKH 	 |�G |
L∗

∼ G M2
∗

R∗ L∗
. (6.52)

As the star contracts onto the main sequence, R∗ decreases, and so this
time-scale increases, hence the evolution becomes slower and slower.
This is one of the reasons why it is much easier to observe pre-main-
sequence stars which are approaching the main sequence than protostars
which are still on Hayashi tracks. There are many more stars close to the
main sequence.

6.4 Accretion onto protostars

So far in this chapter we have studied what happens in the interior
and atmosphere of the protostar itself. We now turn our attention to
the interaction between the protostar and its surroundings – namely
the envelope and the circumstellar disc (see Figure 6.2). We begin by
considering the envelope.

6.4.1 Spherically symmetric accretion

Consider an infinitely extended, stationary background medium with
uniform density ρ0, and uniform isothermal sound speed a0. Now place
a point-mass M∗ in the medium. Due to its gravity, the point-mass
will grow by accreting the background medium. How rapidly accretion
occurs will depend on a number of factors, for instance the star’s mass
M∗, the envelope density ρ0, the sound-speed in the envelope a0, and also
on the speed with which the point-mass moves relative to the background
medium.

Other factors that affect the accretion include: how the isothermal
sound speed in the gas changes as it flows towards the point-mass;
and what happens to the gas as it approaches the point-mass. Here we
consider the simplest possible case. We assume that the point-mass is
at rest relative to the background gas. We assume that the accretion is
spherically symmetric. We assume that the gas responds isothermally
(i.e. P = a2

0 ρ) with sound speed a0 constant.
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We also assume that the self-gravity of the inflowing gas is negligi-
ble, so the gravitational field is dominated by the central point-mass. We
seek a steady-state solution in which: (a) the flow variables depend only
on position and not on time; and (b) the accretion rate, Ṁ∗, is constant.
We also assume that the central point-mass grows sufficiently slowly
that its increase in mass can be neglected. This form of accretion, with
these assumptions, is known as the Bondi accretion problem.

These assumptions are reasonable provided the central point-mass
is much less than the Jeans mass (see equation 4.24) in the background
medium, namely that

M∗ � MJeans ∼ a3
0

G3/2ρ
1/2
0

, (6.53)

which is usually the case for a star in the general interstellar medium.
Acceptable solutions are constrained by the boundary conditions. In

particular, we require that at large distances from the central point-mass,
the density tends to its background value, and the inflow velocity tends
to zero

as r → ∞, ρ → ρ0 and v → 0. (6.54)

We define the radial velocity v to be positive inwards.

6.4.2 Bondi accretion

To derive the equation of motion, we consider the time interval (t, t +
dt), but keep in mind that we are looking for a steady-state solution –
one in which the flow variables ρ and v are functions of r only, and not
t . Material which at time t is at radius r with inward velocity v(r ) will
by time t + dt have reached radius r + dr , where

r + dr = r − v(r )dt,

=⇒ dr = −v(r )dt, (6.55)

and so its velocity will have become

v(r + dr ) = v(r ) + dv

dr
(r )dr,

so

v(r + dr ) = v(r ) − dv

dr
(r )v(r )dt. (6.56)

The inward acceleration is given by

a(r ) = v(r + dr ) − v(r )

dt
. (6.57)
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Combining equations 6.56 and 6.57, we obtain

a(r ) = −dv

dr
(r )v(r ). (6.58)

This inward acceleration is produced by a combination of the grav-
itational acceleration due to the central point-mass, which is given
by

G M∗
r 2

,

and the acceleration due to the pressure gradient in the inflowing gas,
given by

1

ρ(r )

d P

dr
(r ).

Combining these terms with equation 6.58, we obtain

−v(r )
dv

dr
(r ) = G M∗

r 2
+ 1

ρ(r )

d P

dr
(r ). (6.59)

Using the relation between pressure and density

P(r ) = a2
0 ρ(r ) (6.60)

we obtain

d P

dr
(r ) = a2

0

dρ

dr
(r ). (6.61)

Substituting in equation 6.59 this reduces to

−v(r )
dv

dr
(r ) = G M∗

r 2
+ a2

0

ρ(r )

dρ

dr
(r ). (6.62)

This is the general equation of motion for a spherically symmetric,
steady-state, non-self-gravitating accretion flow.

6.4.3 Variation of flow speed with radius

We now use the steady-state assumption again. For there to be a steady
state, the rate at which material flows inwards across any spherical
surface must be constant and equal to the rate at which material accretes
onto the central point-mass. Hence we have the condition

4 π r 2 ρ(r ) v(r ) = Ṁ∗. (6.63)

Taking logs,

log[4π ] + 2 log[r ] + log[ρ(r )] + log[v(r )] = log[Ṁ∗]. (6.64)
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Differentiating equation 6.64 with respect to r , we obtain

2

r
+ 1

ρ(r )

dρ

dr
(r ) + 1

v(r )

dv

dr
(r ) = 0, (6.65)

for a constant accretion rate. Therefore

1

ρ(r )

dρ

dr
(r ) = − 2

r
− 1

v(r )

dv

dr
(r ). (6.66)

Substituting equation 6.66 into equation 6.62, we obtain

−v(r )
dv

dr
(r ) = G M∗

r 2
− a2

0

[
2

r
+ 1

v(r )

dv

dr
(r )

]
,

=⇒ − G M∗
r 2

+ 2a2
0

r
=
[
v(r ) − a2

0

v(r )

]
dv

dr
(r ),

=⇒ dv

dr
= −

[
G M∗

r 2
− 2a2

0

r

] [
v(r ) − a2

0

v(r )

]−1

. (6.67)

This is the nonlinear differential equation which determines the variation
of flow speed with radius.

6.4.4 The sonic point

Like many nonlinear differential equations, equation 6.67 has a singular
point, where the denominator is zero. dv/dr becomes infinite at the
singular point (which cannot be physical), unless the numerator is also
zero there.

The denominator is zero when v = a0, or in other words, the flow
velocity is equal to the sound speed. This is known as a sonic point, and
we denote this radius as Rson. We can put

v(Rson) = a0,

=⇒ v(Rson) − a2
0

v(Rson)
= 0. (6.68)

To avoid a singularity the numerator must also be zero. Accordingly, we
must have

G M∗
R2

son

− 2a2
0

Rson

= 0

=⇒ Rson = G M∗
2a2

0

. (6.69)

This will then stop equation 6.67 from tending to infinity at the sonic
point.
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Separating the variables r and v in equation 6.67, we obtain[
v − a2

0

v

]
dv =

[
− G M∗

r 2
+ 2a2

0

r

]
dr, (6.70)

which can be integrated to give

v2

2
− a2

0 ln[v] = G M∗
r

+ 2a2
0 ln[r ] + a2

0 ln[K ]. (6.71)

The last term on the right-hand side of equation 6.71, (a2
0 ln[K ]), is the

constant of integration. We have written it in this form for two reasons.
First, it must have the dimensions of speed-squared (like all the other
terms in the equation), and a0 is the only constant speed in the problem.
Second, another logarithmic term is required, because the sum of all the
logarithmic terms,

a2
0 { ln[v] + 2ln[r ] + ln[K ] },

must give the log of a dimensionless quantity. This sum is (a2
0 ln[vr2 K ]).

So K must have dimensions [L−3T 1] for the combined quantity [vr2 K ]
to be dimensionless.

Rearranging equation 6.71, we have

v2

2
− G M∗

r
= a2

0 ln[vr 2 K ]. (6.72)

Substituting from equation 6.63

r 2v = Ṁ∗
4 π ρ

. (6.73)

We obtain

v2

2
− G M∗

r
= a2

0 ln

[
Ṁ∗ K

4 π ρ

]
. (6.74)

We can now invoke the boundary conditions to fix K. Remember these
are

as r → ∞, ρ → ρ0 and v → 0. (6.75)

In this limit, the left-hand side of equation 6.74 clearly vanishes, and so
the right-hand side must vanish too. This requires

Ṁ∗ K

4 π ρ0

= 1, (6.76)

=⇒ K = 4 π ρ0

Ṁ∗
. (6.77)

Substituting this back into equation 6.72, we obtain

v2

2
− G M∗

r
= a2

0 ln

[
4 π ρ0 r 2 v

Ṁ∗

]
. (6.78)
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We can rearrange this equation to make the accretion rate the subject of
the equation thus

Ṁ∗ = 4 π ρ0 r 2 v exp

[
G M∗
a2

0 r
− v2

2 a2
0

]
. (6.79)

For a given protostar in a particular location, the values of ρ0, a0, M∗ and
Ṁ∗ are fixed. Then equation 6.79 becomes a relation between v and r .

6.4.5 Physically acceptable solutions

In order to visualise the physical content of equation 6.79, and to deter-
mine which values of Ṁ∗ give acceptable solutions, we introduce a
dimensionless accretion rate, Ṁdim, where

Ṁdim = a3
0 Ṁ∗

π ρ0 G2 M2∗
, (6.80)

a dimensionless inward radial velocity, vdim, where

vdim = v

a0

, (6.81)

and a dimensionless radius, rdim, where

rdim = 2 a2
0 r

G M∗
≡ r

Rson

. (6.82)

Substituting these into equation 6.79 reduces it to

Ṁdim = r 2
dim vdim exp

[
2

rdim
− v2

dim

2

]
. (6.83)

Figure 6.3 shows the variation of velocity vdim with radius rdim, for
different values of accretion rate Ṁdim. These curves can be scaled to
physical variables for any given combination of ρ0, a0, and M∗, using
equations 6.80, 6.81 and 6.82.

From Figure 6.3 it is clear that not all the solutions are physically
acceptable. To begin with, for intermediate values of Ṁ∗, the solutions
do not extend continuously from r = 0 to r = ∞. These solutions are
marked with dotted lines. Additionally, where these solutions do exist,
v(r ) is double-valued, which is clearly non-physical – at any given radius
there cannot be two radial velocities.

For high values of Ṁ∗, the solutions are continuous in 0 ≤ r ≤ ∞,
but as r → ∞, v does not go to zero. These solutions are marked with
dashed lines. These solutions must also be rejected, because we require
that v → 0, as r → ∞.

This leaves the low values of Ṁ∗, for which again the solutions are
continuous in 0 ≤ r ≤ ∞. For these solutions v → 0, as r → ∞, as
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sonic
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r/Rsonic

ν/a0

Fig. 6.3. The variation of
inward radial velocity with
radius for different solutions to
the Bondi accretion problem.
Those marked with dotted or
dashed lines are not physically
acceptable.

required. Therefore these solutions are physically acceptable. They are
marked with solid lines. The inflow accelerates until it reaches Rson, and
then slows down as it approaches the central point-mass.

6.4.6 The supersonic solution

The continuum of acceptable solutions corresponds to a continuum of
accretion rates, Ṁ∗, up to and including a maximum value which corre-
sponds to a solution in which the inflow speed just reaches the speed of
sound before decreasing again as the matter settles towards the centre.
However, because this solution goes through the sonic point, there is
an alternative solution interior to the sonic point, in which the inflow
goes on accelerating to supersonic speeds, and v → ∞ as r → 0. This
solution is marked with a heavy solid line.

This latter solution will probably be the preferred solution in nature,
as it is the one which generates most entropy. Since it goes through the
sonic point, we can substitute vdim = 1 and rdim = 1 in equation 6.83, or
v = a0 and r = G M∗/2a2

0 in equation 6.79, to obtain

Ṁdim = e3/2,

or, in our normal variables

Ṁ∗ = e3/2 π ρ0 G2 M2
∗

a3
0

. (6.84)

This is the critical accretion rate which allows the steady-state flow to
become supersonic (v > a0) near the star, by passing through the sonic
point. It is unique. As the material approaches the centre, it asymptotes
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Fig. 6.4. The variation of
density (left-hand side) and
inward radial velocity
(right-hand side) with radius,
for the physically acceptable
solutions to the Bondi
accretion problem.

to free-fall. We note that this result cannot be obtained by dimensional
analysis, because there are too many parameters (more than three: G,
M∗, ρ0 and a0).

Figure 6.4 sketches the variation of density and velocity with radius
for the physically acceptable solutions, both those which settle subson-
ically onto the star, and the one which free-falls supersonically onto
the star. Given a solution for v(r ), the density can be determined from
equation 6.63, i.e.

ρ(r ) = Ṁ∗
4πr 2v(r )

. (6.85)

6.5 Observations of protostars – the birth line

So far in this chapter we have considered theoretical predictions of how
a protostar should evolve towards the main sequence from its beginnings
as a pre-stellar core. In the remainder of this chapter we compare some
of those predictions with observations.

One of the earliest observational discoveries relating to the Hayashi
track was that there were no protostars seen in the top right-hand side
of the HR diagram, where theory predicts the start of the Hayashi track
to be.

In fact it was noted that there appeared to be a line on the HR
diagram, beyond which no protostars were seen. This line is shown on
Figure 6.5 and it can be seen to cut directly across the Hayashi track. It
is called the birth line.

To understand the origin of the birth line one must remember that
the HR diagram is normally plotted in terms of optical colours and
luminosities – compare Figure 6.5 with Figure 1.1.
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It was soon realised that the reason why no protostars are seen at the
top of the Hayashi track is because these are the youngest protostars,
and they are therefore surrounded by the most gas and dust. Hence, no
optical radiation can escape from the envelopes around these objects as
their envelopes are too optically thick.

Consequently, it was realised that to observe the youngest protostars
one must observe at longer wavelengths than the optical, where the
dust optical depth is lower. In fact, the youngest protostars are only
seen at long wavelengths, such as the far-infrared and millimetre-wave
regimes.

6.6 Millimetre-wave continuum observations

Surveys carried out to trace millimetre-wave dust continuum emission
from molecular clouds have discovered objects which appear to be newly
formed, hydrostatic protostars. The youngest of these are designated
Class 0 protostars to indicate their youth – see Figure 6.6.

Specifically, Class 0 protostars are defined by the following observa-
tional properties: evidence for a central hydrostatic object, as indicated
by the detection of a compact centimetre-wave radio continuum source
or other indicators of an internal heating source (the radio continuum
is interpreted as emission from an accretion shock at the surface of
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the protostar – cf. Section 5.2); centrally peaked (but slightly extended)
millimetre-wave continuum emission, tracing the presence of a circum-
stellar envelope; a high ratio of millimetre-wave luminosity to total
luminosity, suggesting the envelope mass exceeds the central protostar
mass (see below); a spectrum resembling a single temperature blackbody
at T ∼ 15–30 K – see Figure 6.7.

The presence of a compact central object distinguishes Class 0
protostars from the pre-stellar cores discussed in the previous chapter.
The other properties distinguish Class 0 protostars from more evolved
protostars.

The millimetre-wave luminosity, Lmm, is simply proportional to the
total dust mass in the protostar’s envelope (for a given temperature),
and hence to the total envelope mass, Menv (see Section 2.8). The total
(bolometric) luminosity, Lbol, is proportional to the total luminosity of
the protostar. This luminosity is provided by accretion onto the central
protostar. This can be seen from equation 6.1 to be proportional to the
mass of the protostar, M�, multiplied by the accretion rate.

In the simplest case of a constant accretion rate, Lbol is proportional
to M�. Therefore, the ratio of Lmm/Lbol should roughly track the ratio
of Menv/M�. Hence, it is used as an evolutionary indicator (decreasing
with time) for protostars. The limiting ratio of Lmm/Lbol for Class 0
protostars is usually chosen to select objects which have Menv/M� ≥ 1.

Class 0 protostars are therefore excellent candidates for being very
young accreting protostars in which a hydrostatic core has formed but
has not yet accumulated the majority of its final mass. Typical ages of
Class 0 protostars are ∼ a few ×104 up to ∼105 years.
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Many Class 0 protostars are multiple systems, sharing a common
envelope and sometimes a circumbinary disk. These proto-binary stars
probably formed by dynamical fragmentation during the isothermal col-
lapse phase. The discs of Class 0 protostars are typically a factor of ∼10
times less massive than their surrounding circumstellar envelopes.

6.7 Millimetre-wave spectroscopy
Spectroscopic signatures of infall have been seen towards many Class 0
protostars. Infall motions can be traced by partially optically thick molec-
ular lines, which exhibit asymmetric self-absorbed profiles skewed to the
blue. Figure 6.8 shows a typical infall profile. Infall profiles are most
often observed in rotational lines of molecules, or molecular ions such
as HCO+.

The reason why infall produces this kind of profile can be understood
as an extension of the analysis discussed in Chapter 3. There we showed
how a spectral line seen in emission, with a high optical depth, has a
profile which is flat at the centre of the line, due to saturation. We also
showed how a spectral line seen in absorption appears as a trough, when
seen against brighter background emission.

If a line is sufficiently optically thick, then these two effects can
combine to produce what is known as a self-absorbed profile, with two
peaks either side of an absorption trough. The trough is caused by
foreground material absorbing at the same wavelength as background
material is emitting. In this case the absorption is produced by static
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material in the molecular cloud, outside of the collapsing protostellar
envelope – see Figure 6.9.

For a collapsing protostellar envelope, the infalling material is mov-
ing towards the centre. The nearer half of the envelope is moving away
from the observer, and is red-shifted, while the further half of the enve-
lope is moving towards the observer and is blue-shifted. Hence the
two peaks can be thought of as tracing the two halves of the infalling
envelope – see Figure 6.9.

However, an additional complication arises due to always preferen-
tially seeing material that is closer to the observer. Figure 6.9 shows how
on the red-shifted side the observer sees the cooler outer material, further
from the protostar, while on the blue-shifted side the observer sees the
warmer inner material, closer to the protostar. Warmer material emits
more strongly. Hence we see a blue-skewed asymmetric profile associ-
ated with infall. The asymmetry can sometimes be produced without the
need for a physical temperature gradient if the molecular excitation con-
ditions are right for the particular molecule being studied, but it always
indicates some kind of infall.

6.8 Infrared and optical observations

In the infrared, three classes of protostars and pre-main-sequence stars
have been identified, based on the spectral slope (or spectral index), α =
dlog(λFλ)/d log(λ), of their continuum spectra between 2 and 20 µm.
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These classes represent an evolutionary sequence that follows on from
the Class 0 protostars discussed above.

After Class 0 protostars, the next youngest protostars detected in the
infrared are known as Class I sources, and are characterised by α > 0.
They have typical ages ∼1–2 × 105 yr and are surrounded by both a
disc and a circumstellar envelope of combined mass a few tenths of a
solar mass. They derive a substantial fraction of their luminosity from
accretion.

The next evolutionary stage is known as the Class II stage. These
sources are also known as Classical T Tauri stars (see below) when
they are observed in the optical. Class II protostars have −1.5 < α < 0.
They are surrounded by a circumstellar disc, but have no circumstellar
envelope.

The final evolutionary stage of infrared pre-main-sequence stars are
known as Class III sources. They have α < −1.5, and are also known
as weak-line T Tauri stars when observed in the optical (see below).
They have no circumstellar envelope, but are surrounded by a remnant
circumstellar disc. Figure 6.10 illustrates the different protostellar
stages. We now discuss some of the optical properties of Class II and
III T Tauri stars.

T Tauri stars are young low-mass stars approaching the main
sequence along Henyey tracks. They have masses in the range 0.2–
2 M� and luminosities in the range 0.1–20 L�. They are found in T
associations (see Chapter 1) in molecular clouds. Such stars were first
identified because they have strong emission lines in their spectra, in
particular Hα. These emission lines are believed to arise in the hot gas
accreting onto the central star.
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Fig. 6.10. Schematic diagram
of the different protostar
stages.

T Tauri stars are divided into two types: Classical T Tauri (CTT) stars
(alias Class II objects) and weak-line T Tauri (WTT) stars (alias Class III
objects). CTT stars have stronger emission lines implying higher levels
of accretion from disc to star. WTT stars have weaker emission lines,
implying less accretion, and hence presumably a later stage of evolution.

The association of all T Tauri stars with molecular clouds implies
that the cloud is the remnant of the material from which the T Tauri stars
have recently formed. It is also seen that T Tauri stars have strong infrared
emission (see above). This arises from the circumstellar accretion discs.
Such discs have radii of a few hundred AU. Estimates of disc masses
range from 0.001 to 0.1 M�.

These discs have been observed directly by the Hubble Space Tele-
scope. Figure 6.11 shows images of discs around pre-main-sequence
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Fig. 6.11. Discs, jets and
outflows around young stars.

stars. The discs can be seen in absorption in these optical images against
the background of diffuse starlight. We return to this topic in Chapter 8.

T Tauri stars have also been detected with X-ray telescopes. The
origin of the X-ray emission is not known exactly, but X-ray surveys
have more than doubled the number of known T Tauri stars.

T Tauri stars are often seen to be variable in their optical emission.
This may be partly due to variable obscuration by a non-uniform density
circumstellar disc or envelope. Additionally, time-varying accretion can
also cause variable emission. A large amount of material accreting at one
time from the inner disc onto the star can lead to an excess of accretion
luminosity from the star itself. This can lead to the star brightening for
a short time. The most extreme of these events are known as FU Orionis
outbursts, after the first star observed to exhibit this phenomenon.

Recommended further reading

We recommend the following texts to the student for further study.

Clemens, D. P. and Barvainis, R. (1994). Clouds, Cores and Low-Mas Stars.

Astronomical Society of the Pacific Conference Series, vol. 65. San Francisco:

Astronomical Society of the Pacific.

Johnstone, D., et al. (2004). Star Formation in the Interstellar Medium.

Astronomical Society of the Pacific Conference Series, vol. 323. San

Francisco: Astronomical Society of the Pacific.

Stahler, S. W. and Palla, F. (2004). The Formation of Stars. Weinheim: Wiley-VCH.



Chapter 7

The formation of high-mass stars, and
their surroundings

7.1 Introduction
In this chapter we look at those phenomena associated with the forma-
tion of higher-mass stars. High-mass stars are usually defined as stars
of mass ∼8 M� or more. This definition is usually taken, since any star
of this mass has typically already begun hydrogen burning before the
accretion stage has finished. This provides some problems in dealing
with the formation of such stars, since one cannot separate observation-
ally the luminosity due to the accretion, from the intrinsic luminosity
of the protostar.

However, the study of high-mass stars is important from the point
of view of large-scale studies of galaxies, since the luminosity of a
galaxy is typically dominated by the luminosity of its highest mass
stars. Hence the observed evolution of a galaxy in terms of its colours
and spectra is dominated by the continued formation and evolution of
its constituent high-mass stars. Furthermore, high-mass stars are the
dominant sources of energy input into the interstellar medium. Hence
they are very important for the dynamics and energy budget of a galaxy.
In particular, the HII region phase (see below) is particularly important
for ionising the gas in the interstellar medium.

Observing high-mass star formation is further complicated by a
number of factors. High-mass stars are rarer than low-mass stars, hence
the nearest high-mass star-forming regions are on average further away
than their low-mass counterparts, making the spatial resolution of obser-
vations proportionately lower. The formation and evolution of high-mass
stars also occurs much faster than their lower-mass equivalents, making
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examples of stars in each evolutionary stage rarer. In addition, high-
mass stars never appear to form in isolation, but only in clusters, making
it more difficult to study the effects and influences of individual stars
separately.

Consequently, the theory of the formation of high-mass stars lags
behind that for low-mass stars. We still have no detailed theory of the pro-
cesses involved. Furthermore, the theories that have been proposed are
matters of some debate. Hence, we begin by presenting a phenomenolog-
ical outline of high-mass star formation, based on the empirical phases
that are observed. We then go on to present theoretical calculations on
the best-studied phase of high-mass star formation, namely HII regions.

7.2 The main stages of high-mass star formation

High-mass stars follow a somewhat different evolution from low-mass
stars. There appear to be (at least) three main evolutionary stages
that newly forming high-mass stars undergo: infrared-dark clouds;
hot molecular cores; and HII regions. This latter stage is itself sub-
divided into compact HII regions (including hyper- and ultra-compact
HII regions), and classical HII regions.

7.2.1 Infrared-dark clouds

The earliest observed phase of high-mass star formation is the infrared-
dark cloud (IRDC) stage. IRDCs are very dense, massive, inter-stellar
clouds. In fact, they are so dense that they are even optically thick at
infrared wavelengths of ∼1–10 µm. They are typically more dense, and
of higher mass, than the clouds from which lower-mass stars form. Little
or no detectable star formation has typically begun in these clouds.

The mass of an infrared-dark cloud can be hundreds, or even thou-
sands of solar masses. Often, dense, dark cores can be seen within each
cloud. These are known as infrared-dark cores. These cores can have
masses of up to ∼100 M�, and are typically only 0.1 pc or less in radius.
Hence they have densities of up to ∼1012 hydrogen molecules m−3.
These are the most likely known sites of high-mass star formation.

Figure 7.1 shows a typical IRDC. The grey-scale image shows the
emission at the infrared wavelength of 8 µm. A dark region can be
seen in the lower right of the image. The contours show emission at
the much longer wavelength of 850 µm. They can be seen to reach
a peak exactly where the 8-µm emission is dark. This means that the
dark region is much colder than its surroundings, since colder objects
emit at longer wavelengths. Typical temperatures of IRDCs are around
10–20 K. It also shows that there must be a high degree of extinction
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Fig. 7.1. An image of an
infrared-dark core. The grey-
scale shows emission at 8 µm.
The contours show emission
at 850 µm. Notice the dark
area in the 8-µm emission.
This is an infrared-
dark core. The contours of
850-µm emission peak at this
point, showing that the core
emits at the very much longer
submillimetre wavelengths.

towards this region, blocking out background starlight at 8 µm. The
shorter wavelength emission is absorbed by the dust grains in the cloud
and re-emitted at longer wavelengths.

7.2.2 Hot cores

Hot molecular cores are dense interstellar clouds in which the star-
formation process has just begun. They are believed to have evolved
from infrared-dark clouds after the clouds have begun to be heated by
the newly forming stars within them. They exhibit complex molecular
chemistry because the heating process initiated by the star formation
warms the dust grains within the clouds and evaporates much of the
grain mantle material into the gas phase (see Chapter 4). Hot cores
have similar masses to IRDCs, but have much higher temperatures and
luminosities, which can exceed 104 L�.

Figure 7.2 shows infrared images of some hot cores. Unlike the
IRDCs, these are bright at wavelengths around 8 µm. Hence their tem-
peratures are much higher, as their emission peaks at much shorter
wavelengths. Typically they lie in the range of ∼100–200 K. The high-
est resolution images detect multiple bright objects in the centres of the
hot cores. These are believed to be newly forming stars that are heating
up the cores.

Hot cores are rich in molecular species that have been released
from the surfaces of the dust grains. For example, many carbon chain
molecules are seen, including C+, HCO+, C2H2, C3H+, C6H+

7 and
HC9N, among many others. These molecules formed on the dust grains
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Fig. 7.2. Pictures of three hot
cores seen in the mid-infrared
at 18.5 µm (left-hand
column) and 7.9 µm (middle
and right-hand columns).
Contours represent
brightness. The right-hand
column shows enhanced
resolution images of the
middle column, using a
technique which attempts to
improve the resolution of the
data.

during the IRDC phase and were subsequently released into the gas phase
when the newly formed stars heated their surroundings and evaporated
the dust grain mantles. When the stars are sufficiently hot and luminous
they begin to ionise their surroundings and the next phase begins.

7.2.3 HII regions

HII regions are sharply defined regions of photoionised gas. The ionising
photons normally come from O- and B-type stars, which are young,
massive stars. Such stars are both extremely luminous (L∗

>∼ 104L�),
and extremely hot, with surface temperatures T∗

>∼ 20 000 K.
Therefore, they emit large numbers of energetic photons which

ionise and then (following recombination) re-ionise the surrounding
hydrogen gas. In fact, most of the ionising photons emitted by the OB
stars in an HII region are used maintaining ionisation against recombi-
nation, rather than ionising neutral gas for the first time.

The archetypal HII region is the Orion Nebula. There are larger and
more luminous HII regions, but being close (at a distance of ∼400 pc)
Orion is the best observed. The ionised gas is predominantly hydrogen,
so the ionised region is known as an HII region (remember that HI is
neutral atomic hydrogen, and HII is singly ionised hydrogen, or H+).
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Fig. 7.3. A radio image of a
group of HII regions. There is
an extended classical HII, as
well as two compact HII
regions marked ‘A’ and ‘B’.

Compact HII regions are small areas of ionised gas that surround
newly formed high-mass stars. Smaller regions are called ultra-compact
HII (UCHII) regions, and the smallest of all are known as hyper-compact
HII (HCHII) regions. HCHII regions are typically defined as having sizes
≤0.01 pc. They have densities ≥1012 m−3.

UCHII regions are usually taken to have a size of between 0.01
and 0.1 pc. They typically have densities ≥1010 m−3 and are generally
found around B-type or O-type stars. Compact HII regions have sizes
between 0.1 and 0.5 pc. Figure 7.3 shows a radio image of some compact
HII regions. When compact HII regions burst out of their surrounding
molecular cloud they are seen in the optical as classical HII regions.
Clearly the more massive the central star, the sooner an HII region will
emerge from its cloud, for a given geometry.

Classical HII regions are typically taken to be anything greater than
0.5 pc in size. Once again, they are areas of ionised gas that surround
recently formed high-mass stars such as O stars or clusters of stars. They
last for the main-sequence life-time of a typical O-type star. Figure 7.4
shows an optical image of an HII region.

Usually an HII region is ionised by the radiation from several stars,
either an OB association, or a subgroup of an OB association (for short,
an OB subgroup). The OB subgroup which supplies the radiation ionis-
ing the Orion Nebula is sometimes called Ori 1c, and is dominated by
the four stars in the Trapezium Cluster.

Since OB stars burn out rather quickly – the main-sequence lifetime
of an OB star is <∼3 × 107 years – HII regions are concentrated near sites
of recent and on-going star formation, in giant molecular clouds, in the
spiral arms of disc galaxies. Much of the light which delineates the spiral
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Fig. 7.4. An optical image of
an HII region. Note how the
bright stars that have formed
in the centre of the cloud have
dispersed the surrounding
material.

arms in optical images of external galaxies comes from HII regions, and
recently formed OB stars. These HII regions can be considerably larger
than Orion, and frequently they are arranged along the spiral arm with
semi-regular spacing, almost like beads on a string.

When an OB star (or a subgroup of such stars) first forms, it is
usually buried deep inside a giant molecular cloud, within the remains
of the accretion envelope from which the star has grown – and may
still be growing. Consequently the gas surrounding the OB star is very
dense, and the HII region it excites is extremely compact. Such compact
HII regions are not normally visible in the optical, due to the dust in the
surrounding gas, but they can be detected at radio wavelengths, which
are not significantly attenuated by dust.

There is a rather effective thermostat, due to line cooling, operating
in HII regions, which keeps the temperature of the gas within at most
a factor of 2 of 104 K. Thus, the effect of an OB star switching on
inside a giant molecular cloud is to create a bubble of gas in which
the temperature has suddenly increased by a factor ∼103 (from ∼10 K
to ∼104 K), and additionally the total number density of particles n total,
has increased by a factor ∼4, due to the conversion of each hydrogen
molecule into two protons plus two electrons

H2 −→ 2p+ + 2e−. (7.1)

As a result, the pressure,

P = ntotal kT, (7.2)
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has increased by a net factor ∼4 × 103, and the HII region expands
rapidly, sweeping up a shocked layer of dense neutral gas around its rim.

This layer may eventually accumulate a sufficient column density of
cool, neutral gas to become gravitationally unstable and fragment. A new
generation of stars will probably then condense out of the gravitationally
unstable fragments. If some of these new stars are massive stars which in
turn excite new HII regions, the process can repeat itself. This is called
sequential, or self-propagating, star formation (see Chapter 1).

****

****

*
***

GMC

GMC

GMC

Fig. 7.5. Schematic cross-
section of a giant molecular
cloud, in which an OB
subgroup forms and excites
a compact HII region; the HII
region then expands under its
internal pressure; finally the HII
region breaks out of the GMC
(cf. Figure 1.11).

In addition, an HII region may expand sufficiently to break out of
the giant molecular cloud in which it was formed (see Figure 7.5). It
will then become optically visible. In general we expect OB stars not to
be born precisely at the centres of symmetric giant molecular clouds,
and so the resulting HII regions are likely to break out of their parental
GMC on one side. This is what appears to be happening in Orion (see
Figure 1.10), where there is a dense molecular cloud behind the ionised
nebula, and the ionised gas is streaming towards us and away from the
molecular cloud at speeds v ∼ 10 km s−1.

Eventually, the expansion of an HII region may reduce its density to
such a low value that it becomes very faint, and hard to detect. Alterna-
tively, an HII region may disappear if the stars supplying it with ionising
radiation stop doing so, and the gas then recombines. At this stage,
there may be a supernova explosion (or even a sequence of supernova
explosions) since this is the manner in which many OB stars end their
luminous life-times.

Mature HII regions (i.e. optically visible ones like Orion) are charac-
terised by a spectrum rich in emission lines, of which the most prominent
are the recombination lines of hydrogen, which we discuss below, and
certain forbidden lines of O+, O++ and N+.

The first two of the above listed evolutionary stages (IRDCs and
hot cores) are less well understood physically, whereas HII regions have
been studied extensively. Consequently, we first consider how to build a
high-mass star, and then go on to discuss the details of the HII region
phases of high-mass star formation.

7.3 Building a high-mass star

For a high-mass star approaching the main sequence, the Kelvin–
Helmholtz time-scale is less than the free-fall time-scale. Consequently,
a small hydrostatic hydrogen-burning core forms at the centre, and grows
by accretion. In other words, the material that has already reached the
central regions of the protostar has time to relax to something very like a
main-sequence star, except that it goes on growing in mass and therefore
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evolves up the main sequence. In the following we make the assumptions
that the star accretes spherically symmetrically, and that the accreting
medium remains optically thin.

7.3.1 Accretion vs radiation pressure

The inward acceleration due to gravity at distance D from the core, agrav,
is given by

agrav = G Mcore

D2
. (7.3)

The outward acceleration due to radiation pressure acting on dust is
given by

aradn = L core

4πcD2

ndust σdust

ρ
. (7.4)

Here the first term on the right-hand side (L core/4πcD2), is simply
the flux of momentum carried by the radiation from the core, i.e. the
radiation pressure. The number of dust grains in unit volume, ndust, is
given by

ndust = ρZdust

mdust

. (7.5)

Here Zdust is the dust-fraction by mass, ρ is the total mass in unit volume,
which has to be carried along by the radiation pressure force acting on
the dust, and mdust is the mass of a single dust grain, given by

mdust = 4π r 3
dust ρdust

3
, (7.6)

where rdust is the radius of a dust grain and ρdust is the density within a dust
grain. In addition, σdust, the effective cross-section presented to radiation
pressure by a single dust grain, is given by

σdust 	 πr 2
dust, (7.7)

providing the radiation has wavelength λ
<∼ 2πrdust.

7.3.2 Reversing the accretion

If the ratio of luminosity to mass, L core/Mcore, becomes sufficiently large,
the outward acceleration due to radiation pressure acting on the dust in
the accreting material overpowers the inward acceleration due to gravity.

Combining the above equations, we obtain the condition for accre-
tion to be reversed, in spherically symetric accretion,

aradn > agrav, (7.8)
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and hence

L core

4πcD2

ndust σdust

ρ
>

G Mcore

D2
, (7.9)

giving

L core

Mcore

>
16πcGρdust�dust

3Zdust

. (7.10)

Depending on the properties of the dust, this yields an apparent upper
mass limit for main-sequence stars of ∼8–20 M�. Stars of greater mass
than this are seen, so either our assumptions in the above calculation
are wrong, or there are other processes at work to build a higher-mass
star.

The chief assumption which is most likely to be invalid is that of
spherically symmetric accretion. Any angular momentum in a collapsing
cloud is likely to lead to some form of flattened structure, possibly a disc
of material. Accretion from such a structure will then preferentially
occur in the equatorial plane and hence the net outward force felt due to
radiation pressure will be reduced.

Another potentially invalid assumption is that the dust grain pop-
ulation in the vicinity of newly forming massive stars is the same as
elsewhere in the interstellar medium. It is possible that the abundance
of dust is significantly decreased by dust destruction, either by a shock,
or by the radiation from the protostar. The dust grain size distribu-
tion may also be different, in that all grain mantles will probably be
evaporated in the vicinity of the protostar, and hence dust grains in gen-
eral may be considerably smaller. These two factors would significantly
decrease the effective radiation pressure experienced by the accreting
material.

In fact, for the formation of the first generation of stars after the Big
Bang, known as Population III stars, there would be no heavy elements
and hence no dust. Consequently, these stars could have been very much
more massive than high-mass stars formed today. In this case the radi-
ation pressure would act most strongly on the electrons in the infalling
ionised gas, via Thomson scattering, and the maximum luminosity to
mass ratio in the spherically symmetric case would be ∼3 × 104 L�/M�.
This is known as the classical Eddington limit.

Alternatively, our assumption about the effective depth of the gravi-
tational well into which the accreting material is falling may be invalid.
High-mass stars mostly appear to form in clusters of stars, such as the
Orion Nebula Cluster. In this case the accreting material could expe-
rience the potential well of the whole cluster. This would enhance the
inward acceleration due to gravity, since Mcore is replaced by Mcluster in
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Fig. 7.6. Evolutionary tracks
in the Hertzsprung–Russell
diagram for non-accreting
protostars (thick black lines)
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equation 7.3. This mechanism could not explain high-mass stars that
form in isolation.

Other processes that have been proposed to form high-mass stars
include stellar mergers. In this scenario, the sheer density of stars at
the centres of clusters is predicted to cause gravitational interactions
between neighbouring protostars. These interactions may lead in extreme
cases to protostars actually coalescing and merging together to form a
higher-mass star.

7.3.3 Pre-main-sequence evolution with accretion

A low-mass star such as the Sun undergoes pre-main-sequence evolution
as described in Chapter 6, and arrives at the main sequence when hydro-
gen burning begins. It then remains on the main sequence at approxi-
mately the same point for the majority of its life-time, because its mass
doesn’t change much.

A high-mass star also reaches the main sequence when hydrogen
burning begins. However, the difference for a high-mass star is that it
is probably still accreting at the point when it begins to burn hydrogen.
Consequently, its mass continues to grow even after it has reached the
main sequence, and it evolves along the main sequence.

Figure 7.6 shows some theoretical pre-main-sequence evolutionary
tracks for stars of different masses. The black lines show the predicted
evolution for protostars that are not accreting, labelled according to the
protostar’s mass. The grey lines show the predicted evolution for stars
which all start at the same initial protostellar mass (0.1 M�), but which
all accrete at differing rates from 10−3 to 10−6 M� yr−1.
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The predicted tracks of the accreting protostars all reach the main
sequence at different points, depending on when their hydrogen burning
commences. However, thereafter they track along the main sequence
as they continue to grow in mass. The tracks shown in Figure 7.6 are
somewhat model-dependent, but they give the reader some idea of the
different processes that probably have to be taken into account when
studying high-mass star formation. The best-studied aspects of high-
mass star formation are HII regions. Therefore, we will now look at HII
regions in more detail.

7.4 Line radiation from HII regions
The photons of ultraviolet (UV) radiation emitted by a high-mass star
can ionise any hydrogen atom with which they interact, provided that
their wavelength is less than 91.2 nm (corresponding to a photon energy
in excess of 13.6 eV†), which is known as the Lyman limit. In this case
the electron is removed from the atom, creating an HII ion (i.e. a proton)
and a free electron. The HII region extends as far as the luminosity of
the star permits, to a radius known as the Strømgren radius. Within this
radius protons and free electrons continually interact and recombine to
form neutral hydrogen atoms, and photons continually ionise the atoms
to create protons and free electrons.

7.4.1 Recombination cascades

The ionised gas in an HII region is continually recombining by means
of the following reaction

p+ + e− −→ HI + γν, (7.11)

where γν represents the emission of a high-energy photon. Not all recom-
binations go straight into the ground state. About two out of every three
recombinations go initially into an excited state. This is usually followed
by a cascade of radiative de-excitations down to the ground state, and
then re-ionisation from the ground state. Re-ionisation from an excited
state is very rare under normal circumstances, because the cascade to
the ground state occurs very quickly.

In the interstellar medium, and even in very compact HII regions,
the density is much lower than in the best possible laboratory vac-
cuum. Therefore the separations between nearest-neighbour particles are
large. For instance, in an HII region with electron density ne ∼109 m−3,
the mean separation between nearest-neighbour particles is ∼106 nm.

† 1 electron-volt (eV) =1.602 × 10−19 J.
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Consequently, energy levels of atomic hydrogen having large princi-
pal quantum number nquant, and hence large extent are well defined and
can be occupied. The cross-sectional radius rn depends on the principal
quantum number according to the following relation

rn = h2n2
quant

4π 2mee2
	 0.05 nm n2

quant. (7.12)

In contrast, at higher densities the electron clouds of these high-
nquant levels would overlap. Therefore these high-nquant levels – which are
defined by considering a single isolated hydrogen atom – do not exist in
a high-density gas.

In addition, the selection rules governing spontaneous radiative tran-
sitions in excited hydrogen favour transitions in which the principal
quantum number changes by a small amount; transitions with �nquant =
−1 are preferred over those with �nquant =−2, which in turn are preferred
over those with �nquant =−3, etc.

Thus, when an electron/proton pair recombines into an excited state
of high principal quantum number, the ensuing cascade to the ground
state normally entails the emission of a large number of line photons
with frequencies ranging from the radio right through to the ultraviolet.
We emphasise that there is a cycle involved here. Electron/proton pairs
repeatedly recombine to form hydrogen atoms. Then the hydrogen atom
is re-ionised by UV continuum photons from the central star.

At any time, in a typical HII region, the fraction, fH, of hydrogen in
the atomic form is small compared with the fraction which is ionised;
and the fraction of atomic hydrogen in excited states is small compared
with the fraction which is in the ground state, waiting to be re-ionised

fexcited � fground-state � fionized. (7.13)

We represent the cycle by a sequence of reactions. There is radiative
recombination

X+
f + e− −→ Xk + γν

>∼ 1010 s, (7.14)

which produces continuum radiation (the time-scales on the right-hand
side of this and the subsequent equations are estimates for conditions
in the Orion Nebula). Remember that X can represent any species, but
in the majority of cases is just hydrogen. Then there is the radiative
de-excitation cascade

Xk −→ X j + γν ;
X j −→ Xi + γν ;
Xi −→ Xg + γν ;


 <∼ 0.1 s, (7.15)
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which produces multiple line emission, since the photon represented
by γν has a different frequency in each case. Finally, there is photo-
ionisation

Xg + γνLyc −→ X+
f ′ + e− >∼ 107 s, (7.16)

which produces continuum absorption. In the above, g is the ground
state, i , j , k are excited bound levels, and f , f ′ are free states of the
electron/proton pair (see Figure 7.7).

Suppose that we are observing a particular recombination line due to
the transition j −→ i . There are hundreds of levels into which the initial
recombination can occur, and from each of these there is a multitude of
paths to the ground state. Not all of these paths will lead through the
transition j −→ i which we are interested in.
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Fig. 7.7. The cycle of
recombination, de-excitation
and ionisation in an HII region.

7.4.2 Nomenclature

Astronomers use a rather clumsy nomenclature for recombination lines,
which reflects the history of their discovery. We should keep in mind that
the first recombination lines observed were lines of hydrogen observed
in absorption in stellar spectra, and they were one of the principal
motivations for the development of quantum mechanics. With the benefit
of hindsight, we might devise a better nomenclature.

The various recombination lines of hydrogen are grouped in series.
Each series corresponds to a particular lower level, i.e. a particular
quantum number n lower. Most of the series are named after one of the
physicists involved in their discovery.

The series for which the lower level is the ground state (n lower =1) is
called the Lyman series (‘Ly’ for short). The individual lines are called

Lyα, nupper = 2 → nlower = 1, λ = 121.5 nm;
Lyβ, nupper = 3 → nlower = 1, λ = 102.5 nm;
Lyγ, nupper = 4 → nlower = 1, λ = 97.2 nm;
etc.

These lines all fall in the UV.
The series for which the lower level is the n lower = 2 level is called

the Balmer series. The individual lines are called

Hα, nupper = 3 → nlower = 2, λ = 656.2 nm;
Hβ, nupper = 4 → nlower = 2, λ = 486.1 nm;
Hγ, nupper = 5 → nlower = 2, λ = 434.0 nm;
etc.

These lines fall in the optical, and were therefore the first series to be
observed. Being the first, they were simply labelled Hydrogen-α etc., or
Hα for short.
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The next series of hydrogen recombination lines is called Paschen
(n lower = 3), then Brackett (n lower = 4), then Pfund (n lower = 5), and so on.
These series fall at successively longer wavelengths.

The convention used in naming other recombination lines is to give
(i) the element symbol, (ii) the principal quantum number of the lower
level, and (iii) a Greek letter to designate the change in the principal
quantum number, according to

�n ≡ nupper − nlower =




1 α

2 β

3 γ

4 δ

etc.

(7.17)

Thus H109α is the line of hydrogen involving a transition from nupper =
110 to n lower = 109; this line falls at λ 	 6 cm. C165β is the line of
carbon involving a transition from nupper = 167 to n lower = 165; this line
falls at λ 	 11 cm. He+143γ is the line of singly ionised helium which
involves a transition from nupper = 146 to n lower = 143; this line falls at
λ 	 4 cm. These are all radio recombination lines.

Radio recombination lines are particularly important because they
do not suffer from significant dust obscuration, and so they can be used
to measure radial velocities (using the Doppler effect) on the far side
of the Galaxy. This in turn allows us to map out the distribution and
kinematics of ionised gas throughout the disc of the Galaxy.

7.5 Recombination rate and emission measure

The recombination rate, RX , per unit volume, for species X is given by

RX = αX (T ) nX+ ne, (7.18)

where αX (T ) is the recombination coefficient at temperature T , and
nX+ and ne are the numbers per unit volume of ionised species X+

and electrons respectively. From now on we will concentrate mainly on
hydrogen, which has

αH(T ) 	 3 × 10−16 m3 s−1 (T/K)−3/4 . (7.19)

If the fraction of all recombinations which leads through the tran-
sition j → i is f ji (T ), then the integrated volume emission coefficient
for the line j → i is

j = αH(T ) np ne f ji (T )
hν0

4π
, (7.20)

where we have replaced nX+ with n p, the number of free protons, for
the case of hydrogen. It is found that fHα ∼ 0.3, i.e. only about 30% of
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hydrogen recombinations produce an Hα photon. Similarly fHβ ∼ 0.1,
so only about 10% of hydrogen recombinations produce an Hβ photon.

If we look at an HII region on a line of sight where there is negligible
background intensity, and if the emission from the HII region is optically
thin, then (from Chapter 2), we have

I obs
ν 	

∫
los

Sν(τν) dτν

	
∫

los

jν(l) dl 	
∫

los

j(l) φν(l) dl, (7.21)

where I obs
ν is the observed intensity,

∫
los

represents an integration along
the line of sight with respect to l, and φν(l) is the line profile function.
It follows that the integrated intensity is

I =
∫

line

Iν dν =
∫

los

j(l) dl

= hν0

4π

∫
los

αH(T (l)) f ji (T (l)) np(l) ne(l) dl. (7.22)

If the emitting medium has uniform temperature T = T0, then

I = hν0

4π
αH(T0) f ji (T0)

∫
los

np(l) ne(l) dl. (7.23)

The integral in the last equation is called the emission measure of
the line of sight, EMH, where

EMH =
∫

los

np(l) ne(l) dl. (7.24)

If the emitting medium has uniform density, then

EMH = np ne L , (7.25)

where L is the length of the intercept which the line of sight makes with
the emitting medium.

Thus the integrated intensity of an optically thin recombination line
enables us to estimate the emission measure of the emitting medium
from equation 7.23. Suppose we also have an independent estimate of
the linear size L of the emitting region, say from its distance D and
its angular size θ , via L = Dθ (assuming spherical symmetry, which is
often a good assumption). Then we can combine this with the emission
measure to obtain

〈np ne〉 = EMH

L
. (7.26)

Typically in an HII region, we have

np ∼ ne, (7.27)
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and so the hydrogen emission measure obtained from a hydrogen recom-
bination line gives

〈n2
e 〉 ∼ 〈npne〉 = EMH

L
. (7.28)

We see that, from the study of hydrogen recombination lines, we can
estimate the density of gas in an HII region.

7.6 Free–free radio continuum emission

An accelerated charge emits radiation. When the accelerated charge is
a thermal electron (i.e. one of the ordinary electrons with a Maxwellian
velocity distribution), and it is accelerated by the Coulomb attraction of
a nearby thermal proton, the radiation is called free–free emission, or
thermal bremsstrahlung radiation.

We must keep in mind that this emission is produced by an elec-
tron/proton pair, not by an isolated electron. The designation ‘free–free’
simply refers to the fact that the electron/proton pair is in a free state,
both before, and after, the interaction which produces the emission.
Bremsstrahlung is the German for ‘braking radiation’, since the emit-
ting electron/proton pair are being braked rather than accelerated.

When the accelerated charge is a relativistic electron (i.e. a cosmic-
ray electron), and it is accelerated by the Lorentz force, FL, given by

FL = −ev × B

c
, (7.29)

due to the interstellar magnetic field B, the radiation is known as syn-
chrotron emission.

The monochromatic volume emission coefficient for free–free radi-
ation, jν , is given by

jν = βν(T )n pne, (7.30)

where, at radio wavelengths

βν(T ) 	 3 × 10−51 J m3 s−1 ster−1 Hz−1

(
T

K

)−1/2 (
ν

Hz

)−0.1

. (7.31)

Note that the volume emission coefficient in equation 7.30 depends
on the product of the number densities of the species involved in the
two-body interactions which give rise to the free–free photons.

Since the initial and final free states of the electron/proton pair
are populated as in thermodynamic equilibrium at temperature T (i.e.
there is a Maxwellian distribution of electron and proton velocities at a
common temperature T ), the source function approximates also to its
thermodynamic equilibrium value, i.e. the Planck function (or blackbody
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function) at temperature T

Sν 	 Bν(T ) 	 2kT ν2

c2
. (7.32)

The last expression is the Rayleigh–Jeans approximation to the Planck
function, which is only valid when hν � kT .

Combining equations 7.30, 7.31 and 7.32, we obtain an expression
for the monochromatic volume opacity coefficient

κν = jν
Sν

	 10−11 m5
(

ν

Hz

)−2.1
(

T

K

)−1.5

n pne. (7.33)

Hence the optical depth is given by

τν =
∫

los

κν(l) dl

	 10−11 m5
(

ν

Hz

)−2.1
∫

los

(
T (l)

K

)−1.5

n p(l) ne(l) dl. (7.34)

If the line of sight is dominated by an HII region having uniform tem-
perature (T0), then the last equation reduces to

τν = 10−11 m5
(

ν

Hz

)−2.1
(

T0

K

)−1.5 ∫
HII

n p(l) ne(l) dl, (7.35)

where
∫

HII
implies integration through the HII region. Moreover, the

integral in the above equation is the emission measure EM H – see
equation 7.24. Hence

τν = 10−11
(

ν

Hz

)−2.1
(

T0

K

)−1.5(EM H

m−5

)
. (7.36)

Thus the emission measure also gives us a handle on the optical depth.
If we look at an HII region with uniform temperature T0, and the

background intensity is negligible, we should observe free–free radiation
with intensity given by

Iν(τν) = Sν

[
1 − e−τν

] = Bν(T0)
[
1 − e−τν

]
. (7.37)

We can identify a critical frequency νturnover, such that the spectrum
of free–free radiation has different asymptotic forms for ν � νturnover and
ν � νturnover. Here νturnover is the frequency at which the optical depth equals
unity.

At high frequencies, the emission is optically thin, so we can write,
for ν � νturnover and τν � 1

Iν 	 Bν(T0)τν ∝ ν−0.1T −0.5
0 EM H . (7.38)
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turnover

optically
thick

optically
thin

νturnover log10 [ν/Hz]

log10 [Iν]Fig. 7.8. The free–free
continuum spectrum from an
HII region, showing the
transition from optically thick
at ν � νturnover to thin at
ν � νturnover.

Conversely, at low frequencies the emission is optically thick, so we
can write, for ν � νturnover and τν � 1

Iν 	 Bν(T0) 	 2kT0ν
2

c2
. (7.39)

Figure 7.8 illustrates a typical free–free continuum spectrum from
an HII region. We can clearly identify the two asymptotic forms, and the
turnover frequency νturnover.

From the intensity at low frequencies (where the emission is optically
thick), we can obtain an estimate of the gas kinetic temperature

T0 	 c2 Iν

2kν2
, (7.40)

for ν � νturnover. Typical HII regions have temperatures T0 ∼ 104 K and
almost always have 7000 K <∼ T0

<∼ 14 000 K.
We can also obtain an estimate of the emission measure from the

turnover frequency. The optical depth at the turnover frequency is 1.
Hence

10−11

(
T0

K

)−1.5 (
νturnover

Hz

)−2.1
(
EM H

m−5

)
= 1, (7.41)

and therefore

EM H 	 1011 m−5

(
T0

K

)1.5 (
νturnover

Hz

)2.1

. (7.42)

From equation 7.28 we have

n p ∼ ne ∼
(
EM H

L

)1/2

, (7.43)
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and once again we have an estimate of the gas density. Remember that
these estimates of n p and ne are strictly speaking root-mean-square
values averaged along the line of sight.

7.7 Size of an HII region – Strømgren radius

The size of an HII region is also known as the Strømgren radius, and
is determined by equating the rate at which the central star (or stars)
emits hydrogen-ionising photons, ṄH, to the rate at which protons and
electrons recombine throughout the total volume of the HII region

ṄH = 4π R3
HII

3
α∗

H(T )n pne 	 4π R3
HII

3
α∗

H(T )n2
e . (7.44)

Here, RHII is the radius of the HII region, and α∗
H(T ) is the recombination

coefficient for atomic hydrogen, taking into account only recombinations
into excited states, given by

α∗
H(T ) ∼ 2 × 10−16 m3 s−1

[
T

K

]−3/4

. (7.45)

We have obtained the last expression in equation 7.44 by approximat-
ing n p 	 ne. This is justifiable on the grounds that all elements other
than hydrogen are so much less abundant that they cannot contribute
many additional free electrons. The next largest contribution is from
helium, which could increase ne by up to 20%, but seldom increases
ne by more than 10%, because in general there are not enough photons
with sufficient energy to ionise helium.

It follows from equation 7.44 that

RHII 	
[

3ṄH

4πα∗
H(T )n2

e

]1/3

, (7.46)

which simply embodies the fact that if the density in an HII region is
reduced, the rate of recombination per unit volume, ∼α∗

H(T )n2
e , decreases

too, and so the ionising radiation from the central star can maintain
ionisation against recombination in a larger volume.

In obtaining equation 7.46 we have assumed that all of the ionising
radiation from the central star is used up maintaining ionisation against
recombination, rather than ionising new material at the edge of the HII
region. We shall show later that this is a reasonable approximation.
Nonetheless, because the HII region expands due to its over-pressure,
the density in the already-ionised gas falls, and hence the recombination
rate in this gas falls too. Hence there is always a little ionising radiation
left over to ionise new material at the edge of the HII region, and so the
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total mass of ionised gas,

MHII = 4π R3
HIIn pm p

3XH
	 ṄHm p

α∗
H(T )ne XH

, (7.47)

increases with time (XH is the hydrogen mass fraction). The difference
between α∗

H(T ) and αH(T ), the recombination coefficient for hydrogen
(see equation 7.19) is that α∗

H (T ) takes into account only recombinations
going initially into excited states. In other words it neglects recombina-
tions straight into the ground state. The reason that this approximation
can be made is the following.

When a proton and an electron recombine straight into the ground
state of atomic hydrogen, an ionising photon is emitted. Typically this
ionising photon has energy just above the threshold for ionisation. The
cross-section presented by a hydrogen atom to the photon is there-
fore very large. Consequently, the ionising photon is very likely to be
absorbed close to its point of emission, producing a compensatory ioni-
sation. The upshot is that recombinations straight into the ground state
do not have to be reversed by photons from the central star, and therefore
they need not be taken into the reckoning when we are calculating the
radius of the HII region. This is called the ‘on-the-spot approximation’.

Substituting T0 ∼ 104 K, whence α∗
HI(T0) ∼ 2 × 10−19 m3 s−1, and

adopting typical reference values, equations 7.46 and 7.47 give the
Strømgren radius,

RHII 	 1.7 pc

[
ṄH

1050 s−1

]1/3 [ n0

109 m−3

]−2/3

, (7.48)

and the mass of the HII region,

MHII 	 600 M�

[
ṄH

1050 s−1

][ n0

109 m−3

]−1

. (7.49)

The reason that the recombination coefficient decreases with increas-
ing temperature (see equation 7.45) is that at higher temperatures the
protons and electrons are moving faster. Therefore, although they pass
one another more frequently, the time available for them to interact is
shorter, and the interaction cross-section is smaller.

7.8 Ionisation fronts

Here we estimate the thickness of the transition region at the edge of
an HII region, where the degree of ionisation falls from (say) ∼90% to
(say) ∼10%. We conclude that the transition is usually extremely abrupt,
and therefore can reasonably be described as a ‘front’.
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Suppose that Fn(r ) is the radial number flux of hydrogen-ionising
photons from the central star. The subscript ‘n’ is to denote that Fn

measures the number of hydrogen-ionizing photons crossing unit area
in unit time (rather than the amount of radiant energy crossing unit
area in unit time). Suppose also that the HII region has approximately
uniform temperature,

T (r ) 	 T0 ∼ 104 K, (7.50)

and approximately uniform density, n0, so that

ne 	 n p 	 n0 − nHI. (7.51)

In putting ne 	 n p, we have again neglected contributions to the electron
density ne from the ionisation of elements other than hydrogen.

The equation of ionisation balance equates the rate of hydrogen
ionisation per unit volume, IHI, to the rate of hydrogen recombination
per unit volume, RHI, namely

IHI 	 Fn (r ) nHI (r ) σ̄HI 	 RHI 	 α∗
HI(T0) ne(r ) n p(r ), (7.52)

where σ̄HI is the mean cross-section presented by a hydrogen atom to an
average ionising photon from the central star, σ̄HI ∼ 7 × 10−22 m2.

Next we substitute

ne(r ) = n p(r ) = x(r )n0, (7.53)

and

nHI(r ) = (1 − x(r )) n0, (7.54)

where x(r ) = ne(r )/n0 is the degree of ionisation at radius r . Equa-
tion 7.52 then reduces to

Fn(r ) = α∗
HI(T0)n0

σ̄HI

x2(r )

[1 − x(r )]
. (7.55)

We shall also need the result

d Fn

dr
= α∗

HI(T0) n0

σ̄HI

x(r )[2 − x(r )]

[1 − x(r )]2

dx

dr
(7.56)

for later.
We concentrate first on the interior of the HII region, and consider

the spherical shell-element between r and r + dr . The rate at which
hydrogen-ionising photons flow across the spherical surface with radius
r is 4πr2 Fn(r ), and so the rate at which hydrogen-ionising photons are
used up within the element is given by

dN 1
n = − d

dr

[
4πr 2 Fn(r )

]
dr. (7.57)
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The rate at which hydrogen-ionising photons are used up within the
element maintaining ionisation against recombination is also given by
the volume of the element times the rate of recombination per unit
volume

dN 2
n = 4πr 2dr

[
α∗

HI(T0) ne(r ) n p(r )
]
. (7.58)

Equating 7.57 and 7.58, which both give the rate at which hydrogen-
ionising photons are used up in the element, and cancelling the common
factor dr , we obtain the equation of radiative transport for the flux of
hydrogen-ionising photons, in the form

d

dr

[
4πr 2 Fn(r )

] = −4πr 2
[
α∗

HI(T0) ne(r ) n p(r )
]
. (7.59)

If we anticipate the result that in the interior of the HII region the
degree of ionisation is very high, i.e. x ∼ 1, and approximate

ne(r ) = n p(r ) = n0, (7.60)

then the equation of radiative transport reduces to the form

d

dr

[
4πr 2 Fn(r )

] = −4πr 2
[
α∗

HI(T0) n2
0

]
, (7.61)

which is readily integrated to give

[
4πr 2 Fn(r )

] = −4πr 3α∗
HI(T0) n2

0

3
+ ṄHI. (7.62)

The last term is the constant of integration, which ensures that as r → 0
the flow of hydrogen-ionising photons across r approaches the output of
ionising photons from the central star

Limitr→0

{
4πr 2 Fn(r )

} = ṄHI. (7.63)

Rearranging equation 7.62, we obtain

Fn = ṄHI

4πr 2
− α∗

HI(T0)n2
0r

3
, (7.64)

where the first term on the right-hand side represents the unattenuated
flux from the central star falling off as r−2, and the second term represents
the attenuation due to absorption of the hydrogen-ionising photons.

Turning now to the edge of the HII region, we can no longer assume
that x ∼ 1, because in this region x falls to values x � 1. However,
anticipating our final result, we can assume that the transition region (or
ionisation front, IF) is very thin, as compared with the overall radius of
the HII region

�RIF � RHII, (7.65)
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Fig. 7.9. The variation of the
degree of ionisation x with
radius r , in the vicinity of the
boundary of an HII region.

and so

r 	 RHII. (7.66)

With this assumption, we can neglect the curvature of the transition
region, and reduce the equation of radiative transport for the hydrogen-
ionising photons to the form

d Fn

dr
	 − [α∗

HI(T0) ne(r ) n p(r )
]
. (7.67)

In effect we have put 4πr2 → 4π R2
HII in equation 7.59, and then can-

celled this term on both sides of the equation.
Substituting for d Fn/dr from equation 7.56, and for ne(r ) and n p(r )

from equation 7.53, we obtain, after some algebra

dx

dr
= −n0σ̄HI

[1 − x(r )]2x(r )

[2 − x(r )]
. (7.68)

We can integrate equation 7.68 by separating variables

[2 − x(r )] dx

[1 − x(r )]2x(r )
= −n0σ̄HI dr, (7.69)

and obtain the result

2 − 1

[1 − x(r )]
+ ln

[
x2(r )

[1 − x(r )]2

]
= n0σ̄HI[r − r1/2], (7.70)

where the constant of integration, 2 + n0σ̄HIr1/2, has been chosen so
that r1/2 is the radius where x = 0.5. In other words, the displacement
r − r1/2 is to be measured from the point where the degree of ionisa-
tion is 50%. The variation of x with r is illustrated schematically on
Figure 7.9.

Typical values of the left-hand side of equation 7.70, for representa-
tive values of x , range from ∼5 for x = 10% to ∼−12.5 for x = 90%.
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These must be equated to the right-hand side of equation 7.70, i.e.
n0σ̄HI[r − r1/2]. In addition, the number flux of ionising photons, Fn(r ),
can be calculated, normalised to the value at r1/2, namely Fn(r1/2). From
equation 7.55, this is given by

Fn(r )

Fn(r1/2)
= 2x2(r )

[1 − x(r )]
. (7.71)

This fraction ranges in value, typically, from ∼0.02 for x = 10% to
∼16 for x = 90%.

If we define the thickness of the transition region, �RIF, to be the
distance between where the degree of ionisation is 90% and where it is
10%, we have

�RIF ≡ r0.1 − r0.9 = [r0.1 − r1/2] − [r0.9 − r1/2]

= [(5.3) − (−12.5)]

[n0σ̄HI]
= 17.8

[n0σ̄HI]
. (7.72)

Substituting σ̄HI 	 7 × 10−22 m2, this becomes

�RIF 	 2.5 × 1022 m−2

n0

	 0.0008 pc
[ n0

109 m−3

]−1

. (7.73)

Combining this result with equation 7.48, we have

�RIF

RHII

	 0.0005

[
ṄHI

1050 s−1

]−1/3 [ n0

109 m−3

]−1/3

. (7.74)

Evidently, the assumption that the transition region is very thin is fully
justified, and it is reasonable to describe it as an ionisation front.

7.9 Expansion of an HII region
We shall assume that, when a massive star forms, the output of hydrogen-
ionising photons ṄHI builds up instantaneously and then stays at a con-
stant value during the main-sequence life-time of the star. In other words,
the star ‘switches on’ abruptly. The subsequent evolution can then be
discussed in terms of three consecutive phases. We start by analysing the
initial static phase, then the intermediate phase, in which the HII region
undergoes dynamical expansion, and lastly the final phase, in which the
expansion halts. We note that some of the most massive stars may burn
out before the final phase is reached.
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7.9.1 Initial static ionisation phase

In the first phase, the gas is static and the hydrogen-ionising photons
from the central star ionise the gas out to a radius, R0, defined by

R0 ≡ RHII(t = 0), (7.75)

which is given by the requirement of overall balance. The rate at which
hydrogen-ionising photons are emitted by the central star must equal the
total rate of recombination within the HII region (see equation 7.48),
hence

R0 	 1.7 pc

[
ṄHI

1050 s−1

]1/3 [ n0

109 m−3

]−2/3

. (7.76)

Here n0 is the density of hydrogen nuclei (in all forms) in the surrounding
undisturbed neutral gas. We have assumed that this is also the density of
protons and electrons, i.e.

n p 	 ne 	 n0, (7.77)

in the initial HII region. This will be true provided that the gas does not
have time to move significantly during this first phase, as the ionising
flux from the newly switched-on central star first sweeps over it. We can
justify this as follows.

The time-scale on which the initial equilibrium is established (i.e.
the time-scale for the hydrogen ionising output from the central star to
come into balance with the total rate of recombination in the HII region)
is of order the recombination time-scale – i.e. the average time that a
free proton or electron has to wait before it finds a mate with which to
recombine, given by

trecomb = [α∗
HI(T )n0

]−1 	 170 yrs
[ n0

109 m−3

]−1

. (7.78)

The time-scale for expansion of an HII region driven by its over-pressure
is the sound-crossing time, given by

texpand 	 R0

aHII

	 1.7 × 105 yrs

[
ṄHI

1050 s−1

]1/3 [ n0

109 m−3

]−2/3

, (7.79)

where aHII, the isothermal sound speed in the HII region, is given by

aHII =
[

kTHII

m̄HII

]1/2

	 12 km s−1. (7.80)

In this equation we have put THII = 104 K, and m̄HII = 10−27 kg.
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We require trecomb � texpand, which reduces to

n0 � 1 m−3

[
ṄHI

1050 s−1

]−1

. (7.81)

This is clearly satisfied by the neutral gas in regions like giant molecular
clouds where massive stars, and hence HII regions, form.

7.9.2 The dynamical expansion phase

In the second phase, the dynamical expansion phase, the HII region
expands due to its over-pressure. Since it expands initially at a speed
∼aHII ∼ 12 km s−1, which is much greater than the sound speed, aHI, in
the neutral gas outside the HII region (aHI ∼ 0.3 km s−1), the ionisation
front at the edge of the HII region is preceded by a shock front, which
sweeps the neutral gas up into a dense shell.

To simplify the analysis, we shall make the following assumptions:
We assume that global ionisation balance is maintained throughout, i.e.

ṄHI = 4π R3(t)

3
α∗

HI(T0) n2(t), (7.82)

so

n(t) =
[

3ṄHI

4π R3(t)α∗
HI(T0)

]1/2

= n0

[
R(t)

R0

]−3/2

. (7.83)

We assume that the dense layer between the ionisation front and the
shock front is always very thin, because the shock compression is very
large (see below). Hence both fronts have radial speed Ṙ(t) ≡ d R/dt .

We assume that the pressure in the shocked gas is approximately
equal to the ram pressure of the undisturbed neutral gas flowing into the
shock front at speed Ṙ(t)

Ps(t) = ρ0 Ṙ2(t) = n0m p

XH
Ṙ2(t). (7.84)

We further assume that the pressure in the shocked gas is approxi-
mately equal to the pressure in the HII region

Ps(t) = PHII(t) = n(t)m p

XH
a2

HII. (7.85)

Finally, we assume that, although the pressures in the shocked layer
and in the HII region are functions of time, they are uniform. This means
that the evolution must be sufficiently slow that there is time for pressure
waves to even out changes as they occur. This is usually the case, except
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Fig. 7.10. The variation of
density with radius through an
HII region and the swept-up
shell of neutral gas
surrounding it.

in the very early stages of the evolution. See Figure 7.10 for a schematic
representation of an HII region.

Eliminating Ps between equations 7.84 and 7.85, we obtain

n(t) = n0 Ṙ2(t)

a2
HII

. (7.86)

Then eliminating n(t) between equations 7.83 and 7.86, we have

Ṙ(t)R3/4(t) = aHII R
3/4
0 . (7.87)

This can be integrated to give

R7/4(t) = R3/4
0 [R0 + aHIIt] ∼ R3/4

0 aHIIt. (7.88)

The last expression in equation 7.88 gives the limiting behaviour at late
times. This is an adequate approximation once

t � R0

aHII

	 0.17 Myr

[
ṄHI

1050 s−1

]1/3 [ n0

103 cm−3

]−2/3

, (7.89)

which is short compared with the main-sequence life-times of OB stars.
Using the limiting behaviour, we conclude that the time taken to

expand by a factor Rf/R0 ∼ 250 (see equation 7.98 below) is

tf 	 R0

aHII

[
Rf

R0

]7/4

∼ 40 Myr

[
ṄHI

1050 s−1

]1/3 [ n0

109 m−3

]−2/3

, (7.90)

which is long compared with the main-sequence life-times of all but the
lowest-mass OB stars. We conclude that the output of hydrogen-ionising
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photons from the central star is likely to run out whilst the HII region is
still over-pressured and expanding.

Therefore, through most of its life-time the HII region’s Strømgren
radius is given approximately by

R(t) 	 R3/7
0 [aHIIt]

4/7 	
[

3ṄHI

4πα∗
HI(T0)n2

0

]1/7

[aHIIt]
4/7

	 5 pc

[
ṄHI

1050 s−1

]1/7 [ n0

109 m−3

]−2/7
[

t

Myr

]4/7

. (7.91)

The density in the HII region is then given by

n(t) = n0

[
R(t)

R0

]−3/2

	 n0

[
aHIIt

R0

]−6/7

∼ 2 × 108 m−3

[
ṄHI

1050 s−1

]2/7 [ n0

109 m−3

]3/7
[

t

Myr

]−6/7

, (7.92)

and the mass of the HII region is

MHI(t) = 4π R3(t)

3
n(t)m

= ṄHIm

α∗
HI(T0)n(t)

	 ṄHIm

α∗
HI(T0)n0

[
aHIIt

R0

]6/7

∼ 3000 M�

[
ṄHI

1050 s−1

]5/7 [ n0

109 m−3

]−3/7
[

t

Myr

]6/7

. (7.93)

These relations hold for majority of the life-time of the HII region.

7.9.3 The asymptotic state

However, this can’t go on forever. Eventually the expansion of the HII
region will reduce its pressure to a value equal to the pressure in the
undisturbed neutral gas, and the expansion will then halt (provided the
star lives long enough). If at this stage the density and the radius of the
HII region have values nf and Rf, pressure balance with the undisturbed
neutral gas requires

[2nf] kTHII =
[n0

2

]
kTHI,

=⇒ nf

n0

= THI

4THII

∼ 1

4000
. (7.94)
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Here we have put THI ∼ 10 K, and THII ∼ 104 K. The factors of 2 in
equation 7.94 arise because in the ionised gas

ntotal ∼ n p + ne ∼ 2n0, (7.95)

and in the neutral gas, which is mainly molecular hydrogen,

ntotal ∼ nH2 ∼ n0

2
. (7.96)

In addition we must still have overall ionisation balance, giving

Rf =
[

3ṄHI

4πα∗
HI(T )n2

f

]1/3

. (7.97)

Comparing equation 7.97 with equations 7.46 and 7.94, we have

Rf

R0

=
[

nf

n0

]−2/3

=
[

4THII

THI

]2/3

∼ 250. (7.98)

However, this presupposes that the output of hydrogen-ionising photons
from the central star is sustained for long enough for the HII region to
expand by such a large factor, which is unlikely.

7.9.4 The swept-up neutral gas at the boundary
of an HII region

As well as the ionised gas we should also consider the shell of neutral
gas swept up between the ionisation front (IF) and the shock front (SF).
With our assumption that the shell is very thin, the mass of the shell
is

MHI(t) = 4π R3(t)

3
n0m − MHII(t) 	 ṄHIm

αHII(T0)n0

[aHIIt

RHII

]12/7

∼ 15 000 M�

[
ṄHI

1050 s−1

]3/7 [ n0

109 m−3

]1/7
[

t

Myr

]12/7

. (7.99)

For a mature HII region, the mass of the swept-up shell of neutral gas at
the edge is usually much greater than the mass of the ionised gas, and
the final expression in equation 7.99 is obtained by neglecting the mass
of the ionised gas.

As the surface-density of the shell grows it becomes increasingly
gravitationally unstable, and eventually it should break up into collapsing
fragments. These collapsing fragments may produce a new generation
of stars (see Figure 1.11), and this is usually referred to as propagating,
or triggered, star formation. If some of the new stars are massive, and
therefore excite new HII regions, the process can repeat itself, and we
speak of self-propagating star formation, such as is seen in Orion (see
Figure 1.10).
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Chapter 8

By-products and consequences
of star formation

8.1 Introduction
In this chapter we discuss some of the phenomena observed as a con-
sequence of star formation. We describe some of the phenomena sur-
rounding star formation, such as discs, outflows, and binary and multiple
stars, and we discuss the difference between hydrogen-burning stars and
brown dwarf stars.

We then go on to detail some of the larger-scale consequences,
such as how star formation affects the host galaxy in which it occurs.
In this context we also discuss starburst galaxies and galaxy mergers.
Finally, we outline current understanding on when the major epoch of
star formation occurred in the Universe.

8.2 Circumstellar discs

In Chapter 6 we discussed accretion onto protostars. In particular, we dis-
cussed spherically symmetric accretion. However, if the material accret-
ing onto a protostar has angular momentum (and in general it does), the
infall is not spherically symmetric, nor is it direct. Instead, the mate-
rial accumulates in a circumstellar disc, and then spirals inwards onto
the equator of the star on a time-scale determined by the efficiency
of the processes which redistribute or remove the angular momentum
in the disc. Such a disc is often termed an accretion disc. We also men-
tioned this in Chapter 7 as a method for increasing the accretion onto
a high-mass protostar in the context of significant radiation pressure
potentially halting the accretion.

173
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8.2.1 A model accretion disc

The processes which might redistribute angular momentum include
magnetic and gravitational torques and turbulent viscosity, and are at
best, poorly understood. However, we can still obtain a working model
of an accretion disc, parameterised by the mass M∗ of the central star
and the accretion rate Ṁ∗, which we assume to be constant.

We assume further that the gravitational field is dominated by the
central star, so the disc is of sufficiently low mass for its self-gravity to
be neglected. We also assume that the evolution is quasi-static, in the
sense that the inward radial velocity component of the matter in the disc
is much smaller than its orbital speed, and that the disc is supported
centrifugally. Consequently we can put the orbital speed equal to the
Keplerian value

v(r ) 	
[

G M∗
r

]1/2

, (8.1)

where v(r ) is the velocity at radius r , and M∗ is the mass of the central
star. This means that the kinetic energy per unit mass is equal to half the
magnitude of the gravitational potential energy per unit mass

v2(r )

2
	 G M∗

2r
. (8.2)

It follows that the rate of release of gravitational potential energy between
r + dr and r (where dr is a small increment in r ) is given by

Ṁ∗

[
G M∗

r
− G M∗

(r + dr )

]
= G M∗ Ṁ∗dr

r 2
, (8.3)

where Ṁ∗ is the rate of increase of mass of the star, i.e. the accretion
rate onto the stellar surface. Half of this energy is spent increasing the
orbital kinetic energy of the inward spiralling material (see equation 8.2).
The other half has to be radiated away, or removed by some other
mechanism.

8.2.2 Temperature profile

If we assume that the energy is removed by being radiated locally from
the two sides of the disc, from the annulus between r and r + dr (i.e. we
neglect radial energy transport), and if we further assume that the disc
is optically thick in the radiation it is emitting, then we can put

G M∗ Ṁ∗dr

2r 2
= 4πrdrσSBT 4

s (r ), (8.4)
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where Ts(r ) is the surface temperature of the disc at radius r , and σSB is
the Stefan–Boltzmann constant. Therefore

Ts =
[

G M∗ Ṁ∗
8πσSBr 3

]1/4

, (8.5)

=⇒ Ts ∝ r−3/4. (8.6)

Here 4πrdr is the surface area of the disc between radii r and r + dr
(both upper and lower sides of the disc contribute).

Given M∗ and Ṁ∗, we can calculate the emitted spectrum of the
disc. The bolometric luminosity of the disc will be

Lbol ∼ G M∗ Ṁ∗
R∗

. (8.7)

If the disc is not optically thick, it will need to be hotter to radiate the
same amount of energy.

8.2.3 Flared discs

Some discs around protostars have spectra which are compatible with
these theoretical predictions. Other discs have spectra which suggest
that the temperature profiles in their discs are shallower, such as
Ts ∝ r−1/2.

There are various ways of explaining this. For instance, if the disc is
flared (its thickness increases with radius) then the disc may be heated
by radiation from the central star and the surface temperature of the disc
should fall off more slowly than r−3/4. We return to the theme of disc
evolution in Section 8.4 below, but first we discuss another by-product
of star formation.

8.3 Bipolar outflows
Protostars often have bipolar outflows along their rotation axes – per-
pendicular to their circumstellar discs (see Figure 8.1). The mechanism
driving these outflows has not yet been uniquely identified, but the out-
flows take a variety of forms.

On scales ∼1014 m (very near the star), there are jets. These are nar-
rowly collimated beams of high-velocity material. On scales ∼1015 m,
there are objects known as Herbig–Haro (HH) objects. These are small
shock-heated knots where the jets impact the surrounding gas. On scales
of ∼1016 m and larger, there are broad diffuse lobes of high-velocity
CO emission. These are probably swept-up gas accelerated by the jets.
Figure 8.2 shows some images of discs and jets around young
stars.
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Fig. 8.1. Image of a bipolar
outflow.

Outflows were certainly not predicted before their discovery. In fact
they came as something of a surprise when they were first observed,
since everyone had expected to see infalling material in the formation of
a star, rather than outflowing material. As we saw in Chapter 6, spectral
signatures of infall have now been observed, but outflows have been
known about for much longer.

The exact cause of outflows has not been fully explained in detail,
but the broad picture is probably as follows. In Chapter 5 we discussed
the angular momentum problem of star formation, whereby a cloud core
spins up as it collapses and must shed most of its angular momen-
tum if it is ever to form a star. The magnetic field is believed to be
responsible for carrying away this excess angular momentum by being
tied to the surrounding interstellar medium. This is known as magnetic
braking.

The magnetic field lines can be pictured like a series of elastic bands
tying the collapsing protostar to its surroundings. Figure 5.4 shows a
schematic representation of this. As the protostar collapses and rotates
the field lines are twisted into helical shapes. This has two effects: firstly
by drawing the field lines closer together this increases the field strength;
and secondly, the twisting of the field causes torsional Alfvén waves to
travel along the field lines, rather like torsional waves on a string.

We discussed Alfvén waves in Chapter 4, and showed that they
travel with a characteristic velocity of B/(4πρ)1/2. So the stronger the
magnetic field, the higher the velocity of the waves.
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Fig. 8.2. Hubble Space
Telescope images of young
stars with oppositely directed
jets, apparently emerging
along the magnetic poles. In
the upper left-hand image the
disc around the young star is
also visible.

It is possible that during protostellar collapse the magnetic field is
twisted so tightly that high-velocity Alfvén waves are generated. Due
to the strong coupling between the field and the matter – ambipolar
diffusion is too slow to be a significant effect here (see Chapter 5) –
some fraction of the infalling matter will be carried along with the
Alfvén waves.

This matter will thus be carried in a clearly defined direction, along
the magnetic poles of the protostar, at high velocity, due to the increased
strength of the field. This is exactly what we appear to be seeing when
we observe the bipolar jets and outflows from collapsing protostars.

Figure 8.2 shows examples of bipolar jets emerging from young
stellar objects. In one image the disc can be seen edge-on, obscuring
the central star. The jets emerge at right-angles to the disc, clearly
along the axis of rotation of the system. Some debate remains as to
whether the jets are launched from the very inner edge of the disc, or
the stellar photosphere, and models exist which can account for either
possibility. However, the broad picture of magnetic entrainment of matter
in the jets is now generally agreed upon. In addition, the figure shows
various bright points, or ‘knots’ along the jets, as well as Herbig–Haro
objects, where the jets are interacting with the surrounding gas. None
of these phenomena were expected before they were observed, showing
that the study of star formation has proved to be a very unpredictable
subject.

The most energetic example of an outflow that is currently known is
in the star-forming region in the constellation of Orion. In this instance
there is a large number of jets, apparently emerging from a central
star. These objects are known popularly as the ‘bullets’ of Orion – see
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Fig. 8.3. The ‘bullets’ of
Orion. A violent star-formation
event in which multiple jets,
or bullets, appear to be
emerging from a small region
in the Orion star-forming
complex.

Figure 8.3. The star at the centre of such an explosive event must be
of relatively high mass. The most likely candidate is known as the
Becklin–Neugebauer (BN) object. This appears to be a very deeply
embedded protostar, or cluster of protostars, in a very dense region.
The theory of exactly how the bullets are formed, collimated and driven
remains somewhat controversial, although clearly this is a very high-
energy process.

The source of the energy of the outflows is a matter of debate.
Many models have been formulated based on the energetic wind from
the star. However, it is now becoming apparent that the only source
of energy that is sufficiently large is the gravitational potential energy
released during the accretion process. We showed in equation 8.2 that
half of the gravitational potential energy released in an accretion disc is
transformed into the kinetic energy of the material in the disc.

The amount of mass contained in a bipolar outflow is considerably
less than that in an accretion disc. Therefore, even if the conversion
efficiency factor between the kinetic energy of the disc and the kinetic
energy of the outflow is only a few percent (depending upon the exact
launching mechanism of the outflow), there is still sufficient potential
energy released during the accretion process to generate the high veloci-
ties seen in bipolar outflows (up to a few hundred km s−1). There is also
growing evidence that bipolar outflow activity declines with declining
accretion rate as the protostar evolves over time.
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8.4 Disc fragmentation

It is now known that many stars have planetary systems orbiting around
them. Our own Solar System is only one example. These planetary
systems form from the discs of material around protostars that we dis-
cussed in Section 8.2 above. We have already discussed the likely tem-
perature and density distributions in these circumstellar discs. We now
consider their stability against fragmentation.

For this purpose we introduce a dimensionless parameter Q, which
is known as the Toomre stability parameter. Q is defined by the
equation (cf. equation 1.9)

Q = σκ

πG

, (8.8)

where σ is the root mean square velocity dispersion of the material in the
disc and 
 is the mass surface density within the disc. κ is the epicyclic
frequency, which is the frequency of oscillation of material to either side
of its mean orbital radius. All of these quantities are functions of radius,
and so Q is also a function of radius.

Note that in this analysis we are making the same assumptions as we
made in Section 8.2 above, that the inward radial velocity of the material
in the disc is negligible relative to its orbital velocity. For an infinitely
thin disc the stability criterion requires Q > 1. That is, if Q <∼ 1 there
is a range of fragment sizes which are large enough for self-gravity to
overcome the internal velocity dispersion, and small enough for self-
gravity to overcome the internal spin. The smaller Q is, the larger this
range of unstable fragment sizes becomes. For a finite thickness disc this
changes slightly to Q <∼ 0.7, but the result is the same.

Toomre’s initial work was based on the discs of spiral galaxies. In
fact, we discussed this criterion in Chapter 1 in respect of star formation
in galactic discs. Nonetheless, his results hold true for circumstellar
discs. The details of exactly how and when any given disc fragments must
be modelled numerically on a powerful computer, and much research
continues into the details of this process.

The ability of the disc to cool also has a bearing on whether a
Toomre-unstable fragment will condense out. If tc is the cooling time of
the disc, and torb is the orbital period, at a given radius, then a fragment
can condense out if

tc
<∼ torb. (8.9)

This is known as the Gammie criterion. If the cooling time is less than
this critical value, the disc will fragment.

Once a fragment has formed within a disc, it is not inevitable that it
will condense out. In particular, if it is unable to keep cool by radiating
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rapidly, then it will ‘bounce’ and re-expand. It is then likely to be sheared
apart by differential rotation.

There are a number of processes that can destroy circumstellar discs.
Photo-evaporation caused by heating from the central star is one such
mechanism. We can consider a gravitational radius, rg , such that

rg = G M∗
kT

∼ 100 AU(T/1000 K)−1(M∗/M�), (8.10)

where M∗ is the mass of the central star and T is the temperature of
the gas in the disc at any given radius. The significance of rg is that at
this radius the local sound speed is equal to the escape velocity from the
system.

Hence for radii greater than this, the surface layers of the disc, which
are warmed by the central star, can evaporate from the disc. In theory, gas
in the disc at smaller radii remains gravitationally bound. More detailed
analysis shows, in fact, that this changeover occurs at a radius closer to
0.2rg , but the principle remains the same.

Viscosity in the disc causes material to lose kinetic energy, and
hence accrete onto the star itself. This is believed to be the dominant
disc dispersal mechanism at radii very much less than rg , whereas at very
large radii the effects of other nearby stars must be taken into account.
For example, in clustered regions such as Orion the external radiation
incident on the outer parts of the discs causes them to evaporate on
relatively short time-scales, effectively truncating the outer edge of the
discs.

However, we do know that planets exist, so circumstellar discs must
somehow form planets. We now look at some of the theories as to how
this might occur.

8.5 Planet formation
The exact process that turns a disc of gas and dust into a system of planets
such as our own Solar System is still very much a matter for debate. We
summarise here some of the main ideas that have been proposed.

8.5.1 Formation of planetesimals

It is against a backdrop of disc destruction that planets must form. In
particular, theories have difficulty explaining planet formation around
massive stars, because their discs evaporate too rapidly for planet forma-
tion to occur. In discs where planets do form, it is necessary to consider
different mechanisms in different regions of the disc.

In the inner disc, nearest to the star, no solid material can survive.
Slightly further from the star, where the temperature is lower, some
metals can condense out. Further still, silicate compounds can exist in
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solid form. These silicates are the dust grains that we have discussed
previously (see Chapter 2).

One important boundary is known as the ‘snow line’. This is defined
as the radius at which volatile material such as CO and water can exist
in solid form. At radii less than the snow line the volatiles remain in the
gas phase, whereas at radii greater than the snow line the volatiles can
form icy mantles on dust grains (see Chapter 4). Inside the snow line is
where rocky planets form (e.g. Earth, Mars, etc.); beyond the snow line
is where gas giants can form (e.g. Jupiter, Saturn, etc.).

At the densities typical of circumstellar discs, interstellar dust grains
can grow to slightly greater sizes by a process of coagulation. This is
where dust grains stick together, forming larger grains. The ratio of
the photo-evaporation time-scale to the coagulation time-scale is an
important consideration in planet formation.

The exact mechanism by which grains coagulate is uncertain. Firstly,
the relative velocity between two grains must be very low, of order
a few cm s−1. For very small grains, which are well coupled to the
gas, the Brownian motion of the gas may provide the impetus to cause
low-velocity grain–grain collisions. For slightly larger grains, turbulent
motions may be the cause, although too much turbulence can disrupt
this process.

The grains may stick together by means of electrostatic forces. Alter-
natively, mild heating episodes of the grains may make their surfaces
more ‘sticky’, causing them to coagulate. Beyond the snow line, where
the grains have first acquired a mantle of molecular material in the form
of water ice and CO ice, the dust grains may stick together like dirty
snowballs.

The larger grains then settle towards the midplane of the disc under
the effects of gravity due to their larger masses. This causes the dust-to-
gas ratio to change in the midplane towards a greater dust fraction. This
in turn increases the disc surface density in the midplane to the point
where it exceeds that necessary for gravitational instabilities to develop.
This occurs when 
 in equation 8.8 is sufficiently large for Q to be
small enough to satisfy the Toomre instability criterion of Q <∼ 1. We
note that this process can only work if there is very little turbulence in
the midplane of the disc.

This is the process by which it is believed that planetesimals form.
Planetesimal literally means a piece of a planet. Typical sizes of plan-
etesimals are kilometre-sized or larger. These are the building blocks of
the rocky planets like the Earth, and also of the cores of gas giants such
as Jupiter.

The role played by turbulence in this process is contentious. On the
one hand, turbulent motions could disrupt the dust settling process, but
on the other hand, turbulent eddies in the disc could act as vortices to
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gather material together to a sufficient degree for gravitational collapse
to commence. This is known as trapping. This collapse could form plan-
etesimals or even larger bodies. As yet there is insufficient observational
data to judge.

Another problem in the formation of planetesimals is that of drag
between the gas and the solids. At grain sizes of a millimetre or less the
gas and dust orbit together. However, objects of centimetre to metre size
experience significant drag from the surrounding gas. Models predict
that such objects would rapidly spiral into the central star. Planetesimals
of kilometre size or greater have sufficient inertia that this is not such a
problem for them. However, the outcome is that whatever process takes
material from millimetre sizes to kilometre sizes must occur rapidly.

8.5.2 Planetesimal growth

Once planetesimals have formed, then interactions between them are
dominated by gravitational encounters. This introduces a random veloc-
ity component into the motions of planetesimals, in addition to their
orbital velocities. Hence the likelihood of collisions is increased. The
more massive planetesimals have the greater gravitational potential, and
hence they grow the fastest.

This part of the evolution is known as the period of runaway growth.
During this phase the largest planetesimals gradually accrete all of the
smaller objects at similar orbital radii. This leaves what is often referred
to as an ‘oligarchy’ of large planetesimals, each one dominant in its
own radial regime in the disc. The subsequent phase of accretion of the
remaining gas and dust is therefore known as the phase of oligarchic
growth.

In this phase the planetesimals essentially clear out all of the material
in their orbital path and create gaps in the disc corresponding to the
orbital radius of each of the planetesimals. It is also possible in this
phase that planetesimals can still interact gravitationally to merge and
form more massive planetesimals. When the reservoir of dust in the disc
has all been accreted onto the planetesimals and each is in a stable orbit,
the result is a series of rocky planets such as we observe in the inner
Solar System.

8.5.3 Giant planets

The giant planets have a slightly different formation mechanism. In
fact there are currently three competing theories for the formation of
massive planets such as Jupiter. The first theory has the rocky cores of
giant planets forming in exactly the same way as the terrestrial planets.
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However, because the giant planets form beyond the snow line, there
is a significant amount of condensed volatiles in the neighbourhood of
each planet to accrete onto it. So each planet acquires a large gaseous
envelope.

The second theory predicts that a large-scale turbulent vortex forms
at some point in the disc. This traps sufficient dusty material to allow
planetesimal growth to proceed to the point of forming a rocky core.
The turbulent vortex also traps volatile material and so a large gaseous
atmosphere accretes onto the core.

The third idea invokes a large-scale gravitational instability in the
circumstellar disc, which simply collapses to a giant planet. There are
some theorists who say that this is not a mechanism for forming planets,
but rather a mechanism for forming very low-mass stars – known as
brown dwarf stars (see next section). Furthermore, in the current age
where definitions of planets have become controversial, and the differ-
ence between a star and a planet has become blurred, it is perhaps useful
to differentiate between stars and planets in terms of their formation
mechanism. We shall therefore adopt the definition that a planet is a
body which forms and grows by means of coagulation, while a star
is a body which forms by gravitational instability. In this context we
are clearly defining a brown dwarf as a star, and we believe that this
definition allows for a clear distinction between stars and planets.

Once a planet has cleared out its orbit of all gas and dust it can no
longer grow, other than by mergers. However, the residual disc can still
interact gravitationally with the newly formed planet. The interaction
is a tidal one in which angular momentum is transferred between the
planet and the disc material. This can cause the planet to lose angular
momentum and spiral into the star.

If the interaction is sufficient to cause the planet to lose some angular
momentum, but not enough for it to spiral into the star, then it could
cause a giant planet which was formed beyond the snow line to end up in
an orbit much closer in to its parent star. This is known as migration. This
mechanism has been invoked to explain some of the planetary systems
that have been observed around other stars, where planets larger than
Jupiter have been observed in Mercury-like orbits. These systems are
known as hot Jupiters, and the theories of migration used to explain
their presence are sometimes jokingly referred to as jumping Jupiter
theories.

It must be noted that such systems may still be the exception, despite
a number having been found. This is because many of the detection
methods used to hunt for planets around other stars (extrasolar planets)
have very strong selection effects in favour of finding more massive
planets in close orbits. For example, the commonest method, involving
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radial velocity measurements, is most sensitive to the largest radial
velocities, which are only produced by massive planets close to their
parent stars.

8.6 Brown dwarf stars

In the regime of very low-mass stars we encounter objects known as
brown dwarf stars, or brown dwarfs for short. A brown dwarf is a star
whose mass lies below the limit required for the burning of hydrogen
at its core. This limit occurs at a mass of roughly 0.075 M� (1.5 ×
1029 kg), and is known as the hydrogen-burning limit. Below this limit
a star is supported by electron degeneracy pressure, and does not reach
a sufficient temperature at its core to burn hydrogen.

In Chapter 5 we derived the minimum mass of a star, based on
thermodynamic considerations. We found this mass to be considerably
below the hydrogen-burning limit for contemporary Population I stars.
Therefore, there is no apparent theoretical restriction to the formation of
brown dwarf stars, and in this section we discuss some of their observed
properties and relate these to theories of brown dwarf star formation.

8.6.1 Brown dwarfs and planets

Given the low masses of brown dwarf stars, one might reasonably ask
what the difference is between a brown dwarf star and a planet. This is a
debate which has not been fully settled (although we offer one solution
below). After all, the hydrogen-burning limit is only 80 times the mass
of Jupiter (1.9 × 1027 kg), and planets up to ∼10 times the mass of
Jupiter have been observed around other stars.

Originally the distinction was quite clear – a planet is a body which
orbits a star, while a brown dwarf can exist in isolation. However, such
a separation is no longer so clear. Some brown dwarfs have been found
orbiting other stars (see below) and some planets have been found in
isolation from any parent star – so-called free-floating planets. Hence
the distinction is no longer clear-cut.

There is an inference that can be drawn from study of the stellar
initial mass function (IMF), as discussed in Chapter 1. The IMF shows
the relative numbers of high-mass and low-mass stars in any region.
Observation of the IMF shows that it continues smoothly across the
hydrogen-burning limit. There is no jump from one side of the limit to
the other. Furthermore, brown dwarfs have broadly similar clustering
properties and kinematics to hydrogen-burning stars. They can even
have accretion discs and bipolar outflows like other stars (see above).
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Therefore, we refer to brown dwarfs as stars, and infer that brown
dwarfs probably form in a similar manner to other stars, namely by
gravitational instability. Planets, as we described in the previous section,
form on a longer time-scale, by coagulation and accretion, and in general
have a differentiated elemental composition. We note that this distinction
is not universally accepted, but this is the differentiation that we make
between a brown dwarf and a planet, in the context of star formation.

8.6.2 The brown dwarf desert

Now let us consider the binary properties of brown dwarfs. One early
observation of brown dwarfs was related to their binary properties. It was
noted that solar-type stars rarely have close brown dwarf companions.
In fact for binary systems with separations ≤5 AU the frequency of
companions in the mass range 0.01–0.1 M� is ∼0.5%.

Outside of this mass range, the frequency is much higher. Close
binary companions of a few tenths of a solar mass are relatively common.
Furthermore, planets around other solar-type stars (known as exoplanets)
are also now known to be very common. The lack of close brown
dwarf companions is known as the brown dwarf desert, and is shown
schematically in Figure 8.4.

At wider separations brown dwarfs are observed orbiting solar-type
stars. At separations greater than roughly 100 AU brown dwarf com-
panions make up perhaps a few percent of the binary companions to
solar-type stars. However, we note that this latter figure is based on
smaller number statistics and may be less secure.

Binary stars in which both members of the binary system are brown
dwarfs are more common. The fraction of binaries is at least as high
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as 10–20% and may be higher. Almost all have separations less than
20 AU, with a peak at only a few AU. This is very different from the
binary statistics of solar-type stars discussed in Chapter 5, where we saw
a very broad maximum peaking at more like 30 AU.

8.6.3 Possible formation mechanisms of brown dwarfs

A number of mechanisms have been proposed for the formation of
brown dwarfs. In this section we discuss a few of the hypotheses.
The most obvious idea is that they simply form in exactly the same
way as solar-type stars. Namely, they result from the collapse of pre-
stellar cores which in turn go on to form protostars, as we discussed in
Chapters 5 and 6.

The problem with this idea is that the density of a very low-mass
pre-stellar core has to be very high for it to be gravitationally bound.
At typical densities in molecular clouds the Jeans mass MJ is around
1–3 M� (see Chapter 4). Recall that the Jeans mass scales with the
inverse square root of the density ρ, such that

MJ ∝ ρ−1/2, (8.11)

indicating that to obtain a Jeans mass two orders of magnitude lower, one
needs to increase the mean density by roughly four orders of magnitude.

Moreover, all of the pre-stellar cores found so far have masses much
greater than a typical brown dwarf mass, and so a way must be found to
prevent the protostars that form in them from accreting more mass than
the hydrogen-burning limit. We note in passing that there may be lower
mass pre-stellar cores that have not been observed yet, simply due to the
limited sensitivity of current observations, and that if such objects are
discovered then this is no longer a problem. However, we proceed for
now on the basis of what is currently known.

One solution would be if a pre-stellar core collapsed to form a triple
system. In this case it is known that, through gravitational interaction,
the lowest mass member of the triple is often ejected from the molec-
ular cloud core, to leave a close binary of the remaining pair. If the
ejection happened before the low-mass protostar had accreted 0.08 M�,
then it would not accrete any more mass and a brown dwarf would
result.

Another solution is for a pre-stellar core to begin collapsing and to
form a protostar in the normal way. But before the protostar can accrete
beyond the hydrogen-burning limit the core is eroded by some external
influence such as a nearby HII region (see Chapter 7). This would then
prevent any further accretion by the protostar. If the external erosion
occurred early enough in the protostellar accretion the result would be
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Fig. 8.5. The collapse of a
proto-galactic gas cloud.

a brown dwarf. However, we note that none of these suggestions is yet
proven.

8.7 Galaxy formation
From the very small scale of brown dwarfs, we now turn our attention
to the very large scale of an entire galaxy. The rate at which interstellar
gas is converted into stars has a profound effect on the overall dynamics
of a galaxy, and hence on its formation, structure and evolution.

Consider the formation of a galaxy. In the orthodox picture, a
galaxy forms from a collapsing proto-galactic gas cloud.† As the proto-
galactic gas cloud collapses, it flattens due to rotation. Eventually col-
lapse orthogonal to the rotation axis is halted by centrifugal accelera-
tion. However, the collapse continues parallel to the rotation axis (see
Figure 8.5).

8.7.1 Stars

Any matter which by this stage has already been converted into stars is
essentially collisionless. That is to say that the distances between stars
are so large relative to their sizes that star–star collisions are extremely

† The conditions which must be fulfilled in the early Universe for these proto-galactic

gas clouds to be created in the first place, and for their subsequent clustering proper-

ties to deliver what we see today, are amongst the most demanding constraints placed

on cosmology by observation. Current theories invoke dark matter haloes to provide

the gravitational potential wells necessary to seed the proto-galaxy. However, they are

beyond the scope of this book.
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rare. Therefore, as the stars fall into and through the midplane of the
galaxy, they tend to be little influenced initially by other stars, and during
the initial collapse they are all travelling inwards. However, there will
be some exchange of kinetic energy between the stars, due to long-
range gravitational interactions. This leads to the orbits of the stars
being altered such that eventually at any time there are as many stars
travelling inwards as are travelling outwards. Nevertheless, the stars do
not dissipate any of their kinetic energy, and so they form a spheroidal
halo.

Stars which form during the initial collapse of a galaxy are called
Population II stars (for historical reasons). They are a well-observed
population, and include most of the stars in globular clusters. Popula-
tion II stars show signs of extreme age. For instance, the Hertzsprung–
Russell diagram for a Population II globular cluster has a low-mass
main-sequence turn-off, indicating that a significant fraction of the stars
have had time to evolve past their main-sequence stage. Population II
stars also tend to be on predominantly radial orbits.

Theoreticians have also proposed the existence of an even earlier
population of stars, known as Population III stars. This population con-
sists of stars formed before the formation of galaxies. No Population III
stars have yet been observed, but if there is a Population III, these stars
will also be collisionless, and so they could also end up in the spheroidal
halo of a galaxy. The formation mechanism of Population III stars is
very unclear. They are hypothesised to form from primordial hydrogen
and helium, without any significant amount of heavier elements. Hence
they are also known as low-metallicity stars.

Cooling a zero-metallicity primordial gas cloud sufficiently to allow
it to become Jeans-unstable and collapse is a problem, since there are
no dust grains or heavy elements. Cooling by hydrogen emission lines
alone is very inefficient, and so a Population III pre-stellar cloud would
be expected to heat up rapidly in the initial collapse phase. The reader
will recall from Chapter 4 that the Jeans mass is strongly dependent on
temperature – MJ ∝ T 3/2 (equation 4.25). Hence, it would require a pre-
stellar core with a great deal of mass to collapse to form a Population
III star. This has led astronomers to believe that Population III stars
could have masses up to ∼1000 M�. Such stars would go through their
life-cycles very quickly and evolve to supernovae and ultimately black
holes. This might explain why none have been observed.

8.7.2 Interstellar gas

Any matter which remains in the form of diffuse interstellar gas during
the collapse of a galaxy converges on the midplane, where it runs into
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diffuse gas falling in from the opposite direction. The resulting collision
causes a shock wave (see Chapter 4), which dissipates the bulk kinetic
energy of the gas, converting it first into thermal energy, which is radiated
away. The gas is then stuck in the midplane of the galaxy. It has no kinetic
energy left to propel it up out of the bottom of the galaxy’s gravitational
potential well, so it relaxes to form a thin disc.

The stars which form subsequently in this disc are called Popula-
tion I stars. They are characterised by being relatively youthful, having
relatively high metallicity, and pursuing predominantly circular orbits.
Population I star formation tends to be inefficient (in the sense that it only
uses up the gas in the disc on a time-scale of order 3−10 × 109 years),
and patchy (in the sense that at any time it is concentrated in a few
locations – for instance, mainly in the spiral arms).

8.7.3 Ellipticals versus spirals

On this simple picture, elliptical galaxies were formed from proto-
galactic gas clouds which converted virtually all their matter into stars
before or during their initial collapse; consequently there was no diffuse
gas left over to form a disc, and all the stars went into a spheroidal dis-
tribution. In contrast, spiral galaxies were formed from proto-galactic
gas clouds which still had a significant component of diffuse gas left at
the end of the initial collapse. This component formed a disc, whilst the
component which was already in the form of stars formed a halo.

There are problems with this picture. For instance, it is now recog-
nised that ellipticals are not normally flattened by rotation. They are
flattened by an anisotropic velocity dispersion. This may also be true
for the haloes of disc galaxies. Furthermore it is possible that mergers
may play an important role in the formation of galaxies. In addition,
galaxies can be stripped of their diffuse gas by the ram pressure of the
intergalactic medium, as they move through the centre of a cluster of
galaxies. And small galaxies can lose their interstellar gas just because
they do not have a deep enough gravitational potential well to stop it
being blown out by supernova explosions. We return to mergers in the
next section, when we discuss starburst galaxies.

8.7.4 Spiral structure in disc galaxies

Once a disc galaxy has formed, star formation continues to play a major
role in determining its external appearance. If one observes a disc galaxy
in the optical, one sees typically a spiral structure, sometimes with a
linear feature known as a bar in the centre. The bar and/or spiral arms
are lit up by the light from the most massive newly formed stars. These
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massive stars only live a few million years, and so they are only seen
close to the places where they form.

This is because the barred and spiral modes – which determine the
redistribution of angular momentum in a disc, and hence the overall
restructuring of the disc – are the principal triggers for star formation.
The stars in the galactic disc produce a spiral modulation in the gravita-
tional potential of a disc galaxy, and this in turn causes the interstellar
gas to be compressed by a galactic-scale shock wave. This compression
is presumed to be the trigger for the star formation seen along spiral
arms, although it is still not understood to what extent the dissipation in
the interstellar medium which accompanies star formation influences the
development of these spiral modes, or their ability to transport angular
momentum.

8.8 Starburst galaxies
In a normal spiral galaxy, such as our own Milky Way Galaxy, it has
been estimated that stars are forming at a rate of only a few M� per
year, averaged over the whole of the disc of the galaxy. But in regions of
some galaxies this figure can be exceeded by orders of magnitude. Such
galaxies are known as ‘starburst galaxies’.

Typically a starburst galaxy displays this excess star-forming activity
in and around the centre of the galaxy. The activity is seen not only as an
excess in luminosity, but also in terms of its colours. A starburst galaxy
will have a central region that is considerably bluer than a normal galaxy.
In addition it will typically show excess emission in the UV and at higher
energies such as X-rays. This emission is characteristic of very young,
high-mass stars, and therefore of ongoing active star formation (since
massive stars do not live very long and are therefore young). Figure 8.6
shows an optical image of the starburst galaxy M82.

Occasionally it happens that a starburst galaxy can be mistaken for
an active galactic nucleus (AGN). An AGN is believed to be a massive
black hole at the centre of a galaxy, which is accreting the surrounding
material through a very energetic accretion disc (a higher-mass version
of a circumstellar disc, such as was discussed in Section 8.2 above).
But usually a starburst can be distinguished from an AGN by detailed
spectral analysis of the central region of the galaxy.

A starburst is usually fuelled by a higher than normal rate of infall of
gas towards the central region of the galaxy from the surrounding area.
For some time it was unclear what drove these high infall rates, but now
they are generally believed to be driven by the merger, or collision, of
two galaxies.
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Fig. 8.6. Optical image of the
starburst galaxy M82.

When two galaxies collide, the stars within each galaxy are so far
apart that they generally pass straight through without colliding. Kinetic
energy is conserved and the interaction is elastic. However, the gas in
the interstellar medium of each galaxy does collide, and when it does the
collision is inelastic and kinetic energy is not conserved. This is because
the collision causes shock waves in the gas, which heat up the gas and
dissipate kinetic energy.

Figure 8.7 shows a picture of two colliding galaxies, illustrating how
the material in one of them has been dragged out by the interaction with
the other. Similarly, gas can be forced by a galaxy collision to fall into the
centre of one of the galaxies at a much higher rate than would be caused
by the gravitational field of one galaxy alone. A high rate of infall of gas
into the centre of a galaxy triggers an episode of very active, massive
star formation. This then manifests itself as a starburst episode within
the life of the galaxy. Once the close encounter between the two galaxies
is over and the infall rate returns to normal (or the reservoir of gas runs
out) then the excessive star-forming activity also ceases and the galaxy
returns to being a normal galaxy once more.

8.9 The epoch of star formation

In this section we look at how the star-formation rate in galaxies has
varied throughout the history of the Universe. This is one aspect of star
formation that has become a matter of much interest, as astronomers have
asked the question of when in the history of the Universe the majority
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Fig. 8.7. Optical image of
two colliding galaxies, known
as the Antennae. The effect of
the collision can be to
enhance the star-formation
rate in the centre of one (or
both) and create a starburst
galaxy.

of star formation took place. Massive star formation can be traced by
means of the high-energy radiation that it generates, in particular the
UV radiation. Therefore, by tracing the UV emission as a function of
the age of the Universe, we can trace the bulk of the star formation over
time.

Due to the expansion of the Universe, distant galaxies are seen to be
moving away at a velocity v that is proportional to their distance D

v = H0 D. (8.12)

This is known as Hubble’s law and the constant of proportionality H0

is known as Hubble’s constant. The currently accepted value of H0 is
around 70 km s−1 Mpc−1 (although estimates of its value range from
∼40 to 100 km s−1 Mpc−1).

The recessional velocity leads to a Doppler shift of the emission
from a galaxy to longer wavelengths. This is the famous red-shift of
distant galaxies. The red-shift z is defined by the equation

λobs

λem
= 1 + z, (8.13)

where λem is the wavelength of emission when an object is at rest, and
λobs is the observed wavelength. Hubble’s law states that the further away
the object, the faster it is receding. Doppler’s law means that the faster an
object is receding the greater its red-shift. Therefore astronomers often
simply use red-shift z as an indicator of the distance of an object, since
that is a directly measurable quantity. In addition, the further away an
object is, the longer it has taken for its light to reach us, hence the further
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Fig. 8.8. A plot of the
star-formation rate as a
function of age of the
Universe, as measured by the
red-shift z. Zero is the present
day and increasing z indicates
decreasing age of the
Universe.

back in time we are observing it. This means that z is also a measure of
age.

So by measuring the UV emission from galaxies as a function of z,
we can trace their star formation as a function of the age of the Universe.
Due to the red-shift one must measure the UV emission in the rest frame
of the galaxy; it may have been red-shifted into the optical wavelength
regime for the observer, so the appropriate correction must be made.

It is therefore possible to estimate the total amount of star formation
per unit volume of space by summing the total rest-frame UV emission
in unit volume. One additional correction that must be made is that
any given volume of space expands with the Universal expansion, and
this must be taken into account. The corrected volume is known as the
comoving volume to indicate that it is moving with the overall expansion.

Figure 8.8 shows the star-formation history of the Universe as a
function of red-shift, sometimes known as the Lilly–Madau plot. Clearly
there are many uncertainties involved in calculating the data-points on
this plot. One of these is the fact that there is an unknown amount of dust
extinction diminishing the UV radiation received from any one galaxy.
An estimate can be made of this effect and measures taken to account
for it. The far-infrared emission of a galaxy can also be used as a cross-
check, since this is where the dust responsible for the UV extinction
tends to re-emit most of the radiation.
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Nevertheless, despite the uncertainties, Figure 8.8 appears to show
that there was more star formation in the past than there is in the present-
day Universe. There is a steep rise from z = 0 to z = 1. In addition there
seems to be a broad peak of star-forming activity between red-shifts
of roughly 1 and 2. This era is sometimes known as the epoch of star
formation, as it was clearly an active time in the history of the Universe.†

The epoch of star formation may be caused by increased numbers
of galaxy collisions at this time. Alternatively, it may be the epoch
at which most elliptical galaxies formed most of their stars (there is
very little star-formation activity in present-day elliptical galaxies).
There are a number of hypotheses that have been put forward, although
none have been proved. However, when we do understand the cause of
the increased star-forming activity during the epoch of star formation we
will understand considerably more about the evolution of the Universe.

There are so many aspects to the subject of star formation that one
cannot cover them all in a short introductory text such as this. However,
we hope that the study of this book will lead readers to follow up these
other aspects for themselves, and in doing so, gain an insight into the
manner in which star formation underlies so many other aspects of
astrophysics.

Recommended further reading
We recommend the following textbooks for further reading on the topics covered in

this chapter.

Binney, J. and Merrifield, M. (1998) Galactic Astronomy. Princeton: Princeton

University Press.

Klahr, H. and Brandner, W. (2006). Planet Formation: Theory, Observations, and

Experiments. Cambridge: Cambridge University Press.

Malbet, F. and Castets, A. (1997). Low Mass Star Formation from Infall to Outflow.

International Astronomical Union Symposium, vol. 182. Dordrecht: Kluwer.

Reipurth, B. and Zinnecker, H. (2000). Birth and Evolution of Binary Stars.

International Astronomical Union Symposium, vol. 200. Dordrecht: Kluwer.

Rowan-Robinson, M. (2004). Cosmology, 4th edn. Oxford: Oxford University

Press.

† It should be noted that there is still some controversy over the higher-red-shift data-points

in the upper plot of Figure 8.8, and some astronomers now believe that these points do

not decline so steeply. Hence the peak may be even broader than is seen here. This is

illustrated in the lower plot of Figure 8.8.



List of mathematical symbols

a, ā radius of a dust grain and its mean
a constant relating temperature and energy density
a0 isothermal sound speed
agrav acceleration due to gravity
aHII isothermal sound speed in HII region
aradn acceleration due to radiation pressure
A area
A ji Einstein A-coefficient
AV visual extinction
α infrared spectral index
α∗

H recombination coefficient of atomic hydrogen
into excited states

αX (T ) recombination coefficient at temperature T
B, B magnetic field strength
Bi j , B ji Einstein B-coefficients
Bν(T ) Planck function for a blackbody
β dust emissivity index
βν(T ) emissivity coefficient
c speed of light in a vacuum
cp specific heat at constant pressure
cv specific heat at constant volume
C a constant
Ci j , C ji collisional excitation and de-excitation coefficients
D distance
D fractal dimension
�E difference in energy
�S mass converted into stars
�v,�uD,�νN velocity width or velocity dispersion
�νN Natural line width
e, exp base of normal logarithms, exponential
e− charge on electron
E electric field strength
E, Ei , E j energy, energy of levels i and j
E(J ) rotational energy of a molecule
Em magnetic energy
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EMH emission measure of hydrogen
ηSF star-formation efficiency
f compression factor
f0, f1 angular momentum of H in ground and excited states
fH fraction of hydrogen in atomic form
fλ normalised monochromatic flux
fm force per unit volume
F force
F integrated flux
FL Lorentz force
Fn(r ) radial number flux of hydrogen ionising photons
Fν monochromatic flux density
g, g gravitational acceleration
g( f ) function of compression factor f
gi , g j statistical weights of energy levels Ei , E j

g0, g1 statistical weights of ground and first excited states
G gravitational constant
G current total mass of interstellar material
G0 initial mass of interstellar material
γ ratio of specific heats
γν photon of frequency ν

h Planck’s constant
h̄ h divided by 2π

H0 current value of Hubble’s constant
Hcomp compressional heating rate
i proton spin
I integrated intensity
I moment of inertia
ICR cosmic ray ionisation rate per unit volume
IHI rate of hydrogen ionisation per unit volume
Iν monochromatic intensity at frequency ν

J molecular angular momentum quantum number
J electric current density
jν, j monochromatic and integrated volume emissivity
k Boltzmann constant
k̂ unit normal vector
K a constant
K translational kinetic energy
κ epicyclic frequency in a disc
κ1, κ2, κ3 opacity normalisation constants
κd dust mass opacity coefficient
κν monochromatic volume opacity
κV volume opacity
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l, L length or path length through a medium
l electronic angular momentum quantum number
lν mean free path at frequency ν

L luminosity
Lacc accretion luminosity
LBOL bolometric luminosity
Lν monochromatic luminosity
LSMM submillimetre luminosity
L∗

λ monochromatic stellar luminosity at wavelength λ

λ, λem, λobs wavelength, emitted, observed
λmax peak wavelength of blackbody function
md , mdust mass of a single dust grain
m f total angular momentum quantum number
mi proton spin quantum number
ml electronic magnetic quantum number
mP mass of proton
ms electron spin quantum number
m X mass of particle of species X
M mass
Mc critical mass
Mcl, Mcore mass of a cloud, clump or core
Md total mass of dust
Menv envelope mass
Mfrag fragment mass
MJ Jeans mass
Mmax, Mmin maximum and minimum mass of a star
Mvir virial mass
M� solar mass
M∗ mass of a star
Ṁ∗ accretion rate of a star
µ mean molecular weight of gas
µB Bohr magneton
n, nquant principal quantum number
ndust volume number density of dust grains
ne volume number density of electrons
n(HI), nHI volume number density of atomic hydrogen
n(H2), nH2 volume number density of molecular hydrogen
ni volume number density of ions
n p volume number density of protons
nX volume number density of particles of species X
nX ;i , nX ; j volume number density of particles in levels i or j
n0, n1 volume number density of particles in levels 0 or 1
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n0, nf initial and final volume number densities
ntotal total volume number density
N total number of molecules
Nc number of clumps or cores
Nd column density of dust grains
Nd number of dust grains
ṄH rate of emission of hydrogen-ionising photons
N (HI), NHI column density of neutral hydrogen
NM number of stars of mass M
NX column density of particles of species X
NX ;i , NX ; j column density of particles of species X in level i , j
ν frequency
ω angular velocity
ω0 initial angular velocity
� solid angle
�c angular size of a cloud
�G gravitational potential energy
�0 initial gravitational potential energy
P pressure
P perimeter of a closed contour
Pm magnetic pressure
φ(M) initial mass function of stars
φ(ν − ν0) profile function
φ(R) potential function controlling radial excursions
φν(l) profile function at frequency ν along path length l
Q Toomre stability parameter for a disc
Qν dust grain emission efficiency
r, r position vector, radius (in disc)
rdust radius of a single dust grain
rg gravitational radius
rJ Jeans length
rn cross-sectional radius of level of quantum number n
R, R0, R f radius, initial and final
R Reynolds number
RHI rate of hydrogen recombination per unit volume
RR total recombination rate per unit volume
R̄SF star-formation rate
RX recombination rate of species X
ρ density
ρd , ρdust density of a single dust grain
ρ0 initial density
s electron spin
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s radial direction vector
S surface
Sν source function
σ standard deviation or velocity dispersion
σ0 integrated cross-section of a transition
σdust effective cross-section of a dust grain
σHI cross-section of atomic hydrogen to an ionising photon
σSB Stefan–Boltzmann constant
σX cross-section of particle of species X

 mass surface density (of a disc)
t time
tc cooling time
tdisp dispersion time
tff free-fall time
tKH Kelvin–Helmholtz contraction time
tMB magnetic braking time
torb orbital period at a given radius
T gas-kinetic temperature
Tdust dust temperature
Tex excitation temperature
TR rotational kinetic energy
TS surface temperature
T0 initial rotational kinetic energy
T∗ surface temperature of a star
τ optical depth
τν optical depth at frequency ν

τAD ambipolar diffusion time-scale
θ angular size
u velocity
u integrated radiant energy density
uν monochromatic radiant energy density
urad radial velocity
uT turbulent velocity
ux , uy, uz velocity components in x , y, z directions
u0, u1 systematic and random velocity components
Uν monochromatic radiant energy density
v velocity
vA Alfvén velocity
vescape escape velocity
v(r ) orbital velocity at radius r
vx , vy, vz velocity components in x , y, z directions
V volume
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Wλ equivalent width of a spectral line
x fractional ionisation
x(r ) degree of ionisation at radius r
X atomic species
X f , X f ′ atomic species X in free or unbound state
Xg, Xi , X j , Xk atomic species X in ground (g) or excited (i, j, k)

states
XH hydrogen mass fraction
X ratio of H2 column density to CO integrated intensity
z red-shift
Z metallicity
Zdust dust mass fraction
Z X partition function of species X
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