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Present-day knowledge of Saturn's rings is reflected.
The results of observations of Saturn's rings are
analyzed in detail, and a number of conclusions as to
the nature of the rings are formulated. Particular
attention is given to the quantitative theory of change
in the brightness of the rings with phase angle, which
is then used to estimate the principal physical mag-
nitudes that characterize the rings as a whole, as well
as a typical particle of the rings. Questions con-
cerned with the dynamics of the rings are discussed.
The book is intended for scientists, graduate students, and
students interested in research on objects in the
solar system.
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"When we in fact see how this majestic arc
is suspended over the equator of the planet
with no visible means of support or
connection, our mind can no longer remain

at ease. We cannot become reconciled to
this phenomenon as if it were some simple
fact, we cannot describe it simply as the
result of observations, and we cannot

accept it without seeking for an explanation
for it."

James Clerk Maxwell

On the Stability of the Motion of Saturn's

Rings

Introduction

Saturn's rings are, in essence, a satellite object. At the same time, the
great many bodies that are contained within it, and the comparative shortness
of the distance between those bodies, makes them into a single, compact system

in which the individual satellite loses its individuality.

Saturn's rings have a dual interest for the researcher. First of all, it
is the only cosmic formation of its type that we know of. It has its own
special geometry, dynamics and other features. Furthermore, it is one of the
elements in the solar system, and in its own way is as characteristic as the

ring of asteroids, as the Galilean satellites of Jupiter, or of the moon. In

* Numbers in the marin indicate pagination in the foreign text.



other words, the problem of Saturn's rings is not one of a narrow problem of
a single object, but rather part of an incomparably broader problem of physics

and cosmogony of the solar system.

It can be pointed out, for example, that the particles of Saturn's ringsare
subjected to continuous bombardment by micrometeoric bodies and by corpuscular
solar radiation. A quantitative estimate of the pitting of the surface of a
typical ring particle is, at the same time, an indirect estimate of the in-
tensity of the flow of micrometeoric bodies and of solar corpuscles at the

distance of Saturn.

Another example of the physical connection between Saturn's rings and the
environment is the probable interaction of their material with the magnetic
field of the planet (the latter should be strong, as can be anticipated be-
cause of the similarity of Saturn to Jupiter). The presence of rotating rings
in Saturn's magnetosphere should deform the magnetic lines of forces signifi-

cantly (Zheleznyakov, 1964; Zlotnik, 1967).

To simply speak of cosmogony makes the very fact of the existence of
Saturn's rings in the solar system important, and something that cannot be
ignored. The properties of a typical ring particleare of particular cosmo-
gonic interest. In fact, according to contemporary hypotheses, the rings are
the zone of the presatellite cluster of Saturn, within which the tidal forces
prevented the material of the cluster from forming into a single satellite., If
this is so, then the zone of Saturn's rings is virtually the only place in the
solar system where one can find and investigate the remains of preplanetary

material.

Saturn's rings as a whole also are of considerable interest to the cosmo-
gonist because the dynamics of the rings are, in many respects, similar to the

dynamics of a protoplanetary cloud, and can be described by similar equations.

This monograph attempts to give a sequential account of all of the ob-
servational and theoretical material bearing on Saturn's rings (with the
exception of those works that are of little significance, or which are ob~
solete) and to point out the conclusions that can be drawn as a result con-
cerning the nature of the rings. Our task was made very much more complicated

because of the complexity of the problem. Investigation of Saturn's rings



requires the application of many branches of sciencej; astrophysics, celestial
mechanics, astrometry, cosmogony, meteor astronomy, the physics of the inter-
planetary medium, the physics of the surface layer of the moon, optics of

ice crystals and of microscopic particles of various shapes, the dynamics of
systems with not completely elastic collisions, and others. So it is obvious
that one author is in no position to deal with all sides of the problem with
the same completeness. In order to avoid the possibility of making serious
errors, we here have cited only those facts, data, results, and conclusions
that we checked personally, or that were completely evident to us. In those
rare instances when we were forced to depart from this rule we have pointed
this out in the text and have indicated the sources from which the materials

were taken, and we have given our views concerning them.

We should add that it was not the task of the monograph to provide precise
numerical data. These data can be found quite readily in handbooks. We pre-

ferred to use rounded estimates, or to indicate the orders of magnitude.

I. Details of the Structure that Differ from Those of the Earth /7

#1. The Zonal Structure. The A, B, and C Rings.

The ring structure susceptible to resolution in telescopes on earth
(even including those in observatories high in the mountains with excellent
image quality) is absolutely concentric, with no light or dark details of any
description, giving the appearance of rotation around the planet. The rings,
when they open wide enough, appear in the form of a system of concentric
zones with different brightnesses (Figure la). The boundary of a particular
zone is seen as a sharp, radial change in brightness or as a narrow, dark slit

("division") between the rings, as if devoid of matter.

The principal parts of the zonal structure are the A ring (the outer),
the B ring (the middle), and the C ring (the inner). The latter sometimes
is called the 'crape'" ring because of its very low brightness [about
1—3'10-2bc, where bc is the brightness of the center of Saturn's disk, this is
the approximate estimate made by Bell (1919)]. The B ring is the brightest
part of the system (in opposition approximately equal to the center of Saturn's
disk in brightness. The A ring visually is 0.6 weaker (Schoenberg, 1921) and

is partially transparent. Hepburn (1914), studying images of Saturn on plates
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Figure 1. a =~ Saturn with rings opened
wide (photograph by Camichel, 1958).
Ring A is somewhat underexposed and
ring C can be seen in a projection on
the disk of Saturn. Resolution is
~0.,4"; b - The rings of Saturn from
visual observations from Pic du Midi
(sketch by Lyot, 1953). Contrast is
somewhat overdrawn; c¢ - Distribution
of brightness in the eye of the rings
of Saturn along the major axis of the
rings (from visual observations made
by Dollfus, 1963). The angular dim-
ensions of the rings are shown for the
mean distance of Saturn from the sun

(9.539 AU).
IA
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taken by Barnard (1914), was able to
see Saturn's disk, translucent through
the A ring at their edges. The crape
ring is very transparent. The ball of
the planet is readily distinguishable
through it when observed visually (it
goes without saying that these obser-
vations require the corresponding ob-
jective lens opening and a good quality

image, because the crape ring itself is

an almost inaccessible object).

The main division in the system is
located between the A and B rings. It
has been named the "Cassini division"
from the name of its discoverer in 1675,
Jean Dominique Cassini, the first dir-
ector of the Paris Observatory (see
Berry, 1964). The width of the Cassini
division is about 5,000 kilometers,

according to Barnard (1914).

#2.

More Precise Detail.

Lyot (1953), observing Saturn
visually in a 60 centimeter telescope
from the Pic du Midi Observatory, with
resolution approximately that of theor-
itical (0.23"), was able to distinguish
some 10 divisions with different de-
grees of darkening of the rings
(Figure 1b). Dollfus made similar ob-
servations (1936 b) in large telescopes
in France and in the United States,
enabling him to construct an approxi-

mate curve of brightness distribution



along the major axis of the rings (Figure 1lc). The curve shows that in essence
the system brightness changes with distance from Saturn, and that it is solely
the presence of minima created by the divisions that lead to the conventional

separation of the system into the '"individual" A, B, and C rings.

Comparing Dollfus' curve with Lyot's sketch, one is readily persuaded
that they are in good concordance. Attention is drawn to the wide zone of
reduced brightness near the middle of the A ring created by the three close
minima. Earlier observers, working under conditions of lesser resolution,

took this to be a single division (the so-called "Encke division").

Kuiper (1957 a) is of the opinion that only the Cassini division is a
real lane, containing very little material, and that all of the other divisions
recorded in the literature on the subject are zones of somewhat reduced bright-
ness (by 10 to 15 percent), or are ficticious. Kuiper's conclusion is based
on a single visual observation he made of the rings in the Mount Palomar Ob-
servatory's 5 meter reflector with a magnification of 1170. Atmospheric
turbulence on the night of the observation was unusually low and the resolution
was 0.05" to 0.10". Three zones of darkening were seen in the B ring. The
zone that divides the B and C rings was not observed (despite the fact that
its existence had been noted by Lyot, as well as by many other observers; some
weak divisions can change intensity markedly, so the possibility is not ruled
out, however). Kuiper estimated the width of Cassini's division as one-fifth
the width of the A ring. A region of darkening that was, at the same time, the
region of an abrupt change in the brightness of the A ring was seen at the site
of the "Encke division.'" Observation of a star occulted by the rings is an
effective method to use to obtain information on the width, position, and
optical thickness of the divisions. We shall discuss this method in #l4. The
mean time interval between two successive occultations of up to 9% magnitude
stars by Saturn is 1.9 years. (Seeliger, 1881). The elements of the occula-
tions of stars by planets are computed regularly by the British Astronomical
Association, and are published on a systematic basis in that organization's

annual.

Kirkwood (1884) was the first to explain the existence of the divisions
by resonant perturbations in the orbits of the particles of Saturn's satellites.

Actually, the period of revolution of a particle inside any of the divisions



is very close to 1/2, 1/3, ...the sidereal period of one, or of several in-
ternal satellites of Saturn, or of the most massive of them, Titan. This
question has been discussed as well by Lowell (1910), Goldsbrough (1921, 1922),
and Greaves (1922 a, 1922 b).

#3. Ring Dimensions.

Saturn's rings have been measured by many authors (with micrometers,
with heliometers, and by measuring the images of the planets on negatives).
Halation is the principal cause of fixed errors. In view of this, it is
desirable in the near future to check accepted dimensions by using observations

made of the occultations of stars by the rings.

Table 1 lists the ring dimensions, according to Rabe (1928).

TABLE 1
Vigible radius Width
(distance Actual radius, 1 .. —
. ¢ Ki

Detail 9.5388 AU) kilometers Seconds of Arc ilometers
seconds of arc

A ring, outer edge 20.14 139,300 2.46 17,100

A ring, inner edge 17.68 122,200 0.73 5,000

B ring, outer edge 16.95 117,200 4.0k 27,900

C ring, outer edge 12.91 89,300 2.49 17,300

C ring, inner edge 10.42 72,000

Equatorial radius 8.72 60,300

of Saturn

Barabashov and Semeykin (1933), using photographic photometry and light
filters, and excluding instrumental error by the "artificial planet' method
(see #9), found that in blue light the space between the visible, inside
boundary of the C ring and Saturn's equator is not completely dark. Negatives
obtained in red and yellow light show no such effect. The authors interpreted
their results as indicative of the fact that this space is filled with rarefied
material stretching to the ball of Saturn itself. Consequently, it can be
said that the inner edge of the C ring coincides with the external, visible,

boundary of the planet's ball.

/10



IXI. Changes in Ring Openings. View from the Edge.

#h. Cycle of Changes in Ring Openings.

The plane of the rings coincides very precisely with the plane of Saturn's
equator. The latter is tilted to the plane of Saturn's orbit by 26.7°, and to
the plane of the earth's orbit by 28.1°. As the planet moves in its orbit, the
plane of its equator, and the plane of the rings, move parallel to each other.
The result is that the angles of elevation of the sun and of the earth above
the plane of the rings, A and A', change constantly, depending on the position
of Saturn in its orbit. There are, in the course of one sidereal period of rev-
olution of Saturn (29.46 years), two times of maximum opening of the rings,
and two times when the rings are turned to the sun precisely on edge (or, in
other words, the sun intersects the plane of the rings). This is what the ob-
server on earth sees, basically, but it must be remembered that the earth does
not coincide with the sun, but instead has its own orbital motion. Generally
speaking, therefore, A' # A. Angle A' will change with the sidereal period
of Saturn, and there will be small changes in its synodic period as well.

These latter are more significant near the times when A = 0. As will be seen
from Figure 2, a fixed time (that is, 360 days) is required for the inter-
section of the plane of the rings by the earth orbit. A more detailed examin-
ation of the question shows that during this period of time the earth can inter-
sect the plane of the rings once, or three times (the number of intersections
must be odd because the earth, in the final analysis, will be moving from one
side of the plane of the rings to the other). In extremely rare cases two of
these three intersections can take place almost simultaneously (case equivalent
to two intersections). In certain other cases the earth can intersect the plane
of the rings once, and in place of the other two intersections there is simply

a more or less close approach to the plane of the rings. A typical example

of the triple intersection of the plane of the rings by the earth is the one

that took place in 1966 (Figure 3).

Let us add that the intervals between the successive intersections of the
plane of Saturn by the sun are not equal. This can be explained by the dif-
ference in the orbital velocity of Saturn near the perihelion and near the

aphelion. The rounded, respective intervals are 13.75 and 15.75 years.
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Figure 2. Northern hemisphere of the Figure 3. Change in the angles
celestial sphere in the case of an of elevation of the sun and the
observer standing on the side of Saturn's earth, A and A', above the plane of
rings illuminated by the sun (near the the rings in 1966. The earth inter-
time of intersection of the plane of the sected the plane of the rings three
rings by the sun). times.

#5. Observations of the Dark Side of the Rings.

Figure 2 can be used to find A - Al £ 3.,5°. What follows in particular
is that near time A = O (when |A - A'| has its greatest value) the signs of
angles A and A' can be opposite, that is, the earth can be over the dark side
of the rings (Figure 3). Despite the fact that at this time the surface of
the rings turned to the observer is not illuminated by the direct rays of the
sun, the narrow ellipse of the rings is seen quite well, given a good quality
image and not too small a telescope aperture. Russel (1908) pointed out that
the illumination of the rings by the ball of Saturn is intense enough for their
dark side to be seen visually by an observer in a telescope on earth. A recent
reconsideration of the question (see #21) leads to the conclusion that there
must be another source of dark side illumination, specifically solar light
diffused through the rings in optically thin zones. The brightness of the

dark side is less than that of the center of Saturn's disk by a factor of be-

tween 2 and 2.5.

Barnard (1908 a) described the view of the dark side in detail. Photo- /13
graphy of the dark side has not yet been published. All that is available
are drawings, and the best of them were made by Barnard. Figure 4 is an
example. A typical feature of the dark side is the two pairs of bright

"condensations" (Bardnard's expression). The outer condensations coincide

8



with the Cassini divisions, the inner with the crape ring.

to solar light filtering through the corresponding z

Figure 4.

#6. "Disappearance"

AR v

e ~ . -

LN aa T P TP

They are attributable
ones of the rings (#21).

PN EINEY

Drawing of the dark side of Saturn's rings

(Barnard, 1908 a).

of the Rings.

114

Many sources contain the assertion that the gaps of the rings disappear

completely when one of the angles of elevation (A or A') is zero.

But it is

obvious that when A = O, generally speaking, A' # 0, so the earth-bound ob-

server will see the dark side of the rings illuminated by the ball of Saturn.

Accordingly, the gaps will be seen (#5), so long as angle A' is not too small.

The case when A = 0, that is, the time of intersection of the plane of the

rings by the earth,

for this to occur up to as late as 1966.

that follow, are contained in Chapter V.

actually has not been observed under conditions necessary

Further details, and the results



III. Astrophysical and Radioastronomy Data /15

#7. Introductory Remarks.

The angular width of Saturn's rings (see Table 1) is small, making it very
difficult to investigate them. Ring B, because of its brightness, and because
it is located in the center of the system, is relatively more accessible for
astrophysical work. Study of the A ring requires greater skill because it is
not as bright and because it is adjacent to the dark background of the sur-
rounding sky. The crape ring is weaker than the B ring by approximately one and
a half orders of magnitude, and is located between the B ring and Saturn's disk.
The nearness of these bright objects makes for very serious difficulties.
Astrophysicists ordinarily cannot be certain that they are studying the light
reflected by the C ring, or the light that is scattered by the B ring which
is directly contiguous to it, and by the disk of the planet.

This is why most of the astrophysical investigations made to date of the
rings of Saturn involve the B ring. Data on the A ring are very meager, and

the crape ring is, for all practical purposes, terra incognita.

#8. Linear Rotational Velocities of the Rings.

One of the earliest applications of spectral analysis to the physics of
the planet was the study of the law of rotation of Saturn's rings by measuring
the Doppler shift of the lines in the spectrum of the gaps of the rings.
Observations were made independently by Belopol'skiy (1895) in Pulkovo, by
Deslandres (1895) in Paris, and by Keeler (1895) in the Licks Observatory.

The principles involved in making the measurements are clear in Figure 5.

Table 2 lists the numerical results (Sharonov, 1958).

As will be seen from the data in Table 2, the measured velocities are in
good concordance with Kepler's. Consequently, any ring particle can be con-
sidered a separate, -independent, satellite of Saturn, moving around the
planet in a circular orbit at Keplerian velocity. In fact, however, this is Z}6
just the first approximation of the real motion of the particles. Perturbations
by satellites, mutual perturbations, and collisions force the particles to
oscillate near their mean positions. But the rings are so thin when compared
with their radial distances that the velocities at which the particles os-

cillate are many orders of magnitude below their Keplerian velocities. The

10



problems alluded to here

Detail

A ring, outer boundary
Middle of the ring

B ring, inner boundary

Figure 5.

TABLE 2

will be discussed in Chapter VI,

Linear velocity, km/s

Belopal'siif‘
15.5

21.0

ﬁéélandres

15.4

21.0

v .. Position of slit

RO

N L E

<tiah Yo ool

Keelé; Theoretical

(Kepler)
16.4 16.6
18.0 18.3
20.0 .

Position of the spectrograph slit and the Doppler shift

of the lines in the spectra of the eyes of Saturn's rings
and of the planet's disk caused by rotation (from
Belopol'skiy, Deslandres, and Keeler).

#9.

Visible and Near Ultrafviolet Spectral Reflectivity.

The pioneering research on this question was done by Belopol'skiy and

Tikhov in Pulkovo,

Belopol'skiy earlier (1896) had noted that the spectrum

of Saturn's rings (the reference is to the more intense B ring zone) extends

11
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toward the violet side much further than does the spectrum of the equatorial
belt of the planet's disk. Thus, in the April 13, 1895, photograph the disk
spectrum is extremely faint when A = 4100 K, whereas the ring spectrum extends
to A = 4000 K, virtually without attenuation. Consequently, the light from
Saturn's rings should differ from the light from its disk. Tikhov (1911)

made a detailed check of the effect, using a great deal of material obtained
from observations (spectra of Saturn and of the rings, taken by Belopol'!skiy
in 1906 and 1909, negative of Saturn with moderately open rings made by

Tikhov in 1909 and by Belopol'skiy in 1911, using the 30 inch Pulkovo re-
fractor with light filters to separate, respectively, the red-orange, the
yellow-green, the green, and the blue-violet parts of the spectrum). Tikhov
found that the disk could be seen up to 6950 % at the red end of the spectrum,
but that the ring spectrum could only be seen to 6800 &, The disk spectrum
was brighter than that of the rings over virtually all of the visible part,
but the difference in brightness gradually decreased with reduction in .

Near 4500 3 the brightness of the spectra was the same, after which the

ring spectrum brightened as compared with the disk spectrum. The ring spectrum

could be traced to 3970 K, that of the disk spectrum only to 4020 .

The results of the examination made of the photographs taken using light
filters were in good concordance with these conclusions. It was established
that Saturn's equatorial belt gradually attenuated with transition from the
red to the violet, with the brighter part of the disk in the red, and the
darker in the violet. The change in the brightness of the rings is the direct
opposite; it was less than the mean brightness of the disk in the red, then in-

creased and became much brighter than the mean brightness of the disk in the violet.

Tikhov's work, taken in the whole, establishes the fact that the blue is
the most intense zone of the B ring in Saturn's equatorial belt. Lack of a
tie with the sun, or with stars of the sun class, makes it impossible to ex-
plain whether or not the scattering of solar light by the B ring is neutral,
or selective., Tikhov was inclined to the latter view, and based it on the
following considerations. He found that darkening of Saturn's disk at the /18
edges, substantial in the red, gradually became unremarkable with decrease in
A, and disappeared near the G band. According to Tikhov, this could be ex-~
Plained by the increase in the reflectivity of the atmosphere of Saturn with

reduction in the wavelength. Furthermore, it was found that the brightness

12



of the B ring near the points of its meeting with the planet's disk was the
equal of that at the edges of Saturn's disk, and this was the case for all
rays. This then led Tikhov to conclude that it was possible that the

material of the ring was very similar in its reflectivity to that of Saturn's
atmosphere, that is, that the mean diameter of the ring particles was less than
the length of the light wave (recognizing however that special research would
be required to arrive at a final answer to this question). This conclusion has

never been confirmed.

Later on the famous American opticist Robert Wood (1916) used light
filters to obtain photographs of Saturn in the Mount Wilson Observatory (60
inch reflector), as did astrophysicist Wright in the Lick Observatory (1927).
The new approach, as compared with that used by Tikhov and Belopol'skiy, was
the use of infrared and ultraviolet filters. There still were no photometric
scales. The equatorial belt on the disk of Saturn was particularly dark in
the ultraviolet. Wood raised the question, '"Is this effect due (albeit in
part) to the hypothetical cloud of material filling the space between the
crape ring and the spheroid of the planet?" In point of fact, the geometry
of the equatorial belt is such that such interpretation cannot be precluded.
However, Wright found that on his photographs the crape ring made a dark belt
on the disk only in the red, whereas there was no shadow of the crape ring
on the disk in the ultraviolet. Consequently, if the darkening of the equator-
ial belt in the ultraviolet was in fact connected to with the above-mentioned
cloud of material, it would be necessary, at the very least, to postulate that
its light scattering properties differed significantly from the light scat-

tering properties of the crape ring.

Wood's photographs too show a gradual reduction in the difference in the
brightness of the A and B rings with reduction in the wavelength, with A much
weaker than B in the infrared and yellow, but only slightly weaker than B in
the violet and ultraviolet. Wright's photographs, on the other hand, show
approximately the same ratio of ring brightness for all filters. Present day
data on the spectral reflectivity of the A and B rings show that Wright's re-
sults were close to the true results., The results obtained by Wood are the
result of simple overexposure of the B ring image in the violet and ultra-

violet photographs.

13



It would be necessary to use light filters for the photography, to print
photometric scales, and, if possible, to eliminate instrumental effects, in
order to judge the relationship between the reflectivity of the A and B rings
and that of Saturn's disk in various parts of the spectrum. Barabashov and
Semeykin (1933) did just this in their work, already mentioned in #3. Saturn
was photographed through red, yellow, and blue filters in the 20 centimeter
refractor in the Khar'kov Astronomical Observatory, using a magnification

system,

An "artificial Saturn,!" that of the image of the planet with open rings
corresponding to the real image, but with no gradations of brightness, was cut
from thick white paper, and was photographed parallel to the instrument in
order to exclude instrumental errors (diffraction, chromatic abberation, scat-
tering in the photographic layer, errors in the microphotometer, and others).
The artificial planet was photographed through the same filters, and with the
same exposures, as was the real Saturn. Lighting of the artificial planet was
selected so that the background and the density of the image on the negatives

would be as close as possible to the real Saturn.

The density drop at the boundaries of the image on the microphotograms of
the artificial planet was more or less smooth, rather than step-like. This was
then used to correct the microphotograms of the real Saturn for errors attrib-
utable to the plates used, to the microphotometer, and to the instrument, and

to obtain a brightness distribution along the central meridian and along the

intensity equator.

The second of these graphics (Figure 6) provides, in particular, the
radial progress of brightness in the eyes of the rings along their major axes.
The completeness with which instrumental errors were eliminated can be judged
by the position and depth of the minimum, corresponding to the Cassini division,
and by the ratio of the A and B ring brightnesses. The position of the minimum
coincides extremely well with the accepted distance of the Cassini division. The
brightness at the minimum differs somewhat from zero, and increases with de-
crease in the wavelength, reaching 0.08 the brigtness of the center of the disk
in the blue. The A ring brightness was definitely underestimated [in the yellow

by 2TO6 below the brightness of the B ring, whereas the visual surface photo-
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metry provided by Schoenberg (1921), the photographic photometry provided by
Camichel (1958) using a yellow filter, and the photographic photometry of
Franklin and Cook (1965), provide magnitudes of OT59, OT&?, and 1700 respec-

tivelyl. Thus, the effect of fuzziness of the image is not done away with

entirely (apparently because the artificial planet method does not correct for

drive and atmospheric flicker errors) and this should be remembered during

interpretation.

The authors found that the brightness of the most intense A ring zone

changed from 0.129 to 0.150 and 0.154 (in terms of the brightness of the center

of the disk) with transition from red to yellow and blue. The corresponding

magnitudes were 0.585, 0.775, and 0.862 for the most intense B ring zone. From

whence the ratio of A and B ring brightnesses in the red, yellow, and blue,
were 0.221, 0.194, and 0.179. In other words, the brightness of the A ring
changed less than did that of the B ring as the wavelength decreased when
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Figure 6. Distribution of brightness along the intensity equator
for Saturn and for fuzziness of the image by the
artificial planet method (Barabashov and Semeykin, 1933).

r/R is the distance from the center of the disk in parts of the
equatorial radius of the planet. b/b_ is the brightness as a percentage
of the brightness of the center of the disk. Curves 1, 2, and 3 were
constructed for photographs in which red, yellow, and blue filters,
respectively, had been used.
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equated to the center of the disk. Note that Franklin and Cook (1965) obtained
0.398 and 0.403, with a probable error of 0.003, for the ratio of A and B ring
brightnesses, that is, for all practical purposes there was no difference in the
observed course of the reflectivity of both bright rings with wavelength. This

question, it would appear, is in need of further investigation.

The B ring brightness in terms of the center of Saturn's disk increased
greatly with decrease in the wavelength, in complete concordance with the re-

sults obtained by Belopol'skiy and Tikhov.

Finally, it was found (and this already has been pointed out in #3) that in
blue light the space between the inner edge of the C ring and the ball of Saturn
has a brightness differing significantly from zero, indicative of the presence
in this space of evacuated, selectively diffusing matter. This region is com-
pletely dark in yellow and red lights, indicating a strong dependence of bright-
ness on A, and, as a result, on the smallness of the sizes of the diffusing

particles. It even is possible that the matter discovered is gaseous in nature.

Shayn (1935) used the one-meter reflector in the Simeiz Observatory for 121
spectrophotometry of the B ring with a tie-in to the sun, and to class G stars.
Spectra of Saturn (disk and rings), the Moon, the Sun, and of two class G dwarf
stars, 9 Ceti and 51 Pegasi, were obtained. The author comments that because
of the low altitude of Saturn above the horizon (the declination of the body
was about -16°) the image was not sufficiently still. Details of the order of
2" to 3" were partially washed out by nearby, brighter, details. He was un-
successful in obtaining A and C ring spectra suitable for measurement purposes.
The spectrophotometric measurements were made in two stages: (1) comparison
of the disk and B ring spectra (using spectrograms with a dispersion of
36 &/mm near Hv); (2) comparison of the spectra of Saturn, of the Sun, and

of 9 Ceti (using spectrograms with low dispersion).

High dispersion spectrograms of Saturn were taken for phase angles
@ = 0°5'.5, 0°37'.7, and 2°38'.5. Comparison with the disk showed the marked
effect of the phase of the B ring, comprising almost OTBO in this ¢ interval
(see #12 for a detailed explanation of the effect of the phase of the rings).
It was discovered that in the interval of wavelengths investigated, (4260-6500 })
the magnitude of the effect of the phase did not depend on ), and that this was
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so with the accuracy of within 0701. This is an important conclusion for
interpreting the mechanism of the effect. The measurement data were then re-

duced to a single & value and averaged.

The tie-in to the sun and to the stars presented greater difficuities.
Without going into detail, let us simply point out that the average from the
comparisons made of the spectrum of Saturn's disk with the spectra of the Sun,
Moon, and 9 Ceti, was taken as the final behavior of the differences my = my
with A. The values obtained for 9 Cetus were considered to be the ones most
free of systematic errors, and were taken with a weight of 2 in the averaging.
The control comparison of the 9 Ceti and 51 Pegasi spectra showed good

concordance in the distribution of their brightnesses over the spectrum.

Knowing my - my and mgs it is easy to find the unknown difference

mg ~ Mpe Figure 7 shows this graphically. As will be seen, mg = Mg does not

depend on ) in the interval 4000 - 4600 ﬁ, and for large )\ there is a slight
rise, ending near 5700 A. Consequently, the B ring is somewhat more yellow
than the sun. The disk of Saturn, in turn, is much more yellow than the B
rings In fact, as will be seen from Figure 7, in the interval of change in
A\ investigated (4000 - 6500 A) the magnitude my ~ m changes 1T5, whereas the

h

change in the magnitude of my <~ My is OTS. The widely held view as to the blue

color of the B ring is based on its comparison with the disk of Saturn, which

is much more yellow than the sun. From all of this, Shayn came to the conclusion

that the B ring particles should be longer or even much longer, than the length

of the light wave.

There is no more recent work in spectrophotometry of Saturn's rings. Cook
and Franklin (1965) found the blue and visual brightness of the A and B rings
in stellar magnitudes per square second of arc in the so-called uBvV* system.
The result was the same value for the color index, B - V = +OT86, for both
rings. For the sun B - V = +0%64 (Stebbins and Kron, 1956), for Saturn
+OT98, according to Franklin and Cook (1965), and +1T04, according to Harris
(1963). Giving preference to the data furnished by Cook and Franklin in the
case of Saturn, we come to the color differences in the objects we are inter-

ested in as compared with the sun (see Table 3; the moon has been added as a

*UBV (ultraviolet - blue - visual) is a photometric system in which the
stellar magnitude is found for each body in three parts of the spectrum, the
ultraviolet, the blue, and the visual.

17

122



typical body in the solar system devoid of atmosphere).
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Figure 7. Spectral reflectivity
of Saturn's disk (circles) and
of the B ring (squares) from
Shayn's observations (1935).

Quantitatively, these results are not in
very good concordance with Shayn's spectro-
photometry (his color differences for Saturn
and for the B ring in blue light are OT?? and
OTQO, respectively), but his chief conclusion
remains valid from a qualitative standpoint;
the B ring, in any event, is not blue because

of its illumination by the sun.

The slight increase in the spectral re-
flectivity of the B ring with increase in )

noted in these papers is not, in any event,

connected with the illumination of the ring by Saturn's disk. Calculations

(see #21) show that the intensity of the illumination by Saturn is at least

two orders of magnitude lower than the intensity of the direct solar light. An

independent confirmation of this fact is Shayn's observation that no traces of

even the most powerful absorption belts observed in the spectrum of Saturn's

disk were discovered in the spectrum of the ring.

TABLE 3
Object B v Reference
Saturn's disk +0T34 0700 Cook and Franklin (1965)
A and B rings +0.22 0.00 Same
Moon +0.29 0.00 Harris (1963)

Nor can the evacuated "atmosphere" (dust or gas; see #13) blanketing the

ring be responsible for the effect discussed. Maggini (1937) established that /23

it can only result in significant increase in the color index for the rings in

the case of extremely small elevations of the sun over their plane (A & 1.5°).

It therefore is more plausible to associate the color of the B ring directly

with the color of the surface of the ring particles. Although infrared obser-

vations (#10) show that the particles are covered with hoarfrost, the reflec-

tivity of individual particles (#19) is not so high that it can be considered

that the hoarfrost completely covers the individual particle. Also possible is
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the fact that the color of the particle is affected by constant bombardment by

micrometeorites and solar corpuscles.

#10. Infrared Spectrometry

Kuiper (1951) found that at )} ~ 1.5 microns, the reflectivity of the
rings dropped significantly, and that the intensity of the spectrum was low for
A > 1.5 microns. Additional laboratory research by this same author showed that
this spectrum is typical of a thin layer of hoarfrost deposited on dry ice
(t = ~78°C). In terms of magnitude of absorption, this is the equivalent of a
water filter 2/3 mm in thickness. These facts were interpreted by the observer
as the result of the presence of hoarfrost, or of snow, on the surface of the
particles. Some years later Kuiper (1957 b) made a second series of observations

with better equipment, and these observations confirmed the previous results.

Not too long ago the infrared spectrum of Saturn's rings was once again
investigated by Moroz (1961) and by the team of Shnyrev, Grechushnikov, and
Moroz (1964). The former investigated the integral radiation from Saturn, in-
cluding the disk, and the widely opened rings, in the 0.9 to 2.5 micron range.,
The traces showed intensity maxima at 1.63 to 1.80 and 2.0 to 2.5 microns.
Comparison with the infrared trace of Jupiter, obtained using the same in-
strument, led to the conclusion that these maxima are attributable to Saturn's
rings, and not to its disk. The reflected spectra of snow and hoarfrost were
studied as part of the program. Hoarfrost crystals are smaller than snow
crystals, and are of the order of 0,1 mm, or smaller, in size. The infrared

spectrum of the rings is closer to the hoarfrost spectrum.

Shnyrev, Grechushnikov, and Moroz used the infrared interferometric
technique and obtained separate interference patterns for the disk and for
the rings. The authors applied the Fourier transform to these patterns and
constructed spectrograms of these objects (Figure 8a). The 1.4 micron band
in the ring spectrum turned out to be wider than in disk spectrum, The in-
tensity at 1.5 microns in the ring spectrum was lower than in the disk spec-
trum. Similar characteristics could be present if the ring particles con-

sisted of ice, or were covered by ice.

On the other hand, Mertz and Coleman (1966), who used a spectrometer
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Figure 8. a - Infrared spectra of rings (solid lines) and of

Saturn's disk (dashed lines), according to Shnyrev,

et al, (1964); b - infrared spectrum of Saturn's rings

according to Mertz and Coleman (1966); ¢ and d -

laboratory spectra of ice (hoarfrost) and paraformaldehyde

(powder), according to Mertz and Coleman (1966).
with a Fourier transform (Mertz, 1965) coupled to a 61 inch telescope, are
very hard pressed to find agreement between the ring spectrum and the ice
particle hypothesis. These authors found heavy absorption in the ring spec-
trum at ) = 1.66 microns (Figure 8b), and this was ascribed to paraformaldehyde
(the spectrum of reflection of the latter has a similar characteristic; see
Figure 8d). The authors are not entirely confident that their results are
correct because the observations were made when the ring openings were very
small (16-17 October 1965, A = 3.6°, A' = 5.6°), so the fact that some part
of the "spectrum of the rings" actually is attributable to the halo of the disk

cannot be excluded. It is proposed that the observations be repeated during

the next epoch of large ring openings.

As a matter of fact, the results obtained by Mertz and Coleman are ex- /25
tremely doubtful. First of all, the spectrum of the rings obtained by B
Shnyrev, et al (during large opening) showed no traces of absorption at 1.66
microns. Second, if one makes a graphical summation of the traces of the in-
frared spectra of rings and disk, one easily obtains the 1.66 micron minimum
observed by Mertz and Coleman (as will be seen quite well in Figure 8a). We
tend to the view that the effect of the scattered light from the disk was

actually substantial during these observations, and that there is no basis
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for the rejection of the ice particle (or of particles covered with a layer of

ice) hypothesis.

It might appear strange that the layer of ice crystals has not yet evapor-
ated. Kuiper (1951) anticipated this objection. Using the data in the Inter-
national Critical Tables, he extrapolated the rate of evaporation of ice at
the extremely low temperatures that could be present on the surface of the
particles (near 60 to 80°K). It was found that when T = 70°K the evaporation
rate is exceptionally low (the pressure of water vapor is of the order of

-28

10 mm Hg). At the time of the observations (see #15, below) the information

is that the temperature of the surface of the particles was about 65°K.

#11. Polarization.

Lyot (1929) found that the A and B rings were not identical in terms of
polarization properties. Ring B is close to earth materials, but the A ring

has many special characteristics.

The recent observations made by Dollfus (1963a) revealed that the light
reflected by the B ring is partially (1 - 6-10—3) polarized in a plane passing
through the sun and the earth. This type of polarization is in concordance with
the conclusion that the particles are covered with ice crystals, or with the
more general idea that the surface layer of a typical particle consists of some
type of good reflecting powder. There also is partial polarization in a plane
normal to that indicated above. This type of polarization indicated that the
particles are elongated, or striated in the direction of their orbital motion.

The characteristics of the polarization of the A ring are more complex.

#12. Change in Surface Luminance with Phase Angle.

Although the ‘maximum phase angle at Saturn (the angle Sun-Saturn-Earth)
is not in excess of 6.5°, the surface luminance of the rings changes very
greatly with phase. The finding of the phase function of the luminance of
the rings was the purpose of several series of photometric observations. In
astronomy, observers usually express surface luminance in stellar magnitudes
per unit area (per square second of arc, for example) and plot it on a graph
as a function of the phase angle ,. This graph is known as the phase curve.

Knowledge of phase curves for Saturn's rings is as important as a knowledge of
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the light curves for eclipsing double stars. 1In both cases we obtain information
that, after it has been deciphered, provides data on the features of structure

beyond the limits of resolution of earth-bound telescopes.

The first systematic measurements of the surface luminance of Saturn's
rings as a function of & were made photographically by Hertzsprung (1919), and
visually by Schoenberg (1921) (with the aid of his "microphotometer"; see
Schoenberg, 1917). Both observers used the center of the disk as the photo-
metric standard. Hertzsprung obtained the surface luminance of the A and B
rings individually, and Schoenberg obtained the mean luminance of the A and B
rings (some subjective magnitude not strictly defined by the observer).
Schoenberg was not satisfied with his results and later on made a second series
of observations (Schoenberg 1933), using the same photometer. The second series
differed from the first in many respects: (1) four filters (red, yellow, green,
and blue) were used; (2) many more points near @ = 0; (3) the object measured

was the surface luminance of the most intense zone of the B ring.

The observer found that the phase curves obtained using the different filters
showed no systematic differences. This opened up the possibility of presenting
Schoenberg's data in the form of a single phase curve less susceptible to random
errors than the curves obtained when the filters were used. Complete tables of
observations of surface luminance values were not published. Schoenberg's
article contains but seven averages of the values for each filter, and indi-
cates the number of observed values for each average. These averages make it
possible to compute the mean weighted luminance for all four filters as a
function of o (weight taken in accordance with the number of observed values
for each filter). This mean visual phase curve for the B ring is one of the

best to date. Its empirical equation is in the form

Byl@) - BL(0) = 02270 1g & - 02213 (12.1)

where

g is the stellar magnitude of the luminance* of the B ring (stellar

* The "stellar magnitude of luminance" B, frequently required in astrophotometry,
is associated with the conventional surface luminance, b, by the relationship B =
-~ 2.,5log b+ C, where the value of the constant C depends on the units chosen.
Specifically, if b is expressed in apostilbs ('white luxes'"), and if B is expressed
in stellar magnitudes per square second of arc, then C = 13.92
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magnitude/ square second of arc);
o is the phase angle at Saturn (minutes of arc).

Here we have taken it that BB(O) =B , where Bc is the stellar magni- /27

center enter
tude of the luminance of the center of the disk of Saturn. Eg. (12.1) provides

a good approximation of Schoenberg's phase curve in the interval (0°20' <« 2 6°30').
We should point out that Eq. (12.1) reveals an interesting feature of the B

ring phase curve; it is linear in the coordinates (log ¢, BB).

More recent photometric measurements of surface luminance of the B ring
as a function of & have been made by Lebedinets (1957) and Franklin and Cook
(1965).

lebedinets used the photographic photometry methodology in the form developed
by Barabashov in the Khar'kov Observatory. He found 20 B ring surface luminance
values as functions of @ between 0°16'.6 and 6°0'. The results are quite depend-

able, although random scattering of the points is quite broad.

Franklin and Cook measured the total luminous flux for Saturn, and for the
widely opened rings, and did so photoelectrically. Four filters, yellow, blue,
ultraviolet, and red, were used. In order to evaluate the contribution of
fluxes from the disk and from the A and B rings, the observers simultaneously
obtained a series of large-scale, photometrically calibrated negatives of Saturn
on effective wavelengths extremely close to those for the photoelectric obser-
vations. These latter were obtained by using another telescope. The photo-
graphs taken with the red and ultraviolet filters were unsatisfactory, hence
the observers selected only the yellow and blue (some 20 of the best negatives

in each color).

Without going into further detail, let us simply point out that the measure-
ment of the optical density of the rings and of the disk appearing on the nega-
tives selected made it possible to determine (as a function of &) the percentage
of luminous flux attributable to the disk and to the rings individually. Lumi-

nances then were expressed in B and V units on the UBV scale.*

* See the footnote on page 17.
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An obvious shortcoming in the observations made by Franklin and Cook is
the indirect method they used to obtain the surface luminance of the rings.
The calculation of final luminance values required many intermediate reductions
that could have introduced systematic errors, and the use of photographic
photometry increased significantly the probable errors in the measurements.
In our view, the best way to indicate the magnitude of the probable errors
would be to construct A and B ring luminance phase curves directly from the
photographic data. The authors did not do this, unfortunately, and all of this
detracts from the confidence one has in their results, despite the fact that
the deviation of the computed points from the meancurve is small. The advantage
of the work done by Franklin and Cook however, lies in the great number of
observed luminance values that are more or less uniformly distributed over

the entire phase curve.

The B ring phase curves obtained by Lebedinets, like those of Franklin
and Cook, are in good concordance with Schoenberg's curve (1933), so it can
be asserted that the basic features of the B ring phase curve now are quite well
known. At the same time, it is extremely desirable to have at least one series

of purely photoelectric measurements of the surface luminance of the A and B

rings individually, because such a series would be able to detect finer effects

that now are masked by random and systematic errors.

let us hasten to add that there is no satisfactory A ring phase curve in
existence, and the situation with respect to the crape ring is even worse,
because there is nothing available that remotely resembles precise measure-

ments of its surface luminance.

Turning once again to the observed B ring phase curve, we encounter the
need to reduce all the curves to a single zero [or to a single amplitude of
phase changes in the interval (O, amax)]' The significant difficulty here is
that no one has observed the ring when &« = 0, so the only way the surface bright-
ness, bB(O), of the B ring when &« = O, can be obtained is by extrapolation.
Schoenberg (1933) took it that bB(O) = b nter’ where bcenter is the bright-

ness of the center of the disk, but in earlier work he took b_(0) as 1.10b .
B center

The data provided by Franklin and Cook, including a certain number of

m
3 o = i ~ b
points extremely close to 0, show that evidently BB(O) “’Bcenter 0 .06,
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where B is the stellar magnitude of the brightness (see the footnote page 22.)

Taking all of this into consideration, we can reduce all B ring phase curve
observations to a single zero by comparing them with Eq. (12.1), and basing the

comparison on the assumption that 5B(0) =B Today there is a more basic

center®

assumption, namely, that BB(O) =B - 0 .06, in which case, rather than

center
Eq. (12.1), we come to the expression

Bo(@) - B_(0) = 07270 1og @ - 07153 (12.2)

where &, as before, is expressed in minutes of arc. Now let us change the
ordinates of the Lebedinets and Franklin and Cook phase curves in such a way
that for a single, definite value of «, say 3°, they have BB(d) values identical
with those of Eq. (12.2). We arrive at the curve shown in Figure 9a. As will
be seen quite readily, the phase curves derived by all the authors are in good

concordance each with the other.

The phase curve shape is very characteristic. The curve can be broken
down, somewhat conventionally, into three sections: (1) the initial section
(0° € @ 2 0°25') with a steep, almost 1inSar rise in the stellar magnitude with
&; (2) the transition section (0°25' Z @ £ 3°); and (3) the saturation section,
which, once again is almost a straight line, but has a phase coefficient that

is much smaller than is the case for the initial section.

Let us point out further the extreme acuteness of the maximum for the bright-

ness o = O. This property stands out particularly sharply if polar coordinates
are used to plot the phase function curve (Figure 9b). It suggests that within
the narrow interval of phase angles in which the ground observer can investigate
the reflectivity of the rings the contribution of multiple scattering to the
resultant brightness is small. Actually, in the majority of systems of multiple
scattering encountered in nature, the tendency is toward severe smoothing of the
first order phase function maximum. The sharper the maximum, the firmer the
basis for supposing that first order scattering is "operating" for the most
part in the particular direction. In order to establish whether or not this
argument is applicable to Saturn's rings, we must know the mechanism respon-
sible for the observed change in brightness of the rings with phase. As will

be pointed out in #18, this mechanism is the mutual shading of the particles,

one by the other. In this case multiple scattering is not sharply directional
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Figure 9. Observed B ring phase curves (a) reduced to a single zero
[1 - Schoenberg (1933; mean weighted values for four filters); 2 - Lebedinets
(1957); 3 and 4 - Franklin and Cook (1965; blue and visual stellar magnitudes,
respectively)]; luminance of B ring (¢) as a function of the phase angle ¢
(in polar coordinates). The extreme acuteness of the maximum when & = O
forces one to conclude that in this direction the contribution of scattering

of the highest orders to the total brightness is small.
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in nature. 1Its role reduces to one of attenuating the deepness of the shadows,

or, and this is the same thing, of reducing the sharpness of the peak when & = O.

Quantitative evaluations lead to the conclusion that in the region of the peak
shown in Figure 9b the contribution of multiple scattering is not in excess
of 10 percent, something that henceforth will simplify greatly our interpre-

tation of observed facts.

#13. Other Photometric Data

Schoenberg (1921) detected a systematic difference in the luminance of
the eyes of the rings. The eastern eye was steadily more luminous than the
western for one whole period of observations (1913-1918). The mean difference
in luminances was o' .039. This effect was confirmed by Fesenkov (1926, 1927,
1928), who found the eastern eye to be more luminous than the western by from
0™.06 to 0™.20. Difference in luminances decreased with increase in ring open-

ing.

Fesenkov used a reversing prism to show that this effect is not physio-
logical in nature. The direct cause of the effect is unknown, but it should
be remembered that the eastern eye differs from the western in terms of time
of insolation. The particles of the eastern eye only come out of the shadow
of the ball of Saturn, whereas the region of the western eye is occupied by
particles subjected to the effect of direct solar radiation for approximately

half the period of revolution.

The dependence of the surface brightness of the rings on the angles of
elevation of the sun and of the earth, A and A', above the plane of the rings
was the subject of wide-ranging investigation by Camichel (1958), who used
the photographic method, and by Maggini (1937), who used the photoelectric me-
thod.

Camichel's research was conducted under excellent astronomical climatic
coriditions from the Pic du Midi Observatory. The series of photographs (taken
with a yellow filter) cover the period 1943-1957, or approximately half of the
orbital period of Saturn. The change in A and A' was from between 2 to 3° to
between 26 to 27°. Resolution, estimated by photographing double stars, was
O".,4., Microphotographs taken along the major axis of the rings detected a con-
siderable amount of residual luminance in the Cassini division. This indicates

that the influence of halation is not negligibly small. Figure 10 shows the
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luminance of the A and B rings, as corrected by us for the phase dependence by
using Eq. (12.1), and plotted as a function of A. Despite the considerable
scattering of the points, the reduction in the B ring luminance with reduction

in the angle of elevation A, is readily seen. The other ring shows no marked

effect.
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Figure 10. Luminance of the A (crosses) and B (circles)
rings as a function of the angle of elevation
of the sun above their plane (Camichel, 1958).
In this regard, let us note the visual results obtained by Barnard (1909),

in accordance with which the A ring can be more luminous than the B ring when

openings are small.

The luminance values obtained by Camichel near A = 2 to 3° are significantly
underestimated because of halation, so are not completely dependable. Maggini
studied the region of very small values of A photoelectrically. The results
(also corrected by us for phase effect) are shown in Figure 11 as a function of
A. A decreased from 2°06' to 1°01l' over the period of observation and A!
increased from 0°38' to 3°01'. Maggini noted a sharp decrease in ring lumi-
nance with reduction in A, Dependence of luminance on the angle of elevation
of the earth, A', was not observed. This fact, as well as the increase in the
visible opening over the period of observation, shows that the darkening of the
rings with reduction in A is a real effect, and is not the result of irradiation.
The correctness of this conclusion can be confirmed independently by the simul-
taneous increase in the color equivalent for the rings (curve J in Figure 11).

At the same time, no definite dependence of J on A' was observed. Coloration
of the rings at extremely small values of angle of elevation of the sun probably
is indicative of the stratification of the ring particles in terms of size along

the z-coordinate; the percentage of small particles increases with distance
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from the mean plane of the rings. In other words, it is possible that the rings
are surrounded by their own type of "atmosphere.! The fact that it can contain

a gas component is not precluded. We shall return to this question in #23.
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Camichel not only found a dependence of surface luminance on angle of ele-
vation A, but also some interesting azimuthal effects: (1) the surface lumi-
nance of the B ring decreases from the eyes to the minor axis; (2) there is a
systematic difference between the nearest and farthest (with respect to the earth)
branches of the A ring; the nearest branch is more luminous in the case of the

eastern eye, and weaker in the case of the western.

#14. Optical Thickness* /33

There are two methods that can be used to assess this important parameter,
one that characterizes the degree of transparency of the rings: (a) observations
of the visibility of Saturn's disk through the rings; (b) observations of the

occultations of stars by the rings.

The starting point for method (a) is the obvious relationship

* Let us recall that the optical thickness of a plane-parallel layer for a
normally incident beam can be defined by the relationship T, = -1n(I/Io), where
I, and I are light intensities before and after the beam has passed through the
layer. In other words, (I/Io) = exp - T,.
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' = -
b’ = b exp sin A sin A"
where

b! is the visible surface brightness of that part of Saturn's disk
covered by the ring under consideration and illuminated by the sun
through this ring;

b is the surface brightness of that part of Saturn’'s disk when it is
not covered by the ring and is illuminated by the sun directly;

A and A! are the angles of elevation of sun and earth above the fdane of

the rings;
To is the optical thickness of the ring in a direction normal to its

plane.

Camichel's data (1958) permit the use of this formula to evaluate Tohs the
optical thickness of the A ring. This observer found a mean of bA = 0.57be,
where bA and be are the surface brightness of the A ring and of Saturn's equa-
torial zone, respectively. The A ring is partially transparent, and Saturn's

polar zone can be seen through it. This creates additional brightness corre-

sponding to 0.08be. Polar zone brightness is equal to O.87be, when not occulted.

From whence, and in accordance with Eq. (14.1)

R sin Asin A’
T.‘[,A == 2. QO (lg b —— Ig b,) _an—.;'lw-—[——-s_int /i"w =]
0,429-0,426
0,429 0,426

(14.2)

= 2,30 (1g 0,87 — 13 0,08) ~0,5,

where
0.429 and 0.426 are the mean values of the sines of angles A and A'Y at the

time of the observations used here.
Evaluation of Eq. (14.2) will yield a correct order of magnitude, but can con-
tain some degree of error attributable to halation, and for which Camichel's
data were not corrected (see #13). Let us take it that the minimum contrast
in brightness that could be observed in Camichel's observations was about 0.05.

Accordingly, he was able to see the polar zone of Saturn through the A ring

( sin A + sin A! T, ) (14.1)

when b' = 0.05bA = 0.028be. Substituting this in Eq. (14.1), we obtain ToA = 0.7
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In all probability, the interval
0,5 < 1 < 0,7 (14.3)

will provide a quite correct representation of the value of the optical thickness
of the A ring, but it is desirable to make further assessments, precisely

corrected for halation.

Method (b), as has been pointed out, is based on observations of occulta-
tions of stars by the rings. To date the only types of such observations are
visual ones. They have been made mostly by amateurs using low and medium powered
instruments (D € < 50 cm). Here we will consider the case of good images (for

details see Bobrov, 1962).

Let us suppose that the radial distribution of the intensity in the image
of a star is identical to that in a diffraction picture of a point source, but
that the first minimum occurs at r, =r; o+ t, where ry is the first diffraction
minimum, and t is the angle of turbulence. Let br be the surface brightness of
the zone of the ring occulting the star, and let ebr be the minimum brightness
of the image of the star needed in order for the eye to distinguish it through
the ring. Let us note that the radius of the image of the star visible through

the ring is r, < r It is obvious that

t° .

5_«D:=5%(G&.ggexp~—ﬁdﬂnfrx (1h4.k)
where G0 is the equipupillary magnification;
G is the magnification resolving the image of the star;
E;o(Go) and b,(G) are the mean brightness of the star when not occulted

(GO magnification), and during occultation (G magnification), respectively.
On the other hand

— G2

b,(G) = eb (G )B. (14.5)
Remembering that

r, = pe/ZG, (14.6)

where p_ is the angle resolved by the naked eye, substituting Eq. (14.5) in Eq.
(14.4), and changing from brightnesses to their stellar magnitudes per square

second, we obtain

.
Ty S (B iy — 2,5 1g e+ 51g G+ 2,5 1g ] (r/r) — 107321, (14.7)
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Here the function f(r*/ft) signifies the percentage of luminous flux from the
part of the stellar image bounded by radius r,. In Eq. (14.7) we took it that
p_ = 120", based on the experiments made by Maksutov (1946) and Pavlov (1961);

e
that mto was the stellar magnitude of the star (at the zenith). The minimum
contrast e¢ depends on the brightness of the background. Sytinskaya (1949)

made the corresponding laboratory investigations.

The value of t during the observation can be estimated by using the Danjon-
Coudé image quality scale, bearing in mind that the case of good images is

satisfied by the condition that (t/rl) < 1/2.

Figure 12. Path of a star during its
occultation by Saturn's disk
| | and rings on 28 April 1957

Neediess to gay, the assumptions on which Eq. (14.7) are based are but a
rough approximation of occultation conditions. This is why two of its short-
comings will be found in all of the available observed data in which the equation
was used. First of all, the computed value of o turns out to be somewhat 122
exaggerated as compared with the value obtained through method (a). The
difference disappears if we change the last term in the equation, putting it
equal to -10".81. This means that only 54 percent of the luminous flux from
the star is concentrated in the central circle of the turbulent image of the star,
rather than 84 percent (as is the case in the classical diffraction pattern.
and as we assumed in deriving Eq. (14.7)). Moreover, this is not the only
possibility. Strictly speaking, Eq. (14.1), on which our estimate of T through
method (a) is based, is correct only for a point source of light, whereas
Saturn's disk is an extended source, Disregard for this feature can lead to
exaggerating the true value of To and it is possible that herein lies the reason

for the discrepancies discussed.

Second, the numerical values of To give a greater random scatter. It is

likely that the above computed concentration of luminous flux is 54 percent
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only in the middle, and there could be cases when there could be a significant

deviation from this magnitude.*

At the same time, observation of a star occulted by the rings undoubtedly
is a solid and fruitful method to use to investigate the optical thickness of
the rings, their radial structure, and the like. The advantages of this method

have not yet attracted the attention of the professional observers.

One of the most interesting of the occultations occurred on 28 April 1957.
The path of the star (BD - 20°4568; 8™.0) can be seen in Figure 12, The pheno-
menon was observed visually be Westfall (see Heath, 1958) in a 20 inch refractor
(magnification 320). The observer did not have a photometer and estimated the
change in the magnitude of the star during the occultation by eye. We have
attempted, in Figure 13, to show these changes graphically in accordance with
the qualitative description given by Westfall., His observations are important
in that they demonstrated for the first time the partial transparency not only
of the A ring, but of the B ring as well (at least of its outer zone and of a
small part near the center). Figure 13 also shows that the optical thickness
of the A ring changes markedly with r, decreasing in the central zone, and, it
seems possible, having narrow lanes near the outermost boundary of the entire
ring system.

Visibility of Cassini Cassini

occulted Etar division a division

B
P Y

Full brightness—+ i
F
Seen weakly-
Almost %nvisigle Rl h o — T

nvisible . »
VRS & ) 7/ Y s e 20 /7RIt

Figure 13. Schematic representation of the change in the brightness of a star
during its occultation by Saturn's rings on 28 April 1958, observed
visually by Westfall.

Let us attempt to estimate TOB by comparing Westfall's results for the A
ring with the results for the B ring. Westfall observed zones in both rings that
were not transparent for the star. These zones were wider in the B ring.

Zones that were partially transparent for the star were observed in both rings.

* Note that the values of the magnitudes P, and ¢ can change significantly,
depending on observation conditions.
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They were narrower in the B ring. We can conclude, therefore, that in general

is higher than T is 0.5 to 0.7 [see Eq. (14.3)1,

T but not much. If TO

0B oA’ A

we can take the average for the B ring as

ToB ~ 1. (14.8)

Some B ring zones are even more transparent.

The methods described here cannot be applied to the C ring because of the
specific difficulties that arise in connection with its lack of brightness. The
values adopted for TOC all are based on the old observation made by Barnard (1890).
These were estimates of the attenuation of the brightness of Iapetus as a funce
tion of time in the shadow of the C ring. Cook and Franklin (1958) made a de-
tailed analysis of this observation and concluded that TOC increases monotoni-
cally with distance from the center of Saturn from 0.0 for 9"/3 to 0.18 for

13".2.

#15. Radiometric and Radioastronomical Data /37

Kuiper (1951) estimated the equilibrium temperature of a typical particle
of Saturn's rings to be between 60° and 70°K. It was supposed that the particles
were covered by hoarfrost and that they were screened periodically from the sun
by each other, ard ty the ball of Saturn. At this low temperature the Planckian
maximum of jintrinsic heat radiation of the particle will be L41-48 microns,
that is in the wave band that is longer than the region of the transmission
window for the earth's atmosphere. Consequently, heat radiation from the rings
at infrared wavelengths can be observed only by extra-atmospheric observations,

and such observations have not yet been made.

Conversely, radioastronomical observations of Saturn make it possible, in
principle, to detect heat radiation from the rings without going beyond the
limits of the earth's atmosphere. Moreover, radiocastronomical observations can
be used to obtain estimdtes of the optical thickness of the rings at radio wave-
lengths, and these, in turn, can be used to make a ready determination of the
typical size of a particle (we will recall that when 2ﬁp/K < 1, where p is the

radius of the particle, the transmission for the system increases sharply).

Unfortunately, present data on radio radiation from Saturn is such that
one cannot do these tasks without ambiguity. Still, discussion of the available

data is of interest.
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Radio radiation from Saturn has been measured by Kutuza et al. (1965), at
A - 8 mm, by Welch et al. (1966), at 1.53 cm, by Cook et al. (1960), at 3.45 cm,
by Hughes (1966), at 6.0 cm, by Rose et al. (1963}, at 9.4 cm, by Drake (1962),
at 10.0 cm, by Davies et al. (1964), at 11.3 cm, and by Davies and Williams (1966),
at 21.2 cm. The values for the brightness radio-temperature of Saturn, Tb, ob-
tained by these authors are shown in Figure 14 as a function of the wavelength
(the open circles; the vertical lines show probable errors in the determinations
as cited in the articles). As will be seen, Tb rises with CA, although the con-
siderable scatter in the points does not enable us to fix the law of rise with
confidence. The reason for the rise is the greenhouse effect (the larger A, the
deeper the layers of the atmosphere from which the radiation is being recorded),
or the presence of a nonthermal component (radiation from the radiation belts,
similar to that observed for Jupiter). If the second possibility is what
occurs, radio radiation from Saturn definitely should be polarized, and this is
what has been found by Rose et al. (1963), at 9.4 cm. These authors reported
strong (20 * 8%) polarization with orientation of the electric vector parallel
to the axis of rotation of the planet (in the case of the corresponding radiation
from Jupiter the electric vector is perpendicular to the axis of rotationj
Zheleznyakov (1964) showed that the difference in orientation can be explained by
the effect of the rings on the shape of the radiation belts). However, observa-
tions made by other radio astronomers have not confirmed Rose's results. For
example, Davies et al. (1964), observed no polarization at 11.3 cm, and arrived
at the conclusion that its upper limit is less than 6 percent. So, the question 138

is not completely settled, and further observations are needed in order to re-

solve it.

But whatever the nature of the rise in Tb with CA, it can be expected that
when A is small enough the radio brightness temperature of Saturn should be close
to the infrared brightness temperature. Today we can place the old results ob-
tained by Pettit and Nicholson (1924), and by Menzel, Coblentz, and Lampland
(1926), which yielded Tb’” 125° to 130°K, as well as more recent observations by
Murray and Wildey (1963), and by Low (1964, 1966), at infrared wavelengths.
Murray and Wildey used a germanium photoresistance on a 19-inch reflector and

worked in the transmission window between 8 and 13 microns. No traces of infra-

red emission from Saturn were found, so it follows that in this band of
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Figure 14. Brightness temperature of

Saturn at radio wavelengths. The
circles are for temperature normalized
for the full disk of Saturn (the
""cold, completely transparent'" rings
hypothesis). The crosses and tri-
angles are for temperature calculated
through Eq. (15.2) when Ty = 30° and
65°K (the "warm, partially transparent”
rings hypothesis). The horizontal
arrow is the infrared brightness tem-
perature at A = 10 and 20 microns
(Low, 1964, 1966) normalized for the
part of Saturn's disk not screened

by the rings.

wavelengths Tb < 105°K. Low measured
the emission from Saturn with an in-
frared photometer in the Cassegrain's
focus of an 82-inch reflector in the
McDonald Observatory at A = 10 and

20 microns. This time emission was
The corresponding Tb values
were 93 * 3°K, confirming the correct-

found.

ness of the conclusions reached by
Murray and Wildey, and showing that
the o0ld estimates of the infrared
brightness temperature of Saturn

apparently were exaggerated.

The mean of Low's results is
shown by the horizontal arrow at the
axis of ordinates in Figure 1l4. As
will be seen from the figure, all Tb
estimates obtained at radio frequen-
cies are higher than this value, but
it still is hard to say whether the
temperature found by Low is the
asymptote to which the radio tempera-
The

ture tends with reduction in A.

data still are too sparse for this.

Let us turn now to the question of the thermal emission from the rings.

Low (1966) notes that his value for the brightness temperature of Saturn is

corrected for absorption in the rings, which, in his words, proved to be very

much colder than Saturn's disk.

temperatures, however.

He does not provide numerical values for ring

So far as the radio wavelengths are concerned, all of

the radiocastronomers proceed from the assumption that the emission source is

the total area of Saturn's disk when they make the transition from the measured

flow of the emission to Tb.

not only in the eyes, but in front of the disk as well.
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This, however, ignores the visible area of the rings,

This is the equivalent
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of the '"cold, completely transparent" rings. In the general case, that of the
"warm, partially transparent' rings, however, the mean radio brightness tempera-
ture of the Saturn plus rings system can be found through the expression (with
an accuracy up to first order scatter)

7 x_l_g (2 [1 — exp — (vofsin A)] Ty ++ [y + (1 —y) exp — (vo/sin AN G Y, (15.1)

where

Tr and Td are the radio temperatures of Saturn's rings and disk;

X is the visible area of the rings (in the eyes and in front of the disk);

y is the area of that part of Saturn's disk not screened by the rings;

o is the optical thickness of the rings for a given wavelengthj;

A' is the angle of elevation of the earth above the plane of the rings.

The magnitudes x and y are expressed in percentages of the total area of Saturn's

disk. They have been tabulated by Schoenberg (1929) as a function of A'.

It is not difficult to see that T = Tb/(x + y), where Tb is the brightness
temperature cited by the radio astronomers. Hence, the radio temperature of the
disk is

Tp—=[l —exp — (tofsin A)] T

d™ y+(—yexp—(rsinA) (15.2)

We used Eq. (15.2) to find T, values for two assumptions, ’I‘r = 65°K and

d
Tr = 30°K (with To taken as equal to 0.8), in order to see how existing radio
measurements agree with the '"warm, partially transparent'" rings hypothesis. The

corresponding points are shown by the triangles and crosses in Figure 1k4.

As will be seen from the figure, in all but one case the computed values of
Td are higher than the infrared temperature of Saturn as found by Low; that is,
they agree with the "warm, partially transparent' rings hypothesis when Tr = 30°K,
as well as when Tr = 65°K. The point where they are not in agreement (A =
3.45 cm) is that found by Cook et al. (1960), the first time an observation had
been successful in detecting radio emission from Saturn. Perhaps this is the
explanation of why Cook's point in Figure 14 clearly 'breaks" downward, as com-
pared with adjacent points. It would appear that the measurement provided an
exaggerated value for Tb. In fact, one should expect T, ~ 140°K at A = 3.45 cm.

b
Substituting this figure in Eq. (15.2), we find 75°K and 116°K for Td when
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Tr = 65°K and 30°K, respectively. It can be taken therefore, that when Tr =
30°K, the '"warm'" rings hypothesis satisfies all the available observational
data, remembering that the rings are no more transparent at the radio wave-
lengths than they are at the optical wavelengths. Tr = 65°K is too high a
value, although this conclusion is based on just one point in Figure 14,

Cook's point.

At the same time it should be emphasized that the 30°K value obtained here
for the temperature of the rings is unjustifiably low, so the fact that Saturn's
rings are more transparent at radio wavelengths than they are at optical wave-
lengths cannot be precluded. In fact, all that need be done to satisfy all
existing data is to reduce To to 0.4 when Tr = 65°K. Further observations are
needed in order to arrive at a final answer to this problem. The most effec-
tive observations would be of two types. The first would involve obtaining long
series of measurements of Tb as a function of A'. The second would involve
observations with high angular resolution, the purpose being to establish the
shape and size of the radio emitting region, and the distribution of radio
brightness in it. If it should develop that Saturn, like Jupiter, has radia-
tion belts, the question of the temperature of the rings will call for a new

discussion, different from that undertaken in the foregoing.
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IV, Model of the B Ring. Properties of a Typical Particle.

#16. Absolute Surface Brightness of the B Ring

The preceding chapters have dealt with observational data. Let us now set
about analyzing all of this primary information. As before, the primary object
of our attention will be the B ring. Let us, as our first step, compute the
absolute surface brightness, bB(O), of the most intense zone of the B ring when
o = 0. Knowledge of bB(O) will make it possible to estimate the spherical
albedo* of a particle and to draw some conclusions as to the particlé's natural
phase function. The term "absolute brightness" will be used in the sense of
"brightness in bo units, " where b0 is the brightness of an absolutely white,
orthotropic area, positioned normal to the incident solar radiation at the mean

distance of Saturn.,** We shall express bo in a visual system.

As was noted in #12, not too much credence can be placed in the extrapola-
tion of the brightness of the ring to ¢ = 0. The most reasonable thing to do

is to represent the value as

m
Bgl0) =B_ - 0.06, (16.1)
where B is the brightness, expressed in stellar magnitudes (see footnote on
pP. 22); c is the center of Saturn's disk. Converting the magnitudes in Eq. (16.1)

into conventional brightnesses, we obtain

bB(o) = 1.06b . (16.2)
C

Thus, the task is reduced to finding b_ in b units. It should be noted /42
that we consider the bC used in Eq. (16.2) as the photometric standard to be a
magnitude that is completely stable with respect to Saturn's axis of rotation,
and with change in angles A and A'. This stability is not absolute, of course,
but the many observations already made indicate that when the rings are wide

open, bC is stable enough, as a rule, to serve as a good photometric standard.

* Spherical albedo is a dimensionless magnitude equal to the ratio of the
luminous flux scattered in all directions by the body to the luminous flux inci-
dent on it (given the condition that the body is illuminated by a beam of parallel
rays). The analogous magnitude for a plane area is called the plane albedo.

If the rays are incident on the area in a direction normal to it, one can then
speak of the plane-normal albedo.

* % Brightness, expressed in bo units, is also called the "luminance factor,"
or "visible albedo," in astrophotometry. 39



Moreover, in our calculations bc is only an intermediate magnitude. We will,

in the end, express bB(O) in b_ units, and b_ is in fact stable.

Absolute measurements of bc were made by Sharonov (1935, 1939), visually
and photographically, and by Lebedinets (1957) photographically, by comparing
this magnitude with the brightness of a white screen illuminated by very weak
solar radiation. Brightness was reduced to a visual system in the photographic
work done by Sharonov (1939). Lebedinets used four filters (red, yellow, green,
and blue) and obtained the respective four bc values. From these one can deduce
a single bc value in a visual system, proceeding from the standard curve for
visual acuity, and the effective wavelengths for the filters. This procedure

results in the data listed in Table L.

TABLE 4
Observer Method bc/bo
Sharonov (1935) Visual 0.30
Sharonov (1939) Photographic 0.68
Lebedinets (1957) Photographic 0.48

Absolute measurement techniques are complicated, and involve many inter-
mediate operations with all of the systematic and random errors inherent in such
operations, the magnitude of which it is difficult to estimate. This is pre-

cisely why the divergence in the bc/bo values listed in Table 4 is so great.

But one can readily calculate bc/bo independently, and estimate the probable
error in the calculations, by starting with the visual stellar magnitude of
Saturn (without the rings) m s the area of Saturn's disk w (in seconds of arc),
and the darkening toward the limb of Saturn's disk, and which can be expressed

by the ratio Bybc, where b is the mean brightness of Saturn's disk.

We obtain

1g (U /bo) = 5,57 — 0,40m5 —lgo—1g Ly —21g sz — 1g (b/b.), (16.3)

where EO is the brightness of an orthotropic, absolutely white surface placed /43
at a distance from the earth normal to the incident solar radiation (outside the

earth's atmosphere); Rb is the mean distance of Saturn from the sun.
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The value of 3ybc, found from observations of the darkening toward the
limb of Saturn (Schoenberg, 1921; Barabashov and Chekirda, 1952; Lebedinets,
= + 0".89 + T%; E, = 1.35-10
270" (Rabe, 1928); R,? = 9.54
AU. The addend 5.57 is based on Fabry's formula for a stellar magnitude of

5

1957; Camichel, 1958), has a mean of 0.66+5%; m,
1x * 5% (both values taken from Russel, 1916); w

1 lux. The probable error is 5 percente.

Substituting all of these magnitudes in Eq. (16.3) will give (bc/bo) = 0.62

+ 22%, and, as a result
b,(0)

b
o

= 0.65 * 22% = 0.51 — 0.79. (16.4)

The middle of the interval is very close to the result obtained in Sharonov's

second effort.

#17. Model of the Ring. Albedo of a Particle.

The spherical albedo* of a typical ring particle can be obtained by using
the value bB(O)/bo from Eq. (16.4) if we know the magnitude of the phase inte-
gral, q (expressing the angular distribution of the light scattered by the par-
ticle) and if we have selected some model of the ring. Two alternative models
can exist. One of the models has properties such that at any point on the ring

normal to its surface one will find no more than a single particle

z, ~ 2p (17.1)
where z, is the ring thickness; p is the particle radius. It is not shown
as a true equality because the particles can complete small oscillations around

the middle positions. We shall call this model a '"one-particle thickness

system,"
The alternate model can be written by the expression

ZO > 4] (1702)
This is a "many-particle thickness system." The inequality of Eq. (17.2) signi-
fies that the inclinations of the particle orbits to the plane of the ring are

not very small. That is,

-y P
i» - (17.3)

where i is the mean inclination; r is the mean radius of the particle orbit.

* See footnote, p. 39.
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Recognizing that To ~ 1, we see that the Eq. (17.2) model can be characterized Z&&
by frequent collisions between the particles. Jeffreys (1947b) drew attention
to the fact that the collisions are in part inelastic. The energy dissipation
that takes place as a result of nonideal elasticity of collisions results in a
secular reduction in inclinations and eccentricities in particle orbits.
Calculations led Jeffreys to the conclusion that over a period of time that was
short as compared with the age of the solar system, Saturn's rings should have
been transformed into a one-particle thickness system. But, as will be seen in
Chapter V, the data from observations quickly indicate in favor of the many-
particle thickness system., Chapter VI will take up the possible reason for the
non-concordance between Jeffrey's result and the real ring structure. We will

not, at this point, opt in favor of either model.

(a) One-particle thickness system. The upper limit of the spherical

albedo, a ax? is equal to one for visual rays. This is the case for microscopic
dielectric particles. They will be particles of ice (#10) in the case of

Saturn's rings. But the very concept of rings consisting only of microscopic
particles encounters very serious difficulties. One of the major difficulties

is cosmogonic in nature. Microscopic particles would experience the strong in-
fluence of planetocentric radiative braking, which is analogous to the atmospheric
braking of artificial earth satellites and which would force the particles to

fall into the central body (the planet). This problem was reviewed by Radziyevskiy
(1952), who derived the formula

t = 0.95-107pR261n(r0/rt) s (17.4)

where p is the particle radius (cm); & is the particle density ( g/ec);
R is the distance of the central body from the sun (AU); t is the time interval
(years) during which the radius of the circular orbit of a particle will de-

crease from ry to r,. Applying Eq. (17.4) to Saturn's rings, Radziyevskiy intro-

t
duced a correction factor that took into consideration the shielding of the
particle from direct solar radiation by the ball of Saturn, and by other par-
ticles. The true value of t turns out to be greater than that computed through

Eg. (17.4) by a factor of approximately three.

Schoenberg (1933) was of the opinion that p could be 3.6 microns. Franklin
and Cook (1965) arrived at 310 microns in their "Model II." Substituting these
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values for p in Eq. (17.4), and taking § = 0.9 g/cm3 (ice), R = 9.54 AU, r =
& km (the present outer limit of the A ring), and r, = 7-1Olt km (the pre-

5

14-10 t

sent inner limit of the C ring), we obtain 6+10” years and 5-107 years, respec-
tively. In other words, even if p = 310 microns, all of the ring material

should have undergone complete renewal over the period of time that the solar
system has been in existence (~5-109 years) some 100 times! Another possibility
(also of slight probability) is that the rings are several orders of magnitude Zéi

younger than any typical body in the solar system.

Thus, we have eliminated from further consideration microscopic particles,
and will now proceed to look into particles of macroscopic size (p > 3 cm). It
can be expected that the action of micrometeorites and solar corpuscular radia-
tion would have left the surface layer of this sort of particle very rough, and
that it would resemble the moon's surface layer (somewhat similar to '"castles
in the air," '"lichens," and the like). Consequently, the value close to that
of the phase integral for the moon (q» = 0.585), can be taken for the phase inte-
gral, q, for the particle. It also is natural to suppose that the surface
layer is thick enough for To = ©, Moreover, we know that the brightness of the
ring in opposition is [bB(O)/bOJ:w 0.65. Let us recall that we do have a case
in the one~particle thickness system when To = ToB ™ 1. The indicatrix for
the individual particle with the surface layer described above is badly asym-
metrical, with the scatter maximum directed backward (toward the light source).
The spherical albedo of the particle in this system need not be high in order to
ensure that bB(O) = O.65b0. Then we can ignore multiple scattering from particle
to particle, just as we can the dark lanes between particles (errors have
opposite signs and cancel each other, approximately), and we can identify bB(O)

with the mean brightness of the disk of the particle in the full phase
b (0)/b_ = bB(O)/bo. (17.5)

This approximation results in a readily obtainable majorizing estimate of the
spherical albedo of a particle in the system. Actually, the magnitude on the
left hand side of Eq. (17.5) is, by definition, the geometric albedo of the

particle

b0)/b = a (17.6)
o ap
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But the geometric albedo of any body is linked with its spherical albedo by the

relationship

aSp = qag, (17.7)

where q is the phase integral. Consequently, in our case we can write

asp p = (qpag p/qDagD)(aspD)’ (17.8)

where the subscripts p and ) are magnitudes that equate to the particle and to

the moone.

Now note that a g p > ag* As a matter of fact, in the Eq. (17.5) approxi-
mation a = 0.65, whereas the tabulated value is agD = 0,106 (Allen, 1960).
Since the indicatrix for the particle can be considered to be close to the indi-
catrix for the moon, this inequality means that the particle's reflectivity is Zéé
higher than the moon's. But general considerations, as well as laboratory inves-
tigations (Hapke and van Horn, 1963), suggest that when the body has a lunar
type surface, the elongation of the indicatrix (toward the light source) de-
creases with increase in the body's reflectivity. In such case qp/qD > 1, and

we can write the following in place of Eq. (17.8)

( Y21

PRAC »). (17.9)

a > (a
Sp P gp

The valuesof all the magnitudes on the right hand side are known, so all that

needs to be pointed out is that the ag» = 0.106 cited above should be corrected
for the effect of the moon's opposition. This will give agD = 0.145. Then,
when a = 0.65%22%, and a = 0.067
gp sp )
a > 0.30+22%. (17.10)
Sp P

In #18 it will be shown that this albedo is too high to be able to ascribe
the "logarithmic" shape of the phase curve for the B ring to the effect of
shading in the surface layer of an individual ring particle. Consequently,

the Eq. (17.10) result indicates that the B ring is not a one-particle thickness

system.

It now becomes of interest to turn to microscopic particles with a spherical
albedo close to unity. They appear to be unsatisfactory from the photometric
point of view, apart from cosmogonic considerations. To show this, let us cal~

.

culate the brightness of the layer as applicable to dielectric particles scattered
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in accordance with Mie's formulas. We see that even when asp = 1, the brightness

of this layer is much less than that observed for Saturn's rings, O.65bo.

In this case we are not justified in ignoring the multiple scattering from
particle to particle because the albedo is high. The resultant system brightness

therefore should be written in the form

b = by + Ab, (17.11)
where the first and second summands designate the contribution to the resultant
brightness of first and higher orders of scattering. Since the calculation is
being made for a one-particle thickness system and for the moment of precise

opposition, the magnitude b, is the geometric albedo of the particle. If g is

known, the calculation is riadily made through Eq. (17.7).

The monochromatic phase function of dielectric microscopic spheres with
indices of refraction m = 1,33 and 1.50 yields q values that vary from 1.72 to
approximately 130 (Walter, 1957, 1959; Giese et al., 1961), depending on the
parameter u == 2Mp/A, where A is the wave length of the incident radiation, and
p is the radius of the sphere. Walter's tables list the parameter u with
valueg from 10 to 400, and Giese's tables list it from 10 to 159. Assuming
A = 0.555 micron, we obtain p limits 0.9~35.4 miecrons and 0.9-14.1
microns, respectively. When we use the data in these tables we should take into
consideration the fact that the incident radiation is not monochromatic in our
case, and that p can have dispersion (considerable, in all probability). What
should be taken for q, therefore, is a mean value around 7.15. Assuming

a = 1, we obtain
sp

bl =a, = 1/7.15 = 0.1k, (17.12)
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We can estimate the term Ab through formulas from the theory of multiple
scattering. Unfortunately, this theory holds only with many-particle thickness
systems. Let us take an exaggerated value for To’ say 3, in order to avoid
underestimating Ab. Then the isotropic phase function will yield Ab/bl = 0.4l
for absolutely reflecting particles and wide open rings (A = A' = 25°) [in our
case the light is scattered forward, primarily, and this reduces Ab/b1 as com-
pared withthe isotropic problem; the value of O.41 used in Eq. (17.11) therefore
should give some exaggeration in the estimate of system brightness, but, as

will be seen below, this merely served to strengthen the argument]. So, the

total brightness of the layer is
b = 0.41°1.,41 = 0.20. (17.13)

Comparing this result with Bﬁ(O) = 0.65 (as well as with the other in b units)
we see that the system just reviewed will be less bright than the B ring by at
least a factor of three. Thus, the one-particle thickness system consisting of

microscopic dielectric spheres does not satisfy the photometric data.

One can raise the objection that microscopic particles expected in Saturn's
rings should be crystals, rather than true spheres. Unfortunately, there are no
phase function calculations for crystals. However, if crystal orientation is

chaotic, the results should be close to those for spheres. If the orientation

is systematic, meteorological data can be used (optical phenomena in ice crystals

in the earth's atmosphere; see Minneart, 1958, for example). These data fail to
indicate back scattering strong enough to ensure a high degree of brightness

for the B ring. Moreover, crystals are incapable of creating the observed
"logarithmic" shape of the phase curve for the B ring with its rapid drop in
brightness near ¢ = O. The latter comment is valid as well for microscopic,
opaque white spheres reflecting in accordance with Lambert's law (although the

amount of light scattered backward in this case is sufficient).

(b) Many-particle thickness system. This is the classical case considered

in the theory of multiple scattering of light (a flat layer of scattering medium

with optical thickness To in the direction normal to the layer, the particles

/48

of which have albedo a). Formulas and tables can be found in Chandrasekhar (1953),

Sobolev (1956), Chandrasekhar, Elbert, and Franklin (1952). Table 5 lists our
calculations for the B ring (again when A = A' = 25°). We selected 0.62 as the
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mean value of bB(O), rather than 0.65. This produces no significant change in

the results.

TABLE 5

x. for second Ab
To bp @ |1 a @ (1) 5 Under study

and higher or-
b der scattering [
1 0,62 0 1 3.3 0,24
1 0,48 0 1 2,7 0,31 Effect of by(0)
1 0,76 0 1 4.9 0,20
1 0,62 0 1 4,0 0,17
3 OkZ o 1 3.7 0.31 Effect of TO
1 0,62 -+3 1 4.4 0,08
1] 062 ~3 t | 41 | ogs | Pffect of x
1 0,62 0 0.8 5,5 0,12
1 0,62 0 0,7 6,6 0,08 Effect of a
1 0,62 0 0,6 7,9 0,06

In Table 5, To is the optical thickness of the layer, bB(O) is the brightness
of the layer in opposition, a is the spherical albedo of a particle in the layer,
x(T) is the value of the phase function of particle x(y) for time when the angle
of scattering v = 1, that is, also inopposition and Ab/b is the ratio of the
brightness attributable to multiple scattering to total brightness. The follow-

ing parameter was used to calculate scattering of orders higher than the first

=
x1=%S z(y)cos ysinydr, (17.14)
0
and is a measure of the elongation of the indicatrix. X is equal to zero in
the case of isotropic scattering, is positive for an indicatrix with forward 122
elongation, and negative for an indicatrix with backward elongation. ‘xll =3

corresponds to an indicatrix with extremely great elongation. As will be seen
from the data listed in the table, the dependence of x(mT) and Ab/b on Xy is
weak, so in future calculations it can be taken that multiple scattering is iso-

tropic.

The phase function x(v) was normalized such that its mean value over the
entire sphere was x(y) =1. In order to avoid any confusion, let us point out
that in astrophotometry the normalization of the phase function is different,

that is, it is taken that x(m) = 1 for any shape of the indicatrix. 1In this
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case the magnitude in the fifth column in Table 5 is x(w)/x(y) = 1/x(v) = 4/q,

where q is the phase integral [and for the calculation of which it also is

taken that x(m) = 1].

There is yet another comment to be made, one based on principle, in addi-
tion to the purely formal comment already made. The magnitude of a listed in
Table 5 is not the albedo of an individual particle in the system, strictly
speaking, but the albedo of an element of the volume of the system containing a
sufficiently large number of particles, according to the derivation of the formu~
las of the theory of multiple scattering. We introduce an error by identifying
a with the albedo of the particle. But it is obvious that this error will be
smaller the smaller the magnitude of the Ab/b ratio. At the end of #12 we
emphasized the fact that the observed extreme sharpness of the B ring phase func-
tion maximum when o = 0 (Figure 9b) suggests the primacy in this direction of
the effects of first order scattering; that is, on the smallness of Ab/b as com-
pared with unity. The results of the direct calculations in terms of the theory
of multiple scattering, as listed in Table 5, confirm this fact, so long as the
Ab/b value is not greater than 0.31, even when a = 1, It is more realistic to
put a ~ 0.6 to 0.7, and then Ab/b = 0.06 to 0.08. There is no objection to iden-
tifying a with the albedo of an individual particle under similar circumstances.
After these necessary comments, let us proceed to the substantive analysis of

the data in Table 5.

We will consider the To and bB(O) values listed in the table as parameters
known from observation (the accuracy of which is within definite bounds). In
such case the data in the table enable us to establish what the x(rw) and Ab/b
values for some a ought to be so that, when To ~1l, a bB(O) value satisfying the
observations will be obtained. In turn, this will make it possible for us to
conclude that:

1. Microscopic, dielectric, diffracting (consequently transparent) spheres
for which a ~ 1, x(1) ~ 0.56 (Walter, 1957, 1959; Giese et al, 1961) do not satis-
fy the many-particle thickness models, because they cannot provide the observed

bB(O) value.

2., Absolutely white spheres, scattering in accordance with Lambert's law

[x(r) = 2.7], almost satisfy the minimum observed value bB(O) = 0.51 of Eq. (16.4).
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At the same time, a = 1 indicates that the spheres are microscopic and have a

fresh ice surface. Recalling that cosmogonic considerations lead to a very short /50

life span for microscopic particles in Saturn's rings, we should

suppose that the sole source of particles such as these is the fractionation of
macroscopic particles when they collide with each other. Consequently, the per-
centage of microscopic white particles in the total mass of the ring ought to

be small,

3. The preceding conclusion can be expressed in a different way. The
main mass of the B ring is made up of macroscopic particles. It can be antici-
pated that because of the constant activity of micrometeorites and of solar
corpuscular radiation on the surface of the particles, their phase function will
be extremely close to the moon's phase function, for which, with the effect of
opposition taken into consideration, x(m) = 9.43. For the same reasons, it can
be anticipated that the spherical albedo of a typical macroscopic particle of
the B ring will be significantly less than unity. The data in Table 5 confirm
this. Actually, a ring with To = 1, and consisting of particles with a = 0.6 and

x(r) = 7.9, will have a surface brightness bB(O) = 0.62 when A = A' = 25°,

Finally, it can be stated that a many-particle thickness system having the
brightness of the B ring, and consisting primarily of macroscopic particles
with a phase function similar to that of the moon (reflecting surface in terms

of mass) will have an albedo for the particles of

o~ 0.5 = 0.6 (17.15)

or approximately double that of the one-particle thickness system.

#18. The Mechanism Responsible for the Observed Ring Phase Curve

Three explanations have been advanced for the shape of the phase curve ob-
served for Saturn's rings. They are, in historical sequence:

1. mutual shading of the particles (Seeliger, 1887, 1893; see as well a
detailed review of these papers, written by Schoenberg, 1929);

2, diffraction of light by an individual ring particle (Schoenberg, 1933);

3. the shadow effect on the surface layer of an individual particle
(Gehrels, 1956, 1957; Gehrels et al, 1964; Hapke, 1963; Hapke and van Horn, 1963).
We shall call it the Gehrels-Hapke effect, for purposes of brevity.
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The observed phase curve can be attributed to one of these effects, or to

combinations of them.

Let us attempt to estimate the relative contribution of each effect to the Zzl
resultant phase curve. The contribution of diffraction is small. As a matter
of fact, in #17 we saw that a ring with a reflecting surface attributable mainly
to diffracting particles would be weaker than the B ring in brightness by more
than one stellar magnitude. Recalling that BA - BBsu o".6 (#1), we can add

that a ring such as this will be much weaker even than the A ring.

The contribution of the Gehrels-Hapke effect too is small. As a matter of
fact, this effect can give a phase curve resembling in shape the phase curve
for Saturn's rings only for the condition that the albedo of the particle is
very low. This can be seen quite well in the example of the Galilean satellites
of Jupiter, Io, Europa, Ganymede, and Callisto. Harris (1962), proceeding from
a reasonable assumption that q = 9y = 0.585 for all these bodies, found spherical

albedo values of 0.54, 0.49, 0.29, and 0.15, respectively, for them.

The phase curves for the satellites are quite reliably known from the elec-
trophotometric observations made by Stebbins and Jacobsen (1928). Only in the
case of Callisto does the phase curve resemble the phase curve for the B ring
with respect to the ''logarithmic" behavior near opposition. In the case of the
other Galilean satellites, the phase curves are practically straight lines, or
are only slightly curved, with a curvature that remains almost unchanged with g.
But the main photometric feature of Callisto is its very low albedo (0.15, as
compared with 0.29 to 0.54 for the other three satellites). Another satellite
with a phase curve resembling the phase curve for Saturn's rings is the moon

(Gehrels et al, 1964). Its albedo too is very low (0.07).

Theoretical research (Hapke, 1963) and laboratory experiments (Hapke and
van Horn, 1963) also confirm that the "logarithmic' behavior of the phase curve
near opposition can be observed only in the case of bodies with low albedo. In
particular, artificial laboratory surface structures in this case should have a
normal albedo not exceeding 0.15 (a spherical body with a surface such as this

would have a < 0.09).

At the same time, we saw in #17 that even a one-particle thickness system

with the brightness of the B ring should have a ~ 0.3, and in the case of the
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many-particle thickness system (matching more closely the real structure of the
B ring) the value of this parameter should be increased to 0.5 to 0.6, approxi-
mately. These figures do not concord with the strong Gehrels-Hapke "logarithmic"

effect near opposition.

On the other hand, mutual shading is the principal effect responsible for
the observed shape and amplitude of the ring's phase curve. The arguments raised
in favor of this point of view are as follows:

1. It is not mandatory that ring particles be microscopic. In this regard, Zz%
cosmogonic considerations vanish. If the radius of a particle, p, has an order
of magnitude of a few centimeters, or more, the life of the ring satisfies cos-
mogonic requirements.

2. The spherical albedo of the particle can have any value between O and 1.
Specifically, it can be 0.5 to 0.6, that is, have a value satisfying the observed
brightness of the B ring.

3. Theoretical phase curves for the effect of mutual shading can yield ex-
tremely good concordance with available observations of the B ring. Concordance
can be achieved when the values of the theoretical parameters are reasonable

(see, in addition, Chapter VII).

#19. Conclusions Concerning the Structure of the B Ring and Properties of a

Eypical Particle

So, it is more probable that the principal effect responsible for the shape
and amplitude of the phase curve for the B ring is mutual shading. This postu-
lation leads immediately to certain quite specific conclusions as to ring struc-

ture.

First, the ring should be a many-particle thickness system. This is the
consequence of the requirement that the physical thickness of the ring, Z

ought to satisfy the condition

z ~ 1 sin A, (19.1)
where 1 is the length of the dark cone of the particle, and A is the angle of
elevation of the sun above the plane of the ring. In Chapter VII it will be
shown that if Eq. (19.1) is not satisfied, the phase curve will be almost a
straight line in the interval 0 < ¢ < 3°, It is obvious that the one-particle

thickness system can satisfy the condition of Eq. (19.1) only when values of A
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are very small, At the same time, the observed phase curve for the B ring is

extremely nonlinear in this interval to A ~ 28°,

Second, the mean distance between adjacent particles ought to be short
enough to provide for a comparatively high probability of mutual shading. In
other words, the percentage of the volume of the ring occupied by particles, or
the so-called volumetric density, D, should not be too small. Calculations

using the formulas from the theory of mutual shading (Chapter VII) reduce to the

condition

DS 107, (19.2)
Once the B ring model is selected, it becomes possible to describe the
properties of a typical ring particle. Strictly speaking, they were described
in #17, when we reviewed the many~-particle thickness system with To = 1, and Zél
brightness at opposition equal to B ring brightness. With this in mind, we can
represent a typical B ring particle as a macroscopic, opaque, diffusely reflec-
ting body with a surface layer similar to the lunar surface, and with spherical

albedo a ~ 0.5 to 0.6.

Macroscopic particles with these properties ("blocks") should comprise the
overwhelming percentage of the mass and reflecting surface of the ring, but
this does not preclude the presence of smaller particles ("dust") in the volume
of the ring. The life of such system ("blocks + dust") can be quite long, cos-
mogonically speaking. Actually, although the "dust" will be swept out of the
ring volume continuously because of radiative braking, the collisions between
"blocks" will result in the fragmentation of their surface layer and to the
appearance of new "dust particles.!" Collisions in a many-particle thickness
system in which T ~ 1 should be frequent (#28). The presence of ''dust" in
Saturn's rings was detected reliably by Maggini (1937) photometrically. The
presence of the '"dust'" is readily apparent only when the openings are extremely

small (see Figure 11).
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V. Analysis of Observations Made During Extremely Small Ring Openings

#20. Introductory Remarks

It is obvious that observations of the rings when openings are extremely
small (including times when A, or A', equals zero) can provide important addi-

tional information on the shape and nature of the rings.

First of all, these observations make it possible to estimate the physical
thickness of the rings, Z . [Let us emphasize the fact that angle ¢, correspon-
ding to z, as seen from the earth, is uncommonly small, and cannot be resolved
by the largest telescopes, even when images are excellént. For example, if z, =

1 km, @ = 1.4-10'4 second of arc. See #22, Eq. (22.2)1].
There are two ways in which the problem can be solved.

1. Observe the rings when A' is exactly equal to zero. At this time the
rings should be seen edge-on {(providing the plane of the rings has no significant
deformations of the figure-8, or other types), and the luminous flux from the

rings should depend solely on the value of their physical thickness.

2. Observe the dark side of the rings (the eyes). The observer should, in
principle, detect a bright, narrow, band created by the edge of the system, at
the limb of the semi-~ellipse of the rings closest to the earth. Since the edge
is illuminated by direct solar light, its true brightness, be’ should be of the
order of brightness of the B ring at large openings, whereas the brightness of

the dark side, b should be from 2 to 2 1/2 orders of magnitude less (the sub-

)
scripts "e" and ﬁd” designate the edge and dark side of the rings, respectively).
As a practical matter, the magnitude of the be/bd ratio will be greatly reduced
because of the apparent expansion of the image of the edge, but despite this
fact, given the corresponding visibility conditions, the presence of a bright

edge will show up in the form of some asymmetry in the photometric section of

the eyes.

Further details dealing with these two methods of arriving at an observed

estimate of z will be discussed in #22.
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Other tasks of observations at extremely small A and A' are explaining the 152
sources of illumination of the dark side, estimating bd/bl (where the subscript
11" designates the lighted side of the rings), studying the distribution of
particles by size along the z-coordinate, searching for a gas, or dust, atmosphere,
possibly, blanketing the rings, estimating the optical thickness of the divisions,
and others. The majority of these problems can be solved because the periods
when A and A' have opposite signs provide the observer with the distinct possi-
bility of studying the rings in diffusely transmitted light, rather than in
diffusely reflected light (as is customary).

#21., Illumination of the Dark Side of the Rings

(a) Illumination of the dark side of the ball of Saturn. Russel (1908)

was the first to obtain the correct order of magnitude of this effect. His cal-

culation can be expressed by the formula

(b('i/bl) =1/2 [(Isz sinzP)/(I@rz sinzp)] fb(cv,?)fp(ap) (21.1)

where b! is a brightness component for the dark side attributable to the illumi-

nation of the rings by the ball of Saturn;

bl is the brightness of the lighted side (the most intense zone of the B
ax);
I, and I_ are the intensities of the light from Saturn and from the sun,

ks

as observed from the earth;

ring when o ~ o

R and r are the mean heliocentric distances of Saturn and the earth;
P and p are the apparent magnitudes of the polar radius of Saturn for the
observer at a given point on Saturn's rings and on the earth;

fband fp are the phase functions of the ball of Saturn and of a typical

particle of Saturn's rings;
@, is the phase angle at Saturn (in the conventional sense; that is, when
the sun is taken as the light source);
o 1is the phase angle for the particle at a given point at the rings (in a

special sense; the source of light is the ball of Saturn). Figure 15 illustrates

the situation.
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. Figure 15. Calculation of the illumina-—
a

;\;;;7 tion of the dark side of the
rings by the ball of Saturn
[ see Eq. (21.1)1.

a - schematic view of the
Saturn system with the dark
side of the rings turned to
the earth; M is a ring par-
ticle (the size of the
particle is greatly exagger-
ated for clarity); b - view
from a point above the north
pole of Saturn.

The 1/2 in Eq. (21.1) means that the observer of the rings sees only half
of Saturn's disk ("half of the moon, half set," as Bond has put it). Russell
placed his "test particle" at a point on the major axis of the ellipse of the
rings at a distance measured from the center of Saturn equal to the polar diameter
of the planet (we shall call it the Russell point'"). This point is on the B ring
at a distance of some 8,000 km from the ring's outer boundary, in the brightest

zone of the entire ring system.

P = 30° at the Russell point. Taking p = 9".07, my - m, = -26".60 - 0".88 =
-27" .48 [from whence (I,?/I@) = 1.02-10'11], (R/r) = 9.539, o, =, = 90°, f,?(90°)
=2/7, fp(90°) = 1/3, and putting 2/7-1/3 ~ 1/10, approximately, Russell obtained

(bé/bl) ~ 1/160. (21.2)

The author of this book reviewed the work done by Russell. He took into Zzé
consideration the present day values for the magnitudes contained in Eq. (21.1),
and verified the correctness of the basic assumptions. The intensity of the
illumination of the dark side was calculated for a series of points along the
major axis of the rings, and along a secant normal to the major axis and inter-
secting it at the Russell point, as well as for the Russell point. The results

of the review can be formulated as follows.

1. The ab = 90° value for the Russell point is inaccurate. It would be
more correct to measure ap from the direction to the photometric center of gra-—
vity of the planet's crescent, rather than from the direction to the center of
Saturn's disk. This will give a correction factor of Ay = 14° for the Russell
point. The corresponding bé/bl value will then be 40% greater than it is in Eq.

(21.2). Analogous correction factors can be introduced for all the other points.
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2. Present day values of mg and p are —26m.73 (Alien, 1950), and 8".80
(Rabe, 1928). When they are substituted into Eq. (21.1) in place of the values

accepted by Russell, the result is changed by 6% in all (on the lower side).

3. Russell's assumption that fb(0°)'fp(90°) = 1/10 is equivalent to adopting
Lambert's scatter law for Saturn, and for the particle. According to Lambert's
law  £(90°) = 0.318, so that £(90°)+f(90°) = 0.10l. Contemporary research (see
Harris, 1963, section 8.5) indicates that the phase functions of large planets
are, in all probability, intermediate between the Lambert functions and Rayleigh ZEZ
scattering. The latter yields £(90°) = 0.24. f(90°) for Venus has precisely
this value (Danjon, 1949; the phase function of Venus observed by him practically
coincides with the phase function of the Rayleigh scattering right up to ¢ = 100°).
So far as the phase function of particles of Saturn's rings is concerned, it
should be near the phase function of the moon, and then f(90°) = 0,08 (Rougier,
1933). However, this value is valid only when the angular dimensions of the
light source are small. In the case under consideration the half-crescent
visible from theRussell point is 30° in altitude and somewhat in excess of that
in azimuth. A wide-angle source such as this will greatly reduce the shadow on
the surface of the particle, and the resultant fp(90°) will be much larger than
0.08.

With all of this in mind, we calculated the behavior of the dark side bright-
ness in the eyes (along the major axis, and along the normal secant through the
Russel point), using two assumptions

1) fb(a) = fp(a) = fL(a) and 2) fb(a) = fp(a) = fg(a),

where fL(a) and f (o) are the phase functions of the Lambert scattering and of

Venus, respectively. Figure 16 is a plot of the results for the'Russell secant."

bé/bl Figure 16. Theoretical distribution of
the brightness of the dark
side of Saturn's rings along
the secant passing through
the Russell point normal to
the major axis of the rings.
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As will be seen, the brightness of the dark side diminishes with distance
from the Russel point along the secant. The mean magnitude of the bé/bl ratio
is 5.4°107 3

for the Lambert phase function, and 3.6-10- for the phase function

of Venus.

The bé/bl ratio changes along the major axis in the case of the Lambert

3 3

phase function from 510 ° at the outer boundary of the A ring, to 13+10"° at

the inner boundary of the B ringe.

(b) Component of the brightness attributable to diffusely transmitted solar

radiation., This component can be estimated through formulas and tables that are
part of the theory of multiple scattering. Table 6 lists the results of our
calculations for the A and B rings. The calculations were made for a spherical
indicatrix. Because the indicatrix for the scattering of the ring material is
in fact very aspherical, and has backward elongation, the actual brightnesses

should be lower than those calculated.

TABLE 6
3 1 1 1 1) "
Ring To A A ign A 5192/A/<§:><g&/bl)true (bd/bl)app
—— = e o i '-T T T
A 0,5 | 2°20" | 0°35' 0,04 | 0,01 | 1,0 4,5-1073 3,3-1073
0,8 2,4 1,8
0,5 0,8 0,6
0.5 035 | 220 0,01 | 0,04 1.0 18.4 5.8
0,8 9.6 2,8
B 0,5 2,9 0,8
1,0 220 035 0,04 0,01} 1,0 2,9 2.1
0,8 1,3 1,0
0,5 0,4 0,3
1,0 035 2201} 0,01 0,04 | 1.0 11,8 3.4
0.8 5,1 1,5
0,5 1,4 0,4

In Table 6, b"d is the component of dark side brightness created by the
diffusely transmitted solar light. The subscripts "true" and "app" designate
true and apparent brightness. Apparent brightness is understood to mean the
brightness attenuated by atmospheric and instrumental wash out for the case of
visual observations made in a telescope with an aperture of between 0.6 and 1.0
meter when image quality is good. We used the contour of brightness distribu-

tion in the image of a star obtained by Meinel (1963) for the reduction, taking
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it that the central peak contains 30 percent of the total luminous flux from /58
the star and that the telescope can resolve a dual system with components of
equal brightness distant from each other by 0".375. Graphical integration was

used to make the transition from a point source of light to a line, and to a

band.

The magnitude of (b"d/bl)app was calculated for equal pupillary magnifioca-~

tion, and was not reduced for atmospheric and instrumental absorption.

As will be seen from Table 6, when g ~ 0.5, the b"d component is somewhat
smaller than b'_, and this is true in all cases. This difference is even

greater for the backward elongated indicatrix.

(c) Solar radiation diffusely transmitted through the Cassini division;

optical thickness of the division. Let us suppose that the scattering proper-

ties of the particles filling the Cassini division are identical with those of /59
the particles filling the B ring. The problem is to find that value of the op-
tical thickness of the Cassini division (ToCd) that will satisfy the following

observational data:

(1) wvisibility of the external bright condensation on the dark side when

AS 1 - 29

(2) wvisibility (at sites of external bright condensations) of dark spots
when the ring has its illuminated side turned toward the earth and A is of the
order of 2°;

(3) non-visibility of the double bright line of the Cassini division on
the dark side of the rings between the external and internal condensations;

(L) +the significant excess of the brightness of the outer condensations
over the brightness of the dark side. Specifically, when A' ~ 0°L40', the exter-~

nal condensations visually are 6 to 8 times brighter than the dark side (Barnard,

1908a).

Our calculations revealed that we can obtain satisfactory concordance with
all of these points when To ™~ 1.5-10-3. Because ToCd is exceptionally small,
the value of the brightness can be calculated with only the first order scatter-
ing taken into consideration. Figures 17 and 18 show some of the results in
graphic form. They confirm Barnard's assumption that the outer condensations

can be attributed to the light diffusely transmitted through the Cassini divi-
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sion. Let us add that the inner condensations {coinciding in terms of position
with the C ring) evidently can be attributed to the like diffusion of light
through other optically thin zones, specifically through the division between
the B and C rings, and through the zone near the iﬁner part of the C ring where

T can be quite small tool(Cook and Franklin, 1958). This assumption is streng-

oC
thened by the fact that some observers with good images (Aitken, 1907; Barnard,

1908b) saw each of the inner condensations twice,

Figure 17. a - the Cassini division as seen from the earth when sin A' = 0.0L;
b - theoretical distribution of apparent brightness (excess over dark
side brightness) along the major axis of the rings (telescope with
aperture ~ ~ 0.6 to 1.0 meter, resolution 0".375; central peak of
star image contains 30 percent of total luminous flux).
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Figure 18. Theoretical distribution of the apparent brightness in the image of
the dark side of the rings along a secant normal to the major axis
at a distance of 12",9 from the center of Saturn (observation con-
ditions the same as those in the preceding figure).

1 -~ component of brightness from diffusion of light through the north and south
branches of the Cassini division; 2 - summed brightness from both branches;

3 - component of brightness from dark side of A and B rings when the Cassini
division was missing.
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#22. Analysis of Observations for Estimating the Physical Thickness of the Rings

(a) Observations of dark side. The presence of a fully illuminated edge

of the rings at the boundary of the ellipse closest to the earth evidently should
result in asymmetry in the distribution of brightness along the secants of the
eyes normal to the major axis. Once again, assuming that the resolution of point
sources of light is 0".375, and that the central hump of the star image includes
30 percent of the total luminous flux from the star, we obtain the brightness
distribution shown in Figure 19a for a secant 14".0 from the center of Saturn
when z, = 20 and 10 km., When z, = 10 km, the brightness of the right maximum on
the resultant curve is 9 percent higher than the brightness of the left. It is
probable that this is close to the lower limit of detection by visual methods.
Further, if it is assumed that the resolution is double the above (0".187), the
distribution of the brightness of this same secant will be that shown in Figure
19b (zo = 10 km). The peaks created by the Cassini division have much greater
intensity in this case than they do in the previous one. The result is that the
contrast between the right and the left maxima remains almost the same (10 per=

cent).

/61

Figure 19, Influence of z0 on the distribution of apparent brightness in the
dark side image (along a secant normal to the major axis at a
distance of 14",0 from the center of Saturn).

a - resolution 0".375. The bold face and dashed curves are the theoretical
contours for z ~ 20 and 10 km; b -~ resolution O",187, z ~ 10 km.
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Figure 20, Same as in Figure 19, but for a secant passing through the A ring
(distance from the center of Saturn 19".1); 2z ., 10 km.
o &

a - resolution 0",375; b - resolution 0".187.

Conditions are more favorable along the secant passing through the A ring Zé%
eye, that is, outside the Cassini division. Figure 20 shows the corresponding
brightness distribution. Evidently, asymmetry in the distribution of brightness
can be detected visually in this case, even when z, = 5 km. However, this
effect was not noted at the time the old observations were made (1907-1908,
1920-1921), nor was it noted during the international patrol observations made

of Saturn in 1966.

(b) Observations of edge. The rings transmit a luminous flux to the earth

from the edge only when A' is precisely equal to zero. If the receiver is sensi-
tive enough to detect the line of the rings beyond the ball of Saturn, we ob-
tain data on which to base an estimate of the low limit of z . Up to 1966,

there had been no success in obtaining a positive effect.

This author found that when A' = 0, the expected brightness of the ring
image (beyond Saturn's ball) was so low that Saturn's atmospheric aureole can
prevent detection. High mountain observatories therefore offer the best results.
Reflectors (since they do not have chromatic abberation) are preferable to re-

fractors.

The 1966 observations showed that in general our calculations were correct.

This can be seen from Figure 2la, which shows a positive print from one of the
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plates obtained by Dollfus on Pic du Midi, and which led him to the discovery

of Saturn's tenth satellite. The brightness of the planet's disk was attenuated
artificially by approximately two orders of magnitude by a band of absorbing
material. The intense aureole of Saturn, the brightness of which diminishes

with distance from the limb, will be seen outside the band. The rings (dark

side turned toward the earth and visible almost from the edge) can be distinguished
against the background of the aureole with difficulty. But it must be remembered
that the situation is somewhat more favorable for visual or photoelectric obser-
vations because the widening of the line of the ring is less in cases such as

these.

Let us assume we observe the passage of the earth through the plane of
Saturn's rings under ideal conditions, when only the diffraction aureole plays
any significant role., The calculations made to determine the intensity of this
component of the aureole yield brightnesses of 7.4, 1.8, and 1.2010—4 bc’ respec-—
tively, for distances from the center of Saturn of r = 14".,4, 18".,0, and 19".6
(telescope aperature D = 60 cm and magnification G = 220). bc is the brightness
of the center of Saturn's disk. Moreover, it can be shown that for our "stan-
dard" image quality (resolution 0".375, concentration 30 percent of total
luminous flux at the central hump or the star image) brightness ba along the

axis of an extremely narrow bright band is

b, = (¢/0".37)b (22.1)

true’
where ¢ is the angular width of the band (in seconds of arc) and b, e S the /63
true brightness of the band. Finally, the linear width, h, of the band at the

mean distance of Saturn is

_ 3
hkm = 6.91.10 © sec arc (22.2)

5

Then, taking b =b_, and b = 5.10" b_ (contrast with the brightness of the

true
aureole is ¢ ~ 25%), we obtain

h - 0.26 km (22.3)

The order of z, should be such that it can still be detected by a high-
mountain observatory. Consegquently, the sensitivity of this method is at least

an order of magnitude greater than the sensitivity of the method described in

section (a).
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The procedure for estimating z, from observations when A' = O is simple, at
least at first glance. All that need be done is to select a high-mountain obser-
vatory where, at time A' = 0, computed in advance, it will be astronomical night
and Saturn will be high enough above the horizon to observe (visually or photo-
electrically) whether or not the lines of the rings disappear, after which Eq.
(22.1), or one similar to it, is used for the calculation. Unfortunately, the
position of the plane of Saturn's rings was not known accurately enough until
recently. According to Slipher (1922), the actual time A' = O can differ from
the computed time by as much as *1 day.* Consequently, successful observations
required the conduct of an international patrol of Saturn by personnel in many
observatories covering a sufficiently wide range of longitudes. Let us emphasize
the fact that the observer's task should include not only establishment of the
fact of visibility, or non-visibility of the rings on the critical night, but
also the obtaining of evidence of the fact that his eyes observed transit of

the earth through the plane of the rings.

The author, together with Dollfus, made the first attempt to organize a
patrol such as this in 1966 (within the framework of the Commission on Physics
of Planets of the International Astronomical Union). It was possible to observe
two transits of the earth, and one transit of the sun through the plane of the

rings, as well as two quite long periods of visibility of the dark side of the

rings (see Figure 3).

More than ten first-class observatories in the eastern and western hemispheres
participated in this cooperative venture. The program distributed to the observers
(Bobrov, 1966) envisaged not only observations designed to solve the main problem,
that of estimating the thickness of the rings, but doing other work as well, the Zéé
desirability of the imposition of which was determined by the special location
of the rings relative to the earth in 1966. Recommendations included making
photometric, spectroscopic, and spectrophotometric observations of the light and

dark sides of the rings, to attempt to obtain the dependence of brightness of

* The results of the international cooperative observations of Saturn in 1966
showed that in fact the correction factor for the ephemeris time A' = O is some

5 hours (Dollfus and Focas, 1968; Kiladze, 1968). The sign of the correction
factor is positive for passage of the earth on the south side of the plane of the
rings and negative for passage on the north side. The error of the correction
factor for the observer is estimated at *2 hours.
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the rings on the phase angle and on the angle of elevation of the sun above their
plane, to detect the presence of a feebly luminous "atmosphere' (dust or gas)
that, according to Maggini (1937),is entrained in the plane of the rings, to check
the existence of the so-called D ring, more distant from Saturn than the A ring,
and others. Further, it was emphasized that the practical absence of the dis-
turbing influence of light scattered by the rings (particularly in the period

of their dark side visibility) made many types of observations of Saturn's disk
and satellites favorable, including determination of the integral stellar magni-
tude of the disk, and its dependence on the phase angle, photometiry, spectro-
photometry, spectroscopy of the disk and of details of the disk, and of observa-
tions of the covering of the satellites by the atmosphere and by the edge of

Saturn's disk, as well as observations of the eclipse of the satellites.

The majority of the observatories that took part in the 1966 patrol observa-
tions obtained a wealth of material, much of it unique in many ways, that helps
explain many of the questions concerned with the physics of the Saturn system,
particularly its rings. The primary processing is completed and results obtained
by the Pic du Midi, Meudon (Dollfus and Focas, 1967) observatories have been
published. In processing are a number of the observations obtained by the Univer-
sity of New Mexico observatory (140 plates, covering 64 nights), and a similar

series obtained in the Kuiper Lunar-Planetary Laboratory.

Frantz and Johnson (1967) attempted photoelectric scanning of the line of
rings in the Lowell Observatory for 14 nights. Unfortunately, the equipment

was not good enough to obtain any definitive results (Hall, 1968).

Texereau (1967) published a short report on his photographic photometry of
Saturn's disk and rings, made with a 2 meter telescope in the McDonald Observa-
tory, November 1966. If his data are to be trusted, the intensity of the rings
continued to diminish within two or three days after the transit of the earth
through the plane of the rings. This is clearly in error. Texereau himself
notes that the measured intensities were greatly distorted by diffused light
from Saturn's disk (the brightness of which Texereau failed to attenuate),

and that the image quality changed greatly from night to night.

These isolated failures are recognized as being inevitable, to some extent, /65

because the measurements required were very delicate, and involved many difficul-

ties.
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Figures 2la through e illustrate the most important results of the patrol
observations of Saturn (other than the work done by Kozyrev, more about which in

#23).

Figure 2la reproduces the photography on which, for the first time, there
was detected the previously unknown tenth satellite of Saturn (Dollfus, 1967).
This satellite, called Janus, rotates around the planet at a distance of three
earth radii from the outer limit of the A ring, and has a stellar brightness of
14, The nearness to the rings, and the weakness of the satellite, in terms of
brightness, result in its being seen only at times when the rings have their
dark side turned to the earth. Beyond this, at the time of observation, Janus
should be near the position of maximum elongation (east, or west). All of this
makes Janus an extremely difficult object to detect. Dollfus discovered it by
basing his efforts on his own idea that the Cassini division by its very exis-
tence was responsible for the resonance perturbations, not of Mimos, but of a
body closer to Saturn, a conclusion arrived at as a result of new, more precise
micrometric measurements made of Saturn's rings in the Pic du Midi Observatory

(Figure 1c).

Figures 21b and c¢ are the curves for the intensity of the line of the rings
(in terms of time) during the October and December transits of the earth through
their plane. These curves, obtained by the photographic photometry method by
Kiladze, and Dollfus and Focas, respectively, are an important step forward in
the investigation of Saturn's rings. They made it possible for the first time
to find the orders of the physical thicknesses of the rings. We will discuss

these curves in detail at the end of this section.

Figure 21 d has been taken from Feibelman (1967), and demonstrates the
successful effort to confirm the existence of the so-called D ring (of the exten-
sion of the ring system beyond the limits of the A ring). It was so dim that
it could be seen only near the position on the edge, and then only when condi-
tions were such that the entire ring system had its dark side turned to the
earth. As will be seen from the figure, the D ring line extends for a distance
exceeding the apparent diameter of the ring system by a factor greater than two

(so that Janus is revolving around Saturn, inside this ringl).

Feibelman's estimate of D ring brightness is 15 stellar magnitudes/square second

of arc, or less.
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Intengity of line of rings. Intensity of line of B ring.
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Figure 2le shows one more result of Dollfus and Focas' photometry, measure-
ments of the luminance of the dark side of the rings as a function of the ele -
vation of the sun above their lighted side. These are the first, and as yet the
only, quantitative measurements of dark side luminance. Prior to 1966, estimates
of dark side brightness were based on old, visual.observations made by Barnard,
Slipher, and Graff, as well as by an approximate calculation of the illumination
of the night side by light reflected by the ball of Saturn, and by light diffusely
transmitted through the thickness of the rings from the day side (#21). The
observations made by Dollfus and Focas now make it possible to check these cale

culations. Agreement seems to be completely satisfactory.
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Figure 21, Materials
illustrating the results
of the international co-
operative observations
made of the Saturn system

in 1966.

December 1966



a - Print from a plate obtained by Dollfus on Pic du Midi on 15 December 1966.
The luminance of Saturn's disk was artificially attenuated by a factor of 140
by an absorbing band. The rings have their dark side turned to the earth and
are almost edge-on (A' = 0°2'.5). The inside parts of the image of the rings
sink into the intensive aureole of Saturn's disk. The arrow points to the new,
tenth satellite of Saturn, discovered by Dollfus; b - Change in the intensity of
the rings during the transit of the earth through their plane in October 1966,
in the direction from the lighted side to the dark (photometric measurements
made to estimate ring thicknesses; Kiladze, 1968); c¢ - Similar measurement of
intensity of rings in December 1966, when the earth intersected the plane of
the rings in the opposite direction (Dollfus, Focas, 1968); d - Bottom - View
of Saturn on 14 November 1966; Top ~ Microdensitogram along the line X-X. The
decay in the center corresponds to the position of the visible thin line of the
D ring (Feibelman, 1967); e ~ Luminance of the dark side of the rings as a
function of the angle of elevation of the sun over their lighted side (Dollfus,
Focas, 1968).

Let us add that the Dollfus and Focas photometry also contains data on the
luminance of the lighted side of the rings in terms of the phase angle when the
ring openings are extremely small. This is the first time for such observational
material as well. Later on its analysis can be used to check existing theories

of ring structure (#34).

Let us now turn to the curve for the intensity of the line of the rings as
a function of A' near the time of transit of the earth through the plane of the
rings (Figure 21b and c). The December curve (Dollfus and Focas) is very similar
to the October one (Kiladze), differing from it only by the order of movement
in terms of time of the steep and flat branches (corresponding to the bright
and dark sides of the rings). The intensity within the limits of each branch
near A' = O changes monotonically, and is practically linear. Significant
inadequacies in both series are lack of measurements at the intensity minimum,
and in direct proximity to it. This results in the shape of the curves over
the section of the transit from the steep branch to the flat one remaining un-
known. At the same time, it is apparent that the shape of the transition section
should have a significant dependence on the shape of the ring cross-section.
For example, plane-parallel rings should yield a linear intensity curve, with a
minimum coinciding with the point of intersection of the branches. An ellipticalg@ﬂi
section gives a rounded minimum. If the thickness increases toward the outer

edge of the ring system, the minimum will be flat. The presence of an absorbing
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ring outside the visible ring system will cause a nonlinear decay in intensity
to the minimum, and so forth. (Moreover, the intensity of the line of the rings
will depend on the phase angle, ¢, and on the angle of elevation of the sun over
the plane of the rings, A, but analysis of existing observational data shows
that near A' = 0, the influence of ¢ and A is slight compared with the influence

of A')o

Kiladze, as well as Dollfus and Focas, assumed that the ring intensity
minimum occurs at the intersection of the two branches. We have seen that this
applies with equal force to the plane-parallel rings hypothesis. Based on this
assumption, the October series of measurements (Kiladze, in blue light) provides
z, = 1.6 km, and the December ones {(Dollfus and Focas, in yellow light) z, = 2.8
km, with a root-mean-square error of the order of 25 to 50 percent. At the
same time, as in the case of the #21 calculations, it is assumed that the sur-
face brightness of the edge is equal to the brightness of the most intense zone

of the B ring at large openings.

Since the true behavior of the intensity in the transit section is unknown,
strictly speaking we have no right to assume in the case of the ring thickness
calculations, that they are plane-parallel. In that case, though, estimates of
ring thickness can be purely formal in nature. So we must find z, by taking an

approach that will be as free as possible from arbitrary hypotheses.

This calculation can be made if we use the results of the measurements
Dollfus and Focas made of the intensity of the dark side image very close to
A' = 0 (Figure 21c) on 17 December 1966. Three images were obtained on that
night. The midpoint of the observations occurred at t = 1966 December l7d19h.2
UT, when A' = 0 in the "plane-parallel" approximation was to = 1966 December
18d03h.0, from whence to -t = 7h.8 (at the end of the calculation we can consi-
der the effect an error in to, random or systematic, occurring as a result of
the divergence of the figure of the rings from plane-parallel, has on the z0
estimate). The mean of intensities measured on 17 December is I(t) = O-39~10-3
(in gbr/bC units, where [ is the width of the eye of the rings on the micro-

photometer scanning line in seconds of arc, and br/bc is the ratio of surface

brightness of the rings to surface brightness of the center of Saturn's disk).

Let us compare I(t) with the contribution made to total intensity of the /69

line of the rings by the dark side luminous flux. Let us designate this magni-
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tude by Id/(t). It is obvious that Id(t) = gbd/bc, where b, is the dark side
brightness. The magnitude of the bd/bc ratio can be found from the graphic in
Figure 2le, remembering that t corresponds to A = 2°.750. This yields bd/bC =
15.3-10_3. With respect to [, to -t = 7h.8 corresponds to { = 3.4 x 10—3
second of arc. The dark side contribution to total intensity then is Id(t) =
3.4+107+15.3+10> = 0.052.107>, that is, 0.13 the measured intensity I(t).
This important result indicates that at time t the luminous flux from the dark
side was low compared with the total luminous flux. The 0.87 remainder of in-
tensity evidently was contributed by the luminous flux from the edge of the
rings, and this makes it possible to find the value of ring thickness without
resort to the estimates made by Kiladze and Dollfus and Focas. Putting ring
edge brightness, be’ equal to the brightness of the lighted side of the rings

during large openings, as above, we will have

0,87tbd  0,87-3,4-107%.15,3-107®
%y = 0.13be — 0,13-0,673 = 0,52.10" sec of arc = (22.4)

"=0,52-10"2.6,91-10% = 3,6 1

h
The random error in to (estimated by the observers as *2 ) has almost no effect

h h
on this result. In fact, if we take the extreme values of 5 .8 and 9 .8 for

to - t, we obtain z, equal to 3.2 and 3.5 km, respectively. Nor
does the value used for bd/bc have much effect on z e For example, if we take
12.0010-3 for bd/bc’ rather than 15.3-10-3, as we did above, (the figure is from

Dollfus' observations on the night preceding the December transit of the earth
. h
through the plane of the rings), we will have z, = 3.7 km when to -t =7 .8.

Hence, we can take the Eq. (22.4) estimate as quite reliable.

This method provides a mean of z, = 3.4 km, which is 22 percent higher than
the value obtained by Dollfus and Focas, and double that of Kiladze. The discre-
pancy can be explained simply by the systematic errors in the photometry, but at
the same time the fact that what is suggested here is some deviation of the
figure of the rings from plane-parallel cannot be precluded. This raises the
question of whether or not the to we found by assuming the rings to be plane-

parallel ought to be corrected for the corresponding systematic error.

The reply must be in the negative. As a matter of fact, the approximately
linear behavior of the branches, of the decay and the rise in the intensity, as

shown in Figures 21b and c, reveals that photometrically the rings conduct them-
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selves as a plane-parallel system when they are not very close to to, so that
their intersection with the mid-plane of the earth ought to take place very

close to the time of intersection of the branches. Something else again is the
fact that to found in the plane-parallel approximation will not, generally
speaking, be the time of the intensity minimum for the line of the rings, but ZZQ
this is a question that more properly belongs to refinement of the ring thickness
concept, rather than to the first plausible estimate of the order of the thick-
ness. We should point out that during a more precise consideration it will be
necessary to remember the poor definition of the boundaries of the figure of

the rings, that is, the gradualness of the reduction in the volumetric density
of the ring material with approach to the boundaries, as well as the gas-dust
"atmosphere! of the rings (#23). But this consideration will require photometric
data in the direct proximity of to, and since there are no such data as yet, all

possible considerations in this regard can be nothing more than speculative.

Summing up, it can be said that one of the main goals of the international
patrol observations of Saturn in 1966, has been achieved. The thickness of the
rings, a parameter that for many years had escaped observational estimation,

has been established. It is of the order of 3 to 4 kilometers.

#23. "Atmosphere'" of the Rings.

The first evidence of the existence of evacuated material enveloping the
rings was the effect of some residual brightness in the space between the inner
boundary of the C ring and the ball of Saturn, discovered in blue light by
Barabashov and Semeykin (1933; see #3 of this book). Maggini (1937; see #13,
Figure 11) discovered two other effects: (1) a gradual darkening of the rings
with reduction in the angle of elevation of the sun, A, above the plane of the
rings, wherein reduction in A from 2°,06 to 1°.0l resulted in a decay in the
brightness of 1™.2 for A = 5300 X, and of 1m.6 for A = 4200 X; (2) a simultaneous
increase in the ring color equivalent., These results certainly point to the
presence of some evacuated material above the plane of the rings (Maggini even
reports that he was able to observe it visually, and that it blanketed the plane
of the rings on both sides. This has not been confirmed by other observers,
however). In 1966, Kozyrev, using the 122-cm reflector in the Crimean Astro-

physical Observatory of the Academy of Sciences of the USSR, made spectrographic
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observations of the shadow of the rings on the ball of Saturn (see Kozyrev, 1968).
The direction of the solar rays was almost parallel to the plane of the rings,

so the path of the solar radiation inside the suspected "atmosphere' of the

rings was long enough for it to be observed. The observer found the NH3 band to
be stronger in the shadow of the rings, and the CH4 weaker, than outside it (in-
dications of the hothouse effect created by the '"atmosphere" of the rings).

He also noted the presence of HZO vapors, and estimated the thickness of the

shell to be between 5,000 and 10,000 km. There is reason to think that the
processing of materials obtained by other observatories in 1966, will even

further enrich our information on the shell of the rings.
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Vi. Ring Dynamics

#24. Ring Rotation Law

One of the most important dynamic features of Saturn's rings is that their
mass (ﬂ%) is extremely small compared with the mass of Saturn,(mh). This is
shown by the observed fact (#8) that the speed of rotation for any ring zone is
almost precisely equal to the Keplerian circular velocity. This would be the
ring rotation law for the condition that there is little disapperance of ﬁ% as
compared with.ﬂ%. The contrary, extreme case is a homogeneous disk without
central condensation. It would rotate as would a solid body. If the m;/mﬁ ratio
were not very small, the ring rotation law would be somewhere between these two
extreme cases. But the spectroscopic data on ring velocity as a function of r
(#8, Table 2) fail to show systematic deviations of the rotation law from the

Keplerian law.

H. Struve (1898) attempted to estimate (ﬁ%/ﬂt) from the observed movements
of the pericenters and nodes of the internal satellites of Saturn. But these
movements are mandatory not only for the rings, but for the flattening of Saturn
as well. It is very difficult to separate the effects. In fact, a more or less
valid solution to the problem requires a knowledge of the density distribution
law in the ball of the planet, as well as the precise value for the flattening
of Saturn. Actually, knowledge of both these magnitudes (and particularly of
of the first) is only approximate. Consequently, Struve's estimate of B%/mﬁ =
1/27000, cited in all the handbooks, is viewed as without foundation by Brower
and Clemence (1963), as well as by Yabushita (1966). Yabushita adds that it is
his view that the observed estimate of NL/M% cannot be arrived at other than by
optical observations. The author (Bobrov, 1956b, 1961) made several attempts of
this type, based on the theory of the effect of mutual shading, as did Franklin
and Cook (1965) later on. We shall discuss this question in Chapter VII.

At the same time, it seems that a comparison of the Keplerian rotation 13W,£ZE
with the actual ring rotation law (obtained from extremely accurate spectrogra-
phic observations which should be made especially for this purpose) would, in
principle, make it possible to estimate the upper 1limit of M;/EE from dynamic

considerations.
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#25. Differential Rotation and Its Consequence

Correctness of a Keplerian rotation law for Saturn's rings implies differen-
tial rotation. This effect is very great and is capable of destroying any con-
densation (or evacuation) that could occur in the ring material in a very short

period of time,

In fact, the Keplerian circular velocity for a narrow zone of the rings at

distance r from the center of Saturn is

3,1/2
Vim/s = 6.16.10 /rkm . (25.1)
whence
1
IQ%leA—i, (25.2)

where Ar is the width of the zone; Av is the corresponding difference in veloci-
ties. We also can write As(t) = ltAvl = 1/2wtAr. where w is the angular velocity
of the inside edge of the zone; As is the relative displacement in the two points,
which, at time t = 0, have identical azimuths and are located at distance Ar from
each other. Let us use T and n to designate the period of rotation and the num-

ber of revolutions of a point on the inside edge of the zone.

As(nT) = TnAr. (25.3)
If, for example, Ar = 1000 km, and n = 1

As = 3140 km. (25.4)
Such is the displacement of points of the inner boundary of a zone 1000 km wide
with respect to points on its outer boundary during one revolution (regardless

of r).

Here a few words need be said about the so-called Roche limit and its rela-
tionship to ring dynamics. According to Roche, (1850), the homogeneous, unflat-

tened, liquid satellite would be torn by tidal forces if it approached the cen-

3
r_ = 2.45 ,/5p/6x s (25.5)

where rp is the radius of the central body (the planet, in this case); ss and /73

tral body at distance

ép are the densities of satellite and central body, respectively. Note that
only the gravitational forces (the molecular cohesion is ignored) are considered

in Eq. (25.5).
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Some authors raise the question of whether Saturn's rings lie inside the
Roche limit, or whether they are, in part, beyond that limit, and then they pro-
ceed to discuss the physical and cosmogonic consequences of this fact. As will
be seen from Eq. (25.5), the reply to the first question depends on the value
of 8 _. Specifically, if it is taken that 6, =3 (stony particles), it will
seem that Saturn's rings lie inside the Roche limit, but only in part. But if
it is taken that Gsrv 1 (ice particles), the rings will lie almost entirely in-
side the limit. This sometimes leads to the conclusion that (I) Roche's formula
indicates a preference for ice particles, and (II) that inside the Roche limit

the tidal forces hamper the gravitational condensation of the particles.

So far as conclusion (I) is concerned, it should be pointed out that
according to Jeffreys (1947a), who considered not only the gravitational forces,
but molecular cohesion as well, the ice ball, which is inside Roche's limit, will
be torn by tidal forces only if its diameter is in excess of 200 km. Yet obser-
vations show that ring thickness is between 3 and 4 km. Thus, the question of
the nature of the particles has no relation to Roche's limit (providing it is
not assumed that the rings were formed as a result of the explosion of a com-
paratively large satellite that approached the planet to a distance less than

Roche's limit, a hypothesis that has no confirmation in contemporary cosmogony).

Conclusion II lacks persuasion as well because Eq. (25.3) and (25.4) show
that in the case of Saturn's rings, any condensation of the particles will be

disrupted in a very short period of time simply because of differential rotation.

#26. The Physical Condition of the Ring Material

It is completely evident to modern astronomy that Saturn's rings consist of
a multiplicity of individual solid particles, but it still is useful to review

here the arguments advanced to preclude any other possibilities.

The Keplerian rotation law evidently precludes the possibility that the A,
B, and C rings can be monolithic, solid bodies. Liquid rings would reflect
Saturn's ball, an effect that never has been observed. The rings would have low
reflectivity, and the A and B rings would be substantially less bright than they
in fact are. They could be made up of just hydrogen and helium. Other substances

cannot remain liquid at T ~ 65°K (#15) and at very low pressure. Yet ring spec- /74
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trometry (#10) has detected the presence of solid H,_O, and not liquid hydrogen,

or helium. Also completely evident is the fact thai the rings are not gaseous.
So the rings can be made up of nothing other than solid material. However,
because the rings have differential rotation, they can be a system of many
narrow, concentric, ring-like zones, or a flat cloud made up of many tiny satel-
lites. Laplace (1802) eliminated the first possibility. He proved that a
narrow, homogeneous ring, rotating with constant angular velocity around a gra-
vitating center, will be unstable. Kowalewsky (1885) refined the shape of the
cross-section of a ring such as this, and Maxwell (1859) showed that the stability
of a ring such as this can be achieved only by the addition to it at one point
of a satellite with mass corresponding to & 1/2 M&. The observations are not in
favor of this model. Consequently, Saturn's rings should be clouds of indepen-

dent, solid particles.
#27. Stability

The research that has been done on the problem of the stability of Saturn's
rings is extensive. Of that research, that of Duboshin (1940) contains in addi-
tion an extremely complete critical review of the preceding results. Hagihara
(1963) includes a list of later efforts. This section reviewed the problem of
ring stability primarily from the physical side. Particular attention is devoted
to an analysis of the role of the collisions between particles, and to questions
concerned with an observational verification of the theory. Hence, we certainly

will not be able here to discuss all of the available papers on the subject.

(a) Maxwell's stability criteria for a ring of collisionless particles.

Maxwell (1859) analyzed the case of the narrow, monolithic ring, as
well as that of a ring consisting of independent particles. The first model
Maxwell considered was an elementary ring of u equal particulates. The mean
positions of the particles will move around Saturn at equal distances in the
same circular orbit, and at the same Keplerian velocity. Mutual gravitational
perturbations of the particles will force them to oscillate near these mean
positions. The oscillations will produce crowding and thinning in the elementary
ring, propagating tangentially as waves of some kind. Maxwell notes that the
wave, at a fixed moment in time, has what is, generally speaking, an arbitrary

shape, but that it can be represented by the sum of the elementary waves through
a Fourier series. Maxwell deduces the following condition for which the amplitude

of the waves will remain finite /75
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linlmg < 2.298(ﬂg/u2). (27.1)

b —¥eo

This is the stability criterion for an elementary ring of equal particles.
Eq. (27.1) shows that the ring is stable if its mass is small compared with

Saturn's mass (the larger the number of satellites, |, the smaller ﬁ&/m% should

be).

Of the other models considered by Maxwell, the one of greatest, significant
interest is the ring-shaped cloud of independent particles rotating around
Saturn as a whole, that is, at a single angular velocity. Using the same method
here as he did for the elementary ring, Maxwell concluded that the ring would

be stable if the condition

5r < 1/300 65, (27.2)

were satisfied. Here 6r and 65 are ring and Saturn densities, respectively. If
the conditions of Eq. (27.2) were not satisfied, the ring would be destroyed by

tangential waves because their amplitudes would rise to infinity.

It should be emphasized that Eq. (27.2) ignored differential rotation. But
since the latter plays so important a role in the case of Saturn's rings (#25),
it can be assumed that some system of crowding, or of waves, capable of destroying
the rings, will in fact itself destroy the differential rotation before pertur-
bation reaches a dangerous magnitude. If this is so, Maxwell's upper limit of

permissible ring density, Eq. (27.2), is greatly underestimated.

This contradiction passed unnoticed until very recently, when Cook and
Franklin (1964, 1966) reviewed Maxwell's investigations. They found that the
critical density in fact is considerably in excess of 1/300 65. We shall re-

turn to this question a little later on.

(b) The effect of collisions between ring particles. Maxwell discusses

this at the end of his paper. He reviews a model one particle thick (a series
of concentric elementary rings) and concludes that the resonance phenomena
occurring in this system will cause the perturbations to increase exponentially
and as a result the particles should begin to collide with each other. The

collisions (not entirely elastic) will lead to the radial expansion of the ring,
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or to the radial redistribution of its surface density. Maxwell also points to
the tendency of the system to form short-lived, narrow zones with a reduced

surface density between them.

It must be pointed out, however, that resonance phenomena can only occur
when there is no differential rotation. Since the latter cannot be ignored, what
must be expected is not resonance, but long-period beats. Goldsbrough (1951)
made a quantitative analysis of this case (for two elementary rings) and found
that the system can be maintained stable, providing its mass is small enough as

compared with Saturn's mass.

Jeffreys (1947b) took the next step in the discussion of the effects of
collisions on Saturn's rings. He concentrated on the dissipation of energy
attributable to the partially inelastic nature of the collisions, and concluded
that the dissipation gradually should suppress the oscillations of the particles
near the mean positions, and that, finally, the ring should be converted into a
collisionless system one particle thick. Jeffreys estimated that this process

should take place over a very short period of time, cosmogonically speaking.

Jeffreys assumed that the finite condition of the ring system he found did
not contradict observational data, including the photometric data. This is not
so, in fact. A one-particle thickness system with the brightness of the B ring
cannot yield the observed "logarithmic" shape of the phase curve near opposition
(see Chapter IV). In other words, observations show that factors exist that

prevent the rings from reaching a state of complete flattening.

But then the system is not collisionless, the energy of the oscillations of
the particles gradually is dissipated, and the only possibility of preventing
complete flattening lies in a continuous replenishment of this energy by some
source with adequate capacity. The possible mechanisms of such replenishment

will be taken up in #28.

(c) Latest research. As we already have pointed out, Maxwell's work re-

cently was reviewed by Cook and Franklin (1964, 1966). This was wide-ranging
theoretical research in which the authors analyzed seven models of ring systems.
They used Maxwell's method; that is, they reviewed the compression and expansion

waves propagating in the rings, and assumed that if the amplitudes of the waves
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rose without limit, instability would result. The opposite case would mean
stability.

The authors pointed out, and eliminated, three of Maxwell's errors at the
same time. The most important error (the one that led Maxwell to his great
underestimation of the upper limit of permissible density) was closely associated
with the fact that Maxwell ignored the effect of differential rotation. He con-
sidered two types of waves, one of which is the result of the tangential compo-
nent of the oscillations of the particles in the azimuthal direction, the other
the result of the radial component, and propagated radially. Retaining the
terminology used by Cook and Franklin, we will call these two types the tangential ZZZ
and radial waves. Maxwell noted, and Cook and Franklin confirmed, the fact that
the tangential waves become unstable sooner than do the radial waves. This was
the fact upon which Maxwell based his conclusion that ring stability depended
solely on the tangential waves, and thus arrived at his density criterion in
Eq. (27.2). 1In fact, the presence of differential rotation can very quickly con-
vert a tangential wave into a radial wave (see our example in #25), and this led
Cook and Franklin to conclude that it is not the tangential, but the radial waves
that control ring stability. This opinion (whether it is, or is not, correct
will be discussed later) is the authors' point of departure. They used their
mode primarily to estimate the critical density of the rings satisfying the con-
dition of stability for radial waves. Recognizing that the width to thickness
ratio for Saturn's rings is very great, the authors ignored ring curvature and
limb effects in all their models. Their final conclusion was that the ring sys-
tem is gravitationally stable if the system's mean density is less than 0.18
g/cm3, and that it is unstable if the mean density is greater than 1.04 g/cmj.

We should emphasize the fact that even the smallest of these values is larger
than the Maxwellian upper density limit by a factor of approximately 80. The
limits of the region in which the critical value of the:mr/fmb ratio is contained

can be obtained at once from these estimates. Actually

U ) = mlry = ) 2.8, (27.3)
where r_ and r, are the internal and external radii of the ring system; 6r is
the mean density of the rings. Substituting rl = 0.89-10lO cm, r, = 1.39010lO cm,
z, = lO5 cm, and using the 6r estimate cited above, we obtain
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1 1

o S (Ta/M)max < 15550 » (27.4)
Yabushita (1966) is another who made a recent estimate of (M%/m%)max' He

too investigated the stability of the rings in terms of axisymmetrical pertur-

bations, but he took ring curvature, limb effects, and ( somewhat arbitrarily)

the radial distribution of the density, into consideration. His results differ

even more from those of Maxwell

T < R/ e < - (27.5)

(d) Objections to the conception of wave-like perturbations. We shall not,

here, seek the reasons for the striking lack of agreement between Egs. (27.4)

and (27.5), but will point out the following weak points in both investigations. /78

The authors proceeded on the assumption that azimuthal waves with a wave front
extending over the entire width of the ring, and radial waves with a wave front
extending over the entire circumference of the ring, could exist. Neither
assumption has a physical basis. In fact, there is no physical reason for the
creation in a ring with differential rotation of compression (expansion) of the
order of 10,000 km in length extending in the radial direction, or of the forma-
tion of a radially propagating ring-like perturbation in which all particles
would oscillate in identical phase over 360°. This is so because the criteria

of stability, based on similar assumptions, cannot be trusted.

Here the question of the shape of the density perturbation that occurs
when the ring approaches a state of gravitational instability is of much interest.
The answer is as follows. The most probable answer is that increase in (m%/ma)
will create random fluctuations in density, rather than waves. The only shape
for perturbations such as this is an ellipsoid with a density somewhat greater
than its surrounding region. It should be greatly flattened with respect to the
z coordinate because (r2 - rl) > Z, . The dimensions, and the life span, of the
ellipsoid will depend on the differential rotation velocity, or in other words,
on the value of (mg/mb). We may recall that this presentation was analyzed in
detail by Gurevich and Lebedinskiy (i950) for a protoplanetary cloud.

Let us point out as well that if (mgﬁmb) were so large that the effect of
differential rotation turned out to be small, the objection to wave-like per-
turbations would vanish. This is not so in the case of Saturn's rings, however,

because spectroscopy of the rings has detected significant differential rotation.
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(e) Observational indications that the rings are far from unstable. There

is yet another shortcoming common to the work done by Cook and Franklin, and by
Yabushita. This is that the problem of the stability of Saturn's rings was
analyzed as if the rings were an object not susceptible to direct observations.
In point of fact, during this century the rings have been thoroughly studied by
Lowell, Barnard, Lyot, Dollfus, Camichel, Kuiper, and other very experienced
observers under conditions providing good, and even excellent, images and high
resolution. Not a trace of moving, heterogeneous ring material has been observed
(in the form of radial or tangential waves, or in the form of ellipsoids).

All observers report stable, ring-like divisions (Kirkwood's slits), attributable
to resonancy with the internal satellites of Saturn (#1), and minor azimuthal
differences in brightness, such as the nonuniform brightness of the eyes, and

the like (#13). The causes of the azimuthal effects are unknown, but their defi-
nite orientation with respect to the sun indicates that they can be attributed

to the influence of solar radiation. In any case, it would be extremely unjusti-

fied to say that they are connected with dynamic instability.

So far as the minimum nonuniformity that can be observed in the dimensions
of Saturn's rings from a high mountain observatory (Pic du Midi, or Lowell, for
example) is concerned, its magnitude is of the order of 0".l to O".2 for ring-
like nonuniformities, and of the order of 0".2 to O".4 for bright or dark spots
(here we are assuming that the nonuniformities have adequate brightness contrast
with their surroundings). It is between 700 and 1400 and 1400 and 2800 km.
respectively. Comparing these numbers with Eq. (25.4), one can be persuaded
that a spot from 1400 to 2800 km in diameter would be destroyed by differential
rotation within one, or two, revolutions (one day, or less). A small nonunifor-
mity with a diameter of 4 km would have a life span of the order of one year.

In other words, long-term existence, even of such small condensation densities
as 4 km, is not compatible with the observed magnitude of the differential rota-
tion of the ringse.

So, direct observations show that the rings are far from unstable. The mass

of Saturn is many orders of magnitude in excess of the mass of the rings, and

damps even small fluctuations in density in short order,
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#28. MechaniEmsm$ha§”£p§§ib1¥<P5event Complete Flattening of the Rings

Let us turn to the problem touched upon in #27, that of the former Jeffreys
Conception, in accordance with which the rings are a one-particle thickness
system, but which has been contradicted by observations. If this is so, colli-
sions should occur between the particles, and there should be continuous dissipa-
tion of the particle oscillation energy. Just what mechanisms are there that
can be involved in replenishing the energy capable of preventing the complete

flattening of the rings during the life span of the solar system?

One obvious mechanism is that of gravitational perturbations of the particles
by Saturn's satellites. The perturbations could be of several types: short-
period, long-period, resonance, and the like. Resonance perturbations are effec-
tive only for narrow zones, within the limits of which there is commensurability
of the periods of rotation of particles and satellites (that is, for the divi-
sions). They cannot, therefore, prevent the complete flattening of the ring
system as a whole. Short-period perturbations are of greatest interest in the
case of frequent collisions (yet only the differential effects are important).
There are no estimates of their effectiveness as yet. Long-period perturbations
are important in the case of rare collisions. Calculations made at our request
by the Shternberg State Astronomical Institute provided the following results.
Perturbations from the accumulation of the orbits of particles of Mimas, Tethys, /80
and Titan create amplitudes of oscillation of particles along the z coordinate
of 16, 47, and 106 meters, respectively, at the outer boundary of the ring sys-
tem. The period of the perturbations is of the order of 400 revolutions of a
particle. Long-period perturbations, therefore, can be effective only in very
transparent zones of the rings (in the internal zones of the C ring, for example),

where collisions are extremely rare.

Collisions should be frequent in the A and B ring regions. In order to
show this, let us compute the 1/zo ratio, which is the ratio of the mean length
of the free path of a particle to the ring thickness. Let us assume that the
particles have the same radius, p, and that they are distributed at random in a

plane-parallel layer with thickness z, and optical thickness

2
- 28.1
T m_"Na_ /R, (28.1)
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where N is the number of particles in the ring; R is the volume of the ring.

The mean length of the free path for the particle is

L= 1tj3 Y 202, (28.2)

Comparing these expressions, we obtain
)z, = 14 Y/ 2, (28.3)

When o = Toa = 0.6 and o = ToB = 1, the values 0.18 and 0.30 are obtained
for 1/zo, respectively. Thus, collisions in the A and B rings are frequent.

In this case the source of energy compensating for dissipation during
collisions can be the energy of differential rotation of the ring. Actually,
differential rotation creates transfer of the pulse moment in the direction
of increase in the radius of the ring, r. Since the collisions are not central
collisions, generally speaking (the probability of what would be central
collision, strictly speaking, is zero), the transfer of pulse moment is
accompanied by frequent conversions of differential rotation energy into
random particle motion energy near their mean positions; into "heat.'" Dissi-
pation of energy can be considered as '"cooling'" the ring, because of the less
than complete elasticity of the particles. The two processes cancel each
other in the stationary state. z, remains constant, but the total mechanical

energy of the ring decreases steadily. The result is that all particles slowly

approach Saturn.

Let us introduce a formula for z,6 as a function of the mean velocity of
random motion,'ﬁ. We will assume that the reduction in energy attributable
to the less than total elasticity during each collision is completely balanced
by the above-indicated '"heating.'" In fact, there is only a mean compensation,
but if the collisions are frequent, the behavior of the system will be close
to the case of completely elastic collisions. Specifically, velocity distri-

bution will be close to Maxwellian.

Since the system is unusually flat, and since TL/T% is extremely small,
the random motion of a particle along the z coordinate (that is, normal to
the plane of the ring) can be considered a harmonic oscillation in Saturn's

gravitational field. Its amplitude then is

z = (uz/w), (28.4)

max
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where u_ is the component of the random velocity in terms of the z coordinate
when z = 0'; w is the angular velocity of the circular Keplerian motion of the
particle. In turn, the distribution of the particle concentration in terms

of the z coordinate will be described by the Boltzmann equation

n(z) = n(0) exp (—Ep/kT). (28.5)

2 -2 —
Substituting Ep =1/2 mu?z and kT = 1/3 mc2 = 1/8 mmu~ (where ¢ and u
are the mean-square and the mean velocities, respectively), we obtain

2, =2

/T

Let us introduce the effective physical thickness z

n(z) = n(0) exp (-éu?z ). (28.6)

o eff’ satisfying the

condition

/2) = n(0) exp (-1). (28.7)

n(z opp

A comparison of Eq. (28.6) with Eq. (28.7) will yield

u = wzoaﬁ//ﬂ. (28.8)

It can be shown that about 84 percent of all the particles can be contained

between the +z0 off and —zo off planes.

Now let us estimate the z, value that can be maintained constant for time
t of the life of the solar system attributable to the expenditure of mechanical
energy by the particle, if the radius of the particle's orbit changes from r,

to rt in that time.

According to the hydrodynamics of a Viscous, incompressible medium, the
amount of energy converted into heat (in a unit of volume in a unit of time)

during the transfer of pulse moment is
2 2
-(dE/dt) = Tr° (dwdr)”, (28.9)

where T = 1/3 Ul8, and is the coefficient of internal friction; (§ is density
of the medium). Mindful of the fact that the mechanical energy of the particle

is

Ep = yméﬁ%/Zr, (28.10)

where vy is the constant of gravitation, and that

r2(day/ar)? = o/ (Ym?/rB), (28.11)
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and resorting as well to the use of Egs. (28.3) and (28.8), in place of Eq.

(28.9), we obtain

2 2ar = (3 \/\/ﬂ?zi or/8 \/Z_TrTo)dt, (28.12)
implying
*
zi of f = -f_,(f—(x 2n1y ;'?,'-.\‘-:'T'Zr\, U= ()L (28.13)
In order to use this equation to estimate Z, off? let us assume for Zgg

example that a particle that now is located close to the center of the B ring
10

(r = r, = 1.00-10 cm) was, at the beginning of the existence of the ring
system, at distance r = ro = 1.37-10lO cm (the present day outer boundary of
the system). Then, setting TO =1, and t = 5.109 years = 1.58-1017 seconds,
we find

Z oopp =35m (28.14)

The apparent physical thickness of the rings, z is considerably more

9
o app
than this when the rings are viewed precisely edge-on. The judicious thing to

do is to define z as the thickness of a layer having an optical thickness
along the plane of the rings at the boundaries equal to unity. In such case

~ 3.5. T . . . .
z, app/zO of f 3.5 he just considered mechanism therefore is capable of

sustaining

z A~ 120 m (28.15)
o app

for 5'109 years. Since we have assumed that all the particles are of a size,

%

this estimate is the low limit for z .
o app

Let us add that in accordance with Egs. (28.8) and (28.14), the mean
velocity of the random movement of the particles is about 0.4 cm/s. The
impact force during collisions should not be great, therefore, and the Newtonian

coefficient of restitution should be close to unity (see Goldsmith, 1965).

* ¥  The observed thickness of the rings (established for the first time in
1966, and for which see #22) is of the order of 3 to 4 km.

* Equation is illegible in original text - Translation editor.
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VII. Theory of the Effect of Mutual Shading and Its Comparison with Obser- /83
vations *

#29,. Introductory Remarks

As soon as we have established that the mutual shading of the particles
is the principal effect responsible for the observed shape of the phase curves
for the rings (#18) we can estimate the volumetric density of the rings, D,
from the theory of this effect. Then a knowledge of the order of thickness
of the rings, z (#22) and of the particle density, ép, enables us to estimate
the total mass of the rings, m%, just as knowledge of Z s and of the optical
thickness, o (#14), enables us to estimate the mean radius, p, of a particle

of the ring.

The mechanism involved in the mutual shading effect is very simple,
qualitatively speaking. Let us suppose that we have a plane-parallel layer
of particles illuminated by the sun and observed from the earth (the angles of
elevation A and A', respectively). Let us take it that the thickness of the
layer is many times that of p, that is, that we have a many-particle thickness
system. Particles located closer to the sun cast their shadow on particles
farther from it. But these shadows cannot be seen from the earth at
the time of exact opposition (¢ = 0), because every particle shields its own
shadow. With increase in &, the shadows gradually emerge from the disks of the

particles, and the mean brightness of the system diminishes.

We are indebted to Seeliger for this concept. He also was the first to

develop the quantitative theory of this effect (Seeliger, 1887, 1893).

#30. The Seeliger Approximation

The reader should keep in mind that the theoretical research done by
Seeliger on the phase function of Saturn's rings, and its association with
the structure of this object, was carried out almost 80 years ago, before spec-
trographic observations were made of ring rotation (Belopol'skiy, Deslandres, Zgi

Keeler, #8), long before direct measurements were made of the surface brightness

* See the Appendix (pp. 118-119 for the notations uséd in the formulas in
this chapter.
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of the rings (Schoenberg, Hertzsprung, #12), and much earlier than the formu-
lation of the theory of the multiple scattering of light (Ambartsumyan, Sobolev,

Chandrasekhar). Nor had Mie's diffraction theory been formulated.

The proximate cause of Seeliger's research evidently was the results of
Miller's measurements (1893) of the integral brightness of the Saturn system
as a function of A' and w. Miller found a value of 0.044 stellar magnitude/
degree of phase for Saturn's phase coefficient, a value far in excess of
Jupiter's phase coefficient (0.015) and of the phase coefficients of other
planets. Seeliger showed that he was extremely perspicacious by postulating
that this fact could be attributed to the '"meteoritic'" structure of Saturn's

rings. The idea of the '"meteoritic! structure was borrowed from Maxwell (1859).

Seeliger, in his theory, considered only first order scattering, dictated
by the level of knowledge of the time. In his first paper he wrote of a ring
made up of particles of identical size, but his second paper included
generalization of a theory dealing with the case of particles not all of the
same size. The sun was replaced by a point source of light at infinity, and
it was taken that the particles were mac¢roscopic, diffusely reflecting spheres.
The natural phase function of the particle was taken into consideration by
introducing a factor that was dependent on a. Seeliger, in this approximation,

obtained formulas for calculating the phase function.

Figure 22, Discrepancy between Seeliger's
phase curves and the observa-
Aot 50d) / — tional curves.

;

sl - 1, 2, 3 - theoretical phase curves (See-

L, /'/;f/;
/ liger, 1887) for D = - 3.75.10-3, 6.25.
i g 10-3and 1.25-10_3, corrected for the
;uw y//f“"///<’ natural effect of particle phase and for
| //// higher order scatteringj; circles are the
f f/// means from Schoenberg's observations (1933);
¢ﬂi 4 - observed phase curve for B ring, con-

structed using these points [Eq. (12.1)].

Direct measurements of the surface brightness of the A and B rings as a
function of ¢ (Hertzsprung, 1919; Schoenberg, 1921, 1933) detected a great dis-

crepancy between Seeliger's theoretical phase curve and the observational data
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(Figure 22). This author (see Bobrov, 1940, 1959, 1967) demonstrated that
these discrepancies arose because Seeliger's approximation did not reproduce
the condition of Saturn's rings accurately enough, in that (1) he disregarded ZEE
the angular dimensions of the solar disk (~3'.5), (2) he did not consider
multiple scattering, and (3) he assumed that all sizes of particles were

equally probable.

We postulated that an approximation free of these limitation would satisfy
the conditions for Saturn's rings incomparably better than would Seeliger's
approximation. This approximation of the theory was constructed and was in
extremely good concordance with observations. It will be reviewed in the

sections that follow.

#31. The '"Cone-Cylinder" Approximation, Without Variance in the Sizes of

Particles Taken into Consideration

The shadow of a particle in Seeliger's approximation is an infinitely
long cylinder, because of his limitation (1). The volume behind the particle,
in which the ring material is shielded from the observer by the disk of the
particle, too is an infinitely long cylinder. We can call this scheme the

"cylinder-cylinder" approximation.

R I E——
Figure 23. Schematic View of the eye of Saturn's rings.

The element de belongs to a particle arbitrarily selected at depth z, measured
from plane II (closest to the sun). The straight lines MS and ME are directed
toward the sun, and toward the earth, respectively. C is the cylinder of
shielding; U is the cone of shading; p is the particle radius; ¢ is the phase
angle; A and A' are the angles of elevation of the sun and earth over the plane
of the rings.
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Let us remove limitation (1), and let us say that at the mean distance

of Saturn from the sun, the disk of the latter has an angular radius of
© = 1'.676; 1l/¢p=~ 2.0-10°. (31.1)

The shadows of the particles then will be cones with a finite length of p/w, /86
where p is the particle radius. But at the same time, the shielded volumes

remain infinitely long cylinders. We obtain the '"cone-cylinder'" approximation.

(2) Amplitude of change in brightness with phase angle when penumbra is

disregarded. Let us look at Figure 23. Some particle, striking
the center of volume C, or U, shields element de from the earth, or from the
sun, respectively. In the case of the former the element de will be shielded
by the disk of the particle considered. In the case of the latter the particle
will cast its shadow on de. The shadow of the particle should be considered
as black with an accuracy of within first order scattering, so that the
element de will be seen from the earth only for the period of time when the
centers of all the other N-1 particles of the rings (N is the number of all

particles) will be outside the so-called volume of probability

V==C+U-=W, (31.2)
where W is part of V, the total of C and U,

The probability that de will be seen is
i (R — MRV = exp (— VNIR),

p = (R — V)R] b ( ) (31.3)
where R is the volume of the ring. The mean luminous flux transmitted to the
earth by element de when the latter is not shielded, and is not shaded. For
the many-particle thickness system, all layers not too close to plane I
satisfy the condition

p € z. (31.4)
Further, if the volumetric density is
4
D.—.E—:tp:’(IV/R) (31.5)
which is small compared with unity, Eq. (31.4) can be satisfied by practically
all particles that can be shielded, or shaded. This means that for all elements

de, the probability of no shielding, or shading, by the same particle is

practically the same. Consequently, the light flux from this particle will be

F == pFo==1f (1) oxp (—VN/I}), (31.6)
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TS e,

where [ is the value of Fo when o = 0 and f(w) is the particle's natural

phase function.

We can, therefore, write the following expression for the amplitude of

the change in ring brightness when ¢ changes from O to o ~ 6°.5:

Zp ax
_’T’l (’I'HLIX) /<‘/'IH:I.\Z) é e'\"{)[ ([‘//R) V (qr‘IHX)] llz (31.7)
) T ) T e T T e
f exp [ — () RY V()] dz 18—7
0
Since, when o = a
max
W<C + U, (31.8)

(see Bobrov, 1960, p. 314), we can set
Ve ) =C +U, (31.9)
while
v(o) = C. (31.10)

The volume of C is a function of A', and the volume of U is a function
of A. But if the ring opening is not very small A and A' will be close in

value, and we can take it that
A = A, (31.11)

It is convenient to introduce a new variable

== (pr/p sin ). (31.12)
Then 3
CN/I) =25 (Dfp) =
(31.13)
and W/ 1) = £ o7 <w iy @) ves
i (D/9); <o < o (31.14)

In place of Eq. (31.7), we obtain

e R g e

D D o o
+ exp — (a) O — iy + Esiiﬁv;f» [1 —exp — En—A—ﬂ ;

and the integral in this equation is readily evaluated by numerical integration.
In Egs. (31.13) - (31.15), U is the optical thickness, previously determined
through Eq. (28.1), and

TP

. 4
rg o ((pzo/p sin A)::'g‘ '_D*Si‘lmi (31-16)
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where bl is the brightness created by first order scattering. As already has
been indicated by Eq. (17.11), the total brightness, with higher order scatter-

ing taken into consideration, is

b = bl + Ab. (31.17)

Since the interval of change in a for Saturn is very small, it can be taken that
Ab(a ) = Ab(0). (31.18)
max

Then we can use the following equation to make the transition from bl(amax)/
b, (0) to bla__ )/b(0)

b (%05 by (%) - A )

O T T oA (31.19)
where Ab(0O) can be computed through formulas and tables for the theory of mul- 188
tiple scattering of light. The results of the calculations of the Ab(0)/b(0)
ratio for Saturn's rings have already been presented in #17 (see Table 5).
Ab(0)/b(0) is of the order of 10 percent, or less, for particles with a ~ 0.6,
and the phase function is similar to that of the moon, and this is extremely

close to actual conditions.

The factor f(amax)/f(o) can be computed as follows. Since the spherical
albedo of a typical ring particle is now low, the natural effect of opposition
of the particles (the Gehrels-Hapke effect) is slight. Consequently, the natu-
ral phase curve for a particle in limits (0 < a < 6°.5) should be practically

linear, so that
[£(a  )/£(0)] = 2.5127Pp max, (31.20)
max
where pp is the particle phase coefficient.

Egs. (31.15), (31.19), and (31.20) solve this problem. They make it
possible to compute the amplitude of the effect of mutual shading when the

penumbra is ignored.

The results of the calculations converted to stellar magnitudes are shown
in Figure 24 (the solid curve). The dashed curve shows similar results ob-
tained when the penumbra was taken into consideration (see the next section).

We used T = 1, A = A" = 25° (wide open rings), (Ab/b) = 0.10, and P, = 0.024,
The only free parameter now is D. As will be seen from Figure 2L, the amplitude

is heavily dependent on D, a fact not included in the Seeliger approximation.
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K The physical implication is quite clear.

iy

Since the cones of the shadows cast by
the particles have a finite length,

the probability of mutual shading dimi-

between adjacent particles. But the

mean distance can only increase when

there is a reduction in D. As opposed

Figure 24. Theoretical amplitude,
Amyax s of the effect of mutual

shading in stellar magnitudes as ximation are infinitely long cylinders,
a function of log D.

and, as a result, the probability of
The solid curve was computed with

. th tual shadi d t
the penumbra ignored; the dashed e mutual shading does not depend on

curve with the penumbra taken in- the mean distance between particles.
to consideration. The amplitude

is greatly dependent on D. The Let us point out that Eq. (31.16)
influence of the penumbra is

. the d D.
slight. demonstrates e dependence of xo on

It is necessary that D ;‘10—3, according

to Figure 24, in order to obtain a significant amplitude from the effect of

mutual shading. Setting o = Top = 1, and sin A = sin 25° = 0.4225, in Eq.
(31.16), we find that x = 1 corresponds to D = 1.58 - 10—3. The observed
BB(amax) - BB(O) is of the order of 0."5 (#12), a value corresponding to

xotw 1/3 and D~ 5 - 10_3. Thus, the strong effect of mutual shading can only
be achieved when the condition is X, £ 1. Turning now to Eq. (31.15), we can
see that this latter condition means that only the first term in the numerator
is present. This term describes the photometric properties of those layers of
the ring where all shadow cones are truncated. Let us call them the '"surface
layers." The second and third terms in the numerator of Eq. (31.15) are the
'""deep layers,' where, as before, some of the shadow cones are truncated, but
some already have reached completion. The presence of completed cones reduces
the probability of mutual shading; that is, the intensity of the effect is
stronger the thicker the deep layers as compared with the thickness of the sur-

face layers. Accordingly, the condition for intensive effect of mutual shading

is absence of deep layers.
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nishes with increase in the mean distance

to this, the shadows in Seeliger's appro-
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Figure 25. Shape of the volume of probability, V, in the case when the penumbra
is taken into consideration. Designations are the same as those

used in Figure 23.

(v) Influence of the penumbra. Here the geometry of the volume of proba-

bility, V, must be changed somewhat, and this is shown in Figure 25.
Specifically, in addition to cone U, tapering in the direction toward the sun,
we must introduce a second cone (coaxial with U) expanding in the direction
toward the sun. The angle between the axis and the generatrix of this new

cone once again is equal to @,

Then
V=C+U=+P-W, (31.21)

where P is the volume contained between the expanding and tapering cones.

The other designations are the same as those used in Eq. (31.2).

If the center of some particle enters P, the particle will cast a penumbra /90
on the element de, and the intensity of that penumbra will depend on the posi-

tion of the center of the particle with respect to deg.
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L) By (31.22)

where Pgs Pys Ppiee. are the probabilities of 0, 1, 2, etc., particles hitting

volume V; K Kl, K are the mean relative illuminations of the element

0! g1
de corresponding to these events. Ko = 1.
Ignoring all terms in Eq. (31.22) with subscripts larger than one, we

obtain
F = (po + lel)Fo, (31.23)

which gives the approximation for the effect of mutual shading with excess.
Actually, the coefficients Kn and the probabilities p  are positive. By
ignoring the terms with subscripts larger than one we underestimate the mean
luminous flux, F; that is, we overestimate the effect of mutual shading.

On the other hand, disregard for the penumbra (see "a" this section) under-
estimates the effect of mutual shading. Thus, the true amplitude of the effect

will fall between these two extremes.

The probabilities p  can be calculated by using the formula for the prob-

lem involving fluctuations (see Timiryazev, 1956, for example)

p = [V! exp(-v)/n:1, (31.24)

where V is the mean number of particles in volume V. Eq. (31.24) is valid
providing v and n are small compared with N. This condition is satisfied in
our case because V € R, Since V =(N/R)V, we can replace Eq. (31.23) by
P LKW T eap - [N V] Fy e
SULO) LA BN/ VT exp - - [V V.
Let us take it that, as in the case when the penumbra was ignored, W = O when

(31.25)

o = o

max "
Then
V(tya) =C -U + P (31.26)
and V0)=:U4-P,
(31.27)
from whence
VIOV Crad = 7 D) (20 4 4 5 23) (31.28)

. 3 1
NIV Q) = 5 (/) (.b - z? - 5 L") .
(31.29)
93



The general expression for the coefficient Kl has the form

K== (i \ (1 — <2 )av,
s 1 ) (1575 ) (31.30)

where SG and 0 are solid angles at which the solar disk, and that part of it

shielded by the particle, can be seen from point M.

The nature of the solar eclipse at point M attributable to the particle

with its center in volume P will depend on the position of this center in

terms of M. The eclipse can be partial, annular, or '"partial annular."

All layers of the ring can be broken down into surface (subscript "S"), /91

middle ("M'"), and deep ('"D'), depending on the nature of the eclipse.

Then

(31.31)

[

Y N N T O R N (IO R LIS B

(

- ‘.A_\/Ii) de ig [t "\’Mm:x.( (an /) ""'J C.lp -
L

|
I(V““_/“)‘VJ”'} :{S[L,y K\ Sy o/ l0) il oap -

0
2
[ofit) e -\ (- W gy U/ 2) W exp
1

L) N e (UL KDy (/) Ty () T )
2

where, for brevity, the values of K. and V when ¢ = « and ¢ = O, are shown
9 1 1 m b

by the subscripts 'max" and "O.'!" The approximate formulas for the coefficients

have the forms

<_ i ;w), (31.32)
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Egs. (31.31), (31.32), and (31.19) solve the problem. The results are
shown by the dashed curve in Figure 24. As we see, it passes very close to
the curve obtained when the penumbra was ignored. This reflects the rapid de-
cay in the intensity of the penumbra with increase in the distance between the
center of the particle and the full shadow cone. The error introduced by ig-
noring the penumbra is less than o™.1. Now we can ignore the influence of the

penumbra in all future formulas in the theory of the effect of mutual shading.

{(c) Phase function. The original formula for bl(a)/bl(o) is obtained

from Eq. (31.7) by replacing % ax by . W is not considered small as compared
with C + U.

Since the form of the functions U and W changes with z, the interval of

integration of the expression in the numerator must be broken down into parts

corresponding to the "surface" (subscript S), "shallow" (Sh), "middle'" (M), /92
and deep (D) layers of the ring
Sl.ﬂ\]x ( )
Peenb@l ey oy e R e Us < v s |- 31.33
0
z&!;\\‘:
g \ e [ETING U T ) -
Zg o« Sh  Sh
FoV P
: \ R O I R VIR Y T R

As we have noted in the foregoing, the case that is of practical importance

is the one in which there are no deep layers (xo <1, or z, < (p/9)). For
this case, setting A' = A, changing from the variable z to x, and taking cog-

nizance of Eq. (31.20), in place of Eq. (31.33) we obtain

SRRV o p (31.34)
B CAp — ,.74"(5‘(21,‘ ,[.g;‘.‘, ,}.

(D0 (), ] 2012 Ii)”'[
0

2/(v | 1)
! 3D

B ) ) 1
oyt ) :!’[‘); a CXp — L-/_ 5 (2r-u? fgmat e -l e -
16 toe 3 sk

B
B

t e "3 D 5 , R { ]
"-:,\,’S ) exp -l_ ; BECEINEICANE Bt .-I[M)j|//,-J‘: [U exp = (ry<in. 1],
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where

w = (g/meo )W (31.35)

v = o/p. (31.36)

Let us remember that W designates the common part of the volumes C and U
[see Eq. (31.2)]. The phase angle, @, also is the angle between the axes of
the volumes C and U (Figure 23). When ¢ increases, C and U move with respect
to each other, in much the same fashion as the halves of a scissors, and W
decreases quickly. Consequently, w is greatly dependent on «a, since it is,

in the final analysis, the reason for the '"logarithmic!" shape of the theoreti-

cal phase curve.

The precise expression for w(g) is very cumbersome. The reader can find
it in our article (Bobrov, 1960), which contains simple, approximate, expressions

as well,

The natural phase function of the particle (taken as linear on the stellar /93
magnitude scale) is represented by the factor 2.512-ppa. The reduction for
scattering of higher orders is accomplished as for amplitude [see Eq. (31.19)

and the explanatory text accompanying this expressionl].

Overall, b(a)/b(0) depends on the variables o, A, A', and on the para-
meters D, T, Ab{0)/bl0), P, The dependence of A and A' is slight. Beyond
this, A' ~ A for widely, or even moderately opened rings. The parameter To 122
is known from observations (#14) and its accuracy is satisfactory. The value
of the parameters Ab/b already has been calculated (#17), and is not in excess
of 0.10. The anticipated value of pp, according to the conclusion we reached
in #17, should be close to that for the moon (p) ~ 0.027 stellar magnitude/de-
gree of phase). We can consider this parameter to be known from observations.

The only free parameter is D, and the only variable (for fixed A) is a.
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Figure 26. Shapes of theoretical phase curves in terms of parameters D, s
p., and Ab/b (dispersions in sizes of particles ignored). TheO
gles of elevation have the fixed value A = A' = 25° in all cases
(widely opened rings), z, is taken as equal to 1 km. The values
of the other parameters are shown near the curves.
Figure 26 shows the shapes of the theoretical phase curves in terms of D,

T P, and Ab/b for fixed A, A', and z e

01
Figure 27 is a comparison between the theoretical phase curves and data /95
from observations made by Hertzsprung (1919), Schoenberg (1933), and Lebedinets
(1957). The Franklin and Cook data (1965) are very close to Schoenberg's (but
are not plotted in Figure 27 in order to avoid clutter)., We shall compare these

data with the theoretical data a little later.
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Figure 27. Comparison of theoretical phase curves (solid lines) with the ob-
servations made by Hertzsprung (open circles), Schoenberg (filled
circles; mean weighted values for all of his filters), and
Lebedinets (crosses). The lower, middle, and upper curves were
computed for D = 1.6-10-3, 3.2-10-3, and 4.7<10-3. The correspon-
ding values for B_(0) - B are om.053 0™.128, and 0".145. In all
cases A = A' = 258, r — % _ _ 1, Ab/b. - 0.07, and p_ = 0.02k
stellar magnltude/degree 09 phase. The dashed curves were con-
structed through the empirical equation, Eq. (12.1), from Schoenberg's
mean values, with the same changes in BB(O) - BC as above,

As will be seen from Figure 27, the concordance between theory and obser-
vations is extremely good for the middle and upper curves. D = 4.7-10—3 is
the more preferable, but the corresponding value for BB(O) - BC, -0".145,
seems excessive (see note accompanying the figure). Also to be suspected is
some small, albeit systematic, discrepancy between the upper curve and the
observations in the region of extremely small ¢ (the dashed curve plots above
the solid one). Then too, we see that the Franklin and Cook observations con-
firm this assumption and that the discrepancy noted, just as is the case for

too large BB(O) - Bc’ can readily be eliminated if the variance in the sizes

of the particles is taken into consideration.
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The values of the other parameters and variables used to compute the
theoretical phase curves (see the note accompanying Figure 27) were taken from
observations, for the most part, and evoke no real objections. Thus, even a
simple model that ignores dispersions in particle sizes evidently quite satis-

factorily reflects the Saturn ring structure.,

#32. The '"Cone-Cylinder" Approximation with Varianees in Particle Size

Taken into Consideration

(a) General expression for amplitude. The formulas set forth in the

preceding section can quite easily be generalized for the case when the radii
of the particles have variance in the interval (pl, p2). The most interest-
ing case is that when the interval of variance is broad. If it is narrow,
the results will be close to those already obtained above, when variances

are ignored.

Unfortunately, there are no observational data on the type of particle
size variance law applicable to Saturn's rings. In the next deduction we

will, for this law, take the expression ordinarily used in meteor astronomy

dN = Kp_sdp, (32.1)

where p is the particle radius; K is a constant; s is a distribution parameter.

Let us take it that when p is sufficiently small, penetration of light
into the region of the geometric shadow of the particle will occur because of
diffraction. Arkad'yev's experiments (1912) lead to the conclusion that there
is a signigicant shortening of the geometric shadow cone when the number of
Fresnel zones, n, covered by the disk of a particle (reckoned from the apex of 129
the shadow cone) is 0.1 to 0.5. On the other hand, when n = 3.5, there is
practically no washing away of the shadow cone. The value n = 2 is a judicious
compromise. Then, when (1/¢) = 2000, the boundary value for p, at which the

shadow cone still is not significantly shortened, is (for visual rays)

Py = 2-10_1 cm; (32.2)
and in accordance with which we can take it that all particles with p 2 p, cast
a shadow with length p/@, and that particles with p < p, cast no shadows. 1In
this approximation, the participation of particles with p < p, simply reduces
to one of their falling within the shadows of larger particles, so far as the

mutual shading effect is concerned.
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Let us find the luminous flux transmitted to the earth by particles in
the interval (p, p + dp) when they are shielded and shaded by particles in
the interval (r, r + dr). We shall ignore the effect of the penumbra of the

particles, in accordance with the proof in #31b.

The geometry of the volume of probability, V, remains as it was in the
problem without variance (Figure 23). Only the radius of the cylinder, and
the maximum radius of the cone, now should be set equal to r. The magnitude

of the volume of probability now will be a function of r

V.=C +U -W/ (32.3)

The probability that the element de (see Figure 23) will not he shielded,
or shaded, by particles in the interval (r, r + dr) is p,. = exp(~ %r dNr),
where dN_ is the total number of particles in the interval (ry r + dr). Let
us suppose, as we did in #31, that the volumetric density is so low that the
inequality p € z satisfies the shielding, or shading, of any particle with
radius p. Then, for all practical purposes, the values of P for wvarious
elements, de, of the same particles coincide, and further arguments can be

advanced for all particles, as a whole.

Let a luminous flux rf(a)pz, in which I' is a constant and f(g) is the
particle's phase function, be transmitted to the earth by a particle in the
interval (p, p + dp), outside the shading, or shielding. This particle,
periodically shaded and shielded by particles in the interval (r, r + dr),
will, after a sufficiently long period of time, transmit a mean luminous flux

to the earth of

l‘f('x)p’exp(——- V1§ dN,>. (32.4)

The flat layer of particles in the interval (p, p + dp), with thickness dz,

and at depth z, will transmit a luminous flux to the earth of

dz 14 (32.5)
Tf (0 5 —Z N, exp (— g dzv,) ,

where dN is the total number of particles in the interval (p, p + dp).
Replacing the magnitudes de and dNr in this last expression by their values

from Eq. (32.1), we obtain

. - 14 . 8
rf (1)_%“:~— Kp? %dp exp(— 1; - Kr f”)' (32.6)
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In order to take into account the effect of shading and shielding of the /97

particles in the (p, p + dp) interval by particles of all sizes from p, to Py
we must find the probability of a particle of radius p not being shielded or
shaded by one of the particles in the (p,, pz) interval. For sufficiently
small D, it can be taken that the unknown probability is equal to the product
of the probabilities, equated to fixed r. From whence, the luminous flux
transmitted to the earth by particles in the interval (p, p + dp) when they
are shielded and shaded by particles of all sizes from p, to p, can be found
through the expression
KU'f (1) 28, . v Koy (32.7)

ST dzp® “dpexp __p‘ i v,r dr. 32.7
Integrating in terms of p from Py to Pos and in terms of z from O to z,y We
obtain the total luminous flux transmitted to the earth for phase angle « by
all ring particles, with the shadow effect of particles, the radii of which

are in the interval (p,, ), taken into consideration

Pa
243 Zy P2 N
. KT (1) 3 K | (32.8)
D(x) = - ZD‘_“S P‘2 sdP S {U-\'P -*S o Vrr_sdr dz,
P1 0 Pe ’
It now is easy to find the amplitude of the shadow effect of a model with

variance of p in the same manner as that used in #31, that is, that when o = O,

V. =C_, and when ¢ V =C + U, We obtain
r r max T r r
Zs Oe
K -
Q[GXP—S ST (€, +U)T sdr:I dz (32.9)
bl (’lqu) /(dm'\( Q Pe
Thoy T S0 % & ox

\ exp »—S T Crr—sdr ds
0 Pa

The integration of the numerator of this expression has practical compli-
cations stemming from the fact that in the interval 0 < z =< (p/¢)sin A, the
volume Ur is a truncated cone (for any r from p, to pz), and is a complete cone
for all r satisfying the inequality ¢z/sin A <r < p, in the interval (p/9w)sin
© =z < z,- With this in mind, we should write the following in place of
Eq. (32.9)

b1 (2 ) oy, O ¢k
_Mbl(O) =2,512 % max { S [exp ——S b3 (C—}—lé);sdr] dz (32.10)
(p:/¢)sinA /qu/sinA ’ p;’
+ [exp - ﬂ ]; (C+ Up) rdr4- S & c4 1 \r_’dr‘ d
(pu/e)sinA ( ,;, ousina & S J i+
(pz/q,\smA [exp —\ 5 (C 4 Ua)r dr] dz}

Bl g5e)a
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where Ur designates complete cones (the "deep" layers of the rings); US desig-
nates truncated cones (the "surface'" layers); the subscript r is omitted from

all volumes.

Eq. (32.10) is a general equation (that is, it is valid for any s) for /98
the amplitude of the shadow effect with variance p taken into consideration
(in the approximation of the shadow effect with a shortcoming). The general

formulas must be added. These are

k] B} P
'TO . _:’Tf_):‘ilv — _“'I/\,Zo _ (32- 11 )
;§, R34 ‘jf“S p*~dp

Pr

for the optical thickness of the ring, and

D:Kiji""m’ T S (32.12)

4 3 “7F*_T77;“*R——§p3*dp,

Py

for the volumetric density.

Eq. (32.10) considers only first order scattering. Eq. (31.19) is used
to make the reduction for higher order scattering. Let us note in addition
that the natural phase coefficient for the particle, pp, is assumed not depen-

dent on p.

(b) Comments relative to the interval and parameter of variance. As will

be pointed out at the end of the section, the parameter s for the B ring should

satisfy the condition

s < 3. (32013)
in the Eq. (32.1) variance law. So let us consider the connection between

the magnitudes pl, p2, D when s changes in the interval 2.5 < s < 3.5.

TO,

First let us point out that we can take

Prmin ~ 1-107% cx (32.14)

Q2 min ™~ 3 cx.

(32.15)
as the minimum values for p, and p,. Eq. (32.14) follows because the B ring
scatters solar light almost non-selectively (#9), and Eq. (32.15) follows
from the condition of the cosmogmically acceptable age of the ring [#17, Eq.
(17.4)1.
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Egs. (32.11) and (32.12) make it easy to obtain the following special

formulas for TO and D in the interval of interest to us

s = 2.5 Twzgqxﬁﬂtzymmawlpf; (32.16)
_ 8 ak[—(den’] s (32.17)
p= o FE LT Py
s = 3.0 Kz P2 (32.18)
Toz—rlnT.
4 aK[1— 2
p - TKIL el o (32.19)
s = 3.5
o= 20Kz [~ (31/0)"] (32.20)
Ip) !

8 kK [L--(o/ps)"-
A I A (32.21)
As will be seen from Eq. (32.16) - (32.21), when s < 3.0, the optical thickness
(and therefore ring reflecting surface) is determined primarily by large par-
ticles, and when s > 3.0, by small ones. The volumetric density (and the

mass of the ring) over the ertire interval of s values of interest to us is

determined by large particles.
This obvious relationship must be added to these formulas

z = 2p, (32.22)

Strictly speaking, the model of the many-particle thickness system requires

the observation of the more rigid condition that
z > p, (32.23)

but the Eq. (32.22) condition is adequate for majorizing the amplitude estimate.
That Eq. (32.22) does just that, that is, that it exaggerates the amplitude

of the mutual shading effect, is clear from the following consideration. As

will be seen from Figure 26, the section of expressed nonlinearity of the phase
curve for the layer of particles with fixed p and z  covers a longer ¢ interval
the larger D may be, that is, the larger the p/zo ratio. If this ratio is

large enough, the nonlinear section generally can prove to be outside the

limits of the observed interval of phase angles, and the actual amplitude of

the brightness of the layer with change in ¢ from O to 6°.5 will be significantly
below that computed through Eq. (32.10), in which it is assumed that W = O,
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that is, that when ¢ : 6°.5, the nonlinear section of the curve has passed

from Py to Py for all particles,

The application of the Eq. (32.22) condition to the ring model limits
the range of possible D values from above. In fact, substituting Eq. (32.22)
in Egs. (32.16) - (32.21), and expressing D in terms of Tg, it will be found

4

quite easily that when T_ = 1, 0 = 1-.10° cm, and z, = 10”7 cm. Dmax is 0.21,

3.3-10‘2, and 3.0-107°

these values is so small that there is no assurance that the amplitude of the

0
for s = 2.5, 3.0 and 3.5, respectively. The latter of

change in brightness of the B ring can be observed, even when there is no dis-
persion, o (see Figure 24), But from what follows, we shall see that achieve-
ment of that amplitude requires a model with higher D values when there is var-
iance of p, than when a model without variance is used. Consequently, when

the interval of wvariance is a broad one, the value s = 3.5 is extremely high.

There is yet another distinctive feature of the model under consideration,
and that is that since it includes a componeut in which p € 3 cm, the effect
of the light pressure no longer can be taken as negligibly small. Specifically,
radiative braking will play a significant role. It will sweep out the slightly-
dispersed component of the ring material within the volume of the rings over
a period of time that is short compared with 5-109 years. It is true enough
that large particles approaching Saturn very much more slowly will shield the 4599
planet from the small particles, and, at the same time, will interfere with
the sweeping out process. As will be seen from Egs. (32.16) - (32.21), the
shielding is particularly strong when s < 3, when the optical thickness of the
ring is fixed primarily by large particles. A ray penetrating the ring radially
causes an optical thickness of tens of thousands because TOB ~ 1, From this
it follows that the effect of radiative braking on particles with p € 3 cm
should lead to their settling on the surfaces of large particles. The subse-
quent fate of a small particle is a strong bond between it and the surface of
a large particle (by freezing to it, for example), or of its being torn away

from this surface when two large particles collide.

If the former is the case, the number of small, free particles in the
ring volume will decrease rapidly with time. Now let us realize the latter
case. Here we no longer can speak of the time of the free path of a small

particle, but of the time it takes to wash it out of the ring volume completely.
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Generally speaking, this time increases with consideration of the periods of
the linking of small particles to large ones, But if collisions between
particles are not too rare (as obviously is the case; see #28) the time re-
quired to wash the particles out does not increase significantly. So, even
in this latter case there will be quite a rapid reduction in the number of

small free particles in the ring volume.

Accordingly, consideration of the question of extensive variance of p,

including particles with p € 3 cm, leads us to the problem of the continuous

filling of the ring volume with such particles. Without engaging in a detailed

discussion, we shall simply note that the most probable source of replenish-
ment can be the fractionation and the breaking away from the surface layer of
large particles as a result of the action on the surface layer of solar cor-
puscular radiation and of micrometeorites, as well as because of collisions

between large particles.

Let us take this assumption as a working hypothesis. It imposes the
following limitation on the distribution of particles in terms of p: the

total mass of ring particles for which p > 3 cm should be of the order of, or

greater, than the mass of all those small particles which, during the existence

of the ring, were washed out of its volume by radiative braking
> Lo

4 4

g RGO S —gag Ay,

Py 1

(32.24)

where o is the radius of a particle, the time of existence of which in the
volume of the ring is equal to the age of the ringj; 8 is the density of the
particle material; n is the ratio of time of existence in the volume of the

ring of a particle with radius po.

In accordance with Eq. (17.4), the time of existence of a particle in the /101

volume of the ring is directly proportional to its radius. Therefore
n = po/p. (32.25)

Assuming that 6 is not dependent o1 ., and replacing n and dN in Eq. (32.24)
by their values as calculated through Egs. (32.25) and (32.1), we obtain

(1]

P2

2.26
S p¥ o spg S p* S dp. & )
Po

Pt
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From whence we find the following expressions for the upper limit of p

for three particular values of s

a) $=25,  po==pgt (ot — 3p )7 (32.27)
b) s==3,0, pg:p0<ln%+1); (32.28)
c) s =345, pr==pp/p1. (32.29)

=k
Substituting po = 3 cm, and Py = 10 cm here, we obtain the values of 7.6, 102,
and 9-104 cm, respectively, for Py when s = 2.5, 3.0 and 3.5. These numbers
show that the very fact of a comparatively small ring thickness (of the order
of 3 to 4 km) imposes a significant limitation on s. The maximum permissible

value that should be taken for s is 3.5, or even a somewhat smaller value.

Planetocentric radiative braking, the effect of which we have just reviewed,
is not the only effect light pressure has on the ring material. The component
of the light pressure normal to the plane of the rings for example, causes a
depression in the plane of the orbit of the particles; that is, it forces the
particles to move in planes that do not pass through the center of the mass
of Saturn. The smaller p, the deeper the depression, and it is of interest

to estimate its magnitude for p = 10 cm.

The pressure of direct solar radiation on an absolutely absorbing particle

at a distance of 1 AU from the sun is of the order of 5'10-5 dyne/cmz. Con-
sidering the mean distance of Saturn from the sun (9.54 AU), the inclined
incidence of light on the ring (A < 26°.7), and the fact that almost one-third
of the ring is in the shadow of Saturn, we obtain the following value for the
component of the light pressure normal to the plane of the ring

7

p, < 1.5-10° dyne/cmz. (32.30)

Actually, the particles are not absolutely black, but are light gray (the

albedo is of the order of 0.5 to 0.6), diffusively scattering. P, therefore

is somewhat increased. But when it is remembered that solar radiation is
attenuated substantially upon passage through the thickness of the ring,

because of the large particles, the P, value obtained through Eq. (32.20) will /102

be overestimated much more guickly than it will be underestimated.

We find the magnitude of the depression, H, by equating the normal compo-
nent of the force of the light pressure to the corresponding component of the

attractive force
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where r is the radius of the orbit of the particle; v is the gravitational

constant; M is the mass of Saturnj; p and § are the particle radius and density.

. . -
Setting r = ]_o10 cm (the mean radius of the B ring), p 2 Py = 10 cm,
2 . s
M= 5,710 9 grams; and § = 1 (the particles consist of ice for the most part),

7

we find that when p = 1.5-10" clyne/cm2

H < 300 M. (32.32)
If z_ is significantly larger than this number, the depression is not deep
enough for spatial separation of small particles from large ones, even when
p = 10—4 cm. An estimate of the order of z,, based on 1966 observations (#22)

shows that this is so.

The pressure of scattered solar radiation, and of infrared radiation from
Saturn, also have an effect on small particles. The first of these factors
is weaker than the direct radiation from the sun by approximately two orders
of magnitude (#21), and the second is weaker by even many more orders of

magnitude. The effects they create are slight, and we will not consider them.

— — TABLE 7 e
Particle sizes, cm | b1(%pay) —b1(0)
Model ’ woy % D
P1 Pe P2
Without
variance [2.4-10% [ 2,4-10% | 2,4-102 39 3,16.10°®
s—=2.5 1,0.10% | 2,0-1071} 7,0.107 33 3,16-10-3
£.0-107 | 2,0.10 | 7.1-10° 4t 3,46.10-%
s =13,0 1,0-107¢ | 2,0-107Y 4,2.103 14 3.16-10°2
1,0-107% | 2,0.107 4,7.10% <21 3,16.10°2
2,7.100 | 2,7-10' | 1,5.108 <39 3.16-10-2
§=23,5 1,0.107% [ 2,0.1071 5,0.10¢ <1 2,97.10°%
1,1 1.1 5,0.10¢ <9 3,16.10-3
1,1-10? 1,1-102 | 5,0-104 <39 3,16.10-%

(c) Results of the amplitude calculations for 2.5 < s < 3.5. The sub- /103

stitution of particular values s = 2.5, 3.0 and 3.5 in Eq. (32.10) readily
supplies working formulas for amplitude calculation {(see Bobrov, 1961).

Setting Zy = 1.0'105 cm, TO =1, A = A" = 25°, we find the amplitude values
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listed in Table 7. The '"less than! sign is used when only the majorizing
estimate of the amplitude can be obtained. Model data without variance are
listed for purposes of comparison. The parameters of this model were selected
in order to obtain concordance between the values of the magnitude Ebl(qhax) -
bl(O)]/bl(O) and the B ring observations. The observed value is 39 percent.

There is no need to reduce the data for multiple scattering, because p
is equal to the amplitude value only when first order scattering is taken into

consideration, and this is so for models with and without variance.

The following conclusions as to the nature of the variance 1in the sizes

of B ring particles derive from consideration of the data listed in Table 7.

1. If the variance Iinterval is a broad one, that is, if it includes
macroscopic particles as well as fine dust with p ~ 10" cm, concordance with

the observations can be reached only when s < 3.

2, The estimate of the volumetric density of the B ring, obtained with

variance ignored, should be reviewed. The new D value will be higher.

Let us point out that general considerations, as well as observed facts,
impel the rejection of the preference for models with a broad variance inter-
val; that is, models with s < 3. As a matter of fact, the effect on ring
material of micrometeorites and of solar corpuscular radiation should result
in a continuous formation of a fixed quantity of fine dust in the ring volume.
Maggini (1937), observing a significant increase in the B ring color equivalent
at small A angle values (#13), confirms the fact that dust such as this actually
does exist in the B ring volume. At the same time, it is of interest to note
that the relative dust content clearly is low, because it cannot be detected
by observation when the rings are open half way, or wide open. This is yet
another indication in favor of the models with s < 3, in which the dust content

is low [see Egs. (32.16), (32.18) and (32.20}].

(d) Phase function. The general expression for bl(a)/bl(o) is readily

btai Eq. 2. b i ith d C 8) i C - .
obtained from Eq. (32.9) by replacing Qhax wi o an r + - with r + Ur Wr

As in the case of finding the phase function of models without variance
in the radii of the particles, p, we must distinguish between surface, shallow,

middle, and deep layers of the ring (subscripts S, Sh, M, and D, see #31),
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so the intervals of integration with respect to r and with respect to z can
be broken down into parts, and there will be seven summands in the numerator

of the expression for bl((:\/)/b1 (0)

/|
b ) bl (v 1)@ /10%
l — —-pa ‘o *
by (0) — 2012 ; exp — (€ + Uy — W)t dn+
20,/(v+1)e
+ exp — [(C + Ug )t — (TG IS %7 — (7 982 1yl dn +
Pe/(vH1) @
(N4
+ § ew—ret gz —ongsen — gien,
20,/(v+ 1)@
P Avie
— 0% )yeal a0 + exp —[(O)f + (U2 +
Pul@
UG — e — e —
? 2p:/(v+1) @
- (TVS)(":H)"] dn + exp — [(C):i + @ )Ef:’ +
p2/(vi1)®
+ (US e (W M)(vn)w/z (W, ﬂ(vu)w]z] dn +
[ /v
+ S exp —[(C)g: + () )5, + (UG, — (W ]JPN*H-
2p2/ (V1)@
Ne o
+ §en—ccrg—wpa}: exp—S—Cr‘sdr]dn, (32.33)
Pi/® 0 Pe
where
'r|=z/sinA, (32.3[_&)
v =0/}
(32.35)
and designations of the type
on K
()] = S 7 Updr (32.36)
Pe
and the like are introduced. It is accepted that A' = A, and that the influence

of the penumbra is negligibly small. The superscript r has been omitted from

all volumes.,

Eq. (32.33) is a general formula for the phase function of the effect of
mutual shading, with variance in the particle radii, p, taken into consider-
ation. The working formulas for certain special values of s can be obtained
by substituting these special values in Eq. (32.33). We used Eg. (32.33) to
calculate theoretical phase curves for the following two models
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8=2 p=1.10-¢ cm,

=Ty =1, p,=2:10 cm, (32.37)
A=A"=25, P2=7,5-102 cm,

D=5.10"3, zg=1.10 cm.

s=3, p=p, =43 cm

To=705=1' py = 2.8-10% cm: (32.38)
A=A =25

D =4,3-1072, 2o=1-10° cm,

The parameters of the Eq. (32.28) model were selected such that they
satisfy observational data, and, at the same time, provide for possibly
obtaining a broader range of variance, one including not only macroscopic
particles, but fine dust as well. This selection leads one to expect first,
good concordance between the theoretical and the observed phase curve, and,
second, a quite clearly expressed difference between the Eq. (32.37) model

phase curve, and the curves for models without variance.

The selection of values for the parameters TO, zo, and the volumetric
density, D, provides the concordance with the data from observations. This is
done by taking a value for the latter which, in accordance with the data

listed in Table 7, should result in an amplitude close to that observed.

The latitude in the variance interval (almost seven orders of magnitude)

for a comparatively large amplitude, is provided for by an extremely moderate

value, s = 2. At the same time, p, was selected such that the Eq. (32.23) con-

dition is satisfied., This means that for all particles in the variance
interval, including Pos the nonlinear section of the phase curve is within

the limits of the observed interval of phase angles.

Another model, Eq. (32.38), was taken for purposes of comparison. Here,
on the other hand, a maximum s = 3, was taken, something that resulted in a
substantial increase in Pys p., and Pos otherwise the amplitude would be very
small. Because of the large Pgs the Eq. (32.23) condition is not satisfied.
As has already been mentioned above, this results in a reduction in the actual

amplitude as compared with that calculated using Eq. (32.10).
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Figure 28, Effect of variance of particle radius, p, on the shape of the phase
curve,
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1, 2 - curves for the Egs. (32.37) and (32.38) models with variance of p, res-
pectively; 3, 4 - their analogs, obtained for models without varijance of p, for
the same values of the parameters A, TO’ and zo. D values are shown near the
curves.

Calculations have resulted in the phase curves shown in Figure 28 (curves
1 and 2). For purposes of demonstrating how the variance of p affects the
shape of the phase curve, the figure also shows two phase curves for a model
without variance of p, one of which, curve 3, is the analog of curve 1j; the
other, curve 4, is the analog of curve 2. The values of the parameters A, TO’
and z_ are equal for the pairs of curves, 1-2, and 2-4, respectively, and so
are the values of the most important parameter, D (precisely or approximately),
so that the difference in the shape of the compared curves must be equated

solely to the effect of variance of Q.

As will be seen from the figure, when s = 3 these differences are much
greater than when s = 2. This can be explained by the fact that with increase
in s there is an increase in the contribution made by the small particles to
the total luminous flux from the ring, and, consequently, in the influence of
the small particles on the resultant phase curve. Generally speaking, every
p value has its ''partial! phase curve, with the initial {(linear) and transi-
tional (non-linear) sections shorter and steeper the smaller p as compared
with zo. The resultant phase curve for the model as a whole is the mean weighted
curve, as it were, of all the partial curves. That is why, in particular,
curve 4 (models of single, extremely large, particles) is an extremely flat
curve, whereas curve 2 (models of particles with a variety of sizes) rises

guite sharply from o = O, and approaches saturation much more rapidly.
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Figure 29, Comparison between observations and theoretical phase curves for
Egs. (32.37) and (32.28) models, with variance in sizes of particles considered.

Solid curves are the theoretical phase curves. The circles and crosses are

the blue and visual stellar magnitudes of ring brightness according to Franklin
and Cook (1965), respectively. The luminous fluxes from the A and B rings have
not been separated; BB(O) - BC has been taken equal to -o™.115.

Figure 29 compares the theoretical phase curves with the observations.
We used Franklin and Cook's observational data (1965). We sze that the concor-
dance of the s = 2 model with the observations is quite satisfactory, particu-
larly for blue stellar magnitudes. The visual stellar magnitudes develop a
small, systematic, discrepancy with theory when o < 0°30'. The authors
believe that this discrepancy is a real one and that it is the result of
diffraction in the microscopic, transparent, frozen droplets forming the sur-
face of the particles (the latter are assumed to be macroscopic). It probably
is too soon to take these conclusions as final. As a matter of fact, in the
photoelectric photometry provided by Franklin and Cook the luminous fluxes
from the A and B rings were not distinguishable from each other (#12). The
authors assert (on the basis of their simultaneous photographic photometry)
that the observed phase curves for the A and B rings are absolutely identical.
This assertion cannot be verified, unfortunately, because the authors have
not published their photographic phase curves for the A and B rings. It is
possible that there is a little difference in the A and B ring curves, but

this cannot be detected within the limits of error for photographic photometry.
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But there are serious observational facts pointing to an A ring light scattering
with its own features: (1) the polarization of the light reflected by the A
ring is significantly different from that for the B ring (#11); (2) when A'

is extremely small the brightness of the A ring can exceed the brightness of Zggg
the B ring (Barnard, 1909), whereas when the openings are of medium, or large
size, the reverse is true; (3) as calculation shows (Bobrov, 1956b, p. 907),
the difference in the A and B ring brightnesses cannot be explained by the
simple difference in Toe Evidently, the scattering properties of the rings

are not entirely identical. Consequently, the nonconcordance with theory men-
tioned when o < 0°30' may be due solely to the A ring. The only way to resolve
this is to make direct photoelectric photometry of the surface brightness of

the A and B rings individually.

As will be seen from Figure 29, the behavior of the observed brightness
values near @ = O possibly indicate that the value (-0.115) taken from BB(O) -
BC is somewhat (absolutely) inflated. There is reason to think, therefore,
that in fact the s value is not 2.0, as in Figure 29, but is between 2 and 3.
Figure 30 shows our attempt to illustrate this graphically. We should point
out that the mean values of s for meteorites observed in the vicinity of the
earth, as well as for the material responsible for the Fraunhofer component

of the solar corona have this same order of magnitude.
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Figure 30. The same as Figure 29, but the assumption is that BB(O) - Bc = -0™.060.

In Figure 30, BB(O) - B, is taken as equal to (-0™.060), a magnitude which
is more reasonable than (-0".115).
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#33. Other Solutions

Franklin and Cook recently published (1965) formulas for calculating the
phase function of the mutual shading effect. They considered two cases: (1)
the cone-cylinder approximation, which considers particles large enough so
the effect of diffraction along the length of the shadow can be ignoved; and
(2) the cone-cone approximation for microscopic particles, when the volume of
the shielding is not a cylinder, or a cone. The details can be found in the

original paper.

Case 1 is the complete equivalent of the case which we had considered at
the time, and which is described in this chapter. Analysis of case 2 led
Franklin and Cook to the conclusion that the rings possibly consist of par-
ticles with p ~ 300 microns, and they should have exceptionally small physical
thickness, ZO ~ 3 - 10 cm. Discussing thesec values, the authors are silent
with respect to the more serious argument against case 2, that of the very
short life of a formation such as this. We discussed this question in #17,
and found that the life of rings consisting of particles of p ~ 300 microns
is about 5"1()'7 years, or lO—2 the life of the solar system. Consequently,
the assumption must be that the ring material has been renewed some 100 times
during the life of the solar system, or that the rings are very young, and that
we now see them only because of an occasional, fortuitous coincidence. Both 1222
possibilities have a very low order of probability. The authors themselves tend
more to the view that the actual structure of the rings corresponds more to case
1 than to case 2. To be added is the fact that thanks to the international ob-
servations made of Saturn in 1966, it became possible to reduce the first esti-

mates of the order of the thickness of the rings to z ~ 3 to L km.

#34. Discussion of the Results. Values of the Principal Physical Parameters of

the Rings.

By the end of Chapter IV (#19), we were able to obtain some idea of the
structure of the B ring, and of the properties of its typical particle, based
on analysis of observational data. It was found that the B ring is a many-
particle thickness syvstem, and that the particles themselves are macroscopic,
very scarred bodies with a spherical albedo of a ¢ ~ 0.5 to 0.6. In this sys-
tem, when 4 ~ 1, the phase behavior of the brilliance in the region of small ¢

will be determined for the most part by the effect of the mutual shading of the
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particles by each other, so the next step should be to apply the theory of
mutual shading to the B ring in order to check and refine previously derived
conclusions with respect to the structure of the ring, and to obtain a quanti-
tative estimate of its principal physical parameters. In this section, once
the theory of mutual shading is explained, and its predictions are compared
with observations, we can discuss the results obtained and compile a summary of
the values of the ring parameters representing those that appear to be most

probable at this stage of the research.

Let us point out, first of all, that the theory of mutual shading is what
makes it possible to use observations to establish whether the rings are a one-

particle thickness system, or a many-particle thickness system.

Let us postulate the existence of the first possibility. In that case,
the observed shape of the phase curve for the rings will, in the main, be due
to the Gehrels-Hapke opposition effect (#17). The effect of mutual shading will
be slight when A is not too small, because the cone of the shadow of the eclip-
sing particle will lie almost entirely outside the layer in which the particles
are located. But with reduction in A to a few degrees, the situation changes.
When A ~ 3°, the length of the section of the shadow of the particle within the
limits of the layer reaches a value of several tens p. The probability of mutual
shading increases significantly, and the phase effect will be stronger for

large and medium A.

The situation is different in the case of the many-particle thickness
layer. For the majority of the particles the shadow falls entirely within the
layer, regardless of A, so the probability of mutual shading always is great
(providing D is not too small). The transition from large A to small is reflec- liig
ted only in the increase in the magnitude To/sin A; that is, in the optical
thickness along the incident ray. When 5 ~ 1, this has little effect on the
magnitude of the phase effect.

Accordingly, in the case of the ring with a one-particle thickness, the
phase curve will show a substantial increase in the phase factor at any point
in the observed interval, o, for small A, and, consequently, a significant in-
crease in the total amplitude of the change in brightness. The phase curve
will be relatively insensitive to change in A in the case of the ring with a

many-particle thickness.
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The program of international cooperation in observing Saturn's rings in
1966, included among its many facets the obtaining of phase curves for the rings
for small A. Although the analysis of the observations is not complete as of
this time, the preliminary data indicate that the phase curve for the B ring
obtained in 1966, evidently is identical with the curve obtained for large and

medium A; that is, this ring is a many-particle thickness system.

Let us point out as well that the comparison of the phase curves calculated
in terms of the theory of mutual shading, with the observed phase curves for
the B ring, confirms the assumption of extensive scarring of the surface of
ring particles. This can be seen from the fact that in order to obtain concor-
dance between theory and observations, it is necessary to add to the nonlinear
phase curve for the mutual shading effect a linear component with a phase factor
of the order of O".02k per degree of phase (or somewhat higher, if one recalls
the phase factor for the center of Saturn's disk). Obviously, this component
is none other than the individual particle phase curve. The magnitude of the
phase factor found is quite large, and extremely close to that for the moon,

the extensive surface scarring of which is certainly not in doubt.

So, the theory of mutual shading first of all confirms the correctness of
the preliminary conclusions arrived at in #19 concerning the B ring structure,
and the properties of its particles. Beyond that, the theory makes it possible
to arrive at certain new conclusions with respect to the structure of the ring,
as well as to make a quantitative estimate of its principal physical parameters.

In fact, we established the following in #31 and #32.

1. The shape of the phase curve for the ring indicates the presence of a
marked variance in the sizes of the particles forming the ring. The exponent
s in the Eq. (32.1) variance law is close to 2.5, a value that is, in general,
typical of meteor material in the solar system.

2. The volumetric density, D, of the ring material is of the order of

~2
10 .

3. Ring thickness, z_ , must be known in order to estimate ring particle

(0]
sizes., In our models, Egs. (32.37) and (32.38), we used z, = 1 km. The edge-on
observations of the rings made in 1966, confirm this value by order of magnitude.

When ZO =1, and s = 2.5, we find that 90 percent of the reflecting surface be-
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I 2

longs to particles in the interval 2 cm s p < 2'102 cm, where p is particle /111

radius.

L, Knowing D, and the geometric dimensions of the rings, and approximating
Dy = Dps 3
z = 3 km, and the particle density is of the order of 1 gram/cm” (ice), m& =
L

and that DC = 0, we can estimate the total mass of the rings W}. if

2 .
1°10°7; that is, about 1/70% the mass of the moon.

In conclusion, we should like to emphasize the fact that even in its present
form the theory of mutual shading still does not take into consideration all
the main features of Saturn's ring structure. Specifically, it fails to consi-
der that D is a function of z, and that with increase in z the relative number
of small particles should increase. The estimates of physical parameters of the

rings presented here therefore should be considered simply as preliminary.
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APPENDIX

Notations in the Formulas
Used in the Theory of the Effect of Mutual Shading

(Chapter VII, #29-34)

a - albedo of particle

A, A'- angles of elevation of the sun and earth above the plane of Saturn's

rings
b1 - component of ring brightness attributable to first order scattering
Ab - component of ring brightness attributable to multiple scattering

b = bl + Ab - total ring brightness
bB(a) - brightness of the B ring for phase angle equal to «
bB(O) - same, when o = O (at time of precise opposition of Saturn)

C - cylinder of shielding (see Figures 23 and 25)

D =4/3 (ﬂp3N)/R - volumetric density (part of ring volume occupied by particles)

F(@) - natural phase function of ring particle

K - constant in the particle size distribution law in Eq. (32.1)

M - point on element of surface de of eclipsed particle (Figures 23 and 25)
N - number of particles in ring volume

p - volume contained between expanding and compressing cones of the volume

of probability, V (Figure 25)

P - probability of particle falling into -volume V

0 - natural phase coefficient for the particle (the change in its stellar
p magnitude for change in phase angle of 1°)

R - ring volume

s - exponent in the particle size distribution law

U - cone of shading (Figures 23 and 25)

\% - "wolume of probability." The element de¢ will be shielded from the

earth (completely) or from the sun (completely or partially) when a par-
ticle falls into this volume, V = C + U - W when the penumbra is ignored;

V=C+ U+ P - W when the penumbra is taken into consideration
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W - part of V, total of C and U; w = (@/ﬂpB)W

x = ¢z/(psinA) - auxiliary variable replacing the variable z /113

|

x, = @zo/(p51nA)

z - depth of element de of eclipsed particle (Figures 23 and 25) measured
from the plane of the rings, 1, closest to the sun

z.0 - ring thickness
o - phase angle at Saturn (the angle sun-Saturn-earth)
B = -2.51og b + C -~ the stellar magnitude of brightness., If it is measured

in stellar magnitudes for a square second of arc, and the brightness
b is in apostilbs, C = 13.92

8 - density

v = g/¢ - auxiliary variable replacing the variable «
o - particle radius

Pyo Py - minimum and maximum particle radius values
B' - mean particle radius

"M -~ minimum radius of particles the eclipsing effect of which is not yet
taken into consideration

@ 1'.676 - the angular radius of the sun for an observer at the mean distance
of Saturn

Subscripts S, Sh, M, and D designate the surface, shallow, middle and
deep layers of the rings (for explanations see the corresponding sections of
the text). The subscript c¢ is the designation for the center of Saturn's

disk.

119



10.

11.

12.

134

14,

15.

120

REFERENCES

Allen, C.W., Astrofizicheskiye velichiny [Astrophysical Magnitudes], IL,
1960.

Arkad'yev, V.K., Y"Fresnel Diffraction," ZhRFKhO, Physics Department,
Vol.kl, No.k, 1912, p.l45.

Barabashov, N.P., Semeykin, B.Ye., '"Monochromatic Photometry of Saturn
and Its Rings,'" Astron. zh., Vol.3, 1933, p.381.

Barabashov, N.P., Chekirda, A.T., "O raspredelenii yarkosti na diske
Saturna i o yarkosti yego kolets," Trudy Khar'k. astron. obs. [On
the Distribution of Brightness on the Disk of Saturn and on the
Brightness of Its Rings, Proceedings of the Khar'kov Astronomical
Observatoryl], Vol.2 (10), p.9.

Barnard, E.E., "Observations of the Eclipse of Iapetus in the Shadows of
the Globe, Crape Ring, and Bright Ring of Saturn, 1889 Nov.l,"
Monthly Not., Vol.50, 1890, p.107.

Barnard, E.E., '"Observations of Saturn's Ring at the Time of Its Dis-
appearance in 1907," Monthly Not., Vol.68, 1908, p.346 (a).

Barnard, E.E., "Additional Observations of the Disappearances and Re-
appearances of the Rings of Saturn in 1907/08," Monthly Not., Vol.68,
1908, p.360 (b).

Barnard, E.E.,"Recent Observations of the Rings of Saturn,'" Monthly Not.,
Vol.69, 1909, p.621.

Barnard, E.E., '"Photographic Measures of Saturn and Its Rings," Astrophys.

J., Vol.hko, 1914, p.259.

Bell, L., "The Physical Interpretation of Albedo. II. Saturn's Rings,"

Astrophys. J., Vol.50, No.1l, 1919.

Belopol'skiy, A.A., '"Issledovaniye smeshcheniy liniy v spektre Saturna i

vego kol'tsa," Izv. SPb., Akad. nauk. [An Investigation of Displaced

Lines in the Spectrum of Saturn and Its Ring, News of the Saint Peters-

burg Academy of Sciences], Vol.3, No.4, 1895, p.379.

Belopoltskiv, A.A., "A Spectrographic Examination of Saturn's Rings,"
Astron. Nachr., Vol.139, No.3313, 1896.

Berry, A., Kratkaya istoriya astronomii [A Short History of Astronomyl,
GITTL, 19%6.

Bobrov, M.S., "On the Physical Interpretation of the Phase Curve of
Saturn's Rings,'" Astron. zh., Vol.17, No.6, 1940, p.l.

Bobrov, M.S., "Toward the Question of the Thickness of Saturn's Rings,"

/114



=1

16.

17.

18.

19.

20.

21.

22.

23.

2h.

254

26.

27

28.

294

N

Astron. zh., Vol.33, 1956, p.161 (a).

Bobrov, M.S., "On the Structure of Saturn's Rings. III. An Evaluation
of the Dimensions of Particles and the Mass of the Rings,'" Astron. zh.,

Vol.33, 1956, p.904 (b).

Bobrov, M.S., Derivation of the Theoretical Phase Function of Bright-
ness of Saturn's Rings and a Comparison of It with Observations,"
Astron. zh., Vol.37, 1960, p.306.

Bobrov, M.S., "Theoretical Phase Curves of the Shadow Effect on Saturn's
Rings. 1I. Derivation of Formulas," Astron. zh., Vol.37, 1960,
p.306.

Bobrov, M.S., "A Summation of the Theory of the Shadow Effect on Saturn's
Rings on the Occurrence of Particles of Non-Identical Dimensions,"
Astron. zh., Vol.38, 1961, p.669.

Bobrov, M.S., "On an Observation of Occultations of Stars by Saturn's
Rings,'" Astron. zh., Vol.39, 1962, p.669.

Bobrov, M.S., "Sovremennoye sostoyaniye voprosa o strukture i poryadke
tolshchiny kolets Saturna," Tr. Astrofiz. in-ta AN KazSSR [ The Modern
Status of the Question on the Structure and Order of Thickness of
Saturn's Rings, Proceedings of the Astrophysical Institute of the
Academy of Sciences of the Kazakh SSR], Vol.9, No.83, 1967.

Brower, D., Clemence, J.M., "Orbits and Masses of Planets and Satellites,"
IN: Planety i sputniki [Planets and Satellites], edited by Kuiper and

Middlehurst, IL, 1963, ch.3.

Walter, H., '"Scattered Light Intensity of Large Spherical Particles,"
Optik, Vol.l4, 1957, p.130.

Walter, H., "Scattered Light Intensity of Large Spherical Particles.
II," Optik, Vol.l6, 1959, p.LOl.

Wood, R.W., '"Monochromatic Photography of Jupiter and Saturn," Astrophys.
J., Vol.hk3, 1916, p.310.

Harris, D.L., '"Integral Photometry and Colorimetry of Planets and Sat-
ellites," IN: Planety i sputniki [Planets and Satellites], edited by
Kuiper and Middlehurst, IL, 1963, ch.8.

Gehrels, T., '""The Light-Curve and Phase Function of 20 Massalia,"
Astrophys. J., Vol.123, 1956, p.331.

Gehrels, T., "Photometric Studies of Asteroids. VI. Photographic
Magnitudes," Astrophys. J., Vol.125, 1957, p.550.

Gehrels, T., Coffeen, T., Owings, D., '"Wavelength Dependence of Polar-
ization. III. The Lunar Surface," Astron. J., Vol.69, 1964, p.826.

121

/115



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

L1,

L2,

43.

Lh,

122

Hertzsprung, E., "Comparison Between the Surface Brightness of the
Rings and Central Body of Saturn," Astron. Nachr., Vol.208, 1919,
p.81.

Giese, R.N., Bary, E., Bullrich, K., Vinnemann, C.D., "Tables of the
Diffusion Functions and the Scattering Cross Section of Homogeneous
Spherules Based on the Mie Theory, Refractive Index 1.50," Abhandl.
Dtsch. Akad. Wiss. Berlin. Kl. Math., Phys. und Techn., No.6, 1961,
P.l.

Goldsbrough, G.R., "The Influence of Satellites Upon the Form of
Saturn's Ring," Philop. Trans. A, Vol.222, 1921, p.l1l0l.

Goldsbrough, G-R., "Cause of Encke's Division in Saturn's Rings," Proc.
Roy. Soc. London A, Vol.10l, 1922, p.280.

Goldsbrough, G.R., '"The Stability of Saturns Rings," Philos. Trans. A,
Vol.244, 1951, p.l.

Goldsmith, W., Udar [Collision], Construction Literature Press, 1965.

Greaves, W.M.H., "On the Behavior of a Small Body Within the Cassini
Division of Saturn's Ring," Monthly Not., Vol.83, 1922, p.71 (b).

Gurevich, L.E., Lebedinskiy, A.I., "Ob obrazovanii planet. I. Gravitatsi-
onnava kondensatsiya," Izv. AN SSSR, seriya fiz. [On the Formation
of the Planets. I. Gravitational Condensation,'" News of the
Academy of Sciences of the USSR, physics series], Vol.lk, 1950, p.765.

Danjon, A., "Photometry and Colorimetry of the Planets Mercury and Venus, "
Bull. astron., Vol.lk4, 1949, p.315.

Deslandres, H., "A Search for Spectrals on the Rings of Saturn," C. r.
Acad. sci., Vol.120, 1895, p.1155.

Dollfus, A., "Investigations of the Polarization of Planets," IN: Planety
i sputniki [Planets and Satellites], edited by Kuiper and Middlehurst,

IL, 1963, ch.9 (a).

Dollfus, A., "Visual and Photographic Observations of Planets at Pic du
Midi," IN: Planety i sputniki [Planets and Satellites], edited by

Kuiper and Middlehurst, IL, 1963, ch.15 (b).

Dollfus, A., "A New Satellite of Saturn," C. r. Acad. sci., Vol.26k, 1967,
p.822.

Dollfus, A., "The Discovery of Janus, Saturn's Tenth Satellite,!" Sky and
Telescope, Vol.34, No.3, 1967.

Dollfus, A., Focas, J.H., "Photometry of Saturn's Rings As Seen Through
the 1966 S1it," preprint of the Meudon Observatory, 1968, Astron.

and Astrophysics, Vol.2, No.3, 1969.




13:5-

46,

47.

48.

49.

50.

51.

1
0o
.

53.

Sh.

55.

56.

57.

58.

59.

60.

61.

Jeffreys, H., "The Relation of Cohesion to Roche's Limit," Monthly Not.,
Vol.107, 1947, p.260 (a).

Jeffreys, H., "The Effects of Collisions on Saturn's Rings,'" Monthly
Not., Vol.107, 1947, p.263.

Drake, F.D., "Microwave Spectrum of Saturn," Nature, Vol.195, 1962, p.893.

Duboshin, G.N., "Ob ustoychivosti kolets Saturna," Trudy GAISh [On the
Stability of Saturn's Rings, Proceedings of GAISh], Vol.l4, 1940, p.172.

Davies, R.D., Beard, M,, Cooper, B.F.C., "Observation of Saturn at 11.3
) ’ ’ 9 ’ L] ’

Centimeters,'" Phys. Rev. Letters, Vol.l3, 1964, p.325.

Davies, R.D., Williams, D., "Observations of the Continuum Emission
From Venus, Mars, Jupiter, and Saturn at 21.2 cm Wavelength,'" Planet.
and Space Science, Vol.lk, 1966, p.15.

Zheleznyakov, V.V., '"On the Configuration of the Magnetic Field of Saturn,"
Astron. zh., Vol.4l, 1964, p.955.

Seeliger, H.H., "Frequency of Occultations by Saturn,'" Astron. Nachr.,
Vol.100, 1881, p.177.

Seeliger, H.H., "Toward a Theory of the Illumination of the Large Planets,
and Particularly of Saturn," Abhandl. Bayer. Akad. Wiss., 2 Kl., Vol.16,
1887, p.L67.

Seeliger, H.H., '"On the Illumination of Dusty Masses,'" Abhandl. Bayer.
Akad. Wiss., 2 Kl., Vol.18, 1893, p.l.

Zlotnik, Ye.Ya., "On the Influence of the Rings on the Exosphere and
Magnetic Field of Saturn," Astron. zh., Vol.kk, 1967, p.581.

Yabushita, S., "Stability Analysis of Saturn's Rings With Differential
Rotation,'" Monthly Not., Vol.133, 1966, p.247.

Carmichel, H., '"Photometric Measures of Saturn and of Its Ring,'" Ann.
astrophys., Vol.21, 1958, p.231.

Kiladze, R.I., "Nablyudeniye kolets Saturna v period prokhozhdeniya Zemli
cherez ploskost! kolets v 1966 godu," Doklad na Simpoziume po fizike
Luny i planet [Observation of Saturn's Rings in the Period of Earth's
Passage Through the Plane of the Rings in 1966, Report at a Symposium
on the Physics of the Moon and the Planets], Kiev, October, 1968.

Keeler, J.E., "Spectroscopic Proof of the Meteoric Constitution of
Saturn's Rings," Astrophys. J., Vol.l, 1895, p.416.

Kirkwood, D., "The Zone of Asteroids and the Ring of Saturn,'" Proc. Amer.
Philos. Soc., Vol.21, 1884, p.263.

Kowalewsky, S.V., "Additions and Comments to Laplace's Examination of

/116

123



62.

63,

6L.

65.

66.

67-

68.

69,

704

71,

724

73.

7h.

75.

76.

124

the Shape of Saturn's Ring," Astron. Nachr., Vol.111l, 1885, p.38.

Kozyrev, N.A., '"Vodyanoy par v kol'tse Saturna i yego teplichnyy effekt
na poverkhnosti planety,'" Izv. GAO AN SSSR v Pulkove [Water Vapor in
Saturn's Ring and Its Greenhouse Effect on the Planet's Surface,
News of the GAO of the Academy of Sciences of the USSR in Pulkova], No.18%4,

1968, p.99.

Kuiper, G.P., Atmosfery Zemli i planet [Atmospheres of the Earth and
Planets], IL, 1951, pp.378-379.

Kuiper, G.P., Trans. Internat. Astron. Union, Vol.9, 1957, p.254 (a).

Kuiper, G.P., "Infrared Observations of Planets and Satellites," Astron. J.,
Vol.62, 1957, p.245 (b).

Cook, J.J., Cross, L.G., Bair, M.E., Arnold, C.B., "Radio Detection of
the Planet Saturn," Nature, Vol.188, 1960, p.393.

Cook, A.F., Franklin, F.A., "Optical Properties of Saturn's Rings. I.
Transmission," Smiths. Contribs. Astrophys., Vol.2, 1958, p.377.

Cook, A.F., Franklin, F.A., '"Rediscussion of Maxwell's Adams Prize Essay
on the Stability of Saturn's Rings. I," Astron. J., Vol.69, 1966, p.179.

Cook, A.F., Franklin, F.A., "Rediscussion of Maxwell's Adams Prize Essay
on the Stability of Saturn's Rings. II," Astron. J., Vol.71, 1966, p.lO.

Kutuza, B.G., Losovskiy, B.Ya., Salomonovich, A.Ye., "Radioizlucheniye
Saturna na ) = 8 mm," Dokl. AN SSSR [Radio Emission of Saturn at )} = 8 mm,"
Reports of the AN SSSRJ], Vol.16l, 1965, p.1301l.

Laplace, P.S., Mécanique céleste, Vol.3, sect. 46, 1802.

Lebedinets, V.N., "Absolyutnaya fotograficheskaya fotometriya Yupitera i
Saturna so svetofil'trami," Trudy Khar'k. astron. obs. [Absolute
Photographic Photometry of Jupiter and Saturn With Filters, Proceedings
of the Khar'kov Astronomical Observatoryl], Vol.12, 1957, p.l167.

Lyot, B., "Research on the Polarization of Light of the Planet and of
Certain Terrestrial Substances," Ann. Obs. Meudon, Vol.8, 1929, pp.
56-62, 147-150.,

Lyot, B., "Aspect of the Planet at Pic du Midi Through a 60 cm Lens,"
Astronomie, Vol.67, 1953, p.3.

Low, F.J., "Infrared Brightness Temperature of Saturn,'" Astron. J., Vol.69,
1964, p.143.

Low, F.J., "Observations of Venus, Jupiter, and Saturn at ) 20 p,"
Astron. J., Vol.71, 1966, p.391.



77.

78.

79.

80.

81.

82.

83.

84,

85‘

86.

87.

88.

89.

90.

9l.

92.

93.

9%,

lLowell, P. "Saturn's Rings, Astron. Nachr., Vol.184, 1910, p.l177. /117

Maggini, M., "The Recent Disappearance of Saturn's Ring,'" Ricerca
scient., ser.2, Vol.l, No.5-6, year 8, 1937.

Maxwell, J.C., "On the Stability of the Motion of Saturn's Rings,“
Cambridge, 1859 (reprinted in Scientific Papers of J.C. Maxwell,
Vol.l, Cambridge Univ. Press, 1890).

Maksumov, D.D., Astronomicheskaya optika [ Astronomical Optics]}, GTTI, 1946.

Meinel, A., "Quality of the Astronomical Image and Selection of a Site
an Observatory,'" IN: Teleskopy [Telescopes], edited by Kuiper and
Middlehurst, IL, 1963, p.l196.

Menzel, D.H., Coblentz, W.W., Lampland, C.O., "Planetary Temperatures
Derived From Water-Cell Transmission," Astrophys. J., Vol.63, 1926,
p.177.

Mertz, L., "Astronomical Infrared Spectrometer," Astron. J., Vol.70,

1965, p.548.

Mertz, L., Coleman, I., "Infrared Spectrum of Saturn's Ring, " Astron. J.,

Vol.71, 1966, p.747.

Minnaert, M., Svet i tsvet v prirode [Light and Color in Naturel,
Fizmatgiz, 1958.

Moroz, V.I., "On the Infrared Spectra of Jupiter and Saturn (0.9-2.5 ) ,"
Astron. zh., Vol.38, 1961, p.1080.

Mdller, G., "Determinations of the Brightness of the Large Planets and
Several Asteroids,'" Potsdam Publ., Vol.8, 1893, p.193.

Murray, B.C., Wildey, R.L., "Stellar and Planetary Observations at 10
Microns," Astrophys. J., Vol.137, 1963, p.692.

Pavlov, A.V., "On the Resolving Power of the Eye," Byull. VAGO, No.29 (36),
1961, p.39.

Pettit, E., Nicholson, S.B., Popul. Astron., Vol.32, No.601, 1924, p.61k.

Rabe, W., "Investigations of the Diameters of the Large Planets,"
Astron. Nachr., Vol.234, 1928, p.153.

Radziyevskiy, V.V., "Radiation Deceleration in the Solar System and the
Growth of Saturn's Rings,'" Astron. zh., Vol.29, 1952, p.306.

Wright, W.H., "Photographs of Saturn Made by Light of Different Colours,"
Publs. Astron. Soc. Pacific, Vol.39, 1927, p.231.

Russell, H.N., "On the Illumination of the Dark Side of Saturn’s Rings,"

125



95.

96.

97.

98.

99.

100.

101.

102.

103.

10k.

105.

106.

107.

108.

109.

126

Astrophys. J., Vol.27, 1908, p.230.

Russell, H.N., "The Stellar Magnitudes of the Sun, Moon, and Planets,"
Astrophys. J., Vol.43, 1916, p.103.

Rose, W.K., Bologna, G.M., Sloanaker, R.M., "Linear Polarization of the
3200 Mc/sec Radiation From Saturn," Phys. Rev. Letters, Vol.10, 1963,
p.123.

Roche, E.A., "The Figure of a Fluid Mass Subjected to the Attraction of
a Distant Point," Acad. de Montpellier (Sciences, Vol.1l, 1850).

Rougier, G., "Photoelectric Photometry of the Moon," Ann. Obs. Strasbourg,
Vol.2, No.3, 1933, p.205.

Slipher, E.C., '"Phenomena in Connection With the Earth Transit of the
Plane of Saturn's Rings in 1920-21," Popul. Astron., Vol.30, 1922, p.8.

Sobolev, V.V., Perenos luchistoy energii v atmosferakh zvezd i planet
[Transfer of Radiant BEnergy in the Atmospheres of Stars and Planets],
GITI, 1956.

Stebbins, J., Kron, G.E., "Six-Colour Photometry of Stars," Astrophys. J.,
Vol.123, 1956, p.k%40.

Stebbins, J., Jacobsen, T.S., "Further Photometric Measures of Jupiter
Satellites and Uranus, With Tests of the Solar Constant," Lick Obs.
Bull., Vol.l3, 1928, p.180.

Struve, H., "Observations of Saturn's Satellites at the 30-inch Pulkova
Refractor,'" Publ. Obs. Poulkova, ser.2, Vol.ll, 1898, pP.232.

Sytinskaya, N.N., "Investigation of the Threshhold of Contrast Sensitivity
of Vision at Low Values of Brightness," Uch. zap. LGU, seriya matem.
nauk, No.18, 1949, p.158.

Texereau, J., '"Observing Saturn's Edgewise Rings, October, 1968," Sky /118
and Telescope, Vol.33, No.k, 1966, p.226. -

Timiryazev, A.K., Kineticheskaya teoriya materii [The Kinetic Theory of
Matter], 3rd edition, Moscow, Uchpedgiz, 1956, ch.k.

Tikhov, G.A.,'"Dvukhtsvetnyye fotografii Marsa i Saturna, poluchennyye pri
pomoshchi pulkovskogo 30~dyuymovogo refraktora sposobom svetofil'trov,'
Izv. Russk. astron. ob-sa [Dichromatic Photographs of Mars and Saturn,
Obtained Using the Pulkova 30-inch Refractor by Means of Filters, News
of the Russian Astronomical Observatory], Vol.1l7, No.5, 1911.

Welch, W.J., Thornton, D.D., Lohman, R., 'Observations of Jupiter, Saturn,
and Mercury at 1.53 cm,' Astrophys. J., Vol.146, 1966, p.799.

Feibelman, W.A., '"Concerning the 'D' Ring of Saturn,'" Nature, Vol.214, 1967,
pP-793.




110.

111.

112,

113.

114,

115.

116.

117.

118.

119.

120.

121.

122.

123.

124,

125,

Fesenkov, V.G., "Photometric Observations of the Planet Saturn," Astron.

Nachr., Vol.226, 1926, p.l127; Astron. Nachr., Vol.229, 1927, p.227
Astron. Nachr., Vol.231, 1928, p.9.

Franklin, F.A., Cook, A.F.,, "Optical Properties of Saturn's Rings.

.
b

II.

Two-colour Phase Curves of the Two Bright Rings," Astron. J., Vol.70,

1965, p.70L.

Hagihara, Y., '"Stability of the Solar System," IN: Planety i sputniki

[Planets and Satellites], edited by Kuiper and Middlehurst, IL, 1963,

ch.k.

Hapke, B., "A Theoretical Photometric Function for the Lunar Surface,
J. Geophys. Res., Vol.68, 1963, p.4571.

"

Hapke, V., van Horn, H., '"Photometric Studies of Complex Surfaces, With

Applications to the Moon," J. Geophys. Res., Vol.68, 1963, p.4545.

Heath, M.B.B., "Saturn in 1957," J. Brit. Astron. Assoc., Vol.68, 1958,

p'57.

Hepburn, P.H., (1) "Dimensions of Saturn and His Rings as Measured on

Prof. Barnard's Photograph on 1911 Nov.19"; (2) '"Observations of the

Transparency of Ring A, and Other Details Appearing on the Photograph,'

Monthly Not., Vol.24, 1914, p.721.

Hughes, M.P., '"Planetary Observations at a Wavelength of 6 cm," Planet.

and Space Sci., Vol.lk, 1966, p.1017.

Chandrasekhar, S., Perenos luchistoy energii [Transfer of Radiant Energyl,

IL, 1953.

Chandrasekhar, S., Elbert, D., Franklin, A., "The X and Y Functions for

Isotropic Scattering. I," Astrophys. J., Vol.115, 1952, p.2Lk,

Shayn, G.A., "On the Intensity Distribution in the Spectrum of Saturn
and His Ring,'" Tsirk. Pulk. obs., Vol.l3, 1935, p.9.

Sharonov, V.V., "An Experiment on the Absolute Determination of the
Brightness Coefficient of Saturn's Surface,' Byull. Yerevanskoy
astron. obs., 1935.

Sharonov, V.V., "Absolute Photographic Photometry of Saturn's Disk,"
Tsirk. GAO AN SSSR, No.26-27, 1939, p.37.

Sharonov, V.V., fri{g@a planet [Nature of the Planets], Fizmatgiz, 1958.

Shoenberg, E., "On the Illumination of the Planets,'" Publ. Obs. Dorpat,

Vol.24, 1917.

Shoenberg, E., "Photometric Examinations of Jupiter and the System of
Saturn," Ann. Acad. Sci. Fennicae, ser.A, Vol.1l6, No.5, 1921.

127



126.

127.

128.

129.

130.

128

Schoenberg, E., Theoretische Photometrie. Handbuch der Astrophysik
[ Theoretical Photometry. Handbook of Astrophysics], Vol. 2, Part 1,
Berlin, 1929, p. 1.

Schoenberg, E., '"New Investigations of Saturn's Ring," Viertel jahresschr.
Astron. Ges., Vol. 68, 1933, p. 387.

Shifrin, K.S., Rasseyaniye sveta v mutnoy srede [Light Scattering in a
Scattering Medium], GTTI, 1951.

Shnyrev, G.D., Grechushnikov, B.N., Moroz, V.I., "An Investigation of
the Infrared Spectrum of Saturn by the Fourier Transform Method,"
Astron. tsirk., No. 302, 1964, p. 1.

Aitken, R.G., "Observations of Saturn's Rings in 1907." Lick Obs. Bull.,
Vol. 4, 1907, p. 181.

F-701 - %



NATIONAL AERONAUTICS AND SPACE ADMISTRATION
WASHINGTON, D.C. 20546

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

=

FIRST CLASS MAIL

PENALTY FOR PRIVATE USE $300

034 £01 1 1 30
DEPT OF TiE A17 FORCE

AF WEDAPONS LAB (AFS<)
TECH LIBRARY/WLNL/

TI¥: T LOU BOWHAN, CHLEF
AT ONM 87117

AT

722526 SO0 90305

P~

i

KIRTLAND

POSTMASTER:

NASA—451

If Undeliverable ( Section 12
Postal Manual) Do Not Rer:

“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of buman knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information-less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

W ashington, D.C. 20546



