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PREFACE

It has been made a matter of surprise, that

notwithstanding there are many individuals in

these countries perfectly competent to the task,

there has not as yet appeared a translation of the

works of Laplace.

That an accurate translation of the works of

this great man would render them more easily

apprehended, and would also contribute to their

being more extensively known, cannot be ques-

tioned by any person who considers, that they

are read with avidity by many persons who are

frequently embarrassed as to the author's mean-

ing, in consequence of their imperfect acquain-

tance with the French language. The present

Translation was drawn up for the purpose of ob-

viating these difficulties, and of rendering the

work accessible to every scientific student. It is
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hoped that the Notes which are subjoined at the

end of each volume will tend to elucidate many

of the important results which are merely an-

nounced in the text. The Translator is aware,

that to those readers who are conversant with

the Celestial Mechanics, many, if not all, of these

might be dispensed with; but when it is consi-

dered, that his object has been to render these

objects accessible to the generality of readers, he

trusts he will not be deemed unnecessarily diffuse,

if he has insisted longer on some points than the

experienced reader would think necessary.

The decimal division of the circle, and of the

day, (of which the origin is fixed at midnight,) is

adopted in the text. The lineal measures are

referred to the metre, and all temperatures are

estimated on the centigrade thermometer, the

height of the barometer being supposed equal

to 76 centimetres, when this thermometer points

to zero at the parallel of 45°.

By means of the following table, any number

of decimal degrees, minutes, and seconds, may be

obtained in sexagesimal degrees, minutes, and

seconds, by simple multiplication :
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Decimal. Sexagesimal. Sexages. Decimal.

{1°

= 54' = 324"
]
1° = 1° 11' 11" 11'", &c.

1' = 32",4
1" = 0",324

1' = 1', 85" 18'". 51,&c.
1" = 3" 8'". 64.

As it is frequently required to know the

values of the corresponding quantities, according

to the English standard of weights, measures, &c,

the following table is subjoined, by means of

which it is extremely easy to estimate the French

measures in terms of the English, or vice versa.

] foot SB 12 inches, "1 = 12.785 inches.

»
. a 4ui» • v « ~r • u (=3 feet, or one yard, which

. . 3 feet + 1A of an inch, V .

g ffc^^ j.^^^
J ard.

The metre = 10,000,000 of
the)

distance of the pole from the > = 39.383 inches.

equator, )
The litre, which is the unit oH

capacity, (= the cube of the > = 61.083 inches.

tenth part of the metre,) )
The gramme, which is the unit^S

of weight, (= the weight of/
a cube of distilled water, of >= 22.966 grains.
which one side is the 100th I

part of the metre, J
The are, which is the superficial! Q

.

measure, y
^ J

The following numerical values being of fre-

quent occurrence will likewise be useful to the

practical student : / denoting the logarithm of a

quantity in the Hyperbolic or Naperian system,

of which the modulus = 1, and L denoting the

logarithm of a quantity in the common system, of

which the base = 10, we have e, the base of
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the Hyperbolic system = 2, 7128 18284 59045

23536, &c, the modulus in the common system

= Le = 0, 43429, 44819 03251 827651 11289-

The ratio of the diameter to the periphery

of a circle, or tt the semiperiphery of a circle, of

which the rad. is unity =

3, 14159 26535 89793 23946 26433 83279

L. *• = 0, 49714 98726 94133 85635 127

/.*•=! 14472 98858 49400 17414 342

In our division of the day, one second of time

is the 86400th part of the mean day. In the pre-

sent French division, one second is the 100,000th

part of the mean day, :. denoting by g the force

of gravity, and by a the length of the pendulum

which vibrates seconds. In the latitude of Paris

we have

a. = 9m , 808795248 ^ i .a
| f= 7m , 32214 } g | «g

L. a. 0, 9916156690 f Z I » J = 2 8646381 f°-£gj
a. = m

, 9938387446 f * f
* )= m

, 741887 f J
*
1 1

L.A. = 1, 9973 159236 J ~ 3.2 (= I, 8703378)^1-3



THE

SYSTEM OF THE WORLD.

Me vero pritnum dulces ante omnia musce

Quorum sacra fero, ingenfi perculsus amore,

Accipiant, calique vias et sidera monstrent.

Virg. lib. 11, Geor.

OF all the natural sciences, astronomy is that

which presents the longest series of discoveries.

The first appearance of the heavens is indeed far

removed from that enlarged view, by which we

comprehend at the present day, the past and fu-

ture states of the system of the world. To arrive

at this, it was necessary to observe the heavenly

bodies during a long succession of ages, to recog-

nize in their appearances the real motion of the

earth, to develope the laws of the planetary moti-

ons, to derive from these laws the principle of uni-

versal gravitation,and finally from this principle to

descend to the complete explanation of all the ce-

lestial phenomena in their minutest details. This



is what the human understanding has atchieved in

astronomy. The exposition ofthese discoveries, and

of the most simple manner, in which they may

arise one from the other, will have the twofold ad-

vantage of furnishing a great assemblage of im-

portant truths, and of pointing out the true

method which should be followed in investigating

the laws of nature. This is the object which I

propose in the following work.



BOOK THE FIRST.

OF THE APPARENT MOTIONS OF THE HEAVENLY BODIES.

CHAP. I.

Of the diurnal motion of the heavens.

IF during a fine night, and in a place where the

view of the horizon is uninterrupted, the appear-
ance of the heavens be attentively observed, it

will be perceived to change at every instant. The
stars are either rising above or descending to-

wards the horizon
;
some appear towards the

east, others disappear towards the west ; several,

as the pole star, and the stars of the great Bear,

never reach the horizon in our climates. In these

various motions, the relative position of all the

stars remains the same : they describe circles

which diminish in proportion as they are nearer to

a point which seems to be immoveable. Thus the

heavens appear to revolve about two fixed points,

termed from this circumstance, poles of the world ;

and in this motion they are supposed to carry with

them, the entire system of the stars. The pole

which is elevated above the horizon is the north

b 2
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pole. The opposite pole, which we imagine to be

depressed beneath the horizon, is the south pole.

Already several ^interesting questions present
themselves to be resolved. What becomes dur-

ing the day "of the stars which have been seen

in the night ? From whence do those come which

begin to appear ? and where are those gone which

have disappeared ? An attentive examination of

the phenomena furnishes very simple answers to

these questions. In the morning the light of the

stars grows fainter, according as the dawn ad-

vances
;

in the evening they become more bril-

liant, as the twilight diminishes
;

it is not there-

fore because they cease to shine, but because they
are effaced by the more vivid light of the twilight

and of the sun, that we cease to perceive them.

The fortunate discovery of the telescope has

furnished us with the means of verifying this ex-

planation, for the stars seen through this instru-

ment are visible, even when the sun is at its

greatest elevation above the horizon. Those

stars, which from their proximity to the pole, ne-

ver reach the horizon, are perpetually visible.

With respect to the stars which rise in the east

and set in the west, it is natural to suppose that

they complete under the horizon the circle, part

of which appeared to be described above it. This

truth become more obvious as we advance to-

wards the north, more and more of the stars si-

tuated in this part of the world are extricated

from beneath the horizon, till at length these

stars cease to disappear at all, while the stars
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which are situated towards the south become

entirely invisible. When we advance towards the

south pole, the contrary is observed to be the

case
; stars which always continued above the

horizon, commence to rise and set alternately*,

and new stars previously invisible begin to appear*
It appears from these phenomena that the surface

of the earth is not what it appears to be, namely,
a plane on which the celestial vault is supported.
This is an illusion which the first observers rec-

tified very soon, by considerations similar to the

preceding ; they observed that the heavens sur-

round the earth on all sides, and that the stars

shine perpetually, describing every day their re-

spective circles. We shall have frequent occa-

sion to observe in the sequel, cases in which si-

milar illusions have been dissipated, and in which
even the real objects have been recognized in

their erroneous appearances, by means of astro-

nomy.
In order to form an accurate conception of the

motion of the stars, we conceive an axis to pass

through the centre of the earth, and the tAVO poles
of the world, on which the celestial sphere re-

volves. The great circle perpendicular to this

axis is called the Equator, the lesser circles which
the stars describe parallel to the equator, in con-

sequence of their diurnal motion, are termed pa-
rallel circles. The zenith of a spectator, is that

point of the heavens to which his vertical is di-

rected. The nadir is the point diametrically op-

posite. The meridian (a) is the great circle
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which passes through the zenith and the poles ; it

divides into two equal parts the arcs described by
the stars above the horizon, so that when they
are on this circle, they are at their greatest or

least altitude. Finally, the horizon is the great

circle perpendicular to the vertical, or parallel to

the surface of stagnant water at the place of the

observer.

The elevation of the pole being an arithmetic

mean between the greatest and least altitudes of

the stars which never set, an easy method is sug-

gested of determining the height of the pole. As

we advance directly towards the pole, it is ob-

served to be elevated very nearly in proportion (b)

to the space passed over ;
hence it is inferred that

the surface of the earth is convex, its figure dif-

fering little from that of a sphere. The curva-

ture of the terrestrial globe is very sensible on

the surface of the seas ; the sailor in his approach
towards the shore perceives first the most ele-

vated points, and afterwards the lower parts,

which were concealed from his view by the con-

vexity of the earth. It is also in consequence of

this curvature, that the sun at its rising gilds the

summits of the mountains before he illuminates

the planes.



CHAP. II.

Of the sun, and of its motions.

All the heavenly bodies participate in the di-

urnal motion of the celestial sphere, but several

have proper motions of their own, which it is in-

teresting to follow, because it is by means of

these alone, that we can hope to arrive at the

knowledge of the true system of the world. As

in measuring the distance of an object, we ob-

serve it from two different positions, so in order

to discover the mechanism of nature, we must

consider her under different points of view, and

observe the development of her laws, in the

changes of appearance which she presents to us.

Upon the earth, we vary the phenomena by expe-^

riments, in the heavens we carefully determine
J

all those which the celestial motions present to /

us. By thus interrogating nature, and subjecting /

her answers to analysis/ we can by a train of in- f

ductions judiciously managed, arrive at the gene- \

ral phenomena, from whence these particular \

facts arise. It is to discover these grand pheno- \

mena, and to reduce them to the least possible

number, that all our efforts should be directed ;
for

the first causes and intimate nature of beings will

be for ever unknown.
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The sun has a proper motion, of which the di-

rection is contrary to the diurnal motion. This

motion is recognised by the appearances which

the heavens present during the nights, which ap-

pearances change and are renewed with the sea-

sons. The stars situated in the path of the sun,

and which set a little after him, are very soon lost

in his light, and at length reappear before his

rising ;
this star therpfore advances towards them,

from west to east. It is thus that for a long time

his proper motion was traced, (which at present

can be determined with great precision), by ob-

serving every day, the meridian altitude of the

sun, and the interval of time which elapses be-

tween his passage, and that of the stars over the

meridian. By means of these observations, we

obtain the proper motions of the sun, in the di-

rection of the meridian, and also in the direction

of the parallels ;
the resultant of these motions is

the true motion of this star about the earth. In

this manner, it has been found that this star

moves in an orbit, which is called the ecliptic,

and which at the commencement of 1801, was

inclined to the equator at an angle of 26°,073l5.

The variety of seasons is caused by the incli-

nation of the ecliptic to the equator. When the

sun in his annual motion arrives at the equator,

he describes very nearly in his diurnal motion

this great oircle, which being then divided into

two equal parts by all the horizons, the day is

equal to the night, in every part of the earth.

The points of the intersection of the equator and
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the ecliptic, are termed the equinoxes, on account

of this equality. In proportion as the sun, after

leaving the equinox of spring, advances in his or-

bit, his meridian altitudes above our horizon in-

crease, the visible arc of the parallels, which it

describes every day, continually increases, and

this augments the length of the days, till the sun

has attained his greatest altitude. At this epoch,

the days are the longest in the year, and because

the variations of the meridian height of the sun,

are insensible, near the maximum, the sun (con-

sidering only the altitude on which the duration

of the day depends) appears stationary, for which

reason, (c) this point of the maximum height has

been termed the summer solstice. The parallel

described by the sun on that day, is called the

summer tropic. This star then descends towards

the equator, which it traverses again, at the au-

tumnal equinox, from thence it arrives at its

minimum of altitude, or at the winter solstice.

The parallel then described by the sun is the

winter tropic, and the corresponding day is the

shortest of the year ; having attained this term,

the sun again ascends and returns to the vernal

equinox, to recommence the same route.

Such is the constant regular progress of the

sun and of the seasons. Spring, is the interval

comprised between the vernal equinox, and the

summer solstice ; summer is the interval from this

solstice to the autumnal equinox ;
and the inter-

val from the autumnal equinox to the winter sols-

tice, constitutes the autumn
j finally, winter is
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the interval of time from the winter solstice to

the vernal equinox.

The presence of the sun above the horizon being

I the cause of heat, it might be supposed that the

\ temperature should be the same in summer as in

\ spring, and in the winter and autumn. But the

temperature is not the instantaneous effect of the

presence of the sun, it is rather the result of its long

continued action. It does not produce its maximum
\—.of effect, for each day, till some time after the

\ greatest altitude of this star above the horizon, nor

\ does it attain its maximum effect for the year, till

X^the greatest solstitial altitude is passed.

The different climates exhibit remarkable va-

rieties, which we will now examine from the

equator to the poles. At the equator, the hori-

zon divides all the parallels into two equal parts j

the day is therefore constantly equal to the night.

In the equinoxes the sun, at mid day, passes

through the zenith. The meridian altitudes of

this star, at the solstices, are least, and equal to

the complement of the inclination of the ecliptic

to the equator. The solar shadows are then di-

rectly opposite, which is never the case in our

climates, where they are always at mid-day di-

rected towards the north.

At the equator, therefore, properly speaking,
there are two summers andtwo winters, everyyear.
This is also the case in all places, where the height
of the pole is less than the obliquity ofthe ecliptic.

Beyond this limit, as the sun never can be in the

zenith, there is only one summer and one winter in
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each year ;
the duration of the longest day increas-

es and that of the shortest day diminishes as we ap-

proach the pole, and at the parallel the distance of

the zenith of which from the pole, is equal to the

obliquity of the ecliptic, the sun never (d) sets on

the day of the summer solstice, nor rises on the

day of the winter solstice. Still nearer to the pole,

the time of his presence, and of its absence, exceeds

several days, and even months. Finally, under the

pole, the horizon coinciding with the equator itself,

the sun is always above the horizon when on the

same side of the equator as the pole j it is con-

stantly below the horizon, when it is at the other

side of the equator ;
so that there is then but one

day and one night throughout the year, (e)

Let us trace more particularly the path of

the sun. It is at once apparent that the inter-

vals which separate the equinoxes and the sol-

stices are unequal, that from the vernal to the

autumnal equinox, is about eight days longer
than the interval between the autumnal and ver-

nal equinoxes; the motion is consequently not uni-

form : by means of accurate and repeated obser-

vations, it has been ascertained that the motion

is most rapid in a point of the solar orbit,

which is situated near the winter solstice, and
that it is slowest in the opposite point ofthe orbit

near to the summer solstice. The sun describes

in a day 1°,1327 in the first point, and only

1°,0591 in the second. Thus during the course

of the year its motion varies from the greatest to
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the least by three hundred and thirty-six ten

thousandths of its mean value. (/)
This variation produces, by its accumulation,

a very sensible inequality in the motion of the

sun. In order to determine its law, and in gene-
ral to obtain the laws of all the periodical inequa-

lities, it should be remarked that these inequalities

maybeproperly represented by the sines and cosines

of angles which become the same after the com-

pletion of every circumference. (<?) If therefore

all the inequalities of the celestial motions are

expressed in this manner, the only difficulty con-

sists in separating them from each other, and in

determining the angles on which they depend.
As the inequality which we are at present con-

sidering, performs the period of its changes in a

revolution of the sun, it is natural to make it de-

pend on the motion of the sun and on its multi-

ples. In this manner, it has been found that it

is expressed by means of a series of sines depend-

ing on this motion ;
it is reduced very nearly to

two terms, of which the first is proportional to the

sine of the mean angular distance of the sun,

from the point in its orbit, where his velocity is

greatest, and of which the second is about ninety

five times less than the first, and proportional to

the sine of double of this distance.

It is probable that the distance of the sun from

the earth varies with its angular velocity, and this

has been proved by the measures of its apparent
diameter. This diameter increases and diminishes
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according to the same law as the velocity, but in a

ratio only half as great. When the velocity is great-

est, the diameter is 6035,"8 and^it is observed to be

only 5836,"3, when this velocity is the least

therefore its mean magnitude is about 5936/'0.

The distance of the sun from the earth being

reciprocally proportional to his apparent diame-

ter, its increase follows the same law as the di_

minution of this diameter. The point of the or-

bit in which the sun is nearest to the earth, is

termed the perigee, and the opposite point, in

which the sun is most remote, is called the apogee.

It is in the first of these points, that the apparent
diameter and also the velocity of the sun are

greatest ;
in the second point, the apparent di-

ameter and velocity are at their minimum.

It would be sufficient, in order to explain the

diminution of the sun's apparent motion, to in-

crease his distance from the earth
; but if the va-

riation of the solar motion arose from this cause

only, and if the real velocity of the sun was con-

stant, its apparent velocity would diminish in the

same ratio as the apparent diameter. It diminish-

es in a ratio twice as great, therefore there is an

actual retardation in the motion of this star, when
it recedes from the earth. From the effect of this

retardation, combinedwiththe increase of distance,

its angular motion diminishes as the square of the

distance increases, so that its product by this square
is very nearly constant. All the measures of the ap-

parent diameter of the sun, compared with the ob-

servations of his daily motion, confirm this result.
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Let us conceive a right line joining the

centres of the sun and earth, which we will

call the radius vector of the sun, it is easy
to perceive that the small sector, or area de-

scribed in a day by this radius about the earth, is

proportional to the square of this radius into the

diurnal motion (h) of the sun. This area is

therefore constant, and the entire area described

by the radius vector, reckoning from a given

point, increases as the number of days, elapsed

since the epoch at which the sun was on this

radius. Therefore the areas described by its ra-

dius vector, are proportional to the times. Tins

simple relation between the motion of the sun,

and its distance from the focus of this motion,

must be admitted as a fundamental law in its

theory, at least, until observations compel us to

modify it.

If from the preceding data, the position and

length of the radius vector of the solar orbit be set

down every day, and a curve be supposed to pass

through the extremities of all those radii, it will

appear that this curve will be somewhat elongated

in the direction of the right line, which, passing

through the centre of the earth, joins the points

of the greatest and least distance of the sun. The
resemblance of this curve with the ellipse, having

suggested the notion of comparing them together,

their identity was ascertained ;
from which it has

been inferred, that the solar orbit is an ellipse, of
tvhich the centre of the earth occupies one of the

foci. (0
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The ellipse is one of those curves so celebrated

both in antient and modern geometry, which be-

ing formed by the intersection of a plane with the

surface of a cone, have been therefore termed

conic sections. The extremities of a thread which

is stretched on a plane, being fixed on two im-

movable points, called foci, any point which slides

along this thread describes the ellipse ;
it is evi-

dently elongated in the direction of the right line

which joins the foci, and which being extended

on each side to meet the curve, forms the greater

axis, of which the length is equal to that of the

thread. The lesser axis is the right line drawn

through the centre perpendicularly to the greater

axis, and extended on both sides to meet the

curve : the distance of the centre from one of the

foci is the excentricity of the ellipse. When the

two foci are united in the same point, the ellipse

becomes a circle ; by increasing their distance the

ellipse gradually lengthens, and if the mutual

distance becomes infinite, the distance of the fo-

cus from the nearest summit of the curve, re-

mains finite, and the ellipse becomes a para-
bola.

The solar ellipse differs but little from a circle
j

for the excess of the greatest above the least dis-

tance of the sun from the earth is equal to the

hundred and sixty ten thousandth part of this dis-

tance. This excess is the excentricity itself, in

which observations indicate a very slow diminu-

tion, and hardly perceptible in a century.

In order to have a just conception of the elliptic



16 OF THE SUN, AND OF ITS MOTIONS.

motion of the sun, let us conceive a point to

move uniformly on the circumference of a circle,

of which the centre coincides with the centre of

the earth, the radius being equal to the perigeon
distance of the sun ; suppose moreover that this

point and the sun set off together from the pe-

rigee, and that the angular motion of the point
is equal to the mean angular motion of the sun,

while the radius vector of this point revolves uni-

formly about the earth, the radius vector of the

sun moves unequally, always constituting with

the distance of the perigee, and the arcs of the

ellipse, sectors proportional to the times. At

first, it precedes the radius vector of the point,

and makes with it an angle, which after having
increased to a certain limit

(Jt), diminishes, and at

length vanishes, when the sun arrives at his

apogee. The two radii will then coincide with

the greater axis. In the second half of the ellipse,

the radius vector of the point precedes in its

turn, that of the sun, and makes with it angles

exactly equal to those, which it made in the first

half, at the same distance from the perigee, at

which point it coincides again with the radius

vector of the sun, and with the greater axis of the

ellipse.
The angle by which the radius vector of

the sun precedes that of the point, is termed

the equation of the centre. Its maximum was

2°,13807 at the commencement of the present

century, i. e. at the midnight, on which the first

of January 1801 commenced. It diminishes by a

quantity equal to about 5$' for every century.
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From the duration of the sun's revolution in its

orbit, the angular motion of the point about the

earth may be inferred. The angular motion of

the sun will be obtained by adding to this motion,
the equation of the centre. The investigation of

this equation is a very interesting problem of

analysis, which can only be resolved by ap-

proximation ; but the small excentricity of the

solar orbit leads to very converging series, which

are easily reduced to the form of tables.

The greater axis of the solar ellipse is not fixed

in the heavens
;

it has relatively to the fixed stars

an annual motion of about 36," in the same di-

rection as that of the sun.

The solar orbit approaches by insensible de-

grees to the equator ; the secular diminution of

its obliquity, to the plane of this great circle, may
be estimated at about 148".

The elliptic motion of the sun does not exactly

represent modern observations
;
their great pre-

cision has enabled us to perceive small inequa-

lities, of which it would have been impossible to

have developed the laws by observations alone.

The investigation of these inequalities appertains
to that branch of astronomy, which redescends

from causes to the phenomena, and which will

constitute the subject of the fourth book.

The distance of the sun from the earth, has at

every period interested astronomers. Observers

have (7) endeavoured to determine it, by all the

means astronomy has successively furnished them
with. The most natural and simple is that which
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Geometers employ in measuring the distance of

terrestrial objects. At the two extremities of a

known base, the angles, which the visual rays of

an object make with it, are observed, and by de-

ducting their sum from two right angles, the

angle will be obtained which these rays form at

the point where they meet ; this angle is termed

the parallax of the object, the distance of which

from the extremities of the base is easily obtain-

ed. In applying this method to the sun, the most

extensive base which can be taken on the surface

of the earth should be selected. Suppose two

observers situated under the same meredian, and

observing at noon, the distance of the centre of

of the sun from the north pole ; the difference

of these two observed distances will be the

angle, which the, line joining the observers

would subtend at this centre ; the differences of

the elevations of the pole gives this line in parts
of the terrestrial radius

; it will therefore be easy
to infer from thence the angle under which the

semidiameter of the earth would appear at the

centre of the sun. This angle is the horizontal

parallax of the sun
; but it is too small to be ac-

curately determined by this method, which only
enables us to judge that the distance of this star

is at least nine thousand diameters of the earth.

In the sequel, it will be seen, that the discoveries

in astronomy furnish other methods much more
accurate for determining the parallax, which we
now know to be about 27", very nearly, at its
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mean distance from the earth ; hence it follows

that this distance is about 23984 terrestrial radii.

Black spots are observed on the surface of the

sun, of an irregular and variable form. Sometimes

they are very numerous, and of considerable ex-

tent ; some have been observed, of which the

magnitude was equal to four or five times that of

the earth.
* At other times, though rarely, the

surface of the sun has appeared pure, and with-

out spots for several successive years. Frequent-

ly the solar spots are enveloped by penumbras,
which are themselves surrounded by a more bril-

liant light than that of the rest of the sun, in the

middle of which these spots are observed to form

and to disappear. The nature of these spots is

yet unknown, however they have made us ac-

quainted with a remarkable phenomenon, namely,
the rotation of the sun. Amidst all the varia-

tions which they undergo in their position and

magnitude, we can discover regular motions

precisely the same as those of corresponding

points of the surface of the sun, if we suppose
it to have a motion of rotation in the direction of

its motion round the earth, on an axis almost

perpendicular to the ecliptic. From a continu-

ed observation of these spots, it has been infer-

red that the duration of an entire revolution of

the sun is about twenty-five days and a half, and

that the solar equator is inclined at an angle of

eight degrees and one third to the plane of the

ecliptic.

The extensive spots of the sun are almost al-

c 2
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ways comprised in a zone of its surface, the

breadth of which, measured on the solar meridian,

does not extend beyond thirty-four degrees on

each side of the equator ; however, spots have

been observed which were forty-four degrees from

this equator. There has been observed, particu-

larly about the vernal equinox, a faint light which

is visible before the rising and after the setting of

the sun, to which has been given the name of

zodiacal light. Its colour is white, and its appa-
rent figure that of a spindle, the base of which

rests on the solar equator ;
such as would be the

appearance of an ellipsoid of revolution extremely

flattened, the centre and plane of equator coin-

ciding with those of the sun. The length of this

zodiacal light appears sometimes to subtend an

angle of more than one hundred degrees. The
fluid which reflects this light to us, must be ex-

tremely rare, since the stars are sometimes visi-

ble through it. The most received opinion re-

specting its nature is, that this fluid is the atmos-

phere itself of the sun
;
but this atmosphere cer-

tainly does not extend to so great a distance.—At

the conclusion of this work we will suggest what

appears to us to be the cause of this light, which

is unknown, and has hitherto baffled our en-

quiries.



CHAP. III.

Of Time, . and of its measure.

- Time is, relatively to us, the impression which
a series of events, of which we are assured that

the existence has been successive, leaves in the

memory. Motion is a proper measure of time
;

for since a body cannot be in several places at the

same time, when it moves from one place to ano-

ther, it must pass successively through all the in-

termediate points. If it is actuated by the same

force at every point of the line, which it describes,

its motion is uniform, and the several portions of

this line will measure the time employed to des-

cribe them. When a pendulum, at the termina-

tion of each oscillation, is in precisely the same

circumstances as at the commencement of the

motion, the durations of these oscillations are the

same, and the time may be measured by their

number. We may also employ for this measure-

ment, the revolutions of the celestial sphere, in

which the motions appear to be perfectly uniform ;

and mankind have universally agreed to make
use of the motion of the sun for this purpose, the

returns of which to the meridian, and to the same

equinox or the same solstice, constitute the day
and the year.
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In civil life, the day is the interval of time

which lapses from the rising to the setting of the

sun : the night is the time, during which the

sun remains below the horizon. The astronomi-

cal day comprises the entire duration of the diur-

nal revolution ;
it is the interval of time between

two successive noons or midnights. It is greater

than the duration of a revolution of the heavens,

which constitutes the sidereal day ;
for if the sun

and a star pass the meridian at the same instant,

on the following day the sun will pass later, in

consequence of its proper motion, by which it ad-

vances from west to east, and in the interval of a

year it will j>ass the meridian once less than the

star. It is found by assuming the mean astrono-

mical day equal to unity, that the sidereal clay is

0,99726957.

The astronomical days are not equal -,
their dif-

ference arises from two causes, namely, the in.

equality of the proper motion of the sun, and the

obliquity of the ecliptic. The effect of the first

cause is evident
; thus, at the summer solstice,

near to which the motion of the sun is slowest,

the astronomical day approaches more to the si-

dereal day than at the winter solstice, when the

motion is most rapid.

In order to conceive the effect of the second

cause, it should be observed that the excess of the

astronomical over the sidereal day arises solely

from the proper motion of the sun reduced to the

equator. If we conceive two great circles to pass

through the poles of the world, and through the
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extremities ofthe small arc which the sun describes

on the ecliptic each day, the arc of the equator,
which they intercept, is the daily motion of the sun

referred to the equator, and the time which this

arc takes to pass over the meridian, is the excess

of the astronomical over the sidereal day ; but it

is evident that in the equinoxes, the arc of the

equator is less than the corresponding arc of the

ecliptic, in the ratio of the cosine of the obliquity
of the ecliptic to radius

;
in the solstices it is

greater in the ratio of radius to the cosine (m) of

the same obliquity ; therefore the astronomical

day is diminished in the first case, and increased

in the second.

To obtain a mean day, independent of these

causes
;
we imagine a second sun, which moving

uniformly in the ecliptic, passes always at the

same instant as the true sun the greater axis of

the solar orbit
;

this will cause the inequality of

the proper motion of the sun to disappear. The
effect arising from the obliquity is then made
to disappear, by imagining a third sun to pass

through the equinoxes at the same moment as

the second sun, and to move on the equator in

such a manner, that the angular distances . of

these two suns from the vernal equinox, may be

constantly equal to each other. The interval of

time between two consecutive returns of this third

sun to the meridian, consitutes the mean astro-

nomical day. Mean time is measured by the

mmber of these returns, and the true time is
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measured by the number of returns of the true

sun to the meridian. The arc of the equator, in-

tercepted between two meridians drawn through

the centres of the true sun, and of the third sun,

converted into time, in the proportion of the

entire circumference to one day, is what is term-

ed the (n) equation of time.

The day has been divided into twenty-four

hours, and its origin has been fixed at midnight.

The hour is divided into sixty minutes, the mi-

nutes into sixty seconds, the second into sixty

thirds, &c. But the division of the day into

ten hours, of the hours into one hundred minutes,

of the minutes into one hundred seconds, will be

adopted in this work, as being much more con-

venient for astronomical purposes.
The second sun, which we have imagined, de-

termines by its returns to the equinoxes and the

solstices, the mean equinoxes and solstices. The
duration of its returns to the same equinox, or

the same solstice, forms the tropical year, of which

the actual length is about 36.3
d
242<26419. Obser-

vation shews us that the sun employs a longer
time to return to the same fixed stars. The
sidereal year is the interval between two of

these consecutive returns
;

it exceeds a tropical

year by about 0,'014119. Therefore the equinoxes
have a retrograde motion on the ecliptic, or con-

trary to the proper motion of the sun, in conse-

quence of which they describe every year, an arc

equal to the mean motion of this star, in the in-

terval of about 0',014119, which is very nearly
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equal to 154",63. This motion is not exactly the

same every century, on which account, the du-

ration of the tropical year is subject to a small

inequality ;
it is now about 13" shorter than in

the time of Hipparchus.
It is natural that the year should be made to

commence at one of the equinoxes or solstices
;

but if the origin of the year was placed at the

summer solstice, or at the autumnal equinox, the

same operations and labours would be appropri-
ated to two different years. A like inconvenience

would arise if the day was supposed to commence
at noon, according to the custom of the old as-

tronomers. It seems therefore most natural, that

the year should be made to commence at the

vernal equinox, at which period nature begins to

revive ;
but it is equally natural to fix its com-

mencement at the winter solstice, when, accord-

ing to the received opinion of all antiquity, the

sun begins to revive, and which is the middle

of the longest night in the year under the poles.

If the length of the civil year was constantly

365 days, its commencement would always (o)

anticipate that of the true tropical year, and it

would pass through the different seasons with a

retrograde motion in a period of about 1508 years.

But this year (which was formerly in use in

Egypt) would deprive the calendar of the advan-

tage of attaching the months and festivals to the

same seasons, and of rendering them useful

epochs for the purposes of agriculture. This in-

estimable advantage would be secured, by con-
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sidering the origin of the year as an astronomical

phenomenon, which should be fixed by compu-
tation to the midnight which immediately pre-
cedes the equinox or the solstice : this has been

done in France at the end of the last century.

But then the bissextile years being intercalated ac-

cording to a very complicated law, it would be

difficult to resolve any given number of years into

days, which would cause great confusion in his-

tory and chronology. Besides the origin of the

year, which is always required to be known in ad-

vance, would be uncertain and arbitrary when

it approached midnight, by a quantity less than

the error (p) of the solar tables. Finally, the or-

der of the bissextiles would be different for dif-

ferent meridians, which would be an obstacle to

the adoption of the same calendar by all nations
;

indeed, when it is considered how pertinacious

different nations are in reckoning geographical

longitudes from their respective principal obser-

vatories, it cannot be supposed that they would

all concur in making the commencement of the

year to depend on the same meridian. We are

therefore compelled to abandon the method point-

ed out by nature, and to recur to a mode of in-

tercalating, which, though artificial, is regular

and convenient. The simplest of all is that which

Julius Caesar introduced into the Roman ca-

lendar, and which consists in intercalating (p) one

bissextile every four years. But if the short du-

ration of life was sufficient to make the origin of

the Egyptian years to deviate considerably from
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the solstice or the equinox, it only required a small

number of centuries to produce the same dis-

placement in the origin of the Julian year. This

renders a more complicated intercalation indis-

pensable. In the eleventh century the Persians

(q) adopted one remarkable for its accuracy. It

consists in rendering the fourth year bissextile se-

ven times successively, and to defer this change
on the eighth time to the fifth year. This

supposes that the tropical year is 365-^, which

is greater than the year as determined by obser-

vations by 0,0001823. So that a great number
of centuries is requisite to produce a sensible dis-

placement in the origin of the civil year. The
mode of intercalating adopted in the Gregorian
calendar is less exact, but it furnishes greater

facilities in reducing the years and centuries into

days, which is one of the principal objects of the

calendar. It consists in intercalating a bissextile

every fourth year, the bissextile at the end of each

century being suppressed, to reestablish it at the

end of the fourth. The length of the year which

this intercalation supposes is about 365, $fe

days, or about 365,242500, which is greater than

the true length by about 0,
d0002185. But if, ac-

cording to the analogy of this mode of interca-

lating, a bissextile is also suppressed every four

thousand years, which would reduce the number
of bissextiles in this interval to lj69, the length
of the year would be 365*.^-^ -,

or 365d
,2422500,

which approaches so near to 365,2422419, which
is the length as determined by observation, that the
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difference may be rejected, particularly as there

exists some slight uncertainty about the true

length of the year, which besides is not rigorously

constant.

The division of the year into twelve months is

very ancient, and almost universal. Some nations

have supposed that all the months are equal, and

each to consist of thirty days, and they have com-

pleted the year by the addition of an adequate
number of complementary days. Among other

nations the entire year is comprized in the in-

terval of twelve months, which are supposed to be

unequal. The system of months, each consisting

of thirty days, leads naturally to their subdivision

into three decads. This period enables us to find

out with great facility how much of the month

has lapsed, but at the end of the year the comple-

mentary days would derange the order of things

appropriated to the different days of the decad,

which must necessarily embarras the measures of

governments. This inconvenience would be ob-

viated by making use of a short period, equally in-

dependent of months and of years, such as the

week, which from the most remote antiquity in

which its origin is confounded, has uninterruptedly

pervaded all nations, always constituting a part

of the successive calenders of different people. It

is very remarkable that it is identically the same

over the entire earth, as well relatively to the de-

nomination (r) of its days, which has been regu-

lated by the most ancient system of astronomy, as

also with respect to their correspondence to the
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same physical instant. This is perhaps the most

ancient and most incontrovertable monument of

human attainments ; it seems to indicate acom-

mon origin from which they have been derived,

but the astronomical system on which they were

founded is a proof of their imperfection at this

commencement.

An interval of one hundred years constitutes a

century, which is the longest period ever employ-
ed in the measurement of time

; for the interval

which separates us from the most ancient known
events does not require a longer period.



CHAP. IV.

Of the motions of the moon, its phases, and eclipses.

After the sun, the moon, of all the heavenly

bodies, is that which most interests us
;
its phases

furnish a measure of time so remarkable, that it

has been primitively made use of by all people.

The moon, like the sun, has a proper motion from

west to east
;
the duration of its sidereal revolu-

tion was 27
d
,321 661423, at the commencement

of this century : it is not always the same, and

the comparison of ancient with modern observa-

tions evinces incontrovertably an acceleration in

the mean motion of the moon. This acceleration,

though hardly sensible since the most ancient

eclipse on record, will be developed in the pro-

gress of time. But will it go on always increasing,

or will it cease to increase, and at length be

changed into a retardation ? This cannot be de-

termined by observations, except after a very

great number of ages. Fortunately, the discovery

of its cause has anticipated them, and shewn us

that it is periodical. At the commencement of

this century, the mean angular distance of the

moon from the vernal equinox, and reckoned

from this equinox in the direction of the proper

motion of this star, was 124,01321.
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The moon moves in an elliptic orbit, of which

the centre of the earth occupies one of the foci.

Its radius vector traces about this point areas

which are very nearly proportional to the times.

The mean distance of this star from the earth be-

ing assumed equal to unity, the excentricity of

its ellipse is 0,0548442, which gives the greatest

equation of the centre equal (s) to 6,9854 : it ap-

pears to be invariable. The lunar perigee has a

direct motion, that is to say, in the direction of

the proper motion of the sun, the duration, of its

sidereal revolution was, at the commencement of

this century, 3232*, 575343, and its mean angular
distance from the vernal equinox was 295°,68037.

Its motion is not uniform
;

it is retarded when
that of the moon is accelerated.

The laws of the elliptic motion are very far

from representing the observations of the moon j

it is subject to a great number of inequalities,

which have an evident connection with the posi-

tion of the sun. We shall indicate the three

principal.

The most considerable, and that which was

irst recognised is, what has been termed the

wection. This inequality, which at its maximum
imounts to l°,4907, is proportional to the sine of

louble the distance of the moon from the sun,

ninus the distance of the moon from its perigee,
n the oppositions and conjunctions (t) of the

:ooon with the sun, it is confounded with the

equation of the centre, which it constantly di-

) ninishes. For this reason the ancient observers,
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who only determined the elements of the lunar

theory, in order to be able to predict the pheno-
mena of the eclipses, found the equation of the

centre of the moon less than the true equa-

tion, by the entire quantity of the evection.

Another great inequality is also observed in

the lunar motions, which disappears in the op-

positions and conjunctions of the moon, and also

in those points where these two stars are distant

from each other by a quarter of the circumference.

It arrives at its maximum, which is 0°,66ll, when
their mutual distance is fifty degrees : hence it

has been inferred that it is proportional to double

of the angular distance of the moon from the sun.

This inequality is termed (t) the variation : as it

disappears in the eclipses, it could not have been

recognized by the observation of these pheno-
mena.

Finally, the motion of the moon is accelerated,

when that of the sun is retarded, and conversely ;

hence arises an inequality which is denominated

the annual equation, the law of which is precisely

the same as that of the equation of the centre of

the sun, only affected with a contrary sign. This

inequality, which at its maximum (u) amounts to

0°,2074, is confounded with the equation of the

centre of the sun in the eclipses. In the compu-
tation of the moment at which these phenomena
occur, it is indifferent whether these two equa-

tions are considered separately, or whether the

annual equation of the lunar theory is suppressed,

in order to increase the equation of the centre of
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the sun. This is the reason why the ancient as-

tronomers assigned too great an excentricity to

he orbit of the sun
;
while they assigned too

-mall a one to the lunar orbit, in consequence of

'he evectioiu

This orbit is inclined to the ecliptic at an angle
of 5°,71&5: its points of intersection with the

(
ecliptic, which are called the nodes, are not fixed

in the heavens
; they have a retrograde motion, or

contrary to that of the sun
;

this motion is easily

recognized by the succession of stars which the

noon meets with when it traverses the ecliptic.
r
^he asci.nding node is that, in which the moon
ascends above the ecliptic towards the north pole,

and the descending node is that in which it descends

below the ecliptic towards the south pole. The
duration of a sidereal revolution of the nodes

was at the commencement of this century

6795
d
,39l08, and the mean (v) distance of the

ascending node from the vernal equinox, was

1 >°,46ll7, but the motion of the nodes is retard-

e I from one century to another.

It is subject to several inequalities, of which the

g eatest is proportional to the sine of double the

d stance of the moon from the sun, and amounts

ai its maximum to 1°8102. The inclination of

tl e orbit is likewise variable, its greatest inequa-
li y, which amounts to 0°,l6^7 at its maximum, is

pi oportional to the cosine of the same angle on

w rich the inequality of the motion of the nodes

d< pends ; however the mean inclination appears
to be constant in different centuries, notwith-

D
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standing the secular variations of the plane of the

ecliptic.

The lunar orbit, and generally the orbits of

the sun and of all the heavenly bodies, have no

more a real existence than the parobolas des-

cribed by projectiles at the surface of the earth.

In order to represent the motion of a body in

space, we conceive a line to pass through all the

successive positions of its centre
;
this line is its

orbit, of which the fixed or variable plane is that

which passes through two consecutive positions of

the body, and through the point about which it

is supposed to move.

Instead of considering the motion of a body in

this manner, we may in imagination project it on

a fixed plane, and determine its curve of projec-

tion and height above this plane. This method,

which is extremely simple, has been adopted by
astronomers in the tables of the celestial motions.

The apparent diameter (w) of the moon changes
in a manner analogous to the variations of the lu-

nar motion
;

it is 5438" at the greatest distance

of the moon from the earth, and about 6^07
/7 at

the least distance, [x)

The same methods which were insufficient to

determine the parallax of the sun, in consequence

of its extreme smallness, have assigned 10661" for

the mean parallax of the moon
; consequently at

same distance at which the moon appears under

an angle of 5823", the earth would subtend an

angle of 21332' ;
their diameters are therefore in

the ratio of these numbers, or in the ratio of
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three to eleven, very nearly ; and the volume of

the lunar globe is forty-nine times less than the

volume of the earth.

* The phases of the moon are one of the most

striking phenomena of the heavens. When it ex-

tricates itself in the evening from the rays of the

sun, it appears with a feeble crescent, which in-

creases according as it elongates itself from the

sun
;

and it becomes a perfect circle of light

when it is in opposition with this star. When it

afterwards approaches this star, its phases dimi-

nish in the same proportion as they had pre-

viously increased, until in the morning it is im-

mersed in the sunV rays. The lunar crescent be-

ing always turned towards the sun, evidently in-

dicates that it receives its light from that body,
and the law of the variation of its phases, which

increase nearly as the versed sine of the angular
distance of the moon [y) from the sun, proves that

it is spherical.

The recurrence of the phases depends on the

excess of the motion of the moon above that of

he sun, which excess (V) has been termed the

synodic motion of the moon. The duration of

he synodic revolution of this star, or the pe-

iod of its mean conjunctions, is now about

?9d,5305887l6 : it is to the tropical year very

nearly in the ratio of 19 to 23.5, that is to say,

lineteen solar years are equivalent to about two

hundred and thirty-five lunar months.

The syrygies are the points of the orbit in

^ diich the moon is in opposition or conjunction
D 2
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with the sun. In the first case the moon is said

to he new, it is called full moon in the second.

The quadratures are those points in which the

moon is elongated from the sun one hundred or

three hundred degrees, reckoning in the direction

of its proper motion.

In those points, which are called the first and

second quarters of the moon, we see the half of

its illuminated hemisphere ; strictly speaking, we

see a little more
;
for when the exact half is pre-

sented to {a) us, the angular distance of the moon
from the sun is a little less than one hundred de-

grees. At this instant the line which separates the

illuminated from the darkened hemisphere, ap-

pears to he a right line, and the line drawn from

the observer to the centre of the moon is perpen-

dicular to the line which joins the centres of the

sun and moon. Therefore in the triangle formed

by the lines which join these centres and the eye
of the observer, the angle at the moon is a right

angle, and the angle at the observer is determin-

ed by observation, consequently the distance of

the earth from the sun may be determined in

parts of the distance of the earth from the moon.

The difficulty of determining, with precision, the

instant when the half of the disk of the moon is

observed to be illuminated by the sun, renders this

method not rigorously exact ;
we are indebted to it

nevertheless, for the first just notions that have

been formed (ti) concerning the immense magni-
tude of the sun, and its great distance from the

earth.
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The explanation of the phases of the moon is

connected with that of the eclipses, which, in

times of ignorance, have been an object of terror

to men, and of their curiosity in all ages. The
moon can only be eclipsed by an opaque body,

which deprives it of the light of the sun, and it is

evident that this body is the earth, because an

eclipse of the moon never happens except when it

is in opposition, or when the earth is between

this star and the sun. The terrestrial globe pro-

jects behind it a conical shadow, of which the

axis is on the right line, which joins the centres of

the sun and of the earth, and which terminates

at the point where the apparent diameter of these

two bodies, would be the same. Their diameters

seen from the centre of the moon in opposition,

and at its mean distance, are nearly 5920" for the

sun, and 21 322'' for the earth : therefore the

length of the cone of the earth's shadow is at least

three times and a half greater than the distance

of the moon from the earth, and its breadth at

the points where it is traversed by the moon is

about eight thirds of the diameter of the moon.

The moon would be therefore eclipsed every time

that it is in opposition to the sun, provided that

the plane of its orbit coincided with the ecliptic ;

but in (c) consequence of the mutual inclination

of these planes, the moon in its oppositions is

frequently elevated above, or depressed below the

cone of the earth's shadow, and it does not enter

into it except when it is near to its nodes. If

the entire disk of the moon is plunged in the
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shadow of the earth, the eclipse of the moon is

total ; it is said to he partial if only a portion of

this disk is obscured
;
and we may easily conceive

that a greater or less proximity of the moon to its

nodes, at the moment of opposition, may pro-

duce all the varieties (d) which are observed in

these eclipses.

Each point of the surface of the moon, before

it is eclipsed, loses successively the light of dif-

ferent parts of the sun's disk. Its brightness

therefore diminishes gradually, and at the mo-

ment when it penetrates into the earth's shadow

it is extinguished. The interval through which

this diminution has place is termed the penumbra,
the breadth of which is equal to the apparent di-

ameter of the sun, as seen from the centre of the

moon.

The mean duration of a revolution of the sun,

with respect to the node of the moon's orbit, is

about 346d
,6lQ851 ;

it is to the duration of a

synodic revolution of the moon, very nearly in

the ratio of 223 to 19- Therefore, after a period

of 223 lunar months, the sun and moon return

to the srme position relatively to the lunar orbit
;

the eclipses must consequently recur very nearly in

the same order, this circumstance suggests a simple

manner of predicting them, which was employed

by the ancient astronomers. But the inequalities in

the motions of the sun, and of the moon, ought
to produce very sensible differences ;

besides

the return of these two stars to the same position

with respect to the node, in the interval of 223
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months, is not rigorously exact
;
and the devia-

tions which result, change at length the order of

the eclipses which have been observed during
one of these periods.

The circular form of the earth's shadow in the

eclipses of the moon, indicated to the first astro-

nomers that the figure of the earth was very nearly

spherical ; we shall see hereafter that the most

exact method of determining the compression of

the earth, is furnished by the great perfection to

which the lunar theory has been brought.
It is solely in the conjunctions of the sun and

of the moon, when this star, by being interposed

between the sun and the earth, deprives us of the

light of the sun, that the eclipses of the sun can

be observed. Although the moon is incomparably
smaller than the sun, yet on account of its prox-

imity to the earth, its apparent diameter differs

little from that of the sun
; it even happens from

the variations of these diameters, that they sur-

pass each other alternately. Let us suppose the

centres of the sun and moon to be on the same

right line with the eye of the spectator, he will

observe the sun to be eclipsed ;
and if the appa-

rent diameter of the moon exceeds that of the

sun, the eclipse will be total
;
but if this diameter

be less, the observer will perceive a luminous

ring, formed by that part of the sun which ex-

tends beyond the disk of the moon, and then the

eclipse will be annular. If the centre of the

moon does not exist in the right line drawn from
the eye of the observer to the centre of the sun,
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the moon can only eclipse a part of the sun's

disk, and the eclipse will be partial. Thus the

changes of distance of the sun and moon from the

centre of the earth, combined with the greater or

less proximity of the moon to its nodes, at the

moment of its conjunctions, ought to produce very

sensible changes in the eclipses of the sun. To
these causes may be added the elevation of

the moon above the horizon, which changes
the magnitude of its apparent diameter, and

which, by the effect of the lunar parallax, may so

increase or diminish the apparent distance of the

centres of these two stars, that of two observers

at some distance from each other, the one may
see an eclipse of the sun which will not be visi-

ble to the other. In this respect the eclipses of

the sun differ from eclipses of the moon, which

are the same to all places on the earth where the

two stars are elevated above the horizon.

We often see the shadow of a cloud, borne along

by the winds, to pass rapidly over the hills and

planes, and to deprive the spectators in those

places of the view of the sun, which is visible to

those who are out of the reach of its influence :

this is an exact rejiresentation of a total eclipse of

the sun. We may perceive then about the disk

of the moon a crown of pale light, which is pro-

bably the solar atmosphere ; for its extent can-

not correspond to that of the moon, because it

has been ascertained, by eclipses of the fixed stars

and of the sun, that this last atmosphere is al-

most insensible..
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The atmosphere which may be supposed to

surround the moon, inflects the rays of light to-

wards the centre of this star
;
and if, as ought to

be the case, the atmospherical strata are rarer in

proportion as they are farther removed from the

surface, these rays, according as they penetrate far-

ther into it, ought to be more inflected, and should

consequently describe a curve which is concave

to its surface. Hence it appears that a spectator

on the surface of the moon, would not cease to

see the star till it was depressed below the hori-

zon by an angle equal to the horizontal refraction.

The rays which emanate from this star seen

at the horizon, after having touched the surface

of the moon, continue their route, describing a

curve similar to that which they described in ap-

proaching the surface. Thus, a second spectator

placed behind the moon, with respect to the star,

would still continue to perceive it in consequence
of the inflexion of its rays in the moon's atmos-

phere. The diameter of the moon is (e) not sen-

sibly increased by the refraction of its atmosphere ;

therefore a star appears to be eclipsed later than

if this atmosphere did not exist, and for the same

reason it ceases to be eclipsed sooner, so that the

effect of the atmosphere of the moon is principally

apparent in the duration of the eclipses of the

sun, and of the stars, by the moon. Precise and

numerous observations have enabled us with dif-

ficulty to suspect its existence
; and it has been

ascertained that at the surface of the moon the

horizontal refraction does not exceed four seconds.
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This refraction at the surface of the earth is at

least one thousand times greater ;
therefore the

lunar atmosphere, if any such exists, is of an ex-

treme rarity, greater even than that which can be

produced on the surface of the earth by the best

constructed air pumps. It may be inferred from this

thatno terrestrial animal could live or respire at the

surface of the moon, and that if the moon be in-

habited, it must be by animals of another species.

There is ground for supposing that all is solid at

its surface, for it appears in our powerful teles-

copes as an arid mass, on which some have

thought they could perceive the effects, and even

the explosions of volcanoes.

Bouguer has found by experiment that the

light of the full moon (/) is three hundred thou-

sand times more feeble than that of the sun
; this

is the reason why this light, collected in the focus

of the most powerful mirrors, produces no sensi-

ble effect on the thermometer.

We may distinguish, especially near to the

new moons, that part of the disk of the moon
which is not illuminated by the sun. This feeble

light, which has been termed the lumiere cendree,

is supposed to be the effect of the light which the

illuminated hemisphere of the earth reflects on

the (g) moon
; and that which confirms this sup-

position is the circumstance of this light being
most sensible near to the new moon when the

greatest part of this hemisphere is directed to-

wards this star. In fact, it is evident that the

earth exhibits to a spectator at the moon, phases
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similar to those which the moon presents to us,

but accompanied with a much stronger light, on
account of the greater extent of the earth's

surface.

The disk of the moon presents a great number
of invariable spots, which have been carefully ob-

served and described. They prove to us that this

star always presents to us the same hemisphere j

it revolves on its axis in a period equal to

that of its revolution about the earth ; for if a

spectator be placed at the centre of the moon,

supposed transparent, he will perceive the earth

and his visual ray to revolve about him
; and as

this ray transverses always the same point of the

moon's surface very nearly, it is evident that this

point must revolve in the same time, and in the

same direction as the earth about the spectator.

Nevertheless, a continued observation of the

moon's disk indicates slight varieties in its ap-

pearances j spots are observed to approach and

recede alternately from its borders ; those which

are very near to the borders, disappear and re-

appear successively, making periodical oscilla-

tions, which have been denominated the Vibration

ofthe moon. In order to form a precise idea of the

principal causes of this phenomenon, it should be

considered that the disk of the moon, as seen from

the centre of the earth, is terminated by the cir-

cumference of a circle of the lunar globe, which

is perpendicular to its radius (/t) vector, it is on

the plane of this circle that the hemisphere of the

moon, which is directed towards the earth, is pro-
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jected, the appearances of which are connected

with the motion of rotation of this star. If the

moon had no motion of rotation, its radius vector

would describe on its surface, in each lunar revo-

lution, the circumference of a great circle, all the

parts of which would he successively presented to

us. But at the same time that the radius vector

tends to describe this circumference, the lunar

globe, by revolving, brings always very nearly the

same point of its surface to this radius, and con-

sequently the same hemisphere to the earth. The

inequalities of the motion of the moon produce

slight changes in its appearances ;
for as its mo-

tion of rotation does not participate in a sensible

manner in these inequalities, it is variable rela-

tive to its radius vector, which thus meets its sur-

face in different points ; therefore the lunar globe

makes, relatively to this radius, oscillations which

correspond to the inequalities of its motion, and

which alternately deprive us of and exhibit to us

some parts of its surface.

Moreover, the lunar globe has another libra-

tion perpendicular to the preceding ;
in conse-

quence of which the regions (i) which are si-

tuated near to the poles of rotation alternately

disappear and reappear. In order to conceive

this phenomenon, let the axis of rotation, be

supposed perpendicular to the plane of the eclip-

tic. When the moon is in the ascending node,

its two poles will be in the southern and northern

extremities of the visible hemisphere. According
as it ascends above the ecliptic, the north pole
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and those parts which are contiguous to it, dis-

appear, whilst more and more of those parts

which border on the south pole are discovered,

until the moon having attained its greatest nor-

thern latitude, recommences to descend towards

the ecliptic. The preceding phenomena then

takes place in a reverse order ; and after that the

moon, having arrived at the descending node, is

depressed below the ecliptic, the north pole will

present precisely the same phenomena as the

south pole had previously exhibited.

The axis of rotation of the moon is not exactly

perpendicular to the plane of the ecliptic, and its

inclination produces appearances which may be

conceived hy supposing the moon to move on the

plane itself of the ecliptic, in such a manner that

its axis of rotation remains always parallel to it-

self. It is manifest that then each pole will be

visible during one half of the revolution of the

moon about the earth, and invisible during the

other half, so that those parts which are conti-

guous to the poles will be alternately perceived
and concealed.

Finally, the observer is not at the centre, but at

the surface of the earth ; it is the visible ray
drawn from his eye to the centre of the moon,
which determines the middle of the visible hemis-

phere ; and on account of the lunar parallax, it

is evident that this radius intersects the surface of

the moon in points which depend on the height
of the moon above the horizon.

All these causes produce only an apparent li-
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bration in the lunar globe ; they are purely optical,

and do not affect the real motion of rotation.

However, this motion may be subject to some

small inequalities, though they are not sufficiently

sensible to be discerned.

This is not the case with the variations of the

plane of the lunar equator. From an attentive

observation of the spots of the moon, Dominick

Casini inferred that the axis of this equator is

not exactly perpendicular to the plane of the

ecliptic, as had been supposed previous to his

time, and also that its successive positions are not

exactly parallel. This celebrated astronomer was

led to the following remarkable result, one of his

most splendid discoveries, and which contains the

entire astronomical theory of the real libration of

the moon. If through the centre of this star a

plane be conceived to pass perpendicular to

its axis of rotation, which plane coincides with

that of its equator ;
if moreover we conceive

a second plane to pass through the same centre

parallel to that of the ecliptic, and a third

plane, which is the plane of the lunar orbit, ab-

stracting from the periodic inequalities of its in-

clination and of the nodes, these three planes
have invariably a common intersection

;
the se-

cond situated between the two others, makes with

the first an angle of about I%$7» and with the

third an angle of 5°,J 155 ; consequently the in-

tersections of the lunar equator with the ecliptic,

or its nodes, coincide always with the mean
nodes of the lunar orbit, and like them they have
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a retrograde motion, of which the period is about

6793
d
,391081. In this interval, the two poles of

the equator and of the lunar orbit describe small

circles parallel to the ecliptic, its pole being com-

prised between them, so that these three poles

exist always on the same great circle of the celes-

tial sphere.

There are mountains on the surface of the

moon, which rise to a considerable height ; their

shadows projected on the planes, form spots

which vary with the position of the sun. At the

edges of the illuminated part of the lunar disk,

these mountains present the form of an indented

border, which extends beyond the line of light

by a quantity of which the measurement proves
that their height is at least three thousand metres.

From the direction of these shadows it has been

inferred that the surface of the moon is intersect-

ed by deep cavities, similar to the basons of our

seas. Finally, this surface seems to shew traces

of volcanoes
;
and the formation of new spots, and

the sparks which are observed in its obscure part

appear to indicate (k) volcanoes in actual opera-
tion.



CHAP. V.

Of the Planetsy and in particular ofMercury and

of Venus.

In the midst of the infinite number of shining

points which are spread over the celestial vault,

and of which the relative position is very nearly

constant, ten stars, always visible, except when

they are immersed in the rays of the sun, move

according to very complicated laws, the investiga-

tion of which constitutes one of the principal ob-

jects of astronomy. These stars, which have been

denominated planets, are, Mercury, Venus, Mars,

Jupiter, and Saturn, which have been known
from the remotest antiquity, because they can be

observed by the naked eye ;
and likewise Uranus,

Ceres, Pallas, Juno, and Vesta, which have been

recently discovered by means of the telescope.

The two first planets neven recede from the sun

beyond certain limits
;
the others are elongated

from it to all possible angular distances. The
motions of all these bodies are comprehended in

a zone of the celestial sphere, which is called the

zodiac, the breadth of which is divided into two

equal parts by the ecliptic.

The elongation of Mercury from the sun never

exceeds thirty-two degrees : when it begins to ap-
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pear in the evening, it is distinguished with diffi-

culty in the rays of twilight ; it extricates itself

more and more on the succeeding days ;
and after

it is elongated from the sun about twenty-five de-

grees, it returns towards him again. In this inter-

val, the motion of Mercury, with respect to the

stars, is direct ;
but when in approaching the sun,

its distance from this star is about twenty degrees ;

it appears stationary, (/) and afterwards the motion

becomes retrograde. Mercury still continues to

approach the sun, and at length in the evening is

again immersed in his rays. After continuing for

some time invisible, it is again seen in the morn-

ing, emerging from the sun's rays, and receding
from him. Its motion is still retrograde, as it was

previous to the disappearance ; but when the planet
is twenty degrees elongated from the sun, it be-

comes again stationary, and afterwards resumes

i direct motion
;

its elongation from the sun con-

tinues to increase till it becomes equal to twenty-
ive degrees, when the planet returns again, dis-

ippearingin the morning in the light of the dawn,

md very soon after appearing in the evening, after

vhich the same phenomena as before take place.

The extent of the greatest digressions of Mer-

cury, or of his greatest deviations on eaeh side of

i he sun, varies from eighteen to about thirty-two

• legrees. The duration of its total oseillations, (rri)

nr of its return to the same position relatively to

ihe sun, varies in like manner from one hundred

j nd six, to one hundred and thirty days. The
Mean arc of retrogradation is about fifteen de-

E
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grees, and its mean duration is twenty-three

days ;
but these quantities differ considerably in

different retrogradations. In general, the motion

of Mercury is extremely complicated; it does not

take place exactly in the plane of the ecliptic ;

some time this planet deviates five degrees from it.

A long series of observations was no doubt re-

quired to enable us to recognize the identity of

the two stars, which were alternately observed in

the morning, and in the evening, to recede from,

and approach to the sun
;
but as the one was ne-

ver seen until the other was invisible, it was at

last concluded that it was the same planet which

oscillated on each side of the sun.

The apparent diameter of Mercury is very

variable, and its changes are evidently connected

with its position relatively to the sun, and with

the direction of its motion. It is a minimum,
either when the planet in the morning is immersed

in the sun's rays, or when in the evening it is dis-

engaged from them. It is at its maximum, when

in the evening it is immersed in these rays, or

when it disengages itself from them in the morn-

ing. The mean apparent diameter is about 21", 3.

Sometimes during the interval of its disappear-

ing in the evening, and its re-appearing in the

morning, the planet is seen projected in the form

of a black spot on the disk of the sun, of which it

describes a chord. It is recognized by its position,

by its apparent diameter, and by its retrograde mo-

tion, being exactly those which it ought to have.

These transits ofMercury are real annular eclipses
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of the sun, which prove to us that this planet de-

rives its light from the sun. When seen through
a powerful telescope, it exhibits phases analagous
to those of the moon, and, like to them, directed

towards the sun, the variable extent of which, ac-

cording to the position of the jilanet with respect
to the sun, and according to the direction of its

motion, throws great light on the nature of its

orbit.

The planet Venus exhibits the same phenomena
as Mercury, with this difference, that its phases
are much more sensible, its oscillations more ex-

tensive, and their duration more considerable.

The greatest digressions of Venus vary from about

fifty to fifty-three degrees ;
and the mean duration

of its oscillations, or of its return to the same po-
sition with respect to the sun, is about five hun-

dred and eighty-four days. The retrogradation

commences, or terminates, when the planet, ap-

3roaching to the sun in the evening, or receding
rom him in the morning, is elongated from this

:;tar about thirty-two degrees. The arc of retro-

gradation is eighteen degrees very nearly, and its

mean duration is forty-two days. Venus does not

exactly move in the plane of the ecliptic, but

sometimes deviates from it several degrees.
The durations of the passages of Venus over the

( isk, observed at places which are at considerable

cistances from each other on the surface of the

earth, are very sensibly different, for the same
ciuse which (n) makes the durations of the same
e 3lipse of the sun different in different places. In

e 2
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consequence of the parallax of this planet, different

spectators refer it to different points of this disk,

of which they observe it to describe chords of dif-

ferent lengths.

In the transit, which took place in 17^9, the

difference of its duration, as observed atOtaheite in

the South Sea, and at Cajanibourgh in (o) Swedish

Lapland, amounted to more than fifteen minutes.

As these durations may be determined with very

great exactness, their differences determine very

accurately the parallax of Venus, and consequently
its distance from the earth at the moment of its

conjunction. A remarkable law, which we (/?)

shall explain at the end of our account of the dis-

coveries which have made it known, connects this

parallax with that of the sun and of all the planets ;

which circumstance renders these transits of pe-

culiar importance in astronomy. After (q) suc-

ceeding each other in an interval of eight years,

they do not recur again for more than a century,,

when they again succeed each other in the short

interval of eight years, and so on continually.

The two last transits happened on the fifth ofJune,

17G1, and on the third of June 1769. Astronomers

were sent to different places where Ifre observa-

tions could be made under circumstances the most

favourable for observing them, and from the result

of their observations it has been concluded, that

the parallax of the sun is about °2()"/>l at its mean
distance from the earth. The two next transits

will take place on the eighth of December, 1874,

and on the sixth of December, 1882.
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The great variations of the apparent diameter

of Venus, prove that its distance from the earth is

very variable. This distance is least when it

passes over the disk of the sun, and the apparent

diameter is then about 189* : the mean magnitude
of this diameter is, according to Arrago, about

527
,1?3.

From the motion of some spots observed on this

planet, Dominique Cassini concluded that it re-

volves in an interval somewhat less than a day.

Schroeter, by a continued observation of the va-

riations of its horns, and by that of some luminous

points near to the borders of those parts which are

not illuminated, has confirmed this result, relative

to which some doubts were entertained. He has

determined the duration of its rotation to be
d
,973 ; and he has found, with Dominique Cas-

sini, that the equator of Venus makes a consider-

able angle with the ecliptic, (r) Finally, he has in-

ferred from his observations that mountains of a

considerable height exist on its surface
;
and from

the law of the degradation of light in the passage
from the obscure to the enlightened part, he in-

ferred that the planet is surrounded by an exten-

sive atmosphere, of which the refracting power
ioes not differ much from that of the earth's at-

nosphere. The great difficulty of observing these

phenomena even in the most powerful telescopes,
makes it amatterof extreme delicacytoobservethem

;n our climate : they demand every attention from

1 hose astronomers who, from their southern situa-

t ion, enjoy a morefavourable climate. But it is very
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important, when the impressions are so feeble, to

guard against the effects of imagination, which

may considerably influence them ; for then the

interior images which it suggests, frequently mo-

dify and change those which the contemplation of

objects produce.
Venus surpasses in brightness all the other stars

and planets ; it is sometimes so brilliant as to be

seen in full daylight, and with the naked eye. This

phenomenon, which depends on the return of the

planet to the same position with respect to the

sun, recurs in the interval of nineteen months

very nearly, and its greatest brightness returns

after an interval of eight years. Although it is of

such frequent recurrence, it invariably excites sur-

prise in the minds of the vulgar, who in their cre-

dulous ignorance, always suppose that it is con-

nected with the most remarkable cotemporary
events.
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Of Mars.

The two planets which we have just considered,

seem to accompany the sun, like satellites ;
and

their mean motion about the earth is the same as

that of this star. The other planets recede from

the sun, to all possible angular distances, but

their motions are so connected with that of the

sun, that there can be no doubt of his influence

on these motions.

Mars appears to us to move from west to east

about the earth
;
the mean duration of his side-

real revolution is 637 days, very nearly ; that of

his synodic revolution, or of his return to the

same position, relatively to the sun, is about 780

days. Its motion is very unequal ;
when it begins

to be visible in the morning, the motion is direct

and most rapid ;
it becomes gradually (s) slower,

and vanishes when the angular distance of the

planet from the sun is about 152°
; afterwards the

motion becomes retrograde, increasing in velocity

till the moment of opposition of Mars with the

sun. This velocity having then attained its max-

imum, diminishes, and again vanishes, when
Mars in approaching to the sun, is distant from it

by 152°. The motion after this becomes again
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direct, having been retrograde for the space of

seventy-three days, and in this interval the arc of

retrogradation described by the planet is about

eighteen degrees ; continuing still to approach
the sun, it finally is immersed in the evening in

its rays. These remarkable phenomena are re-

newed at every opposition of Mars with the sun,

but with a considerable difference as to the ex-

tent and duration of the retrogradations.

Mars does not move exactly in the plane of the

ecliptic : it deviates sometimes several degrees

from it. The variations of its apparent diameter

are very great ; it is about 19",40 at the mean
distance of the planet, and increases with the ap-

proach of the planet to opposition, where it

amounts to 56//

,43. At this time the parallax of

Mars becomes sensible, and is nearly double of

that of the sun. The same law which subsists be-

tween the parallaxes of the sun and of Venus,

obtains also between the parallaxes of the sun and

of Mars, and the observation of this last parallax

had furnished a very near approximation of the

solar parallax, before that it was determined with

greater precision by the transits of Venus.

The disk of Mars is observed to change its

form, and to become sensibly oval, according to

its position relatively to the (t) sun. These

phases shew that it receives its light from the

sun. From the spots which are observed on its

surface, it has been inferred that it revolves in a

period of l
d
,02733, on an axis inclined to the

ecliptic in an angle of 66°,33. Its diameter in

the (u) direction of the poles, is somewhat less
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than the equatorial diameter. According to the

measures of Arrago, these two diameters are in

the ratio of 181) to 19*, the preceding diameter

being the mean between these two.



CHAP. VII.

Of Jupiter> and of his Satellites.

Jupiter moves from west to east in a period of

4332",6 very nearly, the duration of his synodic

revolution is about 399
d

. It is subject to inequa-

lities similar to those of Mars. Previous to the

opposition of this planet to the sun, and when its

elongation from this star is almost one hundred

and twenty-eight degrees, its motion becomes re-

trograde, its velocity increases till the moment of

opposition, it then diminishes, vanishes, and final-

ly resumes the direct state, when the distance

of the planet as it approaches the sun, is only

one hundred and twenty-eight degrees. The du-

ration of this retrograde motion is one hundred

and twenty-one days, and the arc of retrogradation

is about eleven degrees ;
but there are very per-

ceptible differences in the extent and in the dura-

tions of the different retrogradations of Jupiter.

The motion of this planet does not exactly take

place in the plane of the ecliptic ;
it sometimes

deviates from it three or four degrees.

Several obscure belts have been observed on the

surface of Jupiter ; they are apparently parallel to

each other, and to the ecliptic ;
other spots have

also been observed, the motion of which has indi-
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cated the rotation of this planet from west to east,

on an axis very nearly perpendicular, to the plane

of the ecliptic, and in a period (»;) of Od
,4<l377'

From the variations of some of these spots, and

from the marked differences in the durations of

the rotation, as inferred from their motions, it has

been supposed that these spots do not adhere to

the surface of Jupiter ; they appear to be clouds

which the winds transport with different velocities

in a very agitated atmosphere.

Jupiter is, after Venus, the most brilliant of the

planets, and even sometimes surpasses it in bright-

ness. Its apparent diameter is the greatest pos-

sible in the oppositions, when it amounts to 141 //

,6,

its mean magnitude is 113',4> in the direction of

the equator ;
but it is not the same in every di-

rection. The planet is evidently compressed at

the poles of rotation, and Arrago found, by very

accurate measurement, that the polar is to the

equatorial diameter, in the ratio of 167 to 177

very nearly.

Four small stars are observed to revolve about

Jupiter, and to accompany this planet constantly.

Their relative position changes every instant ;

they oscillate on each side of this planet, and it is

by the extent of these oscillations, that their order

is determined ;
we term the first satellite, that of

which the oscillation is the least. They are some-

times observed to pass over the disk of Jupiter,

and to project on it their shadow, which then de-

scribes ia chord of the disk. It follows from this,

that Jupiter «nd his satellites are opaque bddieg,
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illuminated by the sun
;
and when they interpose

between the sun and Jupiter, they produce real

eclipses of the sun, precisely similar to those

which the moon causes on the earth.

The shadow which Jupiter projects behind him,

with respect to the sun, enables us to explain

another phenomenon which the satillites present.

They are observed frequently to disappear, al-

though at a considerable distance from the disk

of the planet: the third and fourth satillites re-

appear sometimes at the same side of this disk.

These disappearances are altogether similar to

the eclipses of the moon, and indeed all doubt on

this head is removed by the concomitant circum-

stances. The satellites are always observed to

disappear on the side of the disk of Jupiter which

is opposite to the sun, and consequently on the

same side with that to which the shadow of the

cone is projected. The eclipse takes place

nearest to the disk, when the planet is nearest to

its opposition ;
and finally, the duration of these

eclipses corresponds exactly to the time which

they should employ in traversing the cone of the

shadow of Jupiter. Consequently these satellites

move from west to east about this planet.

The observation of their eclipses furnish the

most exact means of determining their motions.

The durations of their periodical and synodical

revolutions (w) about this planet are very pre-

cisely obtained, by comparing together eclipses

which are separated from each other by consi-

derable intervals, and which are observed near to



OP JUPITER, AND OF HIS SATILLIT^S. 6l

the opposition of this planet. By this means it

has been ascertained that the motion of the satel-

lites of Jupiter is almost circular and uniform,

because this hypothesis satisfies very nearly those

eclipses in which the planet is observed in the

same position, with respect to the sun
; therefore

the position of these satellites, as seen from the

centre of Jupiter, may be always determined.

Hence results a simple and tolerably exact me-

thod ofcomparing together the distances of Jupiter
and the sun from the earth, a method which the

antient astronomers did not possess ;
for the pa-

rallax of Jupiter, when nearest to us, is insensi-

ble even to the precision of modern observations;

they had no data from which that distance could

be judged of, except the duration of their revolu-

tions, these planets being supposed to be most

remote, the durations of whose revolutions were

longest.

Let us suppose that the entire duration of an

eclipse of the third satellite has been observed.

At the middle of the eclipse, the satellite, as seen

from the centre of Jupiter, is very nearly in

opposition to the sun
; therefore its sidereal po-

sition such as would be observed from this centre,

and which it is easy to infer from the mean mo-
tion of Jupiter and of the satellite, is then the

same as that of the centre of Jupiter seen from
that of the sun. The position of the earth,

as seen from the centre of the sun, may be had
either from direct observation, or from the known
motion of this star ; therefore supposing a tri-
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angle to be formed by lines joigning tbe centres

of the earth, of the sun and of Jupiter, the angle

at the sun will be obtained by what precedes ; the

angle at the earth will be given by direct obser-

vation ;
therefore at the middle of the eclipse the

rectilinear distances of Jupiter from the earth

and from the sun will be given in parts of the

distance of the sun from the earth. It is found

by this means, that when the apparent diameter

of Jupiter is about ll.*$",4, he is at least five times

more remote from us than the sun. The diame-

ter of the earth would only appear under an angle

of 10",4, at the same distance
;
therefore the vo-

lume of Jupiter is at least one thousand times

greater than that of the earth.

The apparent diameters of the satellites being

insensible, their magnitudes cannot be measured

exactly. An attempt has been made to estimate

them, by the time which they take in penetrating
into the shadow of the planet ;

but there is a

great discordance in the observations which have

been made to ascertain this circumstance, which

arise from the different powers of the telescope,

from the different degrees of perfection in the

sight of the observers, from the state of the at-

mosphere, the heights of these satellites above the

horizon, their apparent distance from Jupiter,

and the change of the hemispheres which they

present to us. The comparative brightness of

the satellites is independent of the four first causes,

which only produces a proportional change in

their light j it may therefore furnish some infor-
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mation concerning the return of the spots, which

the rotation of these hodies ought to present suc-

cessively to the earth, and consequently on the

rotation itself. Herschell, who has been occupied
with this delicate investigation, observed that

they surpass each other successively in splen-

dor, a circumstance that enables us to judge of

the maximum and of the minimum of their light ;

and from a comparison of these maxima and

minima, with the mutual positions of these stars,

he has ascertained that they revolve on them-

selves, like the moon, in a period equal to the

duration of their revolutions round Jupiter,
a result which Maraldi had concluded to obtain

in the case of the fourth satellite, from the returns

of the same spot observed on his disk in its pas-

sages over the planet. The great distance of the

heavenly bodies renders the phenomena which

their surfaces present so extremely feeble, that

they are reduced to slight variations of light,

which cannot be perceived at the first view, and

it is only after frequent experience in this kind

of observation, that they .become perceptible.

But this means of supplying the imperfection of

our organs, over which imagination has such

control, ought to be employed with the greatest

circumspection, to avoid being deceived respect-

ing the existence of those varieties, and also lest

we should be bewildered as to the causes on

which they depend.



CHAP. VIII.

Of Saturn, of his Satellites, and of his ring,

Saturn revolves from west to east, in a pe-

riod of 10759 days : the duration of his synodical

revolution is 3/8 days. Its motion, which is per-

formed very nearly in the plane of the ecliptic,

is subject to inequalities similar to those of the

motions of Mars and of Jupiter. Its retrograde

motion commences and terminates when the dis-

tance of the planet from the sun before and after

opposition is 121°: the duration of this retrogra-

dation is about one hundred and thirty-nine days,

and the arc of its retrogradation is about seven

degrees. At the moment of opposition, the dia-

meter of Saturn is at its maximum : its mean

magnitude is about 50".

Saturn presents a phenomenon which is unique

in the system of the world. It is frequently ob-

served in the middle of two small bodies which

seem to adhere to it, the figure and magnitude of

which are very variable ;
sometimes they are

changed into a ring, which seems to surround the

planet ;
at other times they disappear altogether,

and Saturn then appears round like the other

planets. By carefully following these remarkable

appearances, and by combining them with the
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positions of Saturn relatively to the sun and to the

earth, Huygens ascertained that they are produced

by a large and slender ring which surrounds the

globe of Saturn, and is every where detached

from it. This ring being inclined at an angle of

3L°,85 to the plane of the ecliptic, always presents

itself obliquely to the earth, in the form of an

ellipse, of which the length when a maximum, is

verynearly double the breadth. The ellipse becomes

narrower in proportion as the visual raydrawn from

Saturn to the earth, becomes less inclined to the

plane of the ring, of which the more remote arc

is at length concealed behind the planet, while

the anterior arc is confounded with it
;
but its

shadow, projected on the disk of Saturn, forms an

obscure band, which being perceived in powerful

telescopes, proves that Saturn and his ring are

opaque bodies illuminated by the sun. We
then only distinguish those parts of the rings

which are extended on each side of Saturn ;
the

breadth of these parts diminishes gradually, and

they finally disappear, when the earth is in the

plane of the ring, the thickness of which is im-

perceptible. The ring is likewise invisible when
the sun being in its plane, only illuminates its

thickness. It continues to be invisible as long as

its plane is between the sun and earth, (z) and it

reappears when the sun and earth are on the

same side of this plane, in consequence of the re-

spective motions of the sun and of Saturn.

As the plane of the ring meets the solar orbit

it every semirevolution of Saturn ;
the phe-

F
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nomena of the disappearance and reappearance
recur very nearly after the interval fifteen years, but

frequently under very different circumstances :

two disappearances and two reappearances may
occur in the same year, but never more.

During the disappearance of the ring, its thick-

ness reflects to us the light of the sun, but in too

small a quantity to be perceptible. However it

may be conceived that by increasing the power of

the telescope, it might be seen
;
and this is in

fact what Herschell experienced during the last

disappearance of the ring
—which continued visi-

ble to him, when it had disappeared to other ob-

servers.

The inclination of the ring to the plane of the

ecliptic is measured by the greatest opening which

the ellipse presents to us : the position of its nodes

with the plane of the ecliptic, is easily determin-

ed from the position of Saturn, when the appear-
ance or disappearance of the ring, depends on the

meeting of its plane with the earth. Therefore

all the phenomena of this kind, which determine

the same sidereal position of the nodes, take place
when this plane meets the earth. When this

plane passes through the sun, the position of its

nodes determine that of Saturn, as seen from the

centre of the sun, and then the rectilinear dis-

tance of Saturn from the earth, may be determin-

ed in the same manner as the distance of Jupiter
is determined from the eclipses of his satellites.

In the triangle formed by the three lines which

join the centres of the sun, of Saturn, and of the
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earth, the angles at the earth and sun are given,

hence it is easy to conclude the distance of the

sun from Saturn, in parts of the radius of the so-

lar orbit. It is thus found that Saturn is about

nine times and a half farther from us than the

sun, when his apparent diameter is 50".

The apparent diameter of the ring, at its mean
distance from the planet is, according to the ac-

curate measures of Arrago, equal to 118 ',58 ;
its

apparent breadth is 17",858. Its surface is not

continuous ; a black band, which is concentrical

with it, divides it into two parts, which appear
to form two distinct rings, the breadth of the ex-

terior being less than that of the interior. From
several black bands which have been observed by
some astronomers, it would appear, that there is a

greater numberofthese rings. From the observation

of some luminous spots of the ring, Herschell has

ascertained that it revolves from west to east in

a period of d
,437, about an axis which is per-

pendicular to its plane, and passing through the

centre of Saturn.

Seven satellites have been observed to revolve

round this planet from west to east, in orbits

nearly circular. The six first move very nearly
n the plane of the ring : the orbit of the seventh

ipproaches more to the plane of the ecliptic. When
;his satellite is to the east of Saturn, its light be-

;omes so feeble, that it is with very great difficulty

>erceived ; this can only arise from the spots
vhich cover the hemisphere which is presented
o us. But in order that this phenomenon should

f 2
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occur always in the same position, it is necessary

that this satellite, fin this respect similar to the

moon, and to the satellites of Jupiter,) should re-

volve on its own axis, in a period equal to that

of its revolution about Saturn. Thus an equality

between the periods of rotation and revolution

appears to be a general law of the motion of the

satellites.

The diameters of Saturn are not equal to

each other. The diameter which is perpen-
dicular to the plane of the ring, appears less

by the eleventh part at least, than that which is

situated in this plane. From a comparison of

this compression with that of Jupiter, it may be

inferred with great probability, that Saturn re.

volves rapidly about the least of his diameters, and

that the ring revolves in the plane of his equator ;

this result has been confirmed by the direct ob-

servations of Herchell, which have indicated to

him that the motion of this planet, like that of the

other celestial bodies, is from west to east, and

that its duration is 0,428, which differs very lit-

tle from the duration of Jupiter's rotation. It is

remarkable that this duration is very nearly the

same, and less than half a day, for the two largest

planets, while the planets which are less than

them, revolve on their axes in the interval of a

day very nearly.

Herchell has also observed on the surface of

Saturn five belts, which are nearly parallel to his

equator.



CHAP. IX.

Of Uranus and of his Satellites.

The planet Uranus escaped the observation of

the ancient Astronomers on account of its minute-

ness. Flamstead at the end of the last century,

Mayer and Le Monnier in the present, had already
observed it as a small star. But it was not till

178 1 that Herchell recognised its motion, and

shortly after, by following this star carefully, he

ascertained that it is an actual planet. Like to

Mars, Jupiter and Saturn, Uranus moves from

west to east about the earth. The duration of

its sidereal revolution is about 30687 days ;
its

motion, which takes place very nearly in the

plane of the ecliptic, commences to be retrograde

previous to its opposition, when the distance of

the planet from the sun is 115°; its retrograde

motion terminates, after opposition, when the

elongation of the planet from the sun, as it ap-

proaches to this star, is 115°. The duration of

its retrogradation is about 151 days, and the arc

of retrogradation is four degrees.

If the distance of Uranus was to be estimated

from the slowness of its motion, it should be on

the confines of the planetary system. Its ap-

parent diameter is very small, and hardly amounts
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to twelve seconds. According to Herchel six satel-

lites revolve about this planet in orbits almost cir-

cular, and very nearly perpendicular to the plan
of the ecliptic. Telescopes of a very high mag-

nifying power are required to enable us to perceive

them ;
two only, the second and fourth, have

been recognized by other observers. The obser-

vations which Herchell has published relative to

the four others, are not sufficiently numerous to

enable us to determine the elements of their or-

bits, or even to be assured incontrovertably of

their existence (a).



CHAP. X.

Of the Telescopic planets, Ceres, Pallas, Juno and
Vesta.

These four planets are so minute, that they
can be only perceived by means of very powerful

telescopes. The first day ofthe present century is

remarkable for the discovery which Piazzi made
at Palermo of the planet Ceres. Pallas was re-

cognized in 1802, by Olbers
;
Juno was dis-

covered in 1803 by Harding ;
and lastly, Vesta

was perceived in 1807 by Olbers. These stars,

like the other planets, move from west to east ;

and like to them, they are alternately direct

and retrograde. But in consequence of the short

time which has elapsed since their discovery,

ive have not been able to determine with pre-

cision, the durations of their revolutions, and

he laws of their motions. We only know that

he durations of their sidereal revolutions differ

ittle from each other ;
and that those of the

1 hree first are about four years and two thirds ;

1 he duration of the revolution of Vesta appears

10 be shorter by a year. Pallas deviates con-

siderably more from the plane of the ecliptic

1 aan the other planets, so that in order to com-

prize its deviations, we should enlarge considera-

1 ly the breath of the zodiac (b).



CHAP. XL

Of the motion of the Planets about tJie sun.

Had man restricted himself to a mere compi-
lation of facts, the sciences would present no-

thing but a barren nomenclature, and a know-

ledge of the great laws of nature would never

have been attained. It is from a comparison of

facts with each other, by attentively considering
their relations, and by this means reascending to

phenomena, which are continually more and

more extensive, that at length we have been

enabled to discover these laws, which are conti-

nuallyjmpressed on the various effects which they

produce. Then it is, that nature by revealing her-

self, shews how the infinite variety of phenomena
which have been observed, may be traced up to a

small number of causes, and thus enables us

to determine antecedently those effects, which

ought to be produced ;
and being assured that

nothing will derange the connexion between

causes and their effects, we can extend our thoughts
forwards to the future, and the series ofeventswhich

shall be developed in the course oftime, will be pre-

sented to our view. It is solely in the theory of

the system of the world, that the human mind

has, by a long train of successful efforts, attained



0E THE MOTION OF THE PLANETS, &C. J3

to this eminence. The first hypothesis which was

devised to explain the phenomena of the planetary

motions, could only be an imperfect sketch of this

theory, but by representing these phenomena in a

very ingenious manner, it furnished the means of
'

subjecting them to the calculus ;
and we shall now

see, that by making this hypothesis to undergo the

modifications which have been successively indicat-

ed by observation, it will be changed into the

true system of the world.

The most remarkable of the planetary appear-
ances is their change from a direct to a retrograde

motion, a change which can only arise from two

motions alternately conspiring together, andoppos.

ing their effects. The most natural hypothesis for

explaining them, was that devised by the an-

cient philosophers, and which consisted in mak-

ing the three superior planets to move in conse-

quentia on epicycles, of which the centres des-

cribe circles in the same direction. It is manifest

that if the planet be supposed to exist in the lowest

point ofthe epicycle, or that which is nearest to the

earth, it has in this position a motion contrary to

that of the epicycle, which is always moved parallel

to itself; therefore if the first of these motions be

supposed to predominate over the second, the

apparent motion of the planet will be retrograde,

and at its maximum ;
on the contrary, if the pla_

net be situated at the most elevated point of its

epicycle, the two motions conspire together, and

the apparent motion is direct, and the greatest

possible. In proceeding from the first to the se-
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cond of these positions, the apparent motion of

the planet continues to be retrograde ; however,
it constantly diminishes, till at length it va-

nishes, and then changes into a direct motion. It

appears from observation, that the maximum of

the retrograde motion obtains always at the mo-

ment of the opposition of the planet with the

sun
;

it therefore follows that each epicycle is de-

scribed in the time of a revolution of this star,

and that the planet is at the lowest point, when

it is in opposition to the sun. Hence we may
see the reason why the apparent diameter of the

planet is then at its maximum. With respect to the •

two inferior planets, which never deviate from

the sun beyond certain limits, their alternate re-

trograde and direct motions may likewise be ex-

plained, on the hypothesis that they move in

consequentia on epicyles, of which the centres de-

scribe, each year, circles about the earth in the

same direction
;
and by supposing likewise that

when the planet attains the lowest point of its

epicycle, it is in conjunction with the sun. The

preceding is the most ancient astronomical hy-

pothesis, which being adopted and brought to

perfection by Ptolemy, has been denominated

from this astronomer.

The absolute magnitudes of the circles and of

the epicycles are not indicated in this hypothesis :

the phenomena only assign the relative magni-
tudes of the radii. In like manner Ptolemy did

not attempt to investigate the respective distances

of the planets from the earth ;
he only supposed
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those superior planets to be farther from the

earth, of which the times of revolution were the

longest. He then placed the epicycle of Venus be-

low the sun, and that of Mercury the lowest of

all. In an hypothesis so indeterminate, it does

not appear why the arcs of retrogradation of the

superior planets are smaller, for those which are

most remote j
and why the moveable radii of

the superior epicycles are parallel, to the radius

vector of this star, and to the moveable radii

of the inferior circles. This parallelism, which

Kepler had already introduced into the hypothesis
of Ptolemy, is clearly indicated by all observa-

tions of the motion of the planets, parallel and

also in a direction perpendicular to the ecliptic.

But if these epicycles and circles be supposed

equal to the orbit of the sun, the cause of these

phenomena become immediately apparent. It is

easy to be satisfied that by such a modification of

the preceding hypothesis, all the planets are made
to revolve about the sun, which in his real or ap-

parent motion about the earth carries along with

it the centres of their orbits. A disposition of the

planetary system so simple, leaves nothing un-

determined, and clearly points out, the relations

of the direct and retrograde motions of the pla-

nets, with the motion of the sun. It removes

from the hypothesis of Ptolemy, the circles

and epicycles which are described annually

by these planets, and likewise those which he in-

troduced in order to explain their motions per-

pendicular to the ecliptic. The relations which
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this astronomer had determined to exist between

the radii of the two inferior epicycles, and

the radii of the circles described by their cen-

tres, express then the mean distances of the pla-

nets from the sun in parts of the mean distance of

the sun from the earth ;
and the same relations be-

ing reversed for the superior planets, express their

mean distances from the sun or from the earth.

The simplicity of this hypothesis should of itself,

induce us to admit it ;
but the observations which

have been made by means of the telescope, re-

move all doubts on this subject.

It has been already observed, how the distance

of Jupiter from the sun may be determined by
the eclipses of the satellites of this planet, from

which it appears that it describes about the sun,

an orbit almost circular. We have also seen, that

the appearances and disappearances of the ring of

Saturn determine its distance from the earth to

be about nine times and a half greater than the

distance of the earth from the sun
;
and accord-

ing to the determination of Ptolemy, tljis is very

nearly the relation which obtains between the

radius of the orbit of Saturn, and the radius of

its epicycle ;
hence it follows that this epicycle is

equal to the solar orbit, and that consequently

Saturn describes very nearly a circle about the

sun. From the phases which have been observed

in the two inferior planets, it follows that they

revolve about the sun. Let us for example fol-

low the motion of Venus, and the variations of its

apparent diameter and of its phases. When in
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the morning it commences to extricate itself from

the rays of the sun, it appears before the rising

of this star, under the form of a crescent, and its

apparent diameter is a maximum; it is then

nearer to us than to the sun, and very nearly in

conjunction with it. Its crescent increases, and

its apparent diameter diminishes according as the

planet elongates itself from the sun. When its

angular distance from this star is about fifty de-

grees, it approaches towards it again, exhibiting

to us more and more of its illuminated hemis-

phere : and the diminution of the apparent dia-

meter continues to the moment, that in the morn-

ing it is immersed in the sun's rays. At this in-

tant, Venus appears to us full, and its apparent di-

ameter is a minimum ; in this position it is farther

from us than the sun. After continuing invisible

for some time, this planet appears again in the

evening, and reproduces in an inverted order, the

phenomena which it exhibited previous to its dis-

appearance. More and more of its illuminated

hemisphere is averted from the earth : its phases

diminish, and at the same time its apparent diame-

ter increases with its increased elongation from the

sun. When its angular distance from this star is

about fifty degrees, it returns towards him .: its

phases continue to diminish, and its apparent di-

ameter to increase, till it is again immersed in the

rays of the sun. Sometimes in the interval be-

tween its disappearance in the evening, and its

appearance in the morning, it is observed to move
m the disk of the sun, in the form of a spot. It
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is clear from these phenomena, that the sun is

very nearly in the centre of the orbit of Venus,

which it carries along with it, while it revolves

about the earth. As Mercury exhibits phenomena
which are similar to those of Venus, it follows

that the sun is likewise in the centre of its orbit.

We are therefore conducted by the phenomena
of the motions and of the phases of the planets,

to this general result, namely, that all these stars

revolve about the sun, which in his real or apparent

revolution about the earth, appears to carry with it

the foci of their orbits. It is remarkable that this

result is derived from the hypothesis of Ptolemy,

by supposing the solar orbit to be equal to the cir-

cles and epicycles which are described each year,

in this hypothesis, which then ceases to be purely

ideal, and only proper to represent to the imagi-

nation, the celestial motions. Instead of making
the planets to revolve about imaginary centres, it

places in the foci of their orbits, those great bodies

which by their action can retain them in these

orbits, and by this means it enables us to get a

glimpse of the causes of the heavenly motions.



CHAP. XII.

Of the Comets.

Stars are frequently observed, which though at

first scarcely perceptible, increase in magnitude
and velocity, then diminish, and finally disappear.

These stars, which are called comets, appear
almost always accompanied with a nebulosity,

which increasing, terminates sometimes in a tail

of considerable length, and which must be ex-

tremely rare, as the stars are seen through its

immense depth. The appearance of the comets

followed by these long trains of light, had for a

long time terrified nations, who are always af-

fected with extraordinary events, of which they
know not the causes. The light of science has dis-

sipated these vain terrors which comets, eclipses,

and many other phenomena excited in the ages
of ignorance.

The comets participate, like the other stars,

in the diurnal motion of the heavens ; and this,

3ombined with the smallness of their parallax,

troves that they are not meteors generated in

>ur atmosphere. Their proper motions are ex-

remelycomplicated ; they have place in everydirec-

ion, and are not restricted, like the planets, to a

notion from west to east, and in planes very little

nclined to the ecliptic.



CHAP. XIII

Ofthe Stars, and oftheir motions.

The parallax of the stars is insensible ; (c) their

disks, viewed through the most powerful teles-

copes, are reduced to luminous points ;
in this

respect, these stars differ from planets, of which

the apparent magnitude (d) is increased by the

magnifying power of the telescope. The smallness

of the apparent diameter of the stars is particu-

larly evinced by their rapid disappearance in

their occultations by the moon, the time of which,

not amounting- to a second, indicates that this

diameter is less than five seconds of a degree.

The vivacity of the light of the most brilliant stars

compared with the smallness of their apparent

disk, induces us to think that they are much
farther from us than these planets, and that they

do not, like them, borrow their light from the

sun, but are themselves luminous
;
and as the

smallest stars are subject to the same motions

as the most brilliant, and preserve the same

position relatively to each other
;

it is extremely

probable that the nature of all these stars is the

same, and that they are so many luminous bodies

ofdifferent magnitudes ;
and situated at greater or

less distances from the limits of the solar system.
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Periodical variations have been observed in

the intensity of the light of several stars, which

have been termed on that account changeable.

Sometimes stars have been observed to appear

suddenly, and then to vanish, after having shone

with the most brilliant splendor. Such was

the famous star observed in 1572 in the constel-

lation of Cassiopeia. In a short time, it sur-

passed the most beautiful stars, and even Jupiter
himself in brilliancy. Its light afterwards grew

feeble, and in sixteen months after its discovery

it disappeared, without having changed its place

in the heavens. Its colour experienced considera-

ble variations : it was first of a dazzling white,

afterwards ofa reddish yellow, and lastly, ofa lead

coloured white. What is the cause of these phe-
nomena ? The extensive spots which the stars

present to us periodically, in their revolution on

their axes, in the same manner very nearly as the

last satellite of Saturn, and perhaps the interposi-

tion of great opaque bodies which revolve about

them, are sufficient to explain the periodical varia-

tions of the changeable stars. As to those stars

which suddenly shine forth with a very vivid light,

and then immediately disappear, it is extremely
orobable that great conflagrations, produced by ex-

traordinary causes, take place on their surface ;

md this conjecture is confirmed by their change
>f colour, which is analogous to that which is pre-

sented to us on the earth by those bodies, which

ire set on fire, and then gradually extinguished.

A white light of an irregular figure, (d) which
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has been denominated the milky way, surrounds

the heavens in the form of a zone. As a very

great number of small stars has been discovered in

it by means of the telescope, it is very probable

that the milky way is nothing more than an as-

semblage of stars, which appear to us so near

as to constitute an uninterrupted band of light.

Small white spots, which are termed nebulse, have

also been observed in different parts of the hea-

vens ;
several of which appear to be of the

same nature as the milky way. When viewed

through a telescope they likewise exhibit the union

of a great mumber of stars j
others only display

a white and continuous light, perhaps on ac-

count of their great distance, which confounds

the light of the stars which compose them. It is

very probable that they are formed of a very rare

nebulous matter, which is diffused in different

masses in the heavenly regions, of which the suc-

cessive condensation produces the nuclei, and

all the varieties which they exhibit. The re-

markable changes which have been observed in

some of them, and particularly in the beautiful

nebula of Orion, admit of a very easy explanation

on this hypothesis, and render it extremely pro-

bable.

The immobility of the fixed stars with respect

to each other, has determined astronomers to re-

fer to them as to so many fixed points, the

proper motions of the other heavenly bodies j but

for this purpose it was necessary to classify

them, in order that they might be recognized j
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and it is with this view, that the heavens have

been distributed into various groups of stars call-

ed constellations. It was likewise necessary to

determine exactly the positions of the fixed stars

on the celestial sphere, which has been accom-

plished in the following manner ;

Let a great circle be conceived to pass through
the two poles of the world, and through the cen-

tre of any star
;

this circle, which is termed the

circle of declination, is perpendicular to the

equator. The arc of this circle, comprised be-

tween the equator and the centre of the star,

measures its declination, which is north or south

according to the denomination of the pole, to

which it is nearest.

As all the stars situated in the same parallel

have the same declination, it was necessary to

introduce a new element in order to determine

their position. The arc of the equator, comprised
between the circle of declination and the vernal

equinox, has been selected for this purpose. This

arc, reckoned from the equinox in the direction of

the proper motion of the sun, i. e. from west to

east, is termed the right ascension, consequently,
the position of the stars is determined by their

right ascension and declination.

The distance from the equator, or the right as-

cension, is determined by the meridian altitude

sf the star compared with the height of the pole.
The determinations of its right ascenstion pre-
sented greater difficulties to the antient astrono-

ners, on account of the impossibility of compar-
g 2 •
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ing directly the fixed stars with the sun. As the

moon may he compared during the day with the

sun, and during the night, with the fixed stars,

they made use of it as an intermediate term, in

order to measure the difference between the right

ascension of the sun and of the fixed stars, having

regard to the proper motions of the sun and moon,
in the interval between the observations. The

theory ofthe sun afterwards giving its right ascens-

tion, they inferred from it that of some of the prin-

cipal stars, to which they compared the rest. It

was by this means, that Hipparchus formed the first

catalogue of fixed stars of which we have any know-

ledge. A considerable time after, this method was

rendered much more precise, by employing, instead

of the moon, the planet Venus, which is sometimes

visible during the day, and of which during a short

interval the motion is slower aud less unequal than

the lunar motion. Now, that the important appli-

cation of the pendulum to clocks, furnishes a very
exact measure of time, we can determine directly,

and with much greater precision than the ancient

astronomers, the difference between the right ascen-

scion of the star and of the sun, by the interval

of time which elapses between their transits over

the meridian.

The position of the stars may be referred to the

ecliptic in a similar manner, which is particularly
useful in the theory of the moon and of the

planets. A great circle is supposed to pass

through the centre of the star, perpendicular to

the plane of the ecliptic, which is called a circle

of latitude. The arc of this circle comprised
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between the ecliptic and the star, measures its lati-

tude, which isnorth or south, according to the deno-

mination ofthe pole situated at the same side ofthe

ecliptic. The arc of the ecliptic comprised between

the circle of latitude and the vernal equinox, reck-

oned from this equinox, in the direction ofthe sun's

proper motion i, e> from west to east, is called the

longitude ofthe star, the position of which is thus

determined by its longitude and latitude. It

may be easily conceived that the inclination of

the ecliptic to the equator being known, the

longitude and latitude of a star may be deduc-

ed from its observed right ascension and declina-

tion.

An interval ofonly a few years, was necessary to

observe the variation of the fixed stars in right

ascension and declination. It was very soon re-

marked that while they changed their position

with respect to the equator, they preserved the

same latitude, from which it may be inferred that

the variations in right ascension and declination,

arise solely from a motion common to these stars

about the poles of the ecliptic. These variations

might also be represented by supposing the stars

immoveable, and by making the poles of the equa-

tor to move about those of the ecliptic. In this

motion the inclination of the equator to the eclip-

tic remains constant, and its nodes or equinoxes

"egrade uniformly, at the rate of 154",63 for

3ach year. It has been already remarked that

;his retrogradation of the equinoxes, renders the

ropical somewhat shorter than the sidereal
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year. Thus the difference between the tropical and

sidereal years, and the variations of the fixed stars

in right ascension and declination, depend on this

motion, by which the pole of the equator describes

annually an arc of 154/',63 of a small circle of the

celestial sphere parallel to the ecliptic. It is (e)

in this, that the phenomenon known by the name
of the precession of the equinoxes, consists.

The precision of modern astronomy, for which

it is indebted to the application of telescopes, to

astronomical instruments, and to that of the pen-
dulum to clocks, has rendered perceptible, minute

periodical variations in the inclination of the

equator to the ecliptic, and in the precession of the

equinoxes. Bradley, who discovered, and at-

tentively followed them for several years, has ob-

served their law, which may be geometrically

represented in the following manner. Let the

pole of the equator be supposed to move on the

circumference of a small ellipse, a tangent to the

celestial sphere, and of which the centre, which

may be regarded as the mean pole of the equator,

describes every year 154'',63 of the parallel to the

ecliptic, on which it is situated. The greater axis

of this ellipse, always in the plane of the circle of

latitude, is equivalent to an arc of this great circle,

equal to 59*,56 ;
and the lesser axis is equivalent

to an arc of this parallel, which is equal to 1 1 l^SO.

The situation of the real pole of the equator on

this ellipse is determined in the following manner :

Suppose a small circle to be described in the plane
of this ellipse, concentrical with it, and having its
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diameter equal to the greater axis
;
conceive also

a radius of this circle moved uniformly with a re-

trograde motion, so that this radius may coincide

with that half of the greater axis which is nearest

to the ecliptic, every time that the ascending node

of the moon's orbit, coincides with the vernal

equinox ; and lastly, from the extremity of this

moveable radius let fall a perpendicular on the

greater axis of the ellipse, the point where this

perpendicular intersects the circumference of the

ellipse is the place of the true pole of the equa-

tor. This motion of the pole is termed nuta-

tion.

The fixed stars, in consequence of the motions

which we have described, preserve an invariable

position relatively to each other ; but the illustri-

ous observer to whom we are indebted for the dis-

covery of the nutation, has discovered in all the

stars a general periodical motion, which produces
a slight change in their respective positions. In

order to represent this motion, each star is sup-

posed to describe annually a small circumference

parallel to the ecliptic, of which the centre is the

mean position of the star, and of which the dia-

meter, as seen from the earth, subtends an angle of

125", and that it moves on this circumference like

the sun in his orbit, in such a manner however,
that the sun is always more advanced than the star,

by one hundred degrees ; this circumference, pro-

jected on the surface of the heavens, appears under
the form ofan ellipse more or less flattened accord-

ing to the height of the star above the ecliptic ; the
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lesser axis of the ellipse being to the greater axis,

as the sine of this height is to the radius. Hence
arise all the varieties of that periodical motion of

the stars, which is called abberration.

Independently of those general motions, seve-

ral stars have proper motions peculiar to them-

selves, very slow, but which the lapse of time has

rendered sensible. They have been hitherto

principally remarkable in Syrius and Arcturus,

two of the most brilliant stars, but every thing in-

duces us to think that in succeeding ages similar

motions will be developed in the other stars.



CHAP. XIV.

Of the figure of the earth, of the variation of gra-

vity at its surface, and of the decimal system of

weights and measures.

Let us now descend from the heavens to the

earth, and see what can be derived from observa-

tions relative to its dimensions and figure. It

has been already observed that the earth is very

nearly spherical : gravity being every where direct-

ed to the centre, retains bodies on its surface,

although in places diametrically opposite, which

are antipodes one to the other, they have directly

contrary positions. The sky and the stars appear

always above the earth ; for elevation and depres-
sion are only relative terms with respect to the

direction of gravity.

From the moment that man recognized the

spherical form of the globe which he inhabits, he

must have been anxious to measure its dimen-

sions
;

it is therefore extremely probable that the

first attempts to attain this object were made at

a period long anterior to those of which history

has preserved the record, and that they have been

lost in the moral and physical changes which the

earth has undergone. The relation which several

measures of the most remote antiquity have to
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each other, and to the terrestrial circumference,

gives countenance to this conjecture, and seems

to indicate not only that this length was very ex-

actly known at a very ancient period, but that

it has also served as the base of a complete system
of measures, the vestiges of which have been

found in Asia and in Egypt. Be this as it may,
the first precise measure of the earth, of which

we have any certain knowledge, is that which

Picard executed in France towards the end of

the seventeenth century, and which has been re-

peatedly verified. It is easy to conceive this ope-
ration. As we advance towards the north, the

pole seems to be elevated more and more ; the

meridian heights of the stars situated towards

the north increases, and that of the southern stars

diminishes ; some of them even become invisible.

The notion of the curvature of the earth was no

doubt suggested by observing these phenomena,
which could not fail to attract the attention of

men in the first age of society, when the return of

the seasons was only distinguished by the_ rising

and setting of the principal stars, compared with

that of the sun. The elevation or the depression of

the stars makes known the angles, which verticals

raised at the extremities of the arc of the earth,

which has been passed over, make at the point
where they meet

;
for this angle is evidently equal

tothe difference ofthe meridian heights ofthe same

star, minus the angle which the arc described

would subtend at the centre of the star ;
and we

are certain that this last angle is insensible. It
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is then only necessary to measure this space. It

would be a tedious and troublesome operation to

apply our measures to so great an extent ; it is

much simpler to connect its extremities, by means

of a series of triangles, with those of a base of

twelve or fifteen thousand metres ; and consider-

ing the precision with which the angles of these

triangles may be determined, its length can be

obtained very accurately. It is thus, that the arc

of the terrestrial meridian which traverses France

has been measured. The part of this arc ofwhich

the amplitude is the hundreth part of a right

angle, and whose middle point corresponds to 50°,

of altitude of the pole, is very nearly one hundred

thousand metres.

Of all the re-entring figures, the spherical is

the simplest, because it depends only on one ele-

ment, namely, the magnitude of its radius. The
natural inclination of the human mind to attribute

that figure to objects, which it conceives with the

greatest facility, disposed it to assign a spherical

form to the earth. But the simplicity of nature

should not be always regulated by that of our con-

ceptions. Infinitely varied in her effects, nature

is only simple in her causes, and her economy
consists in producing a great number of pheno-

mena, which are frequently very complicated, by
means of a small number of general laws. The

figure of the earth is the result of those laws, which

modified by a thousand circumstances, might
cause it to deviate sensibly from that of a

sphere. Small variations, observed in the length
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of the degrees in France, indicate these deviations
;

but the inevitable errors of observation left doubts

on this interesting phenomenon ; and the Academy
of Sciences, in which this interesting question was

anxiously discussed, judged with reason, that the

difference of degrees, if it really existed, would
be principally evinced in a comparison of the

degrees at the equator and towards the poles.
And academicians were sent even to the equator
itself, where they found the degree of the meri-

dian less than the degree of France. Other aca-

demicians travelled towards the north, where the

degree was observed to be greater than the de-

gree in France. Thus the increase of the degrees
of the meridian, from the equator to the poles,

was proved incontrovertably by these measures,
from which it was concluded that the earth was

not exactly spherical.

These celebrated voyages of the French Aca-

demecians having directed the attention of astro-

nomers towards this object, new degrees of the

meridian were measured in Italy, Germany, Afri-

ca, India and Pennsylvania. All these measures

concur in indicating an increase in the degrees,

from the equator to the poles.

The following table exhibits the values of the

extreme degrees which have been measured, and

also of the mean degree between the equator and

the pole. The first was measured in Peru, by

Bouguer and La Condamine. The length of the

second has been inferred from the great operation
which was recently executed, in order to deter-
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mine the amplitude of the arc, which traverses

France from Dunkirk to Perpignan, and which

has been extended to the south, as far as Formen-

tera. It was joined towards the north with

the meridian of Greenwich, by connecting the

sides of France with those of England, by means
of a series of triangles. This immense arc, which

comprises the seventh part of the distance of the

pole from the equator, has been determined with

the greatest precision. The astronomical and

geodesical observations have been made with re-

peating circles. Two bases, each of which is

more than twelve thousand metres, have been

measured, the one near Melun, the other near to

Perpignan, by a new process, which is free from

all uncertainty ; and what confirms the accuracy
of these observations is, that the base of Pepignan
concluded from that of Melun, by the chain of tri-

angles which unites them, does not differ by a

third of a metre from its actual measure, al-

though the distance between those two places is

upwards of nine hundred thousand metres.

In order to render this important observation

as perfect as possible, the height of the pole,

and the number of ocillations performed in a day

by the same pendulum, have been observed on

different points of this arc
; from which the va-

riations of the degrees and of gravity have been

inferred. Thus this operation, the most accurate

and extensive of the kind, which has been under-

taken, will remain a monument of the state of

arts and sciences in this enlightened age. Lastly,
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the third degree was measured by M. Swanberg
in Lapland.

Height of the pole. Length of the degree.

0°,00 99523
m
,9.

50°,08 100004,3.

73°,71 100323,6.

The increase of the degrees of the meridian,

according as the height of the pole increases, is

even sensible in different parts of the great arc

already mentioned. In fact let us compare its

extreme points, and the Pantheon at Paris, which

is one of the intermediate positions. It is found

by means of observation,

Distancesfrom Greenwich in

Height of the pole. the direction of the meridian.

Greenwich 57,°19753
m
,0

Pantheon 54,°27431 292719,3

Formentera 42,°96l78 1423636,1

The distance from Greenwich to the Pantheon,

gives 1001 35m ,2 for the length of the degree, of

which the middle point corresponds to 55,°73592

of elevation of the pole ;
and from the distance of

the Pantheon from Formentera, it is found that

the length of a degree, the middle point of which

corresponds to a latitude of 48,61804, is equal to

99970
m
,3, from which it follows that in the in-

terval between these two points, the increment

of a degree is 23m,l67-
The ellipse being after the circle, the most

simple of all the re-entring curves, the earth was

considered as a solid of revolution formed by the
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revolution of an ellipse about its lesser axis. Its

compression in the direction of the poles, is a ne-

cessary consequence of the observed increase of

the meridional degrees, from the equator to the

poles. The radii of these degrees being in the

direction of gravity, they are by the laws of the

equilibrium offluids, perpendicular to the surface of

the seas with which the earth, is in a great mea-

sure covered. They do not terminate, as in a

sphere, in the centre of the ellipsoid ; they have

neither the same direction, nor the same magni-

tude, as radii drawn from the centre to the sur-

face, and which cut it obliquely every where except
at the equator and at the poles. The point where
two adjoining verticals situated in the same me-
ridian meet, is the centre of a small terestrial

arc comprized between them
;

if this arc was a

right line, these verticals would be parallel, i. e.

they would meet at an infinite distance ;
but in

proportion as they are curved, they meet at a, dis-

tance which is proportionally less as the curva-

ture is greater ; thus the extremity of the lesser

axis being the point where the ellipse approaches
most to a right line, the radius of a degree of the

pole, and consequently the degree itself, is of its

greatest length. It is the contrary at the extre-

mity of the greater axis of the ellipse, i. e. at the

equator, where the curvature being the greatest,

the degree in the direction of the meridian is least

of all. In proceeding from the second to the first

of these extremes, the degrees continually in-

crease
j
and if the compression of the ellipse is
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inconsiderable, their increment is very nearly

proportional to the square of the sine of the height

of the pole above the horizon.

The excess of the equatorial axis, above that of

the pole, assumed equal to unity, is termed the

compression or ellipticity of the spheroid. The
measure of two degrees in the direction of the

meridian, is sufficient to determine it. A com-

parison of the arcs measured in France and Peru,

which from their extent, their distance from

each other, and from the accuracy and reputation

of the observers, deserve the preference, makes

the ellipticity of the terrestrial spheriod equal to

g^ j ;
the semiaxis major equal to 6376606

m
, and

the semiaxis minor is equal to 635625m .

If the earth was elliptical, the same compres-
sion should be nearly obtained, from a compari-

son, two by two, of different measures of the ter-

restrial degrees ;
but their comparison gives, on

this point, differences which it is difficult to as-

cribe solely to the errors of observations. It

therefore appears that the earth differs sensibly

from the ellipsoid. This difference is even in-

dicated by the measures of different parts of the

great arc of the meridian which traverses France;
for it has been observed already, that the incre-

ment of its degrees is£3m,l67, which answers to

an ellipticity of gi^» which more inconsider-

able than the preceding ellipticity ^xt.t 5
there is

even reason to suppose that the two terrestrial

hemispheres are not similar on each side of the
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equator. The degree measured by La Caille at

the Cape of Good Hope, where the height of the

south pole is 37°,01, is (/) found to be equal to

100050ra

,5 ;
which is greater than that which was

measured in Pennsylvania, where the height of the

north pole is equal to 48°,56, the length of which

was equal to 99789
m
,l ; it even exceeds the degree

which was measured in France at an elevation of

the pole equal to 50°, yet the degree at the Cape
ought to be less than these degrees, if the earth

was a regular solid of revolution formed of two

similar hemispheres ; every thing therefore leads

us to think that this is not the case. But the con-

siderable errors which new measures have fre-

quently indicated in this kind of observation,

ought to make us very cautious in the conclusions

which we deduce from it, and to resolve to take

all possible precautions to avoid for the future

similar errors. Let us see then what is the na-

ture of the terrestrial meridians, the earth being

supposed to be any figure whatever.

The plane of the celestial meridian determined

by astronomical observations, passes through the

axis of the world and through the zenith of the

observer
; because this plane bisects the arcs of

all lesser circles parallel to the equator, which

ire described by the stars above the horizon. All

jlaces of the earth, which have their zeniths in

he circumference of this meridian, form the cor-

•esponding terrestrial meridian. Considering the

mmense distance of the stars, verticals elevated

rom each of these places may be supposed pa-
H
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rallel to the plane of the celestial meridian
; the

terrestrial meridian may therefore (g) be denned to

be that curve which is formed by the junction of

the bases of all the verticals parallel to the plane
of the celestial meridian. This curve lies alto-

gether in this plane, when the earth is a solid

of revolution ; in every other case it deviates from

it, and generally it is one of those lines which

geometricians term curves of double curvature.

The terrestrial meridian is not exactly the line

which determines trigonometrical measurements

in the direction of the celestial meridian. The
first side of the line which is measured, is a tan-

gent to the surface of the earth, and parallel to

the plane of the celestial meridian ;
if this side

be extended till it meets a vertical indefinitely

near to it, and if then this prolongation be bent

to the base of vertical, the second side of the

curve will be formed, and thus with all the others.

The line thus traced is the shortest which can be

drawn on the surface of the earth (h) between any
two points assumed on this line

;
it does not lie in

the plane of the celestial, and is not confounded

with the terrestrial meridian, except in the case

in which the earth is a solid of revolution ;
but the

difference between the length of this line and

that of the corresponding arc of the terrestrial

meridian is so small that it may be neglected

without any sensible error.

The figure of the earth being extremely com-

plicated, it is important to multiply its measure*
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in every direction, and in as many places as pos-

sible. We may always at every point of its sur-

face suppose an oscillatory ellipse, which sensibly

coincides with it for a small extent, about the

point of osculation. Terrestrial arcs measured in

the direction of the meridians, and of perpendi-
culars to the meridians, will make known the na-

ture and position of this ellipsoid, which may not

be a solid of revolution, and which varies sensibly

at great distances.

Whatever be the nature of the terrestrial me-

ridians, it is evident that as the degrees dimi-

nish from the poles to the equator, the earth is

flattened in the direction (i) of the poles, i. e. that

the axis of the earth is less than the diame-

ter of the equator. In order to explain this, let

us suppose that the earth is a solid of revolution ;

and let the radius ofa degree at the north pole, and

the series of those radii from the pole to the equa-

tor, which radii by hypothesis continually dimi-

nish, be supposed to be drawn, it is evident that

these radii form by their consecutive intersections

a curve, which at first touches the polar axis on

the other side of the equator relatively to the

north pole ;
it afterwards detaches itself from this

axis, turning its convexity towards this axis, and

continually raises itself towards the surface of the

earth, until the radius of the meridional degree

assumes a direction perpendicular to the primary
direction ; it is then in the plane of the equator.

If the radius of the polar degree be supposed flex-

ible, and that it involves successively the arcs of
:

&foq rfiiioe Sti£ot nw \h



100 OF THE FIGURE OF THE EARTH, OF THE

the curve which have been just described, its ex-

tremity will describe the terrestrial meridian, and

the part of it which is intercepted between the

meridian and the curve will be the correspond-

ing radius of the meridional degree. This curve

is what Geometricians term the evolute of the me-

ridian. Let the intersection of the diameter of

the equator and of the polar axis be assumed for

the present to be at the centre of the earth
;

the

sum of the two tangents to the evolute of the me-

ridian drawn from this centre, the first in the

direction of the polar axis, and the second in the di-

rection ofthediameterofthe equator, will be greater

than the arc of the evolute comprised between

them ; but the radius drawn from the centre of

the earth to the north pole is equal to the radius

of the polar degree minus the first tangent ;
the

semidiameter of the equator is equal to the radius

of the meridional degree at the equator plus the

second tangent ; therefore the excess of the se-

midiameter of the equator above the terrestrial

radius of the pole, is equal to the sum of those

tangents, minus the excess of the radius of the

polar degree above the radius of the meridional

degree at the equator : this last excess is the arc

itself of the evolute, which arc is less than the

sum of the extreme tangents ; consequently the

excess of the semidiameter of the equator above

the radius drawn from the centre of the earth to

the north pole is positive. It can be proved
in the same manner, that the excess of this same

semidiameter of the equator above the radius

drawn to the south pole is positive, therefore tha
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entire axis of the poles is less than the diameter

ofthe equator, or what comes to the same thing,
the earth is flattened in the direction of the

poles.

Each part of the meridian being regarded as a

very small are of its oscillatory circumference, it

is easy to see that the radius drawn from the cen-

tre of the earth to the extremity of the arc, which

is nearest to the pole, is less than the radius drawn
from the same centre to the other extremity ;

hence it follows that the terrestrial radii conti-

nually increase from the poles to the equator, if,

as all observations seem to indicate, the degrees

of the meridian increase from the equator to the

poles.

The difference of the radii of the meridional

degrees at the poles and at the equator, is equal

to the difference of the corresponding terrestrial

radii plus the excess of (k) twice the evolute above

the sum of the extreme tangents, which excess is

evidently positive ; thus, the degrees of the me-

ridian increase from the equator to the poles in a

greater ratio than that of the diminution of the

terrestrial radii. It is evident that these demon-

strations are equally applicable in the case in

which the northern and southern hemispheres are

not similar and equal, and it is easy to extend

them to the case of the earth's not being a solid

of revolution.

Curves have been constructed at the principal

places in France, which lie on the meridian of the

observatory, traced in the same manner as this
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line, with this difference, that the first side, which

is always a tangent to the surface of the earth, in-

stead of being parallel to the plane of the celestial

meridian of the observatory of Paris is perpendicu-

lar to it. It is by the length of these curves, and

by the distances of the observatory from the

points where they meet the meridian, that the

positions of these places have been determined.

This operation, the most useful which has been

undertaken in geography, is a model which every

enlightened nation should hasten to imitate, and

which will very soon be extended to all Europe.
As the respective positions of places separated

by vast seas cannot be fixed by geodesical obser-

vations, we must have recourse to celestial obser-

vations, in order to determine them. The know-

ledge of these positions is one of the greatest ad-

vantages which astronomy has procured. In or-

der to arrive at it, the method which was made use

of to form a catalogue ofthe fixed stars, was follow-

ed, by conceiving circles to be drawn on the surface

of the earth corresponding to those which have

been imagined on the celestial surface. Thus the

axis of the celestial equator intersects the surface of

the earth in two points diametrically opposite, which

have respectively one of the poles of the world in

their zenith, and which may be considered as the

poles of the earth. The intersection of the plane
of the celestial equator with this surface, is a cir-

cumference which may be regarded as the terres-

trial equator; the intersections of all the planes
of the celestial meridians with the same surface
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are so many carved lines, which are reunited at

the poles, and which are the corresponding ter-

restrial meridians, if the earth be a solid of revo-

lution, which may be supposed in geography,
without any sensible error. Finally, small circles

traced on the earth parallel to the equator are

terrestrial parallels ; and that of any place what-

ever, corresponds to the celestial parallel which

passes through its zenith.

The position of a place on the earth is deter-

mined by its distance from the equator, or by the

arc of the terrestrial meridian comprised between

its parallel and the equator, and by the angle
which its meridian makes with the first meridian,

of which the position is arbitrary, and to which

all others are referred. Its distance from the

equator depends on the angle comprized between

its zenith and the celestial equator, and this an-

gle is evidently equal to the height (I) of the pole

above the horizon ;
this height is what in geogra-

phy is termed latitude. The longitude is the an-

gle which the meridian of a place makes with the

first meridian ;
it is the arc of the equator con-

tained between these two meridians. I c is east-

ern or western, according as the place is to the

east or west of the first meridian.

An observation of the height of the pole deter-

mines the latitude ; the longitude is determined

by means of a celestial phenomenon, which is ob-

served simultaneously oh the meridians of which

the relative position is required. If the meridian

of which the longitude is required is to the west
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of that from which the longitude is reckoned, the

sun will arrive sooner at the celestial meridian ;

if, for example, the angle formed by the terrestrial

meridian be a fourth part of the circumference,

the difference between the instants of noon, at

those meridians, will be the fourth part of the

day. Suppose, therefore, that a phenomenon is

observed on each of them which occurs at the

same physical instant for all places on the earth,

such as the commencement or termination of an

eclipse of the moon or of the satellites of Jupiter,

the difference of the hours which the observers will

reckon at the moment of the occurrence of the

phenomenon, will be to an entire day as the angle

formed by the inclination of the two meridians is

to the circumference. Eclipses of the sun, and

the occupations of the fixed stars by the moon,
furnish the most exact means of obtaining the

longitude, by the precision with which the com-

mencement and termination of these phenomena
may be observed ; they do not in fact occur at the

same physical instant at every place on the earth,

but the elements of the lunar motions are suffi-

ciently well known to enable us to make an exact

allowance of this difference.

To determine the longitude of a place, it is not

necessary that the celestial phenomenon should

be observed at the same time on the first meri-

dian. It is sufficient if it be observed under a me-

ridian of which the position with respect to the

first meridian is known. It is thus that by con-

necting meridians with each other, the respective



VARIATION OF GRAVITY AT ITS SURFACE, &C 105

positions of the most distant points on the surface

of the earth have been ascertained.

The longitudes and latitudes of a great number
of places have been already determined by astro-

nomical observations ; considerable errors in the

position and extent of countries a long time known,
have been corrected : the position of those coun-

tries, which the interests of commerce, or the love

of science have caused to be discovered, has been

fixed ; but though the voyages lately undertaken

have added considerably to our geographical

knowledge, much yet remains to be discovered.

The interior of Africa, and that of New Hol-

land, includes immense countries totally un-

known : we have only uncertain, and frequently

contradictory accounts concerning several others

of which geography hitherto abandoned to the

hazard of conjecture, only waits for more accu-

rate information from astronomy to fix and settle

their position unalterably.

The longitude and latitude are not sufficient to

determine the position of a place on the earth ;

besides these two horizontal coordinates, a ver-

tical coordinate must be introduced, which ex-

presses the elevation of the place above the level

of the sea : this is the most useful application of

the barometer ;
numerous and accurate observa-

tions with this instrument would throw the same

light on the figure of the earth, (m) with respect to

the comparative elevation ofplaces, that has been

already furnished by astronomy, on the other two

dimensions.
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It is principally to the navigator, when in

the midst of the seas he has no other guide

but the stars and his compass, that it is of con-

sequence to know his position, that of the place

for which he is bound, and of the shoals which

he may meet in his passage. He may easily know
his latitude by an observation of (n) the height of

the stars : the fortunate inventions ofthe octant and

of the repeating circle have rendered observations

of this kind extremely accurate. But the celes-

tial sphere, in consequence of its diurnal motion,

presenting itself daily in very nearly the same

manner to all the points of his parallel, it is dif-

ficult for the navigator to fix the point to which

he corresponds. To supply the deficiency of ce-

lestial observations, he measures his velocity and

the direction of his motion, thence he infers his

progress in the direction of the parallels, and by
a comparison of it with his observed latitude, he

determines his longitude relatively to the place of

his departure. The inaccuracy of this method

subjects him to errors, which might become fatal

when he abandons himself during the night to the

winds near the shores and banks which, in his es-

timation, he believed himself at a considerable dis-

tance from. It is to secure him from these dan-

gers that, as soon as the progress of arts and of

astronomy led to the hope that methods might be

devised to obtain the longitude at sea, commer-

cial nations hastened to direct the views of scien-

tific men and of artists to this important object, by

powerful encouragements. Their expectations
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have been realised by the invention of chrono-

meters, and by the great accuracy with which the

tables of the lunar motions have been conducted ;

two methods, good in themselves, and which are

further improved by the mutual support which

they confer on each other.

A chronometer, well regulated in a port, the

situation of which is known, and which preserves

the same rate when carried on board a vessel,

would indicate, at every instant, the time which

was reckoned in this port.

This hour being compared with that observed

at sea, the relation of the difference of these

hours to the entire day would be, asfoj has been al-

ready observed, that of the corresponding differ-

ence of longitude to the circumference. But it

was difficult to obtain such watches ; the irregu-

lar motion of the ship, the variations of tempera-

ture, and the inevitable friction which is ex-

tremely sensible in such delicate machines, were

so many obstacles, all opposed to their accuracy.

These have been fortunately surmounted ; chrono-

meters are now made which (p) for several months

preserve a rate nearly uniform, and which thus

furnish the simplest means of obtaining the lon-

gitude at sea ; and as this method is always more
exact as the time is shorter, during which these

chronometers are employed,, without verifying
their rate, they are particularly useful in deter-

mining the position of places very near to each

other. They have even, in this respect, some ad-

vantages over astronomical observations, the ac-
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curacy of which is not increased by the proximity
of the observers to each other.

The frequent recurrence of the eclipses of Ju-

piter's satellites would furnish an observer with an

easy method of obtaining his longitude, if he could

observe them at sea ; but the endeavours which
have been made to surmount the difficulties which
the motion of the ship oppose to this kind of ob-

servations, have been hitherto fruitless
; notwith-

standing this, navigation and geography have de-

rived considerable advantages from these eclipses,

particularly from those of the first satellite, of

which the commencement and termination can

be accurately observed. The navigator employs
them with success when he can land ; indeed, it

is necessary to know the hour at which the same

eclipse which he observes would be seen upon a

known meridian, since the difference of time,
which is reckoned on these two meridians, gives
the difference of longitudes ; but from the great

improvement which has been made in the tables

of the first satellite in our time, the moment of

the occurrence of these eclipses is given with a

precision equal to that of observation itself.

The extreme difficulty of observing these eclipses

at sea, has obliged us to have recourse to other

celestial phenomena, among which the lunar mo-
tions are the only ones which can be made sub-

servient to the determination of terrestrial Ion.

gitudes. The position of the moon, such as

it would be observed from the centre of the

earth, may be easily inferred from the measure
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of its angular distance from the sun and fixed

stars : the tables of its motion then give the hour

at the principal meridian when the same pheno-
menon is observed, and the navigator comparing
the time which he reckons on board his ship at

the moment of observation, determines his longi-

tude by the difference of time.

To appreciate the accuracy of this method, it

should be considered that from the errors of ob-

servation, the place, of the moon as determined

by the observer, does not exactly correspond to

the hour indicated by his chronometer
;
and that

in consequence of the errors of the tables this

same place does not refer exactly to the corres-

ponding hour which the sun indicates on the first

meridian ; the difference of these hours would

not therefore be such as would be furnished by
an observation and tables rigorously correct.

Suppose that the error produced by this difference

is a minute. In this interval, forty minutes of

the equator is passed over the meridian
; this

is the corresponding error in the longitude of

the vessel, and which is at the equator about forty

thousand metres
;
but it is less on the parallelst

besides it may be diminished by multiplying ob-

servations of the lunar distances from the sun

ind stars, and repeating them during several days,
n order that the errors of observation and of the

ables may be mutually compensated and des-

troyed. It is obvious that the error in longitude

corresponding to those of observation and of the

ables are so much the less considerable, as the
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motion of the celestial body is more rapid ;
thus

observations made on the moon when in perigee,

are in this respect, preferable to those made when
the moon is in apogee. If the motion of the sun

be employed, which is thirteen times slower than

that of the moon, the errors in longitude will be

about thirteen times as great ; from hence it fol-

lows, that of all the celestial bodies the moon is

the only one of which the motion is sufficiently

rapid to be employed for the determination of the

longitude at sea ;
we may consequently perceive

of what great importance it is to render the tables

as perfect as possible.

It is much to be desired that all the nations

of Europe, instead of reckoning geographical lon-

gitudes from the meridian of their principal ob-

servatory, would concur in counting them from

the same meridian, which being furnished by
nature itself, might be easily found at all times.

This agreement would introduce into their geo-

graphy the same uniformity which their calendar

and arithmetic present, a conformity which being
extended to the various objects of their mutual

relations, would constitute of these several nations

but one immense family. Ptolemy caused his first

meridian to pass through the Canaries, which

were then the western limit of the known world.

The reason of this selection no longer obtains, in

consequence of the discovery of America. But

one of these islands, presents one of the most re-

markable points on the surface of the earth, in

consequence of its great elevation and of its in-
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eulation, namely, the summit of the peak of

Teneriffe. We might with the Hollanders assume

its meridian, from which to reckon terrestrial

longitudes, by determining its position relatively

to the principal observatories, by means of a great

number of astronomical observations. But whe-

ther we agree or not as to a common meridian,

it will be extremely useful for future ages to know

accurately their position, with respect to some

mountains which may be always recognized by
their solidity and great elevation, such as Mount

Blanc, which towers over the immense and im-

perishable woods of the Alpine regions.

A remarkable phenomenon, the knowledge of

which we owe to astronomical voyages, is the

variation of gravity at the surface of the earth.

This singular power acts in the same place, on

all bodies proportionally to their masses, and

tends to impress on them equal velocities in equal
times. It is impossible by means of a balance to

ascertain these variations, because they equally
affect the body weighed, and the weight to which

it is compared ; but they can be determined by a

comparison of their weight with a constant force,

such as the elasticity of the air at the same tem-

perature, (q) Thus, by transporting to different

places, a manometer tilled with a column of air,

which elevates by its tension a column of mercury
in an interior tube, it is evident that an equili-

brum must always subsist between the weight of

this column and the elasticity of the air ; its ele-
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vation, when the temperature is given, will be re-

ciprocally proportional to the force of gravity, the

variations of which it consequently indicates. A
very precise way of determining them is also fur-

nished by observations of the pendulum ;
for it is

obvious that its oscillations must be slower in

those places where the gravity is less.

This instrument, the application of which to

clocks is one of the principal causes of the pro-

gress of modern astronomy and geography, con-

sists of a body suspended at the end of a thread or

rod, moveable about a fixed point placed at the

other extremity. The instrument is drawn a little

from its vertical position, and being then remit-

ted to the action of gravity, it makes small oscil-

lations, which are very nearly of the same dura-

tion, notwithstanding the difference of the arcs

described. This duration depends on the magni-

tude and figure of the suspended body, on the

mass and length of the rod
;
but geometricians

have found general rules to determine by obser-

vations of the compound pendulum, of any figure

whatever, the length of a pendulum, the oscilla-

tions of which will be of a given duration, and in

which the mass of the rod may be supposed no-

thing with respect to that of (r) the body, consi-

dered as an infinitely dense point. It is to this

imaginary pendulum, termed the simple pendulum,
that all the experiments of the pendulum made in

different parts of the earth are referred.

Richer, sent in 1672 to Cayenne, by the Aca

demy of Sciences, to make astronomical observa-
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tions there* found that his clock regulated to mean

time, at Paris, lost each day at Cayenne a per-

ceptible quantity.

This interesting observation, furnished the first

direct proof of the diminution, of gravity at the

equator. It has been carefully repeated in a great

number of places, taking into account the re-

sistance of the air and the temperature. It fol-

lows from all the observed measures of a pendu-
lum vibrating seconds, that it increases from the

equator to the poles.

The length of the pendulum, which at the ob-

servatory of Paris makes one hundred thousand

vibrations in a day, being assumed equal to unity,

its length at the equator and at the level of the sea

is equal to 0,99669, and in Lapland at an eleva-

tion ofthe pole equal to 74,22, it is observed to

be 1,00137. Borda found by very exact and nu-

merous experiments, that the length at the ob-

servatory at Paris which represented unity, was

when reduced to a vacuum equal to 0,741887.

From a repetition of these experiments by Biot

and Mathieu, this length came out equal to

0,7419076, which differs very little from the pre-

ceding result, (s)

The increase in the length of the pendulum as we

proceed from the equator to the poles, is even sen-

sible on different points of the great arc of the meri-

dian which traverses France, as will appear from

an inspection of the following table, which gives
the result of numerous accurate experiments
made by Biot, Arrago and Mathieu.
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There has been likewise remarked by means of

the pendulum, a small diminution of gravity on

the summit of high mountains. Bouguer insti-

tuted a great number of experiments on this sub-

ject. At Peru he found that the force of gravity

at the equator and at the level of the sea being

expressed by unity, it is 0,999249 at Quito, which

is elevated 2857
ra above this level j

and it is

998816 at Pinchincha, the elevation of which is

4-744
m

. This diminution of gravity (n) being sen-

sible at elevations which are comparatively small

with respect to the earth's radius, is a ground
for supposing that it is considerable at great dis-

tances from the centre of the earth.

The observations of the pendulum furnishing a

length which is invariable, and easy to be re-

covered at all times, has suggested the idea of

employing it as an universal measure. The pro-

ligious number of measures in use, not only

imong different people, but in the same nation ;

;heir whimsical divisions, inconvenient for calcu-

ation, and the difficulty of knowing and com-

paring them ; finally, the embarrassments and

j'rauds which they produce in commerce, cannot

>e observed without acknowledging that the adop-
'

ion of a system of measures, of which the uni-

form divisions are easily subjected to calculation,

j nd which are derived in a manner the least ar-

1 itrary, from a fundamental measure, indicated

1 y nature itself, would be one of the most impor-
t mt services which any government could confer

c n society. A nation which would originate such

» system of measures, would combine the advan-

1 2
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tage of gathering the first fruits of it with that

of seeing its example followed by other nations,

of which it would thus become the benefactor ;

for the slow but irresistible empire of reason pre-

dominates at length over all national jealousies,

and surmounts all the obstacles which oppose
themselves to an advantage, which would be uni-

versally felt. Such were the reasons that deter-

mined the Constituent Assembly, to charge the

Academy of Sciences with this important object.

The new system of weights and measures is the

result of the labours of a committee appointed by

them, seconded by the zeal and abilities of several

members of the national representation.

The identity of the decimal calculus with that

of integral numbers, leaves no doubt as to the ad-

vantages of dividing every kind of measure into

decimal parts. To be convinced of this, it is only

necessary to compare the difficulties of complicat-

ed divisions and multiplications, with the facility

by which the same operations are performed on

integral numbers, which facility may be increased

by logarithms, the use of which might be rendered

very popular by simple and cheap instruments.

Indeed our Arithmetical scale is not divisible by

three and four, two divisors which, from their great

simplicity, are (v) ofvery frequent occurrence. This

advantage would be secured by the addition of two

new characters. But such a marked alteration

would be inevitably rejected, together with the

system of measures which would have been con-

formed to it. The duodecimal scale would be
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also subject to the additional inconvenience of re-

quiring us to remember the binary products of

the eleven first numbers, which surpasses the or-

dinary compass ofthe memory, to which the deci-

mal scale is well adapted ; lastly we could not re-

tain the advantage which probably gave rise to our

arithmetic, namely, that of making use of our fin-

gers in reckoning. The academy therefore, did

not hesitate in adopting the decimal division
; and

to render the entire system of measures uniform,

it was resolved that they should all be derived

from the same lineal measure, and from its deci-

mal divisions. The question was thus reduced to

the choice of this universal measure, which was

denominated the metre.

The length of the pendulum, and that of the

meridian, are the two principal means furnished

by nature itself to fix the unity of linear measures.

Both being independent ofmoral revolutions, they
cannot experience a sensible alteration except by

very great changes in the physical constitution of

the earth. The first means, though easily applied,
is notwithstanding subject to the inconvenience

of making the measure of distance to depend on
two elements which are heterogeneous to it,

namely, gravity and time, the measure of which
last is arbitrary ; and as it is divided sexagesimally,
it cannot be admitted as the foundation of a sys-

tem of decimal measures. The second means was
therefore selected, which appears to have been

employed in the remotest antiquity ; so natural is

it for man to compare itinerary measures with the
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dimensions of the globe itself which he inhabits \

•so that in travelling he may know by the mere
denomination of the space he has passed over,

the relation of that space to the entire circuit of

the earth. There is also the additional advantage
of making nautical and celestial measures to cor-

respond. The navigator has frequent occasion to

determine the one by the other, the distance he has

traversed, and the celestial arc included between

the zenithsof theplaces of his departure and arrival;

it is therefore of consequence that one of these

measures should be the expression of the other,

by nearly the difference of their unities. But
for this purpose, the fundamental unity of linear

measures should be an aliquot part of the terrestrial

meridian, which corresponds to one of the di-

visions of the circumference. Thus the choice

of the metre was reduced to that of the unity of

angles.

The right angle is the limit of the inclination

ofa line to a plane, and of the elevation of objects

above the horizon ; besides it is in the first qua-

drant of the circumference that the sines are form-

ed, and generally all the lines which are employed
in trigonometry, ofwhich the proportions to the ra-

dius have been reduced into tables ; it was there-

fore natural to assume the right angle as the unity

of angles, and the quarter ofthe circumference for

the unity of their measures. It is divided into de-

cimal parts, and in order to obtain corresponding
measures on the earth, the quarter of the terres-

trial meridian has been divided into the same
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parts, which had been done at a very ancient

period ; for the measure of the earth mentioned

by Aristotle, the origin of which is unknown, as-

signs a hundred thousand stadia to the quarter of

the meridian. It was then only necessary to ob-

tain its exact length. Here two questions pre-

sent themselves to be resolved. What is the pro-

portion of an arc of the meridian measured at a

given latitude, to the entire circumference ? Are

all the meridians [similar ? In the most natural

hypotheses on the constitution of the terrestrial

spheroid, the difference of the meridians is in-

sensible, and the decimal degree of the middle

point answering to the fiftieth degree of latitude, is

the hundreth part of the quarter of the meridian.

The error of these hypotheses can only influence

geographical distances, where it is of no conse-

quence. The length of the quarter of the meri-

dian may therefore be conclnded from that of the

arc which traverses France from Dunkirk to the

Pyrenees, and which was measured in 1?40, by the

French Academicians. But as a (x) new measure

of a greater arc, in which more accurate methods
were employed, would excite an interest in favour

of the new system of measures calculated to ex-

tend its utility, it was resolved to measure the

arc of the terrestrial meridian contained between

Dunkirk and Barcelona. This great arc extend-

ed as far south as Formentera, and to the north

as far as the parallel of Greenwich, and ofwhich its

point of bisection, corresponds very nearly to the

mean parallel between the Pole and the Equator,
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has given for the length of the quarter of the me-

ridian 5130740 toises.

The ten millioneth part of this length was

taken for the metre or the unity of linear mea-

sures. The decimal above this was too great,

and the decimal below it was too small, and the

metre, the length of which is 0,513074 toises,

supplies advantageously the place of the toise

and ell, which were two of our measures in most

common use.

All the measures are derived from the metre, in

the simplest possible manner
; the linear mea-

sures are decimal multiplies and sub-multiplies of

it.

The unity of the measure ofcapacity is the cube

of the tenth of a metre
;

it is called litre. The

unity of the superficial measure ofland is a square,

the side ofwhich is ten metres ;
it is called are,

A stere is a volume of fire-wood, equal to a cubic

metre.

The unity of weight, which is termed gramme,
is the absolute weight of the cube of a millioneth

part of a metre of distilled water, when at its

maximum of density. By a remarkable pecu-

liarity, this maximum does not correspond to the

freezing point, but is above it by about four de-

grees of the thermometer. Water, as it falls below

this temperature, again dilates, and thus prepares
itself for that increase of volume, which it under-

goes in its passage from the fluid to the solid state.

Water has been selected as being one of the most

homogeneous substances, and which may be easily
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reduced to a state of purity. Le Ferre Gineau has

determined the gramme by a long series of delicate

experiments on a hollow cylinder of brass, the vo-

lume of which he measured with extreme care ;

the result of these experiments is, that the livre

being supposed equal to the twenty-fifth part of

the pile of fifty marcs, which is preserved at the

mint of Paris, is to the gramme in the ratio of

4.89,5058 to unity. The weight of a thousand

grammes, which is denominated the kilogramme

or decimal livre, is consequently equal to the livre,

the weight of the marc multiplied by 2,04288.

In order to preserve the measures of length, and

the unity of weights, standards of the metre

and of the kilogramme, executed under the im-

mediate superintendence of the committee to

whom the determination of these measures was

intrusted, and verified by them, were deposited

in the national archives, and at the observa-

tory of Paris. The standards of the metre do

not represent it, except at a definite temperature.

The temperature of melting ice was selected as be-

ing the most invariable, and independent of the

modifications of the atmosphere. The standards

of the kilogramme do not represent its weight,

except in a vacuum, in which case the pressure of

the atmosphere is insensible. In order to be able

to recover the metre at all times, without having
recourse to the measure of the great arc which

furnished it, it was necessary to determine its

relation to the length of the pendulum which
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vibrates seconds ; this has been effected by Borda

in the most accurate manner.

As there was necessarily a constant comparison
of all these measures with the livre in money,
it was particularly important to divide it into de-

cimal parts. Its unity has been denominated

the silver franc, its tenth part, decime, its hun*

dreth centieme. The values of golden pieces of

money, of gold and brass, have been referred to

the franc.

In order to facilitate the calculation of the fine

gold and silver contained in pieces of money, the

alloy was fixed at the tenth part of their weight,

and that of the franc has been made equal to five

grammes. Thus the franc being an exact multi-

ple of the unity of weights, it can be made use of in

weighing bodies, which is extremely useful in com-

merce.

Finally, the uniformity of the whole system of

weights and measures required that the day

should be divided into ten hours, the hour into

one hundred minutes, and the minute into one

hundred seconds. This division of the day, which

will be indispensable to astronomers, is of less

consequence in civil life, where there is little oc-

casion to imploy time as a multiplier and divisor.

The difficulty of adapting it to watches and clocks,

and our commercial relations with foreigners in

the sale of watches, will suspend its application

indefinitely. We may however be assured, that at

length the decimal division of the day will super-

sede its present division, which diners too much
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from the division of the other measures not to be

abandoned.
Such is the new system of weights and mea-

sures, presented by the Academy to the National

Convention, which immediately adopted it. This

system, founded on the measure of the terres-

trial meridians, corresponds equally to all na-

tions. It has no other relation with France

than what is furnished by the arc of the meridian

which traverses it. But the position of this arc is so

advantageous, that if the learned of all nations had

combined to fix an universal measure, they would

have selected it. To multiply the advantages of

this system, and to render it useful to the entire

world, the French government invited foreign

powers to participate in an object of such gene-
ral interest : many have sent eminent men of

science to Paris, who, in conjunction with the com-

mittee of the National Institute, have determined

by a discussion of observations and experiments,

the fundamental unites of weights and lengths ;

so that the determination of these unites may be

considered as a work common to the learned

who have assembled there, and to the people of

whom they are the representatives. It is there-

fore permitted to hope, that one day this system,

which reduces all measures and their computa-
tions to the scale, and to the simplest operations

of the decimal arithmetic, will be as universally

adopted as the system of numeration of which it

is the completion, and which, without doubt, had

to surmount the same obstacles which prejudices



1 24 OF THE FIGURE OF THE EARTH, &C.

and long established habit oppose to the introduc-
tion of the new measures

j but when once intro-

duced, these measures will be maintained by
this same power which, combined with that of

reason, secures to human institutions an eternal
duration.



CHAP. XV.

Of the flux and reflux of the sea, and of the daily

variation of its figure.

Although the earth, and the fluids which are

diffused over it, must long since have assumed the

state which corresponds to the equilibrium of the

forces which actuate them, nevertheless, the figure

of the sea changes every instant of the day, by

regular and periodical oscillations, which are de-

nominated, the ebbing and flowing of the sea. It

is a circumstance truly astonishing to behold, in

calm serene weather, the intense agitation of this

great fluid mass, of which the waves break with

violence against the shores. This phenomenon

gives rise to reflexions, and excites a strong desire

to penetrate the cause. But in order that we may
not be mislead by vague hypotheses, it is necessary

previously to know the laws of this phenomenon,
and to follow it in all its details. As a thousand

accidental causes may alter the regularity of these

phenomena, it is necessary to consider at once a

great number of observations, in order that the

effects of transient causes, mutually compensating

each other, the mean results may only indicate the

regular and constant effects. It is likewise ne-

cessary, by a judicious combination of observations,
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to make each of these effects which we wish to de-

termine, as conspicuous as possible. But this is

not sufficient. The results of observations being

always liable to error, it is necessary to know
the probability that these errors are confined with-

in given limits. Indeed it is evident, that for

the same probability, these limits are more res-

tricted, as the observations are more numerous ;

and this is the cause why observers have been

at all times anxious to multiply the number of ex-

periments and observations. But the degree of

accuracy of the results is not indicated by this

general impression ;
it does not make known the

number of observations necessary to obtain a

determinate probability. Sometimes even, it has

induced us to investigate the cause of phenomena
which arose from mere chance. It is by means

of the calculus of probabilities alone that we are

enabled to appreciate these objects, which ren-

ders its application in physical and moral sciences

of the greatest importance.
At the request of the Academy of Science, a

great number ofobservations were made in the be-

ginning of the last century, in our harbours : they
were continued every day at Brest during six

successive years. The situation of this port is

peculiarly favourable to this kind of observa-

tions. It communicates with the sea by a vast and

long canal, at the extremity of which this port has

been constructed. The irregularities in the motion

ofthe sea, are consequently much diminished when

they arrive at this port ; just as the oscillations
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which the motion of a vessel impresses on a column

of mercury in the barometer, are considerably

lessened by the contraction of the tube of this in-

strument. Moreover, the tides being very sensi-

ble at Brest, the accidental variations constitute

but a very inconsiderable part of them ; and if

we particularly consider, as I have done, the ex-

cess of the high water over the preceding and sub-

sequent low water, it will appear that the winds,

which are the principal cause of the irregularities

in the motion of the sea, have very little influence

on the results ; because if they raise the high

water, they elevate very nearly as much the pre-

ceding and subsequent low water
;
so that a very

great regularity has been observed in these re-

sults, considering the fewness of the observations

which have been made. Struck by this regularity,

I requested the government to order a new series

of observations to be made in the harbour of

Brest, during the entire period of the motion of

the nodes of the lunar orbit. This has been ac-

cordingly done; they commenced in the year 1806,
and have been uninterruptedly continued each

successive day. All these observations being dis-

cussed, in the manner I previously made mention

of, the following results have been obtained re-

specting which there cannot remain any doubt.

The sea rises and falls twice in the interval of

time comprehended between two consecutive re-

turns of the moon to the meridian, above the

horizon. The mean interval of these returns is

l
d

,035050, j thus, the interval between two con-
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secutive high tides is
d
,517525, so that there

are some solar days in which only one high tide

can be observed. The moment of low water

very nearly divides the extremities of this interval

equally at Brest, the sea is longer rising than

falling by above nine or ten minutes. Similar to (a)

all magnitudes, which are susceptible ofa maximum
or a minimum, the increase or diminution of the

tide near to these limits is proportional to the

square of the time elapsed, since the moments of

high or low water.

The elevation of the sea at high tide is not al-

ways the same
;

it varies every day, and its varia-

tions are evidently connected with the phases of

the moon. It is greatest about the time of full

or of new moon
;

it then diminishes and be-

comes least near to the time of quadrature. The

highest tide at Brest does not take place exactly

the day of the syzygy, but a day and a half later,

so that if the syzygy happens at the moment of

high tide, the greatest tide is the third that fol-

lows. In like manner, if the quadrature happens
at the moment of high water, the third tide which

follows will be the least. This phenomenon is ob-

served to be very nearly the same in all the ports
of France, although the hours of high and low

water are very different.

The greater the elevation of the sea at high

water, the more will it fall at the low water

which succeeds it. A total tide is termed half

the sum of the heights of two consecutive high

waters, above the level of the intermediate low
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water. The mean value of this total high water

at Brest, at its maximum near to the syzygies, and

when the sun and moon are in the equator, and

at their mean distances from the earth, is about

five metres and a half. In the same circumstances

it is less by one half in the quadratures.

From an attentive consideration of these re-

sults, it appears that the number of high waters

being equal to the number of passages of the

moon over the upper or inferior meridian, this

star has the principal influence on the tides
;

but from the circumstance of the tides in the

quadratures, being fuller than those in syzygies,

it follows that the sun also influences this phe-

nomenon, and in some measures modifies the

effect of the moon's influence. It is natural to

think that each of these influences, if they ex-

isted separately, would produce a system of tides,

of which the period would be the same as that of

the respective stars over the meridian, and that

from the combination of the two systems, there

should arise a compound tide, in which the lunar

high water would correspond to the solar high
water near to the syzygies, and to the solar low

water near to the quadratures. The declinations

of the sun and of the moon have a remarkable in-

fluence on the tides ; they diminish the total high
waters of the syzygies and of the quadratures ;

they increase by the same quantity the total high
waters of the solstices. Thus the received opinion
that the tides are greatest in the equinoctial sy-

zygies, is confirmed by an exact discussion of a

K
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great number of observations. However, several

philosophers, and especially Lalande, have questi-

oned the truth of this observation, because that

near to some solstices the sea rises to a considerable

height. It is here that the calculus of probabilities

is of such importance in enabling us to decide this

important question in the theory of the tides. It

has been found by applying this calculus to the ob-

servations, that the superiority of the syzygial

equinoctial tides and of the solstitial sides in qua-

dratures is indicated, with a probability much

greater than that on which most of the facts re-

specting which there exists no doubt, rest.

The distance of the moon from the earth in-

fluences, in a very perceptible manner, the mag-
nitude of the high waiter. All other circum-

stances being the same, they increase and dimi-

nish with the diameter and lunar parallax, but

in a greater ratio. The variations of the distance

of the sun from the earth, influences the tides in

a similar manner, but in a much less degree.

It is principally near the maxima and minima

of the total tides, that it is interesting to know
the law of their variation. We have seen that

the moment oftheir maximum at Brest follows the

time of the occurrence of the syzygy by a day and

a half. The diminution of the total tides which

are near to it, is proportional to the square ofthe

time which has elapsed from that instant, to that

of the intermediate low water, to which the total

tide is referred. Near the instant of the minimum,
which follows the quadrature by a day and a half,
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the increment of the total tide is proportional to

the square of the time which has elapsed since

this instant
;

it is very nearly double of the di-

minution of the total tides near to their maximum.

The declinations of the sun and of the moon

sensibly influence these variations ; the diminu-

tion of the tides near the syzygies of the solstices

is only about three fifths of the corresponding di-

minution near the syzygies of the equinoxes ; the

increment of the tides near to the quadratures is

twice greater in the equinoxes than in the solstices.

But the effect of the different distances of the

moon from the earth is still more considerable,

than that of the declinations. The diminution of

the syzygial high waters is nearly three times

greater near to the lunar perigee, than it is near

to its apogee.
A small difference has been observed between

the morning and evening tides, which must depend
on the declinations of the sun and of the moon,
as the differences disappear when these stars are

in the equator. In order to recognize them, we
should compare the tides of the first and of the

second day after the syzygy or the quadrature ;

the tides being then very near to the maximum
or the minimum, vary very little from one day to

another, which enables us easily to observe the

difference between two tides of the same day. It

is thus found at Brest, that in the syzygies of the

summer solstice, the tides of the morning of the

first and second day after the syzygy are smaller

than those of the evening by about a sixth of a

k 2
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metre very nearly ; they are greater by the same

quantity in the syzygies of the winter solstice. In

like manner, in the quadrature of the autumnal

equinox, the morning tides of the first and second

day after the quadrature, surpass those of the

evening by about the eighth part of a metre : they
are smaller by the same quantity, in the quadra-
tures of the vernal equinox.

Such are, in general, the phenomena which the

heights of the tides present in our ports ;
their in-

tervals furnish other phenomena, which we now

proceed to develope.

When the high tide happens at Brest at the mo-

ment of the syzygy, it follows the instant of mid-

night, or that of the true mid day by
d
,1780, ac_

cording as it happens in the morning or in the

evening : this interval, which is very different in

harbours extremely near to each other, is termed

the hour of port, because it determines the hours

of the tides relative to the phases of the moon.

The high tide which takes place at Brest at the

moment of the quadrature, follows the instant of

midnight, or of mid day, by 0,358.

The tide which is near to the syzygy, advances

or retards 270" for each hour by which it pre-

cedes or follows the syzygy ;
the tide which is

near to the quadrature, advances or retards 502"

for each hour it precedes or follows the quadra-

ture.

The hours of the high water in the syzygies

and in the quadrature, vary with the distances of

the sun and of the moon from the earth, and
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principally with the distance of the moon. In

the syzygies each minute of increase or diminu-

tion in the apparent semidiameter of the moon
f

advances or retards the hour of high water by
354". This phenomenon obtains equally in the

quadratures, but it is there three times less.

In like manner the declinations of the sun

and of the moon influence the hours of high

water in the syzygies and in the quadratures. In

the solstitial syzygies, the hour of high water ad-

vances by about two minutes, and it is retarded

by the same quantity in the equinoctical syzygies ;

on the contrary, in the equinoctial quadratures,

the hour of high water advances by about eight

minutes, and it is retarded by the same quantity

in the solstitial quadratures.

We have seen that the retardation of the tides

from one day to another is about 0,03505, in its

mean state ; so that if the tide happens at 0, 1

after the true midnight, it will arrive on the

morning after but one at
d
, 13505. But this re-

tardation varies with the phases of the moon. It

is the least possible near the syzygies, when the

total tides are at their maximum, and then it is

only
d
,02723. When the tides are at their mi-

nimum or near to the quadratures, it is the greatest

possible, and amounts to
d
,05207. Thus, the

difference of the hours of the corresponding high

water, at the moments of the syzygy and of the

quadrature, and which by what precedes is

3
d
,20642, increases, for the tides which follow in

the same manner these two phases, and becomes



184 OF THE FLLX AND REFLUX OF THE SEA, AND

very nearly equal to a quarter of a -day, relatively

to the maximum or the minimum of the tides.

The variations of the distances of the sun and

of the moon from the earth, and principally those

of the moon, influence the retardation of the

tides from one day to another. Each minute of

increase or of diminution of the apparent semi-

diameter of the moon, increases or diminishes

this retardation by 258" towards the syzygies.

This phenomenon obtains equally in the quadra-

tures, but it is then three times less.

The daily retardation of the tides varies also

with the declination of the two stars. In the sol-

stitial syzygies it is about one minute greater than

in its mean state ; it is smaller by the same quan-

tity in the equinoxes. On the contrary, in the

equinoctial quadratures it surpasses its mean mag-
nitude by about four minutes ;

it is less by the

same quantity in the solstitial quadratures.
The results which have been just detailed,

were deduced from a series of observations made
at Brest since the year 1807, up to the present day.

It was interesting to compare them with si-

milar results which have been deduced from ob-

servations made at the commencement of the last

century. I have found that all the results accord

with each other very nearly, their small differ-

ences being comprized withfo the limits to which

the errors of observations are liable. Thus, after

the interval of a century, Nature has been found

agreeing with herself.

Hence it appears that the inequalities of the
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heights and of the intervals of the tides have very

different periods, the one are equal to half a day
and to an entire day, others to half a month, to a

month, to half a year, and of a year ; and finally

others are the same as those of the revolutions of

the nodes and ofthe perigee of the lunar orbit, the

position ofwhich influences the height of the tides

by the effect of the declinations of the moon, and

of its distances from the sun. These phenomena
obtain indifferently in all harbours and on the

shores ofthe sea, but local circumstances, without

making any change in the laws of the tides, have

a considerable influence on their height and the

hour of high water for a given port.



CHAP. XVI.

Ofthe terrestrial atmosphere, and of astronomical

refractions.

A rare elastic and transparent fluid envelopes the

earth, and extends to a considerable height. It

gravitates (a) like all other bodies, and its weight
balances that of the mercury in the barometer. At
the parallel offifty degrees, the temperature being

supposed to be that of melting ice, and at the mean

height of the barometer at the level of the sea,

which height may be supposed to be Om,76, the

weight of the air is to that of an equal volume of

mercury, in the ratio of unity to 10477*9 ; (b)

hence it follows that if it be then elevated, by
10m4779, the height of the barometer will be de-

pressed very nearly one millimetre, and that if

the density of the atmosphere was uniform

throughout its entire extent, its height would be

7963 metres. But the air is compressible, and

if its temperature be supposed constant, its den-

sity, according to a general law for gases and

fluids reduced to vapours, is proportional to the

weight which compresses it, and consequently to

the height of the barometer. Its inferior strata

being compressed by the superior ones, are conse-

quently more dense than the latter, which become
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rarer according as we ascend above the earth's

surface. The height of these strata being sup-

posed to increase in arithmetic progression, their

density would diminish in geometric progression,

provided that the temperature of these strata was

the same. In order to understand this, suppose
a vertical canal to traverse two atmospherical stra-

ta indefinitely near to each. The part of the

more elevated stratum through which the canal

passes, will be less compressed than the corres-

ponding part of the lower stratum, by a quantity

equal to the weight of a small column of air in-

tercepted between these two parts. The tempe-
rature being supposed to be the same, the differ-

ence of compression of these two strata, is propor-
tional to the difference of their densities

; there-

fore this last difference is proportional to the

weight of the small column, and consequently to

the product of its density by its length, at least if

we abstract from the variation of gravity accord-

ing as we ascend. The two strata being sup-

posed indefinitely near to each other, the den-

sity of the column may be supposed the same as

that of the inferior stratum
; hence the differen-

tial variation of this last density is proportional to

the product of this density by the variation of the

vertical height ; consequently if this height varies

by equal quantities, the ratio of the differential

(c) of the density to the density itself will be con-

stant j which is the characteristic property of a

decreasing geometric progression, all the terms

of which are indefinitely near to each other.
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Hence it follows that the heights of the strata

increasing in arithmetical progression, their den-

sities diminish in geometric progression, and their

logarithms, whether hyperbolical or naperian, will

decrease in arithmetic progression.

These data have been advantageously applied

to the measurement of heights by means of the

barometer. The temperature of the atmosphere

being supposed to be constant throughout its en-

tire extent, the difference of the heights of the

two stations will be obtained by multiplying, by a

constant coefficient, the difference of the logar-

ithms of the observed heights of the barometer at

each station. One sole observation is sufficient

to determine this coefficient. Thus we have seen

that at zero of temperature, the height of the

barometer being Om,76000 at the inferior station,

and m
,75999 at the superior station, this last sta-

tion was elevated
m

, 104779 above the first ; con-

sequently the constant coefficient was equal to this

quantity divided by the difference of the tabular

logarthims of the numbers Om,76000, Om,7«5999,
which renders this coefficient equal to 18336m.

But this rule for measuring heights by means of

the barometer, requires several modifications,

which we proceed to develope.
The temperature (d) of the atmosphere is not

uniform
; it diminishes according as we ascend.

The law of this diminution changes every in-

stant
; but a mean result between several obser-

vations gives sixteen or seventeen degrees for the

diminution of the temperature relative to an
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height of three thousand metres. Now the air,

like all other bodies, expands by heat, and con-

tracts by cold ;
and it has been found by very ac-

curate experiments, that its volume being repre-

sented by unity, at the temperature of zero, it

varies like that of all gazes and vapours by

0,00375 for (f) each degree of the thermometer ;

it is therefore necessary to take these variations

into account in the computation of heights, for it

is evident that in order to produce the same de-

pression in the barometer, it is necessary to

ascend so much the higher, as the stratum of air

through which we must pass is rarer. But as it

is impossible to know accurately the variation of

the temperature, the simplest method of proceed-

ing is to suppose this temperature uniform, and a

mean between the temperatures of the two sta-

tions which are considered. The volume of the

column of air comprised between them being

increased in the ratio of this mean temperature,
the height due to the observed depression of the

barometer must be increased in the same ratio,

which comes to multiplying the coefficient 18336
111

,

by unity plus the fraction 0,00375, taken as often

as there are degrees in the mean (g) temperature.

As the aqueous vapours which are diffused through

the atmosphere are less dense than the air at the

same pressure and temperature, they diminish the

density of the atmosphere, and every thing else

being the same, they are more abundant when the

heat is greater ;
this effect will be partly taken into

account, by increasing a little the number 0,00375,
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which expresses the dilation of the air for each

degree of the thermometer. It has been ascer-

tained that the observations are sufficiently well

satisfied by making this fraction equal to

0,004 ;
we may therefore make use of this last

number, at least until by a long series ofobserva-

tions on the hygrometer, we are enabled to intro-

duce this instrument in the measurement of

heights by the means of the barometer.

Hitherto the force of gravity has been supposed
to be constant, but it has been already observed

that it is less according as we ascend in the at-

mosphere ;
this circumstance also contributes to

increase the height due to the depression of the

barometer, consequently this diminution of gra-

vity will be taken into account, if the constant

factor be increased by a small quantity. From a

comparison of a great number of observations of

the barometer, made at the base and at the sum-

mit of several mountains, the heights of which

were previously ascertained by trigonometrical

means, Raymond has determined this factor to

be equal to 18393
m

. But if the (h) diminution of

gravity be taken into account, a comparison of

the same data would only give this factor equal to

18336m . This last factor gives 10477,9 for the

ratio of the weight of mercury to that of an equal

volume of air at the parallel of fifty degrees ; the

temperature as indicated by the barometer being

zero, and the height of the mercury in the baro-

meter being
m
,76. Biot and Arrago having care-

fully weighed known measures of mercury and of
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air, found this ratio to be 10466,6 reduced to the

same parallel. But they made use of very dry

air, while that of the atmosphere is always mixed

with a greater or less quantity of aqueous vapour,

the actual quantity of which is determined by
means of the hygrometer : this vapour is lighter

than the air in the ratio of ten to seventeen very

nearly ; consequently direct experiment ought to

assign a less specific gravity to mercury than that

determined by barometrical observations. These

experiments reduce the factor 18336m to 183 l6m .

In order that it should be supposed equal to the

number 18393
m

, which is given by observations of

the barometer, when the variation of gravity is

not taken into account, we should assign to the

mean humidity of the atmosphere a value much
too great ;

thus the diminution of gravity is even

sensible in barometrical observations. The factor

18393 corrects very nearly the effect of this di-

minution, but another variation of gravity, name-

ly, that which depends on the latitude, ought also

to influence this factor. We have determined it for

a parallel of which the latitude may without sensi-

ble error be supposed equal to 50° : it should there-

fore be increased at the equator where the gravity

is less (i) than at this latitude. In fact, it is evi-

dent that it should be elevated more, in order to

pass from a given pressure of the atmosphere to

a pressure which is smaller by a determined quan-

tity ;
because in this interval the weight of the air

is less, the coefficient 18393
m must therefore vary

as the length of the pendulum which vibrates se-
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conds, which is greater or less according as the

gravity diminishes or increases. It is easy to in-

fer from what has been previously stated relative

to the variations of this length, that the product

of Qft*,!^ by the cosine of twice the latitude,

must be added to this coefficient.

Finally, a slight correction should be applied to

the heights of the barometer, depending on the

difference of temperature of the mercury of the

barometer at the two stations. In order to deter-

mine this difference accurately, a small mercurial

thermometer is inchased in the frame of the ba-

rometer, so that the temperature of the mercury

of these two instruments may be very nearly the

same. In the colder station the mercury is den-

ser, and consequently the column of mercury of

the barometer is diminished. In order to reduce

it to the length which it would (k) have, if the

temperature was the same as at the warmer sta-

tion, it should be increased by its 5412mth
part,

as often as there are degrees of difference be-

tween the temperatures of the mercury at the

two stations. •

Hence the following appears to be the simplest

and most exact rule for measuring heights by
means of the barometer. First, the height of the

barometer in the colder station must be corrected

in the manner just specified. Then to the factor

18393
m

, should be added the product of 26*, 164

by the cosine of twice the latitude. This fac-

tor, thus corrected, should be multiplied by the

tabular logarithm of the ratio of the greatest to
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the least corrected height of the barometer. Fi-

nally, this product must be multiplied by twice

the sum of the degrees of the thermometer which

indicates the temperature of the air at each sta-

tion, and this product, divided by one thousand,

should be added to the preceding ; the sum will

give very nearly the elevation of the superior sta-

tion above the inferior, especially if the observa-

tions of the barometer are made at the most fa-

vourable time of the day, which appears to be at

noon.

The air is invisible in small masses, but the

rays of light reflected by all the strata of the ter-

restrial atmosphere, produce a sensible impression.

They (/) give it a blue shade which diffuses a tint

of the same colour over all objects perceived at a

distance, and which forms the celestial azure.

This blue vault, to which the stars appear to be

attached, is therefore very near to us : it is only
the terrestrial atmosphere, beyond which these

bodies are placed at (m) immense distances. The
solar rays, which its particles reflect to us in

abundance before the rising and after the setting

of the sun, produce the dawn and twilight, which,

extending to more than twenty degrees of distance

from this star, proves that the extreme particles

of the atmosphere are elevated at least sixty thou-

sand metres. If the eye could distinguish and re-

fer to their true place, the points of the exterior

surface of the atmosphere, we should see the

heavens like the segment of a sphere formed by
the portion of the surface which would be cut off
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by a plane tangent to the earth
;
and as the

height of the atmosphere is very small relatively

to the radius of the earth, the sky would appear

to us under the form of a flattened vault. But

although the limits of the atmosphere cannot

be distinguished, yet as the rays which it trans-

mits come from a greater depth at the horizon

than at the zenith, we ought to consider it as

more extended in the first direction. To this

cause must be also combined the interposition of

objects at the horizon, which contributes to in-

crease the apparent distance of that part of the

sky we refer to it ; the sky therefore should ap-

pear to us very much flattened, like a small portion

of a sphere. A star, elevated twenty-six degrees

above the horizon, appears to divide into two

equal parts the length of the curve which the

section of the surface of the sky by a vertical plane

forms from the horizon to the zenith
;
hence it

follows that if this curve be an arc of a circle, the

horizontal radius of the apparent celestial vault

(n) is to its vertical radius very nearly as three

fourths is to unity ;
but this ratio varies with the

causes of the illusion. As the apparent magnitudes

of the sun and of the moon are proportional to

the angles under which they are seen, and to the

apparent distance of the point of the sky to which

they are referred, they appear greater at the ho-

rizon than at the zenith, although they subtend a

smaller angle.

The rays of light do not move in a right line

through the atmosphere, they are continually
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inflected towards the earth. As an observer be-

holds objects in the direction of the tangent to

the curve which they describe, he sees them more

elevated than they really are, so that the stars

appear above the horizon when they are depressed
below it. By this means the atmosphere, by in.

fleeting the rays of the sun, lengthens the time

during which he appears to us, and thus prolongs
the duration of the day, which is further increased

by the morning dawn and twilight. It is extreme-

ly important to astronomers, to know the laws

and quantity of the refraction of light in our at-

mosphere, in order to be able to determine the

position of the stars. But before We present
the result of their researches on this subject, we
shall briefly explain the principal properties of

light.

A ray of light, in passing from one transparent

medium into another, approaches to, or recedes

from the perpendicular to the surface which se-

parates them, in such a manner, that the sines of

the two angles which its directions make with this

perpendicular, the one before and the other after

its entrance into the new medium, are in a con^

stant (0) ratio, whatever be the magnitude of

these angles. But light, when refracted, presents

a remarkable phenomenon, which has led to the

discovery of its nature. A ray of solar light re-

ceived into a dark chamber forms, after its pas-

sage through a prism, an oblong image variously

coloured ;
this ray is a pencil of an infinite number
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ofrays of different colours, which are separated by
the prism in consequence of their different refran-

gibility. The most refrangible ray is the violet,

then the indigo, the blue, the green, the yellow,
the orange and the red. But though we only

distinguish seven species of rays, the continuity
of the image proves that there exists an infinite

variety of shades, which approach each other

by insensible gradations of colours and refrangi-

bility. All these rays being collected by means
of a lens, reproduce the white light of the sun,

which is therefore only a mixture of all the ho-

mogeneous or simple colours in determined pro-

portions.

When a ray of an homogeneous colour is per-

fectly separated from the others, it does not

change either its refrangibility or colour, what-

ever reflexions or refractions it may undergo ;

therefore its colour is inherent in its nature, and
not a modification which light receives in the me-
dia which it traverses. However, a similitude of

colour does not prove a similitude of light. If

several of the differently coloured rays of the so-

lar image, decomposed by the prism, be mixed to-

gether, a colour perfectly similar to one of the

simple colours of this image will be formed
j thus

the mixture of the homogeneous red and yellow

produces an orange similar in appearance to the

homogeneous orange. But by refracting the rays

of this mixture by a second prism, the compo-
nent colours can be separated and made to re-

appear, while the rays of the homogeneous orange
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remain unaltered. The rays of light are reflected

when they fall on a mirror, making, with the per-

pendicular to its surface, the angles of reflexion

equal to the angles of incidence. The refractions

and reflections which rays oflight undergo in drops
of rain, produce the rainbow, the explanation of

which, founded on a rigorous computation which

satisfies all the phenomena, is one of the most

beautiful results of natural philosophy.
Most bodies decompose the light which they

receive
; they absorb one part and reflect the

other in every direction
; they appear blue, red,

green, &c. according to the colour of the rays

which they reflect. Thus the white light of the

sun diffusing itself over all (p) natural objects,

decomposes and reflects to our eyes an infinite

variety of colours.

After this short digression, we return to astro-

nomical refractions. From very accurate experi-

ments it has been ascertained that the refraction

oftheairis almost independent of its temperature,
and proportional to its density. In passing from a

vacuo into air, of which the temperature is equal

tothat of melting ice, and under a pressure measure

ed by a height of the barometer equal to 7G centu

metres, a ray oflight is so refracted that the sine of

incidence is to the sine of refraction as 1 ,000294332 1

to 1. Therefore in order to determine the rout of

arayof light through the atmosphere, it is sufficient

toknow the law of the densityof its strata
;
but this

law, which depends on their temperature, is very

complicated, and varies for every instant of the

l2
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day. We have 6een already, that when the at-

mosphere is throughout at the temperature of

zero, the density of the strata
(<?)

diminish in

geometric progression ;
and it has been found by

analysis, that the height of the barometer being

Ora

,76, the refraction is then 7391" at the horizon.

It would be but 5630" if the density of the strata

diminished in arithmetic progression, and va-

nished at the surface. The horizontal refraction

which is observed is about 6500", a mean between

these limits. Consequently the law of the dimi-

nution of the density of the atmospherical strata

is very nearly a mean between these two pro-

gressions. By adopting an hypothesis which

participates of the two, we are enabled to repre-

sent at once all the observations of the baro-

meter and thermometer, according as we ascend

in the atmosphere, and also the astronomical

refractions, without having recourse, as some

natural philosophers have done, to a particular

fluid, which, being combined with the atmosphe-
ric air, refracts the light.

When the apparent altitude of the stars above

the horizon exceeds eleven degrees, their refrac-

tion depends only sensibly on the state of the ba-

rometer and thermometer at the place of the ob-

server, and it is very nearly proportional to the

tangent of the apparent zenith distance of the star,

diminished by three times and one fourth of the

refraction corresponding to (r) this distance at the

temperature of melting ice, the height of the ba-

rometer being Ora

,76. It follows from the pre-
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ceding data that at this temperature, and when
the height of the barometer is seventy-six centi-

metres, the coefficient, which multiplied by this

tangent gives the astronomical refraction, is

187",24 ; and what is very remarkable, a compa-
rison of a great number of astronomical observa-

tions gives the same result, which must there-

fore be supposed extremely accurate
; but it

varies with the density of the air. Each degree
of the thermometer increases by 0,00375 the vo-

lume of this fluid, its unity being assumed at

zero of the temperature, it is therefore necessary
to divide the coefficient 187",24 by unity, plus the

product of 0,00375 into the number of degrees
indicated by the thermometer

; moreover, the

density ofthe air is, every thing else beingthe same,

proportional to the height of the barometer ; it is

therefore necessary to multiply the preceding
coefficient by the ratio of this height to Orn

,76, the

column of mercury being reduced to the zero of

temperature. By means of these data a very
exact table of refractions may be constructed, from

eleven degrees of apparent altitude to the zenith,

in which interval almost all astronomical observa-

tions are made.

This table will be independent of all hypo-
theses relative to the diminution of the density of

the atmospherical strata, and might as well be

applied at the summit of the highest mountains

as at the level of the sea. But as the gravity va-

ries with the elevation and latitude, it is evident,

that as at the sametemperature, equal heightsof the
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barometer do not indicate an equal density in the

air, this density must be less in those places where

the gravity is less. Thus the coefficient 187",24,

determined for the parallel of 50°, must at the sur.

face of the earth (s) vary as the weight, it is

therefore necessary to subtract from it the pro-

duct of 0",53 by the cosine of twice the latitude.

The table of which we have been speaking, sup-

poses that the constitution of the atmosphere is

every where and always the same, which has

been proved by direct experiment. It is now as-

certained that our atmosphere is not an homo-

geneous substance, and that in everyhundred parts,

H contains 79 parts of azotic gas, and 21 parts of

oxygen gas, a gas remarkably respirable, which

is indispensably necessary for the combustion of

bodies (t) and the respiration of animals, which

is in fact but a slow combustion, the principle

source of animal heat ; three or four parts of car-

tonic acid air are diffused in a thousand parts of at-

mospheric air. This air, taken at all seasons, in

the most remote climates, on the summits of the

highest mountains, and even at greater heights,

has been most carefully analyzed, and it has al-

ways been found to contain the same proportions
of azotic and oxygen gas. A slight envelope filled

with hydrogen gas, the rarest of all elastic fluids,

ascends with the bodies which are attached to it,

untill it meets with a stratum of the atmosphere

sufficiently rare for it to remain (V) in equilibrium.

By this means, for the fortunate discovery of

which we are indebted to the French philosophers,
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man has extended his power and sphere of ac-

tion
; lie may launch into the air, traverse the

clouds, and interrogate nature in the elevated re-

gions of the atmosphere formerly inaccessible.

The ascent from which the greatest advantages
have been derived to the sciences, was that of

Gay-Lussac, who ascended to a height of seven

thousand and sixteen metres above the level of the

sea, the greatest height to which an aeronaut has

hitherto attained, and which is higher than the top
of Chimboraco,oneofthehighestknownmountains,

by about five hundred metres. At this elevation,

he measured the intensity of the magnetic force,

the inclination of the magnetized
:

needle, which

he found to be the same as at the surface of the

earth. At the instant of his departure from Pa-

ris, near to ten o'clock A. M. the height of the

barometer was Om,7652, the thermometer indi-

cated 30°,7, and a hygrometer made of hair, 60°,

Five hours after, at the greatest height to which

he ascended, the same instruments indicated re-

spectively
m
,3288 ;

—9°>5 and 33°. A balloon hav-

ing been filled with the air of these elevated strata,

and its contents being then carefully analyzed,

the contents were found to be precisely the same

as those of the lowest strata of the atmosphere.

It is not more than half a century since astro-

nomers introduced the consideration of the heights

of the barometer and thermometer, into the tables

of refractions. The great precision which is now

required in instruments and astronomical obser-

vations, makes it a matter of importance to as-
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certain whether the humidity of the atmosphere
has any influence on the refracting force, and con-

sequently to know whether it is necessary to take

into account the indications of the hygrometer.
In order to supply the defect of direct experi-

ment on this subject, let us suppose (??) that the

action of water and vapour on light are propor-

tional to their densities, which hypothesis is ex-

tremely probable from the circumstance, that

changes in the constitution of bodies much more

essential, than the reduction of liquids into va-

pours do not alter in a sensible degree the relation

oftheir action on light, to their density. In this hy-

pothesis, the refracting power of the aqueous va~

pour may be inferred from the refraction which a

ray of light experiences in passing from air into

water, which refraction has been exactly mea-

sured. It has been thus ascertained that this re-

fracting power surpasses that of air reduced to the

same density as the vapour ;
but at equal pres-

sures, the density of the air surpasses that of va-

pour in very nearly the same ratio
;
hence it fol-

lows that the refraction due to the aqueous va-

pour diffused through the atmosphere, is very

nearly the same as that of the air of which it oc-

cupies the place, and that consequently the effect

of the humidity of the air on the refraction is

insensible. Biot has confirmed this result by
direct experiments, which shew moreover that the

temperature does not influence the refraction,

except so far as it produces a change, in the den-,

sity o£ the air. Finally, Arrogo ascertained, by
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an ingenious and accurate method, that the in-

fluence of the humidity of the air on its refraction

is altogether insensible.

It is supposed in the preceding theory that the

atmosphere is perfectly calm, so that the density

is every where the same at equal heights above

the level of the sea. But this hypothesis is af-

fected by winds and inequalities of temperature,
which must influence in a very sensible manner
the astronomical refractions. However perfect

astronomical instruments may be rendered, the

effect of these perturbating causes, if it is consider-

able, will be always an obstacle to the extreme

accuracy of observations, which should be multi-

plied considerably in order to annihilate them.

Fortunately we are assured that this effect can

never exceed a small number of seconds.

The atmosphere weakens the light of the stars,

especially near the horizon, where their rays

transverse through a greater extent of it. It fol-

lows, from the experiments of Bouguer, that when

the height of the barometer is seventy- six centi-

metres, if the intensity of the light ofa star at its

entrance into the atmosphere be represented by

unity, its intensity when it arrives at the observer,

the star being supposed to be in the zenith, will

be reduced 0,8128. The height of the homoge-
neous atmosphere, of which the temperature was

zero, would in this case be 7945
m

. (x) Now it

is natural to suppose that the extinction of a ray

of light which traverses the atmosphere, is the

same as in this hypothesis, since it meets with
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the same number of aerial particles, consequently a

stratum ofair ofthe preceding density, and ofwhich
the thickness was 7945

m
, would reduce the force

of light to
ra

,8123. It is easy to determine from
hence the diminution of light in a stratum of air

of the same density, and of any given thickness
;

for it is evident that if the density of light is re-

duced to a fourth in traversing a given thickness,
an equal thickness will reduce this fourth to a

sixteenth of its primitive value
; hence it appears

that while the thickness increases in arithmetical

progression, the intensity of light decreases in

geometrical progression ; consequently its lo-

garithms are proportional to the thickness. Thus
in order to obtain the tabular logarithm of the

intensity of light after it has traversed any given

thickness, it is necessary to multiply
—0,0902835

(which is the tabular logarithm of 0,8123J by the

ratio of this thickness to 794.5
m

;
and if the den-

sity of the air is greater or less than the preceding,
it is necessary to diminish this logarithm in the

same ratio.

In order to determine the diminution of the

light of the stars with respect to their apparent
altitude, we may suppose the luminous ray to

move in a canal, the air in this canal being re-

duced to the preceding density. The length of

the column of air thus reduced, will determine the

extinction of the light of the star which is con-

sidered
;
now we may suppose that from twelve

degrees of apparent elevation to the zenith, the

path of the light of the stars is rectilineal, and we
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can, in this interval, consider the atmospherical
strata as planes parallel to each other

; then

the thickness of each stratum in the direction of

the ray of light, is to its thickness in a vertical di-

rection, as the secant of the apparent distance of

the star from the zenith, (j/) is to radius. There-

fore if this secant be multiplied by —0,0902835,

and by the ratio of the height of the barometer to

Om,76, and if this product be then divided by unity

plus 0,00375 multiplied by the number of degrees
in the thermometer, we shall have the logarithm
of the intensity of light of the star. This rule,

which is extremely simple, will determine the ex-

tinction of the light of the stars on the summit of

mountains and at the level of the sea, and may be

usefully applied, both in correcting the observa-

tions ofthe eclipses of Jupiter's satellites, and also

in estimating the intensity of solar light in the fo-

cus of burning glasses. It ought however to be

observed, that vapours floating in the air influence

considerably the extinction of light. The serenity

of the sky and the rarity of the air make the light

of the stars more brilliant on the tops of elevated

mountains, and if we could transport our great

instruments to the summit of the Cordilieres, there

is no doubt but that we should observe several

celestial phenomena, which a thicker and less

transparent atmosphere renders invisible in our

climates.

The intensity of the light of the stars at small

altitudes like to their refraction, depends on the

density of the elevated strata of the atmosphere.
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If the temperature was every where the same,

the logarithms of the intensities of light would be

proportional to the astronomical refractions (z)

divided by the cosines of the apparent heights ;

and then this intensity at the horizon would be

reduced to about the four thousandth part of its

primitive value
;

it is on this account that the sun,

whose splendour at noon is too dazling to be

borne, can be contemplated without pain at the

horizon.

We can by means of these data determine the

influence of our atmosphere in eclipses. As it re-

fracts the rays of the sun which traverse it, it in-

flects them into the cone of the terrestrial sha-

dow, and as the horizontal refractions surpasses

the semi sum of the parallaxes of the sun and

moon, the centre of the lunar disk supposed to ex-

ist on the axis of the cone, receives from the up-

per and lower limbs of the earth the rays which

issue from the same point of the sun's surface ;

this centre would be therefore more illuminated

than in full moon, if the atmosphere did not in a

great measure extinguish the light which reaches

it. If the light of this point at full moon be taken

for unity, it is found by applying the analysis to

the preceding data, that the light is 0,02 in the

central apogean eclipses, and only 0,0036, or about

six times less, in the central perigean eclipses. If

it then happens by an extraordinary concurrence

of circumstances, that the vapours absorb a con-

siderable part of this feeble light, when it traverses

the atmosphere (a) in passing from the sun to the
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moon, this last star will be altogether invisible.

The history of astronomy furnishes us with ex-

amples, of rare occurrence indeed, of the total

disappearance of the moon in eclipses. The red

colour of the sun and moon at the horizon shews

that the atmosphere gives a free passage to the

rays of this colour, which, on this account, is that

of the moon when eclipsed.

In eclipses of the sun, the obscurity which they

produce is diminished by the light reflected by the

atmosphere. Suppose in fact, the spectator to be

placed in the equator, and that the centres of the

sun and moon are in his zenith. If the moon
was in perigee, the sun would be in the direction

of the apogee ;
in this case the obscurity would be

very nearly the most profound, and its duration

would be about five minutes and a half. The di-

ameter of the shadow projected on the earth willbe

the twenty-two thousandth part of that of the earth,

and six times and a half less than the diameter

of the section of the atmosphere by the plane of

the horizon, at least if we suppose the height of

the atmosphere equal to a hundreth part of the

earth's radius, which is the height inferred from

the duration of twilight ;
and it is very probable

that the atmosphere reflects sensible rays from

still greater heights. It appears therefore, that in

eclipses, the sun illuminates the greater part of

the atmosphere which is above the horizon. But

it is only illuminated by a portion of the sun's

disk, which increases according as the atmosphe-
rical molecules are more distant from the ze-
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nith ; in this case the solar rays traverse a greater
extent of the atmosphere, in passing from the

sun to these molecules, and after this in return-

ing by reflexion to the observer, they are suffi-

ciently diminished in intensity to enable us to

perceive stars of the first and second magnitude.
Their tint, participating of the blue colour of the

sky, and of the red colour of twilight, diffuses

over all objects a sombre colour, which combined
with the sudden disappearance of the sun, fills

all animals with terror.



BOOK THE SECOND.

OF THE REAL MOTIONS OF THE HEAVENLY BODIES.

Provehimur portu, terras urbesque recedunt.

A COMPARISON of the principal appearances
of the heavenly bodies, of which the exposition

has been given in the preceding book, has led us

to make the planets move round the sun, which

in its revolution round the earth, carries along
with it the foci of their orbits. But the appear-
ances would be precisely the same, if the earth

was transported, like the other planets, about the

sun : then this star would be the centre ofthe pla-

netory motions in place of the earth. It is conse-

quently of the greatest importance to the progress
ofastronomy, to ascertain which ofthese two cases

obtains in nature. We therefore proceed, under

the guidance of induction and analogy, to deter-

mine, by a comparison of phenomena, the real

motions which produce them, and thence to

ascend to the laws of these motions.



CHAP, t

Of the motion of rotation of the earth.

When we reflect on the diurnal motion to which

all the heavenly bodies are subject, we evidently

recognize the existence of one general cause

which moves, or appears to move them about the

axis of the world. If it be considered that these

bodies are detached from each other, and placed
at very different distances from the earth j

that

the sun and stars are much more removed than

the moon, and that the variations of the appa-
rent diameters of the planets indicate great

changes in their distances
; lastly, that the

comets traverse the heavens freely in all possible

directions, it will be extremely difficult to con-

ceive that one and the same cause impresses on

all these bodies, a common motion of rotation
-.

but since the heavenly bodies present the same

appearances to us, whether the firmament carries

them about the earth, supposed immoveable, or

whether the earth itself revolves in a contrary di-

rection, it seems much more natural to admit

this latter motion, and to regard that of the hea-

vens as only apparent.
The earth is a globe, of which the radius is

only about four thousand metres
;
the magnitude

of the sun is, as we have seen, incomparably

greater. If its centre coincided with that of

the earth, its volume would embrace the orb of
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the moon, and extend as far again ;
from which

we may form some judgment of its immense mag-
nitude, besides its distance from us is about twenty-

three thousand times the semidiameter of the

earth. Is it not infinitely more probable to sup-

pose that the globe which we inhabit revolves on

an axis, than to imagine that a body so consider-

able and distant as the sun, should revolve with

the rapid motion which it should have in order

that it might revolve in a day, about the earth ?

What immense force must it not then require to

keep it in its orbit, and to counterbalance its cen-

trifugal force. Each of the stars presents similar

difficulties, all of which are removed by suppos-

ing the earth to revolve on its axis.

It has been already observed, that the pole of

the equator appears to mo\;e slowly about that

of the ecliptic, from whence results the pre-

cession of the equinoxes. If the earth be im-

moveable, the pole of the equator will be equally

so, because it always corresponds to the same

point of the earth's surface
; consequently the ce-

lestial sphere moves round the poles of the eclip-

tic, and in this motion, it carries along with it all

the heavenly bodies. Thus the entire system,

composed of so many bodies, differing from each

other, in their magnitudes, their motions, and

their distances, would be again subject to a gene-
ral motion, which disappears, and is reduced to

a mere appearance, if the axis of the earth be

supposed to move round the poles of the ecliptic.

Carried along with a motion in which all the

M
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surrounding bodies participate, we are like to a

mariner borne by the winds over the seas. He

supposes himself to be at rest, and the shore, the

hills, and all the objects situated beyond the ves-

sel, appear to him to move. But on comparing
the extent of the shore, the plains, and the height

of the mountains, with the smallness of his ves-

sel, he is enabled to distinguish the apparent mo-

tion of these objects from a real motion to which

he himself is subject. The innumerable stars

distributed through the celestial regions are, re-

latively to the earth, what the shore and moun-

tains are with respect to the navigator ;
and the

very same reasons which convince the navigator

of the reality of his own motion, evince to us that

of the earth.

These arguments are likewise confirmed by

analogy. A motion of rotation has been observ-

ed in almost all the planets, the direction of

which is from west to east, similar to that

which the diurnal motion of the heavens seems

to indicate in the earth. Jupiter, whose mag.
nitude is considerably greater than that of the

earth, revolves on an axis, in less than half a

day. An observer on his surface would suppose that

the heavens revolved round him in that time ; yet

that motion would be only apparent. Is it not

therefore reasonable to suppose that it is the same

with that which we observe on the earth ? What
confirms, in a very striking manner, this analogy

is, that the earth and Jupiter are flattened at the

poles. In fact, we may conceive that the eentri-
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fugal force which tends to make every particle of

a hody recede from its axis of rotation, should

flatten it at the poles and elevate it at the equa-

tor. This force should likewise diminish that of

gravity at the equator ;
and that this diminution

does actually take place, is proved by experiments
which have been made on the lengths of pendu-
lums. Every thing therefore leads us to conclude

that the earth has really a motion of rotation,

and that the diurnal motion of the heavens is

merely an illusion which is produced by it
;
an il-

lusion similar to that which represents the heavens

as a blue vault to which all the stars are attach-

ed, and the earth as a plain on which it rests.

Thus astronomy has surmounted the illusions of

the senses, but it was not till after they were dis-

sipated by a great number of observations and

computations, that man at last recognized the

motion of the globe which he inhabits, and its

time position in the universe.

m 2



CHAP. If.

Of the motion of the earth about the sun.

Since it appears from the preceding chapter that

the diurnal revolution of the heavens is an illu-

sion produced hy the rotation of the earth, it is

natural to think that the annual revolution of the

sun, carrying with it all the planets, is also an il-

lusion arising from the motion of translation of

the earth about the sun. The following consi-

derations remove all doubt on this subject.

The masses of the sun and of several of the

planets are considerably greater than that of the

earth
;

it is therefore much more simple to make
the latter to revolve about the sun, than to put
the whole solar system in motion about the earth.

What a complication in the heavenly motions

would the immobility of the earth suppose ? What
a rapid motion must be assigned to Jupiter, to

Saturn, (which is nearly ten times farther from

the sun than we are) and to Uranus (which is

still more remote,) to make them revolve about

us every year, while they move about the sun. ?

This complication and this rapidity disappear en-

tirely by supposing the earth to revolve about the

sun, which motion is conformable to a general
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law, according to which the small celestial bodies

revolve about the larger ones, which are situated

in their vicinity.

The analogy of the earth with the planets, con-

firms the supposition of the earth's motion
; like

Jupiter it revolves on its axis, and is accompanied

by a satellite. An observer at the surface of Ju-

piter, would suppose that the whole solar system
revolved about him, and the magnitude of the

planet would render this illusion less improbable
than for the earth. Is it not therefore natural to

suppose that the motion of the solar system round

us, is likewise only an illusion ?

Let us transport ourselves in imagination to the

surface of the sun, and from thence let the earth

and planets be contemplated. All these bodies

would appear to move from west to east ; this

identity in the direction is an evident proof of the

motion of the earth ; but what evinces it to a de-

monstration, is the law which exists between the

times of the revolutions of the planets, and their

distances from the sun. The angular motions are

slower for those bodies which are more removed
from the sun, and the following remarkable rela-

tion has been observed to exist between the times

and the distances, namely, that the squares of the

times are as the cubes of their mean distances from

this star. According to this remarkable law, the

duration of the revolution of the earth, supposed
to move above the sun, should be exactly a side-

real year. Is not this an incontestable proof that

the earth moves like the other planets, and that
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it is subject to the same laws ? Besides, would it

not be absurd to suppose that the terrestrial globe,

which is hardly visible at the sun, is immoveable

amidst the other planets which are revolving about

this star, which would itself be carried along with

them about the earth ? Ought not the force which

balances the contrifugal force, and retains the

planets in their respective orbits, act also on the

earth, and must not the earth oppose to this ac-

tion the same centrifugal force ? Thus the con-

sideration of the planetary motions, as seen from

the sun, removes all doubt of the real motion of

the earth. But an observer placed on this body,

has besides a sensible proof of this motion, in the

phenomena of the aberation which is a necessary

consequence of it, as we shall now explain.

About the close of the 17th century, Roemer
observed that the eclipses of Jupiter's satellites

happened sooner than the computed time near

the oppositions of this planet with the sun, and

that they occurred later towards the conjunct
tions ; this led him to suspect that the light was not

transmitted instantaneously (a) from these stars

to the earth, and that it employed a sensible in-

terval in passing over the diameter of the orbit of

the sun. In fact, Jupiter being in the oppositions,

nearer to us than in the conjunctions, by a quan-

tity equal to this diameter, the eclipses must

happen sooner in the first case than in the second,

by the time which the light takes to traverse the

solar orbit. The law of the retardation observed

in these eclipses, corresponds so exactly to this
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hypothesis, that it is impossible to refuse our as-

sent to it. It follows therefore that light employs

57 1", in coming from the sun to the earth.

Now an observer at rest would see the stars in

the direction of their rays, but this is not the case,

on the hypothesis that he moves along with the

earth. In order to reduce this case to that of a

spectator at rest, it would be sufficient to transfer

in a contrary direction both to the stars, to their

light, and to the observer himself, the motion

with which he is actuated, which does not make

any change in the apparent position of the stars
;

for it is a general law of optics, that if a common
motion be impressed on all the bodies of a sys-

tem, there will not result any change in their ap-

parent situation. Suppose then that at the in-

stant a ray of light penetrates the atmosphere, a

motion equal and contrary to that of the observer

be impressed on the air and the earth
;
and let

us consider what effects this motion ought to pro-

duce in the apparent position of the star from

which the ray emanates. We may leave out of

the question the consideration of the motion of

rotation of the earth, which is about sixty times

less at the equator itself, than that of the earth

about the sun, and we may also, without sensible

error, suppose that all the rays of light which

each point of the star's disk transmits to us, are

parallel to each other, and to the rays which

would pass from the centre of the star to that of

the earth, on the hypothesis that it was trans-

parent. Thus the phenomena which these stars
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would present to a spectator situated at the

centre of the earth, and which depend solely on

the motion of light combined with that of the

earth, are very nearly the same for each observer

on its surface. Finally, we may neglect the small

excentricity of the earth's orbit. This being pre.

mised, in the interval of ti£f¥\ that light takes to

traverse the radius of the earth's orbit, the earth

describes a small arc of this orbit equal to 62"5 ;

now it follows from the composition of motions,

that if through the centre of the star a small circle

parallel to the ecliptic be described, the diameter

of which subtends in the heavens an arc of 125",

the direction of the motion of light, when com-

pounded with the motion of the earth applied in

a contrary direction, meets this circumference

at the point where it is intersected by a plane

drawn through the centre of the star and of the

earth tangentially to the terrestrial orbit, the star

must therefore appear to move in this circumfer-

ence, and to describe it in (c) a year, in such a

manner that it is always less advanced by one

hundred degrees, than the sun in his apparent
orbit.

This is precisely the phenomenon which has

been explained in the eleventh chapter of the first

book, from the observations of Bradley, to whom
we are indebted for its discovery and that of its

cause. The true place of the stars is the centre

of the small circumference which they appear to

describe ; their annual motion is only an illusion

produced by the combination of the motion of
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light with that of the earth. From its evident

relations with the position of the sun, it might be

justly supposed that it was only apparent ; but

the preceding explanation proves it to a demon-

stration. It also furnishes a sensible proof of the

motion of the earth about the sun, in the same

manner as the increase of degrees and of the

force of gravity from the equator to the poles,

proves the rotation of the earth on its axis.

The aberation of light affects the positions of

the sun, the planets, the satellites, and the co-

mets, but in a different manner from the fixed

stars, in consequence of their respective motions.

In order to divest them of this, and to obtain the

true position of the stars, we should impress at

each instant, on all these bodies, a motion equal
and contrary to that of the earth, which by this

means becomes immoveable, and which, as has

been already observed, neither changes their re-

spective positions, nor their appearances. It is

evident then that the star, at the moment that it is

observed, has not the direction of the rays of light

which strike our eye ; it deviates from it in con-

sequence of its real motion combined (d) with that

of the earth, which we suppose to be impressed on

it in a contrary direction. The combination of

these two motions, when observed from the earth,

produces the apparent, or as it is termed thegeocen-
trick motion. Therefore the true position of the

star will be obtained by adding to its observ-

ed geocentrick longitude or latitude, its geocen-
trick motion in longitude and in latitude, in the
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interval of time which light takes to come from
the star to the earth. Thus the centre of the sun

always appears to us less advanced in its orbit by
62' ,5, than if the light was transmitted to us in-

stantaneously.

The aberration changes the apparent relations of

the celestial phenomena with respect both to their

situation and duration. At the moment we see

them they no longer exist. The satellites of Ju-

piter have ceased to be eclipsed twenty-live or

thirty minutes, when we observe the termination

of the eclipse; and the variations of the change-
able stars precede by several years, the instant at

which they are observed. But the cause of all

these illusions being well understood, we can al-

ways refer the phenomena of the solar system, to

their true place and exact epoch.
The consideration of the celestial motions leads

us, then, to displace the earth from the centre of

the world, where we had placed it, deceived by

appearances, and by the natural propensity of

man to regard himself as the principal object of

nature. The globe which he inhabits is a planet
in motion on itself and about the sun. When it

is considered in this point of view, all the phe-
nomena are explained in the simplest manner ;

the laws of the celestial motions are rendered uni-

form, and the analogies are all observed. Thus*

like Jupiter, Saturn and Uranus, the earth is ac-

companied by a satellite
;

it revolves on an axis

like Venus, Mars, Jupiter and Saturn, and pro-

bably all the other planets ; like them it borrows
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its light from the sun, and revolves about him in

the same direction, and according to the same

laws. Finally, the hypothesis of the earth's mo-

tion combines in its favour simplicity, analogy,

and generally every thing which characterises the

true system of nature. We shall see, by following it

in all its consequences, that the celestial phenomena
are reduced in their minutest details to one sole

law, of which they are the necessary develope-
ments. The motion of the earth will thus ac-

quire all the certainty of which physical truths

are susceptible, and which may result either from

the great number and variety of phenomena which

it explains, or from the simplicity of the laws on

which it is made to depend. No branch of na-

tural science combines in a higher degree these

criterea than the theory of the system of the

world, founded on the motion of the earth.

This motion enlarges our conceptions of the

universe, by furnishing for a measure of the dis-

tance of the heavenly bodies, an (e) immense base,

namely, the diameter of the earth's orbit
; by

means of this, the dimensions ofthe planetary or-

bits have been exactly determined. Thus the mo-
tion of the earth, after having, by the illusions of

which it was itself the cause, retarded our know-

ledge of the planetary motions for a great length
of time, has at last conducted us to a knowledge of

them, and that in a more accurate manner than
if we had been placed at the focus of these mo-
tions. Nevertheless the annual parallax of the
fixed stars, or the angle which the diameter ofthe
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earth's orbit would subtend at this centre, is in-

sensible, and does not amount to 6", even rela-

tively to those stars which (f) from their great bril-

liancy appear to be nearest to us
; they are there-

fore at least two hundred thousand times farther

from us than the sun. Their great brilliancy, at

such an immense distance, proves to us that they

do not, like the planets and satellites, borrow their

light from the sun, but that they shine with their

own proper light ;
so that they may be considered

as so many suns distributed in the immensity of

space, and similarly to our own, may be the foci

of so many planetary systems. It would in fact

be sufficient to place ourselves at the nearest of

those stars, in order to see the sun as a luminous

star, the diameter of which was less than the

thirtieth part of a second.

It follows from the immense distances of the

stars, that their motions in right ascension and

declination are only apparent, and that they are

produced by the motion of the earth's axis of ro-

tation. But some stars appear to have motions

proper to themselves, and it is probable that all

of them are in motion as well as the sun,

which carries with it in space the entire system

of the planets and comets, in the same manner

as each planet carries along with it, its satellites

in their motions about the sun.



CHAP. III.

Of the appearances which arisefrom (he motion of
the earth.

From the point of view in which a comparison of

the celestial phenomena has placed us, let us con-

sider the stars, and shew the perfect identity of

their appearances with those which we observe.

Whether the heavens revolve about the axis of

the world, or the earth revolves on its axis in a

contrary direction to the apparent motion of the

heavens, supposed to be at rest, it is clear that

the appearances of the stars, on either hypothe-
sis will be precisely the same. The only differ-

ence will be, that in the first case they will place
themselves over the different terrestrial meri-

dians, which, in the second case, will place them-

selves under these sta\*s.

The motion of the earth being common to all

bodies situated on its surface, and also to the

fluids which cover it, their relative motions are

the same as if it was immoveable. Thus, in a

vessel transported with an uniform motion, every

body moves as if it was in a state of rest. A pro-

jectile thrown directly upwards falls on the same

spot from which it was projected ;
it appears to

those in the vessel to describe a vertical line, but
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to a spectator on the shore, it will appear to move

obliquely to the horizon, and to describe a curve

which is sensibly parabolic. However, the real

velocity which arises from the rotatory motion of

the earth being somewhat less at the bottom than

at the top of an elevated tower, if a body be let

fall freely from this top, it is evident that in con-

sequence of the excess of its real velocity of rota-

tion above that of the bottom of the tower, it

should not fall exactly at the point where the

plumb line from the summit of the tower meets

the surface of the earth, but a little to the east.

In fact, it appears from analysis that its deviation

from this point towards the east, is proportional
to the sesquiplicate ratio of the height of the

tower, and to the cosine of latitude, (a) and that at

the equator it is but 21m,9<52 for one hundred

metres of height. We may therefore, by means

of very accurate experiments on falling bodies,

render the rotation of the earth sensible. Those

which have been already instituted with this view

in Germany and Italy, agree sufficiently well with

the preceding results \ but these experiments
which require the most delicate manipulation,

ought to be repeated with still greater precision.

The rotation of the earth is principally indicated

at its surface, by the effects of the centrifugal

force, which flattens the terrestrial spheroid at the

poles, and diminishes the gravity (b) at the equator,

two phenomena, which the measures of the pen-^

dulum and of the degrees of the meridian, have

made known to us.
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In the revolution of the earth about the sun,

its centre and all the points of its axis of rotation

move with equal and parallel velocities y this axis

therefore remains (c) always parallel to itself. If

at every instant, a motion equal and contrary to

that of the earth's centre be impressed on the hea-

venly bodies, and also on all the parts of the

earth, this centre would remain immoveable, as

also its axis of rotation
; but this impressed mo-

tion does not change at all the appearances of

that of the sun, it only transfers to this star, and

in a contrary direction, the real motion of the

earth : the appearances are consequently the

same, whether the earth be supposed to be at

rest, or to revolve about the sun. In order to

trace more particularly the identity of these ap-

pearances, let us conceive a radius drawn from

the centre of the earth to that of the sun; this

radius will be perpendicular to the plane which

separates the enlightened from the darkened he-

misphere of the earth. The sun is vertical to

the point where it intersects the surface of the

earth, and all the points of the terrestrial paral-

lel, which this ray meets successively, in conse-

quence of the diurnal motion have this star in

their zenith at noon. But whether the sun re-

volves about the earth, or the earth about the sun

and on its own axis, as it always preserves its

parallel position, it is evident that this Tadius

will trace the same surve on the surface of the

earth ; in each case it intersects the same terres-

trial parallels. When the apparent longitude of the
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sun is the same, this star will be equally elevated

above the horizon, and the duration of the days
will be equal. Thus, the seasons and the days
are precisely the same, whether the sun be suppos-
ed to be at rest, or to revolve about (d) the earth ;

and the explanation of the seasons, which has been

given in the preceding book, is equally applicable

to the first hypothesis.

The planets all move in the same direction

about the sun, but with different velocities
;
the

durations of their revolutions increase in a greater

ratio than their distances from this star
;
for in-

stance, Jupiter employs nearly twelve years to

perform its revolution, but the radius of the orbit

is only five times greater than the radius of the

earth's orbit ;
its real velocity is consequently

less than that of the earth. This diminution of

velocity in the planets according as they are more

distant from the sun, obtains generally from

Mercury, which is the nearest, to Uranus, which

is the most remote from this star
;
and it follows,

from the laws which we shall hereafter demon-

strate, that the mean velocities of the planets are

reciprocally as the square roots of (e) their mean
distances from the sun.

Let us consider a planet of which the orbit is

surrounded by that of the earth, and follow it

from its superior to its inferior conjunction : its

apparent or geocentric motion is the result of its

real motion combined with that of the earth, es-

timated in a contrary direction. In the superior

conjunction, the real motion of the planet is



FROM THE MOTION OF THE EARTH. 177

contrary to that of the earth ;
therefore its geo-

centrick motion is then equal to the sum of these

two motions, and it has the same direction as

the geocentrick motion of the sun, which re-

sults from the motion of the earth transferred to

this star in a contrary direction ; consequently

the apparent motion ofthe planet is direct. In in-

ferior conjunction, the direction of the motion of

the planet is the same as that of the earth, and as

it is greater, the geocentrick motion preserves the

same direction, which consequently is contrary to

the apparent motion of the sun
;

therefore the

planet is then retrograde. It is easy to conceive that

in the passage from the direct to the retrograde mo-

tion, it must appear without motion, or stationary,

and that this will happen between the greatest

elongation and inferior (f) conjunction, when the

geocentrick motion of the planet resulting from

its real motion and that of the earth, applied in a

contrary direction, is in the direction of the visual

ray of the planet. These phenomena are entirely

conformable to the motions that are observed to

take place in the planets Mercury and Venus.

The motion of the planets, whose orbits com-

prehend that of the earth, has the same direc-

tion in their oppositions, as the motion of the

earth, but it is less, and being combined with

this last motion applied in a contrary direction,

the direction of the motion which it assumes is

opposed to its primitive direction, therefore in

this position, the geocentrick motion of these pla-
nets is retrograde, it is direct in the conjunctions
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like the motions of Venus and of Mercury, which

are also direct in their superior conjunctions.

If the motion of the earth be transferred to the

stars in a contrary direction, they must appear to

describe in the interval of a year, a circumference

equal and parallel to the terrestrial orbit, the di-

ameter of which would subtend at the star, an

angle equal to that under which the diameter of

this orbit would appear (#) from their centre. This

apparent motion is very similar to that which re-

sults from the combination of the motion of the

earth with that of light, in consequence of which

the stars appear to describe annually, a circum-

ference parallel to the ecliptic, the diameter of

which subtends an angle equal to 125", but it dif-

fers from it in this, that in the first circumference

the position of the stars is precisely the same as

that of the sun, whereas in the second circumfer-

ence they are less advanced than this star, by one

hundred degrees. It is by means of this circum-

stance that we are able to distinguish between

these two motions, and that we are assured that

the first is at least extremely small, as the

immense distance of the fixed stars renders the

angle, which the diameter of the earth's orbit

subtends when seen from this distance, almost

insensible.

As the axis of the world is the prolongation
of the axis of rotation of the earth, the motion

of the poles of the celestial equator, indicated

by the phenomena of precession and nu-

tation (which have been explained in the Xlllth
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Chapter of the first book), must be referred to

this last axis. Therefore at the same time that the

earth revolves on its axis and about the sun, its

axis of rotation moves very slowly about the poles

of the ecliptic, making very small oscillations, the

period of which is the same as the motion of the

nodes of the lunar orbit. Finally, this motion is

not peculiar to the earth, for it has been observed

in the IVth Chapter of the first book, that the

axis of the moon moves in the same period, about

the poles of the ecliptic.

n 2



CHAP. IV.

Of the laws of motion of the planets about the sun,

and of thefigure of their orbits.

Nothing would be more easy than to calculate

from the preceding data, the position of the pla-

nets at any given moment, if their motions about

the sun were circular and uniform. But they
are subject to very sensible inequalities, the laws

of which constitute one of the most important

objects of Astronomy, and the only clew which

can conduct us to a knowledge of the general

principle of the heavenly motions. In order

to recognize these laws in the appearances
which the planets present to us, we must

divest their motions of the effects of the motion

of the earth, and refer to the sun, their position

as observed from different points of the earth's

•orbit. The dimensions of this orbit must be

therefore first of all determined, and the law of

the motion of the earth.

It has been shewn in the second Chapter of the

first book, that the apparent orbit of the sun is

an ellipse of which the earth occupies one of the

foci, but as the sun is really immoveable, he

should be placed in the focus, and the earth in the

circumference of the ellipse. The motion of the



OF THE MOTION OF THE PLANETS, &C. 181

sun will be the same, and in order to obtain the

position of the earth as seen from the centre of

the sun, we should increase the position of that

star, by two right angles.

It was also observed, that the sun appears to

move in his orbit in such a manner that the ra-

dius vector, which connects its centre with that of

the earth, traces about it areas proportional

to the times in which they are described, but

in reality these areas are traced about the sun*

In general, every thing that has been stated

in the chapter already cited, relative to the ex-

centricity of the solar orbit and its variations, and

respecting the position and motion of its perigee,

may be also applied to the terrestrial orbit,

with this sole exception, namely, that the earth's

perigee is distant by two right angles from the

perigee of the sun. The figure of the earth's or-

bit being thus known, let us examine how those

of the other planets may be determined. For ex-

ample, let us consider the planet Mars, which,

from the great excentricity of its orbit, and its

proximity to the earth, is peculiarly well adapted

to make known the laws of the planetary mo-

tions.

The orbit of Mars and its motion about the sun

would be known, if the angle which its radius

vector makes with an invariable line passing

through the centre of the sun be known at any
instant, and also the length of this radius. In

order to simplify the problem, we select those

positions of Mars, in which one of these quan-
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tities can be found separately ;
and this is Tery

nearly the case in the oppositions, when the pla-

net is observed to correspond to the same point of

the ecliptic, to which it would be referred from

the centre of the sun. From the difference be-

tween the angular motions of the earth and Mars,

this planet corresponds to different points of the

heavens in successive oppositions, therefore by

comparing together a great number of observed

oppositions, we are enabled to discover the law

which exists between (a) the time and the angular
motion of Mars about the sun, which is termed

his heliocentrick motion. The different methods

which are furnished by analysis, are considerably

simplified in the present case, by considering that

as the principal inequalities of Mars become the

same at the termination of each sidereal revolu-

tion, their sum may be (b) expressed by a rapidly

converging series of the sines of angles which are

multiples of its mean motion, the coefficients of

which series may be easily determined by means
of some select observations.

The law of the radius vector ofMars may after-

wards be obtained, by comparing observations of

this planet madenear its quadratures, in which case

the angle which this radius subtends is the greatest.

In the triangle formed by lines which join the cen-

tres ofthe earth, ofthe sun and of Mars, the angle
at the earth is determined by direct observation, the

law of the heliocentrick motion (c) of Mars, fur-

nishes the angle at the sun, by means of which we

may determine the radius vector of Mars in parts of
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the radius of the earth, which is itself determined

in parts of the mean distance of the earth from the

sun. By comparing together a great number of
radii vectores thus determined, the law of their

variations corresponding to the angles which they
make with an invariable right line, may be de-

termined, by which means the figure of the orbit

can be traced.

It was by a method very nearly similar, that

Kepler discovered the lengthened form of the orbit

ofMars; he conceived the fortunate idea of compar-

ing its figure with that of an ellipse, the sun being
in one of the foci

;
and the numerous observations

of Tycho exactly represented in the hypothesis of

an elliptic orbit, left no doubt as to the truth of

this hypothesis.
The extremity of the greater axis of the orbit

which is nearest to the sun, is called the perihelion,

and the aphelion is the extremity which is farthest

from the sun. The angular velocity of Mars about

the sun is greatest at the perihelion j
it diminishes

according as the radius vector increases, and it is

least at the aphelion. A comparison of this ve-

locity with the powers of the radius vector, shews

that it is reciprocally proportional to its square,

from which it follows, that the product (d) of the

daily helioecentrick motion of Mars, into the

square of its radius, is constant. This product is

double of the small vector, traced by its ra-

dius about the sun, therefore the area which it

describes departing from an invariable line pas.

sing through the centre of the sun, increases as
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the number of days which have lapsed since the

epoch when the planet was upon this line ; con-

sequently the areas described by the radius of

Mars are proportional to the times. These laws of

the motion ofMars, which have been discovered by

Kepler, are the same as those of the apparent mo-
tion of sun, which have been developed in the se-

cond Chapter of the first book, they equally obtain

in the case of the earth. It was natural to extend

them to the other planets ; Kepler therefore es-

tablished as fundamental laws of the motions of

these bodies, the two following, which all subse-

quent observations have fully confirmed.

The orbits of the planets are ellipses, of which

the centre of the sun occupies one of the foci.

The areas described about this centre by the radii

vectores of the planets, are proportional to the times

of their description.

These laws are sufficient to determine the mo-
tion of the planets about the sun

;
but besides it

is necessary to know for each of them, seven quan-
tities, which have been called the elements of

elliptic motion. Five of these elements respect the

motion in the ellipse, and are, 1st, the duration

of the sidereal revolution
; 2d, the semiaxes ma-

jor of the orbit, or the mean distance of the pla-

net from the sun
; 3d, the excentricity, from

which may be obtained the greatest equation of

the centre
; 4th, the mean longitude of the pla-

net at a given epoch ; 5th, the longitude of the

perihelion at the same epoch. The two other

elements are relative to the position of the orbit
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itself ; and are 1st, the longitude at a given epoch,

of the nodes of the orbit, or of its points of inter-

section with a plane which is usually assumed to

be that of the ecliptic. 2d, The inclination of the

orbit to this plane. Therefore, for the seven pla-

nets which were known previous to the present

century, there were forty-nine elements to be de-

termined. The following table exhibits all those

elements for the first instant of the present cen-

tury, i. e. for the first of January, 1801, at mid-

night, according to the mean time of Paris.

The examination of this table shews that the

durations of the revolutions of the planets increase

with their mean distances from the sun. Kepler,

for a long time, sought the relation which existed

between the distances and periods ; after a great

number of trials, continued during sixteen years,

he at length recognized that the squares (e) ofthe

times of the planets' revolutions, are to each

other as the cubes of the major-axes oftheir orbits.

Such are the fundamental laws of the planetary

motion, which by exhibiting atronomy under a

new aspect, have led to the discovery of universal

gravitation.

The planetary ellipses are not invariable ; their

major axes appear to be always the same ; but their

excentricities, their inclinations to a fixed plane, the

positions of their nodes and perihelions, are subject

to variations, which hitherto appear to increasepro-

portionally to the time. As (f) these variations

do not become sensible until after the lapse of

ages, they have been denominated secular inequa-
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lities. There can be no doubt of their existence ;

but modern observations are not sufficiently re-

moved from each other, nor are the ancient ob-

servations sufficiently exact to enable us to deter-

mine exactly their precise quantity.

There have been likewise observed periodic in-

equalities, which derange the elliptic motions of

the planets. That of the earth is a little affected
;

for it has been before observed, that the apparent

elliptic motion of the sun appears to be so. But
these inequalities are principally apparent in the

two larger planets, Jupiter and Saturn. From a

comparison of ancient with modern observations,

astronomers have inferred a diminution in the du-

ration of Jupiter's revolution, and an increase in

that of Saturn. A comparison of (g) modern obser-

vations with each other furnishes a contrary result
;

which seems to indicate in the motion of these

planets, great inequalities of very long periods.

In the preceding century, the duration of the re-

volutions of Saturn seemed to be different, ac-

cording as the departure of the planet is supposed
to take place from different points of its orbit

;

its returns to the vernal equinox, have been more

rapid than to the autumnal. Finally, Jupiter and

Saturn experience inequalities, which amount to

several minutes, and which seem to depend on

the situation of these planets, either among them-

selves, or with respect to their perihelions. Thus,

every thing indicates that in the planetary sys-

tem, independently of the principal cause which

makes the planets to revolve in elliptic orbits
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about the sun ; there exists several particular

causes, which derange their motions, and at

length change the elements of their ellipses.

TABLE OF THE ELLIPTIC MOTION OF
THE PLANETS.

Durations of their sidereal revolutions.

•
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Ratio of the excentricities to the semiaxes ma.

jores at the commencement of 1801.

Mercury
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The sidereal and secular motion of the perihe-

lion, (the sign
— indicates a retrogade motion.)

Mercury
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Saturn

Uranus
47,88

9,73

The longitude of the ascending node at the

commencement of 1801.

Mercury



THE SUN, AND FIGURE OF THEIR ORBITS. 191

derable perturbations which they experience,

have not as yet been determined. Underneath

are presented the elliptic elements which best

satisfy the observations hitherto made, but they

ought only to be considered as a first sketch of

the theory of the planets.

Durations of their sidereal revolutions.

days.

Ceres . . 1681,3931

Pallas . . 1686,5388

Juno . . . 1592,6608
Vesta . . 1325,7431

Semi axes-majores of their orbits.

Ceres . . . 2,767245
Pallas . . 2,772886
Juno . . . 2,669009
Vesta . . 2,36787

Ratio of the excentricity to the semiaxis

major.

Ceres . . . 0,078439
Pallas . * 0,241648
Juno . . . 0,257848
Vesta . . . 0,089130
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Mean longitude at the midnight commencing

1820.

o

Ceres . . . 136,8461

Pallas . . . 120,3422

Juno . . . 222,3989

Vesta . . . 309,2917

Longitude of the perihelion at the same

epoch.

H

Ceres . . . 163, 4727

Pallas . . .134, 5754

Juno , . .59, 5142
Vesta . . . 277, 2853

Inclination of the orbit to the ecliptic.

Ceres . . . 11,8044
Pallas . . . 38,4344
Juno . . . 11,5215
Vesta . . . 7,9287
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.Longitude of the ascending node at the com*

mencement of 1810

Ceres . . . 87°6557
Pallas . . . 191,8416
Juno . . . 190,1421

Vesta , „ , 114,6908



CHAP. V.

Of the figure of the orbits of the comets, and of the

laws of their motion about the sun.

The sun being at the focus of the planetary orbits,

it is natural to suppose that he is also in the focus

of the orbits of the comets. But as these stars dis-

appear after having been visible some months at

most, their orbits, instead of being nearly circular,

like those of the planets, are very excentric, and

the sun is very near to that part in which they are

visible. The ellipse, by means of the infinite va-

rieties which it admits of from the circle to the

parabola, may represent these different orbits.

Analogy leads us then to suppose that the comets

move in ellipses, of which the sun occupies one of

the foci, and to consider them as moving accord-

ing to the same laws as the planets, so that the

areas traced by their radii vectores are equal in

equal times.

It is almost impossible to know the duration of

the revolution of a comet, and consequently the

greater axis of its orbit, by an observation of only
one of its appearances ; hence the area which its

radius vector describes in a given time, cannot

be determined rigorously. But it should be

considered that the small portion of the ellipse,
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described by the comet during its appearance,

may be supposed to coincide with a parabola, and

that thus its motion may be calculated in this in-

terval, as if it was parabolical.

According to the laws of Kepler, the sectors,

traced in equal times by the radii vectores of

two planets, are to each other as the areas of (a)
their ellipses, divided by the times of their revolu-

tions
;
and the squares of these times are to each

other as the cubes of their greater semiaxes. It

is easy to infer from this, that if a planet be sup-

posed to move in a circular orbit, of which the

radius is equal to the perihelion distance of the

comet, the sector, described by the radius vector

of the comet, will be to the corresponding sector

described by the radius vector of the planet, in the

ratio of the square root of the aphelion (b) dis-

tance of the comet to the square root of the semi-

axis major of its orbit, which ratio, when the

ellipse changes into a parabola, becomes that of

the square root of two to unity ; by this means,
the ratio of the sector of the comet to that of the

fictitious planet may be obtained
; and it is easy

by what precedes to obtain the ratio of this sector

to that which the radius vector of the earth traces

in the same time. We can therefore determine

for any instant whatever, the area traced by the

radius vector of the comet, commencing with the

moment of its passage through the perihelion,

and fix its position in the parabola, which it is

supposed to describe.

o 2
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Nothing more is necessary but to determine,

by means of observations, the elements of the

parabolick motion, that is to say, the perihelion

distance of the comet, in parts of the mean dis-

tance of the sun from the earth, the position of

the perihelion, the instant of the passage through
the perihelion, the inclination of the orbit to the

ecliptic, and the position of its nodes. The in-

vestigation of these five elements presents greater

difficulties than that of the elements of the

planets, which being always visible, may be com-

pared in positions the most favourable to the de-

termination of these elements, while on the other

hand, the comets are only visible for a short time,

and almost always in circumstancs, in which their

apparent motion is extremely complicated by the

real motion of the earth, which we transfer to

them in a contrary direction. Notwithstanding
all these obstacles, we have succeeded by dif-

ferent methods, in determining the orbits of the

comets. Three complete observations are more
than sufficient for this purpose ;

all the others

serve only to confirm the accuracy of these ele-

ments, and the truth of the theory which we have

explained. More than one hundred comets, of

which the numerous observations^ are exactly re-

presented by this theory, remove all doubt as to

its accuracy. Thus, the comets, which for a long
time were regarded as meteors, are stars similar

to the planets j their motions and their returns

are regulated by laws similar to those which in-

fluence the planetary motions.
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Let us take notice here, bow the true system
of nature, according as it developes itself, re-

ceives more confirmation. The simplification of

the celestial phenomena, on the hypothesis that

the earth moves, compared with their great com-

plexity, on the hypothesis of its immobility, ren-

ders the first of these hypotheses extremely pro-

bable. The laws of elliptic motion, common then

to the planets and to the comets, increase this pro-

bability considerably, which becomes still greater

from the consideration that the motions of the

comets are subject to the same laws.

These stars do not all move in the same direc-

tion, like the planets. Some have an actual direct

motion, the direction of the motion of others is

retrograde ;
the inclinations of their orbits are not

confined within a narrow zone like those of the

planetary orbits
; they exhibit all varieties of in-

clination, from the orbit situated on the plane of

the ecliptic, to an orbit perpendicular to this

plane.
A comet is recognized when it reappears, by

the identity of the elements of its orbit with those

of the orbit of a comet already observed. If the

perihelion distance, the position of this perihe-
lion and of its nodes, and the inclination of its

orbit be very nearly the same, it is then extremely

probable that the comet which appears is that

vvhich had been observed before, and which after

laving receded to such a distance that it was in-

visible, returns into that part of its orbit which is

nearest to the sun. As the durations of the revo-
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lutions of comets are very long, and as it is not

quite two centuries since these stars have been

carefully observed, the period of the revolution of

only one comet is known with certainty, namely,
that of 1759, which had been before observed in

1682, 1607, and 1531. This comet returns .to

its perihelion in about seventy-six years. There-

fore if the mean distance of the sun from the earth

be assumed equal to unity, the greater axis of its

orbit is very nearly 35,9 ;
and as its perihelion

distance is only 0,58, it recedes from the sun, at

least thirty-five times farther than the earth, de-

scribing an extremely excentric ellipse. Its return

to the perihelion was longer by thirteen months

from 1531 to 1607, than from 1607 to 1682 ; and

it was eighteen months shorter, from 1607 to

1682, than from 1082 to 1759. It appears there-

fore that causes similar to those which derange

the elliptic motion of the planets, disturb also

that of the comets in a much more sensible

manner.

The return of some other comets has been sus-

pected ;
the most probable of these returns was

that of the comet of 1532, which was supposed to

be the same with that of 166 1 , the time of the revo-

lution of which has been fixed at 129 years, but

this comet not having appeared in 1790, as was ex-

pected, there is great reason to believe that these

two comets were not the same, . and we shall not

be surprized at this, if we consider the inaccuracy

of the observations of Appian and Frucastor, from

which the elements were determined in 1532.



AND MOTION ABOUT THE SUN. 199

These observations are so rude, that according to

Mechain, who has carefully examined them, they

leave an uncertainty of 41°, on the position of the

node, of 10°, on the inclination, of 22°, on the po-

sition of the perihelion, and of 0,9,55 on the pe-

rihelion distance.

The elements of the orbit of the comet observ-

ed in 1818, correspond so exactly with those of

the orbit of the comet observed in 180.5, that it

has been inferred that these comets are the same,

which would assign the short period of thirteen

years for the time of revolution, provided that

there was no intermediate return of the comet to

its perihelion"; but M. Enk has ascertained by
a careful discussion of the numerous observations

of this star in 1818 and 1819, that its revolution

is still less by 1203d

very nearly ;
he concluded that

it should reappear in 1822 : and in order to faci-

litate to observers the means of finding it again,

he computed the position which it aught to have

on each day of its approaching appearance. From
the southern declinations of the comet during the

time of this appearance, it is almost impossible to

observe it in Europe. Fortunately it has been ob-

served at New Holland by M. Rumker, an expert

Astronomer, who was brought there by General

Brisbane, who is himself an able Astronomer,
and has interested himself very much in the ad-

vancement of this science. M. Rumker observed

it for each successive day, from the 2d to the 23d of

June 1822, and its observed positions accord so

well with those which M. Enk had previously
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calculated, that there cannot remain any doubt

on this return of the comet, predicted by M-
Enk.

The nebulosity with which the comets are al-

most always surrounded, seems to be formed by
the vapours which the solar heat excites from

their surface. In fact, the great heat which they

experience near to their perihelion, may be sup-

posed to rarify the particles which have been con-

gealed by the excessive cold of the aphelion.
This heat is most intense for those comets, whose

perihelion distance is very small. The perihelion
distance of the comet of 1680, was one hundred

and sixty-six times less than the distance of the

sun from the earth, and consequently it ought to

experience a heat twenty- seven thousand five hun-

dred times greater than that which is communi-

cated to the earth, if, as (d) every thing induces

us to think, the heat is proportional to the inten-

sity of its light. This excessive heat, which is

much greater than any which we could produce,
would volatilise, according to all appearances, the

greater number of terrestrial substances.

Whatever be the nature of heat, we know that

it dilates all bodies. It changes solids into flu-

ids, and fluids into vapours. These changes of

form are indicated by certain phenomena which

we will trace from ice. Let us consider a volume

of snow or of pounded ice in an open vessel sub-

mitted to the action of a great heat. If the tem-

perature of this ice be below that of melting ice,

it will increase up to zero of temperature. After
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having attained this (e) point, the ice will melt

by new additions of heat ;
but if care be taken to

agitate it, until all the ice is melted, the water

into which the ice is converted, will always remain

at the same temperature, and the heat communi-

cated by the vessel will not be sensible to the

thermometer immersed in it, as it will be entirely

occupied in converting the ice into water. After

all the ice is melted, the additional heat will con-

tinually raise the temperature of the water and of

the thermometer till the moment of ebullition.

The thermometer will then become stationary a

second time
;
and the heat communicated by the

vessel will be entirely employed in reducing the

water into steam, the temperature of which will

be the same as that of boiling water. It appears
from this detail, that the water produced by the

melting of ice and the vapours into which boiling

water is converted, absorb at the moment of

their formation a considerable quantity of caloric,

which reappears in the reconversion of aqueous

vapours to the state of water, and of water to the

state of ice ;
forthese vapours, when condensedon a

cold body, communicate much more heat to it than

it would receive from an equal weight of boiling

water ;
besides we know that water can preserve

its fluidity, though its temperature may be several

degrees below zero
;
and that in this state, if it

is slightly agitated, it is converted into ice, and

the thermometer, when plunged in it, ascends to

zero, in consequence of the heat given out during
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this change. All bodies which we can make pass

from a solid to a fluid (/) state, present similar

phenomena ;
but the temperatures at which their

fusion and ebullition commences, are very dif-

ferent for each of them.

The phenomenon which has been just detailed,

although very universal, is only a particular case

of the following general law,
" in all the changes

of condition which a body undergoesfrom the action

of caloric> a part of this caloric is employed in pro-

ducing tliem, and becomes latent, that is to say, in-

sensible to the thermometer, but it reappears when

the system returns to its primitive state." Thus
when a gas contained in a flexible envelope is dila-

ted by an increase of temperature, the thermome-

ter is not affected by the part of the caloric which

produces this effect, but this latent part becomes

sensible when the gaz is reduced by compression
to its original density.

There are bodies which cannot be reduced to a

state of fluidity, by the greatest heat which we can

produce. There are others which the greatest

cold experienced on earth is unable to reduce to

a solid state : such are the fluids which compose
our atmosphere, and which, notwithstanding the

pressure and cold to which they have been sub-

jected, have still maintained themselves in the

state of vapours. But their analogy with aeriform

fluids, to which we can reduce a great number of

substances bythe application ofheat, and their con-

densation by compression and cold, leaves no-

doubt but that the atmospheric fluids are extremely
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volatile bodies, which an intense cold would re-

duce to a solid state. To make them assume this

state, it would be sufficient to remove the earth

farther from the sun, as it would he sufficient in

order that water and several other bodies should

enter into our atmosphere, to bring the earth

nearer to the sun. These great vicissitudes take

place in the comets, and principally on those

which approach very near to the sun in their pe-
rihelion. The nebulosities which surround them,

being the effect of the vaporisation of fluids at

their surface, the cold which follows ought to mo-
derate the excessive heat which is produced by
their proximity to the sun

;
and the condensation

of the same vaporised fluids when they recede from

it, repairs in part the diminution of temperature,
which this remotion ought to produce,, so that the

double effect of the vaporisation and condensation

of fluids, makes the difference between the ex-

treme heat and cold, which the comets experience
at each revolution, much less than it would other-

wise be.

When the comets are observed with very pow-
erful telescopes, and under circumstances in which

we ought only to perceive a part of the illumi-

nated hemisphere, we are not able to discover any

phases. One only, comet namely, that of 1682,

presented them to Hevelius and La Hire.

We shall see in the sequel, that the masses, of

the comets are extremely small, the diameters of

their disks must therefore be nearly insensible,

and what is termed their nucleus is most
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probably made up in a great part, of the den-

sest strata of the nebulosity which surrounds

them. Thus Herschel has discovered by means of

very powerful telescopes in the nucleus of the

comet of 1811, a brilliant point which he judged
with reason to be the disk of the comet. These

strata are extremely rare, in as much as the stars

have been sometimes observed through them.

It appears that the tails which accompany the

comets, are formed by the most volatile particles,

which are excited at their surface by the heat of

the sun, and which are dispersed indefinitely by the

impulsion of its rays. This may be inferred from

the direction of these trains of vapour, which are al-

ways beyond the comet relatively to the sun, and

which continually increasing according as these

stars approach to this luminary, do not attain

their maximum till after these bodies have passed

through the perihelion. From the extreme te-

nuity of the molecules, the ratio of the surfaces

to the masses is increased, so that it may render

sensible the impulsion of the solar rays, (g) which

ought then to make each particle to describe an

hyperbolic orbit, the sun being in the focus of the

corresponding conjugate hyperbola. A succession

of molecules moving on these curves from the head

of the comet, form a luminous train directed from

the sun, and forming a small angle with that part
of the comet's orbit which it has passed over j this

is in fact what observation indicates. From the

quickness with which these tails increase, we may
form some estimate of the rapidity of ascension of
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their molecules. It is possible to conceive that

differences of volatility, of magnitude, and of den-

sity, in the molecules, may produce considerable

differences in the curves which they describe,

which must cause great varieties in the form, the

length, and the magnitude of the tails of the co-

mets. If these effects be combined with those

which may arise from a rotatory motion in these

stars, and from the illusions of the annual paral-

lax, we may be able to account for the singular

appearances which their nebulosities and tails ex-

hibit to us.

Although the dimensions of the tails of the co-

mets may be several millions of myriametres, still

they do not sensibly dim the light of the stars,

which are seen through them
; they are therefore

extremely rare, and it is probable that their mas-

ses are less than those of the smallest mountains

of the earth. Consequently in the event of their

meeting with this planet, they cannot produce any
sensible effect. It is extremely probable that they
have several times enveloped it without its being
observed. The state of the atmosphere has a con-

siderable influence on their appaient length and

magnitude ; between the tropics they appear
much greater than in our climates. Pingre states,

that he observed a star which appeared in the tail

of the comet of 1769, and which receded from it

in a few moments. But this appearance is only
an illusion, which is produced by the clouds float-

ing in our atmosphere, which are sufficiently

dense to intercept the feeble light of this tail, at
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the same time that they are sufficiently rare to

enable us to perceive the more vivid light of

the star. It cannot (h) be supposed that the

molecules of the vapours of which the tails

are composed, make such rapid oscillations, of

which the extent surpasses a million of myria-
metres.

If the evaporable substances of a comet dimi-

nish at each of its returns to the perihelion,

they ought after several revolutions to be entirely

dissipated in space, and the comet ought only to

exhibit afterwards the appearance of a solid

neucleus ;
those comets whose revolution is short,

Will arrive at this state sooner than others. The
comet of 1682, the time of whose revolution is

only seventy-six years, is the only one which has

as yet exhibited appearances which correspond to

this state of fixity. If the neucleus be too small to

be perceived, or if the evaporable substances which

remain at its surface, are in too small a quantity

to constitute by their evaporation, a sensible head

to the comet ; the star will be for ever invisible.

Perhaps this is one of the reasons, which renders

the reappearances of the comets so rare
; perhaps

it is on this account that the comet of 1770 has

totally disappeared, though during the time of its

appearance it described an ellipse in a period of

five years and a half; so that if it has continued

to describe this curve, it must since that epoch
have returned at least five times to its (J) peri-
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helion. Perhaps finally this is the cause, why
several comets whose routs we can trace in the

heavens by means of the elements of their or-

bits, have disappeared sooner than might be ex-

pected.



CHAP. VI.

Of the laws of the motion of the satellites about their

respective primary planets.

We have explained in the sixth chapter of the

first hook the laws of the motion of the satellite

of the earth, it now remains to consider those of

the motions of the satellites of Jupiter, of Saturn,

and of Uranus.

If the semidiameter of the equator of Jupiter,

which is supposed to be 56",702 at the mean dis-

tance of Jupiter from the sun, be assumed equal

to unity, the mean distances of the satellites from

its centre and the durations of their sidereal revo-

lutions will be (a) as follows :

Mean distances. Durations.

days.

I. Satellite 6,04858 1,769137788148

II. Sat. . . 9,62347 3,551181017849

III. Sat. . . 15,35024 7,154552783970

IV. Sat. . . 26,99835 16,688769707084

It is easy to infer the durations of the synodic

revolutions of the satellites, or the intervals be-

tween the return of their mean conjunctions with

Jupiter, from the durations of their sidereal re-

volutions, and from that of the revolution of Ju-
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piter. From a comparison of their mean dis-

tances with the durations of their sidereal revolu-

tions, it appears that the same beautiful proportion
which has been observed to obtain between the du-

rations of the revolutions of the planets and their

mean distances from the sun, obtainsalso in the case

of the satellites, namely, that the squares of the

times ofthe sidereal revolutions of the satellites are

as the cubes of their mean distances from the cen-

tre of Jupiter. The frequent recurrence of the

eclipses of Jupiter's satellites, has furnished astro-

nomers with the means of tracing their motions

with a precicision, which could not be obtained by

observing their angular distance from Jupiter.

They have enabled us to recognize the following
results :

The ellipticity of the orbit of the first satellite is

insensible
j

its plane coincides very nearly with

the plane of Jupiter's equator, the inclination of

which to the plane of the orbit is about 4°,4352.

The ellipticity of the orbit of the second satel-

lite is also insensible, its inclination to Jupiter's

orbit is variable, as is also the position of its

nodes. All these variations may be very nearly

represented, by supposing the orbit of the satel-

lite to be inclined in an angle of 5152" to the

equator of Jupiter, and by making its nodes to

move on this plane with a retrograde motion, of

which the period is thirty Julian years.

A slight ellipticity has been observed in the or-

bit of the third satellite, the extremity of its

greater axis which is nearest to Jupiter, and which

has been termed its perigove, has a direct motion,

p
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but of a variable quantity. The excentricity of

the orbit is also subject to very sensible variations

near the close of the last century, the equation of

the centre had attained its maximum, and amount-

ed to 2458" very nearly : it afterwards diminish-

ed, and near to 1777 it was at its minimum, when
it amounted to 949''. The inclination of the orbit

of this satellite to that of Jupiter, and the posi-

tion of its nodes are variable ; all these variations

may be very nearly represented, by supposing the

orbit to be inclined at an angle of 2284*, to the

equator of Jupiter, and by assigning to its nodes

a retrograde motion on the plane of this equator,

in a period of 142 years. Notwithstanding this,

astronomers who have determined by the eclipses

of this satellite (b) the inclination of the equator

of Jupiter on the plane of its orbit have found

that it is invariably nine or ten minutes less

than what is assigned by the eclipses of the first

and of the second satellite. The orbit of the

fourth satellite has a very visible ellipticity ; its

perigove moves in consequentia with an annual

motion amounting to 7939". The inclination of

this orbit to that of Jupiter is about 2°,7. It is in

consequence of this inclination, that the fourth

satellite passes frequently behind the planet rela-

tively to the sun without being eclipsed. From
the discovery of the satellites until the year I76O
the inclination appeared to be constant, and the

annual motion of the nodes on the orbit of Jupi-

ter, has been direct and about 788". But, since

176O, the inclination has increased, and the mo-
. ..
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tion of the nodes has diminished in a very sensi-

ble manner. .We shall resume the consideration

of these inequalities, after their cause shall

have been explained.

Independently of these variations, the satellites

are subject to inequalities, which derange their

elliptic motions, and render their theory extreme-

ly complicated. They are principally sensible in

the three first satellites, of which the motions ex-

hibit very remarkable relations.

It appears from a comparison of the times of

their revolutions, that the period of the first sa-

tillite is only about half the duration of the period
of the second, which itself is only half of that of

the period of the third satellite. Thus, the mean
motions ofthese three satellites follow very nearly

a geometric progression, of which the ratio is one

half. If this proportion obtained accurately, the

mean motion of the first satellite, plus twice the

mean motion of the third, would be precisely

equal to three times the mean motion of the se-

cond. But this equality is much more accurate

than the progression itself; so that we are in-

duced to consider it as rigorously true, and to re-

ject the very small quantities by which it deviates

from it, as arising from the errors of observa-

tion; at least we can affirm that it will subsist

for a long series of ages.

A result which is equally remarkable, and which

is given by observation with equal precision, is,

that from the discovery of the satellites, the mean

longitude of the first minus three times that of

p 2
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the second, plus twice that of the third, does not

differ from two right angles, by any perceptible

quantity.

These two results also obtain, between the

mean motions, and the mean synodic longitudes ;

for as the synodic motion of a satellite is the ex-

cess of its sidereal motion above that of the pla-

net, if in the preceding results, the synodic mo-

tions be substituted in place of the sidereal mo-

tions, the mean motion of Jupiter disappears, and

these results remain the same. It follows from

this, that for a great number ofyears at least, the

three first satellites of Jupiter cannot be eclipsed

together, but in the simultaneous eclipses of the

first and third, the first will be always in con-

junction with Jupiter ; it will be always in oppo-

sition, in the simultaneous eclipses of the sun

produced at Jupiter by the two other satellites.

The periods and the laws of the principle in-

equalities of these satellities are the same. The

inequality of the first advances or retards its eclip-

ses, by 22S",5 of time at its maximum. A com-

parison of its quantity, in the respective positions
of the two first satellites, shews that it disappears
when these satellites seen from the centre of Ju-

piter, are at the same time, in opposition to the

sun
; that it afterwards increases, and becomes

the greatest possible, when the first satellite at the

moment of its opposition is 50° more advanced

than the second
; that it vanishes again when it is

more advanced by 100 than the second, and that

beyond this, it is affected with a contrary sign
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and retards the eclipses ; that it increases until the

distance of the planets from each other is 150°,

when it is at its negative maximum ; that then it

diminishes, and disappears when this distance is

200°
; finally, in the second half of the circum-

ference, it runs through the same series of changes
as in the first. From this it has been inferred,

that there exists in the motion of the first satellite

about Jupiter, an inequality, which at its maxi*-

mum is 5050",6 of a degree, and proportional to

the sine of double of the excess of the mean lon-

gitude of the first satellite above that of the se-

cond, which excess is equal to the difference of

the mean synodic longitudes of the two satellites.

The period of this inequality is only four days ;

but how is it transformed in the eclipses of the

first satellite into a period of 437
d
,6592 ? this is

what we proceed to explain.

Suppose that the first and second satellite de-

part together from their mean oppositions with

the sun. After the description of each circum-

ference, the first satellite will be, in virtue of its

mean synodic motion, in its mean opposition with

the sun. If we suppose an imaginary star, of

which the angular motion is equal to the excess

of the mean synodic motion of the first satellite,

above twice that of the second ; then twice the

difference of the mean synodic motions of the two

satellites will be, in the eclipses of the first, equal
to a multiple of the circumference plus the mo-
tion of the imaginary star j consequently the sine

of this last motion will be proportional to the in-
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equality of the first satellite in the eclipses, and

may represent it. Its period is equal to the dura-

tion of the revolution of the imaginary star, which

duration is, from the mean synodic motions ofthe

two satellites about 437
d
,6592 ;

it is thus deter-

mined with greater accuracy than by direct ob-

servation.

The law of the inequality of the second satel-

lite, is precisely the same as that of the first, with

this difference, that it is always of a contrary

sign ;
at its maximum it advances or retards the

eclipses by about 1059",2 of a degree ; from a

comparison of the respective positions of the two

satellites, it appears that it vanishes when they are

at the same time in opposition to the sun ;
that it

then retards the eclipses of the second more and

more, until those two satellites are at the mo^

ment of the occurrence of the phenomena, elon-

gated from each other one hundred degrees-, that

this retardation diminishes and becomes nothing

a second time, when the mutual distance of the

two satellites is two hundred degrees ; finally, that

beyond this time, the eclipses advance as they had

previously retarded. From these observations it

has been inferred, that there exists in the motion

of the second satellite, an inequality of 11920*,7 at

its maximum, and that it is proportional to, and

affected with a contrary sign, to the sine of the

mean longitude of the first satellite Over that of

the second, which excess is equal to the difference

of the mean synodic motions of the two satel-

lite.
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If the two depart together from their mean op-

position to the sun, the second will be in its mean

opposition after the completion of each circumfer-

ence, which it will have described in consequence

of its mean synodic motion. If, as in the case of

the first satellite, we conceive a star of which the

angular motion is equal to the excess of the mean

synodic motion of the first satellite, over twice

that of the second, then the difference of the

mean synodic motions of the two satellites will

be, in the eclipses of the second equal to a multi-

ple of the circumference, plus the motion of the

fictitious star ; consequently the inequality of the

second satellite will, in its eclipses, be propor-

tional to the sine of the motion of this imaginary

star. Hence we see the reason why the period

and the law of this inequality, are the same, as

those of the inequality of the first satellite.

The influence of the first satellite, on the in.

equality of the second is very probable. But if

the third produces in the motion of the second,

an inequality similar to that which the second

seems to produce in the motion of the first, that

is to say, proportional to the sine of double of the

difference of the mean longitudes of the second

and third satellite ;
this new inequality will be

confounded with that which arises from the first

satellite, for in consequence of the relation which

exists between the mean longitudes of the three

first satellites, and what has been already explain-

ed, the difference of the mean longitudes of the

two first satellites is equal to the same circumfer-
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ence plus, twice the difference between the mean

longitudes of the second and third satellites, so

that the sine of the first difference is the same as

the sine of twice the second difference, only affect-

ed with a contrary sign. The inequality pro-
duced by the third satellite, in the motion of the

second, would thus have the same sign, and

would follow the same law as the inequality ob-

served in this motion ; it is therefore extremely

probable that this inequality is the result of two

inequalities depending on the first and third sa-

tellite. If in the progress of time, the preceding
relation between the longitudes should cease to

exist
; these two inequalities which are now

blended together would be separated, and we

might by observation determine their respective
values. But we have seen that this relation must
subsist for a very long time, and in the fourth

book it will appear, that this relation is rigorously
true. Finally, the inequality relative to the third

satellite in its eclipses, compared with the respec-
tive positions of the second and third, presents
the same relations as the inequality of the se-

cond, compared with the respective positions of

the two first satellites. Consequently there exists

in the motion of the third satellite, an inequality

proportional to the sine of the excess of the mean

longitude of the second satellite above that of the

third, which inequality at its maximum is 808", of

a degree. If we conceive a star of which the angu-
lar motion is equal to the excess ofthe mean syno-
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die motion of the second satellite above twice the

mean synodic motion of the third, the inequality

of the third satellite in the eclipses will be propor-
tional to the sine of the motion of the imaginary
star ; but in consequence of the relation which

subsists between the mean longitudes of the three

first satellites, the sine of this motion is with the

exception of the sign, the same as that of the mo-
tion of the first imaginary star which has been

considered. Thus the inequality of the third sa-

tellite in its eclipses has the same period, and fol-

lows the same laws, as the inequalities of the two

first satellites.

Such are the periods of the principal inequali-

ties of the three first satellites of Jupiter, which

Bradley seems to have suspected, but which Var-

genten has since detailed with the greatest accu-

racy. Their correspondence and that of the mean
motions and mean longitudes of these satellites,

appear to constitute a separate system of these

three bodies, actuated according to all appearance

by common forces, from which arise those rela.

tions, which they have in common.
If the apparent semidiameter of the equator of

this planet, at its mean distance from the sun,

which is about 25'', be assumed as unity, the mean
distances of the satellites from its centre, and the

durations of their sidereal revolutions are :
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Mean distances.
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Mean distances. Durations.
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celestial motions present, seems to indicate its ex-

istence j even already we may suspect that such a

principle is in existence, from the connection be-

tween these phenomenaand therespective positions
ofthe bodies of the solar system. But in order

that we may be able to place it in the clearest

light, the laws of the motion of matter must be

known.



BOOK THE THIRD.

OF THE LAWS OF MOTION.

At nunc per maria ac terras sublimaque caeli

Multa modis multis varia ratione moveri

Cernimus ante oculos.

Lucret : lib. 1.

SURROUNDED as we are by an infinite variety

of phenomena, which continually succeed each

other in the heavens and on the earth, philoso-

phers have succeeded in recognizing the small

number of general laws to which matter is sub-

ject in its motions. To them, all nature is obe-

dient ; and every thing is as necessarily derived

from them, as the return of the seasons
;
so that

the curve which is described by the lightest atom

that seems to be driven at random by the winds, is

regulated by laws as certain as those which confine

the planets to their orbits. The importance of

these laws, on which we continually depend,

ought to have excited the curiosity of mankind in

all ages ; yet by the effect of an indifference but

too common to the human mind, they were ut-

terly unknown, until the commencement of the
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17th century, at which epoch Gallileo laid the

first foundations of the science of motion by his

beautiful discoveries on the descent of bodies.

Geometricians, following up the steps of this great

man, have finally reduced the whole .science of

mechanics to general formula, which leaves no-

thing to be desired but to bring the analysis to

perfection.
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CHAP. L

Offerees, of their composition, and of tJie equili-

brium ofa material point.

A body appears to us to move, when it changes
its situation relatively to a system of bodies which

we suppose to be at rest. Thus in a vessel which

moves in an uniform manner, bodies seem to us

move, when they correspond successively to its

different parts. This motion is only relative j for

the vessel moves on the surface of the sea, which

revolves round the axis of the earth, the centre of

which moves about the sun, which is itself car-

ried along in the regions of space, together with

the earth and the planets. In order to conceive

a term to those motions, and to arrive at length
at some fixed points, from which we may reckon

the absolute motion of bodies, we conceive a

space without bounds, immoveable, and penetra-
ble to matter

;
and it is to different parts of this

space, whether real or imaginary (a) that we in

imagination refer the position of bodies ; and we
conceive them to be in motion when they cor-

respond successively to different points of this

space.

The nature of that singular modification, in

consequence of which a body is transported from
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one place to another, is, and always will be, un-

known. It has been designated by the name of

Force ; but we can only determine its effects and
the law of its action.

The effect of a force acting on a material

point, is, if no obstacle intervenes, to put it in

motion. The direction of the force is the right

line, which it tends to make the point described.

It is evident that if two forces act in the same di-

rection, their effect to move the point is the sum
of the forces, and that when they act in opposite

directions, the point is moved by a (b) force re-

presented by their difference, so that if the forces

were equal, the point would remain at rest.

If the directions ofthe two forces make an an-

gle with each other, a force results, the direction

of which is intermediate between the directions

of the composing forces, and it can be demon-

strated by geometry alone, that if from the point
of concourse of these forces, and in their respec-

tive directions, right lines be assumed (c) which

represent them, and if then the parallellogram of

which these lines are adjacent sides, be com-

pleted, its diagonal will represent their resul-

tant, both in quantity and in direction. We may
substitute in place of the two composing forces,

their resultant, and conversely we can in place

of any force whatever, substitute two others, of

which it is the resultant, consequently any force,

may be resolved into two others parallel to two

axes perpendicular to each other, and situated in

a plane which passes through its direction. To
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effect this, it is sufficient to draw through the first

extremity of the line which represents this force,

two lines respectively parallel to these axes, and
to form on these lines a rectangle, the diagonaL
of which represents the force to be decom-

posed. The two sides of the rectangle will re-

present the forces, into which the given force

may be decomposed parallel to these axes.

If the force be inclined to a plane given in

position, then by assuming to represent it, a line

in its direction, the extremity of which is in the

point where it meets the plane ; the perpendicu-
lar demitted from the extremity of this line on

the plane, will be the primitive force resolved

perpendicularly to this plane. The right line

drawn in this plane, connecting the line repre-

senting the given force and the perpendicu-

lar, will be the primitive force, decomposed paral-

lel to the plane. This second partial force

may itself be resolved into two others parallel
to two axes situated in this plane, and at right an-

gles to each other. Consequently every force

may be resolved into three others, respectively

parallel to three axes perpendicular to each

other.

Hence arises a simple method of obtaining
the resultant force of any number of forces,

which act on a material point ; for by resolving

each of them into three others parallel to three

axes given in position, and at right angles to

each other, it is evident that all the forces

parallel to the same axis are reducible to a shi-

ft
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gle force, equal to the sum of those which act

in one direction, minus the sum of those which

act in a contrary direction. Consequently the

point will be acted on by three forces, perpen-
dicular to each other ;

if then three right lines

in their respective directions be assumed to re-

present them, reckoning from their point of con-

course, and a rectangular parallelopiped be form-

ed on these three lines, its diagonal will re-

present the quantity and direction of (d) the

force resulting from all those which act on the

point.

Whatever may be the number, the magnitude,
and the directions these forces, if the position

of the point be varied in any manner by an inde-

finitely small quantity, the product of the re-

sultant into the quantity by which the point ad-

vances in its direction, is equal to the sum of

the products of each force into the corresponding

quantity. The (e) quantity by which the point
advances in the direction of any force, is the pro-

jection of the line connecting the two positions
of the point, on the direction of the force

;
if the

point advances in the opposite way from this

direction, this quantity should be taken nega-

tively.

In a state of equilibrium the resultant of all

the forces vanishes, provided the point be free.

If it is not, the resultant should be perpendicular
to the surface, or to the curve on which the point
is constrained to exist ; and then, when the posi-

tion of the point is changed by an indefinitely
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small quantity, the product of the resultant into

the quantity by which the point advances in its

direction, vanishes
;
this product is therefore always

equal to (/") nothing, whether the point be sup-

posed to be altogether free, or whether it be con-

strained to exist on a curve or surface. Conse-

quently in all cases, in which the equilibrium ob-

tains, the sum of the products of each force, into

the quantity by which it advances in its direc-

tion, when an indefinitely small change is made
in its position, vanishes ; and if this condition is

satisfied, the equilibrium subsists.

Qg



CHAP. II.

Of the motion of a material point.

A Point in repose cannot excite any motion

in itself, because there is nothing in its nature

to determine it to move in one direction in prer
ference to another. When sollicited by any
force, and then abandoned to itself, it will move

constantly and uniformly in the direction of

that force, if it meets with no resistance
; that is

to say, at every instant its force and the direc-

tion of its motion are the same. This tendency
of matter, to persevere in its state of rest or of

motion, is what is termed its inertia ; it is the first

law of the motion of bodies.

The direction of the motion in a right line,

follows necessarily from this, that there is no

reason why the body should deviate to the right,

rather than to the left of its primitive direction ;

but the uniform ity of its motion is not equally

evident. The nature of the moving force being

unknown, it is impossible to know a priori,

whether this force should continue without in-

termission or not. Indeed, as a body is incapa-
ble of exciting any motion in itself, it seems

equally incapable of producing any change in
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that which it has received, so that the law of

inertia is at least the most simple, and the most

natural that can be imagined. It is likewise con-

firmed by experience ; in fact, we observe that

motions are perpetuated on the earth, in pro-

portion as the obstacles which oppose them

are diminished ;
which induces us to think that

if these obstacles were entirely removed, the

motions would never cease. But the inertia of

matter is most remarkable in the heavenly

bodies, which for a great number of ages have

not experienced any perceptible alteration. For

these reasons, we shall consider the inertia of

bodies as a law of nature ; and when we observe

any change in the motion of a body, we shall

suppose that it arises from the action of some

extraneous cause.

In uniform motions, the spaces described are

proportional to the times ; but the time employ-
ed in describing a given space, is longer or

shorter according to the intensity of the moving
force. These differences have suggested the idea

of velocity, which in uniform motions is the ratio

of the space to the time employed in describing

it. In order to avoid the comparison of time and

space which are heterogeneous quantities, we as-

sume an interval of time, a second for example,

as the unity of time, and in like manner a portion

of space, such as a metre, for the unity of space.

Time and space become then abstract numbers,

which express how often they contain units of

their species, and thus they may be compared
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one with another. By this means, the velocity

becomes the ratio of two abstract numbers, and

its unity is the velocity of a body which describes

a metre in a second. By reducing in this man-

ner, the space, time, and velocity to abstract num-

bers, it appears that the space is equal to the pro-

duct of the velocity into the time, which latter is

consequently equal to the space divided by the

velocity.

Force being known to us by the space which

it causes to be described in a given time, it

is natural to assume this space as its measure.

But this supposes that several forces, acting in

the same direction, would cause to be described in

a second of time, a space equal to the sum of the

spaces which each would have caused to be de-

scribed separately in the same time, or in other

words, that the force is proportional to the velo-

city ; but of this we cannot be assured a priori,

(a) in consequence of our ignorance of the nature

of the moving force. Therefore it is necessary,
on this subject, also to have recourse to experi-
ments

; for whatever is not a necessary conse-

quence of the few data which we possess on the

nature of things, must be to us the result of ob-

servation.

The force may be expressed by an infinity of

functions of the velocity, which do not imply a

contradiction. There is none, for instance, in

supposing it proportional to the square of the ve-

locity. In this hypothesis, it is easy to determine

the motion of a point solicited by any number of
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forces, the velocities of which are known ;
for if

we assume on the directions of these forces, right

lines representing their velocities, reckoning from

their point of concourse, and iffrom the same point

other lines be taken which are to each other as

the squares of the first assumed lines, these lines

will represent the forces themselves. By com-

pounding them according to the rules already laid

down, we shall obtain the direction of the result-

ing force, and also the right line which represents

it ;
and which will be to the square of the corres-

ponding velocity as the right line which represents

one of the composing forces, to the square of its

velocity. By this it appears how the motion of

a point may be determined, whatever be the func-

tion of the velocity which expresses the force.

Among all the functions mathematically possible,

let us examine which is that of nature.

It is observed on the earth, that a body sollicit-

ed by any force whatever moves in the same man-

ner, whatever be the angle which the direc-

tion of this force makes with the direction of the

motion which is common to the body, and to* the

part of the terrestrial surface to which it corres-

ponds. A slight change in this respect, would

produce (b) a very sensible difference in the dura-

tions of the oscillations of a pendulum, according

to the position of the vertical plane in which it

it oscillates ;
but it appears from experiment,

that in all vertical planes, this duration is exactly

the same. In a ship which moves uniformly,

a moveable body subjected to the action of a

<»
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spring, of gravity, or of any other force, moves

relatively to the parts of the ship, in the same

manner, whatever may he the velocity and the

direction of the vessel. It may therefore be es-

tablished as a general law of terrestrial motions,

that if in a system of bodies which participate in

a common motion, any force be impressed on one

of them, its" relative or apparent motion will be

the same, whatever be the general motion of the

system, and the angle which its direction makes

that of the impressed force.

The proportionality of the force to the velocity,

results from this law supposed rigorously exact ;

for if we suppose two bodies moving on the same

right line with equal velocities, and that by im-

pressing on one of them a force which is added

to the primitive force, its velocity relatively to the

other body is the same as if the two bodies had

been originally in a state of rest ; and it is evident

that the space described by the body in conse-

quence of the primitive force, and of that which

is added to it, is then equal to the sum of the

spaces which each of them would have caused it

to describe in the same time, which supposes that

the force is proportional to the velocity.

And conversely, if the force be proportional to

the velocity, the relative motions of a system of

bodies actuated by any forces whatever, are the

same whatever be their common motion ; for this

motion being resolved into three others, parallel

to three fixed axes, only increases by the same

quantity, the partial velocities of each body pa-
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rallel to these axes ;
and since the relative velo-

cities depend only on the difference of the partial,

it is the same, whatever may be the motion com-

mon to all the bodies. It is therefore impossible

to judge of the absolute motion of a system, of

which we make a part, by the appearances which

are observed, which circumstance characterises

this law, the ignorance of which has so long re-

tarded our knowledge of the true system of the

world, by the difficulty of conceiving the relative

motions of projectiles above (c) the surface of the

earth, which is itself carried along by a double

motion, of rotation round its own axis, and of

revolution about the sun.

But considering the extreme smallness of the

most considerable motions which we can impress
on bodies, compared with that which they have

in common with the earth, it is sufficient for the

appearances of a system of bodies to be independ-
ent of the direction of this motion, that a small

increase in the force by which the earth is actuated

mey be to (d) the corresponding increase of its ve-

locity, in the ratio of the quantities themselves.

Thus our experiments only prove the reality of

this proportion, which if it really obtained, what-

ever the velocity of the earth might be, would

give the law of the velocity proportional to the

force. It would likewise give this law, if the

function of the velocity which expresses it was

composed of only (e) one term. If then the ve-

locity be not proportional to the force, we must

suppose that in nature the function of the velocity

which expresses the force, consists of several
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terms, which is very improbable. Moreover, we
must suppose that the velocity of the earth is ex-

actly such as corresponds to the preceding pro-

portion, which is contrary to all probability.

Besides, the velocity of the earth is different, in

different seasons of the year ; it is about one thir-

tieth greater in winter than in summer : this

variation is still more considerable, if, as every

thing appears to indicate, the solar system itself

is in motion in space ; for according as this pro-

gressive motion conspires with that of the earth,

or is contrary to it, there should result great vari-

ations in the course of the year in the absolute

motion of the earth, and this should alter the

proportion of which we are speaking, and the

ratio of the impressed force, to the relative velo-

city which results from it, if this proportion and

this relation were not independent of the absolute

velocity.

All the celestial phenomena serve to confirm

these proofs. The velocity of light, determined

by the eclipses of Jupiter's satellites, is combined

with that of the earth, exactly according to the

law of the proportionality of the force to the

velocity ; and all the motions of the solar system,

computed according to this law, are entirely con-

formable to observations. Hence it appears that

we have two laws of motion, namely, the law of

inertia, and that of the force proportional to the

velocity, both furnished by observation ; they are

the most simple and the most natural that can be

imagined, and are, without doubt, derived from
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the nature itself of matter ; but this nature being

unknown, these laws are to us only observed

facts, and the only ones which the science of

mechanics borrows from experience.

The velocity being proportional to the force,

these two quantities may be represented the one

by the other ; therefore, by what goes before, we
can obtain the volocity of a point solicited by

any number of forces, the respective directions

and velocities of which are known.

If the point is solicited by a number of forces

which act in a continued manner, it will describe

with a motion incessantly variable, (f) a curve,

the nature of which will depend on the forces by
which the point is solicited. To determine it,

we must consider the curve in its elements, exa-

mine how they arise the one from the other, and

ascend from the law of the increase of the or-

dinates to their finite expression. This is precisely

the object of the infinitesimal calculus, the for-

tunate discovery of which has produced so many
advantages to mechanics ; hence we may perceive
the utility of bringing to perfection this powerful
instrument of the human mind.

We have, in the case of gravity, a daily exam-

ple of a force which seems to act without inter-

mission. It is true, we cannot determine whether
its successive actions are separated by intervals of

time, the duration of which is insensible, but

the phenomena being nearly the same, on this

hypothesis and on that of a continued action ;

geometricians have adopted the former, as the
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most simple and commodious. Let us investigate

the laws of these phenomena.

Gravity seems to act in the same manner on

bodies, whether they are in a state of rest or of

motion. In the first instant a body remitted to

its (g) action, acquires an indefinitely small de-

gree of velocity ; in the second instant, an addi-

tional degree of velocity is added to the first, and

so on successively j so that the velocity increases

in the ratio of the times.

If we imagine a right angled triangle, one of the

sides of which represents the time and increases

with it, while the other side represents the velocity.

The element of the area of this triangle, being

equal to the product of the element of the time

into the velocity, it will represent the element of

the space which gravity causes a body to describe ;

this space will be therefore represented by the

entire area of the triangle, which as it increases

in the ratio of the squares of one of its sides,

shews that in motion accelerated by the action of

gravity, the velocities increase as the times, and

the heights through which bodies fall from a state

of rest, vary as the squares of the times, or of

the last acquired velocities. Therefore if the

space through which a body descends in the first

second, be represented by unity, it will descend

through four unities in two seconds, through nine

unites in three seconds, and so on ;
so that in

the successive seconds, itwill describe spaces which

increase as the odd numbers, 1, 3, 5, 7, &c.

The space which a body actuated by the velo-
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city acquired at the end of its fall, will describe

in a time equal to that of the fall, will be repre-
sented by the product of this time into its velo-

city ; this product is double of the area of the

triangle, therefore, a body moving uniformly
with its last acquired velocity, will describe in a

time equal to that of its fall, (K) a space double

of that through which it has fallen.

The ratio of the last acquired velocity to the

time, is constant for the same accelerating force ; it

increases or diminishes according as these forces

are greater or less ; it may therefore serve to ex-

press them. As the product of the time into the

velocity is double of the space described, the ac-

celerating force is equal to double of the space
described divided by the square of the time ;

it is

also equal to the square of the time divided by
this double space. These three formulae for ex-

pressing the accelerating forces (i), are useful on

various occasions ; they do not give the absolute

values of these forces, but only their ratio to

each other, which is all that is required in me-

chanics.

On an inclined plane, the action of gravity is

decomposed into two others; the one perpen-
dicular to the plane which is destroyed by its re-

sistance ; the other parallel to the plane, which is

to the primitive force of gravity, as the height of

the plane to its length. Therefore the motion

on an inclined plane is uniformly accelerated ;

but the velocities and the spaces described, are to

the velocities and spaces described in the same
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time, in the direction ofthe vertical, as the height
of the plane to its length. It follows from this,

that all the chords of circles, which are (k) ter-

minated in one of the extremities of the vertical

diameter, are described by the action of gravity,

in the same time as its diameter.

A body projected in the direction of any right

line whatsoever, deviates from it continually,

describing a curve concave to the horizon, of

which this right line is the first tangent. Its mo-

tion when referred to this right line by vertical

ordinates, is uniform, but it is accelerated in the

direction of the verticals, according to the laws

already explained; therefore, if from (V) every

point of the curve verticals be extended to meet

the first tangent, they will be proportional to

the squares of the corresponding intercepts of this

tangent, which is the characteristic property of

the parabola. If the force of projection is in the

direction of the vertical itself, the parabola is

confounded with the vertical line, and thus the

formulae for parabolic motion give those for ac-

celerated or retarded motions, in the direction of

the vertical.

Such are the laws of the descent of heavy

bodies discovered by Gallileo ;
at the present day,

it seems to require no great power of mind to

have discovered them ; but since they eluded

the investigations of philosophers, although per-

petually presented to them by the phenomena, it
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must no doubt have required an extraordinary

genius to have developed them.

We have seen in the first book, that a material

point suspended at the extremity of a straight line

supposed without mass, and firmly fixed at its

other extremity, constitutes the simple pendulum.
This pendulum, when removed from its vertical

position, tends to return by its gravity, and this

tendency is very nearly proportional to this devia-

tion, when it is not considerable. Suppose that

two pendulums of the same length, depart at the

same (rri) instant from the vertical position, with

very small velocities. In the first instant, they

will describe arcs proportional to their velocities ;

at the commencement of the second instant, equal

to the first, the velocities will be retarded propor-

tionally to the arcs described, and consequently to

the primitive velocities ; therefore the arcs describ-

ed in this instant will be also proportional to these

velocities, and this will be likewise true for the

arcs described in the third, fourth, &c. instants
;

thus at every instant the velocities, and the arcs

measured from the vertical, will be proportional to

the primitive velocities, consequently the pendu-
lums will arrive at the state of rest, simultaneously.

They will return again to the vertical with a mo-
tion accelerated, according to the same laws by
which their velocites had been previously retarded,

and they will reach it at the same instant, and with
their primitive velocity. They will oscillate in

the same manner on the other side of the vertical,

and they would thus continue to oscillate for ever,
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but for the resistances they meet with. It is evi-

dent that the extent of their oscillations depends
on their primitive velocities, but the duration of

these oscillations is the same, and consequently

independent of their amplitude. The force which

accelerates or retards the pendulum, is not ex-

actly proportional to the arc measured from the

vertical ;
so that when a body moves in a circle (n)

the isochronism relatively to the small oscillations

of a heavy body, is only approximative. But it

is rigorously exact in a curve, in which the gravity

resolved parallel to the tangent, is proportional to

the arc reckoned from the lowest point of the

curve, which immediately gives its differential

equation. Huygens, to whom we are indebted for

the application of the pendulum to clocks, was

the first who investigated the nature of this curve.

He found that it was a cycloid, the plane of which

was vertical, the vertex being the lowest point j

and in order that a body suspended at the extremity

of an inextensible thread, should describe this

curve, it was only required that the other ex-

tremity should be fixed at the point of concourse

of two cycloids equal to that to be described, and

situated vertically in an opposite direction, in

such a manner that the thread in its vibration

might envelope alternately each of these curves.

But whatever ingenuity may have been displayed

in these investigations, a long experience has

given the preference to the circular pendulum, as

being more simple, and sufficiently accurate to

be applied even tp the astronomical computa-
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tions. But the theory of evolutes which has been

suggested by them, is become very important by
its applications to the system of the world.

The duration of the very small oscillations of

a circular pendulum, is to the time of a body's de-

scent through a height equal to double of the

length of the pendulum, as the semi-circumference

is (o) to the diameter. Consequently the time

of descent through a small arc terminated by the

vertical diameter, is to the time of descent down
the diameter, or what comes to the same thing,

to the time required to describe the chord of the

arc, as the fourth part of the circumference to the

diameter ; therefore the right line connecting two

given points, is not the line of quickest descent

from the one to the other. The investigation of

this line has excited the attention of geometers,
and they have (p) found that it is a cycloid, the

origin of which coincides with the most elevated

point.

The length of the simple pendulum which vi-

brates seconds, is to twice the height through
which bodies fall by the force of gravity in the

same time, as the square of the diameter to the

square of the (q) circumference. As this length

may be measured with great precision, the time

which heavy bodies take to descend through a

determinate space may be obtained by this theo-

rem much more accurately than by direct experi-
ments. It has been observed in the first book,

that by means of very exact experiments, the

length of the pendulum vibrating seconds at Paris,

has been determined to be ra

741887, hence it fol-

R
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lows that gravity causes bodies to fall through

3m,66l07, in the first second. This connection

between the time of oscillation, the duration of

which may be precisely observed, and the rectili-

near motion of heavy bodies, is an ingenious re-

mark, for which we are also indebted to Huygens.
The durations of very small oscillations of pen-

dulums of different lengths, and actuated by the

same force of gravity, vary as the square roots of

these lengths. If the length of the pendulums be

the same, but actuated by different forces, the

times of their oscillations will be reciprocally as

the square roots of the force of gravity. It is by
means of these theorems that the variation of

the force of gravity at the surface of the earth,

and on the summit of mountains, has been de-

termined. From observations made on pendu-

lums, it has been likewise inferred, that gravity

depends (r) neither on the figure nor on the sur-

face of bodies
; but that it penetrates their

inmost parts, and tends to impress on them

equal velocities in equal times. To be assured of

this, Newton made several bodies of the same

weight, but of different figures and matter, to os-

cillate, by placing them in the interior of the same

surface, in order that they may experience the

same resistance from the air. And though he in-

stituted these experiments with the greatest ac-

curacy possible, he was never able to perceive

the smallest difference in the length of simple

pendulums, vibrating seconds, as inferred from

the durations of the oscillations of these bodies ;

hence it follows, that if bodies did not experience
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any resistance in their fall, the velocity which

they would acquire by the action of gravity, would
be always the same in equal times.

We have likewise in circular motion, an in-

stance of a force which acts without intermission.

The motion ofmatter abandoned to itselfbeing uni-

form and rectilineal, it is evident that a body which

moves on a curve must perpetually tend to recede

from the centre in the direction of the tangent.
The effort which it makes for this purpose is

termed centrifugal force ; and the force directed

to the centre is called a central or centripetalforce.

In circular motion the central force is equal
and directly contrary to the centrifugal force

;
it

tends incessantly to draw the body from (s) the

centre to the circumference, and in an extremely
short interval of time its effect may be measured

by the versed sine of the small arc described.

We are enabled by this result, to compare the

force of gravity with the centrifugal force which

arises from the rotatory motion of the earth. At
the equator, bodies describe in consequence of

this rotation in each second of time, an arc

of 40", 1095 of the periphery of the terrestrial

equator. As the radius of this equator is very

nearly 6876606
m

, the versed sine of this arc will be
m
,0 1265,59. The force of gravity causes bodies

to descend through 3m,64930 in a second at the

equator ; therefore the central force necessary to

retain bodies at the surface of the earth, and conse-

quently the centrifugal force arising from the rota-

tory motion, is to the force ofgravity at the equator,

r2
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in the ratio of 1 to 288.4. As the centrifugal force

acts in opposition to gravity at the equator, it dimi-

nishes it, and bodies descend to the earth by the

difference only between these two forces
;
therefore

if the entire weight which would subsist without

this diminution be called gravity, the centrifugal

force at the equator is very nearly the -sW
h

part of

gravity. If the rotation of the earth was seven-

teen times more rapid, the arc described at the

equator in a second, would be seventeen times

greater, and its versed sine would be 289 times

more considerable, consequently the centrifugal

force would be equal to the force of gravity, and

bodies at the equator would cease to gravitate to

the earth.

In general, the expression of a constant accele-

rating force which acts always in the same direc-

tion, is equal to twice the space which it causes

to be described, divided by the square of the time,

every accelerating force, in an extremely short in-

interval of time, may be considered constant and

acting in the same direction ; moreover, the

space which the central force causes to be de-

scribed in circular motion, is the versed sine of

the arc described, and this versed sine is very

nearly equal to the square ofthe arc divided by the

diameter
; the expression of this force is therefore

the square of the arc described, divided by the

square of the time, and by the radius of the cir-

cle. The arc divided by the time is the velocity

itself of the body ; consequently the central force,
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and likewise the centrifugal force, are equal to the

square of the velocity divided by the radius.

A comparison of this result, with that found

above, according to which the gravity is equal to

the square of the acquired velocity divided by
twice the space described in the direction of the

(t) vertical, shews that the centrifugal force is

equal to the force of gravity, when the velocity of

the revolving body is the same as that acquired

by a heavy body, in falling through a height

equal to half the radius of the described circum-

ference.

The velocities of several bodies moving in cir-

cles, are equal to the circumferences which they

describe divided by the times of their revolu-

tions ;
the circumferences being as the radii, the

squares of the velocities are as the squares of the

radii divided by the squares of the times. The

centrifugal forces are therefore as the radii of the

circumferences divided by the squares of the

times of the revolutions. It follows from this,

that on the different terrestrial parallels, the cen-<

trifugal force arising from the motion of rotation

of the earth, is proportional to the radii of those

parallels. These beautiful theorems discovered by

Huygens, conducted Newton to the general theory
of curvilinear motion, and thence to the law of

universal gravitation.

A body which describes any curve whatever,

tends to deviate from it in the direction of the

tangent : now we can easily conceive a circle to

pass through two consecutive elements of the
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curve
;

this circle is termed the osculating circle,

or the circle of curvature
;
the body may be con-

ceived in two consecutive instants to move on the

circumference of the circle
;

its centrifugal force

is therefore equal to the square of its velocity di-

vided by the radius of the osculatory circle
;
but

the magnitude and position of this circle are con-

stantly varying.

If the curve be described by the action of a

force directed to a fixed point ;
this force may be

resolved into two, one in the direction of the ra-

dius of the osculating circle, the other in the di-

rection of the element' of the curve. The first

is in equilibrio with the centrifugal force, the se-

cond increases (u) or diminishes the velocity of

the body, therefore this velocity continually va-

ries, but it is always such, that the areas describ-

ed by the radius vector about the origin of the

forcey are proportional to the times. Con-

versely, if the areas traced by the radius vector

about a fixed point, increase proportionally to

the times, the force which solicits the body, is

constantly directed towards this point. These

fundamental propositions in the theory of the

system of the world, are easily demonstrated in

the following manner.

The accelerating force may be supposed to act

only at the commencement of each instant, dur-

ing which the motion of the body is uniform ; the

radius vector will thus describe a small triangle.

If the force should cease to act in the following

instant, the radius vector will trace in this second
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instant a small triangle equal to the first ; be-

cause the vertices of these two triangles being at

the fixed point, which is the origin of the force,

their bases, which exist in the same right line,

will be equal ;
as being described with the same

velocity, during two equal and consecutive in-

stants. But at the commencement of the se-

cond instant, the accelerating force combined

with the tangential force of the curve, causes the

body to describe the diagonal of a parallelogram,

of which the adjacent sides represent these forces.

The triangle which the radius vector describes in

consequence of the action of this combined force,

is equal to that which would have been de-

scribed without the action of the accelerating

force
j for these two triangles are situated on the

same base, namely, the radius vector of the end of

the first instant, and their vertices exist on a right

line parallel to this base ; therefore the areas

traced by the radius vector in two consecutive in-

stants, are equal ;
and consequently the sector

described by this radius increases as the number
of these instants, or as the times. It is evident

that this only obtains when the accelerating force

is directed towards the fixed point ;
otherwise the

triangles which we have considered will not have

the same altitude. Therefore, the proportion-

ality of the areas to the times, demonstrates

that the accelerating force is constantly directed

to the origin of the radius vector.

In this case, if we suppose a very small sector

to be described in a very short interval of time,
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and if from the first extremity of the are of this

sector, a tangent to the curve be drawn, and the

radius vector drawn from the origin of the force

to the other extremity of the vector be prolonged
to meet this tangent, it is evident that the part of

this radius intercepted between the curve and the

tangent, will be the space which the central force

would cause the body to describe. If twice this

space be divided by the square of the time, we
obtain an expression for this force ;

but since the

sector is proportional to this time, the central

force is proportional to the part of the radius

vector intercepted between the curve and the

tangent, divided by the square of the sector.

Strictly speaking, the central force in different

points of the curve is not proportional to these

quotients, but the accuracy is always greater ac-

cording as the sectors are taken smaller, so that

it is exactly proportional to the limits of these

quotients. When the nature of the curve is

known, this limit may be obtained in a function

of the radius vector, by means of the differential

analysis, and then that function of the distance

to which the central («) force is proportional will

be determined.

If the law of the force be given, the investiga-

tion of the curve described presents greater diffi-

culties. But whatever be the nature of the forces

by which a body is actuated, the differential

equations of its motion may be determined in the

following manner : let us imagine three axes per-

pendicular to each other
j
the position of a body
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at any instant will be determined by three coordi-

nates parallel to these axes. Each force which

acts on the point being resolved into three others

parallel to the same axes, the product of the re-

sultant of all the forces, parallel to one of the

coordinates, into the element of time during

which it acts, will express the increment of the

velocity parallel to this coordinate ;
but this ve-

locity being equal to the element of the coordi-

nate divided by the element of the time, the dif-

ferential of the quotient of this division, is equal

to (#) the preceding product. The consideration

of the two other coordinates furnishes two similar

equations ;
thus the determination of the motion

of a body, becomes an investigation of pure ana-

lysis, which is reduced to the integration of these

differential equations. .

In general, the element of time being sup-

posed to be constant, the second differential of

each coordinate divided by the square of this ele-

ment, represents a force, which being applied to

the point, in an opposite direction constitutes an

equilibrium with the force which solicits it in the

direction of this coordinate. If the difference of

these forces be multiplied by the arbitrary varia-

tion of the coordinate, the sum of the three si-

milar products relative to the three coordinates

will be equal to cypher by the condition of equi-

librium. If the point be free, the variations of

the three coordinates will be all arbitrary, and by

putting the coefficient of each of them respec-

tively equal to cypher, the («/) three differential
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equations relative to the motion of a point will be

obtained. But if the point is not entirely free,

there will be given one or two relations between

the three coordinates, which will furnish a corres-

ponding number of equations between their arbi-

trary variations. If then a like number of varia-

tions be eliminated by means of these relations,

the coefficients of the remaining variations will

be respectively equal to cypher ; and the differen-

tial equations of motion will be obtained, which

being combined with the relations existing be-

tween the coordinates, will determine the posi-

tion of the point, for any instant.

The integration of these equations is easy when
the force is directed to a fixed point, but very of-

ten it becomes impossible from the nature of the

forces. Nevertheless the consideration of the dif-

ferential equations leads to some interesting prin-

ciples of mechanics, such as the following. The
differential of the square of the velocity of a point

subject to the action of accelerating forces, is

equal to twice the sum (z) of the products of each

force into the small space advanced by the body
in the direction of this force

;
from which it is

easy to infer, that the velocity acquired by a heavy

body descending along a line or a curved surface,

is the same as it would acquire in falling vertically

through the same height.

Several Philosophers, struck with the order

which prevails in nature, and with the fecundity

of its means in the production of phenomena,
have supposed that she always accomplishes her
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ends in the simplest manner possible. In extend-

ing this conjecture to mechanics, they have inves-

tigated what was the economy of nature in the

employment of forces and of time. Ptolemy as-

certained that reflected light passed from one

point to another, by the shortest possible route,

and consequently in the least time, the velocity

of the luminous ray being supposed to be always

the same. Fermat, one of the most original men
that France ever produced, generalized this prin-

ciple, by extending it to the refraction of light.

He supposed therefore that it passes from a point

assumed without a diaphonous medium to an in-

terior point, in the shortest possible time ; then

supposing that the velocity is less in this medium

than in a vacuo, which is extremely probable, he

investigated the law of the refraction of light in

these hypotheses. By applying to this problem
his beautiful method de maximis and de minimis,

(which should be considered as the true origin of

the differential calculus,) he found agreeably to ex-

perience, that the sines of (ad) incidence and of

refraction ought to be in a constant ratio, greater

than unity. The ingenious manner in which New-

ton deduced this ratio from the attraction of the

media which the rays traverse, indicated to Mau-

pertius,that thevelocity oflight increases in diapha-
nous media, and that consequently it is not, as Fer-

mat supposed, thesum of the quotients ofthe spaces
described in a vacuo and in the medium, divided by
their corresponding velocities, but the sum of the

products ofthese quantities which should be amini-
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mum. Euler extended this hypothesis to motions

which are every moment variable, and he demon-

strated by several examples, that of all the curves

that a body may describe in passing from one

point to another, it always selects that in which

the integral of the product of its mass, into its

velocity and the element of the curve, is a mini-

mum. Thus the velocity of a point which moves

on a curved surface, and is not actuated by any

force, being constant, it passes from one point to

another by the shortest line (bb) which can be

traced on this surface. The preceding integral

has been termed the action of the body, and the sum

of all the similar integrals relative to each body of

the system, has been called the action of the sys-

tem. Therefore Euler has demonstrated that this

action is a minimum, so that the economy of na-

ture consists in sparing this action ;
this is what

constitutes the principle of least action, the dis-

covery of which is certainly due to Euler
j though

Lagrange has since derived it from the primor-

dial laws of motion. But this principle is only at

bottom a remarkable result of those laws, which

are, as we have seen, the most simple and the

most natural that can be conceived, and which

seem to be derived from the very essence of mat-

ter. All laws mathematically possible between

the force and the velocity, furnish analogous

results, provided that we substitute in this prin-

ciple, instead of the velocity, that function of the

velocity by which the force is expressed. There-
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fore the principle of the least action ought not to

be elevated to the rank of a final cause, for so far

from having given birth to the laws of motion,

it has not even contributed to their discovery,

without which we would still dispute about

what was to be understood by the last action of

nature.



:

CHAP. III.

Of the equilibrium of a system of bodies.

The simplest case of equilibrium between several

bodies, is that of two material points meeting
each other, with equal and directly contrary ve-

locities. Their mutual impenetrability, that pro-

perty of matter which prevents two bodies from

occupying the same place at the same instant,

evidently annihilates their velocities, and reduces

them to a state of rest. But if two bodies of dif-

ferent masses impinge on each other, with op-

posite velocities, what relation exists between the

velocities and the masses in the case of an equili-

brium ? In order to solve this problem, suppose
a system of contiguous material points arranged
in the same right line, and actuated by a common

velocity, in the direction of this line ; suppose also

a second system of contiguous material points,

situated on this same line and actuated also by a

common velocity, but in a direction opposite to

the preceding, so that the two systems, after im-

pinging on each other, may constitute an equili-

brium. It is evident, that if the first system con-

sisted of only one material point, each point in
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the second system would destroy in the striking

point, a part of its velocity equal to the velocity

of the second system ; therefore in the case of

equilibrium, the velocity of the striking point
should be equal to the product of the velocity of

the second system into the number of material

points composing it, and thus we may substitute

for the first system, one sole point actuated by a

velocity equal to this product. We may likewise

substitute in place of the second system, a mate-

rial point actuated by a velocity, equal to the pro-

duct of the velocity of the first system, into the

number of its material points. Thus in place of

the two systems we shall have two points which

will sustain each other in equilibrio with contra-

ry velocities, of which one will be the product of

the velocity of the first system into the number of

its points, and of which the other will be the pro-
duct arising from multiplying the velocity of the

points of the second system by their number;
therefore in the case of an equilibrium these pro-
ducts should be equal to each other. The mass

of a body is the aggregate of its material points.

The product of the mass by the velocity is termed

the quantity of motion ; this is also what is under-

stood by the force of a body. In order that two

bodies, or two systems of points, which impinge
on each other in opposite directions, may be in

equilibrio, the quantities of motion or the oppo-
site forces should be equal, and consequently the

velocities should be inversely as the masses.

Two material points cannot act, the one on the



256 OF THE EQUILIBRIUM OF A

other, except in the direction of the right line

which connects them : the action which the first

exercises on the second communicates to it a cer-

tain quantity of motion ; now we may conceive

that previous to the action, the second body is ac-

tuated by this quantity, and by another which is

equal and directly opposite to it, thfe action of the

first body is therefore employed (a) in destroying

this last quantity of motion, but to effect this, it

must employ a quantity of motion equal and con-

trary to that which is to be destroyed. Hence it

appears generally, that in the mutual action of

bodies, the reaction is always equal and directly

contrary to the action. It likewise appears, that

this equality does not imply the existence of any

particular force inherent in matter, but results

from this, that a body cannot acquire motion

from the action of another, without depriving it

of a portion of its motion
;

in the same manner,

as a vessel can only be filled at the expence of

another which communicates with it.

The equality between action and reaction ma-

nifests itself in all the actions of nature
j
iron at-

tracts the magnet as it is attracted by it
;
the same

is observed in electric attractions and repulsions,

and even in the developement of animal forces ;

for whatever be the nature of the prime motive

power in man and animals, it is clear that they

experience, from the reaction of matter, a force

equal and contrary to that which they communi-

cate to it, and that consequently when they are
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considered in this point of view, they are subject
to the same laws as inanimate beings.

The reciprocity of the velocity to the mass in

the case of equilibrium, enables us to determine

the ratio of the masses of different bodies. Those

of homogeneous bodies are proportional to their

volumes, which geometry teaches us to measure ;

hut all bodies are not homogeneous, and from the

differences which exist either in their integrant

molecules or in the number and magnitude of the

intervals or pores which separate those molecules,

there arise very considerable diversities in the

masses which are contained under the same vo-

lume. Geometry then becomes inadequate to

determine these masses, and we are necessarily

obliged to have recourse to mechanics.

If we conceive that in two globes composed of

different substances, their diameters are so varied,

that they may constitute an equilibrium when

they meet with equal and directly opposite velo-

cities, we may be assured that then they contain

the same number of material points, and that

consequently their masses are equal. The ratio

of the volumes of these substances, the masses be-

ing equal, will thus be obtained ;
and afterwards,

we can determine by geometry, the ratio of the

masses of any two volumes of the same substance.

But this method would be extremely troublesome

in the numerous comparisons which are continu-

ally required in the various relations of com-

merce. Fortunately, nature furnishes, in the
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weight of bodies, a simple method of comparing
their masses.

It lias been observed in the preceding chapter,

that every material point in the same place on the

earth, tends to move with the same velocity by
the action of gravity. The sum of these tenden-

cies is that which constitutes the weight of a bo-

dy ;
therefore (b) the weights are proportional to

the masses. It follows from this, that if two bo-

dies suspended at the extremities of a thread,

which passes over a pully, are in equilibrio when

an equal portion of the thread is on each side of

the pully, the masses of those bodies are equal,

because tending to move with the same velocity

by the action of gravity, their mutual action on

each other is precisely the same, as if they im-

pinged on each other, with equal and directly

contrary velocities. Likewise if two bodies

placed in a balance, of which the arms and

plates are perfectly equal, be in equilibrio, we

may be assured of the equality of their masses.

The ratio between the masses of different

bodies may thus be obtained by means of an

exact and sensible balance, and of a great num-

ber of small equal weights, by determining how

many of these weights are necessary to retain

these masses in equilibrio.

The density of a body depends on the number

of its material points, included in a given volume ;

it is therefore proportional to the ratio of the mass

to the volume.

The density of a substance destitute of pores
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would be the greatest possible ; and a comparison
of its density with that of other bodies, would give

the quantity (c) of matter which they contain.

But as we are not acquainted with any such sub-

stance, we can only obtain the relative densities

of bodies
;
these densities are in the proportion

of the weights when the volumes are the same, for

the weights arc proportional to the masses : as-

suming therefore as unity, the density of any sub-

stance, at a constant temperature, for instance,

the maximum of the density of distilled water, the

density of a body will be the ratio of its weight to

that of an equal volume of water reduced to its

maximum density. This ratio is termed its

specific gravity.

What has been said seems to suppose that mat-

ter is homogeneous, and that bodies only differ

from each other in the figure and magnitude of

their pores and of their integrant molecules. It

is however possible that there may be essential

differences in the very nature of these molecules
;

and it is not repugnant to the limited information

which we possess of 'matter, to suppose the ce-

lestial regions filled with a fluid devoid of pores,

and still of such a nature as not to oppose any
sensible resistance to the planetary motions ; we

may thus reconcile the uniformity of these mo-

tions, Avhich is (cT) evinced by the phenomena, with

the opinion of those philosophers who regard a va-

cuum as an impossibility j but this is of no conse-

quence in mechanics, which takes into account no
other properties of matter, but extension and mo-

s 2
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tion. We may therefore, without any appre-

hension of error, assume the homogeneity of

the elements of matter, provided that by equal

masses we understand masses which being sol-

licited by equal and directly contrary velocities,

constitute an equilibrium.

In the theory of the equilibrium, and motion

of bodies, we abstract from the consideration of

the number and figure of the pores which are

distributed through them. But we may have re-

gard to the differences of their respective densi-

ties, by supposing them to be constituted of ma-

terial points more or less dense, which in fluids

are perfectly free, and which in hard bodies are

connected by inflexible straight lines, destitute of

mass, and which in elastic and soft bodies, are

connected by flexible and extensible lines. It is

evident that in these hypotheses, bodies should

present the appearances which they actually ex-

hibit.

The conditions of the equilibrium of a system of

bodies may be always determined by the law of

the composition of forces, which has been explain-

ed in the first chapter of this book
;

for we may
conceive the force by which every material point

of the system is actuated, to be applied to that

point of itsMirection where all the forces which

destroy it concur, or which by combining with

it, constitute a resultant, which in the case of

equilibrium is destroyed by the fixed points of the

system. Let us consider, for example, two ma-

terial points, attached to the extremities of an in-

flexible lever, and suppose that the forces which
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sollieit them exist in the plane of the lever : these

forces being supposed to meet at the point of con-

course of their directions, their resultant should,

in order to constitute an equilibrium, pass through
the fulcrum, which can alone destroy it

; (e)

and according to the law of the composition
of forces, the two composing forces should be re-

ciprocally proportional to perpendiculars demitted

from the fulcrum or point of support, on their di-

rections.

If we suppose two heavy bodies to be attached

to the extremities of a rectilinear inflexible lever,

of which the mass is indefinitely small, relatively to

the masses ofthese bodies, the directions respective-

ly parallel to that of the gravity, may be conceived

to meet at an infinite distance. In this case, the

forces by which each body is actuated, or what

is the same thing, their weights must be in the

case of equilibrium reciprocally proportional to

perpendiculars let fall from the fulcrum on the

directions of these forces
;

these perpendiculars
are proportional to the arms of the levers, conse-

quently the weights of two bodies are, in the case

of equilibrium, reciprocally proportional to the

arms of the lever to which they are attached.

A very small weight may therefore sustain a

very considerable one in equilibrio, and in this

manner we can raise an enormous weight by a

very slight effort ;
but for this purpose the arm

of the lever to which the power is attached, must

be very long with respect to that which elevates

the weight, so that the power must describe a

great space to elevate the weight a small height.
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Consequently what is gained in force, is lost in

time, and this is the case universally in all (f)
machines. But we may almost always dispose of

time at pleasure, when we can only employ a

very limited force. In other cases where it is re-

quired to produce a great velocity, it may be ef-

fected by applying the force to the shorter arm of

the lever. It is in this possibility of augmenting,

according to circumstances, the mass or the velo-

city of the bodies to be moved, that the principal

advantage of machinery consists.

From a consideration of the lever has been sug-

gested the notion of moments. By the moment of a

force to make a system turn about a point, is un-

derstood the product of this force, into the distance

ofthe point from its direction. Therefore in the case

of the equilibrium of a lever, to the extremities of

which two forces are applied, the moments of

these forces with respect (g) to the fulcrum or

point on which it turns, must be equal and con-

trary, or what comes to the same thing, the sum
of the moments relatively to this point must be

equal to cypher.
The projection of a force on a plane drawn

through a fixed point, multiplied into the distance

of the point from this projection, is termed the

moment of the force to make the system to re-

evolve about an axis which passes through the

fixed point, and is perpendicular to the plane.
The moment of the resultant of any number of

forces with respect to a point, or any axis, is
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equal to the sum of the corresponding moments

of the composing forces.

Parallel forces may be supposed to meet at an

infinite distance, they are therefore reducible to

an unique force, equal and parallel to their sum ;

therefore if each force be resolved into two, one

of which exists on a given plane, the other being

perpendicular to this plane, all the forces situated

in the plane are reducible to a unique force, as

likewise all the forces which are perpendicular to

this plane. There exists always a plane passing-

through the fixed point, such that the resultant

of the forces which are perpendicular to it, either

vanishes or passes through this point ; in these

two cases the (Ji) moment of this resultant va-

nishes relatively to the axes which have this point
for the origin, and the moment of the forces of the

system, with respect to these axes is reduced to the

moment of the resultant situated in the plane in

question. The axis about which this moment is a

maximum, is that which is perpendicular to this

plane, and the moment of the forces relative to

an axis, which passing through the fixed point

makes any angle with the axis of greatest mo-

ment, is equal to the greatest moment of the sys-

tem, multiplied into the cosine of this angle ;
so

that this moment vanishes for all axes situated in

the plane to which the axis of the greatest mo-

ment is perpendicular.

The sum of the squares of the cosines of the

angles made by the axis of greatest moment, with

any three axes perpendicular to each (i) other
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and passing through the fixed point being equal

to unity ;
the squares of the three sums of the

moments of the forces, with respect to these axes,

are equal to the square of the greatest moment.
In order that a system of bodies connected in

an invariable manner, and which revolves about

a fixed point, may be in equilibrio, the sum of the

moments of the forces must vanish with respect to

any axis passing through this point. It follows

from what goes before, that this will always be

the case if the preceding sum be equal to cypher,

relatively to three fixed axes, perpendicular to

each other. If there is no fixed point in the sys-

tem, it is required in addition to the preceding
conditions, in order to insure an equilibrium, that

the three sums of forces resolved parallel to these

axes, be respectively (Jt) equal to cypher.
Let us considsr a system of ponderable points

firmly connected, referred to three planes at

right angles to each other, and connected with

the system. The action of gravity being resolved

parallel to the intersections of these planes, all

the forces parallel to the same plane may be re-

duced to an unique resultant parallel to this

plane and equal to their sum. The three result-

ants relative to the three planes must concur

in the same point ;
for the action of gravity on the

several points of the system being parallel, they
have an unique resultant, which is obtained by
first combining two of these forces, and after-

wards their resultant with the third force
;
the

resultant of the three forces with a fourth, and



SYSTEM OF BODIES. 265

so on. The situation of this point of concourse

with respect to the system, is independent of the

inclination of the planes to the direction of gra-

vity ;
for a greater or less inclination can only

change the (7) values of the three partial re-

sultants, without altering their position with re-

spect to the planes ;
therefore this point heing

supposed fixed, all the efforts of the weights of the

system will be annihilated in all the positions

which it can assume in revolving about this point,

which for this reason has been termed the centre

ofgravitg of the system. Let us conceive the po-
sition of this centre, and that of the different

points of the system to be determined by coordi-

nates parallel to three axes at right angles to each

other. The actions of gravity being equal and

parallel, and the resultant of those actions pas-

sing in all positions of the system through its

centre of gravity ;
if this resultant be supposed to

be successively parallel to each of the three axes,

the equality of the moment of the resultant to the

sum of the moments of the composing forces gives

any one of these coordinates, multiplied by the

entire mass of the system, equal to the sum of

the products of the mass of each point into its

corresponding coordinate. Thus the determina-

tion of this centre, of which gravity first suggest-

ed the idea, is independent of it. The consider-

ation of this centre extended to a system of bo-

dies ponderable or not, free or connected in any
manner whatever, is extremely useful in me-

chanics.
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The theorem which was given at the close of
the first chapter on the equilibrium of a point,
when generalized, leads to the following theorem,
which contains, .in the most general mariner, the

conditions of the equilibrium of a system of mate-
rial points actuated by auy forces whatever.

If an indefinitely (m) small change be made in

the position of the system, in a manner compati-
ble with the connection of its parts, each mate-
rial point will advance in the direction of the force

which sollicits it, by a quantity equal to the part
of this direction, comprised between the first po-
sition of the point and the perpendicular let fall

from the second position of the point on this di-

rection
;
this being premised, in the case of equi-

librium, the sum of the products of each force into

the quantity by which the point to which it is appli-

ed advances in its direction, is equal to cypher ;

and conversely if this sum is equal to cypher, what-

ever may be the variation of the system, it is in

equilibrio. It is in this that the principle of vir-

tual velocity consists, for which we indebted to

John Bernoulli, but in applying it, it should be

observed, that those products must be taken ne-

gatively, of which the points in the change of po-

sition of the system, advance in a direction con-

trary to that of their forces : it should be likewise

recollected, that the force is the product of the

mass of a material point, into the velocity with

which it would move, if entirely free.

If we conceive the position of each point of the

system, to be determined by three rectangular co-
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ordinates, the sum of the products of each force

into the quantity advanced in its direction by the

point which it sollicits, when an indefinitely small

change is made in the system, will he expressed

by a linear function of the variation of the coordi-

nates of its several points ;
these variations have

with each other relations, which depend on the

manner in which the parts of the system are con-

nected together, therefore in reducing the arbitra-

ry variations to the least possible number by
means of these relations in the preceding sum
which should be equal to cypher, in the case

of equilibrium ;
it is necessary, in order that the

equilibrium may take place in every direction, to

make the coefficient of each of the remaining va-

riations separately equal to cypher, which will

furnish us with as many equations as there are

arbitrary variations. These equations, combined

(n) with those which are furnished by the con-

nection of the parts of the system, will contain

all the conditions of its equilibrium.

There are two states of equilibrium, which are

essentially different. In one, if the equilibrium

be a little deranged, all the bodies of the system

only make small oscillations about their primitive

position ;
and then the equilibrium is firm or

stable. This stability is absolute, if it obtains

whatever may be the oscillations of the system ;

it is only relative, if it only obtains with respect
to oscillations of a certain species. In the other

state of equilibrium, when the system is disturbed,
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the bodies deviate more and more from their pri-

mitive position. We may form a just notion of

these two states, by considering an ellipse situ-

ated vertically on a horizontal plane. If the el-

lipse be in equilibrio on its lesser axis, it is clear

that by making it to deviate a little from this si-

tuation by a slight (o) motion on itself, it tends

to revert, making oscillations which will be

soon annihilated by the friction and resistance of

the air. But if the ellipse be in equilibrio on

its greater axis
;
when it once deviates from this

situation, it continually deflects from it more

and more, and is at length upset on its lesser

axis. Consequently the stability of the equili-

brium depends on the nature of the small oscilla-

tions, which the system, when deranged in any

manner, makes about this state. In order to de-

termine generally in what manner the different

states of stable and tottering equilibrium succeed

each other, let us consider a curve returning into

itself, situated vertically in a position of stable

equilibrium. When it is a little deranged from

this state, it tends to revert to it
;
this tendency

varies as the deviation increases, and when it va-

nishes, the curve is found in a new position of

equilibrium, but which is not stable, for the curve

previous to its arrival tended to revert to its pri-

mitive position. Beyond this last position, the

tendency to the first state, and consequently to

the second, becomes negative, until it vanishes

a second time, and then the curve is in a po-
sition of stable equilibrium. By pursuing this
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illustration, it appears that the states of stable and

tottering equilibrium succeed each other alter-

nately, like the maxima and minima of the ordi-

nates of curves. The same reasoning may be

easily extended to the different states of equili-

brium of a system of bodies.
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Of the equilibrium offluids.

The characteristic property of fluids, whether

elastic or incompressible, is the extreme faci-

lity with which each of their molecules yields

to the slightest pressure which it experiences on

one side, rather than on the other. We proceed
therefore to establish on this property, the laws

of the equilibrium of fluids, by considering them

as constituted of molecules perfectly moveable

among each other.

It follows immediately from this mobility, that

the force by which a molecule of the free surface

of a fluid, is actuated, must be perpendicular to

this surface, for if it was inclined to it, by re-

solving the force into two others, one perpendi-

cular, and the other parallel to this surface, the

molecule would glide on the surface (a) in con-

sequence of this last force. Gravity is conse-

quently perpendicular to the surface of stagnant

waters, which is on this account horizontal ; for

the same reason, the pressure which each fluid

molecule exerts against a surface, must be per-

pendicular to it.

Each molecule in the interior of a fluid mass,
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experiences a pressure, which in the atmosphere

is measured by the height of the barometer, and

which may be estimated in a similar manner for

every other fluid. By considering each molecule

as an (b) indefinitely small rectangular prism, the

pressure of the ambient fluid will be perpendicu-

lar to the faces of this prism, which will conse-

quently tend to move perpendicularly to each face,

by virtue of the difference of pressures, which the

fluid exerts on two opposite faces. From these

different pressures arise three forces perpendicu-

lar to each other, which must be combined with

the other forces which sollicit the molecule. It

is easy to shew from this, that in the state of equi-

librium the differential of the pressure is equal to

the density (e) of the fluid molecule multiplied in-

to the sum of the products of each force by the

element of its direction
; therefore if the fluid be

incompressible and homogeneous, this sum will

be an exact differential, this important result was
first announced by Clairaut, in his beautiful trea-

tise on the figure of the earth.

When the forces arise from attractions, which
are always a function of the distance from the at-

tracting centres, the product of each force into

the element of its direction is an exact differen-

tial
; therefore the density of the fluid molecule

must be a function of the pressure, for the diffe-

rential of the (d) pressure divided by this density
is equal to an exact differential. Consequently
all the strata of the fluid mass, in which the pres-
sure is constant, are of the same density throughout
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their entire extent. The resultant of all the

forces which actuate each molecule at the surface

of these strata, is perpendicular to this surface,

on which the molecule would glide if this resul-

tant was inclined to it. In consequence of this

property these strata have been termed strata of
level. *

The density of a molecule of atmospheric air,

is a function of the pressure and of the tempera-
ture ; its gravity is very nearly a function of its

height above the surface of the earth. If its tem-

perature was likewise a function of this height,

the equation of the equilibrium of the atmosphere,
would be a differential equation between the pres-

sure and the elevation, and consequently the equi-

librium (d) would be always possible. But in

nature, the temperature of the different regions

of the atmosphere depends also on the latitude,

on the presence of the sun, and on a thousand

variable or constant causes which ought to produce
in this great fluid mass, motions often very con-

siderable. In consequence of the mobility of its

molecules, a heavy fluid may produce a pressure

much more considerable than its weight. For

example, a small column of water, terminated by
a large horizontal surface, presses the base on

which it is incumbent, as much as a cylinder

of water of the same base and height. In

order to evince the truth of this paradox, sup.

pose a fixed cylindrical (c) vase, of which the ho-

rizontal base is moveable
-,
and let this vase be

filled with water, its base is sustained in equilibrio
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by a force equal and contrary to the pressure
which it experiences. It is evident that the equi-

librium would still obtain, in the case in which a

part of the water was to consolidate and unite

itself with the sides of the vessel ; for the equili-

brium of a system of bodies, is not deranged

by supposing that in this state, several of them

unite or become attached to fixed points. We
may in this manner form an infinity of vessels of

different figures, having all the same height and

base as the cylindrical vessel, and in which the

water will exert the same pressure on the move-

able base.

In general, when a fluid acts only by its weight,

the pressure which it exerts against a surface, is

equivalent to the weight of a prism of this fluid,

of which the base is equal to the pressed surface,

.(/) and of which the height is equal to the dis-

tance of the centre of gravity of this surface, from

the plane of the level of the fluid.

A body plunged in a fluid, loses a part of its

weight equal to the weight of a volume of the dis-

placed fluid ;
for before the immersion, the sur-

rounding fluid was in equilibrio with the weight
of this volume of the fluid, which may be sup-

posed, without deranging the equilibrium, to have

formed itself into a solid mass, the resulting force

of all the actions of the fluid on this mass must

therefore be in equilibrio with its weight, and pass

through its centre of gravity ; now it is clear that

(<?) the same actions are exerted on a body which

occupies its place ; consequently the action of the

t
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fluid destroys a part of the weight of this body,

equal to the weight of the volume of the displaced

fluid. Hence it follows that bodies weigh less in

air than in a vacuo
;
the difference, though for the

most part hardly perceptible, should not be ne-

glected in very delicate experiments.

By means of a balance, which carries at the

extremity of one of its arms a body which

can be plunged in a fluid, we can estimate ex-

actly the diminution of weight which the body ex-

periences in this immersion, and determine its

specific gravity, or its density relative to that of

fluid. This gravity is the ratio of the weight of

the body in a vacuo, to its loss of weight, when it

is entirely immersed in the fluid. It is thus that

the specific gravities of bodies have been deter-

mined, by comparing them with distilled water at

its maximum density.

In order that a body which is lighter than a

fluid may be in equilibrio at its surface, its weight

must be equal to the volume of the displaced fluid.

It is moreover necessary, that the centres of

gravity of this portion of the fluid and of the body
should exist in the same vertical line

;
for the re-

sultant of the actions of gravity on all the mole-

cules of the body, passes through its centre of

gravity, and the resultant of all the actions of the

fluid on this body passes (Ji) through the centre

of gravity of the volume of the displaced fluid
;

and as these resultants must be on the same right

line in order to destroy each others effect, the

centres of gravity must exist in the same vertical.
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But in order to secure the stability of the equili-

brium, it is necessary that other conditions, be-

sides the two preceding, should be satisfied. It

may be always determined by the following rule.

If through the centre of gravity of the section

of a floating body on a level with the water, we
conceive a horizontal axis, such that the sum of

the products of each element of the section, into

the square of its distance from this axis be less

than a similar sum relatively to any other hori-

zontal axis drawn through the same centre, the

equilibrium will be stable in every direction, when
this sum is greater than the product of the volume
of the displaced fluid, into (t) the height of the

centre of gravity of the body, above the centre of

gravity of this volume. This rule is principally

useful, in the construction of vessels to which it

is necessary to give sufficient stability, in order

to enable them to resist the efforts of storms and

waters which tend to submerge them. In a ship the

axis drawn from the stern to the prow is the line,

relatively to which, the above mentioned sum is a

minimum ; it is therefore easy by means of the

preceding rule, to determine the stability.

Two fluids contained in a vessel, dispose them-

selves in such a manner that the heaviest occu-

pies (k) the lowest part of the vessel, and the sur-

face which separates them is horizontal.

If two fluids communicate with each other by
means of a bent tube, the surface which separates

them in a state of equilibrium is nearly horizon-

tal, when the tube is very large j
their heights

t2
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above this surface, are reciprocally proportional to

their specific gravities. The entire atmosphere

being therefore supposed to be of a uniform density,

equal to that of the air at the temperature of

melting ice
;
its height will be 796S

m
, when com-

pressed by a column of mercury of seventy-six

centimetres
;
but because the density of the at-

mospheric strata diminishes, as they are more

elevated above the level of the seas, the height of

the atmosphere is much greater.



CHAP. V.

Of the motion ofa system of bodies*

Let us consider first, the action of two material

points of different masses, which moving in the

same right line impinge on each other. We may
conceive immediately before to the shock, their

motions to be decomposed in such a manner, that

they may have a common velocity, and two op-

posite velocities, such that if they were actuated

by these alone they would have remained in equi-

librio. The velocity common to the two points,

is not affected by their mutual action, and there-

fore it will subsist alone after the shock. To de-

termine it we shall observe, that the quantity of

motion of the two points arising from this com-

mon velocity, plus the sum of the quantities of

motion which are due to the velocities, which are

destroyed, represent the sum of the quantities of

motion previous to the shock, provided that the

quantities of motion arising from the opposite ve-

locities, be taken with contrary signs ;
but (a) by

the conditions of equilibrium, the sum of the

quantities of motion produced by the destroyed

velocity vanishes ; hence, the quantity of mo-

tion arising from the common velocity, is equal

to that which existed in the two points previous
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to the impact ;
and consequently this velocity is

equal to the sum of the quantities of motion, di-

vided by the sum of the masses.

The impact of two material points is purely

ideal, but it is easy to reduce to it that of any

two bodies, by observing that if these bodies im-

pinge in the direction of a right line passing

through their centres of gravity, and perpendicular
to their surfaces of contact, they will act on each

other as if their masses were condensed into

these centres
;
therefore motion is communicated

between them, as between two material points,

of which the masses are respectively equal to these

bodies.

The preceding demonstration supposes, that

after the shock, the two bodies must have the

same velocity. We may readily suppose that this

must be the case for soft bodies, in which the

communication of motion is made successively,

and by insensible gradations ;
for it is evident,

that from the instant when the struck body has

the same velocity as the striking body, all velo-

city between them ceases. But between two bo-

dies of absolute hardness, the shock is instan-

taneous, and it does not appear to be necessary

that their velocities should be (b) afterwards the

same ; their mutual impenetrability solely re-

quires that the velocity of the striking body should

be less
;

in other respects it is indeterminate.

This indetermination demonstrates the absurdity

of an absolute hardness. In fact, in nature the

hardest bodies, if they are not elastic, have an
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imperceptible softness, which renders their mu-

tual action successive, although its duration is in-

sensible.

Where bodies are perfectly elastic, it is neces-

sary, in order to obtain their velocity after the

shock, to add or subtract from the common velo-

city which they would have, if they were destitute

of elasticity, the velocity which they would gain

or lose in this hypothesis ;
for the perfect elasti-

city doubles these effects, by the restitution of the

springs which were compressed by the shock ;

therefore the velocity of each body after the shock

will be obtained by subtracting its velocity before

the shock, from twice this common velocity.

Hence it is easy to infer, that the sum of the

products of each mass by the square of its velo.

city, is the same before and after the shock of the

two bodies ;
which obtains universally in the im-

pact of any number of perfectly elastic bodies,

however they may be supposed to act on each

other.

Such are the laws of the communication of

motion by impulse, laws which have been con-

firmed by experience, and which may be mathe-

matically deduced from the two fundamental laws

of motion, explained in the second chapter of this

book. Several philosophers have endeavoured to

determine them from the consideration of final

causes. Descartes, supposing that the quantity

of motion in the universe should always remain

the same without any regard to its direction, has

deduced from this false hypothesis erroneous
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laws of the communication of motion, which fur-

nish a remarkable example of the errors to which

we are liable, when we endeavour to develope the

laws of nature, by attributing to her, particular
views.

When a body receives an impulsion, in a di-

rection which passes through its centre of gravity,

all its parts move with an equal velocity. If this

direction is at one side of this point, the velocities

of different parts of this body will be unequal, and

from this inequality arises a motion of rotation of

the body about its centre of gravity, at the same

time that this centre is carried forward with the

velocity with which it would have moved if the

direction of the impulsion had passed through
this point. This (c) case is that of the earth, and

of the planets. Thus to explain the double mo-
tion of rotation and of translation of the earth, it

is sufficient to suppose that in the beginning, it

received an impulse of which the direction was at

a small distance from its centre of gravity, and

supposing this planet to be homogeneous, this dis-

tance is very nearly the hundreth and sixtieth

part of its radius. It is extremely improbable
that the primitive direction of the planets, the

satellites and comets, should pass exactly through
their centres of gravity ;

all these bodies should

therefore revolve round their axes.

For the same reason the sun, which revolves

on an axis, must have received an impulsion,
of which the direction not passing accurately

through its centre of gravity, carries it along in
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space with the planetary system, unless an im-

pulse in a contrary direction should have de-

stroyed this motion, which {d) is not at all pro-

bable.

The impulsion given to an homogeneous sphere,

in a direction which does not pass through its

centre, causes it to revolve constantly round a

diameter perpendicular to a plane passing through
its centre, and through the direction of the im-

pressed force. New forces which sollicit all its

points, and of which the resulting force passes

through its centre, do not alter the parallelism

of the axis of rotation. It is thus that we explain how
the axis of the earth, remains always very nearly

parallel to itself in its revolution about the sun,

without assuming with Copernicus, an annual

motion of the poles of the earth about those of the

ecliptic. If the body be of any figure whatever,

its axis of rotation may vary at every instant : the

investigation of these variations, whatever be the

forces which act on the body, is one of the most

interesting problems in the science of mechanics

which relates to hard bodies, in consequence ofits

connexion with the procession of the equinoxes

and the libration of the moon. Its solution has

led to this curious and useful result, namely, that

in every body there exist three axes, perpendi-

cular to each other, about which it may revolve

(e) uniformly, when it is not sollicited by any ex-

ternal force. These axes have on this account

been termed the principal axes of rotation. They
possess this remarkable property, that the sum of
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the products of each molecule of the body, into

the square of its distance from the axis, is a

maximum with respect to two of these axis, and a

minimum with respect to the third. If we sup-

pose the body to revolve round an axis which is

inclined in a very small angle to either of the two

first, the instantaneous axis of rotation will always
deviatefrom either of them by an indefinitely small

quantity ;
therefore the rotation is stable relatively

to the two first axes ; it is not so with respect

to the third principal axis, and if the instanta-

neous axis deviates from it, by ever so small (/)

a quantity, this deviation will increase and become

continually greater and greater.

A body, or a system of bodies of any figure

whatever, oscillating about a fixed horizontal axis,

constitutes the compound pendulum. These are

the only species of pendulums which really exist

in nature, and the simple pendulums, which have

been noticed in the second chapter, are purely geo-

metrical conceptions which have been (g) devised

in order to simplify the subject. It is easy to re-

duce to them thecompound pendulums, ofwhich all

the points are firmly connected together. If the

length of the simple pendulum, the oscillations of

which are of the same duration as those of thecom-

pound pendulum, be multiplied by the mass of this

last pendulum, and by the distance of its centre of

gravity from the axis of oscillation, the product will

be equal to the sum of the products of each mole-

cule of the compound pendulum, into the square of

its distance from the same axis. It is by means of
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this rule, which was discovered by Huygens, that

experiments on compound pendulums makeknown

the length of the simple pendulum which vibrates

seconds.

Conceive a pendulum to make very small oscil-

lations, all of which exist in the same plane, and

suppose that at the moment of its greatest devia-

tion from the vertical, a small force is impressed
on it, perpendicular to the plane of its motion ;

it

will describe an ellipse about the vertical. In or-

der to represent this motion, we may conceive a

fictitious pendulum which continues to vibrate as

the real pendulum would do, if the new force had

not been impressed on it
;
while the real pendu-

lum, in virtue of the impressed force vibrates at

each side of the ideal pendulum, as if this ficti-

tious pendulum had been immoveable and verti-

cal. Thus it appears, that the motion of the

real pendulum (A) is the result of two simple
oscillations co-existing and perpendicular to each

other.

This manner of considering the small oscilla-

tions of bodies, may be extended to any system
whatever. If we suppose the system to be de-

ranged from its state of equilibrium by very small

impulsions, and that afterwards new ones are im-

pressed on it, it will oscillate relatively to the suc-

cessive states which it would have assumed in vir-

tue of the first impulsions, in the same manner
as would vibrate with respect to its state of equi-

librium, if the new impulsions had been solely

impressed in this state. Therefore the \ery small
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oscillations of a system of bodies, however com-

plicated, may be considered as made up of sim-

ple oscillations, perfectly similar to those of the

(i) pendulum. In fact, if we conceive the sys-

tem to be primitively in repose, and then very
little disturbed from its state of equilibrium, so

that the force which sollicits each body may tend

to reduce it to this state, and may moreover be

proportional to the distance of the body from this

point, it is evident that this will be the case

during the oscillation of the system, and that at

each instant the velocity of the different points
will be proportional to their distance from the po-
sition of equilibrium. They will therefore attain

this position at the same instant, and they will

vibrate in the same manner as the simple pen-
dulum. But the state of derangement which

we have assigned to the system, is not unique.
If one of the bodies be elongated from the position
of equilibrium, and if then the situations of the

other bodies which satisfy the preceding conditions

be investigated, we arrive at an equation of a de-

gree equal to the number of the bodies of the sys-

tem, which are moveable between themselves ;

which furnishes for each body, as many species of

simple oscillations, as there are bodies. Let us

conceive that the first species of oscillations exists

in the system ; and at any given instant, let all

the bodies be supposed to be elongated from their

position, proportionally to the quantities which

are relative to the second species of oscillations.

In virtue of the coexistence of the oscillations, the
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system will oscillate with respect to the consecu-

tive states, which it would have assumed in con-

quence of the first species of oscillation, as it would

have oscillated about its state of equilibrium, if the

second species had been solely impressed on it ;

its motion will therefore be made up of the two

first species of oscillation : we may in like man-

ner combine with this motion, the third species

of oscillations, and so by proceeding in this man-

ner combine all these species in the most general

manner j
we can thus synthetically compound all

possible motions, which may be impressed on a

system, provided that they be very small, and

converselywe may by analysing these motions, re-

solve them into simple oscillations. Hence arises

an easy method of recognizing the absolute sta-

bility of the equilibrium of a system of bodies.

If in all positions relative to each species of

oscillations, the forces tend to reduce the bodies

to a state of equilibrium, this state will be stable j

this will not be the case, or the stability will be

only relative, if in any one (k) of these positions,

the forces tend to encrease the distance of the bo-

dies from the position of equilibrium.

It is evident that this manner of viewing the

very small oscillations of a system of bodies, may
be extended to fluids themselves, of which the

oscillations are the result of simple oscillations

existing simultaneously, and frequently of an in-

finite number.

We have a very sensible example of the exist-

ence of very small oscillations, in the case of
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waves, when a point of the surface of stagnant

water is slightly agitated ;
circular waves are ob-

served to form and to extend themselves about it.

If the surface be agitated at a second point, new
waves are observed to arise, and mix themselves

with the former
; they are superimposed over the

surface agitated by the first waves, as they would

be (7) dispersed on this surface, if it had remained

tranquil, so that they are perfectly distinct in

their commingling. What is observed by the eye
to be the case with respect to waves, the ear per-

ceives with respect to sounds or the vibrations of

the air, which are propagated simultaneously

without any alteration, and make very distinct

impressions.

The principle of the coexistence of simple oscil-

lations, for which we are indebted to Daniel Ber-

noulli, is one of these general results which as-

sists the imagination, by the facility with which it

enables us to exhibit phenomena and their suc-

cessive changes.
It may be easily deduced from the analytical

theory of the small oscillations of a system of bo-

dies. These oscillations depend on linear diffe-

rential equations,|of which the complete integrals,

are the sum of the (m) particular integrals. Thus

the simple oscillations are disposed one on the

other, to form the motion of the system, as the

particular integrals which represent them, are

combined together to constitute the complete in-

tegrals. It is interesting to trace in this manner,

the intellectual truths of analysis in the pheno-
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mena of nature. This correspondence, of which

the system of the world furnishes us with nu-

merous examples, constitutes one of the great

charms of mathematical speculations.

It is natural to reduce the laws of the motion

of bodies to a general principle, in the same man-

ner as the laws of their equilibrium have been re-

duced to the sole principle of virtual velocities.

To effect this, let us consider the motions of a

system of bodies acting the one on the other,

without being sollicited by accelerating forces.

Their velocities change at every instant, but we

may conceive each velocity at any instant to be

compounded of the velocity which it would have

at the following instant, and of another velocity

which ought to be destroyed at the commence-
ment of this new instant. If the velocity

destroyed be known, it would be easy, by the

law of the resolution of forces, to determine the

velocity of the body at the second instant
; now it

is evident, that if the bodies were only actuated

by the velocities which are destroyed, they
would mutually constitute an equilibrium ; thus

the laws of equilibrium will give the relations of

the velocities which are destroyed, and it will be

easy to determine from thence the velocities which

remain, and their (n) directions. Therefore

by means of the infinitismal analysis we shall

have the successive variations of the motion of the

system, and its position at every instant. It is

evident that if the bodies are actuated by accele-

rating forces, the same resolution of velocities
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may be employed, but then, the equilibrium

ought to obtain between the velocities destroyed

and these forces.

This method of reducing the laws of motion to

those of equilibrium, for which we are princi-

pally indebted to d'Alembert, is very luminous

and universally applicable. It would be a matter

of surprise that it had escaped the notice of geo-

meters, who had occupied themselves with the

principles of dynamics previously to its discovery,

if we did not know that the simplest ideas are

almost always those which are the last suggested

to the human mind.

It still remained to combine the principle which

has been just explained, with that of virtual ve-

locities, in order to give to the science of mecha-

nics all the perfection of which it appears to be

susceptible. This is what Lagrange has atchiev-

ed, and by this means has reduced the investiga-

tion of the motion of any system of bodies, to the

integration of differential equations. The object

of mechanics is by this means accomplished, and

it is the province of pure analysis to complete

the solution of problems. The following is the

simplest manner of forming the differential equa-

tions of the motion of any system whatever. If

we imagine three fixed (o) axes perpendicular to

each other, and that at the end of any instant the

velocity of each material point of a system of bo-

dies is resolved into three others parallel to those

axes; we may consider each partial velocity as being

uniform during this instant ;
we can then suppose



SYSTEM OF BODIES. 289

that at the end of this instant, the point is ac-

tuated parallel to one of these axes by three velo-

cities, namely, by its velocity during this instant,

by the small variation which it receives in the fol-

lowing instant, and by this same variation applied
in a contrary direction. The two first of these

velocities exist in the following instant
;
the third

must therefore be destroyed by the forces which

sollicit the point, and by the action of the other

points of the system. Consequently, if the in-

stantaneous variations of the partial velocities of

each point of the system, be applied to this point
in a contrary direction, the system should be in

equilibrio, in consequence of all these variations,

and of the forces which actuate it. The equa-
tions of this equilibrium will be obtained by means
of the principle of virtual velocities

;
and by com-

bining them with those which arise from the con-

nection of the parts of the system, the differen-

tial equations of the motion of each of these

points will be obtained.

It is evident that we can in the same manner,
reduce the laws of the motion of fluids to those of

their equilibrium. In this case, the conditions re-

lative to the connection of the parts of the system
are reducible to this, namely, that the volume of

any molecule of the fluid remains always the same,

if the fluid be incompressible, and that it depends
on the pressure exerted according to a (n) given

law, if the fluid be elastic arid compressible. The

equations which express these conditions, and the

variations of the motion of the fluid, contain the

u
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partial differences of the coordinates of the mo-

lecule, taken either relatively to the time, or with

respect to the primitive coordinates. The in-

tegration of this species of equations presents great

difficulties, and we have as yet been only able to

succeed in some particular cases, relative to the mo-

tions of ponderable fluids in vases, to the theory

of sound, and to the oscillations of the sea and

of the atmosphere.
The consideration of the differential equations

of the motion of a system of bodies, has led to the

discovery of several very general and useful prin-

ciples of mechanics, which are an extension of

those already announced in the second chapter
of this book, relative to the motion of a point.

A material point moves uniformly in a right line,

if it is not subjected to the action of extraneous

causes. In a system of bodies which act on each

other without being subjected to the action of ex-

terior causes, the common centre of gravity

moves uniformly in a right line, and its motion

is the same, as if all the bodies were united

in this point, all the forces which actuate them

being immediately applied (q) to it ; so that the

direction and the quantity of their resultant, re-

main constantly the same.

We have seen that the radius vector of a body,
sollicited by a force, which is directed to a fixed

point, describes areas which are proportional to

the times. If we suppose a system of bodies act-

ing on each other, in any manner, and sollicited

by a force directed to a fixed point j
and iffrom this
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point, radii vectores drawn to each of them, be

projected on an invariable plane passing through
this point, the sum of the products of the mass
of each body into the area which the projection
of its (r) radius vector traces, is proportional to

the time. It is in this that the principle of the

conservation of areas consists. If there is no fixed

point, towards which the system is attracted, and
if it be only subjected to the mutual action of its

parts, we may then assume any point whatever,
for the origin of the radii vectores.

The product of the mass of the body into the

area described by the projection of its radius vec-

tor in an unit of time, is equal to the projection
of the entire force of this body multiplied into the

perpendicular let fall from the fixed point, on

the direction of the force thus projected ;
this last

product is the moment of the force to make the

system revolve about an axis passing through
the fixed point, and perpendicular to the plane
of projection ; the principle of the conser-

vation of areas is therefore reduced to this,

namely, that the sum of the moments of the finite

forces to make the system revolve about any
axis passing through the fixed point, which sum
vanishes in the state of equilibrium, is constant in

the state of motion. When it is announced in this

manner, this principle is applicable in all possi-

ble laws between the force and velocity.

The vis viva of a system, is the sum of the

products of the mass of each body, by the square
of its velocity. When the body moves on a curve
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or on a surface, without being subject to a foreign

action, its vis viva is always the same, because

its velocity is constant ; if the bodies of the sys-

tem experience no other action, but such as arise

from their mutual tractions and pressures, either

directly or by the intervention of rods and inex-

tensible and unelastic threads, the vis viva of the

system remains constant, even though several of

the bodies should be constrained to move on

curved lines or surfaces. This (s) principle, which

has been termed the principle of the conservation

oflivingforces, is applicable to all possible laws be-

tween the force and the velocity, provided that

by the vis viva or living force of a body, is under-

stood twice the integral of the product of its velo-

city, into the differential of the finite force by
which it is actuated.

In the motion of a body sollicited by any forces

whatever, the variation of the vis viva is equal

to twice the product of the mass of the body, by
the sum of the accelerating forces multiplied re-

spectively by the elementary quantities, by which

the body advances towards their origins. In the

motion of a system of bodies, twice the sum of

all these products, is the variation of the living

force of the system. Let us conceive that in the

motion of the system, all the bodies arrive at the

same instant in the position, in which it would be

in equilibrio in consequence of the accelerating

forces which sollicit it : by the principle of vir-

tual velocities the variation of the living force

vanishes j
therefore the vis viva will then have
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attained its maximum or minimum. If the sys-

tem be moved by one sole species of simple oscil-

lations, the bodies after departing from the po-

sition of equilibrium will tend to revert to it, if

the equilibrium be stable ; therefore, their velo-

cities diminish in proportion as their distance

from this position is increased, and consequently

in this position, the vis viva will be a max-

imum. But if the equilibrium be not stable, the

bodies in proportion as their distance from this

position is increased will tend to deviate more

from it, and their velocities will continue to in-

crease, consequently their vis viva will be in

this case a minimum. Hence we may infer, that

if the vis viva be constantly a maximum, when

the bodies simultaneously attain the position of

equilibrium, whatever that velocity may be, the

equilibrium will be stable, and on the contrary,

the stability will be neither absolute or relative,

if the vis viva in this position of the system,

be constantly a minimum.

Finally, we have seen in the second chapter,

that the sum of the integrals of the product of

each finite force of the system, by the element of

its direction, which sum vanishes in the state of

equilibrium, becomes a minimum in the state of

motion. It is in this (t) that the principle of the

least action consists, which principle differs from

those of the uniform motion of the centre of gra-

vity, of the conservation of areas and of living

forces, in this, that these principles are the real

integrals of the differential equations of the mo-
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tion of bodies ; whereas that of the least ac-

tion is only a remarkable combination of these

same equations.

The finite force of a body, being the product
of its mass into its velocity, and the velocity mul-

tiplied into the space described in an element of

time, being equal to the product of this element

by the square of the velocity, the principle of the

least action may be announced in the following

manner : the integral of the vis viva of a sys-

tem, multiplied by the element of the time,

is a minimum; so that the true economy of

nature is that of the vis viva. To produce this

economy ought to be our object in the con

struction of machines, which are more per-

fect in proportion as less vis viva is requir-

ed, to produce a given effect. If the bodies are

not sollicited by any accelerating forces, the vis

viva of the system is constant ; consequently

the system passes from one point to another in

the shortest time.

Another important remark remains to be made

relative to the extent of these different principles.

That ofthe uniform motion ofthe centre ofgravity,

and the principle of the conservation of areas, sub-

sist even when by the (u) mutual action of the

bodies of the system they undergo sudden changes

in their motions, which renders these principles ex-

tremely useful in several circumstances ;
but the

principle of the conservation of the vis viva and of

the least action require, that the variations of the

motions of the system be made by insensible gra-

dations.
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When the system undergoes sudden changes,

either from the mutual action the of bodies of the

system, or from meeting with obstacles, the visviva

experiences at each of these changes, a diminution

equal to the sum of the products of each body into

the square of the velocity destroyed, conceiving the

velocity previous to the change to be resolved into

two, of which one subsists after the shock, the

other being annihilated, the square of which is

evidently equal to the sum ofthe squares ofthe va-

riations which the change makes the decomposed

velocity to experience, parallel to any three coordi-

nate axes. All these principles would still obtain,

regard being had to the (v) relative motion of the

bodies of the system, if it was carried along by a

general motion common to the foci of the forces,

which we have supposed to be fixed. They ob-

tain likewise in the relative motions of bodies on

the earth, for it is impossible, as has been already

observed, to judge of the absolute motion of a

system of bodies, by the sole appearances of its

relative motion.

Whatever be the motion of the system and the

variation which it experiences from the mutual

action of its parts, the sum of the products of

each body, by the area which its projection traces

about the common centre of gravity, on a plane
which passing through this point remains always

parallel to itself, is constant. The plane on
which this sum is a maximum, preserves its rela-

tive position (x) during the motion of the sys-

tem, the same sum vanishes for every plane which

passing through the centre of gravity, is perpen-

*
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dicular to that just mentioned
;
and the squares of

the three similar sums relative to any three planes
drawn through the centre of gravity, and perpen-
dicular to each other, are equal to the square of

the sum which is a maximum. The plane which

corresponds to this sum, posesses also the follow-

ing remarkable property, namely, that the sum

of the projections of the areas traced by bodies

about each other, and multiplied respectively by
the product of the masses of the two bodies which

are connected by each radius vector, is a maximum

on this plane, and on all planes which are parallel

to it. We may therefore find at all times a plane

which passing through any one of the points of

the system preserves always a parallel situation ;

and as by referring the motion of the bodies of the

system to it, two of the constant arbitrary quanti-

ties of this motion disappear, it is as natural to

select this plane for that of the coordinates, as it

is to fixtheir origin, at the centre of gravity of the

system.
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[a) The meridian is therefore a secondary both to the

equator and to the horizon ; and as from Napier's rules

the sine of the elevation of any point of the equator above

the horizon is equal to the sine of the inclination of the

equator to the horizon multiplied into the sine of the arc of

the equator, intercepted between the given point and the

horizon ; it follows, that as the inclination of the equator is

constant in the same place, the elevation of the point is

greatest when it is 90° from the horizon, i. e. when it is

on the meridian ; in which case also the sine of the greatest

elevation of the equator, (which is equal to the complement
of latitude,) is equal to the sine of the inclination of the

equator to the horizon, and as the most elevated point of

the equator exists on the meridian, the most elevated points

of all parallels to the equator exist also on the meridian.

As the star is always at the same distance from the

pole, when it is on the meridian, it is as much below the

pole in one observation as it is above it in the other
;

hence, the three elevations constitute an arithmetic pro-

gression. This observation gives us at the same time the

declination, for this last quantity is equal to 90°, minus

half the difference between the greatest and least heights ;

x
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however, this method requires some corrections for re-

fraction, &c. as will be hereafter specified; indeed it has

been employed to determine the quantity of refraction

when the latitude is known from other considerations,

(see Brinkley's Astronomy, Chap. 4.) j the nearer the star

is to the pole the less will be the error from the hypothe-

sis, that there is no refraction; those stars never set, of

which the distance from the pole is equal to the comple-

ment of the elevation of the pole above the horizon.—See

Note (d), Chap. 2.

(b) The actual magnitude of the earth, considered as

spherical, may be determined from this circumstance, for

if we proceed north or south until the pole is elevated or

depressed a degree, we know that we must have travelled

over a degree on the earth's surface, the number of miles

in which being measured and multiplied by 360, gives the

number of miles in the earth's circumference, by means of

which it is easy to determine the number of miles in the

earth's radius ; what is stated in the text shews, that the

earth is convex at the place of the spectator ; the circum-

navigation of the globe in various directions proves, that

it is a curved surface returning into itself, and likewise the

circumstance of the boundary of the earth's shadow in a

lunar eclipse being always circular, proves that it is

globular or round.

(c) The sun's motion is always performed in the same

plane ; for the sine of right ascension bears to the tangent
of declination an invariable ratio, it follows consequently
that the plane passingthrough the sun and the vernal equi-

nox must always make the same angle with the equator, the

radius being to the tangent of this angle in the given invaria-

ble ratio; it is also observed, that the difference between the

right ascensions of those stars, which are near to the sun

at the commencement of spring and at the commencement
of autumn, is 1 80, hence it follows, that the two intersections

of the equator and ecliptic are 1 80° distant ; and if the
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points of the horizon, when the sun sets in the beginning

of summer and winter, be accurately marked, it will be

found that they are equally distant from the east and west,

hence, and as all the points of the orbit are always in the

same plane, it follows, that the ecliptic is a great circle.

(d) If / denotes the latitude, d the declination, and h

the horary angle from noon, we have, when the sun is

rising or setting, cos. ^= tang. I. tang, d; when the height

of the pole and d are of the same denomination cos. h is

negative, and .'. h > than 90, .'. the day is longer than

the night; when / or d, or both, vanish, ^= 90°, therefore,

the day is always equal to the night ; when tang. l=cot. d,

or vice versa, h= 0, .". the sun does not set.

(e) The horizon of spectators situated at the equator

passes through the poles, hence the horizon, being in this

case a secondary to the equator must pass through the cen-

tres of all circles parallel to the equator, and bisect them all

at right angles ; hence, as also appears from the preceding

note, the days are always equal to the night ; such a posi-

tion of the sphere is called a right sphere. To a spectator

situated at the pole, the equator and horizon coincide,

consequently the planes of all the diurnal circles are

parallel to the plane of the horizon, so that when the

sun is at the northern side of the equator, he does not set

for six months ; this position of the sphere is called a

parallel sphere. In all places intermediate between the

equator and poles, the length of the day is different at

different periods of the year. Such positions of the sphere

are called oblique spheres ; what is stated here is imme-

diately apparent from the preceding part of this note (d).

If by means of the observed declinations and right ascen-

sions of the sun, the daily increments of longitude be com-

puted, it will be found that they are not proportional to

the intervals of time which separate the consecutive pas-

sages of the sun over the meridian ; the greatest difference

exists in two points of the ecliptic, of which one is situated
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near to the summer, and the other near to the winter sof-

stice ; these two points are in the same line, though
situated on opposite sides of the equator, and their right
ascensions differ by 180.

(/) Consequently the mean velocity between these two

. 1V327+1°,0531
extremes is -—

,

= l°,0959.

(g) The angles being supposed to increase propor-

tionably to the times, their sines will be periodical; for

the sine, which at the commencement is cypher, increases

with the arc and becomes equal to radius when the arc

= 90°, it then decreases and finally becomes = to cypher
when the arc becomes equal to 180 ; the sine then passing
to the other side of the diameter changes its sign, and
runs through the same series of changes in this semicir-

cumference. It may be remarked here, that it appears
from analysis that all the inequalities of the heavenly bodies

may be expressed by the sines and cosines ofangles, which

increase proportionally to the time. No other function;

of the circle occurs in the expressions for these inequalities.

See Yol. 2, Book 6, Chap. 2.

(h) In fact, as it is a matter of observation that the an-

gular motion of the sun varies as the square of the apparent

diameter, it follows, as a general law, that the angle de-

scribed each day by the sun multiplied by the square of

the distance is constant, i. e. if r and r
r

represent the dis-

tances, and dv, djtf the angles described by the sun at the

two different epochs, we have dv. r* = dv'. r'
z

; but the areas

described at these points are respectively = *

t

dv'. rn—
j
—

, hence it follows, that equal areas are described in

equal times.

Otherwise thus, let v and */ represent the angular motions

of the sun in two different points of the orbit, a and a! the

small diurnal arcs described by the sun at these points, rand
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/ +$r, the corresponding distances, and d, d' the correspond-

ing apparent diameters, the small sectors described by the

r.a {r +lr).a'
sun are equal respectively to -=r and —3 , or as «=w,

1 r\v (r+S/-)W
a'=t/.(r+Sr), these sectors are equal to —-x->

^ »

now by means of very exact measurements of the apparent

diameter of the sun made with a micrometer, it is found

that the apparent angular motions vary as the squares of the

apparent diameters, i. e. v: v' '.

*

d" : dni or v: v' '. '. (r+Sr)
3,

: r%
.\vrz =i/.(r+dr)

2'

i hence the small sectors are always pro-

portional to the times.

(i) In fact, suppose lines to be drawn in a plane passing

through a given point, (which represents the common

centre of the earth and of the celestial sphere,) so that

their angular distances may be equal to. the diurnal motion.

These lines will represent the visual rays, which are drawn

to the sun each successive day. Lay off from the fixed

point in the direction of these rays the corresponding dis-

tances of the sun from the earth, (which may be estimated

from the diurnal motion, one of these distances being as-

sumed equal to unity,) the points, which are determined

in this manner will indicate the place of the sun for each

day, and the curve which is traced by uniting these points

will be similar to the sun's orbit. It is evident, that if the

angles described by the sun each successive day be deter-

mined by means of its observed longitudes, the ratio of

the distances will be obtained j for, from the equation

vr*=A, it follows, that these distances are reciprocally

as the square roots of the angular motions. But in order

to ascertain whether the curve indicated by the observa-

tions of the sun is an exact ellipse, we should assume the

indeterminate equation of any ellipse, and make it to satisfy

some of these observations ; and when the elements have

been determined by this condition, we can investigate and

try whether it equally represents the other observations,
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i. e. if it assigns for the distances of the sun from the

earth in different longitudes, values equal to those which

have been deduced from observation.

We might have inferred from an observation of the

sun's apparent diameter that his apparent orbit is an

ellipse, for if m be his mean, and m—n his least apparent

diameter, then this diameter at any other point is observed

to be equal to m—n. cos.w, v representing his angular dis-

tance from the point where his diameter is least ; now, as

the distance varies inversely as the apparent diameter,
~ B

r= , which is an equation of the same form asm—n. cos. e *

a.(l—e*)
~~

l+£.COS.fl

Or thus, let D, D' represent the greatest and least

diameters of the sun, which have been already given
in numbers in the text ; it is found that if d denote

any other diameter, and v the angular distance of the

sun when the diameter is d, from the point in the ellipse

where the diameter is D, we have D— D' : D— d'.\

1—cos. 180 (*. e. 2) : 1— cos. v, .'. (D— D') (1
—

cos.u) =

2.(D—rf)andrf=D—
(-^=^.)

- (1— cos.w) = ^^ +
D—D' 1 1 e—¥— cos.», /. - =

^rprj + ^rzr^ry
cos.v =

1 +C.COS.V ....—77- a , -, this is the equation of an ellipse whose major

axis passes through the points where the apparent diameter

is greatest and least.

(k) This point may be easily determined in the case of

any elliptic orbit. About the focus of the ellipse, as

centre, describe a circle, of which the radius is a mean

proportional between the semiaxes of the ellipse ; this cir-

cle is equal to the ellipse, and if a body be conceived to

revolve in this circle with the mean angular motion of the
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sun, its periodic time will be equal to the periodic time

of the sun. Conceive this imaginary body to set off from

the same radius as the sun, at the same time that the sun

begins to move from the apogee. As the sun's velocity in

this point is less than his mean angular velocity, the ficti-

tious body will precede the sun, and it will continue to pre-
cede this star by greater quantities perpetually, till the an-

gular motion of the sun becomes equal to the angular mo-
tion of this body, afterwards the angular motion of the sun

becoming greater than the mean angular motion, the sun

will begin to gain on the body, and will overtake it, when
it arrives at perigee; hence it is evident, that the body pre-
cedes the sun by the greatest quantity, when its angular

motion is equal to the mean angular motion j now it ap-

pears from the equation vr* = A, that the angular motions

vary as the synchronous areas directly, and inversely as

the squares of the distance, but the synchronous areas are

equal in the ellipse and circle, for they are as the whole

areas divided by the respective periodic times, i. e. in a

ratio of equality, hence, the angular motions are equal
when the distances are equal, i. e. when the distance of

the sun from the focus is a mean proportional between the

semiaxes.

The radius of the circle whose area is equal to that

of the ellipse =a. ^az—ez .

(I) This parallax is given with great accuracy by theory,
as we shall see in the sequel, (see Book 4-, Chap. 4,) the

reason why it is so particularly interesting to determine

the parallax is, because our knowledge of the absolute

magnitude of the solar system depends on it.

If the exact time when the spots describe right lines

was known, the longitude of the sun or earth at this in-

stant would determine the place of the nodes. However,
this place is best determined by means of corresponding

observations, made before and after the passage through
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the nodes when the openings of the ellipse is the same,
but in opposite directions.

Calling /, x the heliocentric longitudes of the earth

and spot, y the heliocentric latitude, and B the geocentric

latitude, A the sun's semi-diameter, r the distance of spot

from centre of the sun, and R the distance of spot from

centre of the earth, which is very nearly equal to the dis-

tance of the centre of the sun from earth, we have

Y
r : R '.'. sin.B : sin.j/,

.". as sin. A =
p- , we have sin. 3/

=

R . sin.B ... . „— • sin. B = •
. , likewise r.cos.j/: R. cos. B expresses the

ratio of the curtate distances of the spot from the centres of

the sun and earth, which is also expressed by that of sin. E:

sin. (I
—x\ E being equal to the difference between the geo-

centric longitudes of the centre of the sun and spot, .'. we

have r.cos.^y: R.cos.Bi: sin.E: sin. (/
—

.r), hence sin.(/
—x)

sin.E.cos.B R sin.E.cos.B
= • —= :

—r = (by substituting for cos. y
cos.j/ r cos.j/.sin.A

v J & y

^sin.'A—sin.
a B\ sin.E.cos.B

its value ,.
" ;

) 7} .
=

A

—-
.

= _ , hence we
sin. A / V Sin.*A— sin.

a B
can determine x.

Observing three positions of the same spot, we are given

by what precedes their distances, /, I', I", from the pole of

the ecliptic or their co-latitudes. We can also, by what

precedes, determine their differences of longitude; hence in

the three spherical triangles, which are formed by drawing

lines from the pole of the ecliptic to the three observed

positions of the spot, we have in each of them, respectively,

two sides and the included angle, which enables us to de-

termine the remaining sides, A, A', A", (or the arcs con-

necting the three positions of the spot), and also the base

angles, and consequently their sum ; now as the spot moves

parallel to the solar equator, its distances from the pole of

this equator are the same, consequently a perpendicular

from this pole bisects the arcs connecting the different
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positions of the spots; and from the consideration of these

triangles it is evident, that we are given the -ff of the sum

of the cosines of the angles, which an arc from the pole of

the sun's equator makes with the connecting arcs, to the dif-

ference of the cosines of these angles, i. e. we are given

the ratio of the cotangents of half the angle made by con-

necting arcs to the tangent of half the difference of the

preceding angles; having determined this difference we can

obtain the angle which the arc from the pole of the equator

makes with connecting arc, and hence we obtain, by sub-

traction, the angle formed by arcs drawn from a given

position of the spot to the poles of equator and ecliptic,

and as we have these arcs we can obtain the third side,

which measures the inclination of the equator to ecliptic;

and as we also know «, the angle formed by /, V, and the

time, £, in which it is described, we can obtain the time of

revolution for t : T : : a : 360°.

CHAPTER III.

This position, with respect to the equality which sub-

sists between the duration of each oscillation of a pendu-

lum, is, in fact, the principle of sufficient reason which

was first propounded as a general axiom by Leibnitz,

though it was long before virtually assumed by Archimedes

in demonstrating some of the first principles of mechanics.

The sun in the course of the year passes the meridian

once less than the star, because the sum of all the retar-

dations in that time is equal to 360°, being equal to the

sum of the arcs described by the sun in the year, i. e. to

360.

It may be remarked here, that in consequence of the

Y
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precession of the equinoxes, the star takes a longer time to

return to the meridian than the revolution of the earth on

its axis ; however, the difference is not appreciable, for

supposing that the annual precession in right ascension is

50"1, which it is very nearly for stars near the equator, this

converted into time gives 3,3 seconds, by which the star

passes the meridian later at the end of a year, which being

distributed over the entire year is altogether insensible.

(;») Let I be the obliquity of the ecliptic, I the longitude

of the sun, and A the right ascension; then if cos. 1=5,

tang. /= #, we have, by Napier's rules, 5^r= tang. A, .*.

s.dx, i. e. dl.(l + xz
).s = d.A{\ + tang.

3
A), or sdx =

dl. s dA
s.dZ.sec.

a
Z= dA. sec.

2
A, that is,

-—
jj= j-t-, and since

COS. I COS. 1\

cos. /= cos. A. cos. D, (D being equal to the declination,)

dl. s dA
we obtain

cos.*A . cos.*D=~T£5 therefore, dA (which

converted into time determines the variation of the

astronomical day,) is equal to d.l. sec.
aD; and as dl and

s are constant, dA varies as sec.*D, and therefore it

is greatest at the solstice, and least at the equinox; for

dA= dl.s at the equinox, and at the solstice dA=—
,

.'.

dA at the equinox is to dA at the solstice as 5* : 1, con-

sequently dl is a mean proportional between the incre-

ment in the equinoxes and in the solstices ; I is evidently

equal to the right ascension of the fictitious sun s", which
is supposed to move in the equator with a motion equal
to the sun's mean motion in the ecliptic; .'. /— A is

equal to the separation of 5" from s', and tan. (I
—A)=

tan. I—tan.A x—sx x
1 +tanJ. tan. A= 1 +sx*

=
(
1~5

)*
1 + Sxz *

''' d'(l~A )
=

(1 5^)
(I
—

s)dx.j ^ cr-axa i which is a maximum when 1 =sxz
,

that is, tan.^-j^^, and consequently ^cos.Irrtan. A»
^cos.I J
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hence A= 43°, 43', 56", and /=46°, 14', and Z—A when

a maximum = 2°, 28', 20" ; it appears from this that the

greatest separation of 5" from s' is greater than the great-

est separation of s
/ from s on the equator, corresponding

to the greatest equation of the centre, for the latter is only

2°, 6', when the greatest equation is 1°, 55' 33"; besides,

this greatest separation happens about the 8th of May,
which is later than when the radius vector of the solar

orbit is a mean proportional between the semiaxes, that is,

when the equation of the centre is maximum.—See Note (&),

page 302.

(n) Hence, as the second and third sun's depart from the

equinox together, the one describing the equator, and the

other the ecliptic, with the same uniform motion; the dis-

tance of the latter (which is equal to the mean longitude of

the true sun) will be equal to the right ascension of the third

sun. Hence the equation of time may be defined to be the

difference between the true sun's right ascension and his mean

longitude, corrected by the equation of the equinoxes in right

ascension j therefore, naming e the equation of the centre,

fi, v the increments in longitude and right ascension which

result from the nutation, r the reduction to the equator,

or the difference between the longitude and right ascen-

sion, X', X the true and mean longitudes of the sun, p' p
the true and mean right ascensions, and p the effect pro-

duced by the perturbations of the planets, we have

X'= X + e+.P + /Lt, /o
= A+ i>, p'

= \'+p=\+e+p+n+ Pi

.'. p'
—p— e-{-p+ r-\-p.

—v; we will see hereafter that i>=
ju. cos. £ (c being the obliquity) and ^=18". sin. £, (£ de-

pending on the : situation of the lunar orbit), therefore x,

, c . e+p+ r 18.sin.£
the equation of time, =———+—— (1

—
cos.e) ;

since, therefore, both e and r are variable in this expression,

the equation must (without taking into account the dis-

turbing force
p. or p) be variable from these two causes ;

and as e and r are not the same on corresponding days of
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two different years, in consequence of the secular distur-

bances, it follows, that the equation of time is continu-

ally varying.

There are four times in the year in which the equa-

tion of time vanishes, for denoting the true sun, the sun

which moves with* a mean motion in the ecliptic, and the

sun which moves with a mean motion in the equator by

5, s\ s" respectively. As s' precedes s from apogee to peri-

gee, and s" precedes s' from the autumnal equinox to the

solstice, the order of the sun's near the winter solstice is

s, s
f

,
s" ; at the solstice s' coinciding with s" the order is

s, j
—

f immediately after s' passes s", (as appears from

what has been established above respecting the increments

of dA, at the equinox and at the solstice), .*. after the sol-

stice the order is s, s", s'; at the perigee, which is very

little beyond the solstice, s coincides with s'; .*. it must

have passed s" in order to effect this, for s" does not over-

take s' till their arrival at the vernal equinox ; hence, at

the moment when s passed s", the equation of time vanish-

ed. After the perigee the order of the sun's is s"s's,

which continues to the vernal equinox, therefore in that in-

terval the equation of time does not vanish ; after the equi-

nox s" begins to precede /, and the order becomes sV's; very

near this point the distance from the focus of the solar

ellipse is a mean proportional between the semiaxes, i. e.

the true angular motion is equal to the mean angular

motion, and therefore s' is at the greatest distance from s.

But the greatest separation of s" from s
f
is subsequent to

this, and as it is greater in quantity than the deviation of

s from s\ it follows, that previous to the greatest separa-

tion of s" from V, the order of the sun's is not s's"s but

s'ss" ; therefore s" must have passed s, consequently the

equation of time must have vanished ; but at the summer

solstice s" joins /, and as s' does not join s till after the

time of the solstice, when the sun is in the apogee, this
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junction of s" with s' must have been effected by s" repass-

ing s, this caused the equation of time again to vanish,

previous to the time of the solstice"; after this takes place

the order of the sun is sY's, at the solstices / coincides

with s", and after this the order becomes s"s's till the sun

arrives at apogee. Immediately after '/ moving with a

greater angular motion than s, the order becomes rtf\

now as s cannot overtake s' till it arrives at perigee,

whereas s" reaches s' at the equinox, it follows, that pre-

vious to this s" must have passed s, and at the instant of

passing, the equation of time vanishes. If the apogee and

perigee coincided with the solstices, the equation of time

would vanish in these points, which was the case in the

year 1250; but as the apsides continually prograde, the

points, at which the equation of time vanishes, continually

vary. As the moments when the equation from each

cause separately is a maximum, do not coincide, the

greatest equation can never be equal to the sum of the two

equations arising from each cause separately ; when the

equation of time is a maximum^ its increment is cypher,

i. e. the mean and true day have the same length, when

the equation of time vanishes, their difference is the

greatest possible.

(0) The reason why the day was divided into 24 hours,

and the hours into 60 minutes, and the minutes into 60

seconds, was, because these numbers admitted many dif-

ferent divisors.

If the year was exactly = 365+ ^, in four years the

commencement of the year would have regraded an entire

day, and in 1460 Julian years the commencement would

have regraded an entire Julian year, for dividing 1460 by

by 4, the quote will be 365, .'. 1460 Julian are equivalent

to 1461 Egyptian years, but as the year is accurately only
= 365,2422640, in order that the difference between this

and 365 may produce a tropical year, it is necessary that

1508 years should be accomplished; this period of 1460
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is called the sothiac period. The Egyptians supposed all

their months to consist of 30 days, and they added at the

end of the year five days, which were called eirayofitva.

See Vol. 2, Book 4, Chap. 3.

(p) Suppose that the moment of the solstice or equinox

preceded midnight by a quantity less than the errors of

the tables, then according to the tables the moment would

happen after midnight, and as the commencement of the

year is reckoned from the midnight which precedes the

solstice as determined by the tables, this origin would

differ nearly by an entire day from the true origin.

{p) In the Julian arrangement of the year, it is supposed
that 365+ ^= R, a revolution of the sun; consequently,

though there is not an integral number of days in one re-

volution, still four years may be made equal to four revo-

lutions of the sun, and 4 R= 4.365+ 1 =3.365+ 366; now

as the true length of the year is not 365.25, but 365.242264,

which is less than the former by 11', 15"; before a new

year has commenced, the sun has passed the point in the

ecliptic where the last year began, by a small fraction

= 11', 15" X 59', 8" ; therefore, the Julian reckoning and

the course of the seasons fall behind the sun, and in 132

years this difference is very nearly a day, hence in 3.132

or 396, which is nearly equal to four centuries, their

loss would be three days j this is the reason why

Gregory proposed to omit the intercallary day at the

commencement of three successive centuries, which would

be, in the Julian arrangement, intercallary years, and to

retain it on the fourth century, and two hours fifteen

minutes is all that remains uncorrected ; for 11', 15", the

annual error = .007736, which in a century is .7736, and

in four centuries it is equal to 3.0944, of which the deci-

mal part .0944, which is not corrected, = 2 h
, 15'; now

this part becomes equal to an entire day in 4237 years,

and therefore it would be corrected nearly by omitting, as
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is suggested in the text, a bissextile every four thousand

years.

(g) The Persian intercalation was more correct than the

Julian, for Omar proposed to delay to the 33d year the

intercalation which ought regularly to take place on the

32d, and by this means the Julian intercalation would be

altogether omitted in the 128th year; but it has been

before observed, that the Julian intercalation is too much

by one day in 1 32 years, this method is therefore more exact

than that proposed by Gregory, for it differs from the truth

only by one minute in 120 years; (in fact, if we determine

the series of continued fractions which express the ratio

between 5 h 48' 49" and 24h
, the first terms of the series are

^, -7^, ^} _3^ t
anci among the terms of this series the ratio,

which would exist according to the intercalation proposed

by Gregory, does not occur ; ^ is greater than the true dif-

ference, and /g- less, therefore, as the fractions converge
towards the true value, the correction proposed by
Omar is more accurate than Caesar's or Gregory's).

—
See Vol. 2, Book 6, page 220.

(r) The order of the planets, according to the ancients,

is Saturn, Jupiter, Mars, the Sun, Venus, Mercury, Moon;
now the names of the planets are imposed on the days
Bia Ttaaaptov, i. e. as the sun is the fourth from Saturn

inclusively, he denominates the first day of the week
; the

moon being the fourth from the sun, denominates the

second day of the week, and so on. An astrological rea-

son has also been assigned ; for as the planets were sup-

posed to preside over each hour of the day, and as the planet

gave its name to that day, over the first hour of which it

presided, if the sun would have the first hour it would have

also the 8th, the 15th, and in general all those of the form

I + 7w ; Venus would preside over the second hour, and in

general all those ofthe form In+ 2
; Mercury over all those

of the form 7w+ 3; the moon over those of the form 7«-f-4;

Saturn over those of the form 7w-f-5; Jupiter over those of
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the form 7«-f6 ; Mars over those of the form 7ft-f-7= 7. («+l).

The general formula is 1n-\-a=z2^m-\-l i therefore a— 1 =
24w—In if 7n-\-a= l

; n= ; a=l; the first day belongs
to the sun; 7w+a= 25, n must be equal to 3, therefore

24m—7 n= 4, therefore the moon presides over the second

day; if 7rc+ a= 73; a — 13— 7.10, therefore a— 3 y and

the fourth day will be that of Mercury ;
and after the

seven planets are exhausted, the days will return in the

same order as before; for let 7w+ a= 169, therefore

az=169—7.24= 1, therefore the eighth day belongs also to

the sun as well as the first.

CHAPTER IV.

Calling M the diurnal motion of the moon, fx the

diurnal motion of the sun, (M—fx) will be the relative

motion with which the moon regains the sun, .*. we shall

360°
have M—fx : 1° '.'• 360 : L=

^y , as we know very nearly

the duration of a synodic revolution, we know the number

of synodic revolutions in a given interval N; hence, if ?* re-

**
J
= N, therefore

(~m)'360°
=M—

fit which is the relative motion, hence

/ 360 \
we can determine M and ( g| )

;
now if m represent the

vt N- 360
mean motion of the sun, n.360+ #r. 360 . . JN :

—zzzh
n. 360-f-m

(-)\nJ /N\ / m
,

/ m \
z

\

n. 360 c

-
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the revolution in longitude of the moon, in order to de-

termine P', the sidereal revolution, we have 360°—p :

: : P: P
'=-3E

= R
('
+3-fo+(mf +&4 <*

1
360°

being the precession in a tropical month), if M represent

the motion of the apsis during P, we have 360°—M '. '.

P
360 iiP: P" the anomalistic revolution, = rr =

1
360

1 "*" 3T0 "*"
( 360/

—^C '

/
^et represent the motion •

of the node, and as it regrades we have 360+ M' : 360 '. I

P:P'"=P.^1—
—+(—)

—
&C.J

hence it appears how

all these different periods may be readily inferred from

the synodic revolution, which may be accurately deter-

mined by means of two eclipses separated by a consider-

able interval from each other.

The orbit of the moon may be proved to be elliptical in

the same manner as the sun's orbit was shewn to be elliptical.

(s) Let D, D' represent the greatest and least apparent
D—D'

diameters of the moon, the eccentricity = "fyTTy» an^ **

p be the horizontal parallax when the moon's apparent

p. D
diameter is d, the parallax at the least distance =—rr»

and at the greatest distance =—
j- , therefore the least

.. r.d ", .. r.d
distance =—yy and the greatest distance =—jy, con-

sequently the mean distance on the hypothesis that the

orbit is elliptical rs^*
—
*("n+fy/' r rePresents tne ra-

dius of the earth, supposed spherical ; but on the suppo-
sition that the earth is an ellipsoid, r is the radius corres-

z
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ponding to the latitude, of which the square of the sine

= £. See Chap. 4.

From the eccentricity, the equation of the centre

may be inferred by means of the formula

(2e—$e'+ 1fc.e
5
).s\n.nt+ (Ze>—^ e4+ T̂ .e

6
).sin.<2nt+

(|| e
3—

|f. e5 ). sin. 3n/+ &c.

See Notes to Book 2, Chap. 3. Hence it is easy to shew-

when it will be a maximum.

(t) If & be the mean longitude of the moon, and o that

of the sun, the mean anomaly being nt, as before, this in

equality is

(1°.21, 5"-5) sin.2( d —©)—nt) );

hence, as <[
—©= 0, or 180°, in the oppositions or con-

junctions of the moon with the sun, the argument in these

positions is —nt, which renders the evection negative, if

nt is < 180, and positive if nt is > 180, contrary to what

happens in the equation of the centre, as is evident from

an inspection of its value ; therefore, in both cases it is

diminished. The period of the evection may be inferred

from the rate of increase of its argument, which is

ll d.3166 per day, its period therefore is nffifgg i or

31°.8119. The evection may be considered as an in-

equality in the equation of the centre, arising from an

increase of the eccentricity at the quadratures, and a dimi-

nution of it at the syzygies ; it appears from its argument
that it depends on the position of the axis major of the

moon's orbit, with respect to the line connecting the sun

and earth.—See Princip. Math. Lib. I., Prop. 66, Cor. 9.

(/) This inequality may therefore be 'represented by the

formula (35' 42"). sin. 2
( ([
— ©). Its period is evidently

equal to 14d.7655, or half a lunar month. Mayer has

added to the preceding value of the variation two other
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terms, which are respectively proportional to sin. 3 ( ([
—© ),

sin. 4( (T
—©).—See Notes to Vol. II. Chap. 4.

(«) The argument of this inequality is sin. mean.

Anom. ©. Hence, in the eclipses it is confounded with

the equation of the centre of the sun. This equation
arises from the variation of the sun's distance from the

earth.—See Notes to Vol. II. Chap. 4.

(v) During each revolution of the moon the nodes ad-

vance, and regrade alternately ; but the quantity of the

regress exceeding that of the advance, the nodes during a

revolution may be said on the whole to regrade, as the

excess of the arc of regression above the arc, during the

description of which the nodes advance, is twice the dis-

tance of the node from syzygy, the regress of the nodes

will increase in the passage of the nodes from syzygy to

quadrature, and again decrease in the passage from quad-

rature to syzygy.

Let I, t represent two latitudes of the moon on succes-

sive days, before and after passing the node, X, X' the cor-

responding longitudes, and n the longitude of the node,

and I the inclination, we have l-\-V : I : X—X' : n—X=

ig£l; hence we get „ and as by Napie,s rules

sin.(X
—

w)= tan./. cot. I, we obtain cot. I= sin. (X
—

w).cot.£,

I might also be obtained by observing the moon's latitude

on several days near to its maximum, for the greatest lati-

tude is evidently =1.

Since the argument of the greatest inequality is pro-

portional to the sine of double the distance of the sun

from the ascending node of the lunar orbit, its period

must be equal to a semi-revolution of the sun with respect

to the nodes of the moon.

(to) It was from the variation of the moon's apparent
diameter that Newton inferred that the areas were pro-

portional to the times.—See Princip. Lib. 3, Prop. 3.

{x) The lunar inequalities have been distinguished into
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three classes, namely, those which affect the longitude,

those which affect the latitude, and those which affect the

radius vector of the moon. The reason why it was so

easy to discover them, was because their periods were of

such different durations. With respect to the inequalities

which affect the longitude of the moon, three, namely, the

evection, variation, and annual equation, have been known

to the ancient astronomers ; but there are several others,

the existence and form of which have been indicated by

theory, and which may be considered as so many correc-

tions to be applied to the above mentioned inequalities, in

order to determine the position of the moon with the ac-

curacy required by the precision of modern observations.

It is the same with with respect to the inequalities which

affect the latitude and the radius vector of the moon.

The forms of the inequalities are determined by physical

astronomy ; the coefficients are determined by observing
when they attain their greatest values, for then the angu-
lar functions into which they are multiplied are equal to

unity.

{y) The greatest breadth of the illuminated part of the

moon's surface is observed to vary as the versed sine of

the moon's elongation ; but if the moon was spherical, the

illuminated part would vary as the versed sine of the ex-

terior angle at the moon, which differs very little from the

angle of elongation. Strictly speaking, the illuminated

portion varies as the versed sine of the exterior angle at

the moon =E, (the angle of elongation) +(S) angle at

the sun ; this last quantity, or its sine, which is nearly the

same thing, =sin.E X into the -ff of the moon's distance

into the sun's distance from the earth, =——'
sin. E, where

r represents the rad. of the earth, d the distance of sun

v
from earth, but ~

d
= 8".47 the sun's parallax, therefore S=

8'.47. sin.E and P= A versed sine (E+ 8'.47. sin. E) ; now
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from Napier's rules cos. E= cos.Z. cos.
( D—-©) ; / and D ,

O, representing the same as in the preceding notes, in

conjunction B—© =0 and E= /; therefore P= A vers.

sine(/+8'.4>7. sin./), .'. unless the moon is in its node, the

illuminated part does not vanish
; when E-j-8'.4<7. sin.E=

90°, P= A£, .*. half the disk is illuminated; in this case E
is less than 90°, as stated in the text, when D—©=90,
E= 90°, and Pis greater than A; when 3)

—© = 180,P= A.

versed sin. (180°
—I— 8'47. sin. 1) ; and when I vanishes,

i. e. at the node, P=2A ; calling 2 A' the apparent disk

of the earth as seen from the moon, 180°—E is the ex-

terior angle at the earth, and P' the illuminated part
= A'. ver. sin.(180

— E) = A'. (l+cos. E), but P= A. ver.

sin. (S+E)= A.(1
—

cos.E), nearly; hence, when E= 0,

P= 0, and P'= 2A', and when E= 180°, P= 2A, P'=0.
If the angular motion of the moon was exactly equal

to that of the sun, the lines drawn from the earth to the

sun and moon would preserve the same relative position,

and the moon would invariably present the same aspect,

the quantity of the illuminated surface being always the

same.

(z) It appears, therefore, that the period of the phases is

the time required to describe four right angles with an

angular motion, equal to the difference between the angu-
lar motion of the sun and of the moon, it is consequently

greater than the time of tropical revolution.

(a) This is the method employed by Aristarchus to

determine the distance of the sun from the earth, and is

the first attempt on record to determine this distance.

(c) Half the angle of this cone is equal to semid. ©—pa-

rallax © ; therefore, if r be the radius of the earth, s the

apparent semidiameter, and p the horizontal parallax of

the sun, the height of this shadow reckoned from the

r
earth's centre = -—

; o\ » and the semiangle of the sec-
sin, (s—P)

tt
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tion of the shadow = P-fp—s ; P representing the hori-

zontal parallax of the moon.

(d) The ecliptic limits, or the greatest distance from the

node at which an eclipse can happen, is determined by

computing the moon's distance from the node, when she

just touches the earth's shadow ; we might by a similar

manner compute the limits of a total eclipse.

When the angle at the moon is 90, the moon must

be dichotomized, and therefore the boundary of the illu-

minated part is a right line; and conversely when the

boundary is a right line, the angle at the moon is a right

angle, therefore in this case the sun's distance from earth

is to moon's distance from earth, i. e, moon's parallax :

sun's parallax as 1 : cos. elongation.

The rad. of the penumbra P -J- p + s, therefore we

might compute the time of the moon's entering and emerg-

ing from the penumbra. As the earth's atmosphere inter-

cepts some of the rays of light coming from the sun, it

causes the shadow of the earth to appear somewhat greater

than it would be if there was no atmosphere, the parallax

of the moon ought, according to Mayer, to be increased its

sixtieth part.

The ecliptic limits for the sun may be computed in a

manner similar to that for computing the ecliptic limits of

the moon, and as they are greater than those of the moon,
there are more solar eclipses than lunar in a year,

though more lunar eclipses are visible at any given

place.

(e) The ray of light at its entrance into the lunar

atmosphere is inflected towards the perpendicular, and it

suffers an equal deflection from the perpendicular at its

egress j each of these deviations is equal to the horizontal

refraction of the lunar atmosphere, so that the entire in-

flection of the ray equals very nearly twice the horizontal

refraction. Hence the star continues visible some time

after the moon has been actually interposed between the
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star and observer; and it is also, for the same reason, seen

some time before it ought to be visible, from which it fol-

lows, that the duration of an occultation of a fixed star by
the moon is less than if there was no lunar atmosphere ;

however, as the entire duration is never lessened eight se-

conds of time, the beginning of the occultation will not be

retarded, nor the end of it accelerated by four seconds of

time; if the retardation was four seconds of time, the ho-

rizontal refraction would be two seconds of space, for the

moon moves over 2" of space in 4" of time; therefore as

the densities are proportional to the horizontal refractions,

the density of the lunar atmosphere is 1000 times less

than the density of the terrestrial atmosphere, which is a

density much less than what can produced in the best

constructed air pumps. And as without the pressure of the

terrestrial atmosphere, all the liquids which at present

exist on its surface would be dissipated into vapours, (see

Chap. 16, Book 1,): the pressure of the lunar atmosphere

being so very inconsiderable, it follows, that if there was any

large collection of water on its surface, it would long since

have been dissipated. Besides, if there was a quantity of

water spread over the lunar surface, whenever the circle

of light and darkness passed through it, it would exhibit

a regular curve.

(f) Bouguer found that if the light of the sun, when
elevated 31° above the horizon, and introduced into a dark-

ened chamber, be made to pass through a concave mirror,

it would be dilated into a space of 108 lines of diameter, or

weakened 1 1 664- times, and in this state it was equivalent to

the light of a candle 16 inches distant. The light of the

moon when full, and at the same elevation above the hori-

zon, was found to be dilated into a space of eight lines of

diameter, or weakened 64 times, which is equivalent to

the light of the same candle when it is distant fifty feet.

Thus the light of the sun when enfeebled 11664 times,

was still 443 times stronger than the light of the moon
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when rendered weaker only 64 times. Hence the ratio

of the one one to the other is about that of 1 to 268000.

Other observations made the ratio that of 1 to 300,000,

which is very nearly the mean of several observations. A
different estimation is given in Smith's Optics.

—See

Young's Analysis, p. 305.

(g) The part of the moon in which this light is visible

corresponds exactly to the part of the moon which is not

illuminated by the sun ; which is exactly equal to the part

of the earth which would appear to a spectator on the

moon illuminated by the sun.

(h) If the axis of rotation of the moon was in the plane
of the moon's orbit, every part of the moon would be suc-

cessively presented to the earth, though the moon revolved

on her axis in the time of her revolution about the earth ;

so that the perpendicularity of the axis of rotation to the

plane of the orbit is a condition, which must be combined

with the equality of the times of rotation and revolution,

in order that the same face may be always presented to

us. If the axis of rotation was exactly perpendicular to

the plane of the moon's orbit, the libration in longitude

would be a maximum at the point where the equation of

the centre was greatest, (see page 303). From apogee
to this point parts of the western edge of the moon
come into view, and from this point to perigee these parts

are gradually restored ; the contrary takes place in the

other half of the orbit. The libration of a spot towards

the centre of the lunar disk, is much more sensible than

the libration of a spot near to the border.

It appears from what is stated in the text, that there are

four kinds of librations of the moon; three apparent, one

real.

{if The axis of rotation remains parallel to itself, mak-

ing with the plane of the ecliptic an angle of 88£°, and
therefore with the plane of its orbit, which is inclined to

that of the ecliptic in an angle of 5°, 10', an angle of 83°
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at its greatest latitude. The descending node of the

lunar orbit coincides with the ascending node of the

moon's equator. The axis of the earth being inclin-

ed to the plane of the ecliptic at an angle of 66°, 23', the

earth must exhibit to a spectator at the sun, appear-
ances similar to those which the moon presents to

us, i. e. at the time of the summer solstice a portion of

its disk about the north pole of 23°, 28' extent, would be

visible, which would contract according as the earth ap-

proached to the equinox, after which a like extent of its

southern disk would be successively developed till the

moment of the winter solstice. This spectator would

therefore suppose that there existed in the earth a motion

of libration.

(Ic)
It may be objected to this explanation, that in con-

sequence of the great rarity of the lunar atmosphere, no

explosion would be visible ; but in answer it is sufficient

to observe, that there are several substances which deve-

lope during their ignition the oxygen gas, which is re-

quired in order that they may burn.

CHAPTER V.

(/) I and L denoting the heliocentric longitudes of the

planet and earth, X the geocentric longitude of the planet,

we have

r. cos. /—p. cos. X= cos. L, and r. sin. /—p. sin. X= sin. L,

therefore,

A A
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r. sin. Z—sin. L dX
tan. A= ; r« and

>. cos.Z— cos. L'
*

cos.
aX

(r.cos.7
— cos.L) (r.cos. Idl—cos.Lc?L)-f(r.sin.Z

— sin.L)

(r.'sin. /. dl—sin. L. dL,) -f- (r. cos. L—cos. L)*

equal by concinnating to

jr
a—r. cos. (L—l)}.dl+ {l—r. cos.(L—l)].dL ,

(r. cos. I—cos. L)
a

but as the mean motions which are proportional

to rfL, dl, are inversely as the periodic times, we
3

have dh : dl \\r^ : 1, unity denoting the radius of the

3 1

earth's orbit, therefore dh= dl.r2
. .*. if ; r

r. cos. /—cos. Li

P I
be put equal to r~, we shall have dA=P*.(r* 4-r")

—
5 .......

(
r _^.r

2
). cos. (L—/). <ZZ ; in inferior conjunction or oppo-

sition L—/=0, therefore d\= P\ r.(r+r^—l—rs). dl=

P*. r. (r
—

1)(1
—7-2)^1, which is always negative, hence

the motion of the planet is always retrograde, in superior

conjunction L—Z=180, therefore cos. L—/=— 1, hence A

must be positive, therefore the motion is direct; whendA= 0,

the planet appears stationary from the earth, and then
i

r + r*
we have cos. L—1= 5

• If m, m' represent the daily
1 + r^

motions in longitude, we have L= mt, l=m'ti and L—1=

(m—m')/, t being the time when the longitude was the

same, i. e. the time of syzygy, therefore as t in this case=

7 the planet will be retrograde while it describes
m—m r °

L—Z .,
L—I

2 m. , , and direct while it describes 360°—2w. , »
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hence it appears, that the greater the difference between

m and m\ the less the arc of retrogradation. The preceding

investigation goes on the supposition that the orbits are

circular, which is not the case, therefore it is that the arc

of regression, and also the dui-ation, are not always of the

same magnitude.

(m) The illuminated portion of a planet varies as the

versed sine of the exterior at the planet, **. e. as 1 -{-cos. 0,

where is the angle at the planet, when is a maximum,

i. e. when sin.0= - the planet is most gibbous, which is

evidently in quadrature for a superior planet, in superior

conjunction and opposition = 0, therefore the whole disk

is illuminated; for an inferior planet, = 180 in inferior

conjunction, hence in this position 1+ cos. = 0, and the

disk is invisible.

(») M and m representing the angular velocities of the

earth, t the time between two conjunctions, we have

360 . __ 360
,

_ / 1

/. (m—M)= 350, m= , andM=-p-, therefore l~=*=

Pp
pjk=l.

and t
—

Pzfc/T

(w) It is the parallax of Venus which is obtained by this

method ;
however as its ratio to the parallax of the sun is

known from having the ratio of the distances, which latter

is given from the observed periods of the sun and Venus,

we obtain the parallax of the sun ; the transit of an in-

ferior planet over the disk of the sun is a phenomenon of

exactly the same kind as that of a solar eclipse, and may
be calculated in precisely the same way. The parallax of

the sun may be also inferred from theory.
—See Book 4,

Chap. 5, Vol. 2.

(o) It was originally proposed to observe the difference

between the times of total ingress of Venus, as seen from

two different places on the earth; this requires that the

difference of longitudes of the two places should be known
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accurately ;
besides it supposes that the spectators are

either accurately, or very nearly in the plane of the orbit

of Venus
;
to avoid this it was suggested, that by compar-

ing the difference of duration of the transits, as seen from

the different places, we might determine the parallax.

From an approximate knowledge of the sun's parallax, we

can compute the difference of duration at any place, com-

pared with what it would be as seen from the centre of

the earth. Hence, comparing the difference of duration

at two distant places, at one of which the duration is short-

ened, and at the other lengthened, we get a double effect

of parallax. It is, therefore, a matter of considerable im-

portance to select places where the effects of the increase

of the duration, or of its diminution, is greatest, and it is

clear that with respect to the first, the duration is most

lengthened when the commencement is near sun-set, and

the end near to sun-rise ; but in order to secure this it is

evident, that the place must have a very considerable

northern latitude ; the duration would be evidently most

shortened when the commencement was near sun-rise, and

the termination near sun-set; hence, as the duration is

only six hours, and as the time of the occurrence of the

last transit was in June, it was necessary that the place

should be to the south of the equator, where the days

were then shorter than the nights; in places where the

complement of latitude was less than the sun's declination,

the sun would not set, consequently in such places the en-

tire transit is visible, and the sun's elevation being then incon-

siderable, the effect of the parallax would be very great;

and also as Venus is depressed, the duration is increased.

(p) The law here adverted to is that which connects

the periods and distances, namely, that the squares of the

periods are as the cubes of the distances.

(q) Calling x the number of revolutions made by the

earth, andj/ the number made by Venus in the interval

between two conjunctions, we must have xYz=yl
y
', P, P'
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being the periods of the earth and planet, hence we must
x ?'

have ~= T

p",
and by substituting for P', P, we find, by

means of the principle of continued fractions, that the

numbers expressing this ratio are T
8
7 , §§f , T

7
Tj

7

^, &c. It

does not necessarily follow that a transit will happen at

these intervals, for it is -likewise requisite that the least

distance of the sun and Venus must be less than the sum
of their semi-diameters, and as the nodes of Venus's orbit

regrade, we cannot be ascertained of this without compu-
tation.

(r) The rotation of Mercury is not stated in the text ;

however Schroeter thought that certain periodical in-

equalities observed near the .horns of his disk seemed to

indicate a revolution in 24 h
, 5', 30" on an axis, which

coincided very nearly with the plane of his orbit. It

was by a continued observation of the horns of Venus

that he ascertained its rotation. The asperities of this

planet, and the different situations of the shades which

they project from the side opposed to the sun, change
the form of the horns in the course of 23 h

, 21/ 29";

this can only be explained by the circumstance of its ro-

tation, and that the horns resume always the same form at

the end of a revolution. The compressions of Venus and

Mercury ought not, if the time of their rotation be nearly

the same as that of the earth, sensibly to differ from that of

the earth, however the observed compression of Venus is

nearly insensible.

Schroeter observed when the planet was dichotomized, that

a bright spot moved very nearly in the line of the horns,

hence he inferred, that the motion was very nearly perpen-
dicular to the ecliptic ; however, some uncertainty rests on

this matter. Hence it appears, that since the mean length
of a revolution is nearly the same for Mercury, Venus, and

the Earth, there must be a much greater variation in the

length of the days, and also in the seasons for Venus and



3%6 NOTES*

Mercury, as the inclination oftheir equator to their ecliptics-

is considerably greater; indeed their torrid zone must em-

brace very nearly 150 or 180°; in fact, as the sun ranges to

within 15° of one pole, the cold and darkness experienced

at the other must be very great. It was to a mountain,

situated near to the southern horn of Venus, that Schroeter

directed his observations ; strictly speaking, the line of the

horns should be always a diameter, and those of a cres-

cent should be very pointed ; however, Schroeter remark-

ed, that this was not always the case with respect to

Venus, the horn of the northern extremity was always

pointed, but the southern horn appeared sometimes ob-

tuse, or blunted, which indicates the existence of a moun-

tain, which covers a part with its shade.

To find the position of a planet when brightest, let k, r,

and
<f>
denote the distances of the sun and earth, the sun and

planet, the earth and planet, and x the angle at the pla-

net, the quantity of light received at the earth will vary

1 -f cos. v p
z + rz— k* , ,

as -r-*, cos. x = r- —
, and 1 + cos. x =

P Z7 P

v

\! , consequently the quantity of light will vary
XJ p v

as -Q-^
-j , therefore differentiating this we obtain

0=jo
a + 4|or

—
(3lc

z—r2 ); and p =—2r=±= V. 3F + r*, hence

we obtain the value of cos. x.

CHAPTER VI.

(s)
The motions of Mars are subject to more variations

than those of any other planet, which circumstance in-

duced Kepler to direct his observations more particularly
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to this planet. The position when stationary, and also

the duration of his direct and retrograde motion, is com-

puted in the same manner as for an inferior planet. The
cause of the differences which are observed in the quan-

tity and duration of the retrogrations, arises from the ellip-

ticity of the orbit.

(i) The brilliancy of a fixed star when approaching this

planet was observed to become sensibly faint, hence it was

inferred, that Mars was environed by a dense atmosphere,
which was the cause of this faintness. Besides, from a

continued observation of the spots, particularly two, which

are near to the poles, there was observed a periodical in-

crease and diminution, according as they are exposed to

the action of the sun's rays in a more or less oblique man-

ner j from this circumstance it has been conjectured, that

they are like the collections about our polar regions of

the earth.

(u) The inclination being very nearly the same as the in-

clination of the earth's axis to the ecliptic, the variations

of seasons must be also nearly the same.

CHAPTER VII.

[v) The duration of Jupiter's rotation is the shortest,

and his magnitude and mass are the greatest of any of the

planets. This great rapidity of rotation may compensate
for the greater weight which bodies experience at the sur-

face of this planet, (see Vol. 2, Chap. 8, page 143) ; in fact,

a point on the surface of Jupiter moves twenty-six times

faster than a point on the earth's surface.

In consequence of the inclination being so inconsider-
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able, it follows, that there is no great variety in the sea-

sons.

(w) If the commencement and termination of an eclipse

be accurately observed, then the middle of the eclipse is

found, which is nearly the time when Jupiter is in oppo-

sition with respect to the satellite ; let the time of another

opposition, separated by a considerable interval from the

first, be found in the same manner, calling r this interval,

and n the number of oppositions which have occurred in

T
t, we have T the time of a synodic revolution =-, hence,

if P' be the periodic time of Jupiter, we shall have P, the

FT
period of the satellite, = p/i.^

' &ee Notes to Chap. 9,

Book 2.

It has been also inferred, from the circumstance of

the greatest elongations of the satellites, when measured

with a micrometer at their mean distances from the earth,

being always the same, that the orbits are Q. P. circular,

and it is in this manner that the distances are found in

terms of the radius of Jupiter's equator; however, as in

a comparison of a great number of observations, we must

modify a little the laws of circular motion for the orbit of

the third satellite; it follows, that this orbit is elliptical.
—

See Chap. 10, Book 2.

Calling Jupiter's geocentric longitude X, /, the lon-

gitude ofthe satellite, as seen from Jupiter, and 6 the longi-

tude of the sun, the angle at the earth is equal to X—®,

that at Jupiter, = 1—X, and r : 1 '. '. sin. (X
—©) : sin. (I

—
X).

[y) From this circumstance of their alternately surpassing

each other in splendour, it is probable that certain parts

of their surface reflect more light than others, and then

the epochs of the maximum or minimum of illumination

ought to happen when the very same parts of the satellites

are turned towards us; from a comparison of these returns

with the positions of the satellites relatively to Jupiter
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lie ascertained that they always present the same face to

this planet, hence he inferred, that they revolve on their

axes in the time of their revolution about Jupiter.

Naming /, T the durations of the longest and shortest

eclipse of the same satellite, and r the radius of Jupiter's

r.t

equator, we have T : t I'.r :
-tjt

=c, half the chord of the

arc described in the shortest eclipse, consequently d its

/ F
distance from the centre of Jupiter = >:*/ 1 — ^ ; but

r : 360 '.'. T : L, (a synodic revolution of the satellite,)

360°.T *

;
T / W „.vr=—

j

—
, hence d= -r-' 360°.V l—7^, and calling

11 the longitude of the satellite, and I that of Jupiter, we

have in the right angled spherical triangle, of which the

hypothenuse is n— /, and d a side about the right angle

/ 360° ^T*—1*\ .
, .

sin.^=fsin.
y J=sin.(w

—
l).hin. N, (N being

the inclination which consequently can be found), n is

found by observing the position of Jupiter when the dura-

tion of the eclipse is the greatest possible, for the helio-

centric longitude of Jupiter and of his node are in this

case precisely the same. .

CHAPTER VIII.

(z) The circular ring must always appear as an ellipse, as

the eye of the spectator invariably looks at it obliquely,

being never raised 90° above the plane of the ring, there-

fore the major axis of the ellipse is to the minor as radius

to the sine of the angle <f>,
at which the line drawn from

B B
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the earth to the centre of the ring, is inclined to its plane,

consequently if A represent the geocentric longitude of Sa-

turn, the longitude of the earth as seen from Saturn =180

+ A, and if the longitude of the ring's node =;z, B being the

geocentric latitude of Saturn, and consequently
—B the

latitude of the earth as seen from the planet, we can, from

knowing 180+ A—ft, B, and also v the inclination of the

plane of the ring to the ecliptic, compute <j>,
and thus ob-

tain the ratio of the axes of the ellipse = sin. = sin. v. cos.

B. sin. (w
—

A)+ sin. B. cos. v, if sin. = 0, i.e. if the earth is

in the plane of the ring, we shall have sin. {ii
—A)= tan. B.

cot. v, in this case the thickness ofthe ring is turned towards

us, which being inconsiderable is therefore invisible; this oc-

curs twice during each revolution of Saturn, i.e. every fif-

teen jears ; if the plane of the ring passes through the sun

it will disappear, because its thickness is then only illumi-

nated ; naming <j>'
the elevation of the sun above the plane

of the ring, H h the heliocentric longitude and latitude of

Saturn, we have sin. v'= sin.
<p\

cos. h. sin. (H—N)—cos. v.

sin. h, and therefore sin (H—N) = cot.t>. tan. h, when <\> =0,

i. e. when the ring disappears. "When 0, <p'
have the same

sign, the earth will see the illuminated part, and the ring

will be visible; when they have contrary signs the ring

will be invisible, for the ring will turn one of its faces

towards the earth, and the other towards the sun ;
but as A

and H never differ by 5°, which is described by Saturn in

five months nearly, this difference of sign cannot last longer;

it is in this interval that the phenomena of the appear-

ances and disappearances occur, Saturn being near to his

nodes, similar phenomena occur at the following node ;

if the ring disappears a short time before Saturn becomes

stationary, the earth will meet it soon again, since Saturn be-

comes retrograde after the second occurrence, the ring

will again become visible as sin.
<f>
and sin.

<f>'
then have the

same sign, shortly after sin. $' vanishes, the plane ofthe ring

passing through the sun, and as afterwards sin.
<j>

f

changes
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its sign, when the ring continues to be invisible until a short

time after the planet becomes direct, when sin.
<f> vanishes,

and consequently the plane of the ring passes through the

earth, afterwards as sin.
tf> changes its sign, it will be the same

as sin.
(ft',

and consequently the ring will be visible for

fifteen years ;
if when the plane of the ring passes through

the sun, the angular distance of the earth from the ascend-

ing node of the ring, as seen from the sun, is greater than

90, and less than 180, there will be only one disappear-

ance, which commences when the sun passes through the

plane of the ring, and ends when the earth meets it, con-

sequently it will last less than three months ; if the preced-

ing angle is > 180 and < 270, the earth meets the plane

shortly before this plane passes through the sun, after this,

sin.
<j>,

sin.
<}>'

will have the same sign, consequently the ring

will be visible, consequently in this case as well as the pre-

ceding, the invisibility lasts three months; if this angle be

>270 and < 360, there will be two disappearances, name-

ly, when the earth meets the plane of the ring a little be-

fore it passes through the sun, after this the earth again

meets the plane of the ring, consequently there will be a

second disappearance. If this angle be between and 90,

there are two disappearauces also, namely, when the earth

meets the ring before opposition ; secondly, when the ring

passes through the sun after opposition, after the second re-

appearance, the ring bocomes visible for fifteen years. The
most favourable circumstances for seeing the ring are when

the plane passes through the sun and earth at the same time,

the earth being in conjunction j then the earth is always
on the illuminated side of the ring, which only eeases to

be visible in consequence of the plane passing through the

sun, if the plane passes through the earth and sun at the

same time, the planet being in opposition, the circum-

stances for seeing the ring are the most unfavourable, in

this case the ring is invisible nine months, four months

before the passage of the plane through the sun, and



338 NOTES.

five months after. If sin.
<j>

be positive, we see the nor-

thern face of the ring ; the semi-ellipse, which will be

visible, will be below the centre of Saturn, and theotherhalf

will be behind the planet; if sin.
(f>
be negative we see the

half above the centre. The inclination of the ring to the

ecliptic, or the angle v = the angle at the earth + the

angle which a visual ray from the earth makes with the

border of the ring, this last angle = 30°, the first angle
= the geocentric latitude of Saturn + the angle which

the minor semi-axis subtends.

*• b
, o

Sm.0= -, therefore according as the earth ascends

above the plane of the ring, the ellipse increases, when
&= a sin.0= ^ diameter of Saturn, its extremities coin-

cides with those of its disk, in this case evidently sin. = f ,

.. b
if n—A =90,

- = sin.
<f>
= sin. v. cos. g— cos. v. sin. g =

sin. (v
—

g)9 therefore
<f>
= v—g, and since w= 90+ X, we

have the place of the ascending node. As the phenomena of

the disappearances recur after a complete revolution of Sa-

turn, it follows, that these two positions of the ring always

correspond to the same points of the orbit of Saturn, and

consequently the plane remains always parallel to itself,

therefore its inclination to the ecliptic is invariable , or ifwe

substitute for tan./* its value tan. I', sin. (H—N')» V and

N' being the inclination and longitude of the node of the

orbit of Saturn, we have

sin.(H—N)= cot. v. tan. xf. sin. (H—N'),

therefore,

sin. (H—N) sin. H. cos.N—cos. H. sin.N
tan. v'. cot. u=

sin .
(
H—NO= sin. H. cos. N'—cos. H. sin. N'

tan. H. cos.N— sin. N
—

tan. H. cos. N'—sin. N'
'

therefore,
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tan. v'. cot. v. sin. N'—sin.N 1

a ' ~~
tan. t/. cot. v. cos. N'—co«:.N

'

hence we find H, which is very nearly constant. When
the plane of the ring passes through the sun, the helio-

centric longitude of Saturn on the orbit = N, •/ the place

of the nodes of the ring on the orbit is determined, or

vice versa, which is found to be the same always j let N
7
be

this longitude reduced to the ecliptic, the angle at the sun

between rad. of earth and curtate distance of Saturn =
N,+ 180—O, the angle at the earth subtended by curtate

distance = —
z, rad. of earth = a, we have curtate dis-

tance = —
;

—
t ;n-r > 'and radius vector of Saturn

sin. (z
—Nj

custate distance ,
. . . . .. , .

as • (z = the geocentric longitude of
COS.

(p

Saturn).

The apparent headth of the ring is equal to the distance

of its interior border from the surface of Saturn, as is in-

deed evident from what has been already observed, and it

revolves in a time equal to the periodic time of a satellite

whose distance from Saturn would be the same as that

of the ring.

CHAPTER IX.

(a) In determining the elements of the planetary orbits,

a great number ofobservations is supposed to be made about

the time ofopposition or conjunction, and also the periodic

times of the planets are supposed to be known ; but as

this last element is most accurately determined by means
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of a great number of complete revolutions, and as the

motion of this planet is so slow as to preclude the possi-

bility ofobserving more than one opposition in eighty years,

a considerable time must elapse before the elements of

Uranus can be known with the same accuracy as those of

the other planets. However, as will be shewn in the third

Chapter of the second Book, the very extreme slowness of

the observations enables us to make a tolerably accurate

approximation to a knowledge of the elements.

In the consequence of the q. p. perpendicularity of the

planes of the orbits of the satellites of Uranus to that of

their primary, they must experience considerable disturb-

ance from the action of the sun ; indeed the investigation
of the sun's action would be a new case in the problem of

the three bodies, for in general the inclinations are as-

sumed to be inconsiderable.—See Vol. ii. p. 51.

CHAPTER X.

(b) These planets are so small that they belong to that

class of stars which are termed telescopic, the volume of

all the four taken together does not surpass the magnitude
of the moon, therefore, though nature has elevated them
above the rank of satellites, as far as their magnitude is

concerned, they are below these bodies. These circum-.

stances of their extreme smallness, and of their being at

the same distance very nearly from the sun, have induced

philosophers to think that they are the fragments of one

planet divided into parts ; indeed an explosion with a ve-

locity twenty times greater than that of a cannon ball,

would be sufficient to make these detached fragments de-
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scribe orbits similar to those described by these planets
•

such an hypothesis explains why the excentricities and in-

clinations of these planets are so considerable, and also

why they are moved in such various directions, and with

such different velocities.—See Vol. ii. p. 250.

The elements of these planets cannot be known with

the same precision as those of the other planets, for as

not more than five revolutions of them have been ob-

served, their periodic time, a most important element,

cannot be determined with great accuracy. The best

method for determining the elements of these stars is that

given by M. Gauss in his Theoria motus corporum ccclestiuni;

but when their proximity to Jupiter, the perturbations

which result from their mutual attractions, and their great

eccentricities and inclinations, are taken into account we

cannot expect to have as yet a very accurate knowledge
of these elements.

CHAPTER XI.

An epicycle is a curve produced by the combination

of two circular motions. The circles described by the

centres were called deferents. The epicycle of a superior

planet was supposed to be described in the time between

two conjunctions or oppositions. The epicycle of an in-

ferior was described in the time between two inferior con-

junctions. The deferent of the superior planets were sup-

posed to be described in the time of a planet's revolution

about the sun ; those of inferior planets in the time of the

sarth's revolution. In a position of an inferior planet on

the Ptolemaic system, if lines be drawn from the planet to

the earth and centre of the deferent, the angle at this centre
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will be equal to the angle which an inferior planet has gained
on the earth since last inferior conjunction, hence if the rad.

of the deferent is to the rad. of the epicycle, as the dis-

tance of the sun from earth, to the distance of the sun

from planet, the angle at the earth is equal to the angle

of elongation in the true system, and if the rad. of defe-

rent be assumed equal to the distance of the sun from the

earth, (which we are permitted to do on Ptolomy's sys-

tem), we have then the inferior planets moving about the

sun, which is itself carried in a year about the earth ;

in like manner, if lines be drawn from the place of supe-

rior planet to earth, and to centre of deferent, the angle

at the centre will correspond to the angle gained by the

earth on the planet, and if those distances are propor-

tional to the distances of the earth and planet from the

sun, the angle made by lines drawn from earth to sun and

planet, will be equal to the elongation, for the rad. of the

epicycle may be shewn to be parallel to the moveable rad.

of the sun ;
it is evident also, that if the rad. of the defe-

rent be equal to the distance of the planet from sun, the

rad. of the epicycle is equal the distance of the sun from

the earth.

CHAPTER XIII.

(a) Considering the great perfection of Astronomical

instruments, and the precision with which observations

have been made, it is supposed that if the parallax was

equal to 3" of the decimal division of the circle, or 1" of

the sexagesimal, it might be observed ; if the parallax was

equal to 9' 1", the diameter of the earth's orbit would

hardly subtend an angle equal to the thickness of a
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spider's thread at the star. Various methods have been

suggested for determining the distances of the fixed stars,

of which the most successful appears to be that which was

first suggested by Galileo, and subsequently improved on

by Herschell, of which the principle consists in determin-

ing the angle, or variations in the angle, which two stars

very near to each other appear to subtend at opposite sea-

sons of the year.
—See Philosophical Transactions for the

year 1704.

Another method was fr*om the consideration of the

quantity of light in the stars compared with the light of

the sun j in this way M. Mitchell concluded, that the

parallax of a star of the second magnitude is not more

than the }th of a second, and of a star of the fifth or sixth

magnitude not more than -^ or ^ th of a second. The

attempts to discover the parallax of the stars by direct ob-

servations, have not been attended with any success previ-

ously to the time of Doctor Brinkley, Professor in Trinity

College, Dublin. His observations which were made

with the greatest care, seem to indicate the existence of

parallax in a Lyras amounting to 2", 52. See Philo-

sophical Transactions for the years 1812 and 1813.

(b) On the hypothesis, that Sirius was of the same mag-
nitude as the sun, Huyghens found by diminishing the

aperture of a telescope, so that the sun when seen through
it might appear of the same apparent magnitude as Sirius,

that the diameter of the sun was diminished in the ratio

of 1 : 27664, hence Sirius is 27664 times more distant

than the sun.

The smallest apparent diameter of an opaque body
which is visible is about 40'', but if the body be luminous

per se, the limit of visibility will be so much less as the

ight of the body is stronger, and as the stars with a dia-

meter less than 1" have a splendour so great that some of

.hem are visible immediately after sun-set, there cannot be

c c
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any doubt but that they have a light of their own like the

sun; their extreme smallness is proved from their

scintillating, which shews that the least molecule floating

in the air is sufficient to intercept their light.

When a fixed star is eclipsed by the moon it ought to

disappear by degrees, if it had a sensible apparent diameter,

conformably to the moon's mean motion, which is such

that it describes its apparent diameter, which is about 30'

in an hour, consequently in two seconds of time it ought

to describe one second of space.

(c) A third explanation of these phenomena has been

suggested ;
this supposes that the figures of these stars is

very compressed, which makes them to appear much less

flattened in some aspects than in others.

(d) The milky way environs the sphere very nearly in

the plane of a great circle, which by half of its breadth

intersects the equator at the 100 th and 277 th
degree, its

inclination to the equator is equal to 60°, the breadth is

from 9 to 1 8 degrees ;
it is narrowest near the poles

of the equator, between the constellations Cassiopea and

Perseus, and its greatest breadth is in the plane of the

equator. The milky way is divided into several depart-

ments, by a space void of stars, in the middle of the

breadth, chiefly from 254° of right ascension, and 40 of

south declination to 310 of right ascension, and 45° of

northern declination. Hershel could distinguish the stars

of which this milky way was composed, which were so

near to each other, that in telescopes of inferior magnify-

ing power their light was confounded ; according as the

direction of the telescope deviated from the milky way,

the number of these stars diminished. Having counted

the stars in different parts of this way, he found that on

a medium estimate, a segment 15° long, and two degrees

wide, contained 50,000 stars, of sufficient magnitude to

be distinguished through his powerful telescope; .'.on the
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supposition that the breadth of the milky way is 14°; it

follows, that it contains more than eight millions of stars,

without reckoning those, which even with this great teles-

cope cannot be distinguished ; with respect to the arrange-
ment and nature of the stars which constitute the milky

way, some observations will be suggested in the Notes

to Chop. VI. of the 2nd Volume.

(e) The declination of an object is best obtained by ob-

serving its distance when on the meridian from the horizon

or zenith, for this distance added or subtracted from the

distance of the zenith from the pole, gives the distance of

the object from the pole, and consequently the declina-

tion; if the object has apparent magnitude, the altitudes

or zenith distances of its upper and lower limbs should be

observed, and then half their sum should be taken as the

altitude of the centre; this method requires that the ex-

act zenith distance, corrected by refraction and parallax
should be known, which is best obtained in the manner

indicated in the notes to the first chapter.
—See also Motes,

to Chap. XIV. If the star does not exist in the meri-

dian, then in order to determine the declination, it is

necessary to know the zenith distance of the star, that of

the pole and either the azimuth or hour angle from noon.

Indeed, of the five preceding quantites any three being

given, the other two may be found by the solution of a

spherical triangle. This general problem contains twenty
different cases, of which the most useful are given in the

Treatises of Astronomy. However, there is an obvious

advantage in determining the declination by means of an

observation made in the meridian, for in this case pa-

rallax and refraction only affect the declination, but do

not at all alter the right ascension.

With respect to the right ascension, its determination

is more difficult than the declination, as the first point of

Aries, from which it is reckoned, is not fixed in the hea-
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veils. The difference of the right ascension of two stars is

obtained by observing the time intervening between their

passages over the meridian ; this converted into time at

the rate of 15° for an hour, gives the difference. Hence,

as this difference is easily observed, if we had the right

ascension of some one star, that of all others might be

determined; the method which Flamstead proposed was

as follows :

He noted when the sun had equal declinations, some

time after the vernal and before the autumnal equinox ;
in

these positions the distances of the sun from the respective

equinoxes must be the same, call this distance E, and let

D, D'+/>, represent the differences of right ascensions of

the sun and some star in these two positions, then we have

D+ D'+j9+ 2 E=180, hence we obtain E, and conse-

quently the right ascension of the star ; p is the correc-

tion to be made to the right ascension, in consequence of

precession and displacement of ecliptic, which will be

afterwards noted.

It is easy to compute the angular distance of two

stars, of which we know the right ascensions and de-

clinations, for if d, d', represent the polar distances of

the stars, and A the angle made by d, d' at the poles,

which is measured by their difference of right ascension,

and D the arc of a great circle which measures their an-

gular distance, we have by the formulae of spherical trigo-

nometry, cos. D= sin. d. sin. d'. cos. A+cos, d. cos. d\

Let X represent the longitude, /3 the latitude, p the

right ascension, 8 the declination of a star; p its angle
of position ; rr the arc of a great circle intercepted be-

tween the star and equinoxial point; the angle con-

tained between this arc and equator, and a the obliquity of

ecliptic; then cos.
<j>
=tan. p. cotnt

. 7r; cos.
(<f>
—

e)
=

tang. X cotnt . 7r; sin. &=sin.
<p.

sin -rr; sin. /3
= sin.

(<f>
—

t).

T , , x cos. (<j>
—e). tan. p

sin. 7r. Hence we obtain tan. X = -i—- and
cos.
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sin. 6= sin. ——-sin. 8; hence we can obtain X and 6r sin.
<•/>

' r'

when is known.

The reverse formulae for finding p and S from knowing
X and

/3, may be obtained by merely changing j3 into $,

and X into p, and by making e negative ; 6 representing

the arc of the circle of declination passing through the

star, intercepted between equator and ecliptic ;
we have

sin = tan. p. cotnt . v, and cos. (e5— 0) = cot. p. cot y, .*.

cos. (S— 0) tan. p , , ,
. . ,

cotnt
. p= 1

—
t\

*-
(note v = the angle at whichr sin. 9-

rt

circle of declination passing through the star, is inclined

to ecliptic) cos. S. cos. p.
= cos. X. cos. 3 ; tan. p =

cos. (d+ c). tanX , . _ sin. j3. sin. ((b+ e)
and sin. 6 = —

j j tan. p,
cos.

(j>.
sin. p

may become negative in several cases, in the first quadrant,

if sin.X isless than tan. e. tan./3, for by substituting for 0, the

cos. e. sin.X sin. t. tan.j3
preceding value or tan. p= c

— — t
1 & ! cos. X cos. X

this may happen when X is small and )3 great, i. e,

if the star is in the circle of latitude near to the pole

of the ecliptic; in the 2nd quadrant tan. p is negative, un-

less that sin. X is less than tan. e. tan. /3; in the 3rd

quadrant tan. p is positive, and in the 4th quadrant— .'.,

except when sin. X is less than tan. e. tan. j3 j p is always
in the same quadrant asX ; p is negative or in the 4th qua-
rant ifX= o; unless j3

= either o, or is — j in the first case

p= o, i. e. the star is in the equinoxial point; in the second

case it is in the first quadrant ;
if X = 90, and tan. /3 >

than sin X. cot. e= cotnt . e, i. e. if/3 is greater than 66° 32',

in this case tan. p = — co. and the star is in the solstitial

colure between the two poles.

(e) As the distance between the pole of the equator and the

pole of the ecliptic = the obliquity of the ecliptic which is

very nearly constant, it follows that the axis of the equator

describes, in consequence ofthis precession, aconeaboutthe

pole of the ecliptic. In order to obtain the variation in right
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ascension and declination ; supposing /3 and e constant, we

. . X % sin. e. cos.
/3.

cos. X
shall nave bv differentiating -r^r = ^fe a. X cos, d.

r/ p / cos. f — sin. £. tan.
|3.

sin. X\
and ,7x= cosM c^tx J

and as

we have from comparing the two values of p ob-

tained by substituting,

/cos. e — sin. £. tan. 8. sin. A\
cos. p (

£
)V cos. A /

= cos. £ cos. S+ sin. e sin. S. sin. p

cos. j3

by substituting this value and from the equation cos. p.

cos. X=cos. X. cos.
/3,

these will assume the form. d. $= d\.

sin £. cos p; dp= d\ (cos. t-f-sin. £. tan. S. sin. p.) Note,

a& the equinoxes regrade uniformly, d X is constant, and

it appears that the right ascension cannot diminish except

when the star is in the southern hemisphere, or when it

is in the 3rd or 4th quadrants, tan. S. sin. p. being greater

than cot. £
;
and as near to the pole tan. § approaches

to co, the variation of right ascension may become then

indefinitely great .

The preceding formulas are sufficiently exact, when the

effects of precession are computed for an interval which is

near to the epoch, for which we have determined the ar-

guments £, S, p. But as e changes continually within cer-

tain limits as shall be observed in Chapter XIII, Vol ii,

and as dX likewise, is not always the same, the preceding

expressions are only correct for a short interval of time.

Bradley, in his endeavour to ascertain whether the par-

allax of the fixed stars was of a sensible quantity, ob-

served that for the space of nine years the declination of

the stars increased, and that it diminished by the same

quantity the nine following years ;
so that all was

re-established after eighteen years. He likewise observed,

that the greatest difference of declination was 18", and

that the latitude was not affected ; hence he inferred, that

the pole of the equator approached the pole of the eclip-
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tic for the first nine years, and that it receded from it

by the same quantity the following nine years. He ob-

served, likewise, that this motion was connected with an

irregularity of the precession of the equinoxes, which

obeyed precisely the same period ; hence it follows that

the motion of the poles of the equator, does not take

place in the solstitial colure, or in other words, that the

poles neither describe right lines nor the arc of a great

circle of the sphere, but a curve or small circle intersecting

the solstitial colure ; •/ as the true motion of the pole takes

place in the periphery of an ellipse of which the centre

retrogrades on the periphery of the circle described by
the mean place of the pole, its locus will be a species of

epicycle. In the superior part the direction of the mo-

tion of the pole is the same as that of the epicycle, •/ the

actual motion being quicker than the mean motion, the

true pole precedes the mean ; it is the contrary in the

lower part of the ellipse, and as the mean motion is con-

siderably greater than the motion in the ellipse, it pre-

dominates over it ; •/ the motion in the epicycle is still

retrograde. From a comparison of observations of the

nutation with the nodes of the moon, it appears that the

right ascension of the true pole, reckoned from the mean

pole precedes by 90°, the longitude of the ascending node

of the moon ; i. e. p = 90° -\- & . then d e the variation

of obliquity = q. p* the cosine of Q to a radius — 9",

65, I. e. d e = 9", 65. cos. S3. To determine the varia-

tion in longitude, it is to be remarked that the angle

formed by lines drawn to the true and mean poles of the

squator, from the pole of the ecliptic = distance of true

3ole from the axis major, divided by sine of the distance

, c , , .. . 7", 17, sin. Q
between poles of the equator and ecliptic = : >

see notes to Chap. XIII, Vol, 2, in order to determine the

effects of nutation on the right ascension and declination,
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naming B' and p' the right ascensions and declination when

the longitude becomes X + d\, and the obliquity becomes

c + dt9 then by formula given in page 34 1
j we have,

sin. <$'=sin. (e+ de). cos. /3sin. (A+ d A)-f-cos. (e+ de) sin./3

sin. (e + c?£)+sin. (A+ e?A). cos. (e+ de),
tan. p'=-tan. /3. cos. (A+ tf A)

then by omitting all terms after the first we obtain,

B' = d-\-d A. sin. £. cos. p + de . sin. p ; /t/
= p -f-d'A. (cos. e

+ sin. £. sin. p. tan. B)
—d e. cos. p. tan. B ; substituting for

d A, rf £, their values previously found, and making 9",

65= h ; 18", 3. sin. £=g, we obtain the nutation in right

ascension or the value of p'
—

p', which is the same thing,

=— g. sin. SI cot nt
. £ — tan. S. (h. cos. ft. cos.p+g Bin. 12

sin. p) the first term being independent of the stars place, is

the same for them all
; assuming h. tan. B. cos. p=g. (cot. e

+ sin p. tan. B). tan. B\ then the nutation in right ascen-

sion = — g. (cot. £ + sin. p. tan. 8. sin. (B
f

-f- SI,) hence

it is easy to perceive that for the same star the nutation in

right ascension is a maxm, when 8 + B' = 90 ; by mak-

ing the substitutions already indicated, the nutation in de-

clination or north polar distance, which is the same thing,

becomes—g. cos. p. (sin. fit . tan. p. cos. Q) , let —
h g- cos. p—

. tan. p = tan. B. and then — ~- . sin, (B + Q)
rr

"
COS. tS

..o

= the nutation in north polar distance ;
it is easy to per-

ceive that this becomes a max™, when Q, + B = 90°.

Beside the nutation just examined, the pole of the equa-

tor is subject to a similar inequality arising from the dis-

turbing action of the sun, it is much feebler than that of

the moon, however, it is not altogether insensible, and

is always introduced in the tables. In consequence of this

action the true pole describes a circle about the mean
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pole according to the order of signs; its period is half a

year, and the true pole is always 90 before the sun ; in-

deed, if extreme accuracy was required, it is theoretically

true that in the course of half a month, the pole is dis-

turbed from the inequality in the moon's action ;
how-

ever, this last is altogether insensible ; now as the true

pole would, in consequence of each of these actions, if

they obtained separately, combined with the motion of

the pole arising from precession, describe an epicycloid,

the curve actually described, will be that which results

from the combined action of all these motions ; however,
as they are separately extremely small, if we estimate the

effect of each by itself, and then take the sum, the total

effect may be considered very nearly as = to the sum of

all the partial results.

With respect to the aberration of light, which is the

third correction to be applied in order to obtain the true

place of a star, see Notes to Chapter II. Book II.

Besides the three apparent motions of the fixed stars,

which are adverted to in this chapter, namely the preces-

sion, the nutation, and the abberration, there is a fourth,

which though obscurely indicated by observation, is com-

pletely established by -theory, namely the diminution of

the obliquity of the ecliptic. See Notes to Chapter XIII.

Volume 2nd.

CHAPTER XIII.

(f) In order to a clearer understanding of the articles

treated of in the text, it will be necessary to establish

a few principles relating to the radius of curvature and

expressions for a degree of the meridian, &c, for this

D D
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purpose let a, b denote the semi-axes of an ellipse, p the

principal semi-parameter= ,.n the normal and p the

radius of meridional curvature, X the latitude, xy the co-

ordinates of any point, and s its subnormal; then as n r=
a? b2

y
1 + s

2
, and as x =

-p-
. s, and as/ = -? . (a

2 — .r
2

), we

shall obtain by observing that n sin. \=y, n. cos X = s,

• & f a* \n* sin.
2 X =-^ . I a*—

-^.
w2

cos.
2

Xj
.". by concinating, rc

2
.

(b\ sin.
2 X + a\ cos.2

X) = b\ and

n _
hz

n^_
n\ a*

"

*V. cos.2 X + b\ sin.
2 X ;

and aS p -
f ~ ~W~

, ,
. . , . «2

. &.*

by substituting we obtain p = —s r;—-7,—=
—

s-^rr £J fo p
(a

2
, cos.

2 X + 62
. sin.2

X) I

u ,
• ^ «2

- ^2
-

hence we obtain Z) =—7— «——«*—:
—-—- 1 fwz exm (a

2
. cos.

2 X + b l
. sin.2 X)

2 v

pressing the number of degrees in an arc = to the radius.)

Making b = a—c, and neglecting the square and higher

powers of c ; we obtain m D = (a
4—2 a 3

. c). (a
2—2 a c.

>\)-i=a (1-- + —.
«n."A)

= « (l-^
_

3c \

5
—

. cos. 2
XJ ; v at the equator m D= a— 2c, and at the

pole m D = a + c, at the parallel 4-5, w Z) is an arithmetic

mean between m D at the equator, and m D at the poles,

for at 45° m D— a— -; IfH be a degree to the latitude

c 3 c
X', we have mD' —

a—-^-
——

. cos. 2 X' ; hence

° ~
3. (cos. 2 X— cos. 2 X')

and
a
~

2 (D'—D)
3 Z>. cos. 2 X — cos. 2~XV)

; theSe exPressions may «e re-

duced respectively into c = -—
:
—n—V/7^:

—
7^
—

<rri -1 '
3. sin. (X+ X' sin. (X—X) a

sin
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2 (D'—D)
=3Alhr(X+x) sin.

{y-x) V at the ec
*
uator C

m(D'—D) ,
_

. c , ,=—r—:
—n— hence the increment or the degree at any

3. sin. *A

latitude X', above the degree at the equator is as sin
3
X',-

likewise as D'—D co sin. (X'+ X) sin. (X—X) if D' D are

two contiguous degrees, so that, X'=X+1°; then D'—D=
3 c

sin. (2 X+ 1°). sin. 1°
; y as the difference of contiguous

degrees is '. 1 1 to sin. (2 X-f- 1) it is a maximum when 2 X+
1=90, i. e. when the middle latitude is 4-5°. The semi-

diameter2 to any latitude \=rz =xZJry
z =n* sin «

aA+
a4 2 % A . Vb4

. sin.
3X+ tf

4 cos.
3 X

. ir cos. X . . r = n. . , =
64 b*

• ^«4—4a 3.csin. 3
X, , , .. ...

*i'
' and by expanding this expression

Q
and neglecting c

3
, we obtain r er a (I

— - sin.
3

X.)

The circumference of the elliptic meridian may be found

by multiplying the mean degree, i. e. the degree in the

parallel of 45° by 360°. By the series expressing the

rectification of the ellipse, it may be found still more ac-

curately.

In an ellipsoid of revolution, the normal terminated in

the minor axis is equal to p',
the rad. of curvature of a

degree perpendicular to the meridian, for as in this hy-

pothesis the direction of gravity always passes through the

axis af the earth, the direction of a plumb line which is

perpendicular to the meridian, and indefinitely near to it

on the east and west sides, will intersect the axis in the

same point, which point is y the centre of curvature of the

arc ; as this normal is greater than the rad. of meridional

curvature, a degree perpendicular to the meridian is

greater than a degree of the meridian ; p'=
a3

** a3 cos.
2 \+ b3

sin.
3 X
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Now,

g* cos. X b3
. sin. A

^a\ cos.* A -f- 6*. sin.
2 A y~ *V. cos.

2
A-r b\ sin.

2 A

... ... „ «*—&*>
.. as r*= ,z*-f3/

2 we obtain by substituting e- for —j
—

/ —c*. (1
—

e*). sin.
3 A\i . .

,

r*= a
\\ Y—e*. sin.* A.

—
/ ; naming /* the angle at

bz

the centre between r and a, we have tan. h = —=• tan. A,

if / represent the angle between a and a line drawn to the

extremity of the produced ordinate, we have

&*_
tan.* A

tan. /= _. tan. A,
• • sin.* / = - -r-

a \+# tan.* A,

ft**

a *•
^

,
• (

J—^i Sin '
S X

hence by putting 1—e* tor rj we obtain —
;
—

:
—

jrx
—

ci ±—~6 • sin. A

= sin.* /, and .*. r = (1
—e% sin.* Z), hence as I differs very

little from A, it follows as before that the increments of the

rad. are very nearly as the squares of the sines of A. ir the

angle between n and r= A—h, .*. substituting for tan. h its

tan. A—bz tan. A

i bz x , . fl*

value — tan. A, we obtain tan. 7r :? ""
» " " -

1 +6* tan.* A
fit"

(a
z—bz

) tan. A ... . .
. „— nmr-n T '•> likewise it follows that—

(a* +6*) tan. A

as we have always tan. A + tan. h : tan. A—tan. k '. '.

sin. (A-f-^) : sin. (A
—

h) '.'.a
z + bz : az— b%

,• it may be

shewn that 7r=A—"A is a maxra when (A+ Zi)
= 90o

; it is

evident also from other considerations that the point
where the angle between the r and n is a maxm, must be at

the extremity of the equal conjugate diameters: if the
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value of x, which is given above, be differentiated, we ob-

tain after all reductions i ds ss = —% (1
~g

'
} sin ' * ^;

(}—e> sin.
3
A)|

now ds= — dx ft+ y^)
2 = — di. cosnt X

V = a i <______
; hence we derive n = -i-, as

(I—<?'sin.
s

A)I
*

tfA

a3 _l

mA = , :
——

,, . =g» =a2
. (a

3—2 a c. sin.
3
X)—2

*V Cos.3 A+ 6s
sin.

3A v
- •

=a+c sin.* A ; m. (A—D)=2 c. cos.
3
A; hence we can de-

termine c, ar, &c. A representing the same as before, a

degree of longitude = A cos. A. If R denotes the rad. of

curvature of any sect., perpendicular to the tangent plane,

at the earth's surface, it would not be difficult to show that

it was equal to ___£_£_ __, being the angle1

p. sin.
3 + p'cos.

3 ° h

which the cutting plane makes with the meridian; hence

it follows that when is 45°, R is an harmonic mean be-

tween p and p.
—See Puissant, torn. I. p. 288.

It follows from the expression cos. p, that a degree oflon-

gitude at the equator is the first oftwo mean proportionals

between first and last degrees of latitude, for D at the

equator is to D at the poles, as a 3
: b 3

} the general ratio

being that of

(a
3

sin.
2 A+ bz cos.

3
X)f : (a

3
sin.

3 A'+63
. cos.

3
A')*

The compression is obtained more accurately by com-

paring a meridional degree with a degree of a perpendicu-
lar to the meridian, than from a comparison of two meri-

dional degrees with each other.—See Puissant.

The following is a brief outline of the method for de-

termining the length of any arch of the meridian : two

points are assumed nearly at the distance of the required

arch, these two points are then connected by a series of

triangles, the angles of which are determined by means of

stations taken on the tops of hills, or other elevated posi-
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tions ; the angles of the triangles and also the azimuths of

the sides, at the points where the series commences and

ends, are to be measured. By this means the species of

all these triangles are given, and also the bearings of their

sides, with respect to the meridian of the first station.

The lengths of the sides of the triangles are known by

measuring a base on a level ground, and connecting it

with the sides of one of the triangles. In these computa-
tions the process is on the supposition that the triangles

are plane ; however the error from this hypothesis is cor-

rected by knowing the spherical excess which is given
from knowing the area.—See Puissant's Geodesique y torn.

I. p. 223.

(g) In like manner the terrestrial equator may be de-

fined to be the plane, formed by all the points of the ter-

restrial surface, the verticals of which are parallel to the

plane of the celestial equator, or which is the same thing,

which are perpendicular to the axis of rotation of the

heavenly sphere; consequently unless the earth be a solid

of revolution, the terrestrial equator will be a curve of

double curvature ;
if it be a solid of revolution, the terres-

trial equator is a great circle of the sphere.
—

(see p. 102.)

In like manner, the poles of the earth are those points of

its surface, whose verticals are parallel to the axis of rota-

tion ; so that these points are not necessarily diametrically

opposed to each other, except the earth be a solid of revo-

lution. However, though when the earth is not a solid

of revolution, neither the equator nor meridians are plane

curves, still the corresponding celestial equator and ce-

lestial meridians may be considered as great circles, for

the verticals when indefinitely prolonged may be con-

ceived as terminating in the celestial sphere, in different

points of the same great circle.—See Puissannt, torn. II.

Book 6th.

Conformably to the above definitions, the terrestrial pa-

rallels will be formed by points, of which the verticals
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meet the celestial sphere under the same parallel, so that

all points of the same parallel will have the same stars in

the zenith
; however, unless the earth be a solid of revo-

lution these points will not form a circle, or even exist in

the same plane. The latitude of all the points of these

parallels is the same.—(See p. 111.) N. B. It is evident

that the length of degrees of the terrestrial parallels de-

crease in proceeding from the equator to the pole, in the

ratio of the cosine of latitude. From some measurements

made by Biot and Arrago, it would appear that the pa-

rallel to the equator at the southern extremity of the me-

ridian measured by them, is sensibly elliptic.

(A) ds denoting the first side of this line, ds' the second

side, &c. These sides may be considered as equal, at

least if quantities indefinitely small of the third and higher
orders be neglected, for let i denote the angle which the

prolongation af the first side (which is evidently equal to

the first side) makes with the second, (i being a quantity

indefinitely small of the first order,) then as the prolon-

gation of the first side is evidently equal to it, we have

ds. i
z

ds'= ds. cos. t= ds——5
—

,
= ds, as ds is of the same or-

der as i ; hence it follows that in a geodesique line its

differential is constant, likewise the normal comprised be-

tween the prolongation of the first side and the terrestrial

surface is of the second order, for it = ds. sin. i, or simply
i. ds. and since this geodesic line is equal to the right

line, it necessarily follows, that it is the shortest which can

be traced on the earth between any two points, it there-

fore measures the itinerary distances of places; its curva-

ture likewise exists in a plane at right angles to the horizon,

as is evident from the manner in which it has been traced.

It is evident from what precedes that the difference between

the length of this line and that of the corresponding arc of

the terrestrial meridian may be neglected. Another pro-

perty of the geodesic line is, that the sines of the angles
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made by the perpendicular with the respective meridians

are inversely as the ordinates of the point of concourse.

It is clear that when the earth is a solid of revolution,

all the normals to the surface of this solid meet the axis

of rotation, consequently those which pass through the

points of the generating curve are necessarily in the plane

of this curve, and v m that of the celestial meridian.

(?) Calling a b the equatorial and polar semidiameters,

p p' the corresponding radii, t f the two tangents, &c.

c the arc of the evolute, then a = p+ t, b= p
f—1\ .'. a—b

= p—p'+ t+ f.

(k) In determining the position ofplaces in a region of

considerable extent, it is necessary first to traverse it with

a meridian line, from one extremity to the other, on this

a certain number of points are selected, through which

perpendiculars to the meridian are drawn. The meridian

and its perpendiculars in this manner constitute a system

of cervilinear coordinates, to which the different points of

the earth's surface may be transferred. The great advan-

tage of this method is, that when the extent of the region

is not very considerable, these perpendiculars may be con-

sidered as great circles, and distances measured on them

are the shortest between two given points.

(I)
The method indicated in the notes to page 212 is

perhaps the best and simplest of all, however it cannot be

always applied; in that case, other methods have been

devised, all of which may be reduced to the solution of

certain cases of obtuse angled spherical triangles. Such

as from having two altitudes of the sun, and the time be-

tween, or from observing the zenith distances of a hea-

venly body when near the zenith, the latitude is determined ;

the method which employs two altitudes of the sun has the

advantage of enabling us continually to approximate to the

true value.

(m) In fact the longitude and latitude only give the pro-

jection of a place on the earth's surface, but do not define

its position in space ; in order to determine this we must
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know the elevation of the place about the level of the sea.

A determination of the heights of the most remarkable

places in Europe would, combined with a knowledge of

their longitude and latitude, be a more complete way of

levelling than by trigonometrical operations, and would

perfectly point out the directions of chains of mountains,

and also the falls of rivers, &c, and thus give a most accurate

notion ofthe form of the earth. As illustrative of the utility

of these kind of observations, it may be remarked that a

comparison of the heights of the barometer in the Euxine

and Caspian Seas, evince that the level of the latter is

considerably lower than the former.

(w) The repeating circle is an invaluable instrument to

the practical astronomer, it supplies the place of a mural

quadrant, and also of a transit instrument; besides it is

capable ofalmost indefinite exactness, and from the small-

ness of its size it may easily be transported from one place

to another.

(o) In general the retardation of time is proportional to

the angle contained between the meridians of the two

places, hence appears the reason of what has been already

idverted to, namely, that if while one observer be fixed,

mother proceeds round the earth, he will on his arrival

it the place from whence he set out, have either gained or

ost a day, according as he went, eastward or westward.

(p) The chronometers now in use, being furnished with

i ompensators, which secure them from the effects arising

: rom changes of temperature, and also from the inevitable

' fFects of the agitation which they experience during a long

oyage, give the time with extreme accuracy.

The true time H at the place of observation is easily

< btained when the latitude of the place or vessel, Z the

i enith distance or altitude of the star, and d, its declina-

i ion are given, for it is easy to show that

i

E E
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sin 5-i/«* (*±£r5-) Sin - (g+-P-^)
*
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Sin. P. Sin. Z>.

/&*£ Notes, p 304-, 292. But as the chronometer indicates

mean time we must apply the equation of time in order to

obtain the mean time at the place of observation. This

method assumes that the time indicated by the chronome-

ter is exact, which is not the case ; however its rate of

going and small inequalities may be ascertained by com-

paring it with the time pointed out by observing the alti-

tudes of the sun or stars as often as possible.

As lunar eclipses are of comparatively rare occurrence,

they are not of very great use in finding the longitude at

sea ; this objection does not apply to eclipses of Jupiter's

satellites, as eclipses of the first satellite recur every third

hour ; however the difficulty of rightly adjusting a telescope

on board a ship is such, that it is now very rarely used,

except when the observer can land.

The problem for determining the true distances of the

centres of the sun and moon, from knowing the observed

values of the heights of the sun and moon, and from

having the observed distances of the centres, is one which

has occupied astronomers who applied themselves to the

perfecting nautical instruments; the best methods are

those given by Maskeylyne and Borda.—See Nautical

Almanack.

Besides the methods suggested in the text, it has been

proposed to determine the difference of longitudes of two

places, by means of signals, such as an explosion, which

may be seen at the same time from the two places ; and if

the places are too distant to observe the same signal, a

series of such signals are made, and noted in places inter-

mediate between those whose difference of longitude is re-

quired.
—See Lardner's Trigonometry, 1S9.

When the difference of longitude of two places, and

their respective latitudes are known, their distance in an

arc of a great circle, is easily determined, for calling X, X'
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the respective latitudes, and D the difference of longitudes,

cos. a the mutual distance = cos. A. cos. A', sin. D+ sin. X.

sin. X'. This is on the hypothesis that the earth is q. p.

circular; if it be supposed to be an ellipsoid of revolution,

the direction of verticals from the two places do not meet

in the same point of the axis, and •/ do not make a solid

angle ; in that case we deduce the angles which rad. from

centre of ellipsoid to the two places make with the axis,

and the inclinations of the planes of these angles to each

other is also given, hence the angle which the rad. vectors

make with each other may be determined, and hence the

mutual distance of the places, the distance of each place

from the centre being known.

(q) This instrument is a common barometer, except that

the open branch, which communicates with the external

air in the barometer, communicates with a closed vessel in

which the gas or vapour is placed, of which the elastic

force is required. As the height of the mercury in the

barometer, of which the open branch communicates with

the atmosphere, gives a measure of the elastic force of the

air at the point where the fluid is in contact with the mer-

cury, the same will be true when the aperture is closed,

for it is evident that the state of the air is not affected by
this circumstance ; hence if g represents the force of gra-

vity, p the density of the mercury in the barometer, and h

the difference of heights of the mercury in the two tubes,

we have an equilibrium between gph and the elastic force

}f the air, which we will denominate by E; now as E is

dways the same when the density and temperature of the

iir are the same, if the manometer be transported from

me place to another, taking care that the state of the air

:ontained in it does not undergo any change, gp/i must

tlso remain unchanged ; hence ifg varies, h must vary in

he inverse ratio, provided that q is constant.

(r) The length of the ideal pendulum, which is isochro-

; ious with the observed pendulum, = the distance be-
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tween the point of suspension and a point in it called the

centre of oscillation.

(s) See Notes to Chap. II. Book IV. Naming I the

length of the pendulum, t the time of vibration, and g the

force of gravity, it will be proved in the 4th Book, Chap.

II. that t= Tr>*/— when the arch of vibration is veryV g
small, hence as t increases towards the equator, g must

diminish, for if the time of vibration increases, the number

of vibrations performed in T must diminish, and conse-

T
quently the clock must lose for / =— . What is advanced

in this Note suffices to show that the gravity decreases as

we approach the equator. A fuller investigation of this

subject will be given in the Notes to Chap. II. Book IV.

of this volume, and in Notes to Chap. VI. Book I. ofnext

volume.

(t) Indeed it is natural to suppose that the intensity of

gravity is less affected by local variations than its direc-

tion, for the inequalities on the surface of the earth, and

the very irregular manner in which the rocks are distri-

buted, necessarily cause considerable deviations in the di-

rections of the plumb line, and are most probably the

causes of the discrepancies which are observed in the mea-

surement of contiguous arcs of the meridian, which are

extremely near to each other, which must consequently

cause the results as to the ellipticity, &c. of the earth, to

differ considerably from each other.

(u) If (g) be the intensity of gravity at the level of the

sea, and g the intensity at the top of the mountain, whose

height is h, r being the radius of the earth, 52/ = i———
° °

er y*o

= H neglecting the square of h, .'. if/' be the length

of the pendulum on the top of the mountain, I the length
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9 /, y
at the level of th;> sea = V+ See Notes to Chap.

r

III. Vol. II.

(z) It does not appear that the new system of weights

and measures explained in the text, has been adopted with

that generality which was anticipated by the illustrious

author; on the contrary, a Committee of the House of

Commons, which was appointed to revise and examine

the standard weights and measures of Great Britain, ap-

peared to think the only practical advantage of having
a quantity commensurate to any original quantity exist-

ing, or which might be supposed to exist in nature, con-

sisted in its affording some little encouragement to its

universal adoption by other nations ;
but this advantage

would by no means compensate for the great incon-

veniencies which must necessarily result from a departure

from a universally established standard ; nor would the

adoption of the decimal scale in weights and measures

have any very marked advantages over the present sub-

divisions ; on the contrary, as the standard measure con-

sisted of twelve inches, we can express a greater number

of subdivisions of it without fractions, than in any other

scale.—See Note in next page; and as to the weights

and the measurement of capacities, the continual division

by two, enable us to make up any given quantity with the

smallest number of standard weights, and .'. in this respect

has an advantage over the decimal scale.—See Notes to

next page.
The Committee above mentioned suggested that the

standard measure should be the standard executed by
Bird in 1760, which is in the custody of the clerk -of

the House of Commons; likewise in the event of its being

lost, its length could be easily ascertained, as they have

declared its proportion to that of a pendulum vibrating

seconds of mean time at the latitude of London, in a va-

cuo, and at the level of the sea to be that of 36 to 39.
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1393, They have also declared that a brass weight equal
to half the brass weight of two pounds gravitating in air,

at the temperature of 62, the barometer being 30, which

is kept in the House of Commons, should be the imperial
standard troy pound, or the unit of weight ; if lost they
have also determined its relation to a cubic inch of dis-

tilled water weighed by brass weights in a vacuum at the

temperature of 62 of Fahrenheit, to be as 5760 to 252,724.

The standard measure of capacity for liquids and dry

goods not heaped, is a gallon containing ten pounds avoir-

dupois weight of distilled water weighed in air at the

temperature of 62°, and the standard measure for goods
sold by heaped measure shall be a bushel containing

eighty pounds avoirdupois of water as aforesaid.

(j/)
With respect to the different scales of notation, it is

plain that if mere simplicity of arithmetical operations be

considered, the number 2 is preferable to any other; but

there is always another point to be considered, namely,
the facility and ease of arithmetical expressions, and in

this point of view the binary scale would be extremely

embarrassing, as it requires such a multiplicity of figures

to express any considerable number. The senary, at the

same time that it would secure most of the advantages of

the Binary scale, would not be liable to this last objection, at

least in so great a degree, it has this peculiar advantage, that

there would be a considerably greater number of finite

fractions in this scale than in the denary ; however as the

operations proceed rather slow it was never brought into

use. The duodenary combines all the advantages of the

senary scale, and is free from this objection ; the only in-

convenience attending it, is the trouble of requiring us to

remember two additional characters
; but though it is

stated in the text that this is a great objection to its use,

in point of fact it is not considered so, as we find by expe-

rience that our multiplication table is earried on as far as
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12 multiplied by 12, though, strictly speaking, it ought to

terminate with the product of 9 into 9.

In fine the great objection against the French system is,

that it depends upon an accurate measure of a quadrant of

the meridian, at the same time that no such measure has

hitherto been obtained, besides the meridians differ so

widely among themselves that it is likely that no accurate

mean length of the pendulum will ever be obtained.

The idea of verifying a standard by some other means

than by a comparison with some actually existing stan-

dard, though suggested a great while ago, was never com-

pletely acted on, until the new system of weights and

measures was introduced into France.

CHAPTER XIV.

(at) Conceive a vertical to be elevated from the level of

low water by a quantity equal to the height of the high

water, and if a circle be described on this line, the tide

will l'ise or fall through equal arches on equal times; hence

if we assume any arc, reckoning from the lowest point, to

represent the interval from the instant of low water, the

versed sine of the arc will represent the height to which

the water will have risen ; hence it is evident that near

the high or low water, the differences ofdepths from those

of high or low water, are as squares of the times.

The causes which produce a difference in the height of

the tides, arise either from the circumstances of the sun's

action sometimes conspiring with, and at other times op-

posing the moon's action, from the variations in the re-
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spective distances of these luminaries, and also from the

declinations not being always the same ; the effects arising

from these causes influence the interval between two suc-

cessive high waters, as well as the heights.
—See Mechani-

que Celeste, Tome 2, Chap. 3, and also the Notes to

Chap. 4, Vol. 2, of this work.

CHAPTER XV.

[a) A bottle when filled with air is heavier than after

the air is extracted ; the pressure of the atmosphere on

every square inch of the earth's surface is 14 lbs., for a

cubic inch of mercury is nearly 8 ounces, •/ ,76+ 8,238

ounces = 15 lbs. nearly; it appears from this, that the

pressure to which the bodies of animals and vegetables

are subjected is very considerable, and could not in fact

be sustained but for the elasticity of the air, which being

always '.'. I to the compressing force, enables the small

quantity of air contained in their bodies to counteractthe

violent pressure of the atmosphere ; hence it might easily

be shewn that the pressure on the entire convex surface of

the earth = 10,686,000,000 hundreds of millions of pounds.

(b) If g represent the force of gravity, h the vertical

height of the barometer above the surface of the mercury,

which is exposed to the external air, p the density of the

mercury, the pressure on the exterior surface of the mer-

cury, and •/ the = and contrary pressure of the air = g.

9.h.

The numbers mentioned in page 136 exhibit the ratio

of the specific gravity of air to that of mercury ; which

numbers also indicate the
*

'. of the height of the homo-
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getieous atmosphere to the height of the mercury in the

barometer ; for let h' represent this height, mr

represent-

ing the specific gravity or density of the air, we have mk
— m'h'

; consequently, as we ascend from the surface of

the earth, h! and *•• h diminishes; the height of the homo-

geneous atmosphere, i. c. of an atmosphere which is the

same density as the air at any elevation above the earth's

surface, is a constant quantity, if the effects arising from

the action of heat and cold are not taken into account,

for // = h^-, but as measures the air's density and
m7 m'

pressure, it will vary as — ,
• •—r is constant, hence h at

h m

any station is not affected by any difference in the weight
of the air,

(c) Let z represent the vertical height, m' the den-

sity, g' the gravity, p the pressure or elastic force of

the air, x the temperature, we have adp = m'g'dz, .".

— a- c/2— dz*9 v log. p co as z, and if * be taken in

arithmetical progression, the Naperian logarithm of

is in arithmetical progression, and v— is ^n geometric

progression, and as the densities are as the compressing

forces, i. e, as the heights of the mercury in the barome-

ter, in the same circumstances these heights will decrease

in geometrical progression (a expresses the ratio of the

elastic force to the density, when the temperature is zero,

and is evidently the same for the same elastic fluid, but is

different for each) and v ifK W are the columns of the

mercury at the surface, and at any elevation z from the

sui'face, K representing the constant coefficient to be

determined by experiment, we have z= K.(iog. h—log. h')

= K. log. -jj-, hence K will be had if z is determined
A

F F
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trigonometrically in any case, where h, h' are previously
ascertained.

(/ ) The intervals between which it has been ascertained

from experiment that this= dilatation obtains, is from zero

to 100° of the centigrade thermometer, and it is even true

for those aeriform substances which are produced by va-

porization, provided that they are not charged with any

liquidity, hence 00375 being represented by a, and the

increase of temperature by x, we have p = am'.{ I +<w).

(g) The aqueous vapours are necessarily less dense

than the air in which they float, and from their being

mixed in the air, it is enabled to sustain with a less den-

sity a column of mercury of the same height, •/ this va-

pour weighs less than dry air, perfectly free from humi-

dity, of the same elastic force. See Note (y) of this

Chapter.

(h) From these weights the ratio of the specific gravity,

and v tne constant coefficient may be deduced, which

ought to agree with the coefficient deduced a priori from

a comparison of the same height as furnished by baro-

metrical and trigonometrical observations, but these dis-

agree ; and as this disagreement cannot be accounted for

by introducing the consideration of humidity, the variation

of the force of gravity as we ascend from the earth must be

taken into account; this diminution of the force of gravity

will be taken into account, if in the equation adp = m'.g'.

dz. we substitute —s for p'. then we have —— = —

2 . —
, which gives by integrating, log. p =r

K.pr3"
1—

77^—-r X —
j- C, x is supposed to be constant,

«.(l-t-ca) r+ z rx

and •/ if v be the value ofj^, when z = 0; log.

-5. = ——iL— x —-—
, hence when z is known, and

p a.{l-\-ax) r+ z

the heights in the barometer observed, we can determine
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K; by means of this equation, combined with the value

ofp, given in Note (c), we can determine the laws of

density and elastic force of the air for a given state of

equilibrium of the atmosphere. Now in order to apply
this formula to the mensuration of heights we have w =

1 +
J,

T, 7", being the tempe-

ratures of the mercury at the two stations ;
in order -to ab-

breviate, let h' represent the height of the barometer at the
rp yp

second place of observation multiplied into 1-f- ,v l
51-12

then we have — =— . -^—!—'— :
• •

log. — = log. —- + 2
p It' r*

' ' a
p

fo
//
T

l°g. (
1 + —

)
5

let t, t' be the respective temperatures

of the air, which differ from T, Z7
, as a given difference

of temperature, is not so rapidly communicated to

the mercury as to the external air, x =

_X_, a= ,004; = ,
• • ax =2 -

^ '
; hence substi-

2 250 1000

tuting these values we get z = ——.( 1 + -JiJL-J ) ( log.° h
Kg \ 1000 J*\ s

A-j-2 log. fl + —\
;
-£- is the coefficient 18336, men-

tioned in the text, it is obtained by an equation of condi-

tion which is given from knowing z, h, //, /, t', and r the

radius of the earth ; this value is for the latitude 45, for

any other -—^-=18336(1,002837 cos. 2^). In the de-

termination ofz, as — occurs in the second member, where
r

it is an extremely small fraction, we 1st compute z on the

supposition that this fraction is wanting, we then substitute

the value of — determined in this supposition, and as it is
r

extremely small, the result differs inconsiderably from the
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truth. Besides the corrections mentioned in the text, when
extreme accuracy is required we must take into account the

convexity of the mercury in the upper part of the tube,

and also the effect of capillary attraction. With respect

to the cause of the variation of the length in the barome-

tric column, various theories have been suggested, none

however completely satisfactory. In the Notes to Chap-
ter X. Vol. II. we shall enter into some details respecting

the periods, &c. of these variations.

By very precise experiments made with the hygrometer,
it has been ascertained that the power of the air to retain

moisture is doubled at every increase of temperature of the

centrigrade thermometer by 15 degrees, or in other

words, while the temperature increases in an arithmetical

progression, the quantity of moisture which the air is ca-

pable of holding in solution increases in a geometrical

ratio; these indications of the hygrometer do not point
out the absolute degrees, but only its relative dryness with

respect to the ball of the hygrometer.
It has been computed, that if the atmosphere would

pass from its point of saturation in dampness, to a state in

which the air would be completely destitute of humidity,
the whole quantity of water discharged would not consti-

tute a sheet of water five inches in depth.

(i) The natural colour of the air is blue; but in order

to be apparent, the depth of the air should be consider-

able. This is the reason why the colours of very distant

objects are always tinged with the blue of the intermediate

atmosphere. In fact, as the particles which compose the

air are extremely small, and at a distance from each other,

they could not be perceived unless they were united in a

mass
; conformably to this, it is found that according as

we ascend in the atmosphere, the blue colour becomes

less brilliant, for the brightness diminishes with the den-

sity af the air which reflects it, so that on the summit of a

high mountain, or to an aeronaut, the sky appears black.
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As no coloured substance discloses its inherent colour,

but by separating the rays of light, in order that its real

colour should be exhibited the particles of light must

penetrate the atmosphere, and after undergoing some

change be again emitted. In the atmosphere, besides

the internal dispersion of the blue rays, the white light is

reflected in various quantities without any change, as is

evident from the phenomena of polarization. And as the

white light, in its transit through the air, continually loses

more and more of the blue rays, it must, according as it

advances, assume the complimentary colours of the spec-

trum, and •/ become successively yellow, orange, red and

crimson.

(k) It is the reflective power of the atmosphere, which

makes objects to appear uniformly enlightened in every

direction j if it had not this power, the bright sides of ob-

jects would be only visible, and their shadows would be,

in all probability, insensible. The evening twilight is

longer than the morning, because the atmosphere is then

more dilated by heat.

The last ray which comes to the spectators eye touches

the earth when it is first emitted from the sun ; and se-

condly, when it reaches the spectator after being reflected

at the extreme verge of the atmosphere.

In this method allowance should be made for the in-

flection of the ray, or for its deviation from a rectilinear

course by the action of the continually denser strata. For

the greatest height of the atmosphere at the equator, see

Vol. II. Chapter XIII.

If the density of the air decreased in geometric pro-

gression at fifteen miles elevation, the height of the baro-

meter would be only one inch ; •/ the greatest part of the

atmosphere is always within fifteen, or at farthest twenty
miles of the earth, and •/ though from the refraction of

the sun's light, and from the duration of twilight, it has

been inferred that the height is from forty to forty-five
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miles ; Wollaston thinks that it is limited to the forme?

height; in fact, the force of gravity on a single particle is

then equal to the resistance which arises from the repel-

ling force of the particles of air ; hence he likewise infers,

that there is a limit to the divisibility of matter.—See

Philosophical Transactions, 1822.

On the contrary, a stratum of air at five and a half

miles depth from the surface, would have such a density

that it would never rise to the surface; y as the mean

depth of the sea, as given by the theory of the tides, see

Vol. II. Chap. XII., is twice that quantity, the conjec-

ture of some philosophers may be true, that the bed of

the ocean rolls on this subaqueous air, which, though it

never rises to the surface, may support the combustion

which we know goes on below the surface of the earth.

It is easy to compute the duration of twilight, when the

latitude and declination are known, ; for as it appears
from repeated observations, that it lasts until the sun is

18° below the horizon, if//, //, represent the hour angles

at the termination and beginning of twilight, we have

cos. h= — tan. I. tan. $, cos. h' = — '.——- — tan.
cos /. cos. e

/.tan. 8, y cos. £(//
—

h) =
2 sin. ±(h'-\-h). cos. h. tan./'

y it is shortest when I and 8 = 0, as the greatest depres-
sion of the sun = 90— (Z-f §), if this quantity is less than 1 8,

or 72Z/+8, twilight will last all night, or rather the morn-

ing twilight will immediately succeed the evening. Cos.

h! is always >90 until / and 8 are of opposite affections, and

sin. I. sin. > sin. 18°, or sin. I > sin< 18 °

,
• •

/ >50°,
sin. 23°, 28'

'

54; hence all parts of the earth, of which the lati-

tude exceeds 51°, have the days longer than the nights
in consequence of this power of the air to reflect light,

and at the poles it lasts until the sun is 18° at the

other side the equator, so that the two twilights, be-
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fore and after the commencement of summer, last fifteen

weeks; if cos. (h'
— h) = — 1, twilight lasts all night;

in this case, sin. 18 =cos. (/+ S), y 8 = 72— /, hence,

the part of the year during which twilights can last

all night increases with /, and its least value is 48°, 32'.

To determine the day in which, in a given place, the du-

ration of twilight may be given quantity. Let h!— h = 7
.1 , 7 sin. /. sin. $

•, ,, ,
*

then we have cos. h = -
5 , and cos. (h + 7)

cos. /. cos. d

,, sin. 18° + sin. /. sin. $ 7= cos. h'— — _L _ , 1. e. cos. //. cos. y.
cos. /. cos. o

. . , sin. 18° .
7— sin. h. sin. y = cos. h ~ » y sin. 11 =

cos. /. cos.

sin. 18° + sin. /. sin. 8.(1
— cos. y) _ ^cos. */— si n.

a 8
,

sin. y. cos. /. cos. 8 cos. /• cos. $

y by squaring and concinnating we obtain (sin.
a
S. (2 sin

a
Z.(l— cos. <y)+ cos.

a
/. sin.

z
7)+ 2 sin. 8. sin. 18° sin. 1.(1

—
cos. 7) + sin.

a l8 — cos.
a
/. sin.

2
y a 0; the solution of

this equation gives two different values of $, and as the

sun has the same declination twice every year, there are

four different days in which the duration of twilight is

the same. To find the shortest twilight, we have by differ

entiating the preceding values of cos. h, and cos. (h+ y)

,, ; 77 dB. sin. /
,

supposing y and 6 to vary, dh =
;

-=—
:
—-

, and
cos. /. cos. *©. sm.h

.7 . j *7S.(sin. /+sin. 18°. sin. 8)dh 4- dy = J ——R—.
; f- , y as 7 is sup-1

cos./, cos. *$. sin. (h+ y)
' r

11 • • 7 sin - (%*k-y)
posed to be a minimum, dy = 0, y r—s-M- =r '

sin. h

»in./+Bin.l8».Bin.8 h„
t ^ A= ^cos.

-/-sin^g j

sin. / cos. /. cos. c

and sin. (^+ 7) =

V Cos.
a
/— sin.

ag— 2sin. 18°. sin./, sin. I— sin.
a

l 8

cos. /. cos. 8
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. ,
sin. {h + y) __

sin. h

^cos. H— sin.
ag— 2 sin. 18°. sin./, sin.

\
— sin.

a 18

cos. */—cos.
a S

V equalling these two values of *.
-T > squaring

and dividing by sin.
s
18°. cos.

28 we obtain sin.
28 +

2sin./. sin.S . • ,, • <> sin. /.(Iqpcos. 18°)—
: f-sin.

a/=0, ysin. d= L-TZZ i

sin. 18° sin. 18°

= either— sin./, tan- 9°, or— sin. /. cot. 9°, y the short-

est twilight occurs four times in the year, and always in

winter time, for $ is negative; but as 8 cannot exceed

23,28, in the second value of 8y if sin. / is >r than tan. 9°.

sin. 23,28 it is impossible, y this solution only obtains for

latitudes less than 3°,37', but the first is true for all lati-

tudes for its maximum value, i. e. when /= 90, is sin. S=
tan. 9° ; this'would appear therefore to determine $ for the

shortest twilight under the pole ; however this problem is

not applicable to the pole, as we can have but one

day, and consequently but one twilight under the pole

during the entire year ; in general that several twilights

may occur successively, it is necessary that 180—/-fS>
108, i. e, that / < 72 -f- 8; V conformably to this condi-

tion, it results from the first value of 8, that sin. 8 Z

than tan. 9°. sin. (72+ 8) or tan. 8 Z tan - 9- cos.
18_^ Qr

1—tan. 9. sin. 18

tan SZtan. 9; y / is less than 72+ 9, or 81 v/+SZ90°;
this shews that the firs root is not applicable to all the earth,

for all places whose latitude is > than 80°, the sun does

not set for the day of shortest twilight j it is evident that if

Z=0, 8= 0, y the shortest twilight at the equator is when
the sun is in the equator. To find the duration of the short-

est twilight, let the angles formed by the vertical and circle

of declination at the sun set and at the end of twilight =

s and S respectively, then we have cos. s= '—^-, cos. S=
cos. 8



NOTES. 369

sin. 1 + sin.
I8.gin.j_ substituting for sin. $ its value

cos. 18. cos. o

, n , , , c sin. Z.(l— 2. sin.
a
9°) __— tan. 9. sin. /, we have cos. o= - =r
- =

cos. 18. cos.«

sin./, cos. 18° n -
'.

•

'.; •• .» i= cos. s, y s = o, v in tne vertical pass-
cos. & cos. 18

ing through the sun, if an arc = 18° be taken, it is easy

to prove that the zenith distance is equal the arc of a

great circle, formed by lines from the pole to the extre-

mity of this arc, and that the angle between them = y,

. ., . .
, . .

, , cos. 18—sin. 2/
• in this isoceles triangle we have cos. y =

cos. %
l

1 — cos. 18 2 sin. a9

cos.
2
l cos. */

sin. 9

•\ 1 — cos. 7 = 2 sin.
2
£y=

V sin. fa =
cos. I

(o) A ray of 1 ight is made to pass through a prism, out

of which the air is supposed to be completely excluded, and

if the sides of the prism be perfectly parallel, the devia-

tion which the ray experiences must arise from the refrac-

tion of the external air; and from knowing this devia-

tion, and also the refracting angle of the prism, the ratio

of the sine of incidence to the sine of refraction can be de-

termined for gases or liquids.

There is however this difference, that in case of gaseous
substances the refracting angle of the prism may be con-

siderably greater than for liquids ; in the latter it cannot

exceed a certain limit, which is thus determined, sine of

half the angle of prism is to radius as sine of incidence to

sine of refraction from the liquid into air.

It is easy to shew that for any ray refracted by
the prism, the sine of the deviation of the ray is to

the sine of refracting angle of the prism, as sine of in-

cidence is to the difference between the sine of incidence

and the sine of refraction from the prism into air. It is

G G
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in this manner that the ratio of the sine of incidence to

the sine of refraction is determined in page 145 of the

text.

As it is nearly impossible to procure a perfect vacuum,
the height of the mercury in the gage must be observed,

and account made of it in the calculus. If we wished to

obtain the refraction of the air at different densities it

would be only necessary to note the height of the mer-

cury in the gage at the respective densities; or if the

refractions of other gases were required, we should ex-

haust the prism as far as possible, and then after noting the

height of the mercury in the gage, introduce the gas.

Caustic potash is generally introduced to absorb the aque
ous vapours which exist in the air, when its density is so

reduced
; on the contrary, if the refractions of aqueous

vapours were required, we should charge the atmosphere
with them, by means of vessels of water and of moistened

towels. See Biot's Physique^ torn. 3.

(p) The diversity of colours arises from the particular

disposition of bodies to reflect some rays rather than

others. When this disposition is such that the body re-

flects every kind of ray in the mixed state in which it re-

ceives them, that body appears white ; •/ white is not a

colour, but rather the assemblage of all colours; if a body
has a disposition to reflect one sort of rays more than

others, by absorbing all the others, it will appear of the

colour belonging to that species of rays. As different bo-

dies are fitted to reflect different kinds of rays, they
must appear of different colours; when a body absorbs

all the light which reaches it, it appears black, as it trans-

mits so few reflected rays that it is scarcely perceivable.

(q) The density of the atmospherical strata decrease in

arithmetrical progression, when the temperature dimi-

nishes in arithmetrical progression ; for the density m

being equal to Q the quantity of matter divided by the

volume, if 1 represent the volume previously to x the in-



NOTES. 371

Q
crease of temperature, we have m= ——— , (a represent-

1 +ax
ing 0,375) = Q..(l

—
cur) nearly; y when the increments of

the temperature are given, the densities decrease by an

arithmetical progression.

There are two causes of the decrease ofheat, according

as we ascend in the atmosphere, namely, our receding from

the earth, the principal source of heat, and also from the

circumstance of the air being less compressed, which

makes its absorbing power greater. But though the heat

thus decreases in a less ratio than the distances increase,

still the rate of decrease is nearly uniform when the height

is inconsiderable.

When the altitude exceeds eleven degrees the inclina-

tion of a ray of light to the atmospheric strata is less ob-

lique, consequently the curvature of the portion of the

trajectory to be described by the star is less, and according"

as the altitude increases, it approaches, more and more to

the rectilinear direction ; now if the strata of the atmos-

phere were parallel to each other, and to the earth, con-

sidered as a plane, the refraction would be what would

take place if the ray passed from a vacuo into air of the

same density as that at the earth's surface ; the error, y
arises from the earth being supposed to be a plane,

when it is in point of fact spheroidical, which shape is

communicated to the atmospherical strata. In the former

case, the refraction would depend on the total increase of

density of the atmosphere, i. e. on the pressure and tem-

perature which are indicated by the barometer and ther-

mometer.

It may likewise be observed here, that when the eleva-

tion is greater than eleven degrees, the differential equa-

tion of the trajectory described by the ray of light, namely

dr = dv^ Q. (where r is the radius from the centre to any

point of the trajectory, and v the angle between r and a ver-

tical at this point, Q a function of r depending on the law
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of the decrease of densities) may be expressed in a very

convergent series ; but when the trajectory is horizontal, dr

and •/ ¥ Q.=0 ; y if it is near to a horizontal state, Q is in-

considerable, v V Q cannot be developed in a convergent

series, because the several terms which compose it have a

finite -H- to each other
; but when the point is at a consi-

derable distance from its minimum state, some of the terms

composing Q.are considerably greater than others, y the

expansion of VQ into a series is possible, and y the equa-
tion of the trajectory may be obtained by approximation.—See Mechanique Celeste, torn. 4, livre 10.

(s) If nil be the ratio of sin. I to sin. R from a vacuum

into air, we have, if ir be the angles of incidenceand refrac-

tion, z the zenith distance, a the radius ofthe earth, and h

the height of the homogeneous atmosphere, a+/: a :: sin.

,
... m.a. sin. z

z : sin r: 1 : m : sin. r : sin. i. r
• sin. t= = m. sin.

a+ l

sin.z. [l J ; sin. r= sin, 2(1 ] ; 1

" = r + R »

(r -\- R) z= sin. i j and sin. r -f cos. r. sin. R = m. sin. r,

V (
m — \ )• tan « r = Wh R> or R; hence substituting for

sin. rt and sin. i, and also for cos. ?= V] — s in ,

* r,

—

./l — sin. *z (l
— —\ = V/cos. *z+

u
(i + l.tan.^).. JR=iHLi_,
V a / sin. 1". cos. 2?

c
2lsin.

2z = cos. z.

sin. t — sin.r

(m— 1). sin. z.(l \
v K

a) _ {m— 1). tan, z

sin. 1". cos. «.
(l

-f —.tan. 2

z)

sm * V

(^— 1). /tan.
az Tf e 7 ,.rt/w* a— -i—

:
'— —- . It z = 80°, I = 5, a = 4000 miles,

«. sin. 1 . cos.
zz

the second term will not exceed 10"; this is what arises

from the spherical shape of the earth ; if a was infinite,
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**. e, if the earth was a plane, it would vanish ; v as far

as 80° ofzenith distance, the error from the supposition that

the density of the atmosphere is uniform, and the earth a

plane, must be less than 10". Now from the ratio of sin. 1 :

sin. r from a vacuum into air, m the coefficient of the refrac-

tion may be determined (p. 369). This coefficient is as the

refractive force of the air, i. e. as its density, or as —-=-
;

v to reduce the coefficient to a given temperature and

pressure, it must be divided by 1 +ar. (see page 370), and

then multiplied by the direct ratio of the pressures, v the

true coefficient = - : but if these quantities
,0,76(1 + at)

are determined for the latitude of 45, they should be

multiplied by cos. 2\p for any other latitude xp.
—

(See p.

341.)

(/) It may be doubted whether the analysis given in the

text is complete, for a recomposition of these materials

will not give air of the same nature as the atmosphere,

V some of the elements or constituents must have escaped

during the decomposition, which is indeed probable, as

the air is charged with emanations from the various sub-

stances with which it comes id contact ; we are certain, as

was before observed, that the quantity of aqueous vapour
is not always the same; it appears from this that, if itschief

constituents are always in the same 4^-n, the purity or in-

salubrity of the air must depend on somethiug besides this

proportion. It is conjectured with some degree of probabi-

lity, that the higher regions consist ofi nflammable materi-

als, which is the cause of those appearances which it fre-

quently exhibits, namely, of shooting stars, fire-balls, and

luminous arches ; these materials arise from the nume-

rous emanations from volcanoes, &c. &c, and as hy-

drogen is lighter than common air, and has very little

affinity for its constituents, it ascends upwards from its

greater levity, and from the extent and celerity of these
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phenomena they must necessarily take place in the most

elevated regions of the atmosphere: this conjecture is

confirmed by astronomical refractions, for the refraction

in these elevated regions is greater than what compu-
tation assigns to them, but on the supposition that hydro-

gen gas is one of their chief constituents, this discre-

pancy disappears, for the refraction of this gas is greater
than that of other substances in proportion to its density,
while oxygen gas is the least refractive of the gases.

Chemists are not agreed as to the manner in which the

constituents of the atmosphere exist in it
; some suppose

that they are chemically united, chiefly from the uniform

manner in which they are always combined, and because

they are not arranged according to their respective spe-

cific gravities; others think that the particles of the gases
which compose the atmosphere neither attract nor repel

one another, and that the weight on any one particle of

the atmosphere arises solely from particles of its own kind.

—See Manchester Memoirs, p. 538.

(u) It is easy to find the stratum of air, ofwhich the den-

sity is such as is described in the text, for let c 3 be the

capacity of the balloon, y the specific gravity of the stra-

tum of air in which the balloon floats in equilibrio, since

a cubic foot of water weighs 62,48lbs, c 3
. (62A8)y is

the weight of the displaced air, and the whole weight

is to -f- (62.48). c 3
. -^—

, when these quantities are =,

we can determine y, and v the density of the stratum,

and consequently the height, from knowing the density of

the air and height of the mercury at the earth's surface.

(Note, w is the weight with which the balloon is loaded,

and the hydrogen gas which is generally used is only
six times lighter than common air.)

Besides the circumstances mentioned in page 151, it

was ascertained, as mentioned above, that the elasticity of

the upper regions ofthe atmosphere was greater than near

the earth's surface, also the diminution in the tempe-
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ralure was less than what was experienced in correspond-

ing heights on the earth's surface, and the indications of

the hygronometer shewed that: the atmosphere became

dryer according as we ascended ; but indeed this might
arise from the increased attraction of the air for moisture

in consequence of its less density.

(v) Knowing the refractive power of water, from note

page 372, we can determine it for water reduced to vapour
of the same density as the air, for these refractions are

-H-l totheir densities ;
now the density of this vapour

would give its refraction greater than that of air ;

but as the density of the vapours which float in the air

are less than that of air, the refraction of the vapour must

be diminished, and by nearly the quantity by which it was

greater than that of air. Biot made his direct experi-

ments on the refraction of air saturated with humidity,

and at high temperatures. Note, there are some except-

ions to the position that the refractions are -ffl to the den-

sities, for it is not true for the class of inflammable sub-

stances.

Suppose for instance, as stated in page 153, that a

wind blew for a long time in the same direction, the cur-

vature of the inferior strata would be necessarily affected

by it, and v the refractions computed from it would be

very unequal. The temperature may produce equally
anomalous effects, as for instance, if from the greater heat

of the surface of the earth, the density of the lower strata

was less than of those more elevated, as is the case in

the phenomena observed frequently in Egypt, which are

sailed mirages.

The effects of diurnal parallax and refraction are very

different, and may easily be distinguished one from the

)ther; as refraction elevates, and parallax depresses;
— the

irst increases and the second diminishes the duration of

he visibility of the stars above the horizon. Each is

jreatest at the horizon, but as the refraction varies nearly
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as the tangent of the zenith distance, near to the horison

it varies very irregularly and with great rapidity, and

near the zenith slowly and regularly; on the contrary,

near the zenith the variation of the parallax is quickest,

and slowest near to the horizon ; as the refraction of the

sun is greater than his parallax, we enjoy his light longer

than if these effects did not exist, on the contrary, the pa-

rallax of the moon being greater than the refraction, we

enjoy the light of the moon for a shorter time than with-

out these effects. At the horizon refraction diminishes

the vertical and horizontal diameters of the sun and

moon; the diminution of the latter is insensible, but that

of the former is more than 4/ ; both are nearly insen-

sible when the altitudes are more than ten degrees. Pa-

rallax increases both diameters, at the horizon however

the quantity is insensible ; on the contrary, at the zenith

the vertical diameter of the moon is increased a sixtieth

part. From the horizontal refraction of the sun being

greater than the corresponding diameter, we see the

entire disk when it is beneath the horizon, and a specta-

tor at the poles will see the sun two days sooner than if

it did not exist.

(x) LetX, X, X", &c. represent the light in the 1st, 2d,

3d, &c. strata of air, as the same quantity, namely its

— part, is supposed to be lost in each of those = strata,

we have X—— z=X', X'——=X"i -.' itlll. X=X',
t t 1

B '
. X = X", &c. ; hence the logarithms of the in-

tensity of light are -ffl to the thickness of the stratum; in

fact, c denoting the intensity of light at any stratum we

have, de =—Ae.m.^dr3'

+• r*.dv* ,
where m denotes the

density of the stratum r its radius, and v the zenith dis-

tance, v — = — Ap.<Sdr*+r
3dv* ; now rdv is of the
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form
; when the altitude of the star is greater than

a cos. v

lo0% de Ap.dr ,, s* Ap.dr T , t,
1 2"

;
=——5

, analog, t = — / —i . Let E
e cos. v J cos. v

be the value of £ in the zenith where cos. v = 1 ; then we

have log. E = _^— ; log. E co («). /, i. e. it is : :] to the
cos. v

height of the barometer.

From some observations, founded on the preceding

analysis, itj
was inferred, that at the altitude of 25° when

the sky is most serene, the sun loses | of its light, and at

an elevation of 15° it loses £ of its light.

The continual agitation of the atmosphere produces

momentary condensations and dilatations in the particles

composing it, which causes the direction of the lumi-

nous rays to vary continually from the diversity of refrac-

tions which they occasion.—See Notes to page 362.

(a) In note (c) to page 317, it was stated that the

height of the shadow was = — ;
but if the effect

sin. (s
—

p)

of refraction be taken into account, this expression should

be— — -; in like manner, the semidiameter of
sin. (s+ 2R—p)

the section of the shadow z= p -f P— s— 222; in the first

expression, if s denote the distance of the centre of the

sun from any point in its disk, it will determine the dis-

tance at which this point commences to be seen ;
if s = 0,

we have the distance at which the centre of the sun be-

comes visible by the refraction at the earth's surface, or if

s becomes negative, we have the distance at which

points of the disk at the other side of the centre become

visible; in like manner, by determining the value of?
from the equation p+P—s — 272= 0, we could deter-

mine the quantity of the sun's disk visible by refraction

to a spectator at the moon, for any given distance from

H H
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the earth by computing P for this distance, and then de-

termining s from the equation P -\- p — 5 — 2R = 0;

from a computation made under the most unfavourable

circumstances, it might be shewn that f of the solar disk

is visible by means of the earth's atmosphere.
Another effect of refraction was, that in consequence of

it, the sun and moon were both so elevated in a total

eclipse, as to be both visible at the same time.
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CHAPTER I.

The arguments for the earth's rotation, which are de-

tailed in this and the third chapter, may be reduced to

the five following:
—

1st, the internal probability; 2d,

the impossibility of the contrary ; 3d, the analogy of the

other planets ; 4th, the compression of the earth, and the

diminished lengths of isochronous pendulums as we ap-

proach the equator (which may be termed the physical

proofs of this motion) ; 5th, the deviation of falling bo-

dies to the east of the tower from which they are let fall.

As shewing the far greater probability of the earth's rota-

tion than that of the celestial bodies in a contrary direc-

tion, let us investigate the relative velocities of the earth

and fixed star in the two hypotheses ; the distance of the

nearest fixed star is at least 200,000 radii of the earth's

orbit (see Notes, page 337), its circumference, which is at

least six times greater, is described in twenty-four hours;

hence, it is easy to shew that its velocity is at least 6570

times greater than that of light; V the star describes

more than 270 milions of leagues, or more than twice the

diameter of the earth's orbit in a second; and this velo-

city must be still greater, for the more distant stars, such

as those which compose the milky way; on the con-
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rary, supposing the earth to revolve, a point on the

equator describes 54-00 leagues in 24 hours, or in one

second the sixtieth part of a league, which is a velo-

city a little greater than that of sound, and at least 4600

millions of times less than the preceding. Besides the

motion to which, on the hypothesis of the earth's immobi-

lity, all celestial bodies must be subjected in order to ex-

plain the precession of the equinoxes, they must be in

like manner subjected to another, in order to account for

the nutation. Likwise, as all actions are accompanied
with a contrary reaction, if the earth exerts a force to re-

tain the celestial bodies in their diurnal paths, an = and

contrary force must be exerted by them on the earth.

And as the' circles described by the stars are not con-

centric, but rather have their centres all existing in the

axis of the earth, the central force should be different for

each body j and as they all revolve in the same time, the

force, whatever it is, should be greater for the more re-

mote objects, contrary to what is observed in other cases

of nature.

As an inhabitant of Jupiter would suppose the heavens to

revolve in the time of Jupiter's rotation, so likewise an in-

habitant of Saturn would come to the same conclusion

for his planet, but one is inconsistent with the other. It

is evident from the measurement of degrees, which was

explained in the XIV. Chapter, that the earth is flat-

tened at the poles; for a greater space must be traversed

in the direction of the meridian near the poles than at the

equator, in order to have the same inclination of two

plummets.
Ifthe earth be considered an ellipsoid, it is easy to prove

that the attraction, or weight of a body, increases as we

proceed from the equator to the poles, proportionally to

the square of the sine of the latitudes (see Vol. II. Chap-
ter VIII.) ; and if the earth revolves on its lesser axis,

the centrifugal force, which is always perpendicular to this
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axis, makes an angle which is continually more oblique,

with the direction of gravity ; and it is easy to shew that

the part of this force which is efficacious varies very nearly

as the square of the cosine of latitude ; y the difference

between the centrifugal force in equator and any parallel

is -b-1 to the square of the sine of the latitude ; y in con-

sequence of those two causes, the increase of weight from

the equator to the poles must be -H-l to the square of the

sine of the latitude j and the acceleration of falling bodies

must increase in the same proportion, which is confirmed

by experiments made with pendulums.
—See Notes to

Chapter II. Book III.

CHAPTER II.

(a) If light was progressive and not instantaneous, the

last ray which issues from the satellite, at the commence-

ment of the eclipse, or the first which we see at the ter-

mination of an eclipse, should strike our eye sooner in

opposition, and later in conjunction, than if the eclipse

occurred when the planet was at its mean distance from

us. If the earth was in repose, a spectator on its surface

would see a star in the direction of a ray of light is-

suing from the star ; but if the earth be in motion,

it is clear that in order to see the star, his telescope

must be inclined to the direction of the first ray of

light. If the ray and spectator were in motion in the re-

spective directions of the light coming from the star, and of

the direction of the earth's motion, the sensation or im-

pression on the eye will be the same, as if the spectator

was supposed to be at rest, and there was impressed on the

ray, besides its own motion, that with which the spectator

is actuated in a contrary direction, he would then see the

star in the direction of the diagonal of a parallelogram, of
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which the two previously mentioned motions constituted

the sides, and the angle which this makes with the primi-
tive direction of the ray of light is the aberration ; y if

1 : fx be the ratio of the velocity of the earth to that of

light, ir the angle of aberration, the angle of the earth's

way, we have sin. ir ="
sin<

t
, ^ is determined by the

eclipses of Jupiter's satellites, and consequently for re-

flected light j however we shall see hereafter in Vol. II.

Chapter XII., that the value is precisely the same for

the direct light of the stars. Light traverses the dia-

meter of the earth's orbit in 16', 26", 4'"; in this time the

earth describes an arch = 40", 5, y velocity of light is to

that of the earth as the diameter of a circle to an arc of 40",

5, or as 2 to that number which expresses 40", 5, in parts

of the radius, y — = sm ' 40"> 5 = sin. 20".25, and tt=
fi 2

20", 25. sin. 0, y it is a maximum when is 90 or 270. As
the diameter of the earth is 23000 less than that of its orbit,

a point on the equator describes in a day a circle whose

radius =1 ; and in 365,25 days it describes a circle 23000

times greater, y as the velocities are directly as the spaces
and inversely as the times, the velocity of the annual mo-

. . 2300000 _ . . . c . ..
tion is

, or 63 times greater than that of the diur-
36525

nal motion, and the diurnal aberration at the equator and

20"
at its maximum is at most, i. e. less than a third ofa

63

second ; and for any parallel of latitude x» the coeffi-

20"
cient , must be multiplied by cos. v,

63

(c) The aberration of a fixed star takes place in a plane
which passes through the star and the tangent to the

earth's orbit, and is always in the direction of those parts

towards which the earth moves, •/ if the angle of the

earth's way be acute, the star will appear elevated.

In the quadratures of the stars with the sun, relatively
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to the earth, the aberration is made entirely in the plane

of a circle of latitude passing through the star, so that the

longitude is not at all affected ;
in the first quadrature the

apparent latitude is |3
—20". sin.

j3,
in the last quadrature

it is
/3+ 20". sin. |3,

and their difference is 40". sin. /3 ; in

the syzygies on the contrary, the plane of the circle

of aberration is at right angles to the plane of the circle of

latitude, and'.* the latitude is not at all affected, whereas

the longitude is most affected in those cases ; hence it ap-

pears that the phenomena of aberration do not arise from

the annual parallax.
—See Notes to page 234. If a plane

be conceived to pass through the star parallel to the plane

of the earth's orbit, and if a line be drawn from the star

parallel to a tangent at the earth, which may be to the

stars' distance as the velocity of the earth to that of light,

the star will always appear at the extremity of such line,

and it will appear to trace the curve described by the ex-

tremity of this line, but as this line is -f^l to the velocity

of the earth, and •/ to the perpendicular let fall from

empty focus on a tangent to the earth's orbit, it will ap-

pear to describe a curve similar to that traced by the in-

tersection of the perpendicular with tangent, which curve

is known to be a circle, •/ a star viewed directly, or in pole

of ecliptic, will describe a circle; between the pole and

plane of ecliptic it describes an ellipse j and when in plane
of ecliptic it describes an arc of a circle ; the true place of

the star divides the diameter of the circle, as the diameter

ofearth's orbit is divided by the sun. As the axes majores

of the ellipses which the stars appear to describe are the

same for them all ; the velocity of the light as it emanates

from them must be the same.

If X be the longitude of a star, /3 its latitude, © the

longitude of the sun, the aberration in longitude is

- -> I , and the aberration in latitude = a.
cos. p

sin.
(o — X). sin. /3 ; the aberration in right ascension =
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_ b- cos, (p— X)—ccos.
(P + A)

^ the aberration in (1e.

COS. S

clination = sin. S. b. sin. (p—X)—c. sin. (p+X)—8'. cos.

/3.
cos. § (see Cagnoli, 1529 ;) hence we see that the aber-

ration in longitude for a given star is a maximum when

X is 0, or 180°, in which case the aberration in lati-

tude vanishes, •/ it cannot arise from the parallax of the

annual orb. In general the longitudes increase if — X

is between 90° and 270, and diminish in the first and last

quadrants ; the latitudes, whether northern or southern,

diminish or increase according as ©— X is Z or > than

180. The greatest difference between the latitudes of a

star arising from aberration = 2<r sin. /3,
the greatest

difference of longitude = 2a. sec. j3,
this increases to

infinity for stars situated near the pole of the ecliptic.

The coefficient of aberration might be determined, a

priori, suppose the change of declination in a star existing

in the solstitial colure 'produced by aberration, be ob-

served; in this case sin. p = 1, cos. p = 0, © = at the

vernal and 180 at the autumnal equinox, %• the aberra-

tion at the vernal equinox =«. sin. (8—e), and at the au-

tumnal, the aberration = — a. sin. (8
—

r), •/ the entire

difference D = 2a. sin. (S—t), and a = ____.
With respect to the coefficient a, as the motion of the ray

of light is accelerated by the action of the transparent bo-

dies, namely, the atmosphere, the object glass of the tele-'

scope and humours of the eye, which it must traverse before

it reaches the retina, it follows that the value of a is not the

velocity of the ray when it enters our atmosphere, but

rather the velocity of the ray when it reaches the retina.

However, be the quantity of this acceleration ever so

great,"since from the most accurate observation it appears

that the quantity of aberration is not increased in conse-

quence of the increased velocity of the ray, it follows that
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these bodies must also impart to light a velocity in the

direction of the earth's motion 4fl to the increase of velo-

city which they produce.
—See note (&)> Chap. II. Book I.

The motion of the planet about the earth in the time in

which light comes from the planet to the earth is the whole

aberration; •/ if 1 : r represent the ratio of the sun's dis-

tance from the earth to the planet's distance from earth, we
have 8',7". r for the time light takes to come from planet to

earth, and if m be the diurnal motion of the planet we
of *ill y V)

have the aberration of the planet = — ~—
; for the

sun the aberration is nearly constant, in order to get the

true place we should add 20'', 25 to the place, as given in

the tables.

As it is very probable that our planetary system has a

motion in space, there must result from it an aberration

in the fixed stars, which depends on their situation with

respect to the path described by the system ; however as

the direction of this translation, and also its velocity are

unknown, the aberration which results from it is con-

founded with that arising from the -proper motions of the

stars, so that the coefficient a does not arise solely from the

velocity of light, combined with the motion of the earth.

Since the distances and magnitudes of all the bodies

composing the planetary system are determined relatively
to the distance of the earth from the sun, it is of the last

consequence that this base should be determined as accu-

rately as possible; this is the reason why the problem of

finding the distance of the sun from the earth has occu-

pied so much of the attention of astronomers.

If the annual parallax amounted to 6", in a triangle of

which the vertix is the angle at the star = to 3", and
whose subtense is half the diameter of the earth's orbit,

the distance of the star will be expressed by 212,207, the

radius of the earth's orbit being unity ; and as the radius
is 24,096 times the semidiameter of the earth, the dis-

I I
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tance of the star from the earth ss 5113339872 terres-

trial radii, i. e. more than five trillions of leagues.

CHAPTER III.

(«) As the top and bottom of the tower are supposed to

describe? during the fall, similar arcs, and as the body
when it arrives at the ground is as far from its first posi-

tion, as the top of the tower is from its first position. (If

the experiment be supposed to be instituted at the equa-

tor, and in a vacuo) we have from similar triangles, divi-

dendo, the deviation to the east = to the height of the

tower multiplied into the arc described by the bottom,

and divided by the radius of the equator, but as the earth

revolves uniformly, the arc described varies as the time,

i. e. as the square root of the height, •/ the deviation va-

ries as h X h 2
, i. e. as h 2

, in any latitude \p the arc de-

scribed is to the arc described at the equator as cos. \p : 1

—Mechanique Celeste livre 10, chap. 5.

(5) See Notes to Chapter I.

(c) This is called the motion of translation ; it supposes
that each element of the earth has a motion = and pa-
rallel to that of the centre, and consequently that the re-

sultant of all the motions is equal to the sum of the mo-

tions of the elements. And as all the particles or elements

are equally affected by this motion of translation, it cannot

affect the rotation of the whole about an axis. The double

motion of the earth may result from one sole impulse. The
axis of the earth's rotation is not strictly speaking always

parallel to itself, for the phenomena of precession and mi-
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tation arise from slow motions in the equator, which neces-

sarily implies a motion in the axis.—See Note [d) to page
280.

(d) On the supposition that the earth was immoveable,

the change of seasons and different lengths of days were

produced by the sun, ascending or descending from one

tropic to another; on the hypothesis of the earth revolv-

ing on its axis, it presents itself to the sun under different

aspects in different parts of its orbit; in both cases, the

different lengths of the day and of the seasons, depend on

the latitude of the place and declination of either the sun

or earth ; one of those being = and of a contrary deno-

mination with the other.

(e) The orbits being supposed to be circular, or the

velocity being that of a planet at its mean distance, we

r v2"
1 1

have -— =
,
but p

3
is as r 3

, •/ w* co —
,
or v co

p* r r V r

(J) For in this case the motion being directed either

from or towards the earth, it is evident the planet will

appear relatively to the earth to be stationary.

(g) If lines be supposed to be drawn from different points

of the earth's orbit to a star situated in the pole of the

ecliptic, they will constitute a conical surface, of which

the summit is the star, and the base the orbit of the earth,

and the production of this surface beyond the summit,

will form another cone opposite to the first, the intersec-

tion of which with the celestial sphere will be an ellipse,

in the circumference of which the star will always appear

diametrically opposite to the earth, in the continuation of a

ray drawn from it to the summit of the cone; this circum-

stance sufficiently distinguishes the effect of annual paral-

lax from that of aberration, which affects the apparent

position of the star perpendicularly to the radius of the

earth's orbit and not in its direction ; the centre of the

ellipse is the true place of the star, its greater axis = the

parallax, and the minor = the parallax X into the sine
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sine of the stars latitude, and it exists in the plane of a

circle of latitude passing through the pole ; this ellipse is

therefore different from that which is described in conse-

quence of aberration ; however though the two causes act

at once, it would not be difficult to prove that a star under

the influence of both would still appear to describe an el-

lipse about its true place.

Let c = rad. of the earth's orbit, b the distance of star

from plane of the ecliptic; cr, a' A the curate distances of

the star from the sun, and earth
; (5, j3',

the heliocentric

and geocentric latitudes of the star, a the distance ofearth

from syzygies, e distance of star from sun ; tan. /3
=

o
1
— c c— = m. and a' =s ax +cz

-\- Lac, cos. al
2

, let — =«,—= »,
a e

i n> b m ,

then tan, ft = — = — = (neglecting n
z

« V14.2W. cos.a+ n*
v ft b

which is inconsiderable) m.{\
— n. cos. a), •.•tail. ()3

—
ft)

mn. cos. a n A) m.n. cos. a

1+7W*.(1
— n. cos. a) 1 + m*

cos. a. sin. /3. cos. |3,
•• as cos. /3

= —
, and/>= «. cos. j3,

/3
—

j3'
the parallax in latitude = p. cos. a. sin. /3 ; note

•p is the semidiameter of the orbit of the earth as seen

from the star, and y it is = to the annual parallax. The

tangent of the angle formed by lines drawn from projec-

tion of star on the plane of the ecliptic to sun and earth,

or the parallax in longitude =
a -f- c. cos. a

^ —
, i. e. the parallax in longitude = A'=

cos. p + p. cos. a

p. sin. a. sec. p\ very nearly; consequently, X' :
/3
—

/3'
'.'

tan. a : sin. p\ cos. j3
'.I 2 tan. a : sin. 2/3, hence we can

determine the one from the other; /3—j3' vanishes in the

quadratures, i. e. when a a= 90 or 2 70; it is a maximum in

the syzygies ;
in this particular it differs from the aberra-
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tion ;
its maximum being p. sin. /3, it is greatest near to

the pole of the ecliptic, /3
—

/3,
is positive, or the apparent

latitude is less than the true from the last quadrature

through conjunction to the first quadrature ; in the other

half of the orbit it is negative, or the apparent latitude is

greater than true, X' vanishes in the syzygies, and it is a

maximum and = p. sec. j3,
in the quadratures, it '/in-

creases with the latitude, and from conjunction to oppo-
sition it is positive, or the apparent latitude is greater

than true, and from opposition to conjunction it is less

than true; the apparent latitude in opposition = m.{\ — n

cos. a), and is a minimum ; it is =m.(l + ra, cos. o) in con-

junction, when it is a maximum.

If a be the difference between the longitude of a

star in the 90th and 270th degrees of distance from con-

junction, we have a = 9.p. sec. /3, •/ p = . cos.
/3.

Ifp = 20" = a, the same tables would serve for paral-

lax and aberration, if they are computed for the aberra-

tion it is only necessary to add 90° to the sun's place.

CHAPTER IV.

(a) The locus of a planet and consequently its orbit,

which is composed of all its points, is determined by the

magnitude of the radius vector and by the angle which it

makes with some line fixed in space, such is that drawn to

the first point of Aries. With respect to the direction of the

radius vector, this is found by observing the planet in op-

position or conjunction ; for in this case, on account of the
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irrationality which exists between the period of the earth

and planet, they occur in different points of the orbit,

consequently, we can by means of oppositions and con-

junctions, find all the points of the orbit, and also the

epoch, when the planets are in those positions ; hence,

may be obtained the law which exists between the helio-

centrick longitude and time, from which may be derived

the true longitude; and as the principal inequalities are

destroyed at the termination of each revolution, this law

may be developed in a series, proceeding according to

the sines of angles -ff 1 to the time and their multiples;

the coefficients of this series may be determined by obser-

vations made under the most favourable circumstances.

(b) See Notes to page 12.

(c) In order to determine the magnitude of the radius

vector, the observations made at quadratures are the most

useful, for the radius being then perpendicular to the

visible ray, it appears under the greatest angle ; and as

the quadratures occur in every point of the orbit, the law

between the time and radius vector, and y between this

last and the longitude can be determined, y the orbit can

be completely constructed; in case of an inferior planet,

the greatest elongations are employed in place of the qua-
dratures to determine the radii vectores.

(d) Let xp be the arc described about the sun, r the

distance of planet from sun, then the angular velocity

= —L is observed to be equal to
,

• • r.dd> = twice the
r r*

sector described in an indefinitely short period of time

= A.

To completely determine the orbit of a planet, 1st, the

plane in which it moves—2dly, the nature of the curve

described—3dly, the position of this curve in the plane of

its orbit, aad 4thly, the law according to which this curve

is described, must be determined ;
the law is given by the

application of Kepler's 2d law, the position by that of its
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greater axis; the species of the curve by Kepler's 1st

law; the particular form by the excentricity, the magni-

tude of the axis, by the revolution or mean motion—
which last, as determined by a comparison of ancient and

modern observations is the best known of all the ele-

ments.

(/) The period may be found by noting the time be-

tween two returns of the planet to the same node, and

this interval being divided by the number of revolutions,

will give the period with respect to the node ;
but as this

node regrades, the period thus deduced will be less than

the true period ; however P may be easily computed from

knowing the quantity of regression a, for if n be the

number of revolutions, we have ra.360—a : 360 : : observed

time : P. The period may be also found from the for-

v t
mula given in Notes, page 323, for P = —±1— •

[t be-

ing the time between two conjunctions and oppositions).

The axis major or mean distance can be determined by
means of Kepler's third law ; the earth's orbit and period

being accurately known already. To determine the ex-

centricity, let the heliocentric positions of the planet, when

the equation of the centre is observed to be a maximum,
i. e. when the planet is moving with its mean angular

velocity, be determined; the mean places of the planet

at these epochs can be determined, and they always lie

between the perihelion and the true places ; •/ the angle

at the sun formed by lines drawn to the true places are

given by observation, and the time between the two ob-

servations gives the angle at the sun formed by lines

drawn to the mean places ; the difference between these

angles = twice the greatest equation ; as the points when
the true and mean motions are the same, are not exactly

known, among a great number of observations, those two

should be selected which give the difference between the

preceding angles the greatest possible, we may then as-
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sume their difference equal to twice the greatest equation,

as near to the maximum, this variation is inconsiderable.

The excentricity is given, from the greatest equation,

by means of the series—(see Notes to page 14.)

e = A h ^ 3 —— ^ 3
» &c. e represents the ex-1

768 983040
r

centricity ;
h= £ g expressing the greatest equa-

tion of centre.

If the planet be observed near the aphelion, the dif-

ference between angle proportional to the interval from

the planets being in the point where the equation of the

centre is a maximum, to the time when the planet is in

aphelion, and the angle between axis major and line

drawn to this point, should be = to the greatest equation,

as it is next to impossible that this should be accurately

the case, let is be less by a small angle c, and make a

second observation when it is greater by an angle c' ; now

as the longitudes of the planet when observed at each

side of the aphelion, and •.• their difference e are known,

and also t the interval between the observations, we

have when the angles are very small, c -f- c' : e\\c to the

angular distance of the first assumed point which is

known, from the aphelion, we have also q.p : c-\-c' : c : : t :

to the time from this point to aphelion, which •.• deter-

mines its epoch ; •/ we can obtain the longitude at any

epoch, or vice versa.

Let L, I represent the heliocentric longitudes of the

sun and node, S the angle at the sun subtended by the

earth and planet = L—I, E the elongation of planet from

sun = difference between the geocentric longitudes of sun

and planet ; then r the planet's distance from sun : R the

earth's distance sin. E ; sin. (S + E), •/ r. sin. (S + E) =
R. sin. E; i. e, r. sin. (E+ L—7) = R. sin. E; let E', R',

L', be the values of E, L, R, when the planet returns

again to the node, then r. sin. (E' + I/— /') = R'. sin. E 7

,
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j .
sin. (E

r + U— g) + sin- (E + L—/)

y sin.(E'+L'— r)
— sin.(E + L—

_ (R'. sin. E' + R- sin. E)~
R'. sin. E'—R. sin. E ' V

tan. (^(E
/ + E + 1/ + L) — I) R'. sin. E'+ R. sin E

.

tan.£(E'—E + L'—L)
~~

R'. sin. E'—R.sin. E '

hence as R', R, E', E, Lf

, L, can be determined, we can find

/ the longitude ofthe node ; this method supposes the planet

to be in its node, if not, let /3,/3', be the geocentric latitudes

of the planet before and after its passage through the node,

/ the interval between the observations, then /3-|-/3
/

:
/3' : t

to the interval between the first observation and the time

when the planet is in the node ; hence we can find E and

L when the planet is in the node. This method supposes

also that the node is stationary, which is not the case, (see

Chapter III. Vol. II.) However a determination of the

node in this manner will give the motion of the node, by
means of which I can be determined accurately; the incli-

nation ( is easily determined, for we have sin. E s tan. /3.

cot. r.

The preceding methods not being rigorously exact, the

elements determined by means of them will be found to

differ somewhat from the truth; their values should be

corrected by the formation of equations of condition, of

which the number is indeed indeterminate ; it is only ne-

cessary to have as many of them as there are unknown

quantities to be determined.

(f) On the secular inequalities see Notes to Chapter II.

Vol. II.

(g) The reader is likewise referred to Chapter II. for

an explanation of the variation in Jupiter's and Saturn's

motions.

An inspection of the axes majores, or mean distances of

the ancient planets, shews that, with one exception, their

distances are embraced in the formula 4 4-3.2*
-2

, (n being
the place occupied by the planet : commencing with mexcu-

K K
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ry, however a blank occurred between Mars and Jupiter;

and in order to have the preceding law exact, a planet

should exist at the distance where the four new ones have

been observed. The circumstance of there being four in-

stead of one planet at this distance, does not militate

against the preceding law, as from some circumstances

connected with them it has been conjectured that these

might originally have constituted but one planet.
— See

Notes, page 333, and Vol. II. Chapter II.

More particularly, the causes which disturb the motions

of the four new planets arise from their orbits mutually

intersecting each other, from their comparatively great

excentricities, and from the proximity of Jupiter, the

greatest of all planets.

CHAPTER V.

(a) Let a, by represent the major and minor semiaxes

of the ellipse A, P the periodic time, s the sector de-

scribed in any time t, a', b', A', P', s', corresponding

quantities for another ellipse, then since the areas are -frl

A.t . A A'
to the times, we have s = -^— , and s : s' '.'.

-^- :

P P'

a.b

K.a*
but A = ab, A' = a', b', and P = Ka*, •; s:s':i

a'.V

(b) Let x be the perihelion distance, and we have b% =

x.(2a
—

x), ••*:/:: *jfgg±fj : Vxi the ellipse A'
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being supposed to become a circle of which the rad. =x$
s : s' : :

^ c2a— x \ *^at which when the ellipse A be-

comes a parabola, in which case, x vanishes relatively to

<z, the proportion becomes that of Y 2 : 1
;
the ratio of the

sector described by the fictitious planet to the synchron<-

ous sector described by the earth at a distance from the sun

equal to r, is that of Y
'

x : **¥ ; v we can determine for

any instant whatever the area traced by the radius vector

of the comet, commencing with the instant of its passage

through the perihelion.

The time t of describing a sector s = —~ co —'—n A a.b

—
, p being the parameter; hence it appears that the

*>
times in different sectors, are as the sectors described di-

vided by the square root of the parameters.

(c) In orbits of great excentricity, such as the comets,

the equation r = —* —i_, may, by substituting 1—a

for r, be made to assume the form

D

cos. »J»jfl+-i-p t*m*M

{D being the perihelion distance.) For as cos. *\x> -j-sin,

\v = 1, and as cos. v = cos. *\v— sin.
a
|t>, we have r =

q.fl.(2
—

q)

cos. z
\v + sin. *\v-\-(l

—
a), (cos. *\v— sin.

z
%v)

= by concinnating and dividing by (2
—

o),

a.a
, and as D = a.{\

—
e)

cos. Hu —— sin. H. v.
2~-a

9z a.a, we v obtain r= —
, by

cos. a
£tul-J -— tan.

a

|u)
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expanding this expression into a series we obtain r to any

degree of accuracy ; if a vanished the expression would

become -~—
; the time corresponding to the true

COS* "J l/

anomaly in an orbit, such as the preceding, may be like-

wise found, for as u = 2 tan. \u.{\
—

\. tan. *iu+ ^. tan.

4
t«, &c.) and as tan. \u = [

e
, tan. iv=

v a

^l+e ^2—a

tan. |u, by substituting we obtain 11 = — a
tan. it*.

^2—a

(W (^£-)
. tan. >iv + £

(§-^-)
\ tan. iv

-&c.) ;
but

sin. u= ?-|
— =2 tan. $*£(!

— tan.
3
iw-f-tan.

4
JtM,&cA

1+tan. *£«

e. sm.u = 2(1—«) — . tan. Jr. (
1 •—_?_. tan. ^ir

+ f— -—
).

tan. 4
§w, &c.

J. v hi the equation w^ = u— c.

sin. U, the substitution of these values of u and of ff sin. u

will give / in a very converging series, in a function of the

anomaly v, and = — . tan. \v. (l -f-
— 1, tan. -^t;

—
a \ 2—a

4 a \ 1
-5 -. a. tan. 4

|y-J-&c. J, which when a = 0, — . tan.)
(2
—

a)
z / »

|t>44- tan. 3

|u.)

If o = 90, then tan. |i> + \. tan. 3
-*t> = f ; and t' the

4,

time corresponding to this anomaly = = 109d
, 6154,

when D=l ; •/ a comet, ofwhich the perihelion distance =
1, will describe in this time a sector of which the anomaly
is 90, i. e. it will reach the parameter in that time, •/ for

any other anomaly m, we can obtain the corresponding
time

;
the determination of the anomaly from knowing the

time is more difficult than the reverse problem, for u must

be determined by an equation of the third degree.
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Note.—This is called the comet of 109 days, and for

t'

any time t' we have tan. Afl+3. tan. lhv = , and'
1\

2
27,40385

for that of which the perihelion distance = r, tan. %v +3.

t
tan. 3

^u = -
; hence, if the comets move in pa-

27,40385^

rabolas, their anomalies depend only on their perihelion

distance.

The formula for determining the time of describing any
arc intercepted between the radii vectoris r, rr

. is T r=

JL. ((r+ r'+ c)*=±r(r + r'«— c)
7).—&e Celestial Mecha-

nics, Book II. Chapter IV.

(c) In consequence of the smallness of the diameter of a

comet, and the feebleness of its light, it does not become

visible until it approaches very near to the sun, so that

the greater number of comets which have been observed,

appear nearer than Mercury, shortly after their distances

become so great that they cease to be seen ; •/ their orbits

are extremely excentric ellipses, in which particular they

differ from the planetary orbits, and likewise in the cir-

cumstance that they are inclined at every species of angle

to the ecliptic, from which it follows, that their motions

are sometimes retrograde; though they receive their light

from the sun, their disk is not so accurately terminated

as the planetary disks, nor are there any apparent phases;

indeed the side averted from the sun appears to be lumin-

ous likewise.

The great inclination to the ecliptic is not a distinguish-

ing property ofcomet?, neither is the feebleness oftheir light

or the smallness of their masses, as in all these particulars

they do not differ from the planets recently discovered.

The method of determining the elements of the pla-

netary orbits is not applicable to comets which are visible

only in a small portion of its orbits; •/ the most impor-
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tant elements, namely, the mean distance and the nlear

motion cannot be thus determined, it is necessary, in

order to obtain them, to avail ourselves of Kepler's laws.

In the methods made use of for determining the plane-

tary orbits, it is assumed that the planet has been ob-

served more than once in the same point of its orbit, from

which the periodic term and distance from the sun can be

determined. The sun being assumed to be in the focus

of the ellipse or parabola, which the comet is supposed to

describe, if the comet be observed in three different posi-

tions from three corresponding points of the earth, in the

triangle formed by lines joining the sun, earth, and comet;

we only know the angle of elongation at the earth, and

the distance of the earth from the sun, which is not

enough ; however, in the two triangles formed by lines

drawn from the sun to the observed places of the cornet,

we have not only the ratio of their areas from knowing
the times between the respective observations, but also

the areas themselves, the conic section described being

supposed to be known, and by combining these data we can

determine the orbit.

In this determination an indirect method is generally

employed as less complicated, and as more exact than the

direct determination of the elements, on account of the

errors of observation. In this way two of the unknown

quantities are assumed arbitrarily, by combining them

so as to satisfy one of the observations, with those ele-

ments, the other observations are calculated hypotheti-

cal ly, and then a comparison of the computation with the

observations will indicate the correction required for the

elements. Now, as the great excentricity of the orbit

justifies us in assuming that the orbit is q. p. parabolic ;

there is also this peculiar advantage in assuming them to

be such, namely, that the :;nality of the areas to the

times is reduced to the quadrature of the curve, which, in
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the case of the parabola is extremely simple ; besides as

all parabolas are similar curves, we can compute a general

table for all orbits.

Several indirect methods have been proposed for de-

termining the cometary orbits on the parabolic hypothe-

sis, and they only differ from each other in the elements

which are supposed to be known. The following is a

brief outline of the method which supposes the angle at

the sun to be known.

By a comparison of two geocentrick positions reduced

to the ecliptic, and by assuming the corresponding angles
of commutation arbitrarily, we can compute by means of

these angles, and of the given elongations and distances of

the earth from the sun at the times of the two observa-

tions, the curtate distances of the comet from sun at these

times, and also the heliocentric movement on the ecliptic,

or the angle contained between these distances j from

knowing the angles at the earth and sun, and also the

geocentric latitudes, we can determine the heliocentric

latitudes, and also the true distances of comet from sun at

the times of observation. With the heliocentric latitudes

and longitudes we can determine the inclination, the posi-

tion of the node, and the longitudes on the orbit ; .• we have

two radii vectores, and the angle contained between them .

hence we can determine from the nature ofthe parabola, the

perihelion distance, the longitude of the perihelion, the

area of the sector contained between the radii, the time

employed in moving from perihelion to the observed

places, from which we can determine the instant of the

passage through the perihelion ; if the time computed for

passing from one observed position to the other, does

not agree with the time elapsed between the two ob-

servations, the assumed angles of commutation do not

take place simultaneously ; %• one should be changed until

the computed time agrees with the observed, the other

remaining the same ; now all the elements of the orbit
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being determined, we can calculate for the time of the

third observation, the true anomaly conformably to the

parabolic hypothesis, and consequently the longitude on

the orbit and the distance from the sun at this time, then

from knowing the position of the node, and the inclination,

the heliocentric longitude and latitude, and also the cur-

tate distance of the third point from the sun may be de-

termined ; the longitude of this point and of the earth at

the time of the third observation, will make known the

angle of commutation at this time. Knowing this angle,

and the distances of the earth and comet from the sun, we

can compute the angle of elongation, which ought to be

equal to the observed angle ;
likewise the first angle of

commutation is also erroneous, •/ by assigning another va-

lue to it, the second commutation will be changed until

the first and second observations agree with the com-

putation; we should operate on the third observation

in the preceding manner, and if it does not agree with

the computation, the first angle of commutation should be

again changed. After thus making two hypotheses for the

first angle of commutation, their errors will indicate by the

method of interpolations the correction to be applied to

this angle, in order that the hypothesis should satisfy

the three observations. With those elements we can re-

duce any observation to its heliocentric position, from

which it is easy to calculate with the true anomaly the

time of any observation, which enables us to verify the

elements by all the observations which have been made,

and to correct them by taking the mean.

The element which in the case of the planets is the first

and easiest to be determined, namely, the periodic time,

is in the case of the comets the last and most difficult,

and cannot be found except by a computation on the hy-

pothesis that the orbit is elliptical.
—See Celestial Me-

chanics, Book II. Chapter IV. and Delambre, torn. III.

Chapter XXXIII.
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If, as stated in page 197, the elements of a comet

nearly agree with those of a comet formerly observed, we

can apply the calculus of probabilities to determine to

what degree of probability we can be sure that they are

exactly the same.

(d) The heat of the sun is as the density of his rays,

i. e. inversely as the square of the distance; now the heat

of boiling water is three times greater than that produced

by the action of the sun in summer on the earth ; and

iron heated to a red heat is four times greater than that

of boiling water, therefore the heat which a body of the

same density as our earth would acquire at the perihelion

distance of the comet, is at least 2000 times greater than

that of iron heated to a red heat ; and it is quite evident

that with such a heat, all vaporous exhalations, and in

fact every species of volatile matter ought immediately to

be dissipated ; the preceding is Newton's estimation, see

Princip. Math. Book III. page 509 ;
he assumes that the

comets are compact solid substances like the planets ;
this

he infers from their passing so near to the sun in their

perihelion without being dissipated into space.

Heat expands all bodies, but = additions of caloric do

not produce equal increments of magnitude, for as it acts

by diminishing the cohesive tendency, the greater that

tendency the less will be its effect; on the contrary, in

the case of gases, as no such tendency exists = incre-

ments of heat must necessarily produce equal augmenta-
tions of bulk. In general, when the density of bodies is

increased they must give out caloric. The quantity given

out by water when freezing is 140°, its capacity is by this

increased one-ninth; from this it has been inferred, that

the zero of temperature is 1260 degrees below the

freezing point ; but there are great discrepancies in the

results from different liquids.

The latent heat of the vapours of fluids, though con-

L L
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stant for vapour of the same kind and of a given elasticity,

still varies in different vapours ; thus, according to a re-

cent investigation, the vapour of water at its boiling point
= 967°. However, though this heat is different in dif-

ferent fluids, still the point at which all solid bodies, and

all those liquids which are susceptible of ignition, i. e. of

becoming heated so as to be luminous perse, is nearly the

same for all, and about 840° of Fahrenheit.

In permanently elastic fluids, the caloric is held so

forcibly that no diminution of temperature can separate it

from them.

The comet of 1770 is the only one which cannot be

computed on the hypothesis that it moves in a para-

bola.—See Vol. II. Chap. IV. Notes.

The nebulosity which environs the comet is its atmos-

phere, which extends farther than our atmosphere; it

increases according as it approaches the sun. The parts

which are volatilized become so very light, that the at-

traction of the comet on them is nearly insensible, so that

they yield without difficulty to the impulsion of the solar

rays ;
the orbit described by each particle must be an

hyperbola, for previously to the impulsion, as it described

a parabola, its velocity is to the velocity in a circle at the

same distance as ^2:1, and the impulsion of the

solar rays increasing this velocity, it will be to the ve-

locity in a circle in a greater ratio than that of V2 : 1, it

must consequently describe an hyperbola.

The tail is generally behind the comet; this is the cause

of the curvature which has been observed in it, and also

of the deflection towards that part from which the comet
is moving.

It has been supposed that the loss sustained by the

evaporation near the perihelion may be repaired by new
substances which it meets with in its route.—See Chapter
VI. Book V. Vol. II. Notes.
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CHAPTER VI.

The elements of the orbits of the satellites in the order

in which they are derived, the one from the other, are the

periodic time, or mean motion, the distance from the

primary, the inequalities and true motion, the inclination,

and nodes, and magnitude.
In determining the period from the interval between

two consecutive conjunctions, we obtain it as affected by
all the inequalities in the motions of the satellites; but

when it is obtained from two conjunctions, separated by a

considerable interval from each other, these inequalities

are in a great measure compensated. Observations with

the micrometer give, as was stated in page 96, the angle
which the radius of the orbit subtends at the earth, it

must change with the distance of Jupiter from the earth ;

but as the apparent diameter of Jupiter varies in the

same ratio, it is only necessary to measure this diameter

it the same time, in order to have the diameter of the

arbit relatively to that of Jupiter; and as a comparison of

hese diameters at different times gives this ratio always
he same, it follows that the orbit is q. p. circular. The
listances of the satellites might also be inferred from the

, greatest durations of the eclipses, and vice versa. Some
> »f the observed inequalities are only apparent, others are

eal ; if there is a difference in the periodic revolutions of

t he satellites, it must arise from a real inequality in the

] lotion of the satellite j but as the synodic revolution

• epends on the motion of Jupiter, there may be a differ-

< nee in the observed synodic revolutions, without there

I eing any inequality in the satellite from which it may
1 ave originated. When the computed time of an eclipse
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is corrected for the inequalities in the motion of Jupiter,
and also for the velocity of light, &c, then a comparison
of this time, with that furnished by observation, will enable
us to discover the real inequalities.

The cause of the deviations from mean motion arise

cither from the excentricity of the orbits, or from the

disturbing action of Jupiter combined with that of the

sun : the disturbing action of the satellites on each other

depends on their relative positions; its period therefore

will be the time at the end of which the satellites return
to the same relative position, with respect to the sun

; and
as the eclipses are the most important observations, and
those most commonly made, it is therefore the period in

which each satellite makes a complete number of revolu-

tions; but a comparison of the values given in pao-e 208,
shews that the shortest period which satisfies these condi-
tions for the three first satellites is 437 days. This period
is less exact with respect to the fourth satellite, as it per-
forms in 435 days 26 revolutions; however as its actions
are less than that of the other satellites, on account both
of its greater distance and smaller mass, and as the differ-

ence does not exceed one day and a half, it is assumed
that even with respect to it, the period is 437 days. As-
tronomers made use of this period to form empirical equa-
tions, for which those founded on the theory of universal

gravitation have been substituted. Their arguments are

composed of the position of each satellite with respect to
the others, the apsides of the third and fourth, and the
nodes of their orbits.

The orbits are unquestionably elliptic, however the el-

lipticity of the two first satellites cannot be observed. The
eclipses will be observed sooner when the planet is in its

perijove, and later in the apogove, than the computed
time, which will enable us to determine the position of the

apsides. If there was no penumbra, and if the diameter
of the satellite was insensible, the duration of the com-
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puted and observed eclipses would be the same; but as

these causes affect the observed time of commencement,
it is evident that it depends on the eye of the spectator,

and also on the goodness of the telescope.

The tables are so constructed as to give the eclipses in

the mean state of the atmosphere, mean power of the teles-

cope, and mean accuracy of vision ; besides what is men-

tioned in page 155, the proximity of the star to the horizon,

its proximity to Jupiter, or Jupiter's too great proximity to

the sun
; all, or any of these circumstances affect the ob-

servations. In order that the results given by stationary

observers should agree with those given by voyagers, we

should employ only telescopes of a medium magnifying

power.

At the extreme distance from the node at which an eclipse

can happen, the duration of an eclipse is the least possi-

ble, and would be always the same if the inclination was

constant; but as this duration is variable, for the 1st, 2d,

and 3d satellites particularly, it follows that the inclina-

tion is likewise variable.

The position of the node will be given from knowing
the duration of the longest eclipse ; the shortest observed

eclipses are at the limit, and will give the inclination
;

knowing the position of the node and inclination we can

compute antecedently the duration of any eclipse.

Calling M, M', M", the mean motions of the three first

satellites, and /, /', I", their mean longitudes ; we have

alsoM+2M"= 3M', and l+2l"= 3l'+ 180°; these equa-
tions are so exact, that the deviations from them, which

are observed, must arise from errors of observations, or

from the small oscillations which they make about these

mean values, see Vol. II. Chap. V.

It follows from this, that these three satellites cannot be

simultaneously eclipsed, for then we would have l=l'= l";

or 1+ 21"= 31', which, in consequence of the second equa-

tion, is impossible j and it appeals from the first equation,
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that if the first is true once, it will be always so ; it like-

wise follows, that the real inequalities of those three sa-

tellites must have precisely the same laws and periods.

The method alluded to in page 328 would evidently

give a diameter, as seen from Jupiter, smaller than the

actual magnitude. It has been suggested, that if in geo-

centric conjunctions of the satellites with Jupiter, the in-

stants of interior and exterior contact with Jupiter were

observed at immersion and emersion, we would have the

time which the planet takes to describe a chord equal to

its diameter; this will give the ratio of the diameter of the

satellite to that of Jupiter, if that observation in which

the ratio of the duration of the passage to that of the

immersion is the greatest possible, be observed.
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CHAPTER I.

(a) That which admits of the introduction of a finite

body has been called space ;
it is said to be pure if it be

totally devoid of matter. Whether there be such a thing

as any space absolutely pure has been disputed, but that

such a space is possible, admits of no dispute ; for if any

body be annihilated, and all surrounding bodies kept
from rushing into the space which this body occupied,

that portion of space, with respect to matter, would be

pure space. Pure space is therefore conceivable, and it is

conceived as having length, breadth, and depth. In the

notion of motion, as announced in the text, the author

assumes that there would be motion even though all the

other bodies in the converse were annihilated, but this

position is not acceded to by all philosophers. Berkeley,
for instance, thought that all motion was relative ; how-

ever, though with respect to the origin of our ideas of mo-

tion, his account is unanswerable ; nevertheless it must be

admitted, that a body might spontaneously produce motion

in itself; still we may venture to affirm with him, that as long
as the body would remain in absolute solitude it would not

acquire the idea of motion j but if other bodies be
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called into existence, while the body is under the influ-

ence of its own spontaneous energy, it certainly would

then acquire the idea of motion, from perceiving its

change of place with respect to those bodies; but as this

creation of bodies at a distance could produce no real

alteration in the condition of a body which existed before

them, if the body now perceives itself to be moving, we

may conclude that it was moving previously to the ex-

istence of those bodies, and that its motion was absolute.

(b) All cases of the equilibrium of forces acting on a

material point, may ultimately be reduced to that of two

equal and opposite forces, as when any number of forces

acting on the same point constitute an equilibrium, all of

them but one may be reduced to a force equal and con-

trary to this one, so that these forces are always as the

sides of a polygon, having the same number of sides

drawn parallel to their directions. (Note, the sides of the

polygon are not necessarily in the same plane.)

If three forces acting on a material point constitute an

equilibrium, they must exist in the same plane j four

forces acting in different planes constitute an equilibri-

um, when they are as the three sides and diagonal of a

parallelopiped respectively parallel to their directions. If

two equal and parallel forces act in opposite directions,

an equilibrium between them cannot be effected by the

introduction of any third force.

(c) It is evident from this, that in the composition of

forces, force is expended—in the resolution force is gained.

The two given forces into which the given one is resolved

are reciprocally as perpendiculars from the given force on

the directions of its components. The less the angle

made by the components, the greater will be the resultant,

therefore it is a maximum when this angle = 0, i. e. when

the components are parallel ; in this case it is easy to

prove that the resultant = the sum of the components,
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and that its point of application divides the line connect-

ing them inversely as the forces.

(d) Any force being resolved into three others, at right an-

gles to each other, as stated in page 225, the line represent-

ing it will be the diagonal of a rectangular parallelopiped,
of which the composing forces represent the sides, y
A, B, C, representing the composing forces,

^/ A*-f-B
2+ C :s'

will represent the resultant or diagonal ; and

A B C
^A3 + B J + C*' ^A* + Ba + C*' Va^F+C*'

=

the cosines of the angles which A, B, C respectively make

with VAa + Ba_
+~C* it is also evident that the sum of

•their squares = 1
;

if A', B', C be the components of a

second force parallel to the same rectangular coordinates,

the coordinates of the resultant of V A* + B2+C* = S,

and of Va^+B'HC'^S', are A+ A', B+ B', C+C,
respectively, therefore as these are the coordinates of the

diagonal of a parallelogram whose sides = /V/A2+B2
-f-C*

<v/ A'i + B'z + C'-% this diagonal must be the resultant of

the given forces S, S', and ifthe angle between their direc-

tions=A, we have S2+ S/a—2 S.S'. cos. a=(S. cos. a—S'

cos. b)
3- + (S. cos. a'—S'. cos. b'Y + (S. cos. a"—S'. cos. b"f

— S* + S'
a—2SS'. (cos. a. cos. 6+ cos. a', cos. i'+cos. a«

cos. b"), therefore cos. a = cos. a. cos. b + cos. a', cos. V

-{-cos. a", cos. b".

Note a, a', a", b, b\ b" y are the angles made by S, S'

with the rectangular coordinates. The value of cos.

a = 0, when S, S' are at right angles to each other; as

A+A', B+B', C+C, are the coordinates of the re-

sultant of S and S', A+ A'+A", B-^B'+B", C+C'+C",
are the coordinates of V, the l'esultant of S", and this

last resultant, y V will be as stated in the text, the dia-

gonal of a parallelopiped, whose sides are A+ A'+
A" + &c; B+ B'+B" + &c, C+C'+C" &c. ; V* =
(A+A'+A"+ &c.)

a+(B+ B'+B"&c.)
a
-j-(C+ C'+C"

M M
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+ &c.)
a and if m n p be the angles which V makes with

, , A+ A'+A"+ &c.
the axes, we have cos. m = —! —

, , cos. n =

B+ B'+B" + &c. _. C+ C'-f-C"+&c.
-, cos. p = we

v 7

;* v
have both the quantity and direction of the resultant.

The coordinates of the origin of the force S being sup-

posed to be A B C, if xy z be the coordinates of its point

ofapplication to the given point, the distance of the point

of application from the origin, as s =

V{x—A) '+ (y—3) *+ (*--C)
*

\- the force resolved

parallel to the coordinates a S^~A \ sfc^S.fc^
s s s

= („& = **, + **+**,) S.|,S.*

S. —, respectively, in like manner for a second or third

force S', S", S'.|i' S'.% or S." ?£-, S." $- &c. are the
bx by bx . by

forces S' S," parallel to x} y &c. •/ S. S. ^ is the sum of
ex

all the forces S S' S'', resolved parallel to x; now if u

be the distance of V the resultant of all the forces S, S', S",

&c. from the given point, V — will express the resultant
bx

- resolved parallel to x, and as by what has been already

established, this is equal to the sum of the composing

forces parallel to x, we have V. «- sc 2.& *-. ;
V. 22 =

bx bx by

S. S. «£ ; V. £ff s= 2. S.-=/ ; multiplying these equations
by bz bz

by bx by bz respectively, we obtain by adding them to-

gether V. bu = S. S. bs. If S, S', S", &c. are Algebraic

functions of S, S', S", &c. then S. S. & is an exact

variation.

(e) The quantity advanced in the direction of the force
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is termed its virtual velocity, in the direction of that force.

See Note (m) page 265.

In the state of equilibrium V= o, y S. S. Ss=zo, y when

a point acted on by any number of forces is in equilibrio,

the sum of the products of each force by the quantity ad-

vanced in its direction is equal to cypher. In this case

S one of the forces is = and direetly contrary to the resul-

tant V ofall the rest S', S", S"', &c. for from what has been

already stated, we have V'. cos. a = S'. cos. b -f- S." cos.

c + &c. but since S. cos. a -f- S.' cos. b -f- S." cos. c+&c.

=o, we have V. cos. a = — S. cos. a; in like manner it

may be shewn that V. cos. I = — S. cos. a', V cos. o =
—S. cos. a" y V/a = S* ; and a = 180— a, 1=180— a' he.

{/) If the resultant was not perpendicular to the sur-

face it might be resolved into two forces, one perpendicu-

lar to the surface, which would be destroyed by the reac-

tion of the surface, and the other parallel to this surface,

which, as it is not counteracted, would cause the point to

move on the surface, contrary to the hypothesis. The

re-action which the body experiences from the curve

or surface is = and directly contrary to the force with

which the point presses it ; y if R denote this reac-

tion, r being a perpendicular from the point of appli-

cation to the surface, we must have o = S S Ss +
R Sr, instead of the equation o = S S Bs. If we suppose

&r, By, 8», which are arbitrary, to belong to the surface on

which the point is subjected to exist, we have Sr = o; for

r i3 by hypothesis perpendicular to the surface, y R Sr

vanishes from the preceding equation, consequently the

position of the text is true, or in other words, in the case

of the equilibrium of a point, the sum of the forces which

solicit it, each multiplied by the space through which the

point moves in its direction, is equal to nothing j it ought
however to be remarked, that when the point exists on a sur-

face, the equation o =S SSs is not equivalent to three dis-

tinct equations, but only to two
j
for as the variations Sx, Sy,
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Bz, belong to the curved surface, one of them may be eli-

minated by means of the equation of the surface. Laplace
substitutes for Br its value N Bu, u being the equation of

the surface, and N being a function of x, y, 2,such that

(l)i+ (j)

*

+©*-^-» i
then lfx be Sl,pp°sed = to

N. R, the equation of equilibrium becomes o = S. S Ss

-f- X Bu ; in this case we may put each of the coefficients of

Bx By Bz = o, but still they are only equivalent to

two distinct equations, on account of the indeterminate

quantity X ;
the advantage of this expression is, that by

means of it we can determine X, and v — R, the pressure.

The equations of the equilibrium of a material point being

independent", two or more of them may obtain without the

others having place ; this is an advantage connected with

the resolution of the forces parallel to three rectangular

coordinates.—See Notes to page 249.

CHAPTER II.

(a) Let v be the velocity common to all bodies on the

earth's surface, and/ the force with which a given body M
is actuated in consequence of this velocity, and let the

body be sollicited^by any new forcef\ a b c being the

components of/ resolved parallel to three rectangular axes,

and a' U c' the components off resolved parallel to the

same, by the notes to preceding chapter F, the resul-

tant of/, /' = V(a+a')* + (6+ft')»+(c+c')».

(b) If v =/> (/), v' = /' (/'), V = F $ (F) ; the

relative velocity of the body resolved parallel to the axis
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c (a-\-a
f

).Y aV~ , . /N ,
.

-,-,
.

, , ~\ i

~F~~~f = (a+ ^ ^( F )— a
*tlf)'»

bl,t

as/' is very small relatively to J", we have by neglecting

indefinitely small quantities of the second and higher or-

ders, F =/+ — -* and (F) = (/). +

aa'4~bbf'4~a/ ,,,r\ i i ..•« .i i • ,——— . (jr ) V Dy substituting, the relative velo-

city of the body parallel to a = a'
ty f-\--\(aa'+W+ cc').

f (/), parallel to J = ^CQ-f-
|

(do* +W + cc')-f(/),

parallel to c = c'
<j> (/) + 1 (ffa'+ta'+cc'). f(/) ; if the

direction of the impressed motion coincided with a, then

the preceding expressions would become a' ($/+ — . $'

(/))jj.*V(/); j «'*'(/)

(c) If 0' (/ )
does not vanish, the body, in consequence

of the impressed force a' will have a relative velocity per-

pendicular to the direction of a, if b and c do not vanish,

i.e. if the direction of a does not coincide with that of the

motion of the earth ;
but as in all cases, those perpendicu-

lar velocities vanish ; it follows, that
<p' (/) vanishes and

therefore
<j) (/) is constant, consequently the function of

the velocity which expresses the force is/.

(d) If $ (/) consisted ofseveral terms, <j>'(f) could never

be= to cypher, if/ was not = to cypher ; if*/ v was not -h-Z

to/ ; <f> (/) consists of several terns, and also the velocity

of the earth must be such as to render
<p' (/) = o ; which

cannot be reconciled with the known fact, that the velocity

of the earth is different at different seasons of the same year

and at corresponding seasons of different years.

(e) Some philosophers hold that this discussion, as to the

•rrnality of the force to the velocity, is altogether super-

fluous, as we are not sure that forces such as we conceive



114 NOTES.

them, exist without our conceptions ; for what is termed

force is only an abstraction, which we make use of to en-

able us to subject the laws of motion to the calculus ;

the true law of nature is that discovered by Newton,

namely, that the velocity communicated by the sun in an

instant to the planets, is in the inverse ratio of the square
of the distances, and all his physical discoveries might be

deduced without using the term force instead of velocity ;

it follows from this law, that whatever is 44-1 to the velocity
follows necessarily the same — y so that if Newton assumed

that the velocity/ go vz
, he would have obtained the same

results, but then he should say, not that/but that ^/va-

ried as— .

d*

(f) If the spaces successively described in = times,

constitute an increasing series, the motion of the body is

said to be accelerated ; if they constitute a decreasing
series the motion is retarded ; in these cases the measure
of the velocity is obtained by determining the space which

would be described in a given time, if all causes of accele-

ration or retardation were to cease after the point attains

that position ; now as the change in the velocity may be

diminished indefinitely by diminishing the space, and y
the time in which it is described, if dv ds dt be the indefi-

nitely small increments or decrements of v, s, t, &c. the

spaces described in the times dt9 immediately preceding
and subsequent to the time in which the velocity is re-

quired to be estimated, are (vz±zdv). dt ; but as one of those

spaces is described with a greater and the other with a less

velocity than that with which ds is described, we have

(v+dv). dt> ds> (v—dv). dt; but when dv and y dt are

indefinitely diminished, the extreme quantities approach
within any assignable difference, y v. dt and ds, which

always exist between them, must differ by a quantity less

than any assignable difference y v = -5» whatever be
at
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the nature of the force ; hence if on an assumed line =

portions be taken representing the = intervals of time,

and if at these points of equal section perpendiculars to

the assumed line be drawn, representing the velocities ac-

quired at the corresponding moments, the areas formed by

connecting the extremities of the perpendiculars will re-

present the spaces, this area will be made up of a series of

trapezia, if the velocity increases per saltum j if however

the intervals of time be increased indefinitely, the velocity

will continually approach to that in which the variation is

continued, and the figure will be a nearer representation

of the space actually described : its limit is a curvilinear

area, on the base of which the elements of time are taken

the ordinates being -h-1 to the velocities; this limit differs

from the figure of which it is the limit, by a triangle un-

der one of the equal subdivisions of the base, which are

supposed to represent dt the element of time, and the dif-

ference between the extreme ordinates, hence when dt

is indefinitely small this difference vanishes.

(g) If the velocity receives = increments in = times,

i. e. if it be uniformly increased, the velocity is as the

number of = increments, or as the number of = portions

of time from the commencement of the motion, i. e. as the

times, y in this case, if on the line representing the time,

ordinates be erected, they will be as the corresponding ab-

scissa?, the velocity being supposed = to o, when the time

= o, and the locus of the extremities of these ordinates

will be a right line diverging from the given line at the

point where velocity and time = o, and the area of this

triangle at the end of any time will represent the space de-

scribed, and as the triangles representing the spaces de-

scribed in the given intervals of time are always similar,

the spaces described are as the squares of the times of

their description, or of the last acquired velocities, y the

spaces described in 1", 2", 3", &c. are as 1, 4-, 9, &c. and
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the spaces described in the 1st, 2nd, 3rd, &c. a moments

are as the difference of the squares of these moments

*, e, as 1 3 5 7 9, &c.

{It) If a body at the commencement is actuated by any
finite velocity, then the space described is geometrically

represented by a trapezium, one of whose sides is the

initial velocity, and the other an ordinate, = to the.sum of

this ordinate and of the ordinate which would express the

velocity of the body, had it fallen freely in the same time;

ift/ be the initial velocity, v = i/ z±zft •/ vt = v't-=±=.

ft* ft
z

J— v s the space described = v't -=±=. J—
; if the body moved& A

with a uniform velocity v during /, s, the space described

= vt. If it acquired the velocity v in the time t, by being

urged by an uniform force from a state of rest, s the space

described would be— • • 5 : s' '.'.2 : 1 .

2
'

(i) Let vt s represent the velocity, time, and space, and

/ the accelerating force = -, =— = — . *'- et as — =s —, /J °
t' P vt

' *

t
z 2s'

J

denoting the unit of velocity or the velocity generated in

ft
2

a unit of time, y s = J—
; vz = 2 f. s.

(k) The force acting parallel to the inclined plane being
to the force ofgravity which is constant, as h the height of

the plane to / the height, i. e. in a constant ratio, a body
moving down an inclined plane has its motion uniformly

accelerated, y if v' s' represent the spaces described by a

body descending down an inclined plane in any time /,

and v' the acquired velocity,f the accelerating force, we

have /'=/i.y; v^^.fti s'=Yy
^ = 2*'.i/; V V i

: : h : I j s' : s : : h : / ; \W = I then we have / = -J—
I 2

/ 2 2h
t -=z I. s/ —\ as—, expresses the square of the time ac-

quired in falling down the vertical, and as we have t
z =
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'_?; when this is = the square of the time acquired in

fk

falling down the vertical, we have Is — kz
,

.'. s = —, y if

a perpendicular be let fall from the right angle on the

plane, it will cut off a portion of the plane, which will be

described in the same time as the perpendicular height ;

and ifa circle be described on this height as diameter, it is

evident from what has been just established, that all chords

drawn from its extremity to the circumference, are de-

scribed in the same time as the diameter, y in = times.

(/) Let v' the velocity of projection be resolved into two,

of which one is vertical and the other parallel to the hori-

zon, and let e be the elevation of the line of direction, we

have v\ sin. e, t/. cos. e, for the velocity of projection esti-

mated in the direction ofx andy respectively ;
t/.cos. e is the

motion parallel to the horizon, 3/. sin. e—ft is the vertical

motion of the projectile, y if in the equations given in

page 416, we make v' = 0, we shall have for the height of

vn . sin. c , . 1/. sm.e c ,1 ,. c
ascent s = , and t = , for the time ot

2/ /
ascent, y —'—^-— for the time of flight ; to find the

horizontal range, the velocity 1/. cos. e, must be multi-

plied into 2/ or its equivalent 2 ,it y is equal to

y
,4

« sin 2<?—'—--—
; therefore it is a maximum when e = 45, and

or any elevations which are complements ofeach other, the

borizontal ranges are =, the coordinates of the place ofthe

jody for any time tt are x = v'. tcos. e, y= v'. t sin. e.—
—

, y as t is the same in these two equations we obtain by

?liminating it and substituting 2fh for t/
a

, y—x tan. c —
Tz——! which is the equation of a parabola, 4 // cos. 3eM cos. *e

N N
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is the principal parameter, and 4 h the parameter of the

diameter passing through the point of projection, hence

being given of x y e ht any three, the fourth may be found.

(m) Let the arc described, reckoning from the lowest

point = 5, the ordinate = y, and the vertical abscissa =
x, the origin of the coordinates being at the lowest point,

if b = the value of x at the commencement of the motion ;

v the velocity at the end of any time /, is the same as

would be acquired by falling through the vertical height,

7 . / ds
b— x, i. e. v = V

2g.{b
—

x)
— —-r ; see Note(#) •/ dt=—

ds ...-
, , the negative sign being taken, because s di-v
2g(b
—

x)

minishes according as I increases; but as ds =
Vdxz + dy* } y

z = Irx — #*, we obtain by substituting,

rdx , rdx .„ ,

ds = _
" dt = , = y if the

v 2rx—as* v (2rx—x* )2g(b—x)
oscillations are very small, x may be neglected rela-

tively to r. then the value of dt becomes ..

*

»

^2rx(2g{b—x)
1 /r — dx

=— . V - X /T
—= the integral of the varia-

2 g Vbx— x*
ft

2x b\
ble factor = arc (cos. =r —-— J= 7r, when we integrate

from x = b to x = o, •/ the time of a semioscillation

= \ it. V -;
g

{n) Hence it follows, that provided the amplitudes be in-

considerable, the time of oscillation is always the same,

when r and g are given, when these quantities vary the

time varies as v - i. e. directly as the square roots of the
g

lengths of the pendulums, and inversely as the square root

of the force ofgravity.
—See Note (s) page 355. As 3 ir, 5 7r,

&c. and in general any odd multiple of it satisfies the pre-
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vdx
ceding integral, of ,

—=
; it is evident that the body

I)PC ' C/«x7

arrives at the lowest point an indefinite number of times,

which are separated from each other by the time 7r v -!

g
hence it follows, that if all obstacles were removed, the

number of oscillations would be infinite and the time of

each =r.

The value of dt may be made to assume the form

/r — dx

Ybx—x* V{l—x)
2r

= (by developing the factor

(i

#\— i • •
\ i /r — dx

1 )
- in a series) \ v -•

,

2r)
' e V/,,? _g Ybx—x*

( l + x £.+Ill^l+ &c. V if
dx — be multiplied

by each term of this series the resulting terms will be of

the form —. ofwhich the integral when taken be-
Vbx—x*

tween the limits x = o, x = b, is

(ib)
m

. w, 1. 3, 5, &c. (2m—3}. (2m— 1) ~ u . , .r ..^—
,

'

a
v ^ ' from which if m be

1. 2. 3 ••»*

made successively =0 1, 2, &c. the value of t be-

comes T,i,yL.(l + (i)-' + ,„(
'4-)^-)

):g \ 2.r \2. 4 — 2w /

bm. \
m

'

- + &c.
J

; b is the versed sine of the arc described,

which when it is inconsiderable may evidently be ne-

glected, in this case the value of if is the same as was ob-

tained in the preceding page j when great accuracy is re-

quired, the two first terms of the series are retained, in

that case the aberration from isochronism varies as the

square of the sine of half of the amplitude of the arc de-

scribed.
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(o) As r the time of fall in the vertical through a space

= to half the length of the pendulum = vL. we have

T : t '. '. 7r.v -• v - : • 7T : 1
;

if t' be the time employed
8 g

to describe the chord of the indefinitely small arc, as this

time= the time offalling vertically through the diameter 2r,

see preceding Note v it is = v —
,
v — : f 11 -.*/ - :

g 2 2 g

V —
, i. e. 7r : 4 or as the periphery of a circle to four

times the diameter; hence it is evident that the chord is not

the line of swiftest descent, see Note (p).

Naming w = the angular velocity, we have»=r, w : %•

to = -= f£±
~
^—- but if a be the angular distance

r r

from the vertical at the commencement of the motion, and

the angular distance at the end of any time t, we have b= r.

cos. a, x=r. cos. 9, •/ w= v (-- (cos. $—cos. a). The

acccelerating force in any point, = the force of gravity re-

solved in the direction of the tangent; •/ if any vertical line

be assumed to represent the force ofgravity, the accelerating
or tangential force oc this line multiplied into the sine of

the angular distance from the lowest point. If the body,
instead of falling freely, had a velocity at the commence-

ment of the motion due to the height //, then the velocity

at any point of which the height = x, is ^2g(h-\-b
—.r)and

= o, when x — h -j- b, •/ when the body attains a height
= h -f b, it ceases to rise

;
v will never vanish when

7i 4- b is > than the diameter which is the greatest value

ofx} y the body will gyrate for ever with a variable velo-

city, the greatest being when at the lowest, and the least at

the highest extremity of the vertical diameter. When a

bodyM attached to a string describes an arc of a curve, the
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tension at the point to which the string is attached,

arises from the centrifugal force and the force of gravity

resolved in the direction of the string ;
if the arc described

be the arc of a circle, the part of the force ofgravity which

acts in the direction of the string = g-(-^-)>
r being the

length of the string, and x the distance above the lowest

point; the centrifugal force s — = 2g.(^—j ;
this al-

ways acts from the centre ; •„• the whole tension = Mg.

(
)

; if M falls from an horizontal diameter, r=r&,

and the tension at any point = 3Mg.(-^— J,
i.e. three

times the effect of the weight resolved in the direction of

the radius vector. If the pendulum fell from the vertical

position freely, then b= 2rand •.• the tension= Mgr^-^-^ ),

and when x = o, it is equal 5Mg. or five times the weight ;

(rJL<2b

— 3x\—-
J
= Mg we obtain x= %b, the value

of# when the tension= the weight; when x = J
lJl— theb
3

tension = o; but as x can never exceed either b or 2 r;

when it is respectively= these quantities, we have b= ?; b=
—

, lib Z. r then the force of gravity resolved in the direc-

tion of the string is directed from the centre, .*. this

point then suffers a tension from both causes ; if b >
—

, the centrifugal force is throughout > than weight, *.•

ss

the whole tension can never vanish, but if b is notZr or>—
2

the tension may vanish ; at this point the body will

quit the circle, and as its direction will be that of a tangent
to this circle it will describe a parabola. In a cycloid if
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a body falls freely from the extremity of the base, the

pressure arising from the weight resolved in the direction

of the string = g. ——.— , and likewise that produced byv a

the centrifugal force = —glg x ) __ „— — hence6
2.Va(a—x)

&
V^~

at the lowest point, the entire tension = twice the weight;
in any other point the entire tension is to weight, as twice

the cosine of the inclination of the tangent to the horizon

to radius; hence, when the body falls from the horizon-

tal base, they are equal at the point of the cycloidal

arc where the tangent is inclined at an angle of 60° to the

horizon.

( a ) Calling this space x, we have 2x '.'. r '.'. ir*.- : - • •

g S

7r
s

: 1 j the equation T = 7r.v i. gives likewise a very ex-

8
act measure of g, for if/ be the length of this pendulum

vibrating seconds, we get g = 7r
a
./, which expresses the ve-

locity generated in one second by the space which would

be described with that velocity continued uniformly for that

time, the space described by a body falling from rest in a

second is one half of this, or it
31

. — ; substituting for 7r, I

their numerical values given in the text we obtain 3m,66107

for the space described in the first second.

As the sine of the angle which the tangent at any

point ofa vertical curve makes with the horizon,= — , the
as

accelerating force along the tangent = g.— =
^--s;OS ZtCL

(when the curve described is a cycloid, in consequence of

the equation of the cycloid s
z
=bax\ the preceding is the

expression for the accelerating force, in any curve what-

ever which renders it tautochronous, •/ this force is at each

instant vrl to the length of the arc to be described, in order
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to arrive at the lowest point of the curve ; and conversely

if _ —
As, it is easy to shew that when the curve is one of

ds

single curvature existing in a vertical plane, its equation is

that of a cycloid, for by integrating the preceding equation,

and then eliminating s between the integral x= i As*, and

jx 1 dxz 1— = As, weobtain-—.— = dsz = dy
z + dxz'+dz

i

;
V-j-

*

= s
z
, if the curve is one of single curvature inclined to the

horizon at an angle = 0, then if y' x' be the coordinates

in that plane, we have y
f

—yt x=x'. sin. 0, consequently

the equation ofthe curve is—-. x\ sin. = s
2

;
note the re-

lation — = dsz = generally dxz
-\- dy

z + dzz
, and

as——, x=sz
is independent of ft y, these quantities may

vary according to any law whatever, which satisfies the equa-
tion dsz— dxz

-\-dy
z
-{-dz

z
; v any curve of double curva-

ture which arises from wrapping a cycloid around a vertical

cylinder ofwhich the base is a continuous curve, will satisfy

the preceding conditions, and vbe tauto chronous; and con-

versely such a curve so unfolded as that it might entirely

exist in the same plane would continue to possess this pro-

perty, and v from what has been stated above, would ne-

cessarily be a cycloid. We might investigate a priori, the

time necessary for a body to describe any portion of a cy-
cloidal arc on the hypothesis, that it moves with an initial

velocity represented by Wgh, for let h' represent the verti-

cal ordinate at the commencement of the motion, the

origin being as before at the lowest point, and x the ordi-

nate after any time /, we have vz = 2g{h-\-h'— x); v dt =

— but as ds—dx.w - by substituting we haveV %(A+ A'—x)
x

dtzz— ^/ ±_. £ -i •/ integrating we obtain tzz.

2g(*(h+h'-*))
b
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(—)
2 arc

[cos.
=

(h-\-h
r
)

"^ ^' as ' =0 wnen x= ^'i

C = — (
—

J

2
, arc (cos. =

~
r ] ; and when x=o, i e, at

\2g/ \ h'+hJ'

the lowest point / 3= (—)

2
« (7r— arcfcos.

—
j;if

//—

o i.e. if the initial velocity vanishes t=.ir.(— \% v asAdoes

not occur in this expression, the time is independent of the

amplitude of the arc described ; it appears from a compa-
rison of this value of t with that given in page 418, that

the oscillations in a cycloid are isochronous with the indefi-

nitely small vibrations in a circle, of which the radius is

equal to twice the axis of the cycloid.

Huygen's contrivance depended on the known property

of cyloids, namely, that their evolute was a curve z: and

similar to the given cycloid, hence it follows, that if two

metallic curves, each consisting of an inverted semi cy-

cloid with an horizontal base touched at their upper ex-

tremities ; and if at their point of contact, the thread of

the pendulum was attached (its length being equal to

either of the semi cycloids,) when it is enveloped on the

curves, its other extremity will trace a curve = and simi-

lar to the given curve, having its axis however in an op-

posite direction.

if) From the times of vibration and lengths of these

pendulums being the same, the times of falling down the

= axes are the same, v all bodies falling freely are equally

accelerated by the force of gravity.

It is easy to shew that the time of describing the chord

of a semi cycloidal arc is to the time of describing the

arc, as the chord to half the base of the cycloid, which is

evidently a ratio of major inequality.
—See Note (p), page

425.
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(p) In investigating the nature of the curve of swiftest

descent in a vacuo, it is easy to shew that if the entire line

be supposed to be described in the shortest possible

time, so any portion of this line intercepted between

two assumed points is described in a less time than

any other curve joining these two points ; hence if xy be

the vertical and horizontal coordinates of any point,

reckoning from the point whence the body has commenced
to move, s the corresponding arc of the curve, the time of

describing ds = .in like manner ifa point indefinitely
*2gx

near to the first point be taken whose coordinates are 4/3/and

the corresponding arc described from commencements',
wehave x' zz x -\- dx, s'= s-{-ds, and the time of describing ds'

ds'=
, •/ the time of describing the entire arc made up

^2gx'
° V

of dY-{-ds= — -f- — , therefore we have o =
V2gx V2gx'

§
(
— + ), but from the conditions of the

\^2gx ^2gx't

problem x a/areindependent of these variations '.'Sx,$x'=o,

and consequently
*

+ -
' = o ; and as dx </a/have

no variations, g. ds =S.d ^dy*-\-dx*
— dl' \

" dy
, &c. v

ds

by substituting we have -2-—=d + -*— — = o, but du

-f- di/ is constant, therefore 3 dy zz — § dy', consequently

= 0, i. e. d. ( '" \ =0, (for theU-JV) =0, (fo

ds.^x ds.^x' ^ds^x

two points xy, x' y', are continuous,) and ^__=C; now
ds.^x

as V- is the sine of the angle which the tangent makes with
ds

o o
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the axis of x, when the arc is horizontal, this angle is

right, and V ____=: C, (a being the value of y at this

v a

point,) V — = V - by squaring and substituting we get
ds a

dy\ (\ --)= dx* - v dy - dx. —- and ds =

dx V —-— '.• s = — 2 V'

a(a
—

x)-\- C ; but when s=o,
a — x

x = o, v C = 2a, and s = 2a — 2 ^a(a— .r), which is

the equation of a cycloid, of which the axis is a, the arc

being measured from the horizontal base.

If the curve is not required to pass between two given

points, but between two given curves, then it would not be

difficult to shew that the required curve is a cycloid meet-

ing the two given curves at right angles.

(5) In an indefinitely small portion of time, the quan-

tity by which the body is deflected from the tangent to the

circle, which measures the centripetal and consequently the

centrifugal force, is the versed sine of the arc described j

and as this is the space which the central force causes a

body to describe, the force of gravity will be to the centri-

fugal force as the space described, in consequence of the

action of gravity in this time, to this versed sine.

(t) Calling f the accelerating force, we have f =
2 dr j

dsz r ds* .' .ds
.
- v2

.
.«

;
dr — .'•/=-— but —- = v vfa— ; the

dt% 2. r
' J

dt*r dt
J

r

curve described being a circle in which the deflection from

the tangent is always the same, the force acting on the point

is a constant accelerating force ; hence as v 3,

always

=2g/i, we have — —
f z=. -2- and *£ = — which gives ge-

r r g r

nerally the relation between the centrifugal force in a

circle and the force of gravity, and they are = when h =

-
; i. e. the body must fall through half the radius in order

3S
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to acquire the velocity which renders the centrifugal force

equal to the gravity; if P 1= the time of revolution we have

w=
-p- '•/ = "pr*

thls exPression gives ftjftfo =

2^ for the ratio of the centrifugal force to the force of

gravity at the equator, and because when r is given, f
varies inversely as Pa

,
if P' be the time ofthe earth's rota-

tion when the centrifugal force = the force of gravity, we

have P* : P'* '.: 289 : 1 therefore P' = —
.

17'

hence if the earth revolved on its axis in the 17th part

of a day, z, e, in 1
A
,
24/ 28|" the centrifugal force would

be equal to the gravity. See Notes to Chapter VIII. Vol. II.

It follows from the expressionf = —]L- , that the cen-

trifugal force on the earth's surface is greatest at the equa-

tor, and that it decreases as the cosine oflatitude; however as

its direction is inclined to the direction of gravity it is not en-

tirely efficacious at any parallel, and by a resolution offorces

it may be shewn that the efficacious part is to the whole cen-

trifugal force at the parallel, as the cosine of the latitude A

to the radius, and therefore to the centrifugal force at the

equator as cos. X 2
: 1 j the part of the resolved force

which acts perpendicularly to the direction of gravity,

and is therefore inefficacious, varies as sin. A. cos. A.

(u) The force which is in equilibrio with the centrifugal

force is v the measure of the pressure arising from the

tendency of the body to recede in the direction of the tan-

gent; hence, by note (/) it is —-=—
; (r being the radius

of curvature,) the effect of the part of the force re-

solved in the direction of dr is therefore to pro-
duce a continued change in the direction of the mo-

tion ; and the effect of the other part is evidently to acce-

lerate or retard the motion of the body, its variation =

. s/ 1 — ^p p being the radius vector.
P
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(v) Calling dp the part of the radius vector intercepted

betwen the curve and the tangent, ds the arc and c the

2do ds2"

chord of curvature, we have f = ~?-j but dp z= —J
dt

2- v
c

ds
1" v 2"

f = -——= —
, this expression is general, and true inde-

pendently of the equal description of areas ; on the hypothesis

that the areas are -H-l tothetimes,uco_, p being a perpendi-

cular let fall from the centre of force on tangent, and • •

f en which is one of Newton's expressions.J
tf

1

. c
v

Let x be the space through which the body should fall

to acquire the velocity in the curve, the velocity acquired
in falling through dc is to the velocity with which the arc

is described, as 2dc : ds ; and dc : x '. '. as the square of

the velocity acquired in falling through dc to the square of

the velocity with which dc is described, *.* dc.x '. '. bde2 : dsz

•/ x — = _, i. e. a body falls through one-fourth of

the chord of curvature to acquire the velocity in the curve.

(v) It is by taking the function of the radius vector,

which is equal to this limit, that Newton determines the

expi'ession for force in conic section,, spiral, &c, see Prin-

cip. Math. sec. 2 and 3. It would not be difficult to shew

by reasoning precisely similar to that in pages 24-9,

250, that if a body is attracted to two fixed points

which are not in the same plane as that in which it moves,

the body will describe = solids in equal times about the

line connecting the attracting points.

The proposition established in page 246 may be thus

d^x d-
2,

1]

proved, by what is stated in page 249, X= » Y s
'

,1 ' J l a
dt z dt

2-

dz zZ = -—
; multiplying the first equation by y and s, the

second by x and z, and the third by x and j/,
we obtain by

subtracting, gf.*
-

<J» ,
= Y.* - X* g?.* -*fa
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dz z d*x= Y. z - Z.j/, -^.x
- —. a = Z.x- X*, by integra-

ting we obtain
dV'x - dx-y = C +/( Ya?-Xv) dt : $L*-~

but when the force is directed to a fixed point, which is the

origin of a; y z,{Yx— ~Xy),(Yz— Zy),(Zx— X#), are respec-

tively = o, see Chapter IV. Note (h), •/ dyx—dxy = C.cfr*

a constant quantity, but this quantity is evidently = to the

projection of the element of the area on the plane x y, for

let p be the projection of the radius vector, ip the angle

which it makes with x and y, we have x = p cos. ip,y = p

sin. \pi y xdy—ydx—p~. dtp, which is the element ofthe area.

The quantities C (7 C" depend on the nature of the curve

described. In the case of a conic section, origin being
in the focus, they are respectively -fr-1 to the cosines of the

inclinations of the planes xy^x^yz^to the plane in which the

body moves, multiplied by the square root of the parameter.

Multiplying each of the preceding equations by the va-

riable which does not occur in it, and then adding
them together we obtain the equation o= Cz-\-C'y+C"x,
which shews that when a body is acted on by a force di-

rected to a fixed point, it will describe a curve of single

curvature.

(x) By referring the position of a point in space to

rectangular coordinates, every species of curvilinear motion

may be reduced to two or three rectilinear motions, accord-

ing as the curve described is of single or double curvature,

for the position of a point in space is completely determined

when we can determine the position of its projections on

three rectangular axes, each coordinate is the rectilinear

space described by the point parallel to the axis to which

it is referred, it will y be some given function of the time ;

if we could determine these functions for the three coordi-

nates, the species of the curve described would be given, by

eliminating the time by means of the three equations be-
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tweea the coordinates and the time. The space s being

considered a function of the time / it is easy to shew that

ds d2s
the velocity is=—,and/theforceis -^-lto—, for t receiving

the increment dt, then 5 =
(f> (/) becomes s' = ${t-\-dt) and

ds j* 1
d?s 7 ,2 . d 3s— dt + —

„ dr + -^

sidered as indefinitely small, in which case we can consider

ds
the velocity as uniform and the force as constant, —- being

dt

d2
s

the coefficient of dt expresses the velocity, and —
being the coefficient of dt

2
", it is -ff-1 to the force ; •.* tf

the action of the forces soliciting the point should cease

dz
s

suddenly would vanish, and the point would move

dz
s

with an uniform velocity, if instead of vanishing
—-

d 3s
became constant, then —r and all subsequent coefficients

dP

would vanish, and the motion of the point would be com-

posed of a uniform motion and of a motion uniformly ac-

celerated, both commencing at the same instant ; now if /
represents the force, it is evident that f.dt — dv, =

d
<h __ dW

'

dt dt. i

(y) Let PQR represent the resultants of all the forces

which act on the point parallel to x y z respectively, we

have ^L
= P, ^1

= Q, ^L
-

R, consequently if the

point was actuated by the forces

- d.^ + F;-d.f-+Q;-^+Rdt dt dt.

they would keep it in an equilibrium j hence from what

has been already established in Notes, page 354-, we have
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(,.|-p).
& +

(
rf

.|-Q). S, + 0,|-R). &=o;

if the point be free we shall have, as is stated in the text,

the coefficients of&r, Sy, Szt separately =o; i. e. —-= P;

—z = Q _^ r: R ; but if the point is constrained to
dt* dt~

move on a curve or surface, by means of the equations to

this curve or surface, we can eliminate as many of the

variations &r Sy $z as there are equations ; the coefficients

of the remainder may be put= to cypher ; it appears from

this process, which is that made use ofby Laplace in his Ce-

lestial Mechanics, how the laws of the motion ofa point may
be deduced from those of their equilibrium : we shall see in

the sixth chapter that the laws of the motion of any system
of bodies may be reduced to those of their equilibrium ;

if P Q R are given in functions of the coordinates, then

by integrating twice we obtain x y z in a function of the

time ; two constant arbitrary quantities are introduced by
these integrations ; the first depends on the velocity of the

point at a given instant, the second depends on the po-
sition of the point at the same instant : if x y z came out

respectively = a.f (/), b.f{t), c.f(t), the point will move
in a right line, the cosines of the angles which it makes

with x y z —
a b c x1
7 "-" -' = -

, —7===. ; theVa a + 62 + c* *V + b2 +c*' V a * + fr+c
2"

constant quantities a b c depend on the nature of the func-

tion/^), if/(/) = t then a b c represent the uniform ve-

locities parallel to xyz, and the uniform velocity of the

point = *'a2 +b2
'+c

3'

; if/*(^)= /
2

; a be are proportional

to the accelerating forces parallel to a b c, and the

point will move with an uniformly accelerated motion re-

presented by V^~fbr+cTJ \ix= a'.f(t) + b' F(t); y=
cf(t) + d. F (0» z = ef{t) + g. F (t), the path of the

point will be a curve, however it will be of single curva-
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tion ;
for by eliminating t we obtain an equation of the

form A .r + B 3/ + C z = o, which is that of a plane ;

the simplest case of this form is xzza't-\-b't% y—c't-\-d'f,

z—e't-\-g'f ; eliminating £ between the two first equations

we shall obtain an equation of the second order between x

and j/,
which is evidently a parabola from the relation

which exists between the coefficients of the three first

terms. Ifx — f (t), y = F(/) z— $ (t),
all the points in

the curve will not exist in the same plane. The law of the

force being given, the investigation of the curve which this

force causes to be described, is more difficult than the

reverse problem of determining the force, velocity, &c. the

nature of the curve being given, as the integrations which

are required in the first case are much more difficult than

the differentiations which determine the force and velocity

in the second. It may be remarked here, that the num-

ber of the equations of condition of the motion of a mate-

rial point is necessarily less than three j for if there were

three equations of condition between the coordinates x y z9

it is evident that if these equations were independent of

the time, their resolution would give particular values for

each of the coordinates, •„• the point could not move ;
and

if the equations contained the time the values of xy z are

given in a function of the time, so that the motion of the

point being determined a priori by the equations of con-

dition, it cannot be modified by any accelerating force ; if

there were more than three equations of condition their

simultaneous existence would imply a contradiction.

(z) As Sx By §z are arbitrary they may be assumed = to

dx dy dz respectively, in which case we have

d.
dJ- dx+d.^- dy+d.—dz = Pdx+Qdy + B.dz}
dt dt dt

V by integrating **+*£+*?
= C + 2/(P<fc+Q4H-

Rr/z); if this integral =f(xy z), then v" = C+f(xyz)
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let A be the velocity corresponding to the coordinates

a be, then A2 = C + 2/ (a b c), y v
2 - A2 = 2/ {xyz)

— 2f(abc), i.e. the difference of the squares of the ve-

locities depends on the coordinates of the extreme points

of the line described, y is independent of the line de-

scribed ; so that when the point describes a curve, the

pressure of the moving point on the curve does not affect

the velocity. The constant quantity C depends on the va-

lues of wand ofx y z at any given instant ; when the moving

point describes a curve returning into itself, the velocity is

always the same at the same point, and if the velocities of

two points ofwhich one describes a curve while the other de-

scribes a right line, are equal at= distances from the centre

offorceatany given instant, they will be equal at all others

distances
;
if the force varies as thewth

power of s the distance

from the centre, then/ (xyz)= sn+1 ,-.-v
l— A 2=sre+I — an+I ,

and 2dv. v— (n-f-1). s
n dst v by erecting in the line drawn

from the centre ordinates =1 to s
n

, the resulting figure

will represent the square of the velocity, when n is positive,

this figure is of the parabolic species, when it is negative it

will be of the hyperbolic species ;
if Pdx + Qdy + Rdz

i * A'o- i .i dV dQ dP dR Q ,

be an exact differential, then =——
, =—, &c. and

dy dx dz dx

P Q R must be functions of x y « independently of the

time; now if the centres to which the forces were directed

had a motion in space, the time would be involved, and

V Pdx + Qdy -j" Rdx would not be an exact differential ;

if P Q R arose from friction or the resistance of a fluid, the

equation Pdx + Qdy -f- Rdz would not satisfy the pre-

ceding conditions of integrability, for as in such cases

P Q R depend on the velocities— -¥ —
, Vdx + Qdy -f-

dt dt dt

Rdz cannot be an exact differential of x y % considered as

independent variables, consequently in order to integrate,
we should in the expression Pdx + Qdy + Rdz substk
tute for these variables and their differentials, their values

P P
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in a function of the time, which supposes that the problem

is already solved, •/ when the point to which the force is

directed is in motion, or when the force arises from fric-

tion or resistance, the velocity involves the time and

Pdx + Qdy + Rdz is not an exact differential. When
a point moves in a right line, the velocity is = to

the element of the space -f-ded by the element of the

time, i. e. v = dxz
-{-di/-{dz

2'

tn js js ajso true for"

dt

curvilinear motion, for if P Q R should suddenly cease,

the velocity in the direction of each coordinate is uniform

and s — •— respectively ; therefore v the velocity of
dt dt dt

l J J

the point will be uniform and its direction rectilinear,

i. e. v = dl- ^dxt+dyt + dz* . the rectilinear direction
dt dt

is that of the tangent, for if A, B, C, denote the angles

which this direction makes with x y z, we have

k ds A dx i t, ds
v. cos. A =— . cos. A = —

; and v cos. 13=—• cos.
dt dt dt

B =^, v. cos. C = ^f.cos. C = d-l V cos. A= ^,cos. B
dt dt dt ds

=r JL, cos. C = — which are the expressions for the
ds ds

angles, which any tangent makes with the coordinates, v
the tangent coincides with the line along which the point

would move if P Q R should suddenly cease.

If the point moves on any curve whatever, the centri-

fugal force =-, see Notes, page 428, and as this force acts

in the direction of a normal to the curve, if all the accele-

rating forces which act on the point be resolved to two, of

which one acts perpendicularly to the trajectory, and

the other in the direction of the tangent, the resul-
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tant of the first of these forces and of —
,
is the entire

r

pressure of the point on the curve, and the resistance of

the curve is an accelerating force = and contrary to this

resultant, denoting the normal force by L, if A', B', C, be

the angles which it makes with xy z respectively ; by the

Notes to page 431, we have-— =P+ Lcos. A',—M —F B
dt* 'dt*

d*zQ+ L cos. B'3
,
——=R-f L cos. C; but since the normal
dt*

is perpendicular to the tangent we have — cos. A' -j- —
as ds

cos. B' +— . cos. C = o, we have also cos. *A'+ cos. *B"
ds

-f cos.
2
C'=l, y between these five equations we can elimi-

nateA'B'CL, and the resulting equation, which as of the

second order being combined with the equations of the tra-

jectory, which are given in each particular case, will de-

termine the coordinates x y z in a function of the time
;

if the three preceding equations be multiplied by dx dy
dz respectively, and then added together, we obtain

d*xdx+d>ydy+d*zdz = P<fa+Q^+R&+L (cos. A,

dx-\-cos. B'. dy-\-cos. C. dz) as the latter part of the se-

cond member = o, we have, by substituting for the first

member its value,
'—*' ' = P. dx + Q.dy + R.dz ; y

dt*

— = P.—+ Q.^8 + R.— i. e. the accelerating force
dt* ds^ ds ds

*

resolved in the direction of the tangent, is equal to the se-

cond differential coefficient of the arc considered as .

a function of the time, which is an extension of what

has been established in Notes, page 430 ; it likewise ap-

pears that the force in the direction of the tangent is

totally independent of L
;
and also that when there is no
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d* s

accelerating force, —- = o. It appears from what has

been just established, that when the equations of condition

of the motion of the material point are independent of the

time, the resultant of the forces which are equivalent to

the equations of condition is normal to the curve de-

scribed by the point, for in that case P'dz+Q'dit+ R'dzzzo;
P' Q' R' being the resultant of these forces resolved

parallel to xyz respectively; but if these equations
are functions of the time Vdx + Q'dy + R'dz is not

= o. If V denotes the resultant of all the accelerating
forces which act on the point, and the 6 angle which

this resultant makes with the normal, V cos. ex-

presses the resultant resolved in the direction of the nor-

mal, and when the curve described is of single curvature,

v *
• v*

|-V cos. 0. expresses the entire pressure = L; = — -f-
r r

P. Hr + Q-— j '/if the equation of the trajectory be given,
ds ds

and also the values of P, Q, in terms of x y, we can deter-

mine v, and y L, and substituting for L this value,

dix d2u
in the expressions for ,

—-^- &c. we mightby integrating,

determine the position of the point at any given moment,
and also its velocity. As the coordinates are arbitrary, ifwe
make one of them to coincide with the normal to the curve,

denoting by A', B', the angles which the radius of the oscu-

lating circle makes with the normal and with the coordi-

nate, which is in the plane of the tangent, and by m, «, l
t

the angles which V, the resultant of all the forces, makes

with the three coordinates, the force expressed by
v * v a v *— resolved parallel to these coordinates = — cos. A,— .

cos. B, —# cos. 90°
; and V resolved parallel to these

coordinates = V cos. m, V cos. n, V cos. /, and as

A m denote the inclination of the radius of curva-
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ture, and ofV to the normal, — . cos. A + V cos. m ex-
r

presses the pressure of the point on the surface, V cos. n

+— cos. 90° expresses the force by which the point is

r
'

moved; y Vcos.Z + —. cos. B = the motion perpendicu-
r

Jar to the tangent= ; hence, if VI v and r were given, we

might determine B and y the inclination of the plane ofthe

osculating circle to the tangent plane, and when there isno

»*
accelerating force, — cos. B = o, i. e. B= 90, or the plane

of the osculating circle is at right angles to the surface

— . cos. B=— sine of the inclination of plane of oscu-
r r

*

lating circle to the plane which touches the surface.

(aa) Let the perpendicular distances of the given points

from the plane which separates the two media = a, a', if

through these two points a plane be conceived to pass per-

pendicular to the plane surface which separates the media,

and if the line described be supposed to be projected on

this plane, then, since the extreme points of this line are

given, a a' the perpendicular distances of these points

from the separating plane will also be given ; and also c the

intercept between these perpendiculars reckoned on this

plane, let a?, x\ denote the angles which the projection of

the line on the perpendicular plane makes with the per-

pendicular to the separating plane at the point, where

the projection of the line described meets the separating

plane ; then we have evidently c = a tang, x -\- a! tang.

y, if# denotes the perpendicular distance ofthe point where

the ray of light meets the separating plane from its pro-

jection on the perpendicular plane, and y y' the distances

ofthe given points from this plane, we have evidentlyy—

s/z* -}-

aZ
, y = y (z

2
-\-

g2
);

but as the den-
cos. *x V

'

cos.
%
x''

sity of the two media through which the light passes,
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though different, from one to the other, is uniform for each

of them respectively ; n n' the velocities in those media

will be uniform*, \-fvds=nyh the partof the integral of

v d s which appertains to the first medium, and n' y' the

part of this integral which appertains to the second, con-

sequently by Note (bb) ny-\-n' y' = fv d s is a minimum,

i. e. n. is/ ~*
_j.

a
-f n w z 1

-f-
a

is a mini-
cos. 2x cos.

z
x'

mum with respect to z, x, x', of these x x/
are connected by

the equation c= a. tan. x-\-a'. tan. x'\ '/in the first place the

differential of the preceding function with respect to z=o,

dy f dy' , dy z dy' z nz . n'z
t. e. n. JL+n'.^- = o, but /=-, f-=-j> V —+—rdz dz dz y dz y y y'
= o, but as this equation cannot be satisfied unless z = o,

it follows, that the track of the luminous ray coincides with

the plane perpendicular to the plane separating the sur-

faces, and passing through the two given points ; therefore

. . , an . a' nf
, . , . .

ny+ny =
-\-

. which as it is a minimum,
cos. x cos.ar

an. sin. x..
,

a'n'. sin. x' . , , va .• ,,.dx + —dx = o, but differentiating
cos.

zx cos. z
xf

the equation c = a. tan. x -f- a', tan. x' we obtain

a. dx , a', dx' ,
.... dx' • j

h »= e>, hence eliminating between these
cos. zx cos.

2x dx

two equations we find n. sin. x= n' sin. a/; but x is the angle

of incidence, and a-' the angle of refraction, 'kj/jos*? sines

are therefore in a given ratio. If the ray of light instead

of penetrating the second medium is reflected back, then

the velocity remains the same during the entire route, and

fvds becomes v/ds, which is by hypothesis a minimum :

therefore the track of the ray is the shortest possible,

consequently it makes = angles with the reflecting surface,

V the angles of incidence and reflexion are= .

(bb) vx=C+ 2.f(Pdx+ Qdy+Rdz) see page 432 -,-vSv

= P&£+ QSy+ RS#, •/ substituting in the equation ofpage

431 ;vfe\m\QSxd.~+Syd.^+ BzdMm
= v. dt. %v =

dt^ J
dt dt"
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ds. So, now as ds= */ch?+dif+dx*t -p ^ ds =

— B dx + -M-. B dy A ,B dz.and as it is indifferent which
dt dt

*
dt

of the characteristics d or B precedes the other; we have

*. B <fc=» B ds= d. (
dx t±jkk±*± S*

)-Bxd.
d-?-

dt \ dt I dt

By. $L - Indfe V v.$ds + Bv. ds = B (vds) =
dt dt

, /dx. 8z+ dy By-\-dss.8ss\ . . .. ..,
d. l —g •*

j ; integrating with respect to

d} we have Bf (v d s)
= C -f"

<fa&r+ rfy8y+<fr&» when the extremep^ of ^ Hne

described by the point are fixed, Bx By Bz are = to cypher
at these points; •/ Bf(v.ds)=o for Cevidently vanishes; •/

f(v ds) is either a maximum or minimum : but it is evident

from the nature of the functionf{v d s) that it is not a maxi-

mum; hence of all curves which a point sollicited by the

forces P Q R, describes in its passage from one given point

to another, it describes that in which B. (v d s)= o, conse-

quently that in which v. ds is a minimum ; if there are

no accelerating forces v is constant, and f(v. ds) becomes

v. f d 5, •/ in this case the curve described by the moving

point is the shortest, and in consequence of the uniformity

ofthe motion the time will also be a minimum ; since Byv. ds

=o, is true in all cases in which Pdx-\-Qdy-\-Rdzis an exact

differential, it is true for all curves described by the ac-

tions of forces directed to fixed centres, the forces being
44-1 to functions of distances from them ; and if the form

of these functions was given, we could determine the species

of the curve described, by substituting for v its value in

terms of the force, and then investigating by the

calculus of variations the relation between the ordi-
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nates of the curve, which satisfies 8(vds) = o. If the force

varied as — it would be easy to shew that the curve was

a conic section origin in the focus, if the force varied as s

the distance from centre, the curve described would be

also a conic section, origin being in the centre.

CHAPTER IIL

(a) In fact let^J denote the action which m the first ex-

erts on m' the second, if previous to the impact, w! is actu-

ated by p and — p ;
the first m is employed in destroying

—
p, and to effect this it must, employ a force = and di-

rectly contrary to —p, and therefore it will lose a force

= to p ;

(b) g the gravity must, however, be distinguished from

w the weight, for g denotes the intensity of the power
as it exists in nature without any reference to the quantity

of matter put in motion
;
w denotes the force of gravity

applied to the particular body under consideration, which

depends not only on the intensity of the gravity, but

also on the mass of the body on which it is exerted, so

that iso is the resultant of all the forces of gravity acting

on each molecule, w is -H-l to m, the quantity of matter,

at a given place, but to determine the value of w in diffe-

rent latitudes, we must take into account the intensity of

gravity, which varies from one place to another, y w = mg
and as?nz=vd, w = v. d. g. v being the volume and d

the density.

(c) The reason why distilled water was selected as the

term of comparison was, that it was one of the most homo-

geneous substances, and the maximum of its condensation
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was easily ascertained, as it always obtained about 4°

above the freezing point the centigrade thermometer.

(d) What is here stated does not in the least tend to

establish the exploded position of Des Cartes, that all

space was equally full of matter, for according to him, all

matter was homogeneous, and the subtle ether which was

diffused through the planetary regions was of the same

nature with other matter.

(e) Since perpendiculars from any point in the direction of

the resultant of two forces, on the directions of the forces,

are inversely as the forces, it follows that as in this case the

resultant passes through the fulcrum, perpendiculars from

fulcrum on the directions of the composing forces, are in-

versely as the forces.

(f) In general it may be remarked that the whole force

necessary to perform any work is not diminished by the

application ofthe mechanic powers, their use is either to di-

minish the force applied at once by lengthening the time, or

to shorten the time, by increasing the force applied at once.

(g) This will immediately appear from Notes to Chap-
ter II, for V the resultant resolved parallel to the axis

of x — V. (£ZI—
j,

=r (as x = p. cos. ip, p being the

projection u on the plane of xy) V.(^
'Ji~—

J
and th

force resolved in the direction perpendicular to p i. e.

in the direction of

p 8 il = _l(p. cos. i/>— A). 9. — —
(p. cos. \p— A), sin.

i£,
U p u

in like manner V when resolved parallel to the axis ofy,

and then perpendicular to p or in the direction of p d \p

= _:
(p. sin. \p— B). cos. \p, •,•

the efficient part of V re-

solved in the direction of the element p 8 ^ =

—
#((p. sin.^— B). cos. ^— (p. cos.i//—A) sin.

;//),
which as u*

Q Q

is
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= (p.cos. ,J,-A)» + (p. sin.*-B)
a + (*-C)»,and •/«

(^)
= — p. sin.

i// (p.
cos. ^— A)+ p« cos.

i// (p. sin.
i/>
—

B)is =

to— . (S-) = £—
; V being the projection of the given

p \ci/>/ p

force on the plane xy, andpa perpendicular from the axis of

p,V
« on the direction ofV, and •/

——
> the projected force re-

9

solved in a direction perpendicular to p, therefore we have

V.(
—

J
s= p V'= the moment of the projection of V with

respect to the origin, but V. (
^-J

= S. S.f
k-j)=

the sum

of moments of the composing forces, see page 410.

(g) It appears from the expression p. V that the mo-

ment of a force may be geometrically represented by
means of a triangle, whose vertex is at the point, and

whose base represents the intensity of the force ; and if

X, Y indicate the force V, resolved parallel to the axes of

x,y respectively, X=Vr (
x-^~

J, YzsV,. K—— J,
and these

forces resolved respectively perpendicular to p, are

vJ^AY^Pz^y; their difference = Yx~ XV=\uJp\uJp p

9

(A) Hence ifeither p or V, van ish the moment is=to o,

and as the projection of the area of a plane curve on

another plane, is equal to this area multiplied by the cosine

of the angle contained between the two planes, it follows

that the moment of the forces relative to any axis inclined

to the greatest moment is equal to the greatest moment

multiplied into the cosine of this inclination.

(f) If s = the inclination of two planes of the moments H
and V ,or which is the same thing, the inclination oftwo per-

pendiculars to these planes ; and if a,a!',a"', b, b', b'\ represent

the angles which these perpendiculars make respectively with
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three rectangular axes, cos. s= cos. a. cos. b-\- cos.a'. cos.Z>'+
cos. a" cos. b" ; •/ when s= 90, this function = o; we have

also cos. *a+ cos.
z
a'-{-

za"zz]
; cos. *&+ cos.

2bf

-\-CQ<s.
2b"

= 1
; v if V

y
Vw V/7/ represent the projections of the given

moment H on three rectangular planes, xy, x z, y z, we

have V, = H. cos. «, V,, = H. cos. a', V
//A
= H. cos. a"- ;

in like manner we have V = H. cos. s = H. cos. a. cos. b

+H cos. a', cos. b'-\- H. cos. a", cos. b"= V,. cos. 6 + V
/y

.

cos. 5'+Vw . cos. b" ; •/ if we know the projection of the

greatest moment on any three rectangular planes, we have

its projection on any plane whose inclination to those is

given ; in like manner, if V 0/ V 0// represent the projections
of H on two planes rectangular to each other and to the

plane of projection of V , b, bf bj' b„ b,( b„" being the an-

gles which perpendiculars to these planes make respec-

tively with xy z, we have V
0/
=V

y
. cos. b

f+Y$ cos. b/+
V

//;
. cos. b/"i Vbff

=V/. cos. b„+ V,. cos. b,J+\f cos. b„", •/

it follows, that V/+V/-+V///»=:y.»+V>f»+Viir

»
; hence

itappearsthatV/+ V/-{-V//isindependentofthedirection
ofthe three perpendicular planes of projection, and V =
*tV*-hV/;

2+V/y/
*—V 0/

8—V
0//

8
; vV w amaximum and =

Hue. Vy/+ V/+ V,,/ whenV0y
= o,V0/,=o, •/ this constant

quantity is the value of the maximum moment, and V, =
V . cos. «, V^rrVo cos.a', V^ssVo. cos. a", •/ cos. « =

V V
cos. a = -a- .cos.a"=v V 24-V *-4-V *

_
;

• • if we know the moments with re-

VV/+V/+ V,,/

spect to three rectangular planes arbitrarily selected, we

have the value of the principal moment, and also its posi-

tion ; and if on perpendiculars to each of these three

planes, lines be assumed respectively ~1 to the projec-

tions of the moments on these planes, the diagonal of the

parallelopiped, of which, these three lines are the sides, re-

presents the maximum moment in quantity and direction,
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\jk)
Therefore it appears from Note (#) there will be an

equilibrium, if the principal moment and the resultant ofall

the forces = cypher respectively ;
ifthere is a fixed point in

the system, the resultant of all the forces is destroyed by its

reaction ; if there is no fixed point the resultant V must

vanish, but this cannot be the case, unless each of the

forces X Y Z respectively vanish ; as Xy—Y#= V„ so it

might be shewn that Zx— X*s=V
;/ ; Yz—Zy=V„t ; but as

these three equations obtain at the same time, we have by

multiplying the first by Z, {see Celestial Mechanics, page

89,) the second by Y, and the third by X, and then add-

ing them together V/Z-f-V//
Y+V/y/X=o, this is the =n of

condition, which must be satisfied when the forces have

an unique resultant ; if X Y Z are = respectively to cy-

pher, then the forces are reducible to two respectively =,
but not directly opposed to each other.

(I) It is evident from what has been established in Notes

(g) (h) of this Chapter, that generally the sum of the three

composing forces, parallel to the three rectangular coordi-

nates, are S. m S.
(&),

2. m. S. $L\ 2 m S (%) ;and

the sum of the moments projected on the three planes

may be expressed thus :

>-j?0h©4©).***{-(£)->©].
2 m S \

i/.\J-j— Z'(J-)
J-

j in the case of equilibrium,

and that the point is free, these quantities are respectively

= to cypher; if the forces acting on the system be those of

gravity, S=S', = S", &cir=A== *, &c. the first three
C£ car ex"

equations become S.
(j^-V

2 m, S. (|^2 m,
S.(|^)

2 m,

and the last three become S. (~). 2 my — s
-(^)

! s m x >
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&0- s— s
-(l>

s »-;S
-(l)-

s^- s
-|

2 m. z\ and the three first compound a unique force= S. 2 m
i.e. the weight of the system, which is destroyed by the re-

action of the origin when it is fixed. If the origin of the

coordinates be a given point different from the centre of

gravity, and if C B A be the coordinates of the centre with

respect to this point j then *2m.{x— A)= o; 1m.(y— B)=o;
Sw.(i- C)= o when the origin isJixed ; •/ we have A.2ot=
Sm; B. 2w=2otj/j C. 2ot=2otz; hence knowing the

positions of the several bodies of the system with respect

to the axes of x,y, z, we can determine the coordinates of

the centre of gravity with respect to the same axes.

As(2(OT#))
a = 2(OT

a#a
)+ 2 2(otot', xx') j and 2mm'(x—x'Y

•=.mm'xi
-\-m m'x

,z
-f- m m"x'i + m m"* + m/m"x"2 + &c.—

2mm" xx"—2m' m" x'x"—&c. = 2(ot m'x3
)
—

2S(m/»' xx') ;

and as 2(OT.r
a
).2OT = 2(OT

a#a
)-f- S(fflffl'^), V 2(w.r)

a =
2(OT.r

a
)2w—Lmm'xz—

"2,mm'(x
—x'Y+^mm'x*), v Aa =

(Imx)
2" _ (2mx

z
) 2ot ot'(#

—x)
z

2m2 2ot (S»)
a '

we might obtain corresponding values for Ba and C2
,

hence it is evident that A z
-f B2+Ca =

2OT.(#
a
-f-j/

a + a a
)_ 2mm'((x'-<xy+(y'—yY +(*'—%)*

2ot (Sot
2

)

consequently if we have the distances of the several bodies

of a system from a given point and also their mutual dis-

tances from each other, we have the distance of the centre

of gravity of those bodies from the same point, and if the

same be given for three fixed points, the position of the

centre ofgravity in space will be obtained. Ifthe expression

£((#—A)*+(y—B) 2
+(*+ C)

a
) be differentiated with re-

spect to xy z respectively, and the differential coefficient

be then put = o, we shall have 2(.r
—A)= o, 2(j/

—B) =
o, &c. this implies that the sum of the squares of the dis-

tances of the molecules from the point ABC is a minimum,
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and if these molecules are all equal to each other, and re-

presented by m, we have *2,m(x
—A)zzo, 2w(j/

—B)=o, &c.

. . a _ 2 mx -r. _ ILmy p _ 2/

Sw S/» Swz

consequently the centre of gravity of a system possesses

this property, namely, that the sum of the squares of the

distances of the points ofthe system from it, is less than for

any other point whatever. If several forces concurring in

a point constitute an equilibrium, and if at the extremities

of lines -h-1 to and in the directions of these forces, be

placed the centres of gravity of = bodies, the common
centre of gravity of these bodies will be the point where

the forces concur ; for as the forces are represented by
lines taken in their direction and concurring in one point,

if this point be made the origin of the coordinates, the sum
ofthe forces parallel to the axes of x y ss are 2(#),2(3/),S(#),

and by hypothesis they are = to cypher, v 2(a:), = o, S(y)

2(#)=o, i. e. since the bodies are equal S(ww),S(wm/),2(ws),

are = to cypher, consequently the origin is in the centre

of gravity of a system of bodies of which each is equal to

w, •«• if to all the points of any body, forces be applied di-

rected towards the centre of gravity, and —\ to the dis-

tances between these points and the centre of gravity,

these forces constitute an equilibrium j it likewise appears
that when several forces constitute an equilibrium, the

sum of the squares of the distances of the point of con-

course of these forces from the extremities of lines —I to

these forces, is a minimum.

(m) This principle was established first by a copious in-

duction of particular cases; it may be thus analytically an-

nounced, if S, S', S", &c. represent the forces actuating
the several points of the system and Ss, Ss', Ss", &c. the

spaces moved over in the respective directions of these

forces, we have m S Ss + m' S7
Ss' + m" S" Ss" +&c. = o

in the case of the equilibrium of the system, the variations
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being subjected to the condition of the connexion of the

parts of the system.
—

{See page 411, and also Celestial

Mechanics, page 82.) It is also evident, that if the pre-

ceding equation obtains the system is in equilibrio ; for

suppose that while the preceding equation obtains the

points mi
m' im"i &c. are actuated by the velocities v, v', p", in

consequence of the action of the forces m S, m'S', w^S", &c.

which are applied to them, the system will evidently be in

equilibrio, in consequence ofthe action of these forces, and of

m v, m' vr

, m" v", &c. applied in a contrary direction, y $v,

Sv'ySv", &c. denoting the variations of the directions of the

new forces, we shall have from the preceding principle, mS.Ss

+m'S $s
f+m" S" $s"+ 8cc.-mv$v-<m'v'$v'-m"v"$v",&c.=

0, but the positive part of this equation vanishes by hypo-

thesis, v mvSv+m'i/Bi/+ m"v"Bv"i &c. = 0, if we assume

Sv= vdt, Sv'^i/df, 8v"= v"$t, &c. as we are permitted to

do, we shall have mv2,Jrm'v'
2
'-\-in

ll v"
3
'-\-&c. = 0; y v = 0,

i/=o, v" =0, &c. ; i. e. the system is in equilibrio when m SSs

+»*' S'W+m" S"3i", &c. =0;
The condition of the connexion of the parts of the sys-

tem may be reduced to equations between the coordinates

of the several bodies, if u/= oi u"= o, &c. be these dif-

ferent equations, we should add, as in page 4 1 2, A Sw, A' &/,

&c. to the function 2w. S Ss ; A, A', &c. being indetermi-

nate functions which should be determined in the manner

suggested in page 412, the equation given above then be-

comes o=Sw SSs+ SA $u ; in this case we may treat the

variations of the coordinates as arbitrary, and y put their

respective coefficients = ;
which will give as many dis-

tinct equations, and thus enable us to determine A \' &c.

and therefore R R/ &c.

The six equations of equilibrium which were given in

page 422 may be deduced from the equation o=:'2mSds1

for if the bodies of the system are firmly united to each

other, their mutual distances dd'^'kc. are invariable, and
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V
(*"
- *)» + ( y" -j/)

*+ (a"
- z'Y

*S
(x"-3/f +{y" -y'Y+ (z" -z')*

are constant, and therefore their variations = o
; •/ what-

ever suppositions satisfy these conditions, will also obtain

for the equation Sw. S 8s, but these variations = o, from

either of two suppositions, namely, either from making

&f=&f'=8x",&c. $y= by'= By", &c. 8^=82'= 82", &c. or

from making 8.r= ?/8w, 8j/
= — x$to Sa/ssy b£),Sy'= — a/Sw,-

&c. 8w being any variation whatever, as is evident from

making these suppositions in the variations of d, df

, d", &c.

in the first case it is evident that these substitutions make

m S.fi+m
,S/

|i

/

+^"S//

|^+&c. = 0; i. e.

ox ox ox

Sw»S'^-= o. SmS=——o ; Sw S. r- = o
; which imply that

9* ty 8a
' '

in the case of the equilibrium of a system of bodies, the

sum of the forces of the system resolved parallel to the

axes ofx y z are = to cypher. By substituting the other

values of 8^83/ &c. which satisfy the condition of the inva-

riability of the distances of the bodies of the system, in the

equation o =~2m. S8s, we obtain ozrSwS. ( y - -ay-)'
V ox by'

and by changing the coordinates x, x', as", &c. or y,y',y",

&c. into a, z't z", &c. we shall obtain o=2mS-j y(^-)
—

'M-^^HrXDl' ******

the three other equations of the equilibrium of a system,

indicating that the sum of the moments of the forces, pa-
rallel to any two axes, which would cause the system to re-

volve about the remaining axis, are respectively equal to

cypher ; if the origin of the coordinates was fixed and at-
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tached invariably to the system, the forces parallel to the

three axes will be destroyed by the reaction of the

fixed point, so that the three last equations are those

which remain to be satisfied ; in this case the resultant of

all the forces which act on the body, passes through
the fixed point, and therefore is destroyed by its

reaction. If there are two points fixed in the system
there is only one equation of equilibrium, namely,
that which expresses that the sum of the moments of the

forces, which would make the system revolve about the

line connecting the fixed points as an axis, is equal
to cypher; in general the number of equations of

equilibrium is equal to the number of possible motions

which can be impressed on the system, or to the least num-
ber of indeterminate quantities.

(o) Perhaps it would be more accurate to sa}
r

, that there

were three kinds of equilibrium, namely, stable, unstable,

and neutral, in the last the body is in a state of indif-

ference, and has no tendency either to recover its pri-

mary position, or to deviate more from it ; it is evident that

it only obtains when the equilibrium exists under

a continued change of position, a homogeneous sphere,

or a cylinder whose axis is horizontal, floating in a fluid,

are instances of this species of equilibrium, for they have

no tendency to maintain one position in preference to

another.— See Note (h) Chapter IV, and Notes {/) (k)

Chapter V.

a a
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CHAPTER IV.

(a) By Notes, page 4-11, it appears that when the fluid

is at rest, and •/ each molecule at rest, the resultant of

all the forces, by which it is actuated, must be at right

angles to the surface on which it exists ;
for it follows

from the perfect mobility of the particles of fluids,

that when a fluid mass is in equilibrio, each constituent

molecule of the fluid must also be in equilibrio. When a

molecule exists on the surface of the fluid, the resultant of

all the forces by which it is actuated, must from what

is already established, be perpendicular to that surface ;

a molecule in the interior of the fluid mass is sub-

jected to two distinct actions, one arising from the forces

which solicit it, and the other from the pressure produced

by the surrounding particles j and the entire pressure at any

point arises from the combined action of the two. If a

fluid mass, ofwhich the molecules are solicited by any acce-

lerating forces whatever, be in equilibrio, when contained

in a vessel, which is closed on every side; and if the equili-

brium would cease to exist if an aperture was made in the

side of the vessel, it is necessary in this case, that the

pressure exerted on the sides, should be perpendicular to

them, as otherwise the resistance of the surface would not

destroy the pressure; the intensity of this pressure

in general varies from one point to another, and de-

pends on the accelerating forces and on the position of

the point; with respect to those fluids, which are termed

elastic, they may indeed press on the sides of the vessel in

which they are enclosed, though no motive forces act on

the particles, or without any pressure urging the surface

of the fluid; for as they perpetually endeavour to dilate

themselves in consequence of their elasticity, this gives
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rise to a pressure on the sides of the vessel, which is always

constant for the same fluid, and depends in general on

the matter of the fluid, its density and temperature.

(b) By considering each molecule as an indefinitely

small rectangular parallelopiped, we are permitted to sup-

pose that the pressure accelerating forces and density ofeach

point of any one of its surfaces are the same; we also can

thus express the fact of the equality ofpressure which is the

fundamental principle from which the whole theory of

their equilibrium may be deduced
;

let p denote the mean

ofall the pressures on any side, // the corresponding pres-

sure on the opposite side, p the density, P, Q, R, the acce-

lerating forceswhich solicit the molecule, resolved parallel

to the three coordinates of the angle of ihe parallelopiped

next to the origin ; then dx dy dz represent the dimen-

sions of the parallelopiped, and p being a function of xyz,

we have Bp = -J-
%
Sx + s

• By + w-> Bz ; now the paral

lelopiped, in consequence of thepressure to which it is sub-

jected, will be urged in the direction of x by the force

(p'—p). dy. dz, but as p'—p is the differential of p, taken

on the hypothesis that x only is variable, we have p*

— p z=.-j-dx
=

^-. dx\ •/ (p—'p)- fy. dz = —
-j-

dx. dy, dz,
dx ex (XX

(we have taken—, &c. negatively, because they diminisli
dx

the coordinates) ; but p being the density of the mole-

cule, its quantity of matter = p. dx. dy. dz. and its mo-

tiveforce arising from P, = p P. dx dy dz ;
the force with

which the molecule is solicited in consequence of the ac-

tion of this force and ofthe pressure, both of which act on

the molecules =
j p P — f J-J > dx. dy. dz; similar equa-

tions may be obtained for the forces parallel to y and z.
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(c) By hypothesis the molecule is in equilibrio, there-

fore in consequence of what is established in Notes, page

4-30, we have

"={o p-(l)WM-(|)W
i p R— f# I . g», i, e . 8/>=/»(P.&»+Q. Sy+R. 8*) ; as 8/7

is an exact variation, the second member must be so like-

wise, therefore

^.pP^.p.Q .
d. p. P_ <7.p. R . rf.fp.R_ <Z. p. Q

cfr/ </# rf* </# </^ t/z

and multiplying the first of these equations by R, the se-

cond by
— Q, and the third by P, we obtain by expanding,

p. R. dP
,

R. P. dp __ Rp. dQ RQ. dp , p.Q.dP
dy dy dx dx - dz

Q.P.rfp_ pQ.JR RQ. dp . pP.^.Q , P.Q.gp_pP.^R
rf# t/a; rfa? */# dz t/z/

+ 1—£- by reducing all the terms of which 8p is a factor

to one side, and adding them together, we obtain i

R. dP R. r/Q Q.rfP 1 Q.^R.P. dQ P. dR \
I dy dx dz dx dz dy )

_/ RP+ RQ QP_RQ_ P_Q+ RP\
g __'

~\dy dx dz dx dz dy )

therefore by concinnating

P. -p — Q. -— + It— P.—-+ Q.- K.—-—o;
dz dz ay dy dx dx

when this equation is satisfied, the equilibrium obtains

though p remains undetermined. Rut if the relation in-

dicated by this equation does not obtain between the forces

P, Q, R, the fluid will be in a perpetual state of agi-

tation whatever figure it may be made to assume
;
and if

P Q R be functions of the coordinates, p( PSx + QSy -f-



NOTES. 4.53

RSz) can be integrated by the method of quadratures, by
means of which we can find the value of/? for any given"

point, and •„• the force with which any side of the vessel is

pressed ; but though the equilibrium be impossible when

the equation of condition is not satisfied, it does not follow

that when it is satisfied that the equilibrium will obtain ;

for in most cases this fluid must assume a determined fi-

gure depending on the nature of P Q R. Likewise though
in the state of equilibrium all the molecules in the same

strata have necessarily the same density, and experience

the same pressure, the converse is not true, for in homo-

geneous incompressible fluids p is constant, in those sec-

tions of the fluid in which neither <ty nor $p= o:

Sp never = o, if the fluid be elastic, because p being a

function ofp, if the density has a finite value,/) can never

vanish.

(d) Ifthe fluid be free at its surface, p—o, •/ if dx Sy Bis

belong to the surface we have o = P&e-j-Q&/+Rc5z= A</m,

u being the equation of the surface, and X a function of

xy z
;
therefore the resultant of P Q R must be perpendi-

cular to those parts of the surface in which the fluid is free,

for in this case

_P Q R
V Pa+Qa + R* VW+W+W' V p* 4. Q» + R*

are the cosines of the angles which the resultant of P Q K
makes with the axes of x y z, but as P&r + QS^+R&s ==

\$u they express also the cosines of the angles which

the same axes make with the normal, v the normal

coincides with the resultant ; this coincidence of the

normal with the resultant is a condition which must

also be satisfied to insure the equilibrium ; by means

of it we can determine in each particular case, the fi-

gure corresponding to the equilibrium of the fluid ;
if for

instance there is only one attractive force directed towards

a fixed point, the form of the surface will be spherical,
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the fixed point being the centre of the sphere ; (if this

point be at an infinite distance the sphere degenerates into

a plane,) for in this case ———
\ (x
—

a) dx -f ( y
—b)dy +

9 r *

{z
—

c).dz]
= F. dr ; a b c are the coordinates of the centre,

to which Fthe force is directed, and ifthe origin ofthe coor-

dinates bein the centre, we have ~ =—(xdx -f ydy+ zdz),
9 r

if the density p is constant, or a function ofp, the equation

ofeach stratum of level becomes a? +y* + z* = C, which

belongs to a sphere of which the centre coincides with the

point ofcommon reunion of the directions of all the forces.

When P&e-f-Q</^+ RSz arise from attractive forces, as

is stated in the text, it must be an exact variation =.
$(p,

v

we have 8p = p. S$, consequently as —— =&£, p must be a
9

function of
/?,

therefore p will be a function of p, and they

will be same for all those molecules in which the value of

is given, i. e. for molecules of the same strata aj level ; and

for a fluid in which
<f> varies, an equilibrium cannot take

place unless each respective stratum be homogeneous, for

in this case p and v p is constant ;
for surfaces in

which p is constant dp = o, therefore for such surfaces

P. &c+ Q. Sj/4-Il' Sz = o, and the resultant coincides with

the normal. The integral of o=p%<p is a constant arbitrary

quantity, which indicates that the given equation =C ap-

pertains to an indefinite number of surfaces differing from

each other by the value which is assigned to this quantity ;

in the equation ^ = C, d<f> evidently =o, v
<f>

is either a

maximum or minimum, and generally when FSx -f-QSy -f-

R&z is an exact variation, p is a function of^>, v the equa-
tion $p—p. d(j>

= o, indicates that in the state of equili-

brium, there is a function of p and xgz, which is either a

maximum or minimum. If this quantity be increased by
insensible gradations, we shall have an indefinite number of
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surfaces, distributing the entire mass into an indefinite se-

ries of strata constituting between any two strata what have

been termed strata of level ; the law of the variation of

density p in passing from one stratum to the consecutive

one, is altogether arbitrary, as it depends on what function

of 0, p is, but this is undetermined. It appears, therefore,

from what precedes, that there are two cases in which $p =
o, when it is at the free surface, in which case p vanishes

of itself, and also when p is constant, i. e. for all surfaces

of the same level ; v when the fluid is homogeneous, the

strata to which the resultant of the forces is perpendicu-

lar, are necessarily of the same density; when the fluid is

contained in a vessel closed on every side, it is only neces-

sary that all strata of the same level should have the same

density ;
in elastic fluids it never could happen that p

should vanish, or that P&r+QSj/+RSz = o, therefore un-

less the fluid extends indefinitely into space, so that p may
be altogether insensible, it cannot be in equilibrio except
in a vessel closed on every side.

(d) In the case of our atmosphere p is observed to be

ff 1 to p i. e. p = kp, k depends on the temperature and

matter of the fluid, by substituting for p in the equation

$p=:p$(f> we obtain $p=?j- m $<i>
V by integrating log.p -f- C

k *

=f , because when the temperature and matter is given, k
k

k
is constant, by making C = to log. E, we obtain p = E c ,

since v p and p are functions of
<j>, they will be constant

for each stratum of level, but the law of the variation of

density is not arbitrary as in the case of incompressible

fluids, for the equation p = Zzz—.c * determinesthelaw;
JC rC

if the matter of the fluid remaining homogeneous the tern-
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perature should vary, k will be a function of the variable

temperature, but in order that -x= -i- should be an exact

variation, h and consequently the temperature should be

functions of ;
these functions are arbitrary, hence when

the fluid is in a state of equilibrium, the temperature is arbi-

trary though uniform for each stratum; ifthis law was given

we could integrate -i, from which we could infer the law

of the densities and pressures by means of the equations

p=Ve k; 9 =T' e
*&c.

(e) Let the horizontal surface of the quiescent fluid be

the plane of the coordinates of x, y, the axis of z is in this

case vertical, which is also the direction ofg the accelerat-

ing force of gravity; hence xy are = o, and R =gin
the equation given in page 452, and then dp becomes =
p. gdz, '." p=zpgz, since p = o when at the surface of the wa-

ter where z=.o, there is no constant; calling h the height of

any level above the pressed surface, and A the area of the

pressed surface, since all the points are equally pressed, and

the pressure on each unit of the surface = p, II the pres-

sure on the entire base = A.p=ip.gh A, 7iA = the volume

of a cylinder whose base z= A and height that of the level

of the water, and pgh. A is the weight of a corresponding

cylinder of water, v whatever be the shape of the vessel,

provided the base and height of the water above the base

remain the same, the pressure which the base experience*

from theincumbentfluid, remains the same, we suppose in

this case that the fluid is in a vacuo, otherwise j^doesnot va-

nish when z=o, and we must have at the surfacep'=: p.ga,

this is the pressure due to the atmosphere, or to any force

which acts equally on all the points of the horizontal sur-

face.
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(/) The pressure on each point pgz. ir — pir, ir ex-

pressing one of the equal elements of the base, into which

the pressed surface is divided, and as the pressure of all

the elements are parallel to each other, their resultant

is obtained by taking the integral of pgz. tt extended to

the entire area, this integral is = to Asr,, A denoting
the area of the pressed surface, and t

t
the distance of

the centre of gravity of this surface from the plane of

the level of the fluid ; from this it appears that the

pressure depends only on the extent of the pressed

surface, and on the depth of its centre ofgravity below the

level of the fluid, therefore if this surface was supposed to

revolve about its centre of gravity, the pressure which it

experiences will remain the same.

It is easy to estimate the lateral pressure of a fluid in a

vessel whose sides are perpendicular to the base, for as the

pressure is propagated equally in every direction, the pres-

sure of each molecule is ~\ to its distance from the horizon-

tal surface of level, hence it is easy to shew that the entire

lateral pressure in such a vessel is equal to the weight of a

triangular prism of water, whose altitude is that of the

fluid, and whose base is a parallelogram, one side ofwhich

is equal to the altitude of the vessel, and the other side to

its perimeter.

What precedes suggests a method of finding the centre

of pressure of a fluid, this centre is that point to which if a

force equal to the whole pressure were applied, but in a

contrary direction, it would keep the surface at rest, it is

therefore the point where the resultant of the pressures of

all the elements of the surface meets it, and as the pressures

of the elements are parallel forces, the point of applica-

of this resultant must be determined by the theory of the

moments of these forces, •/ as pgztr denotes the pressure

for each element,fpgz'
l
ir expresses the sum of the mo-

ments of these elements with respect ¥0 the surface of the

fluid, which is consequently = A z
t
z

/lt
zn being = the dis-

s s
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tance of the centre of pressure from the surface, •/ zn
=

•ULzJlJL which shews that this centre coincides with that
As,

of percussion, hence if a plane surface which is

pressed by a liquid be produced to the surface of the

liquid, and their common intersection be made the axis of

suspension the centre of percussion will be the centre of

pressure :
—see Note (g), Chapter V. This centre of pres-

sure always lower than he centre of gravity except all the

points of the surface are equally pressed, in which case

they coincide.

(g) Let, as in page 352, P represent the weight of a

body in a vacuo, P' its weight in any fluid, V its volume, D
its density, n the weight of the displaced fluid, p its density,

and g the accelerating force of gravity, we have P=
V.Dg, II = VpG , P — II = P', eliminating V and n, we

P D
obtain ———=—

; which equation gives the specificP— 1 p

gravity of the body with respect to the specific gravity

of the fluid it follows from what is stated in the text,

that two bodies which balance in air, are not neces-

sarily of equal weight, unless they are constituted of the

same materials ; it follows likewise from this, that as

gVD — gVp = the motive force of a body existing in air,

by dividing this expression by V.D, the mass, the quote

= g. -J
1—£- £ (p being the density of the air) represents

the accelerating force of a body in the air ; hence it ap-

pears that the air retards the motion of bodies, both be-

cause it diminishes its accelerating force, and also because

it produces a retarding force depending on the velocity

and figure of the moving body. When a body floats

on the water, it actually exists in two different fluids, part

being in the air and the other part in the water; hence

the common rule for determining the specific gravities of
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bodies is incorrect ; to correct the result we should sub-

tract the number expressing the specific gravity of the air,

from the two numbers expressing the specific gravities of

the body and fluid on which it floats.

(h) A body, whether it floats on a fluid, or whether it

is entirely submerged, will be in equilibrio when it satisfies

the two following conditions, namely, when the centres of

gravity of the body and that of the part immersed, or of

that of the displaced fluid exist in the same vertical ; se-

condly, when the weight of this portion = that of the body
itself; if the body is homogeneous and entirely submerged,
the two centres ofgravity coincide, and if its density is the

same with that of the fluid, it will remain suspended.

(0 The body being supposed to be in equilibrio in a

fluid, the plane of its intersection with the fluid, which is

termed the plane of flotation, will be horizontal, if it then

be raised or depressed in a vertical line, and then inclined

by an indefinitely small quantity 9 to the horizontal posi-

tion, and a plane parallel to the horizon being supposed
to be drawn through the centre of gravity of the first plane,

if Z, be the distance of this plane from the present plane of

flotation of the fluid, the stability or instability of the fluid

depends on the circumstance of £ 0, which at the com-

mencement are supposed to be very small, remaining al-

ways so.

u being the variable velocity of any element dm of the

mass of the body,/*** dm sz C+ 2^ expresses the sum of

the living forces, where depends on the forces of gravity,

and on the vertical pressures which the fluid exerts on all

the points of the surface of the body which are submerged
under the water ; but as the resultant of the motive

forces, which are equal for each molecule, to the weight
of an equal molecule of the water, is the same as

that of the vertical pressures of the fluid, if dv be an

element of the volume of the body, corresponding to

dm, an element of its mass; the entire motive force
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ofdm when immersed in the fluid = gdm —
g.p.dv, and

therefore from what is established in page 452, ^ zz

f zg.dm—f zgp.dv; y if #, represent the distance of the

centre ofgravity of the entire mass M, from the horizontal

plane, we shall have fzg.dm=g.fz.dm=gMz/ ; f zgpdv
consists of two distinct parts, one relative to the volume

V, the part ofM which is beneath the original section of

the body in its second position, it y = gVp#//» Z// being the

variable distance of the centre of gravity of V from the

plane of flotation ; y if K represent the value offzdv
taken in the limits of V, so thatg.pK may be the second

part ofg.fzpdv, we shall have =rgM*„—gpV*,,,
—gpK j

but if a be the distance between the centres of gravity of

M and V, in the second position of the body, this distance

reduced to the vertical = a. cos. B, y as the difference be-

tween z
t
and z

t/
is always = to this reduced distance, we

have %
/
S3 z„ =*= a. cos. 0, and y by substituting <£

= =t=

gpVtf. cos. —gpK. Now it is not difficult to prove by

decomposing the area of the original section into an in-

finite number of elements, and then projecting them on

the plane of flotation, (quantities of the third and higher

orders being neglected,) that the value of K =
q. p. to

/
'

zdv—\hX,? cos. 0-f-^y sin.
2
0. cos. where 6=: the area of

the original section, and y = fl
z
d\, I being a perpen-

dicular from any point in the original section on the

intersection of the original section with the horizontal

one drawn through the centre of gravity, and dX

an element of the original section ; hence we obtain the

value of ^ = z±zg.pVa. cos. —^ gpbZ.
z

cos. —
\gpy sin.

~0. cos. 0= (neglecting quantities of the third and higher

orders) z±=gpYa=i=gpVaO
z—

\gpbt,
z—

igpy-0* -;fuMm +
gp(y.z±=Va). (P+gpbZ

z
=:C; 2^-pVa being contained in the

value of C; as
s
, Z? are positive, it may be shewn as in >*

Notes to page 381 that ify =±= Va is positive, the constant

quantity will always remain so ; and the value of C de-
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pends on the values of nBZ, at the commencement of the

motion, it therefore is a very small quantity ;

V Z
is always Z— -——•

; Z, Z
*£%=+=Va)

'

g 9 b

the stability of the equilibrium depends on the sign of y=±=

Vff, and it will be always stable when the coefficient is -fat

the origin and during the entire duration of the motion;

asfl*d\ is necessarily+ ,
if Va is also positive, the coeffi-

cient Va-\-fl
2d\ is +, and the equilibrium is stable, but

from what has been established already Va is -f , when the

centre of gravity of the entire mass is lower than that of

the volume ofthe displaced water
; but if this latter centre

be the lower, then Va must be taken with a negative sign,

and in order that y
—Va may be + it is necessary that y

should be >V# j but y varies with the position of the in-

tersection of the horizontal plane with the original plane,

which passes through the centre of gravity of the original

plane, therefore in its revolution about this centre it must

assume different values, and if in that part ofthe revolution

in which y is a minimum its value predominates over V</,

it must do so in all other positions, and •/ y—Va will be

always positive; e.g in a ship the line, relatively to which

y ovfl?d\ is a minimum, is evidently the line drawn from

the prow to the stern ; and if the area of its plane of flota-

tion be divided into an indefinite number of elements, and

if the sum of all these multiplied into the square of their

respective distances from this line be greater than the pro-

duct of the volume of displaced water multiplied into the

distance of its centre of gravity from that of the vessel, the

equilibrium will be stable relatively to all the small oscilla-

tions of the vessel.

(k) When fluids communicate by means of a level tube,

the pressure of each is equal to a cylinder of the fluid whose

base A zz the common horizontal surface, and whose alti-

tude s the vertical height of the upper surface of the re-
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spective fluids above the surface of contact ; hence it's s' de-

note the specific gravities oftwo fluids and h h' their respec-
tive heights, we have shA= s'h'A ; hence as we know s', the

specific gravity of the air at the earth's surface relatively
to s that of the mercury in the barometer the ratio of s to

s' gives the ratio of h to V (the height of the homoge-

mogeneous atmosphere.) It likewise appears that all baro-

meters, whatever may be the diameters of their bores,

stand at the same height.

CHAPTER V.

(a) Let the masses of the two bodies A A' be repre-

sented by m and fd
f
,
their velocities by v v', and let u be

the common velocity after the shock/v—u will be the velo-

city lost by A the body, whose velocity is the greater of the

two, and u—v' will be the velocity gained by A' ; by hy-

pothesis (m-\-m')u+ m(v—u)+ m'.(u
—

if) represents the sum

of the quantities of motion previous to the shock, but in

consequence of the conditions of equilibrium m.(v
—n)—

m'(u
—v'\ •/ {m-\-m')u is what existed previously to the

shock; and it is evident from the preceding equation that

the common velocity u = -^-r——
; if, however A A'

m+ m!

moved in opposite directions with the velocities v t/3 then

we would have m(v— u) = m\u-\-v
f

)
and therefore

u r=
mv—mv
?n-\-m'

but this value may be comprised in the first
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by attending to the signs of the velocities ; this effect of

the mutual shock of the two bodies is the same as if the

forces F F', which separately actuated m m' to make them

acquire the velocities vv', were impressed on m and m' simul-

taneously, for the velocity communicated by F to m-\-m=z

— and that communicated by F' = —r , and • •

m+m m-\-m

the velocity of m+ m' arising from the combined action of

1 and b'= 7
=±= r, the sign being + or —

m-\-m m-\-m

according as F, F' act in the same or in contrary direc-

tions; if m' has no motion previous to the shock xl— o and

u = r j •/ if m' be very great relatively to m. this
m+ m'

J to j >

quantity vanishes. This is the case with respect to all bodies

which impinge on the earth, and all points which are im-

moveable may be considered as bodies whose masses are

infinite relatively to the striking bodies ; as in this case,

mv= (m-\-m')u} m loses by the shock a quantity of motion =
m'. u, which is that gained by m', see Notes, page 440 ;

multiplying the equation (m-\-?ii')?i=zmv=±zm
/
v

/

, by 2u and

then subtracting from both sides ?HD2+mVJ
-f(/n-fm')tt* we

obtain mo2
-f- m'v'

1"—
(
m+ m')i? = mv9-+ m'vn—2u(mv=±=.m

fvf

)

-\-(m-\-}n')u
2'

i. e. mv3 + m'v'1—m'u 21 — muz = m(v—u)
2

-(-

(irz+zv'y. v if the motion of a system of bodies experience
a sudden change, there results a diminution in the sum of

the living forces of all the bodies = to the sum of the

living forces which would 'arise from the velocities lost or

gained by the bodies.—See Notes (5) (t) of this Chapter.

(b) In fact if the principle of D. Alembert be applied to

determine the circumstances of the impact of two bodies

of any form whatever, this principle furnishes us in gene-
ral with but twelve equations between the unknown

quantities of the problem, which in the most general case

of it, are thirteen in number, the percussion which the
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bodies experience at the instant of the shock being con-

sidered as one of them ; y there are not a sufficient num-

ber of equations to determine these unknown quantities ;

but the consideration of the compressibility of the two

bodies furnishes an additional equation, and thus renders

the problem completely determinate.

In order to prove what is asserted in page 279, let,

as in the case of non-elastic bodies, v 1/ be the veloci-

ties of m mf previously to impact, they may be as-

sumed respectively =u+ (v
—

u) t
u—(m

—
1/), let V, V' be

the velocities of m m! after the impact, those being consi-

dered as positive which move in the direction of m
before the shock, and those as negative which move in

an opposite direction, y v will be always positive, but v' u

V V may be either positive or negative ; let u be deter-

mined from the equation m(y
—

u) — m\u—t/), u—v, u—v'

will be destroyed by the impact, but in consequence

of the perfect elasticity of m, m' they will be reflected

back with those destroyed velocities ; y V the entire

velocity of in after the shock = u—(v
—

u) and V' that of

m', = u-{-(u
—

z/), y substituting for wits value

mvA-m't/ ,' . X7- (m—mf) v4-2m'z/
!—

, , we obtain \=zi -— 9

m-\-m >
. m-\-m

V'= - —
j- ; VV—V'= v—if, and ifmzzm jV = v ;

m-\-nv

V'= v; we have also by eonscinnating wV*+m /V/* as

4>u
z
(T)i+m')

—
4>u(mv+ m'v')-\-m vz -\-m

f
v'

2
. = mv3,

+?n'v'
2

.

(c) In general when a body receives an impulsion in any

direction, it acquires two different motions, namely, a mo-

tion of rotation, and a motion of translation, which are re-

spectively determined by the equations given in page 414,

when the three first equations vanish, the forces are reducible

to two = and opposite forces acting in parallel directions,

when the rotatory motion does not exist the instantaneous

forces have an unique resultant passing through the centre
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of gravity ; when the molecules ofthe body are solicited by

accelerating forces, these in general modify the two mo-

tions which have been produced by an initial impulse ; ifj

however, the resultant of the accelerating forces passes

through the centre of gravity of the body, the rotatory

motion is not affected by them, as is the case with respect

to a sphere and planets supposed to be spherical, but in

consequence of the oblateness of these bodies the direction

of the accelerating force does not pass accurately through

the centre ; •/ the axis of rotation does not remain accu-

rately parallel to itself, however the velocity of rotation is

not sensibly altered.—See Vol. II. Chapter VI.

(c) In order to determine the position, &c. of these axes,

it is necessary to determine the pressure on a fixed axis

which arises from a body revolving about this axis in con-

sequence of a primitive impulse ;
for this purpose, if this

fixed axis be the axis of z, x y z being the coordinates of

dm, £> the angular velocity, and r the distance of dm from

the axis of z ; the centrifugal force of the element dm is

v 1
-frl to r&%

;
for it is = to —— and T varying as -

, it is

1* <o

proportional to r<5
2

; the fixed axis is therefore urged per-

pendicularly to its length by the force ru>
zdm s and the re-

sultant of all such forces for the sum of the elements dm,

or their two resultants, when they are not reducible to one

sole force, expresses the entire pressure which the axis ex-

periences during the motion of the body, and as-," , are
r r

the cosines of the angles, which the direction of the force

r£}}dm makes with the axes of x and ofy, xdz
dm, ytf.dm

represent the components of this force resolved parallel to

these axes, •// xio
2dm= u>

i
fxdm is the resultant of all the

forces parallel to the axis ofx, which integral is = a?]VLr y

M being the mass of the body, and x, the coordinate of the

centre of gravity parallel to the axis of x; and w'My, ex-

T T
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presses the resultant of the forces Crfy dm parallel to the

axis ofy ; if z' z" represent the respective distances of the

resultants w'Mx,, w*My*» from the plane of x, y, by
what is established in Notes page 428, we shall have

M.r^r: fxz dm, My, z„ = fyzdm, by means of these

equations we can determine z
t
zn and the intensities of the

forces which acting in the planes x z, y z urge the fixed

axis perpendicularly to its length, ifz^zn the forces w^My,

w^M^, are applied to the same point, and are •/ reducible

to one force, of which the intensity =aia
M(.r

l

/+y/

a
) which

therefore expresses the pressure on the axis of the body;

now if the axis of z be supposed to be entirely free, i.e. if

the body is supposed to revolve in such a manner that the

centrifugal forces ofthe several points do not exercise any

pressure on the axis of rotation, and so that this axis has in

itself no motion of rotation, neither is it subjected to any

pressure ; then, not only the moments of the forces which

would cause them to revolve about the axis of z, but also

the pressures on this axis are = to cypher,i. e.fxz dm= o,

fyz dm—o,fxdm — o, fy dm= o; from the two last it fol-

lows, that x, y, are = respectively to cypher, therefore each

free axis must pass through the centre of gravity ; however,

it is evident from the two first, that an axis may pass

through the centre of gravity without being free, for

Zffxdm = J^JVLr, this quantity = o, when the origin is

in the centre of gravity ;
but z

t
the coordinate of its point

of application = •!
x z

is infinite, unless fx z dm is at
m.x

4

the same time equal to cypher.

In order to determine the position of the principal axis

of rotation, conceive a plane to pass through this axis per-

pendicular to the plane xy, and let equal the angle

formed by the intersection of this plane with this principal

axis, and ip the angle between the axis of x, and this in-

tersection ; now, if the position of an element dm be re-

ferred to three coordinates x' y
1
z' of which the first is pa-
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rallel to the intersection above mentioned, the second is per-

pendicular to this intersection, and the third *'is parallel to

the axis of #, then it is evident from the transformation of

coordinates that we have x' = x. cos. xp-\-y. sin. xl,y' = y
cos. xp

— x. sin. xp, z'=z, and consequently x" — x. cos. xp

cos. 0+3/. sin.
xp. cos. + ss sin. ; y" — ss. cos. — x.

cos.
xp. sin. 0—y. sin. ^/.

sin. 0, z"zzy. cos. xp—x. sin. ^, #",

y, #" being the coordinates of which the free axis is one;

therefore x'fy"=:— \x*. cos.
*xp.

sin. 2 9—\yz
sin. 2

xp.
sin 20

-\-iz.
2
sln.29—xy. sin.

xp. cos.
i£.

sin. 2 + ## cos. ^. cos. 29

-\-yz sin.
t//.

cos. 29 ; x"z"-=. —x%
. sin. ^. cos.

\//.
cos. + y*

sin.
i//.

cos.
\p. cos. -J- ary. cos. 0.(cos.

z
xp
— sin. hp)—xz

sin.
xp. sin. 9-\-yz cos. ^. sin. 0; •/ substituting these values

.1 .. fx"y''.dm fx"z".dm ,

in the equation 1'—£—-=o'S 7r-= o; by assuming*
cos. 20 cos.

J °

/ x2'dm=A
ffyd

zm ='B,fz
zdm= C; fxydm = T),fxzdm

= 1Z,fyzdm=F, we shall obtain the following equations,
0= — \. tan. 20 (A cos. 2

i// + B. sin. *$ — C) — D sin. ^.

cos. i£. tan. 20-f-E. cos. xp -J- F. sin.
1//. ; o=(B— A) sin. $.

cos. ^/-f-D(cos.
:J

i//— sin.
a
i//)
— E sin.

1//.
tan. + F. cos. xp.

tan. 9 ; by assuming tan. xp= t the last equation gives us

tan.0 = (A-B^+D(*»-1)
(F- EO-sec. $

. • tan 20 - g(F—EQfD*«+(A—B)*—D} sec. ^ .
'

(F—Etf. sec. ^_{D^ + (A—By—D]
a '

but by means of the first equation we obtain

tan 20- 2(E+ F/).sec.^
tan. 20 _ _______ ,

by equating these two values we derive an equation of the

fifth degree and divisible by sec.
2

xp z=l-\-f; •/ t will be

finally given by an equation of the third degree; therefore

for every body, there is either one or three real values of

tz=. tan. xp. and consequently of xp, and as

, a _ (A—B) sin. 2t/,-2D cos. 2f
tan. u — tttts 1

—
t~i
—

t~\

2(F cos. xp—E sin. xp)
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it is evident that we have always a real value for 0, and

thus by means of the angles \p and we can determine the

position of a free axis for every body; but in point of fact,

the three roots of the cubic equation are real, and there-

fore there are three free axes belonging to every body ;

for if the axis of x be the free axis determined by that one

of the three roots which is given to be real, and if the axis

of jc" of which the position is determined by t//, 0, was also

free, when these angles are always positive, the three roots

are real, and •/ then besides the axis of x" the axis of x is

also free; x",y", z", x, y, z, representing the same as be-

fore, if a? be a free axis we havefx ydm=D= 0,fx zdmzz

E = 0; consequently the axis of x' will be also a free

axis, if the equationsfxydm fxzdm respectively = 0, after

substituting for them D= 0, E= 0, give real values for
\f/

and 0, but these equations then become, o= F. sin. ip~~h
tan. 2 0.(A cos. a

^ + B. sin.
»i/»
— C), o = F. cos. £

tan. — (A — B) sin.
\p. cos. ip ; these two equations of

condition must be satisfied when the axes of x and x'

are simultaneously free axes, but the last may be sa-

tisfied by supposing cos. \p
= 0, or \p

~
90°, and sin.

\p=.l. By substituting this value in the first equation we

2F
obtain tan. 20= _—_, which is satisfied by or 0' = 9

B—C J

+ 90 ; since xp — 90, and the planes xx't x/x" are by hypo-
thesis perpendicular to each other, the angle between the

axis of x" and the axis of x is also 90°, and therefore the

axis of x is perpendicular to the two others, and as 9'— 9

=90, it follows that every body has at least three axes in-

tersecting each other perpendicularly in their centre of

gravity. It is evident from the preceding analysis that

the values of 9
\fj

are deduced by assuming/" #3/^=0 ;

which it appears from the reality of the roots may obtain

without the equationsfxdm= o, fydm=o, having place,
if these equations do not vanish neither x/ nor^ will va-
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nish, but as by hypothesis,f xzdm,fyzdm= respectively,

st' z" will vanish; and the axis of rotation will experience

a pressure represented by w2M^ xf +3// applied at the

origin of the coordinates, see page 4<66 j in this case there-

fore if the origin be fixed, the pressure arising from the

centrifugal forces will be destroyed ; hence if the axis of

rotation for which fi/ xdm= oi fz xdm=o, be at liberty to

turn about the fixed point, the body will revolve about this

axis, as if it was fixed ; consequently it appears that a fixed

point being given in a body of any figure whatever, there

always exist three axes passing through this point, about

which the body may revolve uniformly, without any dis-

placement of these axes, and just as if these axes were al-

together immoveable, and these are the only axes which

possess this property, for supposing the body to revolve

about any other axis passing through the fixed point, this

axis would evidently experience a pressure, which would

not pass through the fixed point ; since then z' and z"

would no longer vanish, if the axis was suddenly remit-

ted to revolve freely about the fixed point the pressure will

no longer be destroyed, therefore this force would displace

the axis of rotation and the motion would be deranged ; it

appears from this that if a body impinge on another re-

tained by one sole point, its motion will be continued uni-

formly, if it commences to revolve about one of the princi-

pal axes which intersect in this fixed point, in the same

manner as if the axis were fixed, in this case it is ne-

cessary that the percussion on the axis of rotation at the

commencement of the motion be reduced to one sole force

perpendicular to this axis and passing through the fixed

point, for it is then counteracted by the resistance of the

fixed point.

This sum of the products of each molecule of the body
into the square of its distance from an axis is termed the

moment of inertia of the body with respect to that axis.
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If r, r', r", denote the distances of the element dm from the

axis of x,y, z, respectively, we haver = ^y%
-\-z

%
,
r'=

A^xz +z% r"= Va*+if the moments of inertia relatively

to x,y, «, arefr*dm= (B-\-C),fr'*dm=(A+C), fr"
zdm=

A+ B respectively, which are severally = Ma2
, M6*, Mc2

,

a, b, c, heing the coordinates of the centre of gravity, and

besides these three equations between A, B, C, we have also

T>=o, E=o, F= o ; x,y, z being free axes; relatively to any
other axis x?, of which the position, with respect to the

plane xy, is determined by 6 and \p, we have the moment of

inertias" =f(y"*+z
n
)dm =A. (sin.

2
;//+ cos. 2

</>
sin.

20)+B
(cos.*;//-l-sin.

2

i/,. sin.*0)-f-Ccos.
2 = Mk* ; for each axis situ-

ated in the plane ofx^, we have0= o, and the moment of in-

ertia with respect to such an axis = A sin.2
i//+B. cos.2

i//-f-C

= Mm2
, •/ Ma2 - Mm* = (B— A), sin. % M62— Mm*

= (A— B). cos. Sf,, Mc*— Mm* = (A cos.
2

?//+ B sin. 2
^

- C, M£2— Mm2 = (A cos. ^ + B sin. *^— C). sin. *0;

whatever, therefore, be the value of ip t or the position

of the plane passing through the axis of x at right an-

gles to the plane x, y, the difference between the mo-
ments of inertia relatively to a line which coincides with

the intersection of these planes and to any axis x" existing

in the perpendicular plane (
= M^2—Mm2

,) will be a maxi-

mum, when = o, in which case the axis ofx" coincides with z,

a free axis of rotation, i. e. the difference between the mo-
ments of inertia with respect to the free axis of z, and an axis

perpendicular to it existing in the plane of x,y which is also

a free axis, is > than the difference between the moments

of inertia relatively to the first of these axes and any
other axis, therefore the moment of inertia relatively to

the first axis is > or < than with respect to any other axis

according as it is > or Z than relatively to the axis in the

plane x y, •/ the moment of inertia with respect to the

the first axis is either a maximum or minimum. As the

same may be shewn to be true with respect to the other

two principal axes at right angles to this first axis, it fol-
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lows in general that in every body, the moment of inertia

with respect to each of the three free axes is a maximum or

minimum. But as from the nature of moments of inertia

in general, they can neither become negative or infinite, it

follows, that these three moments are alternately maxi-

ma or minima. If^= o, the intersection of the two planes
coincides with the axis of x, and the moment with respect

to the axis of x" being by what goes before > or Z than

that relatively to the axis of x, the moment relatively to

the first axis will be so of course, y if the moments rela-

tively to the axis of x and the first axis are= , the moments

relatively to all axes existing in the plane of these axes

will necessarily be =
;
this is equally true for the other

two pair of axes. In every case one of the three free

axes may be considered as that to which the greatest

moment appertains, and the other as that to which

the least appertains, so that Ma* > Mb2 and Mb* >
Mc*, •/ if «* = c* + «*» h* = c% + )3

2
; cz = a2 - a2 ,

b2 =a2—
y
2
, a Q y vanish if two or three of the moments

are equal ; from what precedes K—\M{b2
-\-c

2— a2
), B=

\M(a
2
-\-c

2— b2 ), C= iM(a
2+ b2— c

2
), this being substitu-

ted in the value off(^"
2 +x"i

).dm i given in preceding page,

will give MP= Mb». cos.
*i//.

cos. a + M62
. sin.

a
^ cos.

a
0.

+ Mca
. sin.

a
0. = by substituting for a2 b2 their values c

a+
a\ c2 +fi

2
, Mc2+ Ma 2

, cos. 2

i/>.
cos. 2 + Mj3

a
sin.

a
^. cos.

2
t (or by substituting a*—y' for b*, and a 2- — a2 for c

2
)
=

Ma2— My2
, sin.2^/. cos.20—Ma2

, sin.
a
0, y all moments Mk*

are less than the greatest and greater than the least of those

which belong to the three free axes, one of these last is an

absolute maximum, and the other an absolute minimum.

IfMa2

y
M62 Mc2 the three principal moments are equal; a,

/3, 7 are=to cypher, and M£2= Ma2= Mc2= Mbi, y all the

moments of the body are =. If only two of the moments
Ma2 and M&* are equal, 7= 0, and MfazzMar—Ma2

, sin.*

0=Ma2
. cos.

2 + Mc2
. sin.

2
0,and by making 9=o, M£2=
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Ma*=M£*, v a^ moments relatively to axes in the plane
of x y are =, which is indeed evident of itself, for if M/P
was > or Z Ma2

, the difference between Ma2 and Mi2

would be still greater. It is on account of these remarkable

properties that these three axes have been termed prin-

ciple axes, since MF is ZM.a2 and >Mc2

, k jLcl and >c,

V b/-a and>c, ifB=C,then M62=A+C = Mc2=A+ B,

vif^= o, we shall have because D=E= F= o, tan. 20= § ;

therefore the angle is indeterminate, v all axes which

exist in the plane x, y, satisfy the conditions of free axes,

and are therefore principal axes; if A= B= C the three

moments are then equal, namely, Ma2=M62=Mc2
, v sin.

i//
= g i. e. the two angles 9 and

t//
are indeterminate.

(/") If the body is not actuated by any extraneous

forces, the equations of its motion of rotation are

dP .
C*-B* _ da

,
A2-C*

dr , B*-A2

where p —&. cos. a, qzz. Cj. cos. /3,
rr w, cos. y, cos. a

being supposed = cos.
t//.

cos. 0, cos, (3
= cos.'^/. sin. 0?

cos. y = sin. 0, and ^, denote the same as in page 467,

and as cos. *a + cos.
2
/3-f* cos. *y = 1, we have u> the an-

gular velocity = ^
y
z + tf

z + r2 -

(Celestial Mechanics, p.

207). In order that the motion should be uniform about

an invariable axis, it is necessary that the quantities^?, q,

r, should be constant ; hence we have the three following

equations of condition :

(C*-B2
). qr= 0. (A*—C

l
).pr=z0. (B

i-Ai
).pq = 0;

we satisfy these conditions by assuming A=B=C, i. e. if

all the moments of inertia are equal, and consequently all

the diameters of the revolving body principal axes, the

simplest case of this is that of an homogeneous sphere ; it

is also satisfied if two of the quantities p, q, r, vanish,
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which is evidently the case when the body revolves about

a principal axis ; in fact, if it be the axis of #, then a = /3

= 90, and 7=0 ; hence, it follows, that p=0, q =0, and
r— <Ii. The rotation is therefore uniform and invariable

if the solid revolves about a principal axis, and conversely,

the rotation cannot be uniform except about a principal

axis; in fact, either the three moments of inertia A, B, C,
are unequal, or only two of them A, B, are =, or all the

three are equal ;
in the first case, pq, pr, qr, and therefore

two of the quantities p, q, r, must vanish, or which is the

same thing, two of the angles a, j3, 7 must be right an-

gles, and the third = 0, in order that the motion may be

uniform
; hence it follows, that the axis of rotation is a

principal axis
; in the second case pr — qr, therefore

p = q = 0, or r = 0, the first supposition makes a= /3

=90, and 7=0, because cos.
2 a + cos.

a
/3+ cos. *y = 0,

therefore the axis of rotation is a principal axis.

The second supposition r = 0, gives 7 = 90, therefore

the axis of rotation coincides with the plane of x, y, in

which all the diameters are principal axes, because the

two moments A, B, are equal. In the third case, A=
B= C, the quantities p, q, r are undetermined, and as all

diameters which pass through the centre of gravity are in

this case principal axes, the axis of rotation will be one

also. In all cases in which the axis of rotation is not a

principal axis, whether the solid be free or solicited by
extraneous forces, the velocity of the rotation as well as

the position of the axis will be liable to changes, which

depend on the conformation of the solid, i. e. on the

quantities A, B, C, and on the position of the axis of rota-

tion with respect to the principal axes, i. e. on p, q % r. If

the axis of rotation is inclined to the principal axis in a

very small angle, this axis being that of z, the quantities

p, p are so very small, that we may neglect their pro-

duct, therefore ^;=0, and •,•?•=// a constant quantity. In

u u
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this case also the velocity of rotation r w is nearly con-

stant ; hence the two other equations become = dp +
Ql JJ* J^i Qi

. hq.dt, = dq -f- —-—— . hp.dt : and it is evident
A* Ba

.

that the integral of these equations must assume the form

p—m. $\n.(nt-\-e), q—m' cos. (w/-f-£), ?i, m', w, e being con-

stant quantities, it is easy to prove by substitution that these

circular functions satisfy the preceding differential equa-

tions, and therefore maybe assumed as the values of p and

q. See Celestial Mechanics, page 208. We may deduce

irom them = mn-\ . hm ;
=—mn-\-A2

AB*

T»

hm, hence we have n — — . 'V
/(^_C2

).(B
3-^CT}7 and

m' = 4'
m
?/§£&' If

(
A* - C3

)- (
B* " Cz

)
is P°si-

tive, «". £. if the moment of inertia with respect to the axis

of rotation Mc2
, is greater or less than Ma2 and Mb*, and

consequently the greatest or least of all the moments,

n, m, m' are real quantities, and p, q are expressed by real

sines, therefore the variations of rotation being periodic,

and confined within very narrow limits, the axis of rota-

tion will make small oscillations about its primitive state,

the magnitude of which may be determined by the equa-

tions p = m. sin. e, q = m'. cos. e. As by hypothesis,

p, q, were at the commencement of the motion extremely

small, m, m' are extremely small, and thus p, q will al-

ways differ very little from cypher. The state of rotation is

therefore stable, if the body commenced to move about an

axis inclined in a very small angle to one of the two princi-

pal axes, of which the moments of inertia are the greatest

or least of all; the velocity will then experience only insen-

sible and periodic oscillations, and the axis of rotation will

make slight excursions about the principal axis, the ro-

tation always returning to its primitive state ; but if the
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solid revolves nearly about the principal axis, of which

the moment of inertia Mca
exists between the two others,

Ma2 and Mb*, the rotation will be subject to changes,

which instead of being periodic may increase indefinitely ;

for 11 being then imaginary, the sine and cosine of nt-^-e,

will be changed into exponentials, which are susceptible

of continual increase; in this case, therefore, the motion

of rotation is not stable, and the slightest derangement

may cause the changes to be indefinitely great. And as

observation proves that the rotation of the sun, planets,

and satellites, (which are observed) is in a stable state, it

appears certain that all the celestial bodies revolve very

nearly about a principal axis, with respect to which the

moment of inertia is the greatest or least, most probably

the first, for on account of the compression of the earth

arising from the rotation, the axis is smaller than the

diameter of the equator, and therefore its moment of in-

ertia is greater. See Tom. II. Chap. VI.

(g) Suppose the axis of x' to be this horizontal axis,

and if the axis of y' be also horizontal, the axis of z' will

be vertical, let the plane which passes through the axis

ofy' and z,
f

pass through the centre ofgravity, and let
<f>
be

the angle which the axis of z' makes with an axis passing

throughthe centre of gravity and the origin of the coor-

dinates j if3/", z" be the coordinates referred to this new

axis, then y' =y". cos. + z". sin, $ ; z* = z". cos.
<p
—

y".

sin.
<f> ; now as the coordinates y", z" are constantly the

same for the same body, and only vary in passing from

one molecule to another, by taking the differential ofy' and

z
/ with respect to the time, we obtain

>Jfe3fcjaQ . *,= - f» /.**(/•+«-*
at at

f.dm.(y
2"+ zz ") is the moment of inertia of the body with

respect to the axis of x' \ if this moment = C, then from

what is stated in page 443, multiplying by dm, and ex-



476 not lis.

tending the expression to all the molecules, we obtain/^2^ ;* B y=.- C. *L, and as'C'is con-
at at

stant we have —C ——-=—.— - if the only force actu-
dtz dt

J

ating the body be that of gravity, then the values of P, Q,
which are supposed to act horizontally, will vanish, and R,
which acts vertically, will be constant; hence, we obtain

dV
=f.Ry'dm= R.cos. O.f.y". dm+ R.sin. Qfz".dm y

since the axis of z" passes through the centre of gravity of

the body, fy".dm = 0, and if h be the distance of the

centre of gravity of the body from the axis of x'9 f.z".

dm=Mh9 M being the entire mass of the body, therefore

Mh. K. sin. 0, and consequently
dt

.
.

dt

Mh. R. sin.~
C~

'*

suppose a second body, all whose molecules are condensed

into one point, of which the distance from the axis of x' is

= to /, we shall have for this body C'=M72
, M' express-

ing the mass, for as all the molecules are condensed into

one point

z / i
d*Q Wl „ . Q R • n

h = /, and
-^-=- gpr

R - sin - e = - — • sin - ®>

d*Q R
moreover = . sin. 0, hence the two bodies

dp I

will have the same oscillatory motion, if their initial an-

gular velocities are the same, when their centre of gravity

c
exists in the same vertical, and when /=: -nr > which is

Mh
equivalent to the rule given in the text. Multiplying

both sides of the equation -j-j-= -y2-
— by 2d9, then
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dO* 2R
integrating we obtain ——-z= . cos. 0+B', the coll-

ar /

stant quantity B' depends on the angular velocity and
value of at the commencement of the motion. From

C
the equation /= ——

, it appears that when the axis of ro-Mn
tation passes through the centre of gravity, h— 0, and I

is infinite, therefore the time of oscillation is infinite; in

fact, in this case the action of gravity being destroyed the

primitive impulse will communicate a motion of rotation,

which will be perpetuated for ever if the resistance of ex-

traneous causes be removed. The point which is distant

from the axis of rotation by a quantity equal to I is termed

the centre of oscillation of the body ; and if the axis

of rotation passed through this point, the centre of

oscillation, with respect to the new axis, will be in the

former axis of rotation j for the moment of inertia, with

respect to the centre of gravity, being equal to O—Mh3
',

the moment of inertia with respect to the new axis will be

C'+ M/2— 2M/A, therefore the value of / for the new axis

= C+
n??

Z2

T,
2

,

M^
>
but C'=M//i, therefore the value of/

for the new axis =r -^^-—=^-— *•

Ml—Mh
Let C'= A. sin.

2
0. sin.

2
#+B. sin. 20. cos. «f+C. cos. 2

+M^2
, A, B, C, being the moments of inertia relatively

to the principal axes passing through the centre of gra-

vity, see page 467, we shall have I =
Mfr+ A. sin.

2
ft.sin.

2

</>+B. sin, 'fl.cos.
2

ft+ C. cos. 2Q

MA '

therefore I will be a minimum when the quantity C be-

comes the least of the three principal moments of inertia,

for in that case the two other moments must vanish
;
let

MA* 4-AA be the least of these moments, then 1=—=-~-— > for
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sin. 0. cos.
<j>
= 0, cos. = 0, and to determine when /

is a minimum, (16= — . dh = 0, hence

^ — v « . therefore /, and consequently tlie time of

rotation will be a minimum when the axis of rotation is

that principal axis relatively to which the moment of iner-

tia is a minimum, and at a distance from the centre ofgravi-

ty by a quantity =V ^ ; th is constant and ss-2- > which

is equal to the square of the distance of a point called the

centre of gyration from the axis of rotation, i. e. that

point where if all the matter contained in the revolv-

ing body was collected, any point to which a given force is

applied to communicate motion would be accelerated in

the same manner as when the parts of the system re-

volve in their respective places, and consequently the same

angular velocity is generated in both cases ; therefore this

distance is a geometric mean proportion between the dis-

tances of the centres of gravity and oscillation from the

axis of rotation, and from what precedes it appears that

when the time of vibration is a minimum, the distance of

the centre of gyration from the axis of rotation is equal to

the distance of the centre of gravity from the same, and

the distance of the centre of oscillation from the same

axis = 2. / in this case the centre of gvration isM G"

termed the principal centre of gyration.

If, as in the case of the planets the rotatory motion

arises from a primitive impulse, of which the direction

does not pass through the centre of gravity, then, in conse-

quence of what is stated in notes (c) and (u), it follows this

centre will move in the same manner as if the impulse was

applied immediately to it, and the rotatory motion about

this centre will be the same as if it was fixed j the sum of
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the areas described about this point by the radius vector

of each molecule projected on the plane passing through
the centre of gravity, and the direction of the impulsion

multiplied respectively by these molecules will be propor-

tional to the moment of the primitive force projected on the

same plane ; but this moment is evidently the greatest pos-

sible, for the plane which passes through its direction and

through the centre of gravity, therefore this is the invariable

plane, (see note (x) of this chapter.) If/ be the distance of

the primitive impulse from the centre of gravity, and v the

velocity impressed on this point, Mf-v will be the moment

of the impulsion, and being multiplied by \t> the product

will be equal to the sum of the areas described in t; but,

as will be seen hereafter, this sum is equal to

V mfv = ^Cy + AY+ Bv* ,

and if at the commencement of the motion we know the

position of the principal axis with respect to the invari-

able plane, i. e. the angles and 0, we shall have the

values C/;, Kq y Br, at the commencement, and therefore

at any subsequent instant. Now, if the moving body was

a sphere, of which the radius = R, and if U be the an-

gular velocity with which it revolves about the sun, the

distance from the sun being
—

d, v — dXJ, and as the

planet is put in motion by a primitive impulse, the axis

of rotation will be perpendicular to the invariable plane;

and on the hypothesis that this axis coincides with the

third principal axis, 0=0, therefore Aq= 0, Br= 0; con-

2
sequently Cp= mfv—mfd\3\ in a sphere C= — . 7«R«,

5

therefore^ = — . —— . £-, by means of which we can de-
5 4V

termine the distance of the direction of the force which
causes a planet to revolve about the sun with a velocity
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of rotation =p, and a velocity of revolution = U. (See

note (c).

(/*) If a body describes an ellipse, the centre of the el-

lipse being the point to which the force is directed, the

force will vary as the distance from the centre, and vice

versa if the force vary as the distance, the curve describes

an ellipse, the point to which the force is directed being
in the centre, but it is evident that in cases of small impul-
sions made on the vibrating body, the force varies very

nearly at the distance. The time of the revolution is

twice the duration of the vibration of a pendulum whose

length is the distance of the plane of the ellipse described

from the point of suspension.

The general solution of the problem of the very small

oscillations of a system of bodies about their points of equi-

librium, is very complicated. However, the following may
be considered as a precis of the method ofLagrange : he as-

sumes that the coordinates of the several bodies may be ex-

pressed by the coordinates which appertain to the body in a

state of equilibrium, increased by the very small variables

which vanish in the state of equilibrium ; this is always pos-
sible when the equations ofcondition, reduced into a series,

contain the first powers ofthe variables, which ^ire assumed

to be extremely small ; as for instance, if a, b, c, b<5 the coor-

dinates of a body in a state of equilibrium, when it deviates

very little from this state, let the coordinate x=a+ a,y—b
-\- /3,

z = c -{- -y, a, /3, y, being so extremely small

that powers of them higher than the first may be ne-

glected ; then if the equations of condition L = 0, M = 0,

&c, are in any position algebraic functions of x
y y, z9

x f

, &c. ; as the position of equilibrium is one of the

positions of the system, it is evident that the equations
L = 0, M = 0, &c. must still subsist; x, y, z% x\ &c.

being supposed to become a, b, c, a', &c. hence, it is evi-

dent that these equations do not involve the time /, let

A, B, &c. be what L, M, &c. become when x, yt z, x't
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become a, b, c, a\ &c. it is evident that by substituting

for x, y, sr, x
f
, &c. their values a + a, 6 + /3, c+y, &c.

t » dA . dA Q ,
dA . dA , .L =A+ -E- '+ "3T

• '3 + &- * + sr ° + &c - :

M=B+ « a + *»
. P+^L y + M.. .',&«.

rfa do dc da

V as relatively to the state of equilibrium A = 0, B =r 0,

The values L— A, M— B, are respectively equal to cy-

pher, which will give the relation which ought to subsist

between a, /3, y, a', &c. and by neglecting very small

quantities of the second and higher orders, we will ob-

. tain linear equations by means of which we can determine

the values of some of these variables in terms of the

others, then by means of these first values, we shall find

others more exact, taking into account the second, and

even higher powers, as we wish.

(k) In general assuming x = a + a
/ £+ anip -f~ aiti$i &c «

V = b + b£+ b„\f, + h
w<t>> &c» »=c+c,5H- c

ttip+bw$ +&c,
where a, a/9

a
lt>

&c. b y b
fl

bin &c, c, c
/5

c
///9

&c. are con-

stant, and £, \p, <p,
&c. are very small variable quanti-

ties, which are = to cypher in the case of equilibrium ;

when the variables £, ^, 0, &c. are supposed to be in a con-

stant ratio to each other, then in the expression for the

sum of the living forces, and for its variation, we would

d*Z
arrive at an equation of the form

| + &£= 0, of which

the integral is £ = E. sin. t.^k+ e, where k has as many
values as there are unknown quantities; it is evident,

that this expression represents the very small isochro-

nous oscillations of a simple pendulum, the length of

which is equal to
-|-, g representing the force of gravity,

therefore the oscillations of the different bodies of the

system may be considered as made up of small oscillations

xx
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analogous to those of pendulums, the lengths of which are

k
'

P' *"'

(w?) As the coefficients E, E', E", &c. depend solely

on the initial state of the system, we may always suppose
this state to be such that all the coefficients E', E", E'",

&c. except one vanishes, then all the bodies of the sys-

tem make simple oscillations analogous to those of the

same pendulum, and it thus appears that the same sys-

tem is susceptible of as many different simple oscilla-

tions, as there are moveable bodies
; therefore, generally

speaking, the oscillations of the system, of what kind

soever they are, will only be made up of those simple

oscillations, which from the nature of the system may have

place; consequently however irregular the small oscillations

which are observed in nature appear to be, they may be

always reduced to simple oscillations, the number of

which is equal to the number of vibrating bodies in the

same system ; this immediately follows from the linear

equations, by which the motions of the body which com-

pose any system are expressed, when those motions are

very small. The system can never resume its original

position when ^k', ^k", *^
k"', &c. are incommensur-

able, for in that case the times of the oscillations are in-

commensurable:—if they are commensurate the system

will return to the same position at the end of the time

T = , where tt= 180, and fx
= the greatest common

measure of "^
k',

^k"t
**

k'", &c. will then be equal to

the time of the compound oscillation of the system.

(») This principle is called the principle of D'Alem-

bert, as it was first announced by that philosopher, by
means of it the laws of the motion of a system are reduci-

ble to one sole principle, in the same manner as the laws

of the equilibrium of bodies have been reduced to the prin-

ciple of virtual velocities.
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In consequence of the mutual connexion which sub-

sists between the several bodies of the system, the effect

which the forces immediately applied to the several parts

of the system would produce, is modified so that their

velocities, and the directions of their motions are different

from what would take place if the bodies composing the

system were altogether free ; therefore if at any instant

if we compute the motions which the bodies would have

at the subsequent instant, if they were not subject to their

mutual action, and if we also compute the motions which

they have, in the subsequent instant, in consequence of

their mutual actions, the motions which must be com-

pounded with the first of these in order to produce
the second, are such, as if they acted on the system

alone, would constitute an equilibrium between the bodies

of the system, for if not, the second of the above-men-

tioned motions are not those which have actually place,

contrary to hypothesis, i. e. if v, v'9 v", &c. be the veloci-

ties which the bodies m, m\ m", &c. composing the system

would have if each of them was isolated, and if?/, u', u",

&c. are the unknown velocities with which the bodies are

actuated in directions equally unknown, in consequence

of the mutual connexion of the parts of the system ; and

if p, p' y p", be the velocities which must be compounded
with u, u', u", &c. acting in a contrary direction, in order

to produce vt v\ »", &c. respectively, then there is evi-

dently an equilibrium between mp, m'p\ m"p", &c, the

quantities of motion lost or gained ; otherwise, u, t/t u",

would not be the velocities which have actually place ; as

mp is the resultant of mu and of mv, taken in a direction

the contrary to its motion, by substituting for mp, m'p',

m"p", &c. their components, we may announce the prin-

ciple by stating that there is an equilibrium in the system
between the quantities of motion mv, m'vf

, m"v", &c. im-

pressed on the bodies, and the quantities mu, m'u', m"u",
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&c. which actually obtain ; these latter being taken in a

contrary direction, by announcing the principle in this

way we avoid complicated and embarrassing resolutions,

and we need not consider the quantities of motion lost or

gained, besides we are enabled by it to establish directly

equations of equilibrium between the given velocities vt i/,

v", &c, and the unknown velocities u, ?/, u", &c, which
can therefore be determined by means of these equations.
However it must be observed, that the above equation is

not sufficient of itself to determine u, u\ u" y &c. we must
in addition, obtain another to be determined by the nature

of the system.

If the bodies are actuated by accelerating forces, then

if those resolved parallel to the coordinates x, y, z, be

P, Q, R, for m, P', Q', R', for m\ &c, mP, mQ, wR,
?mP', &c, will represent the motions parallel to the three

axes which the bodies would have if they were altogether

free, and

d*x d*y d^z

dt* dt* dt*

represent the motions parallel to the same, which the

bodies actually have at the commencement of the second

instant, which since they are to be taken in a direction

opposite to their true one, must be affected with contrary

signs to mP, raQ, mR. See page 432.

;-m
.(
d
.^+VM)., -«.(*£.+ <£)•,

- m. (d.~+R.dt\ &c.

will be destroyed.

m •(- dz dv dz
i. e. it m.——. m. -^-, m.— ,

dt' dt dt

represent the partial forces of the body m at any instant,

resolved parallel to the three axes, in the subsequent in-

stant they will become
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m.——I- m.d. — m.d. -4- m. Vdt.
dt dt dt

m—¥-+ m.d.-^-— m.d.-^-4- m. Q.dt+ &c.
dt dt dt

^

i dx . j dx dy ,
, du

and as m.—— + m.d.——. m. -^- + m.d. -^-, &c.
dt dt dt dt

only remain in the subsequent instant,

—m.d.— A-m.Y.dt, —m.d.^- +m. Q.dt+ &c.
dt dt

will be destroyed ; by distinguishing in this expression

the characters in x, y, #, P, Q, R, by one, two, &c,
marks we shall have an expression for the velocities de-

stroyed in m\ m", &c, and multiplying these forces by.

&r, &/,&s, &c, the respective variations of their directions,

by means of the principle of virtual velocities, the follow-

ing equation will be obtained,

o=^.(^-P.)+m%.(§-Q)

+ »*,.
(-^-

-
R)+ wfhf.

(^-1")
+ &c,

if we eliminate by means of the particular conditions

of the parts of the system as many variations as there are

conditions, and then make the coefficients of the remain-

ing variations separately equal to cypher, we shall obtain

all the equations necessary for determining the motions of

the bodies of the system.

As —— is made to express the increase of the velocity,

the changes in the motion of m are made by insensible

degrees. The preceding equation consists of two parts,

entirely distinct, namely,

S.m.(P.8a? + Q.&/ + R.&s),

-~(^'«*.£. ¥+£.:*); &c.
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the first member would be equal to cypher if P, Q, R, P',

&c, which are applied to the several bodies of the system

constituted an equilibrium ;
the other part arises from the

motion which is produced by the forces P, Q, R, P', &c.,

when they do not constitute an equilibrium, and the

equation in page 431 is only a particular case of this;

the second member is totally independent of the position

of the axis of the coordinates, for substituting

for x, ax' + by[ + cz', for j/, a'x' -\-b'y' <\-c'z',

for z, a"x'+ V'y'+ c"*' + &c.

and substituting also

for dz
Xi d3

i/, c7
z
#, 3x, &/, &k, &c, their values in terms of

these quantities, (or, b, c, a', &c. being supposed to be con-

stant,) we obtain an equation of the same form as the

preceding, for

a*+ a'z +a"2 =1, ab
-J- ac+bc = 0, &c. see page 409,

the same substitutions being made in the expressions of

the mutual distances, the coefficients a, b, c', a', &c, will

disappear for the same reasons. The principle of D'Alem-

bert by itself, without introducing the consideration of

virtual velocities, would enable us to infer several im-

portant results; but it is its combination with that of vir-

tual velocities which has contributed so much to the im-

provement of rational mechanics, as by means of it all

mechanical problems are reducible to one sole principle,

namely, that of virtual velocities; and thus every pro-
blem of dynamics may be reduced to the integrations of

differential equations, so that as it belongs to pure analysis

alone to effect the integration, the only obstacle to the

perfect solution of every problem of dynamics arises from

the imperfection of our analysis.

(p) In order to determine the condition of a fluid mass

at each instant, we must know the direction of the mo-
tion of a molecule, its velocity, its pressure p, and the

density p, but if we know the three partial velocities, pa-
rallel to the three ordinates, we shall have the entire ve-
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locity, and also the direction, for the partial velocities di-

vided by the entire velocities, express the cosines of the

angles which the coordinates make with its direction ;

hence we have five unknown quantities. Now, in the ge-

neral equation of equilibrium furnished in Notes, page

452, namely, $p = P.Sx -4- Q.By + R.Ss, the characte-

ristic $ is independent of the time ; but when the fluid is

in motion we must, by what has been just established,

substitute

V~^F for P' Q "
1ft*

for Q '
R ~

"S
for R '

and after the substitution, if we concinnate, and assume

that

P.&r 4- Q.Sy + R.fe = SV,

then we shall have

dp = By_^_,Sx-^-.Sy-^ *.
p dt* dt 2 "

dt"

since the variations &r, Sy, Sz, are independent, this equation

is equivalent to three distinct equations; besides these, we

obtain another from the circumstance of the continuity of

the fluid, for though each indefinitely small portion of the

fluid changes its form, and if it is compressible, its vo-

lume likewise, during the motion, still as the mass must be

constant, the product of the volume into the density must

be the same as at the commencement; and by equating the

two values of the mass we obtain the equation relative to

the continuity of the fluid.

Neglecting quantities indefinitely small of the fifth

order, the volume of the element at the end of the time

t+dt is dx.dy.dz. (l +^L.dt + *£-. dt-\-^.. dt) ,

V dx dy dz I

and the density at the same epoch becomes

«+ *£-. dt + *2L. udt+$-. vdt+*g-. wdt,
dt dx dy r

d%
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multiplying this expression by the corresponding volume,

the product expresses the mass at the end of t + dt> from

which subtracting p.dx.dy.dz, the remainder will be the

variation of this mass, which should be = ; hence, we

obtain by suppressing common factors, and neglecting dt*

dp .dp , dp , dp ,
du . dv

dz dt dx dy dz

if the fluid is incompressible this equation is resolvable

into two, for both the mass and also the density remain

the same. The two into which it is resolvable are

&.+$-. u+^. u+± „ = 0,
dt dx dy dz

du
\

d-v
i
dw __ p

dx dy dz

and these combined with the three equations already men-

tioned, will be sufficient to determine p, p, u, v, w, in a

function of x, y, z, t; the first of these equations becomes

a purely identical one when p is constant, but in this case

we have only four unknown quantities. With respect to

elastic fluids we have also only four different equations;

however, it is to be remarked, that in this species of fluid,

the density is always in a given ratio to the pressure p,

therefore they are reduced to one unknown quantity,

provided that the temperature is given; and even if it is

not, if it varies according to a given law, so that that the

temperature may be assumed a given function of x,y, z,

and t y the coefficient which expresses the ratio of p to j),

will be a given function of these variables ; consequently,

whether the motion to be determined be that of an im-

compressible fluid, or of one, of which the temperature

is constant, or variable according to a given law, we

shall in all cases have as many differential equations

as unknown quantities ; as these equations are those of

partial differences between four independent variables,
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;r, y, s, and t, their perfect integrations cannot be ef-

fected by the ordinary methods, except that by means of

some hypothesis they are simplified ; and even in such a

case, we should determine by means of the state of the

fluid at the commencement of the motion, the arbitrary

functions which their integrals contain.

(q) If in the expressions of p. 485, we suppose the origin

of the coordinates to be in a point x, y t z, then in the values

of Bf, 8f, Bf", &c, we have evidently Bx,

=Bx-\-Bx/, By=By

-f-Sy/i Sf/esSaf -f- 82/+ &C, therefore if in the values of Bf,

Bf, Bf",&,c, of the variations of the mutual distances given
iu page 4-48, we substitute these values for Bx', By', Bz', &c,
the variations Bx, By, Bz, &c. will disappear from these

expressions; consequently, by substituting these values

for Bxf

, By', Bz', &c. in the equation given in page 485,

we obtain

o=„,&.
(§.-p) +„,^ (^-q) +„,&(|£-r)

+m'H^ -F
)+"Mw-F

)
+ "''*

&-<*•)'+'*.'&-<*)+ '»

the terms in the expression which are multiplied by

Bx, By, Bz, respectively, are, by adding them together

*&-*)' *-(§M« *-(£-»)
Consequently, if, as is supposed, the system be free, the

conditions relative to the mutual connexion of the bodies

will only depend on their mutual distances, hence the va-

riations of Bx, By, Bz, are independent of these conditions,

and therefore the preceding expressions by which they

are respectively multiplied, must be put severally equal to

cypher; and as from what is laid down in page 446,

A — m̂x
• B — ^mV ' C — ^mz

we have

Y Y
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d2A „ d*x __ S/m.P

<//* _ dt* Sot
'

'

Sot

we obtain in the same manner

d2B Sm.Q rf'C __ S?k.R

^*
~"

Sot
'

A* Sot
'

therefore if all the bodies of the system were united in the

centre of gravity, and the forces which are applied to them,

when separate, were simultaneously impressed on them ;

the motion of such a body is the same as that of the cen-

tre of gravity ; if the system was only subject to the mutual

actions p, p', &c, of the bodies composing it, and to their

reciprocal attractions ; then since ftftf^ &c. the dis-

tances of the bodies are

*V'— xy + (y —yf + {z"
— zy + &c.

in consequence of the sole action pt we have

mV = p.
v

', mQ = p.
vy f \ mR=p. A——L

;

f f f

f F f F f
VfflP+ra'F=0; otQ+ot'Q'stO; ™R+ w'R' = 0; &c.

and a similar proof may be shewn for the bodies in the

case of their mutual attractions. As action is equal to re-

action, though its direction be contrary, when two bodies

impinging on each other exercise a finite action in an in-

stant, their reciprocal action will disappear in the expres-

sions S.mP, E./rcQ, &c. ; in fact, as we can always sup-

pose the action of the bodies to be effected by means of a

spring interposed between them, which endeavours to re-

store itself after the shock, the effect of the shock will be

produced by forces of the same nature with p, which,

as we have seen, disappear in the expressions S.wP, S.wQ,
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&c. By integrating - =0, we obtain —— =. b, and

A = bl-\-a; a is the value of A at the commencement of

the motion, and b is the uniform velocity of the centre of

gravity resolved parallel to A. In like manner the inva-

riability of the motion of the centre of gravity of a system
of bodies, notwithstanding their mutual action, subsists

even in the case in which some of the bodies lose in an

instant, by this action a finite quantity of motion; for

• A dx
since d. . Sw = 2w. = the quantity of motion,

dt ilt
' J

and since by the principle of D'Alembert the quantity of

motion 2w. —— before and after impact, should be equal

to cypher, i. e. such as would cause an equilibrium in

dA
the system, it follows that . Em, before and after im-J

dt

pact should be equal to nothing, i. e. as S/« is given,

——
, the velocity of the centre of gravity in the direction of

the axis ofx, is not affected by the impact. We can therefore

always determine the motion and direction of the centre of

gravity of a system, by the law of the composition of forces,

for it moves in the same manner as a body equal to the sum
of the bodies would move, provided that the same momenta
are communicated to it as are impressed on the respective

bodies of the system ; and if the several bodies of the system

were only subject to their mutual action, then they would

meet in the centre of gravity, for they must meet, and the

centre of gravity remains at rest.

(r) We may make the variation $x disappear from the

expressions for S/j §/', &c, by another supposition beside

that of page 4-89
;

for if we assume

Bx<= V>lH -f&c' ; dx" = ^fL + &r/i du= -^ .

y v y

+ SjZ/j
&c.
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then if in the expression for $f, S/', &c, =

f
&c. we substitute for $x', &r", Sy/ By", &c. their preced-

ing values, they become

-Z + Sx/—bx)+ (y —y) (
—

y v y
(#:_,). (V^L+$x;-S

x )+ {y'-y) (-^- + ty> -f-

8dxcx
By,A divided by/, =

J/

by omitting quantities which destroy each other

(x'-x), S*/+(/ -J/). (&//-&/,), &C

hence, making those substitutions, the variation $x disap-

pears from the expressions for §f, Sf\ &c, and it is easy

to perceive, if the preceding values be substituted for

&r, $y, $x", &c, in the equation given in page 485, that

the coefficient of Bx will be

&». (

**ffi**
} + S«. (P?-Q*),

which is, by what precedes, equal to cypher, therefore

its integral with respect to t is

c - Jfoi, ("frj^+ ^/.m(P^Q4 <&,

if in place of the forces Q, Q', &c, parallel to the axis of

y, we substitute the forces R, R', &c, parallel to the axis

of #, or in this last if we substitute Q, Q', for P, P', &c,
we shall obtain the corresponding equations

t>
- Sw . $***—***) + S/OT.(P«- Rx).dt,

c» = gm. {y^-HM + S>,(Q*-%). rf/;

it is evident, from what precedes, if the bodies of the

system are only subjected to the action of forces arising
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from their mutual action, and of forces directed to a fixed

point, that then

Sw.(Pj/— Qx), Sw.(P#—R#) -f-&c. are respectively =05

• • ca&m. *»-?*«>
;

c> = Sm. Z^-^&c. but
dt \ dt )

from what has been stated in pages 390, 429, 5 y~V
f
—

the area traced by the radius vector of m in dt, hence then

appears the truth of what is asserted in the text, that when

the bodies composing the system are only subject to their

mutual actions, and to attractions directed towards a fixed

point, the sum of the areas multiplied respectively by the

masses of the bodies is proportional to the time. The
constant quantities c, c', c", may be determined at any

instant, when the velocities and coordinates of the bodies

are given at that instant. There are three cases in which

this principle of the conservation of areas obtains, when

the forces are only the result of the mutual action of the

bodies composing the system, when the forces pass through
the origin of the coordinates, when the system is moved

by an initial impulse ; in the first and last cases the origin

of the coordinates may be any point whatever; if there is

a fixed point in the system, as by what is stated in page

442, the principle of the conservation of areas may be

reduced to that of moments, the principle obtains when

this point is made the origin of the coordinates ; for in

that case, Py— Qr, which is the moment with respect

to the origin, will disappear, see Notes, page 442; if there

are two Jized points in the system, only one of the three

equations obtains, namely, that which contains those coor-

dinates, the plane of which is perpendicular to the line

joining the given points. If all the bodies of the system

are equal, the theorem comes to this, that the sum of the

areas traced by the radii vectores about the focus is pro-

portional to the times.
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(t) If the variations Sx, S*/, dz, hx', &c, be supposed

equal to dx, dj/3 dz, dx\ &c, which supposition we are per-
mitted to make, the equation given in page 481, becomes

= „,</,. (g -P. )+.* (^-Q.)+„,,,(g_R)

-\- &c, of which the integral is

this last term is an exact integral, if the forces P, Q, R,

P', &c. are the results of attractive forces directed to-

wards fixed centres and of a mutual attraction between

the bodies, which is some function of the distance; if

we suppose it = to 0, the preceding equation will become

Swu2

=c+2^, see page 432
; hence, if the bodies composing

the system are not solicited by any forces, $ vanishes, and

2wn>* = c
t i. e. the sum of the living forces is constant, and if

it does not vanish, the sum of the increments of the living

forces is the same, whatever be the nature of the curves de-

scribed, provided that their points of departure and arrival

are the same. What has been stated respecting the mutual

attraction of the bodies of the system, is equally true respect-

ing repulsive forces, which vary as some function of the dis-

tance ; it is also true, when the repulsions are produced by
the action of springs interposed between the bodies, for

the force of the spring must vary as some function of the

distance between the points ; hence in the impact of per-

fectly elastic bodies, though the quantity of motion com-

municated may be increased indefinitely, still the vis viva

after the impact remains the same as before j indeed, during
the impact, the vis viva varies as the coordinates of the re-

spective points vary, but after the restitution of the bodies,

from their perfect elasticity they resume their original posi-

tion, and therefore the value of the vis viva remains the

same as before ; but if the elasticity be not perfect, in
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order to have the vis viva at any instant, we should have

the relation which exists between the compressive and

restitutive force. Thews viva of a system is evidently di-

minished when the motion is modified by friction, or the

resistance of a medium, for in that case
(
Fdx -f- Qdy+ Rdz)

is not a perfect integral.

It is evident from the manner in which the principle

of the vis viva was deduced, that it only obtains when

the motions of the bodies change by imperceptible gra-

dations, if these motions undergo abrupt changes, the

living force is diminished by a quantity which is thus de-

termined, let a. a.—^-, &c. denote the differences of
'

dt dt

——
,
—?- , &c, from one instant to another, and from the

dt' dt

principle of D'Alembert, as a.—— is the variation of the

velocity on the supposition that the body is entirely free,

and V.dt, the variation which actually takes place, in

consequence of the actions of the bodies of the system, we

may apply the reasoning of page 483 to this case ; there-

fore the following equations obtain

_ ( ^ dx Bx . A dy By , A dz $z . Q \
v dt dt dt dt dt dt /

—
Sfl*.(P&r + QSy + R&) = ;

now as dx, dy, dz become in the subsequent instants

dx + A.cfo, dy-\- &'dy, dz-\- /±.dz. &c.

if we assume &r, By, $*, &c.= to these quantities, we evidently

satisfy the condition of the connexion of the parts of the

system, therefore substituting these quantities for Bx, hft

Bz, &c, the preceding equation becomes

\ W* dt J dt
^

V dt
T dtJdt^
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\dt^ dt/ dt )

the integral of ;nP.(dr+ A.</ar) is evidently equal to^m.

P.<7.r, &c. f and the integral of

dx dx dxz

m. ——. a. —— —m, —— ,

dt dt dtz

for a. (a;
2
)
= 2xh + A*, and if /z be made equal to A.r, it

becomes

ZxA.x+ iAx*), •/ 2S.(a?Aa;+ ( a#)
2
)
= S.(2#a#+( A*)

1

+ S.( &x)*=x
t+ S.( a^)

z
; see Lacroix, torn. 3, No. 344,

therefore if we multiply the preceding equation by 2, and

substitute dx, in place of x, we shall obtain after concin-

nating

S*.
(

'k'+
^-Hfe* )_-2/»».(P<fo+Qrfy+R&)

^{<^)+(-*W-.*)}'
*. e. if v, i/, v", &c, denote the velocities of the several

bodies m, ?»', m", &c, we have

S.mc*=G4 2S//».(P<&?+ Qdy+Rdx)

as the quantity under the sign S is always positive, the

living force of the system is diminished by the mutual

action of the bodies as often as a. —- is finite, as
dt

dxz + dy + dz1

expresses t]ie square of the velocity of

m before the shock, and

{dx+ A.dx)*+(dy+ A.rfy)«+(<fa+ Adz)*

It*
'
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the square of the velocity of m after the shock ; and since

from the principle of D'Alembert,

2w.(2<fa? A.ete -f 2( &dxf + 2dy. &.dy + 2( A.<fy)* +
'

2cfe.A.rfs + 2(A.<fe)*) = 0,

If we subtract this from the preceding expression the

difference becomes

_ Sw dx* +df + dz* _ Sm (A.<fa?)'+(A.dy)»+(A.&)*

«#«

'

<#*

and as Sw. — ±.—2.—! '— — Smir,

the living force of the system before the shock,

( ±.dx)* + ( A.dy)» + ( A.<fe)» _ ya

the square of the velocity lost by the shock, and S.mV*(=
the loss which the wis viva sustains by the shock) is equal

to the sum of the living forces which would belong to the

system, if each body was solely actuated by that which is

lost by the shock. This theorem was first announced by
Carnot.

(s) The variation of the vis viva of the system is equal

to

22m.(F.dx + Q.dy + Rdx) = d.(2m.v
3
),

therefore when this expression vanishes, Ewp* is either a

maximum or a minimum ; but from the principle of vir-

tual velocities it appears that when P, Q, R, P', &c, con-

stitute an equilibrium

P.&r + Q.Sj/ + R.Sz + PW + &c. = ;

and when &r, By, Bz, &c, are subjected to the conditions

of the connexion of the parts of the system, we may sub-

stitute dx, dy, dz for these variations; consequently, we
have

2m.(F.dx + Q.dy + U.dz),

the variation of the vis viva equal to nothing in this

z z



498 NOTES.

case, and therefore the vis viva is either a maximum
or minimum. If the system was slightly disturbed from

the position of equilibrium, expressing P, Q, R, &c,
in terms of the coordinates and expanding the resulting ex-

pressions into a series proceeding according to the varia-

tions of the coordinates ; the first term of the series will

be the value of when the system is in equilibrio ; and

since it is given, it may be made to coalesce with c/ in

the expression given in page 4-94 ; the second term va-

nishes by the conditions of the problem ; and when ^mvz

is a maximum, the theory of maxima and minima shews

that the third term of the expansion may be made to

assume the form of a sum of squares affected with a nega-
tive sign, see Lacroix, No. 134, the number of terms in

this sum being equal to the number of variations or inde-

pendent variables.

The terms whose squares we have assumed, are linear

functions of the variations of the coordinates, and vanish

at the same time with them ; and they are greater than the

sum of all the remaining terms of the expansion. The
constant quantity being equal to cf + the value of S?wu2 ,

when P, Q, R, P', &c, constitute an equilibrium, it is

necessarily positive, and may be rendered as small as we

please by diminishing the velocities
; but it always exceeds

the greatest of the quantities whose squares have been

substituted in place of the variations of the coordinates ;

for if it were less, this negative quantity would exceed the

constant quantity, and therefore render the value of Smv3
,

negative ; consequently, these squares and the variations of

the coordinates, of which they are linear functions, always
remain very small, therefore the system will always oscillate

about the position of equilibrium, and hence this equili-

brium will be one of stability. But in the case of
<p being a

minimum, it is not requisite that the variations should be

always constrained to be very small in order to satisfy the

equation of living forces
; this indeed does not prove that
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there is no limit then to those variations, which should be

done in order to prove the equilibrium to be instable; in

order to demonstrate this, we should substitute for these

variations their values in a function of the time, and then

shew from the form of those functions, that they increase

indefinitely with the time, however small the primitive

velocities may be.

Let P, P', P", &c, denote the weights of any number of

bodies in equilibrio, and z, z', z", &c, their coordinates

with respect to an horizontal plane ; then if the position

of the system be disturbed by any quantity, however

small, we have

R.Sz+ R'.&'-f R".S«"+ &c. =0
; v ?f±3^+

R"z"

+ &c.
S.R

(which is equal to jr
;
the distance of the centre of gra-

vity of all the bodies of the system from the horizontal

plane) is either a maximum or a minimum ; and the sum

of the living forces is a maximum when the centre ceases

to descend, and commences to ascend, for

2m.(F.dx + Q.dy -f- R.dz)y

in this case becomes ^m.R.dz ; and therefore by substitu-

tion we have S;».u3=c/ + z
/R.'2m, consequently 2/rcz>

z
is a

maximum or minimum, according as z
/

is a maximum or

minimum ; when Swu3
is a maximum the equilibrium is

stable, when a minimum the equilibrium is instable. For

from the definition of stability, it appears that then the

bodies tend to revert to the position of equilibrium, there-

fore the velocities will diminish according as the system de-

viates more from the position of equilibrium, consequently

the sign of the second differential of
<j>

will be negative ;

hence ^mv* will be a maximum in this case, and in the

contrary it will be evidently a minimum.

Let, as in page 413, F the force be -H-l to $(v), then this

force resolved parallel to the axes of x, y, jar,
becomes re-

spectively
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moreover, the forces at the subsequent instant are

if P, Q, R, P', &c., denote the same quantities as before,

the system will, by what is established in page 485, be in

equilibrio in consequence of these forces and the dif-

ferentials

\dt' v r a
'\di' ~irr d

'\Tt' »)'
taken with a contrary sign, therefore in place of the equa-
tion given in page 485, we shall have the following

o = s».
fed.
& .

.M^l)
- p.«a.

)

+V. (% ±M)-Q.*.) + ^.(|.^)-.R^,),it

differs from that equation in this respect, that — , -^-, —,M r
dt dt dt

are multiplied by the function .? ^°'
, which in the case of

the force -frl to the velocity is = to unity; this difference

renders the solution of problems extremely difficult ; how-

ever we may obtain from the preceding equation princi-

ples analogous to those of the conservation of living force,

of areas, and of the motion of the centre of gravity. For

instance, the preceding expression, by changing &a% Sy, 8%>

&c, into dx> dy, dz, &c, becomes

2m.
(dx.d. (^.

<p. [
v).)+dyA(&, #.(»).)

i. e. by expanding the expression
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- vCT .
(
dx-d*x + dy-dxy ± ^**)

. ^(„)

— 2m. J -y
a

i. d*s. 0.(i>) +

Sot. ^j^±^i^ . rf^fc) = 20i.d*s.0.(i;)— 2m.tf*s.0.(i>)

-f- 2im.ds.d.(f>(v).

and this last quantity is equal by substitution to

'Zm.vdt.dv.(j)
/

.(v) 1

therefore we have

'Sfmv.dv.tf.ip) = c/+ 2fm.(P.dx+ Q.dy+U.chs) i

if this last term is an exact differential equal to dX, we
shall have

2,.fmvdv.(j>'.(v)
= c/ + X;

an equation which establishes what is stated in page 292.

If as in page 4-89, we make

Bx = &r+ 8a?/, 8y = By + %//, Ss= S* + &*, ',

and make, as in that page, the coefficients of Bx, $yt &*,

respectively equal to cypher, we shall have

o =SM
.(,.(£.i£))_P.*.)

•«(*(*• -*PH^ -

which are analogous to those of page 464, from which the

conservation of the motion of the centre of gravity was

inferred, when the system is only subject to the mutual

action and reciprocal attraction of the bodies composing it,

in which case 2mP, 2mQ, 2mR are respectively equal to

cypher; we- can infer from the preceding equation

„ _ dx <t>.(v) n, _ dy d>.(v)C = 2m. —— .
y

,

- '

\ C= 2m. -f- . J-±J-
;

dt v dt v
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_., _, dz <t>-(v) i
. dz <b.(v) . N dz

dt v dt v
rv '

ds

the finite force of the body resolved parallel to the axis of z ;

provided that we understand by the force ofa body, the pro-

duct ofthe mass into that function of the velocity which ex-

presses it; consequently in thepreceding case the sum of the

finite forces of the bodies composing the system is constant,

whatever maybe the nature of d» ; but unless ^ = I, the
v

motion of the centre of gravity will not be uniform and

rectilinear, for it is only in that case that we could

prove from the expression C = S/». ——
. SiIlJ

, thatr dt v

dA, the differential of the coordinate of the centre of gra-

vity, was constant.

Making the substitutions indicated in page 491, and

afterwards putting the coefficient of Sx =. 0, we obtain,

when the system is not actuated by extraneous forces,

0=^(^(1.my y^.m))
+ 2w.(Pj/

—
Qjt). dt,

and by integrating

c
- Sw . (f^=^) . iM + S./;«.(Pi/-Q^).r//,

and in like manner

c>= S*.
(

X'dZ~ZdX

)
• ^ +Zfm.(Pz-Rx). dt;

c»= 2m. ***-***
. ±LV1 + ym.(Qz-RJ/).dt,

dt v

and since, by what has been stated above, m.( x. -j-
—

y. — J,

J^iH is the moment of the finite force by which the body
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is actuated, Swi.
[

—¥—¥—
J.

^tS-L
expresses the sum of

the moments of all the finite forces of the bodies of the

system to make it revolve about the axis of #, which,

when Pj/
— Qxzz 0, is constant, and it evidently vanishes

in the case of equilibrium.

(t) If the equation

2m.v2 = C+ 2^m.(V.dx+ Q.dt/+R.dz)

be differentiated with respect to the characteristic $ we
shall have

2,m.v$v=: S»i.(P.Sa? + Q% + R.S*),

and the equation given in page 485 then becomes

\ dt
y

dt dt )

— Y.m.dt.vdv ; and as vdt = ds, v'dt — dsf

, &c.

we can obtain by the same process as in page 439,

2m.d.(vds) ?k d.

[dx.8x+dy.ty
+

d*.$*y

integrating with respect to d, and extending the integrals

to the entire curves described by the bodies m, mr

, &c. we

shall have

^.d.fm.vds = C-f- Sm. I
^ y

I,

C, and also the variations &r. By, $*, $x, &c. refer to the

extreme points of the curves described, and when these

are invariable, we have = ^.B.fmv.ds, therefore S./w.
vds is a minimum. This expression hecomes, by substitut-

ing for ds, ds', &c. v.dt, i/.dt, &c. = 2fmv*.dt = the sum

of the living forces of the bodies composing the system,

consequently, the principal of the least action, in fact, in-

dicates that the sum of the living forces of the bodies

composing the system is, in its transit from one position

to another, a minimum ; and when the bodies are not ac-

tuated by any accelerating forces, the velocities v, v', &c.
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and the sum of the living forces are constant at each in-

stant, see page 439 ;

V ^fmv
l
.dt - 2mv*.fdt,

and the sum of the living forces for any interval of time is

•frl to this time, consequently in this case the body passes

from one position to another in the shortest possible time.

As ^fvi.vds = ~2,fm.v
2
.dt, La Grange proposed to alter

the denomination of the principle of least action, and to

term it the principle of the greatest or least living force.

The advantage from this mode of expression would be,

that it is equally applicable to a state of equilibrium and

motion, since, in the state of equilibrium, it has been al-

ready shewn to be either a maximum or minimum.

(w) This is evident from what goes before, for from the

principle of action and reaction the expressions

S.wP, &c. Sm.(Pj/—Q*)&c. =0,

whatever changes are produced by the mutual actions of

the bodies. Let X, Y, Z represent the coordinates of the

moveable origin of the coordinates,

tzzX+^j j/=Y+^; z=Z+ z,; x'=X+ x/ ; &c.

If the origin moves with a uniform rectilinear motion

d*X, = 0, d*Y = 0, &c,

therefore substituting for d*x, we have, when the system

is free, by the nature of the centre of gravity,

2m.{d
zX + d3x

t )
— 2m.F.dtz = 0,

2w.(d
zQ + dz

y)
— y

2m.Q.dt
z
)
= 0, &c.

by substituting

SX + &r„ SY + gy/5
&c.

in place of $x, Sj/,
&c. in the equation of page 485, we

shall have

= 2m.&-.(^_P.)+ S«.gy,.(^-Q.)
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which is precisely of the same form as* the equations

given in page 485, and the same consequences may evi-

dently be derived from them ; if X, Y, Z denote the co-

ordinates of the centre of gravity, by the nature of it we

have

"Zmx,
—

0, Smy, = 0, Swz, = 0,

In like manner

for 2m.<fo*= S»i.rfX*-i-2Sw.djf/
. rfX+ SfH.^r,

3
,

and as 2dX. 2m.dx
t
= 0, we have

Sm.dx* = rfXz.2w + 2w. ^.r/.

therefore it appears, that if the origin be transferred from

another point to the centre of gravity, the quantities which

result are composed of two different expressions, namely
of those which would obtain if all the bodies of the system

were concentrated in the centre of gravity; and se-

condly, of quantities relative to the centre of gravity

supposed fixed; and since the first described quantities

are constant, the reason why the principles in question

obtain, with respect to the centre of gravity is evident ;

also if the origin of the coordinates be supposed in

this point, the plane which passes through it, and rela-

tively to which Sw. (—
^-j^-
—

)
Is a maximum, remains

always parallel to itself during the motion of the system,

and the same function relatively to every other plane

perpendicular to it, vanishes, see note (.r), and page 509.

S A
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(.r) There exists a plane with respect to which c' and c",

in page 492 vanish, which is thus determined, let repre-

sent the inclination of the required plane formed by two of

the new axes x", y" with the plane of x, y, and let
\p>

represent the angle between the axis of x and the in.

tersection of x", y" with x, y, and
<p

the angle between x"y

and the intersection of x, y, x", y'\ then by substituting it

would be easy to shew that

x" rr: a\(cos. 0. sin. xp.
sin. -f- cos. \p. cos. 0) +

^.(cos. 0. cos.
\p.

sin. — sin.
«//.

cos. 0)
—*. sin. 0. sin.

(j> ;

y"
—

a\(cos. 0. sin.
\p.

cos.
^>
— cos.

i//.
sin.

<f) +

j/.(cos. 0. cos.
i//.

cos. ^>-f-sin.^/. sin. 0)
—z sin. 0. cos.

<p.

#"= #. sin. 0. sin.xp+y. sin. 0. cos. i//+s. cos. 0;

if we take the expressions x"dy"
—

y"dx", by substituting

for y"tfV', ^'dt/'i &c. their values, neglecting quantities

which destroy each other, and observing that xdy—ydx=
c, xdz — zdx = (/, &c. we shall obtain after all substitu-

tions

Vm.(
x"'dy"-y"'dx"\ = c. cos. - c'. sin. 0. cos. * + A

I # /

a; .qg «, .a*

j

__
c# gm> ft cog ^

+c/

.(sin. i£ sin. -f cos. 0. cos.
*//.

cos. 0) + c".(cos. \p.
sin.

tf,—cos. 0. sm ^. cos.
<j>\

Sff*. f -Z £ ^—
J
= — c. sin.

0. sin. 4>+c'.(sin. 4 cos. 0— cos. 0. cos.
\\j.

sin. 0)+c". cos.

xp. cos. + cos. 0. sin. ^. sin. 0),

if and ^ are so determined that sin. 0. sin. xp
=

vw^W ! sin ' e ' cos ' * =^?#+^ :
•

and therefore cos. == -
, we shall have
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(-."

f}^" ~" dr"\ > ?/' dz"— z" dv" \

d± 'J
= 0; SW *

( )
=0;

therefore with respect to a plane determined in this man-

ner, c', c" vanish ; there exists only one plane which pos-

sesses this pioperty, for supposing it to be the plane of

x, y, then

- (x".dz"-x".dx"\ . a2m. (_- ——,

J
=3 c. sin. V. cos. ^;

ty'^dz'—z'^dy'' \ •
. a .

'

S/».
(
^ -—

J
= —c sin. 0. sin. ;

if these two functions be put = to cypher, we shall have

sin. = j therefore the plane #", y", coincides with

the plane x, y ; since whatever has been the direction of

the original plane x, yf
the value of

tx".dy"—y".dx"\. .- -
.,

Sot. (
— -

jjp J
is v c* +c'*_j_ c'/*,

it follows that c* -{•</* -\-c
HZ

is constant, and that the plane

of x", y", determined by what precedes, is that with re-

(x"
di/' v" dx "

\—'-±L—-I— 1 is a maximum : this

plane therefore possesses these remarkable properties,

namely, that the sum of the areas traced by the pro-

jections of the radii vectores of the several bodies on

it, and multiplied by their masses, is the greatest pos-

sible, and that the same sum vanishes for every plane

which is perpendicular to it ; by means of these pro-

perties we can always find its position, whatever va-

riations may be induced in the respective positions of the

bodies in consequence of their mutual action; as cos 0,

sin. 9. cos.
i//,

sin. 0. sin. \p represent the cosines ofthe angles

which the plane x",y" makes with the plane x, y; z, x; y,z,
it follows that where we have the projections c, c\ c'

1 of any
area on three coordinate planes, we have its projection

2w. (
x ' & ~~V • x

J
on the plane ofx",y", the position of

which, with respect to the three planes xy, xz, yz, is given ;
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it also appears from the' expression of 2w. I —'—¥-— "
J,

that for all planes equally inclined to the plane, on which

the projection is a maximum, the values of the projec-

tion of the area are equal; c, c', c", being constant, and -frl

to the cosines of the angles, which the plane on which the

projection of the area is a maximum,,makes with xy, xz,yz,

the position of this plane is necessarily fixed and invari-

able ; and as c, c'} c" depend on the coordinates of the

flV (111

bodies at any instant, and on the velocities ——
,
—^-, &c.

at at

when these quantities are given, we can determine the po-

sition of this plane, which may be called invariable because

it depends on c, c', c", which are constant when the bodies

are only subject to their mutual action, and to the action of

forces directed towards a fixed point. Since the plane

x, y, is undetermined in the text, we infer that the sum of

the squares of the projections of any areas existing in the

invariable plane, on any three coordinate planes existing

in the same point of space is constant, therefore if on the

axes to the coordinate planes xy* xz^ yz, lines be assumed

•H-l to c, c', c"
} then the diagonal of the parallelopiped

whose sides were -ffl to these lines, will represent the

quantity and direction of the greatest moment, and this

direction is the same whatever three coordinate planes be

assumed, but the position in absolute space is undetermined,

for the projections on all parallel planes are evidently the

same. The conclusions to which we have arrived respect-

ing the projections of areas, are evidently applicable to

the projections of moments, since, as has been remarked

in page 442, these moments may be geometrically repre-

presented by triangles, of which the bases represent the

projected force, the altitudes being equal to perpendicu-

lars let fall from the point to which the moments are re-

ferred, on the directions of the bases ; therefore when the

forces applied to the several points of the system have an
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unique resultant V, since the sum of the moments of any
forces projected on a plane is equal to the moment of the

projection of their resultant, it follows that the unique re-

sultant V, and the point to which the moments are applied,

must exist in the invariable plane, therefore the axis of

this plane must be at right angles to this resultant ; and as

V ' "V ' ~V ' (
see VnSe 4'4'3 ) ftre ec

l
ua* to tne cosines of

the angles, which V makes with the coordinates; and as

JIZV c*+ c
>~ + c"*

' V c*+ pS _j_ c
uz ' V c

*
-J- c* _|_ c

n

are equal to the cosines of the angles, which the axis to

the invariable plane makes with the same coordinates, we

cP+c/Q+c //R
,,ave VT^TjT^

1 = °» <seew 409) -

The practical rule for the determination of the plane
of greatest projection is given in Chapter II. Vol. II.

From what has been established in notes, page 505, it

appears that tor all points in which . 2w = 0,

the value of c remains constantly the same; but it is evi-

dent that this equation will be satisfied, if the locus of the

origin of the coordinates be either the right line described

by the centre of gravity or any line parallel to this line;

therefore for all such positions the invariable plane re-

mains constantly parallel to itself, however, though for

all points of the same parallel the direction of the inva-

riable plane remains constantly parallel to itself, still in

the passage from one parallel to another, the direction of

this plane changes. (A, B, C, are the coordinates of the

new origin. See Celestial Mechanics, page 145.)

When the forces are reducible to an unique resultant,

if the origin of the coordinates be any point in it, the quanti-

ties c, c', c", and therefore the plane, with respect to which

the projection of the areas is a maximum, vanishes ; and
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if the locus of the origin be any line parallel to this line,

the value of the projection of the area on the plane xt y,

., ;'

'

. .. A.dX-B.dY v -
with respect to this line = . Sm, tor c in

1
dt

this case vanishes, if the locus of the origin be a right line

diverging from this resultant, the expression .

"2,/n, is susceptible of continual increase. The plane, with

respect to which the value of c
l + c

n + c"* is the mini-

mum maximorum is perpendicular to the direction of the

general resultant, or of the common motion with which the

system is actuated, its axis is a perpendicular to this plane,

erected at the origin, which may be any point in the direc-

tion; for all equidistant origins existing in a perpendicular

plane, the maximum areas will have the same values, and

their planes will be normal to the different generatrices of

an hyperboloid of revolution described about this central

axis; although the value of the maximum area should

be given, still if the origin be not also given, its plane cannot

be distinguished from an infinity of others perpendicular

to the generatrices of an hyperboloid of revolution ;
but if

with the preceding we combine the condition that the areas

should be the minimum of the maxima areas, relatively to

different origins in space, the plane sought may be easily

found, inasmuch as it enjoys not only an exclusive pro-

perty with respect to those which pass through the same

origin, but likewise another exclusive property with re-

spect to those which have the first property common
with it.

In the system of the world, as we do not know any
fixed point to which the different heavenly bodies may be

referred, and as we are also ignorant of the direction and

force with which this system moves in space, neither the

plane nor the value of the area which is the minimum maxi-

morum can be determined, we can solely select the plane of
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the maximum area with respect to any point which moves
with the velocity of the common centre of gravity of the

system in a right line ; therefore the origin may be assumed
at the common centre of gravity, which, during the entire
motion possesses the property of moving in a right line.

The principle of the conservation of areas, and also that

ofliving forces, maybe reduced to'certain relations between
the coordinates of the mutual distances of the bodies com-

posing the system ; for if the origin of the coordinates be

supposed to be at the centre of gravity, the equation given
in page 507 may be made to assume the form

\ dt /'

c».2m=2mm\ ( &=J$M=. *»)
~ (*~ *)W-*l)

)
.

\ dt J '

(for the verification of those formula see Celestial Mecha-

nics, page 145), the second members of these equations

multiplied by dt, express the sum of the projections of the

elementary areas traced by each line which joins the two

bodies of the system, of which one is supposed to move
round the other considered as immoveable, each area

being multiplied by the product of the two masses, which

are connected by the same right line. It might be made

appear, as in page 508, that the plane passing through

any of the bodies of the system, and with respect to which

the preceding function is a maximum, remains always

parallel to itself, during the motion of the system, and

that this plane is parallel to the plane passing through
the centre of gravity, relatively to which the function

Sot. i 2. y x
) is a maximum, &c. Also the second

V dt J

members of the preceding equations vanish with respect to
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all planes passing through the same body, and perpendi-
cular to the plane in question.

In like manner the equation given in page 494 may be

made to assume the form

C" — tern, 2./W. V.df,

which only respects the coordinates ofthe mutual distances

of the bodies, in which the first member expresses the sum
of the squares of the relative velocities of the bodies of the

system about each other, considering them two by two, and

supposing, at the same time, that one of them is immove-

able, each square being multiplied by the product of the

two masses which are considered. See Celestial Mecha-

nics, page 148.

It may be remarked, with respect to the preceding
conclusions about the invariable plane, that in any system

of solid or fluid molecules actuated primitively by any

forces, and subjected to their mutual action, if it happens
that after a great number of oscillations these molecules

are arranged in a permanent state of rotation about an in-

variable axis passing through their common centre of gra-

vity, (which is most probably the case with respect to the

celestial bodies), then their equator will be parallel to that

plane which would furnish the maximum of areas with

respect to the centre of gravity. See Vol. II. Chap. IX.

page 121.

It may be likewise remarked here, that planes are not the

sole surfaces on which the areas remain constant without un-

dergoing any change during the motion of the system ; the

same property appertains to every circular conic surface, of

which the summit is the origin of the radii vectores, but it

is necessary that these radii should be projected on the cone

by lines parallel to its axis, the areas described on the sur-

faces of different cones having the same axis and summit,

(see page 507), are inversely as the sines of the angles of the
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cones, therefore the area will be least, which is projected

on the right cone. If the angle of the cone is given but

the axes different, there is only one on the surface of

which the area traced by the radius vector will be a maxi-

mum ; also among all those which assign the same value to

the maximum areas relatively to different origins in space,

there is only one which will give the least of these maxima
areas. The axes of these remarkable cones are the same

as the axes of the moments or areas which possess the same

properties.

END OF THE FIRST VOLUME.

3b



ERRATA.

rage 15, line 12, from bottom,for becomes read becoming.
21, 5, from bottom, for and read but.- 7,—— 3, for plan read plane.
96,— 4, from bottom, after which read is.

114, 7, from bottom, after from read a.

129, 13, for fuller read feebler.

135, 4, dele of.- ib. —— 9, /or sun read earth.—l 137, 8, after each read other.

ISO,— 19, for cartonic read carbonic.

151, 8, from bottom, for the contents read they.

153, 20, for transverse read traverse.

191,_ 6, for the read these.

197, 9, for comets read earth.- ib. — 19, for on read in.

209,— 5, after the read periods of the.

210,— 17, for on read to.—_ 212,—— 15, for first read second.

226, 14, after directions read of.

237, 17, for time read velocity.

278, 22, after all/or velocity read action.

n
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THE

SYSTEM OF THE WORLD-

BOOK IV.

OF THE THEORY OF UNIVERSAL GRAVITATION.

Opinionum commenta delet dies, naturae judicia confirmat.

CIC. DE NAT. DEOR.

Having, in the preceding Books, explained the

laws of the celestial motions, and those of the ac-

tion of forces producing motion, it remains to com-

pare them together, to determine what forces ani-

mate the solar system, and to ascend without the

assistance of any hypothesis, but by strict geome-
trical reasoning, to the principle of universal gra-

vitation, fi'om which they are derived. It is in

the celestial regions, that the laws of mechanics

are observed with the greatest precision ;
on the

earth so many causes tend to complicate their re-

sults, that it is very difficult to unravel them, and

still more difficult to submit them to calculation.

VOL. II. B
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But the bodies of the solar system, separate by
immense distances and subject to the action of a

principal force, whose effect is easily calculated,

are not disturbed in their respective motions, by
forces sufficiently considerable, to prevent us from

including under general formulae, all the changes
which a succession of ages has produced, or may
hereafter produce in the system. There is no

question here of vague causes, which cannot be

submitted to analysis, and which the imagination
modifies at pleasure, to accommodate them to the

phenomena. The law of universal gravitation

has this inestimable advantage, that it may be re-

duced to calculation, and by a comparison of its

results with observation, it furnishes the most

certain means of verifying its existencey^We
shall see that this great law of nature, represents
all the celestial phenomena even in their minutest

details, that there is not one single inequality of

their motions, which is not derived from it, with

the most admirable precision, and that it has fre-

quently anticipated observations by revealing the

cause of several singular motions, just perceived

by astronomers, and which wero either too com-

plicated or too slow to be determined by observa-

tion alone, except after a lapse of ages. By means
of it, empericism has been entirely banished from

astronomy, which is now a great problem of me-

chanics, of which the elements of the motions of

the stars, their figures, and masses are the arbi-

trary quantities, and these are the only indis-

pensable data, which this science must derive
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from observation. The most profound geometry
was required to establish these theories : I have

collected them in my Treatise of Celestial Me-
chanics. I shall confine myself here to detail

the principal results of this work, indicating the

steps that lead to them, and explaining the rea-

sons, as far as can be done, without the assist-

ance of analysis.

B

i'



CHAP. I.

Of the Principle of Universal Gravitation,

Of all the phenomena of the solar system, the

elliptic motion of the planets and of the comets,

seems the most proper to conduct us to the gene-

ral law of the forces by which they are actuated.

Observation has shewn that the areas described

by the radii vectores of the planets and comets

about the Sun, are proportional to the times.

Now we have seen in the preceding Book, that

for this to take place, the force which deflects the

path of these bodies from a right line, must con-

stantly be directed towards the origin of the

radii vectores. The tendency of the planets and

comets to the Sun, is therefore a necessary con-

sequence of the proportionality of these areas to

the times in which they are described.

To determine the law of this tendency, let us

suppose that the planets move in circular orbits,

which supposition does not greatly differ from the

truth. The squares of their real velocities will then
be proportional to the squares of the radii of these

orbits, divided by the squares of the times of their

revolutions. But by the laws ofKepler, the squares
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of these times are to each other as the cubes of

the same radii. The squares of the velocities are

therefore reciprocally as these radii. It has been

ah'eady shewn that the (a) central forces of se-

veral bodies moving in circular orbits, are as the

squares of the velocities, divided by the radii of

the circumferences described ; the tendencies

therefore of the planets to the Sun are recipro-

cally, as the squares of the radii of their orbits

supposed circular. This hypothesis, it is true, is

not rigorously exact, but the constant relation of

the squares of the times to the cubes of the greater

axes of their orbits, being independent of their

excentricities, it is natural to think it would sub-

sist also in the case of the orbits being circular.

Thus, the law of gravity towards the Sun, vary-

ing reciprocally as the square of the distance, is

clearly indicated by this relation. Analogy leads

us to suppose that this law, which extends from

one planet to another, subsists equally for the

same planet, at its different distances from the

Sun, and its elliptic motion confirms this beyond
a doubt. To comprehend this, let us follow this

motion from the departure of the planet from its

perihelion : its velocity is then at its maximum, (b)

and its tendency to recede from the Sun, surpas-

sing its gravity towards it, its radius vector aug-
ments and forms an obtuse angle with the direc-

tion of its motion. The force of gravity towards

the Sun, decomposed according to this direction,

continually diminishes the velocity, till it arrives

at the aphelion ;
at this point, the radius vector
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becoming perpendicular to the curve, its velocity

is a nriinimum, and its tendency to recede from

the Sun, being less than its gravity towards it,

the planet will approach it describing the second

part of its ellipse. In this part, the gravity to-

wards the Sun, increases its velocity in the same

manner as it before diminished it, and the planet
will arrive at its perihelion with its primitive ve-

locity, and recommence a new revolution similar

to the first. Now, the curvature of the ellipse at

the aphelion and perihelion being the same, the

radii of curvature are the same, and consequently
the centrifugal forces of these two points are as

the squares of the velocities. The sectors de-

scribed in the same time being equal, the aphelion
and perihelion velocities are reciprocally as the

corresponding distances of the planet from the

Sun
;
the squares of these velocities are therefore

reciprocally as the squares of these same dis-

tances ;
but at the perihelion and aphelion the

centrifugal (c) forces in the osculatory circumfer-

ences are evidently equal to the gravity of the

planet towards the Sun, which is therefore in the

inverse proportion of the squares of the distances

from this star. Thus the theorems of Huygens on

the centrifugal force, were sufficient to demonstrate

the tendency of the planets towards the Sun : for

it is highly probable that this law, which extends

from one planet to another, and which is verified

in the same planet, at its aphelion and perihelion,

extends also to every part of the planetary orbit,

and generally to all distances from the Sun. But
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to establish it in an incontestable manner, it was

requisite to determine the general expression of

the force which, directed towards the focus of an

ellipse, makes a projectile to describe that curve.

And it was Newton who demonstrated that this

force was reciprocally as the square of the (d) ra-

dius' vector. It was essential also to demonstrate

rigorously that the force of gravity, towards the

Sun, only varies from one planet to another, in

consequence of their different distances from this

star.

This great geometrician shewed, that this fol-

lowed necessarily from the law of the squares of

the periodic (e) times being reciprocally as the

cubes of the greater axes of the orbits. Suppos-

ing, therefore, all the planets in repose at the

same distance from the Sun, and abandoned to

their gravity towards its centre, they would des-

cend from the same height in equal times
;

this

result should likewise be extended to the comets,

notwithstanding the greater axes of their orbits

are unknown, for we have seen in the second

Book, chap. G, that the magnitude of the areas

described by their radii (/) vectores, supposes the

law of the squares of their periodic times, pro-

portional to tlie cubes of these axes.

An analysis, which in all its generalities, em-

braces every possible result from a given law,

shews us that not only an ellipse, but any other

conic section, may be described by virtue of the

force, which retains the planets in their orbits;

a comet may therefore move in an hyperbola,
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but then it would only be once visible, and would

after its apparition recede from the limits of the

solar system to approach other suns, which it would

again abandon, thus visiting the different systems
that are distributed through the immensity of the

heavens. It is probable, considering the infinite

variety of nature, that such bodies exist. Their

apparition should be a very rare occurrence ;
the

comets we usually observe, are these which, hav-

ing reentrant orbits, return at the end of intervals

more or less considerable, into the regions of

space which are in the vicinity of the Sun. The
satellites tend also, as well as the planets, perpe^

tually to the Sun. If the Moon was not subject

to its action, instead of describing an orbit almost

circular round the earth, it would very soon

abandon it
; and if this satellite and those of Ju-

piter were not sollicited towards the Sun, accord-

ing to the same law as the planets, sensible in-

equalities would result in their motions, which

have not been recognized by observation. The

planets, comets, and satellites are therefore sub*

ject to the same law of gravity towards the Sun,
At the same time that the satellites move round

their respective primary planets, the whole sys-

tem of the planet and its satellites is carried by a

common motion in space, and retained by the

same force, round the Sun. Thus the relative

motion of the planet and its satellites, is nearly
the same as if the planet was at rest, and not

acted on by any external force.

We are thus conducted without the aid of by.
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pothesis, by a necessary consequence of the laws

of the^ celestial motions, to regard the Sun as the

centre of a force, which, extending indefinitely

into space, diminishes as the square of the dis-

tance increases, and which attracts all bodies si-

milarly. Every one of the laws of Kepler indi-

cates a property of this attractive force. The law

of the areeis proportional to the times, shews us

that it is constantly directed towards the centre of

the Sun
;
the elliptic orbits of the planets shew

that this force diminishes as the square of the dis-

tance increases ; finally, the law of the squares of

the periodic times proportional to the cubes of the

distance, demonstrates that the gravity of all the

planets towards the Sun is the same at equal dis-

tances
; we shall call this gravity the solar atlrac-

don, for without knowing the cause, we may by
one of those conceptions, common to geometri-

cians, suppose an attractive power to exist in the

Sun.

The errors to which observations are liable, and

the small alterations in the elliptic motion of the

planets, leave a little uncertainty in the results

which we have just deduced from the laws of mo-

tion ; and it may be doubted whether the solar

gravity diminishes exactly in the inverse ratio of

the square of the distance. But a very small va-

riation in this law, would produce a very sensible

difference in (^) the motions of the perihelia of

the planetary orbits. The perihelion of the terres-

trial orbit, would have an annual motion of 200"^,

if we only increased by one ten-thousandth part.
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the power of the distance to which the solar gra-

vity is reciprocally proportional ;
this motion is

only S6"4, according to observation, and of this

we shall hereafter see the cause. The law of the

gravity inversely as the square of the distance, is

then at least, extremely near
;
and its extreme

simplicity should induce us to adopt it, as long as

observations do not compel us to abandon it.

However we must not estimate the simplicity of

the laws of nature, by our facility of conception ;

but when those which appear to us the most sim-

ple, accord perfectly with all the phenomena, we
are justified in supposing them rigorously exact.

The gravity of the satellites towards the centre

of their primary planet, is the necessary conse-

quence of the proportionality of the areas describ-

ed by their radii vectores to the times, and the

law of the diminution of this force, according to

the square of the distance, is indicated by the

ellipticity of their orbits. But this can hardly
be perceived in the orbits of the satellites

of Jupiter, Saturn, and Uranus, which renders

the law of the diminution of the force diffi-

cult to ascertain by the motion of any one single

satellite
;
but the constant ratio of the squares of

the times of their revolutions, to the cubes of

their distances, indicates it beyond a doubt, by

demonstrating, that from one satellite to another,

the gravity towards the planet is reciprocally as

the square of the distance from its centre.

This proof is wanting for the earth, which has
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but one satellite, but it may be supplied by the

following considerations.

The force of gi'avity extends to the summits of

the highest mountains, and the small diminution

which it there experiences, does not permit us to

doubt, but that at still greater altitudes it would

also be sensible. Is it not natural to extend this

to the Moon, and to suppose that this star is re-

tained in its orbit by its gravity towards the earth,

in the same manner as the solar gravity retains

the planets in their orbits round the Sun ? For in

fact these two forces seem to be of the same na*

ture : they both of them i^enetrate the most inti-

mate parts of matter, animating them with the

same velocities
;

for we have seen that the solar

gravity sollicits equally all bodies placed at equal
distances from the Sun, just as the terrestrial

gravity causes all bodies to fall in a vacuo, through
the same height in equal times.

A heavy body forcibly projected horizontally
from a great height, falls on the earth at a con-

siderable distance, describing a curve which is

sensibly parabolic, it will fall still farther if the

force is greater ; and if the velocity of projection
was about seven thousand metres in a second, it

would not fall to the Earth, but would setting

aside the resistance of the air, circulate round it

like a satellite, its centrifugal force being then

equal to its gravity. To form a moon of this pro-

jectile, it must be taken to the height (A) of that

body, and there receive the same motion of pro-

jection.
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But what completes the demonstration of the

identity of the moon's tendency towards the earth

with gravity, is that, to obtain this tendency, it

is sufficient to diminish the terrestrial gravity ac-

cording to the general law of the variation of the

attractive force of the celestial bodies. Let us

enter into the details suitable to the importance
of this subject.

The force which at every instant deflects the

Moon from the tangent of her orbit, causes it to

move over, in one second, a space equal to the

versed sine of the arc which it describes in that

time ;
since this sine is the quantity by which the

Moon, at the end of a second, deviates from the

direction it had in the beginning. This quantity

may be determined by the distance of the Earth,

inferred from the lunar parallax, in parts of the

terrestrial radius
5
but to obtain a result inde-

pendent of the inequalities of the Moon, we must-

take (0 for the mean parallax, that part of it

which is independent of these inequalites, and

which corresponds to the semiaxis major of the

lunar ellipse. Burgh determined, by a compa-
rison of a great number of observations, the lunar

parallax and it results that the part of which we
have been speaking, is about 10541", at the parallel

of which the square of the sine of the latitude is

equal to ^. We select this parallel, because the

attraction of the Earth, on the corresponding

points of its surface is, as at the distance of the

Moon, very nearly equal to the mass of the Earth,

divided by the square of the distance from its
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centre of gravity. The radius drawn from a point

of this parallel to the centre of gi-avity of the

Earth is 6369809 metres, from whence it may be

computed that the force which sollicits the Moon

towards the Earth, causes it to fall 0'"^00101728

in one second of time. It will be shewn here-

after, that the action of the Sun diminishes the

lunar gravity by a ^^^th part. The preceding

height must therefore be augmented a ^^^^^th part,

to render it independent of the action of the Sun ;

it then becomes 0%00102012. But in its rela-

tive motion round the Earth, the Moon is sol-

licited by a force equal to the sum of the masses of

the Earth and Moon, divided by the square of

their mutual distance
;
therefore to obtain the

height which the Moon would fall through in one

second by the action of the Earth alone, the pre-

ceding space must be diminished in the ratio of

the mass of the Earth to the sum of the masses

of the Earth and Moon. But a great number
of phenomena depending on the action of the

Moon, have given the mass of the Moon equal
to jjth of that ofthe earth, multiplying therefore

this space by |f, we have 0"''.0010067 for the

height which the Moon falls through in one se-

cond, by the action of the Earth.

Let us now compare this height, with that

which results from observations made on the pen-
dulum. At the parallel above mentioned, the

length of the pendulum vibrating seconds is (by

Chapter XIV, Book I.) equal to 3"^%65631. But
on this parallel, the attraction of the Earth is less

than the force of gravity, by | of the centrifugal
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force due (Ji) to the motion of rotation of the Earth

at the equator ; and this force is the ^^th part

of that of gravity ; the preceding space must there-

fore he augmented a 75:^2^ part, to have the space
due to the action of teiTestrial gravity alone,

which on this parallel is equal to the mass divided

by the square of the terrestrial radius, we shall

therefore have 3"''.66477 for tliis space. At the

distance of the Moon, it should be diminished in

the ratio of the square of the radius of the terres-

trial spheriod to the square of the distance of the

Moon : for this it is sufficient to multiply it by the

square of the sine of the lunar parallax, or by
I0o4r; this will give 0"^^00100464 for the height
which the Moon should fall through in one second

by the attraction of the Earth. This quantity de-

rived from experiments on the pendulum, differs

very little from that which results from direct ob-

servation of the lunar parallax ; to make them co-

incide, it is sufficient to diminish by about ^" the

preceding value. This small difference being
within the limits of the errors of observation, and

of the elements employed in the calculation, it is

certain, that the principal force which retains the

Moon in its orbit is the terrestrial gravity di-

minished in the ratio of the square of the distance.

Thus the law of the diminution of gravity, which,

in planets accompanied by several satellites, is

proved by a comparison of their periodic times

with their distances, is demonstrated for the Moon,

by comparing its motion with that of projectiles at

the surface of the Earth.
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The observations of the pendulum ma de on the

summits of mountains, had already indicated this

diminution of the terrestrial gravity j but they

were insufficient to discover the law, because of

the small height of the most elevated mountains,

compared with the radius of the Earth : it was

requisite *to find a body very remote from us, as

the Moon, to render the law perceptible, and to

convince us that the force of gravity on the Earthy
is only a particular case of a force which perva des

the whole universe.

Every successive phenomenon elucidates and

confirms the laws of nature. It is thus that the

comparison of experiments on gravity, with the

lunar motion, shews us, that the origin of the

distances of the Sun and of the planets in the cal-

culation of their attractive forces, should be placed
in their centres of gravity ; for it is evident that

this takes place for the Earth, whose attractive

force is of the same nature as that of the Sim and

planets.

The striking similarity between the Sun and

the planets which are attended by satellites, and

those which have none, should induce us to ex-

tend to them this attractive force. The spherical

figure common to all these bodies, indicates that

their particles are united round their centers of

gravity, by a force which, at equal distances,

equally sollicits them towards these points ; this

force is also indicated by the perturbations which

planetary motions experience ; but the following
considerations leave no doubt on this subject.
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We have seen that if the planets and the co-

mets were placed at the same distance from the

Sun, their gravity towards it would be in pro-

portion to their masses : now it is a general law

in nature, that action and reaction are equal and

contrary, all these bodies therefore react on the

Sun, and attract it in proportion to their masses ;

they are therefore endowed with an attractive force

proportional to their masses, and inversely as the

square of the distances. By the same principle,

the satellites attract the planets and the Sun ac-

cording to the same law. This attractive pro-

perty then is common to all the celestial bodies
*

it does not disturb the elliptic motion round the

Sun, when we consider only their mutual action ;

for the relative motion of the bodies of a system,

are not changed by giving them a common velo-

city : by impressing therefore, in a contrary di-

rection to (0 the Sun and to the planet, the mo-

tion of the first of these two bodies, and the ac-

tion which it experiences on the part of the se-

cond, the Sun may be considered as immoveable ;

but the planet will be sollicited towards it, with a

force reciprocally as the squares of the distance,

and proportional to the sum of the masses : its

motion round the Sun will therefore be elliptic.

And we see by the same reasoning, that it would

be so if the planet and Sun were carried through

space, with a motion common to each of them.

It is equally evident that the elliptic motion of a

satellite is not disturbed by the motion of trans-

lation of its planet, nor would it be by the action



UNIVERSAL GRAVITATION. 17

of the Sun, if it was always exactly the same on

the satellite and planet. Nevertheless, the action

of a planet on the Sun influences the length of its

revolution, which is diminished as the mass of

the planet is more considerable, so that the rela-

tion of the square of its periodic time to the cube

of the major axis of its orbit, is proportional to

the sum of the masses of the Sun and planet.

But since this relation is nearly the same for all

the planets, their masses must evidently be very
small compared with that of the Sun, which is

equally true for the satellites with respect to their

respective primary planets. This is what is con-

firmed by the volumes of these diff*erent bodies.

The attractive property of the heavenly bodies,

does not only appertain to them in the aggregate,

but likewise belongs to each of their particles. If

the Sun only acted on the centre ofthe Earth, with-

out attracting in particular every one of its parti-

cles, there would arise in the ocean oscillations in-

comparably more considerable, and very different

from those which we observe. The gravity of the

Earth therefore to the Sun is the result of the

gravity of all its particles which consequently, at-

tract the Sun in proportion to their respective

masses ; besides each body on the earth, tends

towards its centre proportionally to its mass, it (ni)

reacts therefore on it, and attracts it in the same

ratio. If that was not the case, and if any part

of the Earth, however small, attracted another

part without being attracted by it, the centre of

VOL. 11. c
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gravity of the earth would move in space in virtue

of the force of gravity, which is inadmissable.

The celestial phenomena compared with the

laws of motion, conduct us, therefore, to this great

principle of nature, namely, that all the particles

&f matter mutually attract each othery in the ratio

&f their masses^ divided by the squares of their dis-

tances.

Already we may perceive in this universal gra-

vitation, the cause of the perturbations to which

the heavenly bodies are subject ; for as the planets
and comets are subject to the action of each

other, they must deviate a little from the laws of

elliptic motion, which they would otherwise ex-

actly follow, if they only obeyed the action of the

Sun. The satellites also, deranged in their mo-

tions round their planets, by their mutual action

and that of the Sun, deviate a little from these

laws.

We pei-ceive, then, that the particles of the

heavenly bodies, united by their attraction, should

form a mass nearly spherical ;
and that the result

of their action at the surface of the body, should

produce all the phenomena of gravitation. We
isee, moreover, that the motion of rotation of the

Celestial bodies should slightly alter' their sphe-

i4cal figure, and flatten them at the poles : and

then the resulting force of all their mutual ac-

tions not passing through their centres of gravity,

should produce in their axes of rotation mo-

tions similai* to those discovered by observa-

tion. Finally, we may perceive why the parti-
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cles of the ocean, unequally acted on by the Sun
and Moon, should have oscillations similar to

the ebbing and flowing of the tides. But these

different effects of the principle of gravitation,

must be particularly developed, to give it all

the certainty of which physical truth is sus-

ceptible.

c2



CHAP. II.

Of the Ptrturhations of the Elliptic Motion of the

Planets,

If the planets only obeyed the action of the Sun,

they would revolve round it in elliptic orbits, but

they act mutually upon each other and upon the

Sun, and from these various attractions, there

result perturbations in their elliptic motions, which

are to a certain degree perceived by observation,

and which it is necessary to determine to have

exact tables of the planetary motions. The rigo-

rous solution of this problem, surpasses the actual

powers of analysis, and we are obliged to have

recourse to approximations. Fortunately, the small-

ness of the masses compared to that ofthe Sun, and

the smallness ofthe excentricity and mutual inclina-

tion of their orbits, afford considerable facilities for

this object. It is still, however, sufficiently compli-

cated, (a) and the most delicate and intricate ana-

lysis is requisite to detect among the infinite num-
ber of inequalities to which the planets are sub-

ject, those which are sensible to observation, and
to assign their values.

The perturbations of the elliptic motion of the

planets may be divided into two distinct classes.

Those of the first class affect the elements of the
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elliptic motion of the planets, they increase with

extreme slowness, and are called secular inequa-

lities. The other class depends on the configurations

of the planets, both with respect to each other and

to their nodes and perihelia, and being re-estab-

lished every time these configurations become the

same, they havebeen termed /?cno</eca/ inequalities

to distinguish them from the secular inequalities,

which are equally periodic, but whose periods
are much longer, and independent of the mu-
tual configurations of the planets.

The most simple manner of considering these

various perturbations, consists in imagining a pla-

net to move according to the laws of elliptic

motion, upon an ellipse, whose elements vary by

imperceptible gradations, and conceiving at the

same time the true planet to oscillate round the

imaginary planet in a
(Jj) small orbit, the nature

of which must depend on its periodic inequa-

lities.

Let us first consider those secular inequalities

which, by developing themselves in the course of

ages, should change at length, both the form and

position of the planetary orbits. The most im-

portant of these inequalities is that which may
affect the mean motion of the planets. By com-

paring together, the observations which have been

made since the restoration of astronomy, the mo-
tion of Jupiter appears to be quicker and that of

Saturn slower, than by a comparison of the same

observations, with those of the ancient astrono-

mers : from which astronomers have concluded
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that the first of these motions has accelerated,

while the second has been retarded from one cen-

tury to another. And to take into account these

variations, astronomers have introduced into the

tables of those planets, two secular equations in,

creasing with the squares of the times, one ad-

ditive to the mean motion of Jupiter, the other

subtractive from that of Saturn. According to

Halley, the secular equation of Jupiter is 106^' for

the first century reckoned from I7OO, the corres-

ponding equation of Saturn is 2.56''94. It was na-r

tural to look for the cause of these equations, in

the mutual actions of these planets, the most con-

siderable of our system. Euler, who first directed

his attention to this problem, found a secular

equation, equal for both the planets, and additive

to their mean motions, which is inconsistent with

observation. Lagrange obtained a result which

accorded more nearly with them. Other geometri-
cians obtained other equations. Struck with this

difference, I examined again this subject, and by

applying the greatest possible care to the investi-

gation, I arrived at the true analytical expression
for the secular inequality of the planets. In sub-

tituting the numerical values, relative to Jupiter
and Saturn, I was surprised to find that it became

equal to nothing. I suspected that this was not

peculiar to these planets, and that if this expres-
sion was put in the most simple form of Avhich it

was susceptible, (by reducing to the least possible
number the different quantities which it contains

by means of the relations whixjh subsist between
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them), all its terms would destroy each otiier.

Calculation confirmed this supposition, and shewed

me that, in general, the mean motions of tlie

planets and their mean distances from the Sun
are invariahle ;

at least when we neglect (c) the

fourth power's of the excentricities and of the in-

clinations of the orbits, and the squares of the

perturbating masses, which is more than suffi-

cient for the actual purposes of astronomy. La^

grange has since confirmed this result, and shewn,

by a beautiful method, that it is even true, when
the powers and products of any order whatever, of

the excentricities and inclinations, are taken into

the calculation. M. Poisson has shewn by an in-

genious analysis, that the same result subsists

even when the approximations are extended to the

squares and products of the masses of the planets.

Thus the variations of the mean motions of Ju-

piter and Saturn, do not depend on their secular

inequalities.

The permanency of the mean motions of the

planets and of the greater axes of their orbits, i

one of the most remarkable phenomena in the

system of the world. All the other elements of

the planetary ellipses are variable, these ellipses

approach to and depart insensibly from the circu-

lar form
;
their inclination to a fixed plane or to

the ecliptic augments and diminishes, and their

perihelia and nodes are continually changing their

places. These variations, produced by the mur
tual actions of the planets on each other, are per-

formed with such extreme slowness, ttot for a



Qh OF THE PERTURBATIONS OF THE

number of centuries they are nearly proportional
to the times. They have already become appa-
rent by observation ; we have seen, in the first

Book, that the perihelion of the Earth's orbit has

a direct annual motion of 36'', and that its in-

clination to the equator diminishes every cen-

tury 148''. It was Euler who first investigated the

cause of this diminution, which all the planets

contribute to produce, by the respective situation

of the planes of their orbits. In consequence of

these variations of the orbit of the earth, the pe-

rigee of the Sun coincided with the equinox of

spring at an epoch to which we can ascend by

analysis, Avhich is anterior to our sera by about

4089 years. It is remarkable that this astronomical

epoch is nearly that at which chronologists have

fixed the creation of the world. The ancient ob-

servations are not exact enough, and the modern

are too near each other to fix the exact quantity of

these great changes of the planetary orbits, ne-

vertheless they combine to prove their existence,

and to shew that their progress is the same as

would result from the law of gravitation. If we
knew exactly the masses of the planets, future

observations might be anticipated, and the true

values assigned to the secular inequalities of the

planets ;
and one of the surest means of deter-

mining them, will be the developement of these in-

equalities in the progress of time. We may then

in imagination look back to the successive changes
which the planetary system has undergone, and

foretell those which future ages will offer to astro-
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nomers, and the geometrician will at once com-

prehend in his formulae both the past and future

states of the world.

Many interesting questions here present them-

selves to our notice. Have the planetary ellipses

always been, and will they always be nearly cir-

cular. Among the number of the planets have

any of them ever been comets whose orbits have

gradually approached to the circular form, by the

mutual attractions of the other planets ? Will the

obliquity of the ecliptic continually diminish till at

length it coincides with the equator, and the days
and nights become equal on the earth, throughout
the year? Analysis answers these questions, in a

most satisfactory manner. I have succeeded in

demonstrating that whatever be the masses of the

planets, in as much as they all move in the same

direction, in orbits of small excentricity, and little

inclined to each other ; (c) their secular inequa-
lities will be periodic, and contained within nar-

row limits, so that the planetary system will only
oscillate about a mean state, from which it will

deviate but by a very small quantity ;
the planetary

ellipses therefore always have been, and always

will be nearly circular, from whence it follows

that no planet has ever been a comet, at least if

we only take into account the mutual action of

ofthe bodies of the planetary system. The ecliptic

will never coincide with the equator, and the

whole extent of its variations will not exceed

three degrees.

The motions of the planetary orbits and of the

stars will one day embarrass astronomers, when
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they attempt to compare precise observations se-

parated by long intervals of time; already this

difficulty begins to be apparent ;
it would be in-

teresting therefore to find some plane that should

remain invariable, that is, constantly parallel to

itself. We have given at the end of the preceding

book, a simple means of determining a similar

plane, in the motion of a system of bodies which

are only subject to their mutual action
;

this me-

thod when applied to the solar system, gives the

following rule. If at any instant of time (A) what-

ever, and upon any plane passing through the cen-

tre of the Sun, we draw from this point straight

lines to the ascending nodes of the planetary orbits

referred to this plane, and ifwe take on these lines,

reckoning from the centre of the Sun, lines equal

to the tangents of the inclinations of these orbits

to this plane, and if at the extremities of these

lines, we suppose masses equal to the masses of

the planets multiplied respectively into the square

roots of the parameters of the orbits, and by the

cosines of their inclinations
; and lastly, if we de-

termine the centre of gravity of this new system

of masses, then the line drawn from the centre

of the Sun to this point will be the tangent

of the inclination of the invariable plane, to the

assumed plane ; and continuing this line to the

heavens, it will there mark its ascending node.

Whatever changes the succession of ages may
produce in the planetary orbits, and whatever be

the plane to which they are referred, the plane
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determined by this rule, will always be parallel

to itself. It is true, its position depends on the

masses of the planets ; but these will soon be suf-

ficiently known to determine it with exactness.

In adopting the values of these masses which
will be given in the following chapter, we find

that the longitude of the ascending node of

the invariable plane was 114,7008 at the com-

mencement of the nineteenth century, and at the

same epoch its inclination to the ecliptic was

V,7565. In this computation we have neglected

the comets, which nevertheless ought to enter into

the determination of the invariable plane, since

they constitute a part of the solar system. It would

be easy to include them in the preceding rule, if

their masses and the elements of their orbits were

known. But in our present ignorance of the na-

ture of these objects, we suppose their masses too

small to influence the planetary system, and this

is the more probable, since the theory of the mu-

tual attraction of the planets, suffices to explain

all the inequalities observed in their motions. But

if the action of the comets should become sensible

in the progress of time, it should principally affect

the position of the plane, which we suppose in-

variable, and in this new point of view the con-

sideration of this plane will still be useful, if the

variations of this plane could be recognised, which

would be attended with great difficulties.

The theory of the secular and periodic inequa-
lities of the motions of the planets, founded on

the law of universal gravitation, has been con-
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firmed by its agreement with all observations an-

cient and modern. It is particularly in the mo-

tions of Jupiter and Saturn, that these inequa-

lities are most sensible, but they present them-

selves under a form so complicated, and the

length of their periods is so considerable, that

it Vi^ould have required several ages to have de-

termined their law by observations alone, which

has in this instance been anticipated by theory.

After having established the invariability of the

mean motions of the planets, I suspected that the

alterations observed in the mean motions of Ju-

piter and Saturn, proceeded from the action of

comets. Lalande had remarked in the motion of

Saturn, irregularities which did not appear to de-

pend on the action of Jupiter : he found its re-

turns to the vernal exquinox, more rapid than its

returns to the autumnal equinox, although the

positions of Jupiter and Saturn, both with respect
to each other, and to their aphelia, were nearly
the same. Lambert likewise observed that the

mean motion of Saturn, which seemed to dimi-

nish from century to century by the comparison
of ancient with modern observations, appeared on

the contrary, to accelerate by the comparison of

modern observations with each other, at the same

time that Jupiter presented phenomena exactly

contrary. All this seemed to indicate that causes

independent of the action of Jupiter and Saturn

on each other, had altered their motions. But
on mature reflection, the order of the variations
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observed in the mean motions of these planets,

appeared to me to agi-ee so well with the theory

of their mutual attraction, that I did not hesitate

to reject the hypothesis of a foreign cause.

It is a remarkable result of the mutual action

of the planets on each other, that if we only con-

sider (0 the inequalities which have very long pe-

riods, the sum of the masses of every planet, di-

vided respectively by the greater axes of their

orbits considered as variable ellipses, is always

pretty nearly constant. From this it follows, that

the squares of the mean motions, being recipro-

cally as the cubes of these axes, if the motion of

Saturn is retarded by the action of Jupiter, that

of Jupiter should be accelerated by the action of

Saturn, which is conformable to observation. I

perceived, moreover, that the law of these vari-

ations was the same as corresponded to the pre-

ceding theory. In supposing with Halley the re-

tardation of Saturn to be 256"94 for the first cen-

tury, reckoned from I7OO, the corresponding ac-

celeration of Jupiter should be 109''80, and Halley
found it to be 106"02 by observation. It was

therefore very probable that the variations observ-

ed in the mean motions of Jupiter and Saturn,

were the effects of their mutual action
; and since

it is certain that this action cannot produce any

inequality either constantly increasing or periodic,
but of a period independent of the configuration
of these planets, and that it cannot effect in it

any irregularities but what are relative to this con-
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figuration, it vvae natural to think that there ex-

isted in their theory a considerable inequality of

this kind, of a very long period, and which was

the cause of these variations.

The inequalities of this kind, although very
small and almost insensible in differential equa-

tions, augment considerably in the integrations,

and may acquire very great values in the expres-
sions of the longitudes of the planets, (k) I easily

recognized the existence of similar inequalities, in

the differential equations of the motions of Jupiter
and Saturn. These motions are very nearly com-

mensurable ;
so that five times the mean motion

of Saturn differs very tittle from twice that of Ju-

piter: from which I concluded that the terms which

have for their argument five times the mean lon-

gitude of Saturn, minus twice that of Jupiter,

might by integration become very sensible, al-

though multiplied by the cubes and products of

three dimensions of the excentricities and inclina-

tions of the orbits. I considered therefore that

these terms were the probable cause of the vari-

ations observed in the mean motions of these pla-

nets. The probability of this cause, and the im-

portance of the object, determined me to under-

take the laborious calculation, necessary to deter-

miine this question. The result of this calculation

folly confirmed my conjecture ;
and it appeared,

that in the first place there exists in the theory of

Saturn a great inequality of 8895^7 at its maxi-

mum, of which the period is 9^9 years ;
and which

ought to be applied to the mean motion of this

planet ;
and secondly, that the motion of Jupiter is
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subject to a similar inequality, whose period and

law are the same, but affected with a contrary sign,

its amount is only 3662"4l. The magnitude of

the coefficients of these inequalities and the du-

ration of their period are not always the same,

they participate in the secular variations of the

elements of the orbits on which they depend, I

have determined with especial care, those co-

efficients and their secular diminution. It is to

these two inequalities, formerly unknown, that

that we must attribute the apparent retardation

of Saturn,and the apparent acceleration of Jupiter.
These phenomena attained their maximum about

the year 1560
;
since this epoch, their mean ap-

parent motions have approximated to their true

mean motions, and they were equal in 1790. This

explains the reason why Halley, in comparing the

ancient with modem observations, found the mean
motion of Saturn slower, and that of Jupiter more

rapid than by the comparison of modern observa-

tions with each other, instead of which these last

indicated to Lambert an acceleration in the mo-
tion of Saturn, and a retardation in that of Ju-

piter. And it is very remarkable that the quan-
tities of these phenomena, deduced from observa-

tion alone by Halley and Lambert, are very nearly
the same as result from the two great inequalities
which I have just mentioned. If astronomy had
been revived four centuries and a half later, ob-

servations would have presented the direct con-

trary phenomena. The mean motions which the

astronomy of any people have assigned to Jupiter
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and Saturn, should afford us information concern-

ing the time of its foundation. Thus it appears
that the Indian astronomers determined the mean
motions of these planets, in that part of the pe-

riod of the preceding inequalities, when the mo-

tion of Saturn was the slowest, and that of Ju-

piter the most rapid. Two of their principal

astronomical epochs, the one 3102 A. C. the other

1491 A. C. answer nearly to this condition. The

nearly commensurable relation that exists in the

motions of Jupiter and Saturn, occasions other

very perceptible inequalities, the most consider-

able of which affects the motion of Saturn ;
it

would be entirely confounded in the equation of

the centre, if twice the mean motion of Jupiter

was exactly equal to five times that of Saturn. The
difference observed in the last century in the in-

tervals of the returns of Saturn to the equinoxes
of spring and autumn, arises principally from this

cause.

In general, when I had recognised these various

inequalities, and examined more carefully than

had been done before, those which had been sub-

mitted to calculation, I found that all the observed

phenomena of the motions of these two planets

adapted themselves naturally to the theory ;
be-

fore they seemed to form an exception to the law

of universal gravitation ; they are now become

one of the most striking examples of its truth.

Such has been the fate of this brilliant discovery
of Newton, that every difficulty which has arisen,

has only furnished a new subject of triumph for it,
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which is the most indubitable characteristic of the

true system of nature.

The formulae which I have obtained for repre-

senting the motions of Jupiter and Saturn, sa-

tisfy with remarkable precision the last opposi-

tions of these two planets, which have been ob-

served by the most skilful astronomers with the

best meridian telescopes and the greatest quadrants
of circles, the error never amounted to 4(y'

;
and

twenty years ago the erroi*s ofthe best tables some-

times surpassed four thousand seconds. These

formulae also represent with the same accuracy as

observations themselves, the observations of Flam-

stead, those of the .Arabians, and the observa-

tions cited by Ptolomy. This great precision

with which the two largest planets of our system,

have obeyed from the most remote period, the

laws of their mutual attraction, evinces the stabi-

lity of this system, since Saturn, of which the at-

traction to the Sun is about an hundred times less

than the attraction of the earth to the same star,

has not since the sera of Hipparchus to the pre-

sent day, experienced any sensible derangement
from the action of extraneous causes.

I cannot in this place, refrain from making a

comparison of the real effects of this relation be-

tween the mean motions of Jupiter and Saturn,

with those which astrology had attributed to it.

In consequence of this relation, the mutual con-

junctions of these two planets are renewed after

an interval of twenty years, but the point of the

heavens to which they arrive, retrogrades by about

VOL. JI. D
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a third of tlie zodiac, so that if the conjunction of

the two planets arrives in the first point of Aries,

it will in twenty years afterwards take place in

Sagittarius, and in twenty years afterwards in

Leo, to return then to the sign of the ram at

ten degrees from its original position. It will con-

tinue to take place in these three signs, for nearly

two hundred years. In the same manner, in the

next two hundred years, it will go through the

signs Taurus, Capricornus, and Virgo. In the

next two hundred years, it will proceed through
the signs Gemini, Aquarius, and Libra

;
and

finally, in the last two hundred years, it will de-

scribe the remaining signs, .Cancer, Pisces, and

Scorpio ; after which it will again begin with the

sign Aries as before. From hence arises a great

year, each season of which is equal to two cen-

turies. They attributed different temperatures to

the different seasons of this year, as likewise to

the signs which belonged to them. The assem-

blage of these three signs was called a trigon. The
first trigon was that of Fire, the second of Earth,

the third of Air, and the fourth of Water, We
may easily imagine that astrology made great use

of these trigons, which even Kepler himself de-

scribes with great exactness, in several of his

works : but it is very remarkable that sound as-

tronomy, while it dissipated the imaginary influ-

ence that was supposed to attend this relation in

the motion of the two planets, should have recog-
nised in this relation, the source of the greatest

perturbations of the planetary system.
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The planet Uranus, though lately tlis?covere(l,

offers already incontestable indications of the per-

turbations which it experiences from the action of

Jupiter and Saturn. The laws of elliptic motion

do not exactly satisfy its observed positions, and

to represent them, its perturbations must be con-

sidered. Their theory, by a very remarkable co-

incidence, places it in the years 17^>9, ^l^Qy and

1690, in the same points of the heavens, where

Monnier, Mayer, and Flamstead, had determined

the position of three stars, which cannot be found

at present: this leaves no doubt of the identity of

these stars with the new planet.

The small planets which have been discovered,

are subject to very great inequalities, which will

throw new light on the theory of the attractions of

the heavenly bodies, and will enable us to render

it perfect j
but hitherto we have been unable to

recognize these inequalities by means of observa-

tions. It is only three centuries since Copernicus
first introduced into the astronomical tables the

motion of the planets about the Sun : about a cen-

tury after, Kepler took into account the laws of el-

liptic motion, which had been discovered by means

of the observations of Tycho Brahe ; this led New-
ton to the discovery of universal gravitation. Since

these three epochs, which will be always memora-

ble in the history of the sciences, the improve-
ments in the infinitesimal calculus have enabled us

to subject to computation the numerous inequa-
lities of the planets which arise from their mutual

attraction, and by this means the tables have ac-

D 2
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quired a degree of precision which could never

have been anticipated ; formerly their errors

amounted to several minutes, they are now re-

duced to a small number of seconds, and very

often, it is probable, that their apparent deviations

arise from the inevitable errors of the observa-

tions.



CHAP. III.

Of the Masses of the Planets, and of the Gravity
at their Surface, ^

The ratio of the mass of a planet to the mass

of the Sun, being the principal element of the

theory of the perturbations which it produces,
the comparison of this theory with a great num-

ber of very precise observations, ought to give its

value so much the more accurately, as the pertur-

bations of which it is the cause are more consi^

derable. It is in this manner {a^ that the following

values of the masses of Venus, of Mars, of Jupiter

and of Saturn, have been determined. The mas-

ses of Jupiter, of Saturn, and of those planets

which have satellites, may be determined in the

following manner.

It follows from the theorems on centrifugal force,

given in the preceding book, that the gravity of a

satellite towards its primary is to the gravity of

the Earth towards the Sun, as the mean radius

of the orbit of the satellite divided by the square

of the time of its sidereal revolution, is to the

mean distance of the Earth (Z>)
from the Sun,

divided by the square of a sidereal year. To re-
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duce these gravities, to the same distance from

the bodies which produce them, they must be

multiplied respectively by the squares of the radii

of the orbits which they describe. And as at equal

distances, the masses are proportional to their at-

tractions, the mass of the planet is to that of the

Sun, as the cube of the mean radius of the orbit

of the satellite, divided by the square of the time

of its sidereal revolution, is to the cube of the

mean distance of the Earth from the Sun, divided

by the square of the sidereal year. This result

supposes that the mass of the satellite relatively

to that ofthe planet has been neglected, and also the

mass of the planet with respect to that of the Sun,

which may be done without any sensible error,

it will become more exact if we substitute in place
of the mass of the planet, the sum of the masses'

of the planet and of its satellite, and instead of

the mass of the Sun, the sum of the masses of

the Sun and planet, since tlie force which re-

tains a body in its relative orbit, about that

which attracts it, depends on the sum of their

masses. Let this result be applied to Jupiter ;

the mean radius of the orbit of the fourth sa-

tellite, such as it has been given in the second

book, seen at the mean distance of the Earth

from the Sun, would appear under an angle of

7964'75; the radiusofthe circle contains6366l9''8 :

thus the mean radii of the orbits of the fourth sa-

tellite, and of the terrestrial orbit, are in the pro-

portion of these two last numbers. The duration

of the sidereal revolution of the fourth satellite (c)



t

AND OF THE GRAVITY AT THETR SURFACE. 39

8 16** 6890, and the sidereal year is 365'' 2564.

Setting out from these data, the mass of Jupiter
is found to he xoB^f.Qif, that of the Sun being re-

presented hy unity. To obtain greater exactness,

it is necessary to diminish by unity the denomi-

nator of this fraction
;
the mass of this planet then

is YoJ6,oiJ' ^ ^^^^^ determined by the same me-

thod, the masses of Saturn and of Uranus, equal

respectively to ^^J^^-^,-^^1^^.

The perturbations which these three large planets

experience from their reciprocal attractions, furn-

ish an accurate method of obtaining the values of

their masses. Mr. Bouvard, from a comparison of

the formulae which are given in the Celestial Me-

chanics, with a great number of observations

carefully discussed, constructed new tables of Ju-

piter, of Saturn, and of Uranus. He has formed

for this important object equations of condition,

in which he left as indeterminate, the masses of

these planets, and from a resolution of these equa-

tions, he obtained the following numerical values

for these masses, toTo,t ^^2 > ttVtf- ^^
^^.

consider the great difficulty of measuring the elon-

gations of the satellites of Saturn and Uranus, and

our ignorance ofthe ellipticity of the orbits of these

satellites ;
the little difference which exists be-

tween the values inferred from these elongations,

and those which result from the perturbations, is

really astonishing. These last values include for

each planet, its mass and those of its satellites, to

whicli it is necessary to add, in the case of Sa-

turn (d), that of its ring. But every thing induces
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US to think that the mass of the planet is far su-

perior to that of the bodies which surround it
;

at

least this is certainly the case for the earth and

Jupiter. But by applying the theory of probabili-

ties to the equations of condition of M. Bouvard,

it has been found, that it is a million to one,

that the value given above for the mass, does

not differ by a hundreth part from its true value.

Thei-e is eleven thousand to one, that this is

the case with respect to the mass of Saturn. Since

the perturbations which Uranus produces in the

motion of Saturn are inconsiderable, a great num-
ber of observations is required to obtain its mass

with the same probability, but in the actual state

of the case, it is 2500 to 1, that the preceding result

does not differ from its true value by a fourth

part. The perturbations which the earth ex-

periences from the attractions of Venus and Mars,

are sufficiently sensible to indicate the masses of

these planets. M. Buckhardt, to whom we are

indebted for excellent tables of the Sun, founded

on four thousand observations, has concluded

that the values of these masses are respectively

We may obtain in the following manner, the

mass of the earth. If the mean distance of

the Earth from the Sun be assumed equal to unity,

the arc described by the Earth in a second oftime,

will be the proportion of the circumference to

radius, divided by the number of seconds in the

sidereal year, or by 3652.5636^^1
; dividing the

square of this arc by the diameter, we shall get



AND OF THE GRAVITY AT THEIR SURFACE. 41

^^^ for its versed sine, it is the quantity

which the Earth falls towards the Sun, during
one second, in consequence of its relative mo-

tion round it. It has been seen, in the pre-

ceding chapter, that upon the terrestrial parallel,

of which the square of the sine of the latitude is ^,

the attraction of the Earth causes bodies to fall

through 3""^* 66477 in one second. To reduce this

attraction to the mean distance of the Earth from

the Sun, it must be multiplied by the square of the

sine of the solar parallax, and then the product
should be divided by the number of metres con-

tained in this distance. Now the terrestrial ra-

dius, at the parallel we are considering, is 6369809
metres

; dividing this number, therefore, by the

sine of the solar parallax, or by 26''54, we shall

get the mean radius of the terrestrial orbit, ex-

pressed in metres. It follows from hence, that

the effect of the Earth's attraction, at the mean
distance of this planet from the Sun, is equal to

the product of the fraction ^^'^fffj^ by the cube

of the sine of 26''54, it is consequently equal to

^^ : taking this fraction from ^|^ we

shall have ^^Ht^"^ for the effect of the Sun's at-

traction at the same distance (e). The masses of

the Sun andEarth are therefore in the proportionof

the numbers 1479560,8 and 4,16856 ;
from whence

it follows that the mass of the Earth is ^^^V^^.
If the parallax of the Sun is a little different from

what we have supposed, the value of the mass of

the Earth should vary as the cube of this parallax

compared to that of 26^^54.



42 OF THE MASSES OF THE PLANETS,

The mass of Mercury has heen determined by
its volume, supposing the densities of this planet
and of the Earth, inversely as their mean distances

from the Sun. An hypotliesis indeed very pre-
carious, but which corresponds with sufficient ex-

actness to the respective densities of the Earth,

Jupiter and Saturn. It will be necessary to rec-

tify all these values, when in the progress of time

the secular variations of the celestial motions shall

be determined more correctly.

Masses of the Planets, that of the Sun being
taken as unity.

Mercury ........ ^2'SWV^
^^^"^ Tohn
The Earth 3^^i^^

Jupiter ^1^^^
Saturn

-^tvi

The densities of bodies are proportional to their

masses divided by their volumes, and when they
are nearly spherical, their volumes are as the cubes

of their radii. The densities therefore are as the

masses divided by the cubes of the radii
;
but to

obtain greater accuracy, that radius of a planet
must be taken, which corresponds to the parallel,

the square of the sine of whose latitude is ^. It

was stated in the first book, that the semidiameter

of the Sun seen at its mean distance from the
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earth, subtends an angle of 2966", and at the

same distance the, radius of the earth would ap-

pear under an angle of ^&\54<. It is easy to infer

from this that the mean density of the solar globe

being assumed equal to unity, (f) that ofthe earth

is 3,9326. This value is independent of the pa-

rallax of the Sun
;
for the volume and the mass

of the earth increase respectively, as the cube of

this parallax. The semidiameter of the equator

of Jupiter seen at its mean distance from the Sun,

is according to the accurate measures of Arrago,

equal to 5&' ,7'^02 ;
the semiaxis passing through

the poles is 53,497> therefore the radius of the

spheroid of Jupiter, corresponding to the parallel

of which the square of the sine of the latitude is

^, will subtend at the same distance, an angle of

55,'967, and seen at the mean distance of the

Earth from the Sun, it will be 291'', 185. Hence

it is easy to infer that the density of Jupiter is

equal to 0,99239. The density of the other pla^

nets may be determined in the same manner, but

the errors of which the measures of their apparent

diameters, and the estimation of their masses are

also susceptible, will cause considerable uncertain-

ty in the results of the computation ;
if the appa-

rent diameter of Saturn seen at its mean distance

from the Sun be supposed equal to 50'', its den-

sity will be equal to 0,55, that of the Sun being

unity. A comparison of the respective densities of

the earth, of Jupiter and of Saturn, indicates that

they are smaller for the more distant planets ;

Kepler was led to the same result from his notions
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of suitableness and harmony, and he supposed th

density of the planets to be reciprocally propor-
tional to the square roots of their distances. But

he concluded from the same considerations that

the Sun was the densest of all the stars, which is

not the case. The planet Uranus, of which the

density appears to surpass that of Saturn, is an

exception to the preceding rule. In consequence

of the uncertainty which hangs over the measures

of his apparent diameter, and the measures of his

greatest elongations, we cannot pronounce with

certainty on this subject.

To obtain the intensity of gravitation at the

surface of the Sun and planets, it has been proved
that if Jupiter and the Earth were exactly sphe-

rical, and deprived of their rotatory motion, gra-

vity at their equators would be proportional to the

masses of these bodies, divided by the sqfuares of

their diameters
;
now at the mean distance of the

Sun from the Earth, Jupiter's apparent semi-

diameter is 291'', 185, and that of the Earth's

equator is 26'',54l ; representing then the weight
of a body at the terrestrial equator by unity, the

weight of this body transported to the equator of

Jupiter would be 2,716, but this weight must be

diminished by about a ninth part (^g) from the ef-

fcts of the centrifugal force, due to the rotation of

these planets. The same body would weigh 27,9

at the equator of the Sun, and falling bodies would

describe one hundred and two metres in the first

second of their descent. The immense interval

which separates us from these great bodies,
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seemed for ever to debar us from obtaining a

knowledge of the effects of gravity at their sur-

face : but the connexion of truths leads to results

which appear inaccessible, when the principle on

which they depend is unknown. It is thus that

the measure of the intensity of gravity at the sur-

face of the Sun and of the planets, is rendered

possible by the discovery of universal gravitation.



CHAP. IV.

Of the Perturbations of the Elliptic Motion of
Comets,

The action of the planets produces in the mo-

tion of comets, inequalities which are principally

sensihle in the intervals of their returns to the

perihelion. Halley having remarked that the ele-

ments of the orbits of the comets observed in

1581, 1607, and 1682, were nearly the same,

concluded that they belonged to the same comet

which in the space of 151 years, had made two revo-

lutions. It is true, that the period of its re-

volution is thirteen months longer from 1537 to

1607, than from I607 to 1682. But this great

astronomer thought, and with reason, that the

attraction of the planets, particularly of Jupiter

and Saturn, might have occasioned this difference,

and after a vague estimation of this action during
the course of the following period, he judged that

it should retard the return of the comet, and he

fixed it for the end of 1758, or the commence-

ment of 17'59. This prediction was too import-

ant in itself, and too intimately connected with

the theory of universal gravitation, not to excite
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the curiosity of all those who were interested in

the progress of the sciences ; and in particular of

a theory which already accorded with a great num-
her of phenomena. Astronomers, uncertain of the

epoch at which it ought to return, sought it about

the year 1757 ; and Clairaut, who had been one

of the first to solve the problem of the three bo-

dies, applied his solution to the determination of

the inequalities which the comet had sustained by
the action of Jupiter and Saturn. On the 14th

November, 175S, he announced in the academy
of sciences, (a) that the interval of the return of

the comet to its perihelion, would be 618 days

longer in the present period than in the for-

mer one, and consequently, the comet would

pass its perihelion, about the middle of April
17.59. He observed, at the same time, that the

small quantities neglected in this approximate cal-

culation, miglit advance or retard this term, a

month. He remarked also that a body which

passes into regions so remote, and which escapes
our sight during such long intervals, may be sub-

ject to the action of forces entirely unknown, as

the attraction of other comets, or even of some

planet, whose distance is too great to be ever vi-

sible to us. This philosopher had the satisfaction

of seeing his prediction accomplished ; the comet

passed its perihelion the 12th March 1759, within

the limits of the errors of which he thought his re-

sults susceptible. After a new revision of his cal-

culations, Clairaut fixed this passage at the 4th of

April, and he would have brought it to the 24th
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March, if he had employed the mass of Saturn,

such as is given in chap. III.
; that is, within thir-

teen days of the actual observation. This dif-

ference will appear very small, if we consider the

great number of quantities neglected, and the in-

fluence which the planet Uranus might produce,
whose existence was at that time unknown.

Let us remark, for the honour of the human

understanding, that this comet, which in the last

century only excited the most lively interest among
astronomers and mathematicians, had been re-

garded in a very different manner, four revolu-

tions before, when it appeared in 1456. Its long
tail spread consternation over all Europe, already
terrified by the rapid success of the Turkish arms,

which had just destroyed the great empire. Pope
Callixtus, on this occasion, ordered a prayer, in

which both the comet and the Turks were de-

nounced in the same anathema.

In those times of ignorance, mankind were far

from thinking that nature obeyed immutable

laws, and according as phenomena succeeded with

regularity or without apparent order, they were

supposed to depend either on final causes or on

chance ;
so that whenever any thing happened

which seemed out of the natural order, they were

considered as so many signs of the anger of

heaven.

To the terrors which the apparition of comets

then inspired, succeeded the apprehension, that of

the great number which traverse the planetary
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system in all directions, one of thein might over-

turn the earth.

They pass so rapidly by us, that the effects of

their attraction are not to be apprehended. It is

only by striking the earth that they can produce any
disastrous consequences. But this circumstance,

though possible, is so little probable in the course

of a century, and it would require such an extraor-

dinary combination of circumstances fortwo bodies,

so small in comparison with the immense space

they move in, (b) to strike each other, that no rea-

sonable apprehension can be entertained of such

an event.

Nevertheless, the small probability of this cir-

cumstance may, by accumulating during a long
succesion of ages, become veiy great. It is easy

to represent the effect of such a shock upon the

earth : the axis and motion of rotation w^ould be

changed, the waters abandoning their antient posi-

tion, would precipitate themselves towards the new

equator ;
the greater part of men and animals

drowned in a universal deluge, or destroyed by the

violence of the shock given to the terrestrial globe ;

whole species destroyed ;
all the monuments ofhu*

man industry reversed: such are the disasters which

the shock of a comet ought to produce, if its

mass was comparable to the mass of the earth.

We see then why the ocean has covered the

highest mountains, on which it has left incontes-

tible marks of its former abode : we see why the

animals and plants of the south may have existed

VOL. II. K
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in the climates of the north, where their reh'cs

and impressions are still to be (c) found : lastly^

this explains the short period of the existence ofthe

moral world, whose earliest monuments do not

go much farther back tlian five thousand years.

The human race reduced to a small number of

individuals, in. the most deplorable state, occupied

only with the immediate care for their subsist-

ence, must necessarily have lost the remembrance

of all sciences and of every art
;
and when the

progress of civilization had created new wants,

every thing was to be invented again, as if

mankind had been just placed upon the earth.

But whatever may be the cause assigned by phi-

losophers to these phenomena, I repeat it, we

may be perfectly at ease with respect to such

a catastrophe during the short period of human

life, especially since it appears that the masses

of the comets are extremely small, and there-

fore their shock ought only to produce local

changes.

But man is so disposed to yield to the dictates

of fear, that the greatest consternation was ex-

cited at Paris, and thence communicated to all

France in 1773, by a memoir of Lalande, in

which he determined, of those comets which had

been observed, the orbits that most nearly ap-

proached the earth ;
so true it is, that error,

superstition, vain terrors, and all the evils of

ignorance, are ever ready to start' up, when
the light of science is unfortunately extin-

guished.
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The observations of the comet which was first

perceived in 1770, have conducted astronomers

to a very remarkable result. After having in vain

attempted to subject these observations to the

laws ofparabolic motion, which have hitherto re-

presented the motions of the comets with sufficient

accuracy, they at length recognized that it de-

scribed during its appearance, an ellipse the

duration of whose revolution did not surpass si^

years. Lexel, who first made this curious re-

mark, satisfied on this hypothesis, a great number

of observations of the comet. But so very short

a duration could not be admitted, (d) except after

incontrovertible proofs, founded on a new and pro-
found discussion of the observations of the comet,

and of the positions of the fixed stars to which it

was compared. The Institute therefore proposed
this discussion for the subject of a prize, which

Buckhardt gained, and his investigations has con-

ducted us to very nearly the same result, as Lexel,

on which there ought not now to remain any"doubt.
A comet, of which the period was so short ought

frequently to appear, notwithstanding which it]
was

not observed previously to 1770, nor has it been

seen again, since that period. To account for

this twofold phenomenon, Lexel remarked that

in 1767 and 1779, this comet was very near to

Jupiter, of which the powerful attraction di-

minished in 1767, the perehelion distance of

its orbit, so as to render this star visible in 1770,

which was before invisible, and then in 1779 it

9t
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increased this same distance, so as to render thisJ

comet perpetually invisible. But it was necessary
to demonstrate the possibility of the two effects

which have been ascribed to the attraction of Jupi-

ter, by shewing that the elements of the ellipse de-

scribed by the comet, ought to satisfy them. This I

have accomplished by subjecting this question to

analysis, and by this means the preceding expla-
nation has been rendered very probable. Of all

the comets, this approached the nearest to the

earth, consequently it ought to experience a sensi-

ble action from it, if its mass was comparable to

that of the earth.

These two masses being supposed to be equal,

the sidereal year would have been increased

11612", by the action of the comet. By a com-

putation of a great number of observations which

Delambre and Buckhardt made in order to con-

struct the tables of the Sun, we may be assured

that since 1770> the sidereal year has not in-

creased 3'', consequently the mass of the comet

is (e) not the j^q part of the mass of the earth ;

and if we consider that in I767 and 1779 this

star traversed the system of the satellites of Ju-

piter without producing the slightest derange-

ment, it will be evident that it must be even

less. The smallness of the masses of the comets

is in general indicated by their insensible influence

on the motions of the planetary system. These

motions are represented by the sole action of the

bodies of the system, with such remarkable pre-

cision, that the small abberrations of our best ta-

bles may be ascribed to the sole errors of ap-
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proximations and of observations. But very ex-

act observations continued for a great number of

years, and compared with the theory, can alone

throw light on this important point in the system
of the world.



CHAP. V,

Of the Perturbations of the Motion of the Moon.

The Moon is attracted at the same time by the

Sun and by the Earth ; but its motion round the

Earth is only disturbed by the difference of the

actions of the Sun, upon these t\yo bodies : if the

Sun was at an infinite distance, it would act

equally upon them, and in the direction of pa-
rallel lines

;
their relative motion, therefore, would

not be affected by an action which was common
to both ;

but its distance, though (a) very great

compared with that of the Moon, cannot be con-

sidered as infinite : the Moon is alternately nearer

and farther from the Sun than the Earth, and the

straight line joining the centres of the Sun and

Moon, forms angles more or less acute with the

terrestrial radius vector. Thus the Sun acts

unequally and in different directions on the Earth

and Moon ;
and from this diversity of action, in-

equalities must necessarily arise in the lunar mo-

tion, depending on the respective positions of the

Moon and Sun. This constitutes the famous

problem of the three bodies, the exact solution of

which surpasses the powers of analysis, (^)but from
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the proximity of the Moon, compared with its dis-

tance from the Sun, and from the comparative

smallness of its mass, an approximation may be

obtained extremely near the truth. Nevertheless,

the most delicate analysis is necessary to extri-

cate all the terms, whose influence becomes sen-

sible.

Their discussion is the most important point of

this analysis, when it is proposed to perfect the

lunar theory, which indeed ought to be its principal

object ;
there are various ways of reducing this

problem of the three bodies to an equation ;
but

its principal difficulty consists in discriminating in

the diiferential equations, and determining ex-

actly, the terms which, though extremely small in

themselves, acquire by successive integrations a

sensible value
;

this requires a judicious selection

of coordinates, delicate considerations on the na-

ture of the integrals, approximations accurately

conducted, computations carefully made and fre-

quently verified. I have endeavoured to fulfil

these conditions in the theory of the Moon, which

has l>een explained in the Celestial Mechanics, and

I have the satisfaction of seeing my results coincide

with those found by Mason and Burgh fi'om a

comparison of near five thousand observations of

Bradley and Maskeline, and which have given to

the lunar tables a precision which it will be difficult

to surpass, and to which geography, and nautical

astronomy are principally indebted for their pro-

gress. It is due to Mayer, one of the greatest

astronomers that ever lived, to observe that he
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was the first who brought the tables to the degree

of perfection which is necessary for this important

object. Mason and Burg have adopted the form

which he gave to them ; they have corrected the

coefficients of his inequalities, and have added to

them some others indicated by his theory, Mayer

moreover, by the invention of the repeating circle,

which has been cansiderably improved by Borda,

has brought observations made at sea, to the same

accuracy, to which he has reduced the lunar tables.

Finally, M. Burkhardt has rendered the lunar tables

nearly perfect, by assigning to their arguments a

simple and more commodious form, and by de-

termining their coefficients from a great collection

of modern observations. The object ofmy theory
has been to shew, in the sole law of universal gra-

vitation, the source of all the inequalities of the

lunar motion, and to make use of this law, to

perfect the lunar tables, and to infer from them,
several important elements in the system of the

world, such as the secular equations of the Moon,
its parallax, that of the Sun and the compression
of the earth. Fortunately, while I was occupied
in these investigations. Burg on his part was en-

deavouring to perfect the lunar tables. My ana-

lysis indicated to him several new and extremely
sensible equations; and from a comparison of them
with a great number of observations, he has as-

certained their existence, and thrown great light
on the elements, of which I have been speaking.
The motions of the nodes, and of the lunar pe-

rigee, are the principal effects of the perturba-
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tions which this satellite experiences. A first

aproximation had only given to geometers, half

of the second of these motions \
from (c) which

Clairaut concluded that the law of attraction was

not quite so simple as had been imagined ; and he

supposed it to consist of two parts, of which one

varying inversely as the square of the distances, is

sensible only at the great distances of the planets

from Sun, and that the other, increasing in a

greater ratio as the distance diminished, became

sensible at the distance of the Moon from the

Earth. This conclusion was vehemently op-

posed by BufFon : he maintained that since the pri-

mordial laws of nature should be the most simple

possible, they could only depend on one modulus^

and their expression, therefore, must consist of

one single term. This consideration should no

doubt lead us not to complicate the law of attrac-

tion, except in case of extreme necessity \
at the

same time our ignorance respecting the nature of

this force, does not permit us to pronounce with

certainty as to the simplicity of its expression.

However this may be, the metaphysician was in

the right, this time, in his contest with the mathe-

matician, who retracted his error on making this

important discovery, that by carrying on the ap-

proximation farther than had been done at first,

the law of attraction, reciprocally as the squares

of the distances, gave the motion of the lunar pe-

rigee, exactly conformable to observation, which

has since been confiruied by all those who have

occupied themselves with this subject. The mo-
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tion which I inferred from my theory, differs from

the true motion by its four hundreth and fortieth

part, and this difference is only the three hun-

dredth and fiftieth part, with respect to the motion

of the nodes. Althougli analy&is may be indispen-

sible to make known how all the inequalities

of the Moon, result from tlie action of the Sun

combined with that of the earth, it is possible, ne-

vertheless, without analysis, to explain the cause

of the annual equation of the Moon, and its secu-

lar equation. I shall the more willingly stop to

explain the causes of tliese equations, because it

will be seen that from them are derived the

greatest inequalities of the Moon, which the coui'se

of ages may develope to observers, but which up to

the present period have been almost insensible.

In its conjunctions with the Sun, the Moon is

nearer to it than the Earth, and experiences from

it a more considerable action : the difference of

the attractions of the Sun upon these two bodies,

tends to diminish the gravity of the Moon towards

the Earth. In a similar manner, in the opposi-

tions of the Moon to the Sun, this satellite being
farther (d) from the Sun than the E^arth, is more

weakly attracted : thus the difference of the ac-

tions of the Sun, tends also in this case to diminish

the gravity of the Moon to the Earth. In each

case, the diminution is very nearly the same, and

equal to twice the product of the mass of the Sun,

by the quotient of the radius of the lunar orbit, di-

vided by the cube of the distance of the Sun from

Uie Earth. In the quadratures,, tlie action of th
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Sun upon the Moon, decomposed in the direction

of the lunar orbit, tends to augment the gravity of

the Moon to the Earth : but this augmentation is

only half the value of the diminution which it ex-

perienced in the syzygies. Thus, fi-om all the ac-

tions of the Sun upon the Moon in the course of

a synodical revolution, there results a mean force

in the direction of the lunar radius vector, which

diminishes the gravity of this satellite
;
and it is

equal to half of (e) the product of the mass of the

Sun, by the quotient of the radius of the lunar

orbit, divided by the cube of the distance or the

Sun from the Earth.

To find the ratio which this product bears to

the gravity of the Moon, we may observe, that

this force which retains it in its orbit, is nearly

equal to the sum of the masses of the Earth and

Moon, divided by the square of their mutual dis-

tance ; and the force which retains the Earth in

its orbit, is very nearly equal to the mass of the

Sun divided by the square of its distance from the

Earth. According to the theory of central forces,

explained in the third Book, these two forces are

as the radii of the orbits of the Sun and of the

Moon, divided respectively by the squares of the

times of their revolutions. Hence it follows that

the preceding product is to the gravity of the

Moon, as the square of the time of the sidereal

revolution of the Moon, is to the square of the time

of the sidereal revolution of the Earth. This pro-

duct therefore is very nearly the y^^^th of the lu-
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nar gravity, which hy the mean action of the Surt

is thus diminished by its 358th part*

In consequence of this diminution, the Mooil

is sustained at a greater distance from the Earth,
than if it was abandoned (/) entirely to the action

of its own force of gravity. The sector described

by its radius vector is not altered, since the force

which produces it, is in the direction of this ra-

dius, but its real velocity and angular motion are

diminished ;
and it is easy to see, that by placing

the Moon at a greater distance, so that its centri-

fugal force might equal its gravity, diminished by
the action of the Sun, and that its radius vector

might describe the same sector, that it would have

described without this action
;

this radius would

be augmented by its 358th part, and its angular
motion diminished by a 179th part.

These quantities vary reciprocally as the cubes

of the distances of the Sun from the Earth. When
the Sun is in perigee, its action being most pow-
erful, dilates the lunar orbit, but this orbit con-

tracts again, as the Sun approaches its apogee ;

thus the Moon describes in space, a series of epi-

cycloids whose centres are on the terrestrial orbit,

and which dilate and contract as the Earth ap-

proaches to or recedes from the Sun. From hence

an inequality (^) arises in the angular motion,

very similar to the equation of the centre of the

Sun,with this difference, that it retards this motion

when that of the Sun augments, and that it acce-

lerates it, when the motion of the Sun diminishes.

These two equations are therefore always affected
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with contrary signs. The angular motion of the

Sun is, as we have shewn in the first Book, re-

ciprocally as the square of its distance, at the pe-

rigee, this distance being -^Qth. less than the mean

distance, its angular velocity is augmented ^^gth ;

the diminution of yyT^th produced by the action

of the Sun in the lunar motion, is then greater by
a twentieth ;

the increase of this diminution is

therefore the 3580th part of this mot/on. Hence

(A) it follows that the equation of the centre of

the Sun, is to the annual equation of the Moon, as

a thirtieth of the solar motion is to the 3580th of

the lunar motion, which gives 2398'' for the an-

nual equation. It is about an eighth part less ac-

cording to observation ;
this difference depends on

the quantities that have been neglected in this first

calculation.

The secular equation of the Moon, is produced

by a cause similar to that of the annual equation.

Halley first remarked this equation, which Dun-

thorn andMayer have confirmed by a profound dis-

cussion of the observations. These two learned as-

tronomers have proved that the mean motion of

the Moon cannot be reconciled with modern obser-

vations, and with the eclipses observed by the

Chaldeans and Arabians. They have attempted
to represent them, by adding to the mean longi-

tudes of this satellite a quantity proportional to

the square of the (0 number of centuries be-

fore or after the year I7OO. According to Dun-

thorn, this quantity is 30''9, for the first century :

Mayer made it 21"6, in his first tables, which he
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increased to 27''8, in his last. And since that

time, Lalande, after a new investigation of the

subject, was led nearly to the same result as Dun-

thorn. The Arabian observations which have

been chiefly made use of, are two eclipses of the

Sun and one of the Moon, observed by Ibn Junis,

near Cairo, towards the end of the tenth century,

and extracted some time ago, from a manuscript

of this astronomer's existing in the library at Ley-

den. Doubts have arisen concerning the reality of

these eclipses ;
but the translation which M. Caus-

sin has lately made of the part of this valuable ma-

nuscript, which contains the observations, has dis-

sipated these doubts
;

it has moreover made us

acquainted with twenty-five other eclipses observ-

ed by the Arabians, and which confirm the acce-

leration of the mean motion of the Moon. Be-

sides, our modern observations compared with

those of the Grecians and of the Chaldeans, are

sufficient to establish the existence of the secular

equation of the Moon. In fact, Delambre and

Bouvard and Burg, have determined, by means
of a great number of observations of the two pre-

ceding centuries, the actual secular motion, with

a precision that leaves a very slight uncertainty :

they found it six or seven hundred seconds

greater than what is given by a comparison of an-

tient and modern observations. The lunar motion
is therefore accelerated since the time of the Chal-

deans, and the Arabian observations being made
in the interval that separates them and confirming
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this supposition, it is impossible any longer to

question the truth of it.

Now, what is the cause of this phenomenon ?

Does the theory of universal gravitation, which

has so well explained the numerous inequalities

of the Moon, account likewise for its secular va-

riation ? These questions are the more interest-

ing to resolve, because if we succeed, we shall

obtain the law of the secular variations of the

motion of the Moon, for it is evident that the hy-

pothesis of an acceleration proportional to the

time, as admitted by astronomers, is only on ap-

proximation, and cannot extend to an indefinite

period.

This object has greatly occupied the attention

of geometricians, but their researches were for a

long time fruitless, Iiaving discovered nothing
either in the action of the Sun or planets on the

Moon, nor in the figures not exactly spherical of

of this satellite and the Earth, that could change
the mean motion of the Moon, some rejected the

secular equation altogether, others to explain it,

had recourse to various hypotheses, such as the

action of comets, the resistance of an ether, and

the successive transmission of gravity. Yet the

correspondence of the other celestial phenomena
with the theory of gravitation is so perfect, that

we could not observe without regret, that the se-

cular variation of the Moon appeared to refuse to

submit to it, and continued the only exception to

a general and simple law, whose discovery, by the

grandeur and variety of the objects which it em-

braces, does so much honour to the human un-
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derstanding. This consideration having determined
me to reconsider this phenomenon, after several at-

tempts I was at last so fortunate as to discover its

cause. The secular equation ofthe Moon arisesfrom,
the actionofthe Sun upon this satellite, combined with

the variation of the eccentricity of the terrestrial

orbit. To form a just idea of this cause, we must
recollect that the elements of the orbit of the

Earth, are subject to alterations from the action of

the planets ;
its greater axis remains always the

same, but its excentricity, its inclination to a fixed

plane, and the position of its nodes and of its pe-

rihelion, are incessantly changing. It must also

be considered, that the action of the Sun upon
the Moon diminishes by -^-^, its angular velocity,

and^that its numerical co-efficient varies recipro-

cally as the cube of the distance of the Earth

from the Sun. Now in expanding the inverse

third power of this distance, into a series arrang-
ed according to the sines and cosines of the mean
motions of the Moon, Qi) and of their multiples,

taking for unity the semi-major axis of the terres-

trial orbit
;

it is found that this series contains a

term equal to three times the half of the square of

the excentricity of this orbit ; the diminution of

the angular velocity of the Moon, contains there-

fore a term equal to the 179th part of this velo-

city, multiplied by this term. If the excentricity

of the terrestrial orbit was constant, this term

would be confounded with the mean angular ve-

locity of the Moon ; but its variation, though very

small, has nevertheless in progress of time a sen-
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sible influence on the motion of the Moon. It is

evident that this motion will be accelerated, when
the excentricity^ diminishes, which has been (/) the

case ever since the most ancient observations to

the present time, this acceleration will be chang-
ed into a retardation, when the excentricity hav-

ing arrived at its minimum, will cease to decrease,

and begin to augment.
In the interval from 1750 to 1850, the square

of the excentricity of the terrestrial orbit dimi-

nishes 0.00000140595, the corresponding increase

in the angular velocity of the moon is therefore

O.OO000001I782I of this velocity: this increase

taking place successively and proportionally to the

time, its effect on the Moon's motion is only half

what it would be, if during the whole course of the

century, it was the same as at the end. To deter-

mine therefore this effect, or the secular equation
of the Moon at the end of a century, reckoning
from 1700, we must m'ultiply the secular motion

of the Moon by the half of the very small increase

in its angular velocity ;
but in a century, the mo-

tion of the Moon is 53^7405406", which gives

3r^5017 for its secular equation.

As long as the diminution of the square of the

excentricity of the terrestrial orbit may be sup-

posed proportional to the time, the secular equa-

tion of the Moon will increase sensibly as the

square of the time ;
it would be sufficient there-

fore to multiply 31'',5017 by the square of the numr
ber of centuries contained between the time for

which the calculation is made, and the commence-

YOL. II. F
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ment of the inneteenth century. But I have found

that in going back to the observations of the Chal-

deans, the term proportional to the cube of the

times, in the expression in a series, of the se-

cular equation of the Moon, becomes sensible, this

term is equal to (y,057^ 14 for the first century j
it

should be multiplied by the cube of the number

of centuries reckoned from 1801, the product be-

ing taken as negative for the centuries anterior to

this epoch.
The mean action of the Sun upon the Moon de-

pends also on the inclination of the lunar orbit to

the ecliptic, and we might suppose that the posi-

tion of the ecliptic being variable, there should

result inequalities in the motion of this satellite,

similar to those produced by the diminution

of the excentricity of the terrestrial orbit; but

1 have recognised by analysis, that the lunar or-

bit is constantly brought back by the action of

the Sun, to the same inclination to that of

the Earth, so that the grcuitest and least declina-

tions of t\\e Moon are, in consequence of the se-

(jular variations in the obliquity of the eliptic,

subject to the same changes as the declinations of

the Sun.

This constancy in the inclination of the lunar

ofbrt, is confirmed by all observations both ancient

and modern.

The excentricity of this orbit experiences in like

manner only an insensible alteration, from the

(Change of the excentricity of the terrestrial

otbit.

It is not thus with the variations of the motion
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ofthe nodes an<d perigee, to vvhicli it is indepensa-

bly necessary to pay attention in investigations, the

object of which is to perfect the lunar tables. In

submitting these variations to analysis, I have

found that the influence of the terras depending
on the square of the perturbating force, and which,

as we have seen, double the mean motion of the

perigee, is yet greater on the variation of this mo-

tion. The result of this intricate analysis, has

given mc a secular equation, triple of the secular

equation of the mean motion of the Moon, to be

subtracted from the mean longitude of the peri-

gee, so that the mean motion of the perigee is re-

tarded, when that of the Moon is accelerated. I

have found likewise in the motion of the nodes of

the lunar orbit upon the true ecliptic, a secular

equation to be added to their mean longitude, and

equal to 7^'^ thousandths of the secular equation
of the mean motion. Thus the motion of the

nodes is retarded, like that of the perigee, when
that of the Moon augments, and the secular equa-
tions of these three motions, are constantly in the

proportion of the numbers 0,735, 3, 1. It is easy
to infer from this, that the three motions of the

moon, with respect to the sun, to its perigee and
its nodes, continually increase, and that their secu-

lar equations are as the three numbers 1, 4, 0,26.5,

Future ages will develope these great inequa-

lities, which will produce one day variations at

least equal to a fortieth of the circumference, ip

the secular motion of the Moon, and to a thir-

teenth of the circumference in that of its perigee,

F 2
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These inequalities do not always continue increas-

ing ; they are periodical, like those of the excen-

tricity of the terrestrial orbit on which they de-

pend, and do not re-establish themselves till after

millions of years.

They must at length, alter the periods which

have been devised for the purpose of compre-

hending complete numbers of revolutions of the

Moon, relatively to its nodes, to its perigee, and

to the Sun, periods which differ sensibly in dif-

ferent parts of the immense period of the secular

equation.

The luni-solar period (m) of six hundred years,

has been rigorously exact at a certain epoch, which

it would be easy to find by analysis, if the masses

of the planets were accurately determined
; but

this determination, so desirable for the perfection
ofour astronomical theories, is yet wanting. Fortu-

nately Jupiter, whose mass we know exactly, is

the planet which has the greatest influence on the

secular equation of the Moon, and the values of

the other planetary masses, are sufficiently accu-

rate, for us to be certain that there cannot exist a

sensible error in the magnitude of this equation.

Already ancient observations, notwithstanding
their imperfection, confirm these inequalities, and

we may trace their progress, either in these an-

cient observations, or in the astronomical tables

which have succeeded them to the present time.

We have seen that the ancient eclipses, made
known the acceleration of the Moon's motion,
before the theory of gravity had developed the

cause.
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In comparing modern observations, and the

eclipses observed by the Arabians, Greeks, and

Chaldeans, with this theory, we find an agree-
ment between them that appears surprising, when
we consider the imperfection of ancient observa-

tions, the vague manner in which they have been

transmitted to us, and the uncertainty which still

exists concerning the variations of the excentri-

city of the earth's orbit, and from the obviously im-

perfect manner in which the masses of Venus and

Mars have been determined. The developement
of the secular equations of the Moon, will be one

of the most proper data to determine these masses.

It was particularly interesting to verify the the-

ory of gravity, relatively to the secular equation
of the motions of the perigee of the lunar orbit

or to that of the anomaly, four times greater than

the secular equation ofthe mean motion. From its

discovery I have inferred that the actual motion of

the perigee, made use ofby astronomers, and which

they inferred from a comparison of ancient and

modern observations, must be diminished by from

fifteen to sixteen minutes. In fact, when they did

not take into account its secular equation, they
should find this motion too rapid in the same man-

ner, as they assumed too small a mean motion to

the Moon, when they did not take its secular equa-
tion into account

;
this is what Bouvard and

Burgh have confirmed by determining the actual

secular equation of the lunar perigee, by means

of a great number of modern observations ; more-

over Bouvard has found the same motion, by
means of the most ancient observations, and by
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those of the Arabians, if its secular equation be

taken into account of which tlie existence is by

this means incontestably establislied.

The mean motions and the epochs of the tables

of the Almageste and of the Arabians, indicate

evidently these three secular equations of the lu-

nar motion. The tables of Ptolemy arc the re-

sult of immense calculations made by this astro-

rtomer and by Hipparchus ;
the work of Hip-

parchus has not come down to us : we only know

from the evidence of Ptolemy, that he had taken

the greatest care to select eclipses the most ad-

vantageous for the determination of the elements

of which he was in search. Ptolemy, after two

centuries and a half of new observations, found

very little to change in these elements
;
there is

therefore reason to beliete that those which he

made use of in his tables, have been determined

by a great number of eclipses, of which he only

preserved those that appeared to him to coincide

most with the mean results which had been ob-

tained by Hipparchus and himself. Eclipses only
make known correctly the mean synodical motion

of the Moon, and its distances from its nodes and

its perigee : we can only then depend upon these

elements in the tables of the Almageste : now in

going back to the first epoch of these tables, by
means of motions determined only by modern ob-

servations, we do not find the mean distances of

the Moon from its nodes, its perigee, and from

the Sun, that are given in these tables at this

epoch. The quantities which must be added to

these distances, are very nearly those which re-
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suit from the secular equations j therefore, the

elements of these tables at the same time, confirm

the existence of these equations, and the values

which I have assigned to them.

The motions of the Moon relative to its nodeSj^

to its perigee, and to the Sun, being slower in the

tables of the Almageste, than in our days, indi-

cate also in these motions an acceleration, equally
indicated both by the corrections that Albate-

nius, eight centuries after Ptolemy, made to the

elements of these tables, and also by the epochs
of the tables which Ibn Junis constructed about

the year one thousand, from the collection of

the Chaldean, Greek and Arabian observations.

It is remarkable that the diminution of the ex-

centricity of the terrestrial orbit should be much
more sensible, in the lunar motion than in itself.

This diminution which, since the most ancient,

eclipse we are acquainted with, has not altered

the equation of the Sun's centre 15', has produced
a variation of two degrees in the Moon's longi-

tude, and nearly a variation of eight degi*ees in

its mean anomaly ; we could hardly suspect it

from the observations of Hipparchus and Ptolemy.
Those of the Arabians indicated it with much

probability ;
but the ancient eclipses, compared

with the theory of gravitation, leave no doubt on

this subject. This reflexion, if I may make use

of the term, of the secular variations of the

orbit of the Earth on the lunar motion, in

consequence of the action of the Sun, has place
also for the periodic inequalities. It is in this
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manner that the equation of the centre of the

Earth's orbit, reappears in the hmar motion with a

contrary sign, and reduced to about a tenth of its

value ;
in like manner the inequality produced in

the motion of the Earth by the action of tlie

Moon, is reproduced in the motion of the Moon,
but diminished in the ratio of five to nine. Fi-

nally, the action of the Sun in transmitting to

the Moon, the inequalities which the planets pro-

duce in the motion of the Earth, renders this in-

direct action of the planets on the moon, more con-

siderable than their direct action on this sa-

tellite.

Here we see an example of the manner in which

phenomena as they are developed, lead us to the

knowledge of their true causes. When only the

acceleration of the mean motion of the Moon was

known, it might be attributed to the resistance of

ether, or to the successive transmission of gra-

vity. But analysis proves that these two causes

cannot produce any sensible alteration in the

mean motion of the nodes and of the lunar pe-

rigee, and that alone would suffice to exclude

them, even when the true cause of the variations

observed in these motions was unknown.

The agreement of theory with observations,

proves that if the mean motions of the Moon are

altered by causes foreign to the principle of uni-

versal gravitation, their influence is very small,

and hitherto insensible.

This agreement evinces in a decisive manner,

the invariability of the duration of the day, which
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is an essential element in astronomical theories.

If this duration was greater now by the hundredth

part of a second, than in the time of Hipparchus,
the duration of the present century would be

greater than at that time, by 365''25
;
in this inter-

val the Moon describes an arch of 53V,6 ; there-

fore the actual secular mean motion of the Moon
would appear to be increased by this interval,

which would increase its secular equation by

13'',51 for the first century, commencing from

1801, and which by what goes before is 31 ",5017.

Observations do not permit us to suppose so con-

siderable an increase. We may therefore be as-

sured that since the time of Hipparchus, the du-

ration of the day has not varied by the hundredth

part of a second.

One of the most important equations in the lu-

nar theory, in as much as it depends on the com-

pression of the earth, is relative to the motion of

the Moon in latitude. This inequality is propor-
tional to the (n) sine of the true longitude of this

satellite. It arises from a nutation in the lunar or-

bit produced by the action of the terrestrial

spheroid, and corresponding to that which the

Moon produces in our equator, so that one of

these nutations is the reaction of the other
; and

if all the molecules of the Earth and Moon were

connected firmly together by inflexible lines, void

of mass, the entire system would be in equilibrio

about the centre of gravity of the earth, in con-

sequence of the forces which produce these two

nutations
j
the force which actuates the Moon,
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compensating its smallness, by the length of the

lever to which it is attached. This inequality in

latitude may be represented, by conceiving that

the orbit of the Moon, instead of moving uniformly
on the ecliptic with a constant inclination, moves

according to the same conditions on a plane a

little inclined to the ecliptic, and passing always

through the equinoxes, between the ecliptic and

equator ; this phenomenon is produced in a more

sensible manner in the motions of the satellites of

Jupiter, in consequence of the very great com-

pression of that planet. Thus, this inequality di-

minishes the inclination of the orbit of the Moon
to the ecliptic, when its ascending node coincides

with the equinox of spring, it increases it when
the node coincides with the equinox of autumn,

which being the case in 1755, renders the incli-

nation too great, which Mason determined by the

observations of Bradley, made between the in-

tervals of 1750 and 1760. In fact Burg, who de-

termined it by observations made during a much

longer interval, and by taking into account the

preceding inequality, found the inclination to be

smaller by about 1V\^ ; this astronomer undertook

at my request to determine the coefficient of this

inequality, and from a great number of observa-

tions he found it equal to 24'',6914. Burchardt,

by employing for this purpose a still greater num-

ber of observations, arrived at the very same re-

sult, which gives the compression of the earth

equal to ^0 ,6

This compression may also be determined by
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ni^amofan inequality in the Moon's motion in

longitude, which depends on the longitude of the

Moon's node. Observation indicated it to Mayer,

and Mason fixed its quantity at 23/76.5 ;
but as it

did not appear to result from the theory of gra-

vity, the greater number of astronomers neglected

it. This theory pointed out to me that its cause

existed in the compression of the earth. Burgh and

Burchardt from a great number of observations,

fixed it at 20'',987, which answers to a compres-

sion of -^(j^,Qj, very nearly the same as is given by

the preceding inequality of the motion in latitude.

Thus the Moon by the observation of its motion,

renders sensible to astronomy when brought to a

state of perfection, the ellipticity of the earth, the

round form of which it first made known to astro-

nomers, by its eclipses.

The two preceding inequalities demand the

greatest attention of observers. They have an ad-

vantage over geodesical observations, in as much
as they give the compression of the earth, in a

manner less dependant on the inequalities of the

surface of the earth. If the earth was homoge-

neous, they would be much greater than what

observation determines them to be, consequently

the earth is not homogeneous. It follows also

from this that the attraction of the Moon towards

the Earth arises from the attractions of all the

molecules of this planet ;
which is a new proof of

the mutual gravitation of all the parts of matter.

Theory combined with the experiments of the

pendulum and the measures of degi-ees on the
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earth, assigns to the parallax, as we have seen in

the first chapter of this book, a quantity very

nearly conformable (o) to observations, so that

conversely, the magnitude of the earth might be

inferred from these observations.

Finally, the parallax of the Sun might be in-

ferred with accuracy from a lunar equation which

depends on the simple angular distance of the

Moon from the Sun. For this purpose, 1 have

computed with great care, the coefficient of this

equation, and by putting it equal to that, which

Burgh and Burchardt concluded from a long series

of observations, I concluded that the mean pa-

rallax of the Sun was 28",56 the same which se-

veral astronomers deduced from the last transit of

Venus.

It is worthy of remark that an astronomer with-

out leaving his observatory, by merely comparing
observations with analysis, can determine exactly

the magnitude and compression of the earth, and

its distance from the Sun and from the Moon,
which elements have been determined by long and

-troublesome voyages in the two hemispheres. The

agreement of the results obtained by these two

different methods is one of the most striking

proofs of the theory of universal gravitation.

The numerous comparisons which Bouvard and

Burgh made of the lunar tables, with the observa-

tions of the end of the seventeenth century by
La Hire and Flamstead; of the middle of the

eighteenth century by Bradley, and with the un-

interrupted series of observations of Maskeyline
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from Bradley to this day, furnish a result which

we would be far from anticipating. The obser-

vations of La Hire and of Flamstead, compared
with those of Bradley, indicate a secular sidereal

motion of the Moon, greater at least by one hun-

dred and thirty seconds, than what results from

the observations of Bradley compared with the

last of Maskeline ;
and the observations made

during the last twenty years proves that the di-

minution of the secular motion of the Moon has

been greater still during this interval
;
so that the

existence of an anomaly in the mean motion of

the Moon is at least very probable. Hence arises

the necessity of perpetually retouching the epochs
of the tables, until we can determine the cause or

the law of this remarkable anomaly. It is evi-

dently connected with one or more unknown in-

equalities, with long periods, of which theory

alone can indicate the laws.

The best lunar tables are founded on theory and

observation combined. They borrow from theory

the arguments of the inequalities which it would

have been difficult to know by means of observa-

tion alone. I have determined in my Treatise of

Celestial Mechanics, the coefficients of these ar-

guments in a very approximate manner, but in

consequence of the slowness of the convergance of

these approximations, combined with the diffi-

culty of extricating from among the immense

number of terms which the analysis deve-

lopes, those which can acquire from integration

a sensible value, this investigation is extremely
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troublesome, NaUwe itseif furni&lies in the col-

lections of observations, tlie results of those in-

tegrations so difficult to obtain by analysis. Messrs.

Buckhardt and Burgh have employe<l for their de-

termination several thousand observations, and

by this means liave rendered their lunar tables

extremely accurate. Being anxious to banish, all

empericism, and that other geometers should dis-

cuss several intricate points of the theory to which

I first arrived, such as the secular equations of the

motions of the Moon ;
I induced the Academy to

propose for the subject of its mathematical prize
for the year 1820, the formation by theory alone

of lunar tables equally perfect with those which

hav^ been inferred from theory and observation

combined. Two pieces were crowned by the Aca-

demy, the author of one of them, M. Damoiseau,

accompanied it with tables which compared with

observations, have represented them with the ac-

curacy of our best tables. The authors of the two

pieces agree on the periodical and secular inequa-

lities of the motions of the Moon. They differ a

little from my result on the secular equation

of mean motion
; but instead of the numbers

1
;
4

; 0,^65 by which I represented the ratios of

the secular inequalities of the motion of the Moon

i*elatively to the Sun, to the perigee of the lunar

orbit and to its nodes, they have found the num-

bers 1
; 46776 ; 0,891. M. Donaoiseau in his essay

has made the second of these numbers, very nearly

equal to 4
;

but after mature reflection on his

analysis, he has arrived at the same result as
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Messrs. Plana and Carlini, the authors of the

other essay. As they extended their approxima-
tions a considerable way, their numbers appear

preferable to those which I have determined. Fi-

nally, from those approximations the mean mo-

tions of the perigee and of the nodes of the orbit,

have been inferred exactly conformable to ob-

servations.

It follows indubitably from what we have seen,

that the law of universal gravitation is the sole

cause of all the inequalities of the Moon, and if

we consider the great number and the extent of

these inequalities, and the proximity of this satel-

lite to the earth, it will be agreed on, that of all

the heavenly bodies, it is the best adapted to es-

tablish this great law of nature, and the power of

analysis, of that wonderful instrument, without

which it had been impossible for the human mind

to penetrate into a theory so complicated, and

which may be employed as a means of discovery,

equally certain with observation itself.

Some partizans of final causes, have imagined
that the Moon was given to the Earth, to afford it

light during the night. But in this case, nature

would not have attained the end proposed, since

we are often deprived at the same time of the light

of each of them. To have accomplished this end,

it (j)) would have been sufficient to have placed

the Moon at first in opposition to the Sun and in

the plane of the ecliptic, at a distance from the

Earth equal to the one hundredth part of the dist-

ance of the Earth from the Sun, and to have im-

pressed on the Earth and Moon, parallel velocities
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proportional to their distances from the Sun. In

this case, the Moon being constantly in opposition
to the Sun, would have described round it an

ellipse similar to that of the Earth. These two

stars would then constantly succeed each other,

and as at this distance the Moon could not be

eclipsed, its light would always replace that of the

Earth. Other philosophers struck with the sin-

gular opinion of the Arcadians that they were

older than the Moon, thought that this planet was

originally a comet which, passing near to the

Earth, was forced by its attraction to accompany
it. But by reascending by means of analysis

to the most remote periods, we shall find that the

Moon always moved in an orbit nearly circular

about the Earth, as the planets move about the

Sun, therefore neither the Moon nor any sa-

tellite was originally a comet.

As the gravity at the surface of the Moon, is

much less than at the surface of the Earth,

and as this star has no atmosphere which can op-

pose a sensible resistance to the motion of pro-

jectiles, we may conceive that a body projected

with a great force, by the explosion of a lunar

volcanoe, may attain and pass the limit, where

the attraction of the Earth commences to predo-
minate over that of the Moon. For this purpose
it is sufficient that its central velocity in the di-

rection of the vertical may be 2500 metres in a

second ;
then in place of falling back on the

Moon, it becomes a satellite of the Earth, and

describes about it an orbit more or less elongated.
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The direction of its primitive impulsion may be

such as to make it move directly towards the at-

mosphere of the earth
;
or it may not attain it, till

after several and even a great number of revolu-

tions, for it is evident that the action of the Sun,

which changes in a sensible manner the distances

of the Moon from the Earth, ought to produce in

the radius vector of a satellite which moves in a

very excentrick orbit, much more considerable va-

riations, and thus at length so diminish the peri-

gean distance of the satellite, as to make it pene-
trate our atmosphere. This body traversing it with

a very great velocity, and experiencing a very sen-

sible resistance, might at length precipitate itself

on the Earth : the friction of the air against its

surface would be sufficient to enflame it, and make
it detonate, provided that it contained ingredients

proper to produce these effects, and then it would

present to us all those phenomena which meteoric

stones exhibit. If it was satisfactorily proved that

they are not produced by volcanoes, or generated
in our atmosphere, and that their cause must be

sought beyond it, in the regions of the heavens,

the preceding hypothesis, which likewise explains

the identity of composition observed in meteoric

stones, by an identity of origin, will not be devoid

of probability.

VOL. II.



CHAP. VI.

Of theperturbations of the satellites of Jupiter

Of all the satellites, the most interesting, af-

ter that of the earth, are the satellites of Jupi-

ter, The observations of these stars, the first

which the telescope discovered in the heavens,

are not older than two centuries, and it is only

about a century and a half since their eclipses

have been observed. But in this short interval

they have presented, by the quickness of their re-

volutions, all the great changes which time would

not develop except with great slowness in the

j^lahetary system, of Which that of the satellites

is only an epitome. The inequalities produced

by their mutual attraction, do not differ mate-

rially from those of the planets and of the Moon :

however the relations which exist between the

mean motions of the three first satellites give rise

to some inequalities of considerable magnitudes,
which have a great influence on their theory.
We have seen in the second book, that the differ-

ences between the mean motions of the first and
second is very nearly twice the difference between

the mean motions of the second and third, and
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that they are subject to very sensible inequalities,

of which the periods though different one from

the other, are in the eclipses transformed into

one sole period of 487^^,659.

The first inequalities which observation dis-

covered in the motion of these bodies, are also

the first which are derived from the theory of

universal gravitation of the satellites. This

theory not only determines these inequalities,

but it shews us also, what observation seemed

to indicate with great probability, namely, that

the inequality of the second sateltite is the

result of two inequalities, of which one being

caused by the action of the first satellite, varies

as the sine of the excess of the longitude of the

first satellite (a) above that of the second ;
and

of which the other, produced by the action of

the third, varies as the sine of double the excess

of the longitude of the second satellite above that

of the third. Thus the second satellite expe-
riences a perturbation from the action of the

first, similar to that which itself causes in the

third ;
and it experiences from the third a si-

milar perturbation to that which itself causes in

the first.

These two inequalities are combined into one

in consequence of the relation which exists be-

tween (b) the mean motions and the mean longi-

tudes ofthe three first satellites, according to which

the mean motion of the first satellite />/t^5 twice

that of the third, is equal to three times that of

the second
;
and the mean longitude of the first

G 2
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satellite, minus three times that of the second,

plus twice that of the third, is constantly equal
to a semi-circumference: hut will these relations

always exist, or are they only approximate, and

will the two inequalities of the second satellite

which at present are combined, be separated in the

course of time ? It is to theory that we must apply
for a solution to this question.

The approximate manner with which the tables

furnished the preceding relations, made me sup-

pose that they were rigorously exact, and that the

small quantities by which they still differed, de-

pended on the errors to which they were liable
;
for

it was against all probability that chance should

have originally placed the three first satellites at

the precise distances and positions suitable to the

above relation : it was therefore extremely pro-

bable that it arose from some particular cause ;

I looked therefore for this cause in the mutual

action of the satellites. A scrupulous investi-

gation of this action, has shewn me that it

has rendered these relations rigorously exact :

from whence I concluded, that in determining

again by the examination of a great many distant

observations, the mean motions and the mean

longitudes of the three first satellites, it would

be found that they would approximate still more

to these relations, to which the tables should be

made exactly to agree. I had the satisfaction of

seeing this consequence of the theory confirmed,

with remarkable precision, by the researches

which Delambre ha^ made concerning the sateU
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Utes of Jupiter. It is not necessary that these

relations should have taken place exactly at their

origin, it was enough that they did not greatly

differ, then the mutual actions of the satellites

upon each other Avere sufficient to subject them
to this law, and to maintain it unaltered ;

but

the little difference between this and the primi-
tive relation, has given rise to a small inequality

of an arbitrary extent, which is distributed among
the three satellites, and which I have designated by
the name o^lihration. The two constant arbitrary

quantities of this inequality, replace whatever

arbitrary quantity is made to disappear by the

two preceding relations, in the mean motions

and in the epochs of the mean longitudes of the

three first satellites
;
for the number of arbitrary

{c) quantities included in the theory of a system
of bodies is necessarily sextuple the number of

bodies : as observation does not indicate this in-

equality, it must evidently be very small, and

even insensible.

The preceding relations would still subsist,

even if the mean motions of the satellites were

subject to secular variations analogous to that of

the motion of the Moon. They would subsist

also in the case of these motions being altered by
the resistance of a medium, or by other causes,

of which the effects would not be perceived until

after a long time. In all these cases, the secular

equations so arrange themselves by the recipro-

cal action of the satellites, that the secular equa-
tion of the first plus twice that of third is equal
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to three times that of the second: even their in-

equalities, which increase with extreme slowness,

approach so much the more to coordinate them-

selves thus, as their periods are more consider-

able. This libration, in consequence of which

the motions of the three first satellites are ba-

lanced in space according to the laws which we
have just announced, extends also to their motions

of rotation, ifas all observations appear to indicate

these motions are equal to those of revolution.

The attraction of Jupiter must then maintain this

inequality, by impressing on the motions of rota-

tion, the same secular equations as affect the mo-

tions of revolution. Thus, the three first satel-

lites of Jupiter consitute a system of bodies con-

nected together by the preceding inequalities and

relations, which their mutual action will main-

tain uninterruptedly, unless some extraneous

cause should abruptly derange their respective
motions and positions.

Such would be the effect of a comet, which tra-

versing this system, as the first comet of I77O ap-

pears to have done, would impinge on one of these

bodies. It is probable that such rencounters have

taken place, in the immensity of ages, which have

lapsed, since the commencement of the planetary

system. The shock of a comet, of which the mass

was only the hundreth millioneth part of that of

the earth, would be sufficient to render the libra-

tion of the satellites sensible. As this inequality
has not been recognised, notwithstanding all the

care of Delambre to detect it in his observations,
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we ought to conclude that the masses of any of

the comets which might have {d) impinged on

the three satellites of Jupiter must have been

extremely small ;
which confirms what has been

already observed on the smallness of the masses

of the comets.

The orbits of the satellites experience changes

analogous to the great variations which the plane-

tary orbits undergo ;
their motions are in like man-

ner subjected to secular equations similar to those

of the Moon. The developement of all these ine-

qualities in the progress of time, will furnish the

most advantageous data for determining the mas-

ses of the satellites and the compression of Jupi-

ter. The great influence which this last element

has on the motions of the nodes, determines its

value with more accuracy than direct measure-

ment. By this means it is found that the ratio {e) of

the lesser axis of Jupiter to the diameter of his

equator, is equal to 0,9368, which differs very lit-

tle from the ratio, sixteen to seventeen, which is

given by a mean of the most accurate measures of

the compression of this planet. This agveement is

a new proof that the gravity of the satellites to-

wards the primary planet, arises from the attrac-

tions of all its molecules.

One of the most remarkable consequences pf

the theory of the satellites of Jupiter is the know-

ledge of their masses, which would appear to be

interdicted by their extreme smallness and by the

impossibility of measuring their diameters. I

have selected for this purpose, the data which in
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the actual state of astronomy have appeared to

me the most advantageous, and I apprehend that

the following values, which I have inferred from

them, are very accurate.

Masses of the satellites of Jupiter, that of the

planet being assumed equal to unity.

I Satellite 0,0000173281.
II Satellite 0,0000232355.

III Satellite 0,00008849T2.
IV Satellite 0,0000426591.

These values should be corrected, when in the

progress of time, we become better acquainted
with the secular variations of the orbits.

Whatever be the perfection of the theory, an

immense labour is reserved for the astronomer to

convert the analytical formulse into tables. These

formulae contain thirty-one constant arbitrary

quantities, namely, the twenty-four arbitrary (/)

quantities of the twelve differential equations of

the motion of the satellites, the masses of these

stars, the compression of Jupiter, the inclination

of his equator, and the position of his nodes. In

order to obtain the values of all these unknown

quantities, we should discuss a very great num-
ber of eclipses of each satellite, and combine

them in the manner best adapted to make each

element arise. Delambre has performed this im-

portant work with the greatest success ;
and his

tables, which represent observations with the ac-
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curacy of the observations themselves, afford to

the navigator a sure and easy means of obtaining

immediately by the eclipses of the satellites, espe-

cially by those of the first, the longitude of the

places at which he can land. The following are

the principal elements of the theory of each

satellite, which result from a comparison which

was made by Delambre of my formulae, with obser-

vations.

The orbit of the first satellite moves unifoniily

with a constant inclination on a fixed plane,

which passes constantly between the equator
and the orbit of Jupiter, through the mutual in-

tersection of these two last planes, of which the

respective inclination is according/ to observations,

equal to 3,435^. The inclination of this fixed

plane with the equator of Jupiter, is only 20'' by

theory ; it is consequently insensible. The in-

clination of the orbit of the satellite on this plane

is in like manner insensible to observations
;
thus

the first satellite may be supposed to move in the

plane ofthe equator ofJupiter. An excentricity pe-

culiar to this orbit has not been recognised, which

only participates a little in the excentricities of

the orbits of the third and fourth satellites, for in

virtue of the mutual action of all these bodies, the

excentricity proper to each orbit is diffused over

the others, but more feebly as they are more dis-

tant.* The sole inequality of this satellite which

is sensible is that of which the argument, is dou-

ble of the excess of the mean longitude of the first

satellite above that of the second, and which
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produces in the recurrence of the eclipses, an

inequality of 437'^,6Z>9 ; it is one of the data which

I have made use of to obtain the masses of the

satellites, and as it arises from the action of the

second alone, it determines its mass with great

accuracy.

The eclipses of the first satellite ofJupiter, gave

rise to the {g) discovery of the successive trans-

mission of light, which the penomenon of aberra-

tion has ascertained with still greater precision.

It appeai-ed to me that as the theory of the motion

ofthis satellite is now better known, and as the ob-

servations of its eclipses are become more numer-

ous, their discussion should give the quantity of

aberration more exactly than direct observation.

Delambre, who undertook this investigation at

my request, found the entire quantity of aberra-

tion (S^''5, which is exactly that which Dr.

Bradley derived from his observations. It is very
curious to observe such a perfect agreement in

results which have been obtained by such very
different methods.

It follows from this agreement, that the velo-

city of light is uniform (A) through the whole

space comprehended by the terrestrial orbit. In

fact, the velocity of light given by the aber-

ration is that which subsists at the circumfe-

rence of the terrestrial orbit, and which, being

combined with the motion of the Earth pro-

duces this phenomenon. The velocity of light,

as given by the eclipses of the satellites of Jupi-

ter, is determined by the time which light em-
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ploys to traverse the terrestrial orbit
; these two

velocities being the same, their velocity is uni-

form through the whole length of the diameter

of the terrestrial orbit. It results also from

these eclipses, that the velocity of light is uniform

through the whole diameter of the orbit of Jupi-
ter ; for, from the excentricity of this orbit, the ef-

fect of the variation of the radii vectores, is very
sensible in the eclipses of the satellites

; and these

exactly correspond to the hypothesis of a uniform

velocity, in the motion of light.

If light is an emanation from luminous

bodies, the uniformity of the velocity of its

rays requires (i) that they should be projected
from each of them with the same force, and

that their motion should not be sensibly re-

tarded by the attraction which they experience
on the part of foreign bodies. If we suppose light

to consist in the vibrations of an elastic fluid, the

uniformity of its velocity requires that the density

of this fluid, throughout the whole extent of the

planetary system, should be proportional to its

elasticity. But the great simplicity with which

the aberration of the stars, and the phenomena
of the refraction of light in passing from one

medium to another, are explained on the hypo-

thesis that light is an emanation from a lumi-

nous body, renders this hypothesis very pro-

bable.

The orbit of the second satellite moves uni-

formly with a constant inclination^ on a fixed

plane, which passes constantly between the equa-
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tor and orbit of Jupiter through their mutual in-

tersection, of which the inclination to this equator
is 201". The orbit of the satellite is inclined by
5159!' to its fixed plane, and its nodes have on

this plane a retrogade tropical motion, of which

the period is 29^'%9142 : this period is one of

the data which I have made use of in determin-

ing the masses of the satellites. Observation has

not made known the excentricity peculiar to this

orbit ;
but it participates a little in the excentri-

cities of the orbits of the third and fourth satel-

lite. The two principal inequalities of the second

satellite depend on the actions of the first and of

the third satellite. The ratio existing between

the longitudes of the three first satellites always
combines those inequalities (l) into one sole, of

which the period in the recurrence of the

eclipses is 437^^,659, and of which the value is

the third quantity which I made use of in de-

termining the masses. The orbit of the third

satellite moves uniformly with a constant in-

clination, on a fixed plane, which passes con-

stantly between the equator and the orbit of Ju-

piter, through their mutual intersection, and of

which the inclination on this equator is 931".

The orbit of the satellite is inclined by 2284" to

its fixed plane, and its nodes have on this plane a

retrograde tropical motion, of which the period is

141^",739. Astronomers supposed the orbits of

the three first satellites to move in the plane of

the equator itself ofJupiter, but they deduced from

the eclipses of the third satellite, a smaller in-



THE SATELLITES OF JUPITER. 93

olination of this equator to the orbit of the planet,

than what was collected from those of the two

others. This difference, of which they did not

know the cause, arose from this, that the orbits

of the satellites do not move with a constant in-

clination to the equator, but on different planes,

of which the inclination is greater for those satel-

lites which are more distant. Our moon presents

a similar result, as we have observed in the pre-

ceding chapter ; it is on this, that the lunar ine-

quality in latitude depends, from which the com-

pression of the earth has been inferred, perhaps
with more accuracy than from the measures of

the degrees of the meridian.

The excentricity of the orbit of the third satel-

lites exhibits singular anomalies, of which theory
has indicated the cause. They depend on two
distinct equations of the centre. The one pecu-
liar to this orbit respects a perijove, of which the

annual sidereal motion is about 29010 '. The other,

which may be regarded as an emanation from

the equation of the centre of the fourth satellite,

respects the perijove of this last body. It is one
of the data from which I have determined the

masses. These two equations form by their com-
bination a variable equation of the centre res-

pecting a perijove, ofwhich the motion is not uni-

form. They coincided and combined their effects

in 1682 and their sum amounted to 2458
;'' in

1777 the effect of one was taken from that of the

other, and the difference amounted to 949^'. War-

gentin endeavoured to represent these variations
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by means of two equations of the centre, but as be

did not refer one of tliem to the perijove of the

fourth satellite, he was obliged, by observations, to

abandon his hypothesis, and he had recoui*se to

that of one variable equation of the centre, of

which he determined the changes by observations,

which conducted him very nearly to what we have

indicated. Finally, the orbit of the fourth satel-

lite moves uniformly with a constant inclination

on a fixed plane, inclined by 4457"^ to the equator
of Jupiter, and which passes through the line of

the nodes of this equator, between this last plane
and that of the orbit of the planet ;

the inclina-

tion of the orbit of the planet to its fixed plane is

277*2"^, and its nodes have on this plane a re-

trograde tropical motion, of which the period is

531 years. In consequence of this motion the in-

clination of the orbit of the fourth satellite on the

orbit of Jupiter varies continually. Having at-

tained its minimum towards the middle of the

last century, it has been nearly stationary, and

about 2,7 from 1680 to I76O. In this interval

its nodes have a direct motion in a year of 8' very

nearly. This circumstance, which observation

indicated, was for a long time made use of by

astronomers, who were employed in the tables of

these satellites ;
it is a consequence of the theory

which gives the inclination and the motion of the

nodes very nearly the same, as Astronomers found

them by a discussion of the eclipses. But in these

last years the inclination of the orbit has undergone
a considerable increase, of which it was difficult to
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know the law, without the aid of analysis. It is

curious to see these remarkable phenomena, which

observation indicated, resulting from the analyti-

cal formulse ;
but which arising from the combina-

tion of several simple inequalities are too com-

plicated for Astronomers to discover their laws.

The excentricity of the orbit of the fourth satel-

lite is much greater than those of the other or-

bits, its perijove has a direct annual motion of

7959" ;
it is the fifth 'data which I employed in

determining the masses. Each orbit participates

a little in the motion of the others. The fixed

planes to which we have referred them are not

strictly speaking fixed
; they move very slowly

with the equator and orbit of Jupiter, always

passing through the mutual intersection of those

last planes, and preserving on the equator of

Jupiter inclinations which, though variable, have

to each other, and to the inclination of the orbit

of the planet on its equator, a constant ratio.

Such are the principal results of the theory of

the satellites of Jupiter compared with numerous
observations of their eclipses. Observations of the

ingress and egress of their shadows on the disk of

Jupiter would throw considerable light on several

elements oftheir theory. This kind of observations,

hitherto too much neglected by Astronomers,

ought, as it appears to me, to attract their atten-

tion, for it seems that the interior contact of the

shadows would determine the time of conjunctiom
more accurately than eclipses. The theory of the

satellites is now so far advanced, that whatever
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deficiency is required to complete this theory, can

only be determined by the most exact observations
;

it is therefore necessary to try new modes of ob-

servations, or at least to be certain that those

which we make use of, deserve the preference.



CHAP. VII.

Of the Satellites of Saturn and of Uranus.

The extreme difficulty of observing the satel-

lites of Saturn renders their theory so imperfect,

that we hardly know with any precision their re-

volutions and their mean distances from the centre

of this planet ;
it is therefore as yet unnecessary to

consider their perturbations. But the position

of their orbits presents a phenomenon worthy of

the attention of Geometers and Astronomers.

The orbits of the six first satellites appear to be in

the plane of the ring, while the orbit ofthe seventh

satellite deviates from it sensibly. It is natural to

think that this depends on the action of Saturn,

which, in consequence of his compression, retains

the first six orbits and its rings in the plane of its

equator, (a) The action of the sun tends to make
them deviate from it, but this deviation increasing

very rapidly and very nearly as the fifth power of

the radius of the orbit, it only becomes sensible for

the last satellite. The orbits ofthe satellites of Sa-

turn, like those of Jupiter, move in planes, which

pass constantly between the equator and orbit

VOL. II. H



98 OF THE SATELLILE8 OF SATURN AND UllANUS.

of the planet, through their mutual intersection,

and which are always more inclined to this equator

according as the satellites are farther from Saturn.

This inclination is considerable relatively to the

last satellite, and about 24,0, if we refer to ob-

servations already made
;
the orbit of the satel-

lite is inclined by 16,96 to this plane, and the

annual motion of its nodes on the same plane is

940'''. But as these observations are extremely

uncertain, the preceding results can only be

considered as a very imperfect approximation.
We are even less informed with respect to the

satellites of Uranus. It solely appears from the

observations of Herschel, that they move in the

same plane, almost perpendicular to that of the

orbit of the planet j
which evidently indicates a

similar position in the plane of its equator. Ana-

lysis shews that the ellipticity of the planet, com-

bined with the action of the satellites, can very

nearly maintain their different orbits, in the same

plane. This is all which can be affirmed of these

stars, which in consequence of their distance and

inconsiderable magnitude, will be for a long time

inaccessible to the most extended researches.



CHAP. VIII.

Of the Figure of the Earth and Planets^ and of
the Law of Gravity at their Surface,

We have detailed in the First Book, what has

been indicated by observations on the figure of

the Earth, and of the planets : let us compare
these results with those of universal gravitation.

The force of gravity towards the planets, is com-

posed of the {a) attractions of all their particles. If

their masses were in a state of fluidity, and without

motion, their figure and those ofthe different strata

would be spherical, those nearer the centre being
more dense. The force of gravity at their exte-

rior surface, and at any distance whatever, with-

out the sphere, would be exactly the same, as if

the whole mass of the planet was conndensed into

the centre of gravity. It is in consequence of this

remarkable property, that the Sun, the planets,

comets, and satellites, act upon each other, very

nearly (h) as if they were so many material points.

At very great distances the attraction of the par-
ticles of a body of any figure, which are the most

remote, and those which are nearest the particle

attracted, (c) compensate each other in such a

H 2
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manner, that their total attraction is very nearly the

same as ifthey were united in the centre of gravity ;

and if the ratio of the dimensions of the hody to

its distance from the attracted point, be considered

as a very small quantity of the first order, this

result will be exact to quantities of the second

order. But in a sphere, it is rigorously true, and

in a spheroid differing but little from a sphere,
the error is of the same order as the product of

its excentricity, by the square of the ratio of its

radius, to its distance from the point attracted.

This property of the sphere, of attracting as if its

mass was concentered in its centre, contributes

greatly to the simplicity of the motions of the

heavenly bodies. It does not belong exclusively

to the law of nature, it equally appertains to

the law of attraction varying proportionably to

(d) the simple distance, and cannot belong to any
other law but those formed by the addition of

these two. And of all the laws which render the

force of gravity nothing at an infinite distance,

that of nature is the only one in which the sphere

possesses this property.

According to this law, a body placed within a

spherical stratum of uniform thickness, is equally

attracted by all its parts, so as to remain at rest

in the midst of the various attractions which act

upon it. The same circumstance takes place in

an elliptic stratum, when the exterior and inte-

rior surfaces are similar and similarly situated.

Supposing therefore the planets to be homoge-
neous spheres, the force of gravity in their inte-
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rior, must diminish as the distance from the

centre
;

for the exterior part, relatively to the

attracted particle, contributes nothing to its gra-

vity, which is only produced by the attraction of

the internal sphere, whose radius is equal to the

distance of this point from the centre. But this

attraction is equal to the mass of the sphere, di-

vided by the square of the radius, and the mass,

is as the cube of this same radius. The force of

gravity on the attracted particle, is therefore pro-

portional to the radius. But if, (as is probably
the case) the strata are more dense as they are

nearer to the centre, the force of gravity will di-

minish in a less ratio, than in the case of homo-

geneity. The rotatory motion of the (e) planets

causes them to deviate a little from the spherical

figure. The centrifugal force arising from this

motion, causing the particles situated at the

equator to recede from the centre, and thus to

produce a flattening of the poles.

Let us consider first the effects of this compres-
sion in the simplest case, namely, that in which

the Earth is considered as an homogeneous fluid,

the gravity residing in its centre and varying re-

ciprocally as the square of the distance from this

point. It is then easy to prove that the terrestrial

spheroid is an ellipsoid of revolution ;
for if we

conceive two columns of fluids, communicating
with each other at the centre, and terminating,

the one at the pole, the other at any point on the

surface, these two columns ought to be in equi-

librio. The centrifugal force does not alter the
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weight of the column directed to the pole, but it

diminishes the weight of the other column. This

force is nothing at the centre of the Earth, and

at the surface it is proportional to the radius of

the terrestrial parallel, or very nearly, to the

cosine of the latitude
; but the whole of this force

is not entirely employed in diminishing the force

of gravity ;
for these two forces making an angle

with each other, (f) equal to the latitude, the

centrifugal force, decomposed according to the

direction of gravity, is weakened in the ratio of

the cosine of this angle to radius. Thus, at the

surface of the Earth, the centrifugal foi'ce di-

minishes the force of gravity, by the product of

the centrifugal force at the equator, by the square
of the cosine of the latitude ; therefore the mean
value of this diminution in the length of a fluid

column, is the half of this product, and since the

centrifugal force is
-^^-^ of the force ofgravity at the

equator, this value is the j-f^th part of the force of

gravity, multiplied by the square ofthe cosine of the

latitude. And since it is necessary, for the main-

tenance of the equilibrium, that the column by
its length should compensate the diminution of

its weight, it ought to surpass the polar column

by a 3^gth of its length, multiplied by the square of

the above cosine. Thus the augmentation of the

radii, from the pole to the equator, is propor-
tional to the squares of thes^ cosines, from which

it is easy to conclude, that the Earth is an ellipsoid

of revolution, the equatorial and polar axis of

which are in the proportion of 578 to 577.
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It is evident that the equilibrium of the fluid

mass would still subsist, even if a part should be

supposed to consolidate itself in the interior, pro-

vided the force of gravity remains the same.

To determine the law of gravity at the surface

of the Earth, we may observe that the force of

gravity to any point on this surface, is less than

that at the pole, from its being situated farther

from the centre. This diminution is nearly equal

to double the augmentation of the terrestrial ra-

dius
;

it is equal therefore to the product of the

gyTfth part of the force of gravity by the square of

the cosine of the latitude. The centrifugal force

diminishes likewise the force of gravity by the

same quantity ;
thus by the union of these two

causes, the diminution of gravity from the pole
to the equator, is 0,00694, multiplied by the

square of the cosine of the latitude, the force of

gravity at the equator being taken as unity.

It has been shewn in the First Book, that the

measures of meridional degrees, assign to the

Earth an ellipticity greater than j^, and that

the measures of the pendulum indicate a diminu-

tion in the force of gravity, from the poles to the

equator, less than 0,006^4, and equal to 0,00567.

The measures of the degrees and of the pendulum
concur, therefore, to prove that the force of gravi-

ty is not directed to a single point, which confirms

a posteriori what has been antecedently demon-

strated, namely, that the gravity is composed of

the attractions of all the particles of the Earth.

This being the case, the law of gravity depends
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on the figure of the terrestrial spheroid, which de-

pends itself on the law of gravity. It is this mu-

tual dependance of the two unknown quantities

on each other, that renders the investigation of
the figure of the earth so extremely difficult.

Fortunately, however, the elliptic figure, the most

simple of all the re-entering figures next to the

sphere, satisfies the condition of the equilihrium

of a fluid mass, suhject to a motion of rotation,

and of which all the particles attract each other

reciprocally, as the squares of the distances.

Newton, upon this hypothesis, and supposing the

earth a homogeneous fluid, found the ratio of the

equatorial to the polar axis, to be 230 to 229.

It is easy to determine the law of the variation of

the force of gravity on the earth upon this hypo-
thesis. For this purpose let us consider two dif-

ferent points situated on the same radius, drawn

from the centre to the surface of an homogeneous

fluid, in equilibrio. All the similar elliptic strata,

which cover any one amongst them, contribute

nothing to its gravity. The resulting force of all

the attractions which act on it, is derived entirely

from the attraction of the interior spheroid, si-

milar to the entire spheroid, and whose surface

passes through the point in question. The simi-

lar and similarly situated particles of these two

spheroids, attract the interior (^) point, and the

corresponding point of the exterior surface, pro-

portionally to their masses, divided by the squares
of their distances. These masses are in the two

spheriods, as the cubes of their similar dimensions.
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and the squares of their distances, are as the

squares of these dimensions. The attractions on

similar particles, are proportional therefore to

these dimensions ;
from which it follows, that the

entire attractions of the two spheroids, are in the

same ratio, and their directions are parallel.

The centrifugal forces of the two points, now un-

der consideration, are likewise proportional to the

same dimensions. Therefore the force of gra-

vity in each of them, being the result of these

two forces, will likewise be proportional to their

distances from the centre of the fluid mass.

Now, if we conceive two fluid columns directed

as before, to the centre of the spheroid, one from

the pole, and the other from any point on the sur-

face, it is evident, if the ellipticity of the spheroid
is very small, that is, if it differs but little from a

sphere, that the force of gravity, decomposed ac-

cording to the directions of these columns, will

be nearly the same as the total gravity. Dividing,

therefore, the length of these columns into an

equal number of parts, infinitely small and pro-

portional to their lengths, the weights of the cor-

responding parts will be to each other as the

products of the lengths of the columns, by the

force of gravity at the points of the surface where

they terminate. The whole weight of the columns
will therefore be to each other in this ratio

; and
as these weights must be equal, to be in equilibrio,

the force of gravity at their surface must conse-

quently be reciprocally, as the length of these co-

lumns. Thus the length of the radius of the equa-
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tor, surpassing the radius at the pole a S30th

part, the force of gravity at tlie pole should like-

wise exceed that at the equator a 2f30th part.

This supposes the elliptic figure sufficient for

the equilihrium of a homogeneous fluid mass.

Maclaurin has demonstrated this in (Ji) a beauti-

ful manner, from which it results, that the equi-

librium is rigorously possible ; and that, if the el-

lipsoid differs little from a sphere, the ellipticity

will be equal to | of the quantity, which expres-

ses the proportion of the centrifugal force, to that

of gravity under the equator.

Two different figures of equilibrium may cor-

respond to the same motion of rotation. But the

equilibrium cannot exist with every motion .of ro-

fation. The shortest period of rotation of an ho-

mogeneous fluid in equilibrio, of the same density

as the earth, is 0.1009 of a day, and this limit

varies reciprocally, as the (i) square root of the

density. When the motion of rotation increases

in rapidity, the fluid mass becoming more flat-

tened at the poles, its period of rotation becomes

less, and ultimately falls within the limits suitable

to a state of equilibrium. After a great many
oscillations, the fluid, in consequence of the fric-,

tion and resistances which it experiences, fixes

itself at last in that state which is uniqm^ and de-

termined by the primitive motion ;
and whatever

may have been the primitive forces, the axis

drawn through the centre of gravity of the fluid

mass, and relative to which the moment of the
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forces was a maximum, at the origin, becomes the

axis of rotation.

The preceding results furnish an easy method of

verifying the hypothesis of the homogeneity of the

earth. The irregularity of the measured degrees,

may be supposed to leave too much uncertainty
on the ellipticity of the earth to enable us to de-

cide, if it is really such as the above hypothesis

requires. But the regular increase of the force

of gravity, from the equator to the pole, is sufR*

cient to throw great light upon this subject.

By taking as unity the force of gravity at the

equator, its increase at the pole, according to the

hypothesis of homogeneity, should be equal to

0.00435. But by observations on the pendulum,
this increase is 0.0054 : the earth therefore is

not homogeneous. And indeed it is natural to

suppose, that the density of the strata increases as

they approach the centre. It is even necessary,

for the stability of the equilibrium of the waters

of the ocean, that their density should be less

than the mean density of the earth
; otherwise,

when agitated by the winds and other causes,

they would overflow their limits, and inundate the

adjoining continents.

The homogeneity of the earth being thus ex-

cluded by observation, we must, to determine its

figure, suppose the sea covering a nucleus, com-

posed of different strata, diminishing in density

from the centre to the surface, (k) Clairaut has

demonstrated, in his beautiful work, that the equi-

librium is still possible, on the supposition that
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the surface, and strata of the interior nucleus,

have an elliptic figure. In the most probahle

hypothesis, relative to the law of the densities

and ellipticities of these strata, the ellipticity of

the earth is less than in the case of homogeneity,
and greater than if the force of gravity was di-

rected to a single central point. The increase of

gravity from the equator to the poles is greater

than in the first case, and less than in the second.

But there exists between the total increase of the

force of gravity, taken as unity at the equator,

and the ellipticity of the earth, this remarkable

analogy, that in all the hypotheses relative to

the constitution of the internal nucleus, which

the sea incloses, the ellipticity of the earth is

just so much less than that which would take

place in the case of homogeneity, as the increase

of the force of gravity exceeds that which should

exist, according the same supposition, and reci-

procally, so as that the fractions expressing the

sum of the ellipticity and of the increment,

make a constant quantity equal to five times the

half of the ratio of the centrifugal force, to the

force of gravity at the equator, which, for the

earth is ttj.^*

In attributing an elliptic figure to the strata of

the terrestrial spheroid, the increase of its radii,

and of the force of gravity, and the diminution of

the degrees, from the pole to the equator, will

vary as the squares of the cosines of the latitude,

and these (I) are connected with the ellipticity of

the earth, in such a manner, that the total in-
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crease of the radii is equal to the ellipticity. The

total diminution of the degree, is equal to the el-

lipticity, multiplied by three times the degree at

the equator ;
and the total increase of the force

of gravity, is equal to the force of gravity at the

equator, multiplied by the excess of jy^j.^, above

the ellipticity.

Thus the ellipticity of the Earth may be deter-

mined, either by direct measurement of degrees,

or by observations on the length of the pendu-
lum.

A consideration of a great number of ob-

servations of the pendulum give 0,00561, for

the increase of the force of gravity, which taken

from jT3^,2 gives ^^,|j,
for the ellipticity of the

Earth. If the hypothesis of the ellipse be

conformable to nature, this ellipticity should

agree with the measures of degrees ; but it im-

plies errors that are altogether improbable : and

this circumstance, joined to the difficulty of re-

conciling all these measures to the same elliptic

meridian, proves that the figure of the earth is

much more complicated than had been supposed.
This will not appear surprising, if we consider

the different depths of the sea, the elevation of

the continents, and islands above its level, the

heights of mountains, and the unequal density of

the water, and different substances which are at

the surface of this planet.

To embrace, in the most general manner pos-

sible, the theory of the figure of the Earth and

planets, it is necessary to determine the attrac-

tion of spheroids, differing little from spheres.
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and formed of strata, variable both in figure and

density, according to any law whatever.

It will be also necessary to determine the figure

which is suitable to the equilibrium of a fluid, ex-

panded over its surface, for we must imagine the

planets covered with a fluid in equilibrio similar

to the case of the Earth, or their form would be

entirely arbitrary. Dalembert has given, for this

purpose, an ingenious method, which extends to

a great number of cases, but which is deficient in

that simplicity so desirable, in such complicated

investigations, and which constitutes their prin-

cipal merit.

A remarkable equation of partial differences

relative to the (/) attraction of spheroids, led me,
without the aid of integrations, and by diff"eren-

tial methods only, to general expressions, for the

radii of the spheroids ; for the attractions upon
any points whatever, either within the surfaces,

or without them ;
for the condition of equilibrium

of the fluids that surround them ; for the law

of gravity, and for the variation of the degrees at

the surface.

All these quantities are connected with each

other, by analogies extremely simple, from which

results an easy method of verifying all the hypo-
theses that may be formed to represent either the

variation of the force of gravity, or that of the

values of different degrees of the meridian.

Thus Bouguer, with a view of reconciling the

degrees measured at the equator, in France and

in Lapland, supposed the Earth to be a spheroid
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of revolution, in which the inci^ease of the de-

grees, from the equator to the pole, was propor-
tional to the fourth power of the sine of the lati-

tude. It is found that this hypothesis does not

satisfy the increase of the force of gravity from

the equator to Pello. An increase, which ac-

cording to ohservation, is equal to forty-five ten

millionths of the whole gravity, and which would

be only twenty-seven ten millionths on this hy-

pothesis.

The above mentioned expressions give a direct

and general solution of the problem, the object of

which is to determine the figure of a fluid mass in

equilibrio, supposing it subject to a motion of

rotation, and composed of an infinity of fluids, of

difi"erent densities, whose particles attract each

other directly as their masses, and inversely as

the squares of their distances.

Legendre had already solved this problem by a

very ingenious analysis, which supposes the

mass homogeneous. In the general case, the

fluid necessarily takes the form of an ellipsoid of

revolution, of which all the strata are elliptic,

whose densities diminish at the same time that

their ellipticities increase, from the centre to the

surface.

The limits ofcompression of the whole ellipsoid,

are f and^ of the ratio of the centrifugal force,

to the force of gravity at the equator. The first

limit is relative to the hypothesis of homogeneity,
and the second, to the supposition of the strata,

indefinitely near to the centre, (m) being infinitely
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dense, and consequently the whole mags of the

spheroid acting as if concentered in that point.

In the latter case, the force of gravity being di-

rected to a single point, and varying inversely as

the square of the distance, the figure of the Earth

would be such as has been above determined ;

but in the general hypothesis, the line which de-

termines the direction of the force of gravity from

the centre to the surface of the spheroid, is a

curve, every element of which is perpendicular
to the stratum through which it passes.

The analysis to which I have adverted, sup-

poses that the terrestrial spheroid is entirely co-

vered by the sea ;
but as this fluid leaves a consider-

able part of this spheroid uncovered
; the analy-

sis, notwithstanding its generality, does not repre-

sent nature exactly, and it is necessary to modify
the results obtained on the hypothesis of a general
inundation. Indeed the mathematical theory of the

figure of the Earth presents on this supposition

greater difficulties j
but the progress ofanalysis par-

ticularly in this department, furnishes us with the

means of surmounting them, and of considering
the seas and continents such as they appear to

observers. By thus adhering to nature, we get

glimpses ofseveral phenomena which natural histo-

ry and geography present ; which may thus diffuse

great light on these two sciences, by connecting
them with the theory of the system of the world.

These are the principal results of my analypsis.

One of the most interesting is the following theo-
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rem, which incontestably establishes the heterge-

neity of tlie terrestrial strata.

** [f to the length of a pendulum vibrating se-

conds at any point of the surface of the terres-

trial spheroid, be added the product of this length

into half the height of this point above the level

of the sea, determined by observations made on

the barometer, and divided by the semiaxis of

the pole ;
the increase of this length thus correct-

ed will be, from the equator to the poles on the

hypothesis that the density of the earth to an in-

considerable depth is constant, the product of this

length at the equator, into the square of the sine

of the latitude, and by five fourths of the ratio of

the centrifugal force to the gravity at (n) the

equator, or by 43 ten thousaandths."

This theorem, to which I was conducted by a

differential equation of the first order, which be-

longs to the surface of homogeneous spheroids,

differing little from spheres, is generally true

whatever may be the density of the sea and the

manner in which it covers part of the earth. It is

remarkable, in as much as it does not suppose a

knowledge of the figure of the terrestrial spheroid,

nor of that of the sea, figures which it would be

impossible to obtain.

Experiments on the pendulum made in the

two hemispheres, agree in giving to the square of

the sine of latitude a coeflicient greater than 43

ten thousandths, and very nearly equal to 54 ten

thousands of the length of the pendulum at the

VOL. II. i
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equator. It is tlierefore satisfactorily proved

by experiments, that tlie earth is not homoge-
neous in its interior. It appears moreover, by

comparing them with analysis, that the densities

of the terrestrial strata continually increase from

the surface to the centre.

The regularity with which the observed varia-

tion of the lengths of the pendulum vibrating se-

conds, follows the law of the square of the sine

of the latitude, proves that these strata are re-

galarly arranged about the centre of gravity of

'the earth, and that their form is very nearly an

ellipse of revolution.

The ellipticity of the terrestrial spheroid, may
t)e determined by measures of degrees of the me-

ridian. The different measures which have been

teade, compared two by two, give ellipticities

"which are sensibly different, so that the variation

of degrees does not follow as exactly as gravity,

the law of the square of the Sine of latitude. This

depends on the second differentials of the terres-

trial radius, which the expressions of the degrees
of the meridian and of the osculating circle con-

tain, while the expression for the gravity contains

only the first differentials of this radius, of which

the small deviations from the elliptic radius, in-

crease by successive differentiations. But if de-

grees at a considerable distance from each other

be compared, such as those of France and the

equator, their anomalies must be insensible on

their difference
;
and it is found by this compa-
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rison that the ellipticity of the terrestrial spheroid
*^ ^'O^'

But a more certain means of obtaining this el-

lipticity, consists, as has been already observed,

in comparing with a great number of observations,

th^ two lunar inequalities wliich are due to the

compression of the earth, the one in longitude
and the other in latitude. They agree in making
th^ compression of the terrestrial spheroid very

nearly equal to ^^j, and what is very worthy of

remark, each of the two inequalities leads to this

result, which as we have seen differs very little

from that furnished by a comparison of degrees in

France and at the equator.

As the density of the sea is only the fifth part
of the mean density of the earth

j
this fluid ought

to have very little influence on the variations of

degrees, and of gravity, and on the two inequa-
lities of which we have spoken. Its influence is

still more diminished by the smallness of its mean

depth, which is thus praved. Conceive the ter-

restrial splieroid to be deprived of the ocean, and

suppose that in this state the surface became fluid

and was in equilibrio ;
we shall have its ellipticity

by subtracting from five times the half of the ratio

of the centrifugal force to the gravity at the equa-

tor, the coefficient assigned by experiments to the

square of the sine of the latitude in the expression
of the length of the pendulum which vibrates se-

conds ; this length at the equator being assumed

equal (n) to unity. By this means it is found that

the compression of the terrestrial spheroid is ^^,3,
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the trifling influence which tlie action ofthe sea has

on the variation ofthe gravity heing neglected. The
little difl'erence which exists between this compres-

sion, and those furnished by the measures of ter-

restrial degrees and ofthe lunar inequalities, proves

that the surface ofthis spheroid would be veiy near-

ly one of equilibrium, if it became fluid. On this

account, and because the sea leaves vast continents

uncovered, it is inferred that its depth is incon-

siderable, and that its mean depth is of the same

order as the mean height of continents and isles

above the level of the sea, which height does not

surpass a thousand metres. This depth is there-

fore a small fraction of the excess of radius of the

equator above that of the pole, which excess does

not surpass twenty thousand metres. But as

high mountains are spread over some parts of the

continents, so there may be great cavities in the

bottom of the seas. However, it is natural to sup-

pose that their depth is less than the elevation of

high mountains : as the depositions of rivers and

the remains of marine animals carried along by

currents, must at length fill these cavities.

This is an important result for natural history

and geology. Tlrere can be not the least doubt

but that the sea covered a great part of our con-

tinents on which it has left incontestable proofs
of its existence. The successive subsidence of

isles, and of a part of the continents, followed by
extended subsidences of the bason of the sea which

have uncovered parts previously submerged, ap-

pear to be indicated by the diff*erent phenomena
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which the surface and strata of the existing con-

tinent present to us. In order to explain these

subsidences, it is sufficient to assign more energy

to causes, similar to those which have produced
the subsidences of which history has preserved the

record. The subsidence of one part of the bason of

the sea, renders visible another part, so much the

more extensive as tiic sea is less profound. Thus

great continents might emerge from the ocean

without producing great clianges in the figure of

the terrestrial spheroid. The property, which

this figure possesses, of differing little from that,

which its surface would assume if it became fluid,

requires that the depression of the level of the

sea, should be only a small fraction of the dif-

ference of the two axes of the pole and of the

equator. Every hypothesis founded on a con-

siderable displacement of the poles on the surface

of the earth, must be rejected as incompatible

with the property of which I have been speak-

ing. Such a displacement has been suggested, in

order to explain the existence of elephants, of

which fossel remains are found in such great

abundance in northern climates, where living

elephants cannot exist. But an ek^phant, which

is with great probability supposed to be cotem-

poraneous with the last flood, was found in a

mass of ice well preserved with its skin, and as the

hide was covered with a great quantity of hair, this

species of elephant was guarantied by this means,

from the cold of the northern climates, which it
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might inhabit and even select as a place of resi-

dence. The discovery of this animal has there-

fore confirmed what the mathematical theory of

the earth had shewn us, namely, that in the

revolutions which have changed the surface of

the globe and destroyed several species of animals

and vegetables, the figure of the terrestrial sphe-

roid, and the position of its axis of rotation on

its surface, have undergone only slight alterations.

Now what is the cause which has given to the

strata of the earth forms very nearly elliptical,

with densities increasing from the surface to the

centre, which has arranged them regularly about

their common centre of gravity, and which has

rendered its surface very little different from what

it would be, if it had been primitively in a fluid

state ? If the different substances which compose
the earth had been primitively, by the effect ofgreat
heat in a fluid state, the most dense must have

been carried towards the centre : all would have

assumed elliptic forms, and the surface would

have been in equilibrio. These strata in consoli-

dating having changed their figure very little,

the earth should at present exhibit the phenomena
of which I have been speaking. This case has

been amply discussed by geometers. But if the

earth was homogeneous in the chymical sense,

i. e. if it was composed of one sole substance in

its interior, it might also exhibit these phenomena.
In fact, we may conceive that the immense weight
of the superior strata, should increase considerably

the density of the inferior strata. Hitherto geo-
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meters have not taken into account in their inves-

tigations on the figure of the earth, the compres-
sion of the substances of which it was composed ;

although Daniel Bernoulli in his essay on the

tides had already pointed out the cause of the in-

crease of density of the strata of the terrestrial

spheroid. From the analysis which I have ap-

plied in the eleventh book of the celestial mecha-

nics, it appears that it is possible to satisfy all the

observed phenomena, on the hypothesis of the

earth being composed of one sole substance in its

interior. The law of the densities which the

compression of the earth assigns to the strata of

this substance not being known, we can only
make suppositions on this si^bject.

It is known (o) that the density ofgases increases

proportionally to their compression, when the tem-

perature remains the same. But this law does not

appear to agree to liquid and solid bodies
j it is

natural to think that these bodies resist the com-

pression, so much the more as they are more com-

pressed. This is in fact confirmed by experiment,
so that the ratio of the differential of the pressure
to the differential of the density, instead of being
constant as in the case of gas, increases with the

density. The simplest expression of this ratio,

supposed variable, is the product of the density

by a constant quantity. This is the law which I

have adopted, since it combines to the advantage
of representing in the simplest possible man-

ner, what we know respecting the compression
of bodies, that of adapting itself easily to the
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calculus in tlic investigation of the figure of the

earth
; my ohject in this investigation being only

to shew that this manner of considering the inte-

rior constitution of the earth, may be recon-

ciled with all the phenomena, which depend on

this constitution, at least if the terrestrial sphe-
roid had been primitively fluid. In the solid state,

the adherence of the molecules, diminishes ex-

tremely their mutual compression, and it prevents
the entire mass from assuming the regular figure

which it would have in the fluid state, if it had

primitively deviated from it.

Therefore in this very hypothesis on the consti-

tution of the earth, as in all others^ the primitive

fluidity of the earth appears to me to be indicated

by the regularity of gravity and by the figure at its

surface.

All astronomers have assumed the invariability

of the axis of rotation of the earth, and the unifor-

mity of this rotation. The duration of a revolution

of the earth about its axis is the standard of time ;

it is therefore of great importance to appreciate

the influence of all the causes which may alter

this element. The axis of the earth moves about

the poles of the ecliptic, but since the epoch, at

which the application of the telescope to pliiloso-

phical instruments furnished the means of observ-

ing terrestrial latitudes with precision, no varia-

tion has been recognized in these latitudes, but

what may have arisen from the errors of observa-

tion, which proves that since that epoch, the axis

of rotation has existed very nearly on the same
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point of the terrestrial surface
;
it therefore appears

that this axis is invariable. The existence (j)) of

a similar axis on solid bodies has been known
for a long time. We know that each of these bo-

dies has three principal rectangular axes, about

which it may revolve uniformly ;
the axis of rota-

tion remaining invariable. But does this remark-

able property appertain to bodies, which, like the

earth, are partly covered with a fluid ? The condi-

tion of the equilibrium of the fluid must be then

combined with the conditions of the principal

axes : it changes the figure of the surface, when

the axis of rotation is changed. It is therefore in-

teresting to know whether among all the possible

changes there is one, in which the axis of rota-

tion and the equilibrium of the fluid remain in-

variable. Analysis proves that if we make to pass

very near to that centre of gravity of the terres-

trial spheroid a fixed axis about which it may re-

volve freely, the sea may always assume on

the surface of the spheroid a constant state of

equilibrium. I have given in the eleventh book

already cited, in order to determine this state, a

method of approximation arranged according to

the powers of the ratio of the density of the sea

to the mean density of the earth, and as this ratio

is only |, the approximation is extremely con-

verging. The irregularity of the depth of the sea,

and of its contour, does not permit us to obtain

this approximation. But it is sufficient to re-

cognize the possibility of this circumstance, in or-

der to be assured of the existence of a state of
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equilibrium of the sea. The position of the fixed

axis of rotation being arbitrary, it is natural to

think, that among all the positions which this axis

may be made to undergo, there is one in Avhich

the axis passes through the common centre of

gravity of the sea and of the spheroid which it

covers, so that this fluid being in equilibrio, and

congealed in that state, this axis should be a

principal axis of rotation of the terrestrial sphe-
roid and of the sea, considered as one body ; it is

evident that if its fluidity be restored to the con-

gealed mass, the axis will be always an invariable

axis for the entire earth ;
I have shewn that such

an axis is always possible, and I have given the

equations which determine its position. By apply-

ing these equations to the case in which the sea

covers the entire spheroid, I have arrived at the

following theorem.
** If the density of each stratum be supposed

** to be diminished by the density of the sea
;
and

** if through the centre of gravity of this imagi-
**

nary spheroid, we conceive a principal axis of
* the spheroid to be drawn, the earth being

'* made to revolve about this axis, if the sea be
** in equilibrio, this axis will be the principal axis

** of the entire earth, of which the centre of
"

gravity will be that of the imaginary spheroid."

Thus the sea which partly covers the terrestrial

spheriod not only does not render impossible the

existence of a principal axis of rotation, but it

even by its mobility, and by the resistances which

its oscillations experience, would restore to the
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earth a permanent state of equilibrium, if any
causes should derange it.

If the sea was sufficiently profound to cover

the surface of the terrestrial spheroid^ supposing it

to turn successively round th^ three principal
akes of the terrestrial spheroid, each of these

axes would he a principalaxis for the entire earth.

But the stability of the axis of rotation has not

place, as in the case of a solid body, but relatively
to the two principal axes, for which the moment
of inertia is a maximum or a minimum. How-
ever there is this difference between the earth

and a solid body, that in the case of the solid

body, if the axis of rotation be changed, the figure

of the solid body will not be changed, whereas in

the case of the earth the surface of the sea as-

sumes another figure altogether. The three

figures, which this surface assumes in revolving,

successively with the same angular velocity of ro-

tation, about each of the three axes of rotation of

the imaginary spheroid, have very simple rela-

tions which, I have determined ; and it follows

from my analysis, that the mean radius between

the radii of the three surfaces of the (g) sea, cor-

responding to the same point of the surface of the

terrestrial spheroid, is equal to the radius of the

surface of the sea in equilibrio on this spheroid,

and deprived of its motion of rotation.

In the fifth book of the Celestial Mechanics, I

have discussed the influence of interior causes,

such as volcanoes, earthquakes, winds, currents

of the sea, &c. on the duration of the rotation of
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the earth, and I have shewn hy means of the prin-

ciple of (r) areas, that this influence is insensi-

ble, and that in consequence of these causes, it

is necessary in order that a sensible effect might
be produced, that considerable masses should be

trans2)orted considerable distances
; which has

not been the case since the periods of which his-

tory has preserved the records, but there exists

an interior cause of alteration of the day, which

has not been yet considered, and which, con-

sidering the importance of this element, de-

serves a particular discussion. This cause is the

heat of the terrestrial spheroid. If, as every thing

induces us to think, the earth had been primitively

fluid, its dimensions have diminished successively

with its temperature ; its angular velocity of

rotation has increased gradually, and it will conti-

nues to increase until the earth arrives at the con-

stant state of the mean temperature of the space

through which it moves. In order to form a just con-

ception of this movement of angular velocity, sup-

pose in a space ofa given temperature, a globe (r) of

homogeneous matter to revolve on its axis in a day.

If this globe be transported into a space ofwhich

the temperature is less by the hundredth part of

a degree, and if we suppose that the rotation is

not altered, either by the resistance of the me-

dium, or by friction
;

its dimensions will dimi-

nish with the diminution of temperature ; and

when at length it shall have assumed the tempera-
ture of the new space, its radius will be dimi-

nished by a quantity, which I shall suppose the

hundred thousandth part, which is the case very
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nearly for a globe of glass, and which may be ad-

mitted for the earth. The weight ofthe heat is inap-

preciable to all experiments which have been made

to (s) measure it
;

it appears therefore like to light

to produce no sensible variation in the mass of

bodies, consequently, in the new space two things

may be supposed the same as in the first, namely,

the mass of the globe and the sum of the areas

described in a given time, by each of its molecules

referred to the plane of its equator. The mole-

cules approach to the centre of the globe by a

hundreth thousand part of their distance from

this point. The areas which they describe on the

plane of the equator (t) being proportional to the

square of this distance, will diminish therefore

very nearly by a fifty thousandth part, if the an-

gular velocity of rotation does not increase
; hence

it follows, that in order that the sum of the areas

described in a given time may be constant, the in-

crement of this velocity, and consequently the di-

minution of the duration of rotation, ought to be

a fiftieth thousandth part ;
such is therefore the

final diminution of this duration. But previous
to its attaining this final state, the temperature of

the globe continually diminishes, and more slowly
at the centre than at the surface, so that from ob-

servation of this diminution, compared with the

theory of heat, we can determine the epoch when
the globe was transported into the new space.
The earth appears to be in a similar state. This

follows from thermometrical observations made in

profound mines, and which indicate a very sensi-
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ble increase of he&t, acco^rdiiig as we penetrate

into the interior of the earth. The mean of the

observed incitements appeai-s to be a centesimaj

degree for a depth of 32 metres, but a very great

numbei* of observations will make its value known

very accurately, which cannot be the same for all

climates. It was necessary, in order to obtain

the increment of the earth's rotation, to know

the law of the diminution of l^eat from the

oet>tre to the surface. This I have investigated

in the eleventh book of the Celestial Mechanics,

for a globe primitively warmed in any manner,

and besides suhjected to the heating action of an

exterior cause. The law in question, which I

published in 1819, in the Comiaisance des temps,
and which M. Poisson has siti^e confirmed by a

learned analysis, is represented by an infinite

series of terms, whifeh have for factors constant

quantities, which are always less than unity, and

of which the exponents increase proportionably

to the time. The length of the time makes these

terms to disappear the one after the other
;
so

that before the estaWishmeiit of the final tempe-

rature, only one of those terms which produces
the increase of temperature in the interior of the

globe, is sensible. 1 have supposed the earth to

have attained this ^tate, from which it is perhaps
still far removed. But as I only wish to give here

a general idea of the influence of the diminution

of the interior heat on the duration of the day I

have adopted this hypothesis, and I have inferred

from it, the increase of the velocity of revolution.
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It is necessary in order to reduce this increment

to numbers, to determine numerically the two

constant arbitrary quantities of which one depends
on the conducting power of the earth with respect

to heat, and the other on the elevation of tem-

perature of its superficial stratum above the tem-

perature of the ambient space. I have deteraiined

the first constant by means of the variations of

the annual heat at different depths, and for this

purpose I have made use of the experiments of

M. Saussure, which this philosopher has cited in

No. 142^ of his voyage to the Alps. In these ex-

periments, the annual variation of the heat at the

surface has been reduced to a twelfth part at the

depth of 9, 6. I have afterwards supposed that

in our mines, the increase of heat is a centesimal

degree for a depth of 32 metres, and that the li-

near dilatation of the earth's strata is a hundred

thousand part of each degree of temperature. I

have found by means of these data, that the du.

ration of the day has not increased by half a

hundredth of a centesimal second for the last two

thousand years, which is chiefly owing to the

magnitude of the earth's radius. Indeed I have

supposed that the earth is homogeneous, and it is

certain that the densities of its Strata increase

from the surface to the centre. But it should be

observed here that the quantity of heat and its in-

ternal motion would be the same in a hetero-

geneous substance, if in the corresponding parts

of the two bodies, the heat and the property of

conducting it were the same. The matter may
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here be considered as a vehicle of heat, which

may be the same in substances of different den-

sities. This is not the case for dynamical pro-

perties, which depend {u) on the mass of the mo-

lecules. Thus we can in this conception of the

effects of terrestrial heat on the duration of

the day extend to the earth, considered as he-

terogeneous, the data relative to heat considered as

homogeneous. In this manner it is found, that the

increment ofthe density of the strata of the terres-

trial spheroid diminishes the effect of heat on the

duration of the day, which effect since the time

of Hipparchus has njot increased this duration

The term on which the increment of the inte-

rior heat of the earth depends, does not now add

the fifth of a degree to the mean temperature of

its surface. Its annihilation, which a very long

series of ages ought to produce, will not conse-

quently cause any species of organized beings ac-

tually existing to disappear, at least as long as

the proper heat of the sun, and its distance from

the earth, do not experience any sensible altera-

tion.

In fine, I am far from thinking that the pre-

ceding suppositions obtain in nature ; besides, the

observed values of the two constants of which I

have spoken, depend on the nature of the soil

which in different countries has not the same

qualities with respect to heat. But the sketch

which I have given, suffices to shew that the phe-

nomena which have been observed on the heat
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of the earth, may be reconciled with the result

which I have deduced from a comparison of the

theory of the secular inequalities of the moon,
and observations of ancient eclipses, namely,
that since the time of Hipparchus, the duration

of the day has not varied by the hundredth part
of a second.

But what is the ratio of the mean density of the

earth, to that of a known substance at its surface ?

The effect of the attractions of mountains, on the

oscillations of the pendulum, and on the direction

of the plumb line, ought to conduct us to the solu-

tion of this interesting problem.
It is true, that the highest mountains are always

very small, in proportion to the Earth
; but we may

approach very near to the centre of their action,

and this joined to the precision of modern observa-

tions, ought to render their effects perceptible.

The mountains of Peru, (v) the highest in the

world, seemed the most proper for this object.

Bouguer did not neglect so important an observa-

tion in the journey which he undertook, for the

measure of the meridional degrees at the equator.

But these great bodies being volcanic and hol-

low in their interior, the effect of their attraction

was found to be much less than might be expect-
ed from their size. However it was perceptible ;

the diminution of the force of gravity at the sum-

mit of Pichincha, would have been 0,00149,

without the attraction of the mountain, and it

was observed to be 0.00118. The effect of the

deviation of the plumb^ine, from the action of

^VOL.

II. K
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another mountain, surpassed SCK'. Dr. Maskelyne
has since measured, with great care, a similar

effect produced hy the action of a mountain in

Scotland : the result was, that the mean density

of the Earth, is double that of the mountain, and

four or five times greater than that of com-

mon water. This curious observation deserves

to be repeated several times on different pioun-

tains, whose interior constitution is well known.

Cavendish determined this density by the attrac-

tion of two metallick globes of a great diameter,

and he succeeded in rendering it sensible by a

very ingenious process. It follows from these ex-

periments that the mean density of the earth, is

to that of water, very nearly in the ratio of eleven

to two, which agrees with the preceding ratio as

well as could be expected from such delicate ob-

servations and experiments.
I proceed here to present some considerations

on the level of the sea, and on the reductions to

this level. Conceive an extremely rare fluid of a

uniform density throughout, and of an inconsider-

able elevation, to surround the earth
;
let it, howe^

ver, embrace the highest mountains ; such would be

very nearly our atmosphere if reduced to its mean

density. Analysis shews that the corresponding

points of the two surfaces, of the sea, and of this

level, are separated by the same interval. If we
conceive the surface of the sea to be prolonged
below the continents and the surface of the fluid,

so that the two surfaces may be always separated

by this interval, this will be what is termed the

level of the sea,. It is the ellipticity of those two
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surfaces, that is determined by the measures of

degrees ; it is also the variation of gravity at tlie

surface of the supposed fluid, which added to the

ellipticity of this surface, gives a constant sum

equal to f of the ratio of the centrifugal force to

the gravity at the equator. I't is therefore to this

surface or to the surface of the sea prolonged in

the manner above specified, that it is necessary
to refer the measures of degrees, and of the pen-
dulum observed on the continents. But it is ea-

sily proved that the gravity does not vary from a

point on the continent to the corresponding point
of the surface of the fluid, but in consequence of

the distance of those two points, when the slope
to the sea is inconsiderable. Therefore in the

reduction of the length of the pendulum to the

level of the sea, we ought only to consider the

height above this level such as we have defined it.

In order to render this sensible by the results of

the calculus in a case which I have subjected to

analysis, conceive that the earth is an ellipsoid of

revolution partly covered by the sea, of which we
shall suppose the density to be very small rela-

tively to the mean density ofthe earth. If the ellip-

ticity of the terrestrial spheroid be less than that

which corresponds to the equilibrium ofthe surface

of the supposed fluid, the sea will cover the terres-

trial equator to a certain latitude. The degrees mea-

sured on the continents, and increased in the ratio

of their distance from the surface of the supposed

fluid, (the radius of the earth being assumed equal

to unity), will be those which are measured on this
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surface. The length of the pendulum which vi-

brates seconds diminished by twice this ratio, will

be that which is observed on this surface ;
and the

ellipticity determined by the measures of degrees,

will be the same as would be obtained by sub-

tracting from f of the ratio of the centrifugal

force to the gravity at the equator, the excess of

the polar over the equatorial gravity being as-

sumed equal to unity.

Let us apply the preceding theory to Jupiter.

The centrifugal force due to the motion of ro-

tation of this planet, is nearly -^^ of the force of

gravity at its equator ;
at least, if the distance of

the fourth satellite from its centre, as given in

the second Book, be adopted.
If Jupiter was homogeneous, {x) the diameter

of its equator might be obtained, by adding five-

fourths of the preceding fraction to its shorter

axis taken as unity, these two axes would, there-

fore, be in the proportion of 10 to 9,06. Accord-

ing to observation, their proportion is that of

10 to 9,43. Jupiter, therefore, is not homogeneous.

Supposing it to consist of strata, of which the den-

sities diminish from the centre to the surface, its

ellipticity should be included between
-^-^

and
^g^,

the observed ellipticity being within these limits,

proves the heterogenity of its strata, and by ana-

logy that of the strata of the terrestrial spheroid,

already rendered very probable from the mea-
sures of the pendulum, and which have been con-

firmed by the inequalities of the Moon depending
on the ellipticity of the Earth,



CHAP. IX.

On the Figure of the Ring of Saturn,

It was shewn in the first book, that the ring of

Saturn consisted of two concentric rings of very-

small thickness. By what mechanism do these

rings sustain themselves about the planet ? It is

not probable that this should take place from the

simple adhesion of their particles. Since, were

this the case, the parts nearest to Saturn, sol-

licited by the constantly renewed action of gra-

vity, would be at length detached from the rings,

which would, by an insensible diminution, finally

disappear, like all those works of nature which

have not had sufficient force to resist the action

of external causes. These rings support them-

selves then without effort, and by the sole laws

of equilibrium. But for this it is requisite to sup-

pose them endowed with a rotary motion about

an axis perpendicular to their plane, and passing

through the centre of Saturn, so that their gravi-

tation towards the planet, may be balanced by
the centrifugal force due to this motion.

Let us imagine a homogeneous fluid spread
about Saturn in the form of a ring, and let us see

what ought to be its figure, for it to remain in

equilibrio, in consequence of the mutual attrac-
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tion of its particles, of their gravitation towards

Saturn, and their centrifugal force. If, through
the centre ofthe planet, a plane is imagined to pass,

perpendicular to the surface of the ring, the sec-

tion of the ring by this plane, is what I shall call

the genei-ating curve. Analysis proves that if the

magnitude of the ring is small in {a) proportion
to its distance from the centre of Saturn, the

equilibrium of the flui<l is possible, when the ge-

nerating curve is an ellipse of which the greater
axis is directed towards the centre of the planet.

The duration of the rotation of the ring, is nearly
the same as that of the revolution of a satellite,

moved circularly at the distance of the centre of

the generating ellipse, and this duration is about

four hours and a third, for the interior ring.

Herschel has confirmed by observation this re-

sult, to which I had been conducted by the theory
of gravitation.

The equilibrium of the fluid would also exist,

supposing the generating ellipse variable in size

and position, within the extent of the circum-

ference of the ring ; provided that these varia-

tions are sensible only at a much greater distance,

than the axis of the generating section. Thus,
the ring may be supposed of an unequal breadth

in its different parts, it may even be supposed of

double curvature. These inequalities are indi-

cated by the appearances and disappearances of

Saturn's ring, in which the two arms of the ring
have presented different phenomena. They are

even necessary to maintain the ring in equilibrio
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about the planet, since if it was perfectly similar

in all its parts, its equilibrium would be deranged

by the slightest force, such as the attraction of a

satellite, and the ring would finally precipitate
itself upon the planet.

The rings by which Saturn is surrounded, are

consequently irregular solids, of unequal breadth

in the different points of their circumference, so

that their centres of gravity do not coincide with

their centres of figure. These centres of gravity

may be considered as so many satellites, moving
about the centre of Saturn, at distances depend-
ant on the inequalities of the rings, and with an-

gular velocities equal to the velocities of rotation

of their respective rings.

We may conceive, that these rings, sollicited by
their mutual action, by that of the Sun, and of

the satellites of Saturn, ought to oscillate about

the centre of this planet, and thus produce the phe-
nomena of light, of which the period comprises
several years. It might likewise be supposed,
that sollicited by different forces, they should

cease to exist in the same plane ; but Saturn hav-

ing a rapid rotatory motion, and the plane of

its equator being the same with that of its ring,

and of its six first satellites, its action retains

the system of these different bodies in the same

plane. The action of the Sun, and of the se-

venth satellite, only changes the position of the

plane of Saturn's equator, which in this motion

carries with it the ring, and the orbits of the six

first satellites.



CHAP. X-

On the Atmosphere of the Celestial Bodies^

The thin, transparent, compressible, and elas-

tic fluid which surrounds a body, and rests upon

it, is called its atmosphere. We conceive, with

great appearance of probability, that a similar

atmosphere surrounds every celestial body ;
and

the existence (a) of such a fluid, relatively to the

Sun and Jupiter, is indicated by observations.

In proportion as the atmospherical fluid is ele-

vated above the surface of a body, it becomes

thinner, in consequence of its elasticity, which

dilates it so much the more, as it is less compres-
sed. And if the particles of its exterior surface

were (b) perfectly elastic, it would extend itself in-

definitely, and would eventually dissipate itself in

space.

It is then requisite that the elasticity of the

atmospherical fluid should diminish in a greater

proportion than the weight which compresses it
;

in order that there may exist a state of rarity, in

which it may be without elasticity. It should

be in this state at the surface of the atmosphere.
All the atmospheric strata should acquire, after

a time, the rotatory motion, common to the body
which they surround. For the friction of these
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J^trata against each other, and against the surface

of the hody, should accelerate the slowest mo-

tions, and retard the most rapid, till a perfect

equality is established among them. In these

changes, and generally in all those, which the

atmosphere undergoes, {c) the sum of the pro-

ducts of the particles of the body, and of its

atmosphere, multiplied respectively by the areas,

which their radii vectores projected on the plane of

the equator, describe round their common centre

of gravity, are always equal in the same times.

Supposing then, that by any cause whatever,
the atmosphere should contract itself, or that a

part should condense itself on the surface of the

body, the rotatory motion of the body, and of

its atmosphere, would be accelerated, because

the radii vectores of the areas, decribed by the

particles of the primitive atmosphere becoming
smaller, the sum of the products of all the par-

ticles, by the corresponding areas, could not re-

main the same, unless the velocity of rotation

is increased.

At its surface the atmosphere is only retained

by its weight, and the form of this surface is

such, that the force which results from the cen-

trifugal and attractive forces of the body (d), is

perpendicular to it. Th6 atmosphere is flattened

towards the poles, and distended at its equator,
but this ellipticity has limits, and in the case

where it is the greatest, the proportion of the

axis of the pole to that of the equator is as

two to three.
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The atmosphere can only extend itself at the

equator, to that point where the centrifugal force

exactly balances the force of gravity, for it is

evident that beyond this limit, the fluid would

dissipate itself. Relatively to the Sun, this point

is distant from its centre by the length of the

radius of the orbit of a planet, the period of

whose revolution it equal to that of the Sun's

rotation.

The Sun's atmosphere then does not extend

so far as Mercury, and consequently does not

produce the zodiacal light, which appears to ex-

tend beyond even the terrestrial orbit. Besides, this

atmosphere, the axis of whose poles should be at

least two-thirds of that of the equator, is very far

from having the lenticular form which observa-

tion assigns to the zodiacal light.

The point where the centrifugal force balances

gravity, is so much nearer to the body, in pro-

portion as its I'otatory motion is more rapid.

Supposing that the atmosphere extends itself as

far as this limit, and that afterwards it contracts

and condenses itself from the effect of cold at the

surface of the body, (e) the rotatory motion

would become more and more rapid, and the far-

thest limit of the atmosphere would approach

continually to its centre : it will then abandon

successively in the plane of its equator, fluid

zones, which will continue to circulate about the

body, because their centrifugal force is equal to

their gravity. But this equality, not existing re-

latively to those particles of the atmosphere, dis-
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tant from the equator, they will continue to ad-

here to it. It is probable that the rings of Sa-

turn are similar zones, abandoned by its at-

mosphere.
If other bodies circulate round that which has

been considered, or if it circulates itself round

another body, the limit of its atmosphere (/) is

that point where its centrifugal force, plus the

attraction of the extraneous bodies, balances ex-

actly its gravity. Thus the limit of the Moon's

atmosphere, is the point where the centrifugal

force due to its rotatory motion, plus the attrac-

tive force of the Earth, is in equilibrio with the

attraction of this satellite. The mass of the moon

being yij of that of the earth, this point is there-

fore distant from the centre of the Moon, about

the ninth part of the distance from the Moon to

the Earth. If, at this distance, the primitive at-

mosphere of the Moon had not been deprived of

its elasticity, it would have been carried towards

the Earth which might have retained it. This

is perhaps the cause why this atmosphere is so

little perceptible.



CHAP. XL

Of the Tides.

It was Newton, who first gave the true expla-

nation of the tides, by shewing that they arose

from the great principle of universal gravitation.

Kepler had recognised the tendency of the wa-

ters of the sea towards the centres of the sun and

moon ;
but being jgnorant of the law of this ten-

dency, and of the metho3s necessary to subject it

to computation, he could only assign a very pro-
bable conjecture on this object. Galileo in- his

dialogues on the system of the world, expresses
his astonishment and regret, that this conjecture,

which appeared to bring back into natural philo-

sophy the occult qualities of the ancients, had

been suggested by such a man as Kepler. He

explained the ebbing and flowing of the sea, by
the diurnal changes which the rotation of the

earth, combined with its revolution about the

sun, ought to produce in the absolute motion of

each molecule of the sea. This explanation ap-
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peared to him so incontestable, that he gave it,

as one of the principal proofs of the Copernican

system, for the defence of which he was after-

wards so persecuted. Further discoveries have

confirmed the conjecture of Kepler, and over-

turned the explication of Galileo, which is incon-

sistent with the laws of the equilibrium and mo-

tion of fluids.

The theory of Newton appeared in 1687, in

his Treatise on the Mathematical Principles of

Natural Philosophy. He there considered the

sea as a fluid of the same density as the earth

which it entirely covers, and he supposed that it

assumed at each instant, the figure in which it

would be in equilibrio under the action of the

sun. If then this figure be supposed to be that

of an ellipsoid {a) of revolution, of which the

greater axis is directed towards the sun ; he de-

termined the ratio of the two axes, in the same

way as he determined the ratio of the two axes

of the earth, compressed by the centrifugal

force of its naotion of rotation. The greater axis

of the aqueous ellipsoid being constantly direct-

ed towards the sun, the greatest height of the

sea in each port, ought to happen when the sun

is on the equator at midday and midnight, and

the greatest depression ought to be at the rising

and setting of this star.

Let us consider the manner in which the sun

acts on the sea, when it deranges its equilibrium.

It is evident, that if the Sun acted on the centre
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of gravity of the Earth, and of every particle of

the ocean, by exerting equal and parallel forces,

{b) the whole system of the terrestrial spheroid
would obey these forces by a common motion,
and the equilibrium of the waters would not be

at all altered. This equilibrium then, is only de-

ranged by the difference of these forces, and by
the inequality of their directions. A particle of

the ocean, placed directly under the Sun, is more
attracted than the centre of the Earth. It tends

therefore, to separate itself from it, but it is re-

tained by its gravity, which this tendency dimi-

nishes. Half a day afterwards, this particle is

opposite to the Sun, which attracts it less forcibly

than it does the centre of the Earth ; the surface

of the terrestrial globe therefore tends to sepa-
rate itself from it, but the gravity of the par-

ticles retains it. This force is therefore dimi-

nished also in this case by the solar attraction.

But since the distance of the Sun is very great,

compared with the radius of the Earth, it is easy

to see that the diminution of gravity in each case

is very nearly the same. A simple decomposi-

tion of the action of the Sun upon the particles

of the ocean, is sufficient to shew, that in any

position of this body, relatively to these particles,

its action in disturbing their equilibrium, becomes

the same after half a day.

The law according to which the water rises and

falls, may be thus determined. Let us conceive

a vertical circle, whose circumference represents

half a day, and whose diameter is equal to the
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whole tide, or to the difference between the height

of high and low water, and let the ares of this

circumference, (c) reckoning from the lowest

point, express the time elapsed since low water;

the versed sines of these arcs will express the'

heights of the water, corresponding to these times.

Thus, the ocean in rising, covers in equal times,

equal arcs of this circumference.

The greater the extent of the surface of the wa-

ter, the more perceptible are the phenomena of

the tides. In a fluid mass, the impressions which

a fluid particle receives, are communicated to the

whole. It is thus that the action of the Sun,

which is insensible on an insulated particle, pro-

duces on the ocean such remarkable efl^ects. Let

us imagine, at the bottom of the sea, a curved

canal, terminated at one of its extremities by a

vertical tube, rising above the surface of the wa-

ter, and which, if prolonged, would pass through
the centre of the Sun.

The water will rise in (d) this tube by the di-

rect action of the Sun, which diminishes the gra-

vity of its particles, and particularly by the pres-
sure of the particles enclosed in the canal, which

all make an efl*ort to unite themselves beneath the

Sun. The elevation of the water in the tube,

above the natural level of the sea, is the integral

of all these infinitely small effbrts. If the length
of this canal is increased, this integral also be-

comes greater, because it extends over a larger

space, and because there will be a greater differ-
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ence in the quantity and direction of the forces,

by which the extreme particles are sollicited.

By this example we see the influence which the

extent of the sea has upon the phenomena of the

tides, and the reason why they are insensible in the

seas of inconsiderable extent, as the Euxine and the

Caspian. The magnitude of the tides depends also

much on local circumstances. The oscillations

of the ocean, when confined in a narrow chan-

nel, may become extremely great, and these may
be augmented by the reflection of the waters from

the opposite shore. It is thus, that the tides,

very small in the South Sea islands, are very con-

siderable in our harbours.

If the ocean covered a spheroid of revolution,

and experienced no resistance to its motion, the

instant of high water would be that of the passage
of the Sun over the superior or inferior meridian

;

but it is not thus in nature ; local circumstances

produce great variations in the times of high wa-

ter, even in harbours that are very near each

other. To have a just idea of these variations, we

may suppose a large canal communicating with

the sea, and extending into the land
; it is evident

that the undulations which take place at its en-

trance, will be propagated successively through
its whole length, so that the figure of its surface

will be formed by the undulations of large waves

in motion, which will be incessantly renewed,

and will describe their length in the interval of

half a day. These waves will produce at every

point of the canal, a flux and reflux, which will
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follow the preceding laws, but the hours of the

flowing will be retarded, in proportion as the

points are farther from the entrance of the canal.

What we have here said of a canal, may be ap-

plied to rivers whose surfaces rise and fall by si-

milar wavTS, notwithstanding the contrary motion

of their streams. These waves are observed in all

rivers near to their entrance ; they extend to con-

siderable distances in great rivers, and at the

straights of Pauxis in the river of the Amazons,

they are as sensible at the distance of eighty

myriameters from the sea.

The action of the Moon on the sea produces
an ellipsoid similar to that produced by the action

of the Sun, but it is more elongated, because the

lunar action is more powerful than that of the Sun.

In consequence of the inconsiderable excentricity

of these ellipsoids, we may conceive (e) them to be

placed the one over the other, so that the radius

of the surface of the sea is half the sum of the

corresponding radii of their surfaces.

From hence arise the principal varieties of the

tides. In the syzygies, the greater axes coin-

cide, and the greatest elevation happens at the

instant of mid-day and mid-night, and the greatest

depression at the rising and setting of these stars.

In the quadratures, the greater axis of the lunar

ellipsoid and the lesser axis of the solar ellipsoid

coincide ;
the full tide happens therefore at the

rising and setting of these stars, and it is the least

high water: the low water happens at the in-

VOL. II. L
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slants of mid-day and mid-night, and it is the

greatest of low waters. If therefore the action

of each star he expressed by the difference of

the semiaxes of its elHpsoid, which is evidently

proportional to it, when the place is situated at

the equator, the excess of the greatest syzygial tide

over the low water in syzygies will express the

sum of the solar and lunar actions, and the excess

of the least high water, which is in quadrature,

over the greatest low water, which is likewise, (as

we have seen in quadrature), will express the differ-

ence of these actions. If the harbour be not in

the equator, this excess should be multiplied by
the square of the cosine (f) of latitude. There-

fore the ratio of the action of the Moon to that of

the Sun may be determined by observing the

heights of the tides in syzygies and in quadratures.

Newton inferred from some observations made
near Bristol, that this ratio is that of four and a

half to unity. The distances of those stars from

the centre of the earth influence all these effects
;

the action of each star being reciprocally as the

cube of the distance.

As to the intervals between high water from

one day to another, Newton observed that it is

least in syzygies, and that it increases from syzygy
to the following quadrature, that at the first oc-

tant it is equal to a lunar day, and that it attains

its maxhnum at the quadrature ;
that it afterwards

diminishes, becoming equal to a lunar day at the

subsequent octant, and that it finally resumes ita

minimum at the syzygy. Its mean value being a
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lunar day, there are as many high waters as there

are passages of the Moon over the superior or in-

ferior meridian.

Such would be, according to the theory of New-

ton, the phenomena of the tides, if the sun and
moon moved in the plane of the equator. But it

appears from observation, that the highest tides

do not arrive at the very moment of the syzygy,
but a day and a half later. Newton ascribed this

retardation to the oscillatory motion of the sea,

which remains some time after the sun and moon
cease to act. The exact theory of the undula-

tions of the sea, produced by this action, shews

that, without the accessory circumstances, the

highest tides w^ould coincide with the syzygies,

and the lowest would coincide with the quadra-
tures. Consequently their retardation at the mo-

ments of these phases cannot be attributed to the

cause assigned by Newton, it therefore must de-

pend, as also the hour of high water, in each har-

bour, on accessary circumstances. This example
shews that we ought to distrust the most specious

conjectures, when they are not confirmed by a ri-

gorous analysis.

However the consideration of two ellipses, su-

perimposed the one over the other, may also re-

present the tides, provided that the greater axis of

this ellipsoid be conceived to be directed towards

a fictitious sun, always equally elongated from

the true sun. The axis of the lunar ellipsoid

should be likewise always directed towards an

maginary moon equally elongated from the true,

L S
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but at such a distance that the conjunction of the

two imaginary stars, does not arrive until a day
and a half after the syzygy.

This consideration of the two ellipsoids, ex-

tended to the case, in which the stars move in or-

bits inclined to the equator, cannot be reconciled

with observations. If the harbour be situated in

the equator it gives near the maximum of the

tides, the two high waters in the morning and in

the evening, very nearly equal, whatever may be the

declinations of these stars
; only the action of each

star is diminished in the ratio of the square of the

cosine of its declination {g) to unity. But if the

place is not on the equator, these two high waters

may be extremely different, and when the de-

clination of the stars is equal to the obliquity of

the ecliptic, the evening tide at Brest should be

eight times greater than that of the morning.
However it appears from numerous observations

made at this port, that these two tides are very

nearly equal, and their greatest difference is not

the thirtieth part of their sum. Newton as-

cribed the smallness of this difference to the same

cause, by means of which, he explained the re-

tardation of the high water beyond the moment
of the syzygy, namely to a motion of oscillation

in the sea, which, according to him, bringing back

a great part of the evening tide on the subsequent

morning tide, renders these tides very nearly

equal. But the theory of the undulations of the

sea shews that this explanation is not exact, and

that without accessary circumstances the two
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Consecutive tides would not be equal, unless the

sea had every where the same depth.

In 1738, the Academy of Sciences pro-

posed the cause of the ebbing and flowing of

the sea, as the subject of the mathematical

prize, which it decided in 1740. Four es-

says were crowned, the three first, founded on

the principle of universal gravitation, were those

of Daniel Bernouilli, of Euler, and Maclaurin.

The Jesuit Cavalleri, the author of the fourth,

adopted the system of vortices. This was the last

honour paid to this system by the Academy,
which was then composed of many geometers,

whose successful labours contributed so power-

fully to the advancement of the celestial me-

chanics.

The three essays which were founded on the

law of universal gravitation, are developements

of the theory of Newton. They depend not only

on this law, but also on the hypothesis adopted

by this great geometer, namely, that the sea

assumes at each instant the figure in which it

would be in equilibrio, under the star which at-

tracts it.

The essay of Bernouilli contains the most ex-

tensive developements. He, like Newton, as-

cribed the retardation of the maxima and of the

minima of the tides, after the instants of the oc-

currence of the syzygies and the quadratures, to

the motion of the waters of the ocean
; and

he adds, perhaps, a part of this retardation

is owing to the time the action of the moon

takes to arrive at the earth. But I have ascer-
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tained that, between the heavenly bodies all at-

tractions are transmitted with a velocity, which,
if it be not infinite, surpasses se.veral thousand

times the velocity of light ;
and we know that the

light (Ji) of the moon reaches the earth in less

than two seconds.

D*Alembert, in his treatise on the general
course of the winds, which bore away the prize,

proposed on the subject by the Academy of

Sciences in Prussia, considered the oscillations

of the atmosphere produced by the attractions of

the sun and moon. And on the hypothesis that

the earth is deprived of its motion of rotation,

the consideration of which he judged to be total-

ly useless in his investigations, and supposing the

atmosphere every where equally dense, and acted

on by a star at rest, he determined the oscillations

of this fluid. But when he wished to consider

the case of a star in motion, the difficulty of the

problem obliged him to have recourse, in order

to simplify his results, to a precarious hypothesis,

atid even with such restrictions the results cannot

even be considered as approximations. His for-

mulae gave a constant wind blowing from east to

west, of which the expression depepds on the ini-

tial state of the atmosphere ; now the quantities

depending on this state ought long since to have

disappeared, in consequence of all the causes

which would reestablish the equilibrium of the

atmosphere, if the action of the stars should cease
;

consequently we cannot thus explain the trade

winds. The treatise of D'Alembert is particu-
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larly remarkable for the solutions of some prob-

lems on the integral calculus of partial differen-

ces, which solutions he successfully applied a year

afterwards, to explain the motion of vibrating

chords.

The motion of the fluids which cover the pla-

nets was a subject almost entirely new, when I

undertook in 177^ to discuss it. Assisted by the

discoveries made in the calculus of partial dif-

ferences, and in the theory of the motion of

fluids discovered in a great measure by D'Alem-

bert, I published in the Memoirs of the Academy
of Sciences for the year 177'5, the difl'erential

equations of the motions of the fluids which being

spread over the earth, are attracted by the Sun
and Moon. I first applied these equations to the

problem which D'Alembert in vain essayed to re-

solve, namely, that of the oscillations of a fluid

spread over the entire earth, supposed spherical,

and without rotation, the attracting star being

supposed to be in motion about this planet. I

gave the general solution of this problem, what,

ever might be the density of the fluid and its ini-

tial state, supposing that each fluid molecule ex-

periences a resistance proportional to its velocity,

which shews that the primitive conditions of mo-

tion are at length annihilated by the friction and

the small viscosity of the fluid. But an inspec-

tion of the differential equations shewed me very

soon, that I ought to take into account the rota-

tory motion of the earth. I therefore considered

this motion, and I appli(^d myself particularly to
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the determination of tlie oscillations of tlie fluid,

which are independent of its initial state, and the

only ones which are permanent. These oscilla-

tions are of three kinds. Those of the first kind

are independent of the motion of rotation of the

earth, and their determination presents few dif-

ficulties. The oscillations depending on the mo-

tion of rotation of the earth, and of which the pe-

riod is about a day, constitute the second species j

finally, the third species is composed of oscilla-

tions, of which the period is very nearly half a

day. They surpass the others considerably in our

harbours. I have accurately determined those

different oscillations, in the case in which it can be

determined, and by very convergent approxima-
tions, in the other cases. The excess of two con-

secutive high waters, one over the other in the

solstices, depends on the oscillations of the se-

cond species. This excess, which is hardly sensi-

ble at Brest, ought, according to the theory of

Newton, to be very considerable. This great

geometer and his successors attributed, as I have

already stated, this difference between the for-

mulae and observations, to the inertia of the wa-

ters of the ocean. But analysis shews that it de-

pends on the law of the depth of the sea. I there-

fore investigated the law which would render this

excess nothing, and I found that the depth of the

sea ought to be every where constant. The figure

of the earth being then supposed to be elliptical,

which would render to the sea an elliptic figure of

equilibrium, I have given the general expression
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of the inequalities of the second species : and I

have deduced this remarkable proposition, namely,
that the motions of the earth's axis are exactly

the same as if the sea consituted a solid mass with

the earth, which was contrary to the opinion of

geometers, and particularly of D'Alembert, who
in his (^i) important Treatise on the precession of

the Equinoxes, asserted that, in consequence of the

fludity of the sea, it had no influence on this phe-
nomenon. My analysis also indicated to me the

general condition of the stability of the equilibrium

of the sea. The geometers who considered the

equilibrium of a fluid spread over an elliptic sphe-

roid, remarked that if its figure be a little com-

pressed, it does not tend to revert to its first state,

except in the case in which the ratio of its density

to that of the spheroid, was below | ; and they
have inferred from this condition, that of the sta-

bility of the equilibrium of the fluid. But in this

investigation, it is not sufticient to consider a state

of quiescence of the fluid, very near to the state

of equilibrium, it is necessary to assign to this fluid

some initial motion very small, and then to deter-

mine the condition necessary, in order that this

motion may be always confined within very nar-

row limits. By considering the problem in this

general point of view I have found, that if the

mean density of the earth surpass that of the sea,

this fluid, when deranged by any causes from its

state of equilibrium, will never deviate from it,

except by small quantities ; but that the durations

may be very considerable, if this condition be not
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satisfied. Finally, I have determined the oscilla-

tions of the atmosphere, on the ocean which it

covers, and I have found that the attractions of

the Sun and Moon cannot produce the constant

motion from east to west, which is observed un-

der the name oi trade winds. The oscillations of

the atmosphere produce {k) in the height of the

barometer, small oscillations, ofwhich the extent at

the equator being only half a millimetre, demands

tlie utmost attention of observers. The preceding

observations, though extremely general, are still far

from representing accurately the tides, which have

been observed in our harbours. They suppose

that the surface of the terrestrial spheroid is en-

tirely covered by the sea
; now it is evident that

the great irregularities of its surface ought to mo-

dify considerably the motion of the waters, with

which it is only partly covered. Experience
shews in fact, that accessary circumstances pro-

duce considerable varieties in the heights, and in

the hours of high water in the harbours, which

are very near to each other. It is impossible to

subject these varieties to the calculus, since the

circumstances on which they depend are not

known, and even if they were, we would not be

able to solve the problem, in consequence of its

extreme difficulty. However, in the midst of the

numerous modifications of the motion of the sea

arising from these circumstances, this motion pre-

serves, with the forces which produce it, relations

which are proper to indicate the nature of those

forces, and to verify the law of the attractions of
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the Sun and jMoon on the sea. The investiga-

tions of these relations between causes and their

effects, is not less useful in natural philosophy
than the direct solution of problems, as well in ve-

rifying the existence of these causes, as also in de-

termining the laws of their effects : we can fre-

quently apply it, and it is like the calculus of pro-

babilities a fortunate supplement to the ignorance
and imperfection of the human mind.

In the present question, I make use of the fol-

lowing principle, which may be useful on various

occasions. ** The state of a system of bodies, in

** which the primitive conditions of motion have
**

disappeared in consequence of the resistances

** which this motion experiences, is periodic, like

"the forces which actuate the system."

From this I have inferred, that if the sea is

soUicited by a periodic force expressed by the

cosine of an angle which increases proportionally

to the time ;
there will result from it a partiaj

tide expressed by the cosine of an angle increas-

ing in the same manner, but of which the con-

stant contained under the sign Cosine, and the

coefficient of this cosine, may be in consequence
of accessory circumstances, very different from

the same constant quantities in the expression of

the force, so that they can be determined by ob-

servation only. The expressions of the actions of

the Sun and Moon on the se^. njay be developed

into a convergent series of similar cosines. Hence

arise so many partial tides, which in consequence

of the coexistence of the small osciHations, com-
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bine together to form the total tide which is ob-

served in any harbour. It is in this point of view

that I have considered the tides in the fourth book

of the Celestial Mechanics. In order to connect

together the different constants of the partial

tides, I have considered each tide as produced by

the action of a star, which moves uniformly in the

plane of the equator ;
the tides, of which the pe-

riod is about half a day, arise from the action of

stars, of which the proper motion is very slow,

with respect to the rotatory motion of the earth
;

and as the angle of the cosine, which expresses
the action of one of these stars, is a multiple of the

rotation of the earth, plus or minus a multiple of

the proper motion of the star, and since, besides

the constants of the cosines, which express the

tides of the two stars, would have the same ratio

to the constants of the cosines which express their

actions, if the proper motions were equal ;
I have

assumed that the ratio varies from one star to

another, proportionally to the difference of the

proper motions. The error of this hypothesis,

if there be any such, has no sensible influence on

the principal results of my computations.
The greatest variations of the height of the

tides in our harbours, arise from the action of the

sun and moon, being supposed to move uniformly
in the plane of the equator. But in order to have

the law of these variations, it is necessary to com-
bine the observations in such a manner, that all

the other variations may disappear from their re-

sult. This is obtained by considering the height of
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high waters, above the neighbouring very low wa-

ters, in tlie syzygies, and the quadratures, assuming
an equal number, near to each equinox and sol-

stice. By this means the tides, independent of

the rotation of the earth, and those of which the

period is about a day, disappear, and likewise

the tides produced by the variation of the distance

of the sun from the earth. By considering three

consecutive syzygies or solstices, and by doubling

the intermediate, the tide produced by the varia-

tion of the distance of the moon from the earth

is made to disappear ; since if this star be in peri-

gee at one of her phases, it is very nearly in apo-

gee at the other corresponding phase, and the

compensation is the more exact, according as a

greater number of observations is employed. By
this process the influence of the winds on the re-

sult of observation becomes very nearly nothing,
for if the wind raises the height of one high wa-

ter, it elevates very nearly by the same quantity
the neighbouring low water, and its efi*ect disap-

pears in the difference of those two heights. It

is thus that by combining the observations in

such a manner that their sum may present only
one element, we are enabled to determine succes-

sively all the elements of the phenomena. The

analysis of probabilities furnishes for the deter-

mination of these elements (l) a method still more

certain, and which may be termed the most ad-

vantageous method. It consists in forming be-

tween these elements, as many equations of condi-

tion as there are observations. By the rules of
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this method, the number of these equations is re-

duced to that of the elements, which are deter-

mined by resolving the equations thus reduced.

It is by this process that M. Bouvard has con-

structed his excellent tables of Jupiter, Saturn

and Uranus. But observations relative to the

tides are far from having the same accuracy as

astronomical observations ; the very great num-

ber of those which it is necessary to employ, in

order, that the errors may compensate each other,

does not permit us to apply to them the,most ad-

vantageous methods At the suggestion of the Aca-

demy of Sciences, observations on the tides were

made in the harbour of Brest, during the space of

six consecutive years. It is to those observations

published by Lalande, that I have compared my
formulae, in the book already cited. The situa-

tion of this harbour is very favourable to this kind

of observation. It communicates with the sea by a

vast canal, at the extremity of which this port had

been constructed. Therefore the irregularities

in the motion of the sea, when they arrive at this

harbour, are very much diminished, just as the

oscillations, which the the irregular motion of a

ship produces in a barometer, are lessened by a

contraction made in the tube of this instrument.

Besides, the tides at Brest being considerable, the

accidental variations are only an inconsiderable

part ofthem. Thus, considering the fewness of the

observations relative to the tides, a great regularity

is observed, which are not affected by the little river

which empties itself into the immense road of this
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harbour. Struck with this regularity, I suggested
to government to order a new series of obsverva-

tions relative to the tides to, be made at Brest,

which might be continued during the period of

the motions of the nodes of the moon. This has

been undertaken. These new observations com-

menced on the first of June, 1806, and they have

been continued uninterruptedly since that period.

We have examined those of I8O7, and of the fif-

teen following years. The immense computa-
tions which the comparison of my analysis

with observations required, are due to the indefa-

tigable zeal of M. Bouvard, for every thing which

concerns astronomy, near six thousand observa-

tions are employed, in order (m) to obtain the

height of the high waters and their variation,

which, near to the maximum^ is proportional to

the square of the time. I have considered near

to each equinox and solstice, three consecutive

syzygies, between which the equinox or the sol-

stice were included ;
and the results of the inter-

mediate syzygy, were doubled in order to destroy

the effects of the lunar parallax, at the occur-

rence of each syzygy, the height of the evening

high water above the low water of the morning,
was taken, on the day which preceded the syzy-

gy, on the very day of the syzygy, and on the

four succeeding days ; because the maximum of

the tides occurs very nearly in the middle of this

interval. The observations of these heights, made

during the day, became more certain and exact.

During each of the sixteen years, the sum of the
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heights of the corresponding days of the equinoc-

tial syzygies has heen taken, and a like sum rela-

tive to the solstitial syzygies, and from hence

the 7naxima of the heights of the high waters, near

to the equinoctial and solstitial syzygies has heen

inferred, and the variations of these heights near

to their maxima. From an inspection of these

heights, and of their variations, the regularity of

this kind of observation on the harbour ofBrest is

immediately apparent.
In the quadratures a similar process has been

pursued, with the sole difference that the excess

of the height of the morning over the low water of

the evening, has been taken on the day of the

quadrature, and on the three succeeding days.

The increment of the tides at the quadratures de-

parting from their minimum^ being much more ra-

pid, than the diminution of the syzygial tides in

departing from their maximum; the law of the

variation proportional to the square of the time,

ought to be restricted to a shorter interval.

All those heights evidently indicate the influ-

ence of the declinations of the Sun and Moon,
not only on the absolute heights of the tides, but

also on their variations. Several philosophers,

and particularly La Lande, has questioned this in-

fluence, because instead of considering a great

number of observations, they attended only to

isolated observations in which the sea, by the

effect of accidental causes, was elevated to a great

height in the solstices. But the simplest applica-

tion of the calculus of probabilities, to the results
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of Mr. Bouvard, is sufficient to shew that the pro-

bability of the influence of the declination of the

stars is very great, and far superior to that of a

great number of facts respecting which there does

not exist any doubt.

From the variations of the high waters near to

tlieir maxima and minima, the interval at which

these maxima and minima follow the syzygies and

quadratures, has been inferred, and this interval

has been found to be a day and a half very nearly,

which perfectly accords with what I deduced from

ancient observations in the fourth book of the

Celestial Mechanics. The same agreement ob-

tains relative to the magnitude of these maxima

and minima^ and with respect to the variations

of the heights of the tides, in departing from these

points, so that nature after the lapse of a century

is found agreeing with herself. The interval to

which I allude, depends on the constant quan-
tities involved under the signs of Cosines, in the

expressions of the two principal tides due to the

actions of the Sun and Moon. The corresponding
constant quantities of the expressions of the forces

are differently modified by accessory circum-

stances ; at the moment of the syzygy, the lunar

tide precedes the solar tide, and it is not till a day
and a half after that, (m) (the lunar tide retarding

each day on the solar tide,) these two tidies

coincide and thus produce the maximum high
water. We shall have an adequate conception
of the retardation of the highest tides at the in-

VOL. ir. M
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stant of syzygy, if we conceive in the plane of a

meridian, a canal at the mouth of which the

highest tide arrives at the moment of the occur-

rence of the syzygy, and that it employs a day and

a half to arrive at the port situated at the extremity

of this canal. A similar modification obtains in the

constant quantities, which multiply the cosines,

and there results from it an increase in the action

of the stars on the sea. I have given in the fourth

hook of the Celestial Mechanics the means of re-

cognizing this increment, which by the ancient

observations I have found to be a tenth part ; but;

although the observations of the tides in the qua-

dratures accord with the observations of the syzy-

gial tides on this subject, I have stated that an ele-

ment so delicate as this, requires a much greater

n umber ofobservations. The computations ofMr.

Bouvard have confirmed the existence of this in-

crement, and made it very nearly equal to a fourth

part, in the case of the Moon. The determina-

tion of this relation is necessary to enable us to

infer from the observations of the tides, the true

relations between the actions of the Sun and of

the Moon, on which the phenomena of the pre-

cession of the equinoxes and of the nutation of

the earth's axis depend. The actions of the stars

on the sea being corrected by the increments

due (ji) to accessory circumstances, the nutation

is found equal to 9",<t in sexagesimal minutes
j

the lunar equation of the tables of the Sun is

found equal to 6"8, and the mass of the Moon
comes out to be a 75th of the mass of the earth.
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These are very nearly the results furnished by
astronomical observations. The agreement of

values obtained from such different sources is ex-

tremely remarkable. It is from a comparison of

my formulae with the maxima and minima of the

observed heights of the seas, that the actions of

the Sun and Moon and their increments have

been determined. The variations of the heights
of the tides near to these points, is a necessary

consequence of them
; therefore by substituting

the values of these actions in my formulae, we

ought to find very nearly the observed variations.

This is in fact the case. This agreement is a

striking confirmation of the law of universal gra-

vitation. It receives an additional confirmation

from observations of the syzygial tides near to the

apogee and perigee of the Moon. In the work

cited, I have only considered the difference of the

heights of the tides in those two positions of the

Moon. Here I have moreover considered the va-

riations of these heights in departing from their

maxima, and on these two points my formulae

coincide vvith the observations.

The times of high water, and the retardations

of the tides from one day to another, present the

same varieties as their heights, M. Bouvard con-

structed tables of them for the tides, which he

employed in the determination of the heights. The
influence of the declinations ofthe stars, and ofthe

lunar parallax, are very evident in them. These ob-

servations, compared with my formulae, exhibit the

same agreement as the observations relative to

M 2
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the lieiglits. The small anomalies wliich ohserva-

tions still present may he made to disappear, hy a

suitable determination of the constant quantities

of each partial tide ; the principle hy which these

various constant quantities have been connected

together cannot be rigorously exact. Perhaps

also, the quantities which have been neglected in

adopting the principle of the coexistence of os-

cillations, become sensible in the great tides. I

have barely adverted to those slight inaccuracies,

in order to direct those who might wish to resume

the computations when observations of the tides,

which are making at Brest, and which are depo-
sited at the Royal Observatory, will be sufficiently

numerous to enable us to determine Avith x^er-

tainty whether these anomalies arise from the

errors of observations. But previously to making

any modification in the principles which I have

employed, it will be necessary to extend farther

our analytical approximations. Finally, I have

considered the tide, of which the period is about

half a day. From a comparison of the differences

of the two high and the two consecutive low

waters, among a great number of syzigeal sol-

stices, the magnitude of this tide and the hour of

its maximmn, in the harbour of Brest, have been

determined. Although its magnitude is not the

thirtieth part of the magnitude of the semidiur-

nal tide, still the forces which produce these

two tides are very nearly equal, which shows how
differently accessory circumstances affect the

magnitude of the tides. We shall not be sur-
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prized at this, if we consider that even in the

case in which the surface of the earth was re-

gular, and entirely covered by the sea, the daily

tide would disappear if the depth of the sea was

constant.

The accessory circumstances may also cause

the semidiurnal inequalities to disappear, and

render the diurnal inequalities very sensible. Then

we shall have on each day, but one tide, which

disappears when the stars (o) are in the equator.

This is what takes place at Batsham, a harbour

in the kingdom of Tonquin, and in some islands

of the south sea.

With respect to those circumstances, it may
be observed that the one appertains to the entire

sea, and refers to causes operating at a consider-

able distance from the harbour where they are

observed, for instance, there can be no doubt but

that the oscillations of the Atlantic ocean, and of

the south sea, being reflected by the eastern side

of America, which extends almost from one pole
to another, has a considerable influence on the

tides at the harbour of Brest. It is chiefly on

these circumstances that the phenomena depend
vi^hich are nearly the same in our harbours. Such

appears to be the retardation of the highest tides

at the moment of syzygy. Other circumstances

more nearly connected with the ports, such as the

shores or neighbouring straits, may produce the

diff'erences, which are observed between the

heights and hour of port in harbours which are

very near to each other. Hence it follows, that
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the partial tide has not with the latitude of the

harbour, (p), the relation indicated by the force

which produces it
;
since it depends on similar

tides corresponding to very distant latitudes, and

even to another hemisphere. Therefore the sign

and magnitude of the tide can be determined by
observation alone.

The phenomena of the tides which I have con-

sidered depend on terms arising from the expan-

sion of the action of these stars, divided by the

cubes of their distance, which are the only ones

that have been hitherto considered. But [the

Moon is sufficiently near to the Earth to have the

terms of the expression of its action divided by
the fourth power of its distance, sensible in the

results of a great number of observations ;
for we

know from the theory of probabilities, that the

number of observations compensates for their

want of accuracy, and includes inequalities much
less than the errors, of which each observation is

susceptible. We can even by this theory, assign

the number of observations necessary to acquire

a great probability, when the error of the result

which has been obtained, is contained within nar-

row limits. It therefore occurred to me that the in-

fluence of the terms of the Moon's action, divided

by the fourth power of the distance, might be ap-

parent in the collection of the numerous obser-

vations which have been discussed by M. Bouvard.

The tides, which correspond to the terms divided

by the cube of the distance, do not assign any dif-

ference between the high waters of full moon and
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those of new moon. But those of which the de-

visor is the fourth power, produce some diffeience

between these tides. They produce a tide, of

which the period is about the third part of a day,

and observations discussed under this point of

view, indicate with a great degree of probability
the existence of this partial tide. They also un-

questionably prove that the action of the Moon to

raise the sea at Brest, is greater when its decli-

nation is southern, than when it is northern,

which can only arise from the terms of the lunar

action, divided by the fourth power of the dis-

tance.

It appears from the preceding expose^ that the

investigation of the general relations between the

phenomena of the seas, and the actions of the Sun
and Moon on the ocean, most fortunately sup-

plies the impossibility of integrating the differen-

tial equations of this motion, and our ignorance
of the data necessary to determine the arbitrary

functions which occur in their integrals; it

also follows, that these phenomena have one

sole cause, namely, the attraction of these two

stars conformably to the law of universal gravi-

tation.

If the earth had no satellite, and if its orbit was

circular and situated in the plane of the equator,

we should only have in order to recognize the ac-

tion of the Sun on the ocean, the hour of high

water, (which would be always the same,) and the

law according to which the sea rises. But the

action of the Moon by combining with that of the
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Sun, prodaces in the tides, varieties relative to

its phases, the agreement of which with observa-

tions, renders the theory of universal gravitation

extremely probable. From all the inequalities

in the motion, in the declination, and in the dis-

tance of these two stars, there arise the phe-
nomena indicated by observation, which places

this theory beyond all doubt ; it is thus that

varieties in the actions of causes establish their

existence.

The action of the Sun and Moon on the Earth,

a necessary consequence of the universal attrac-

tion, demonstrated by all the celestial phenomena,

being directly confirmed by the phenomena of the

tides, ought to leave no uncertainty on the sub-

ject. It is indeed brought now to such a degree

of perfection, that not the least difference of opi-

nion exists upon the subject, among men suffi-

ciently learned in the science of geometry and

mechanics, to comprehend its relation with the

law of universal gravitation.

A long series of observations, more precise than

have hitherto been made, and continued during

the period of the revolution of the nodes, will

rectify the elements already known, fix the value

of those which are uncertain
;

and develope

phenomena which before were obscured in the

errors of observation. The tides are not less in-

teresting to understand than the inequalities of

the heavenly bodies, and equally merit the atten-

tion of observers. We have hitherto neglected to

follow them with sufficient precision, because of
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the irregularities they present. But I can assert,

after a careful investigation, that these irregula-

rities disappear by multiplying the observations ;

nor is it necessary that their number should be

extremely great, particularly at Brest, of which

the situation is very favourable to this species of

observation.

I have now only to speak of the method of de-

termining the time of high water, on any day
whatever. We should recollect, that each of our

ports may be considered as the extremity of a ca-

nal, at whose embouchure the partial tides happen
at the moment ofthe passage of the Sun and Moon

over the meridian, and that they employ a day and

a half to arrive at its extremity, supposed eastward

of its embouchure, by a certain number of hours.

This number is what I call thefundamental hour

of the port. It may easily be computed from the

hour of the establishment of the port, by consider-

the former as the hour of the full tide, when it

coincides with the syzygy. The retardation of the

tides, from one day to another, being then 2705^',

it will be 3951" for one day and a half, which

quantity is to be added to the hour of the estab-

lishment, to have the fundamental hour. Now,
if we augment the hours of the tides at the em-

bouchure by the fifteen hours, plus the fundamen-

tal hour, we shall have the hours of the corres-

ponding tides in our ports. Thus, the problem
consists in finding the hours of the tides in a place

whose longitude is known, on the supposition that

the partial tides happen at the instant of the pas-
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sage of the Sun and Moon over the meridian. For

this purpose analysis affords very simple formulae,

which are easily reduced to tables, and very use-

ful to be inserted in the ephemerides that are des-

tined for the use of navigators.

The great tides have frequently produced in

harbours, and near shores, disastrous effects

which might have been foreseen, if we were pre-

viously apprised of the height of these tides. The
winds may have on this phenomenon an influence

which it is impossible to anticipate. But we can

predict with certainty the influence of the Sun

and Moon, and this is sufficient most frequently

to secure us from the accidents which high tides

may occasion, when the direction and force of the

wind is combined with the action ofregular causes.

In order that the maritime departments may parti-

cipate in the advantage produced by the sciences,

the Bureau of longitude publishes each year in its

Ephemerides, the table of the syzygial tides, the

mean height in the syzygies of the equinoxes be-

ing assumed equal to unity.

I have dwelt more particularly on the theory of

the tides, because of all the effects of the attrac-

tion of the heavenly bodies, it is the most obvi-

ous, and most within our reach
; besides it ap-

peared of consequence to shew, how by means of

a great number of observations, although inaccu-

rate, we can recognize and determine the laws

and the causes of the phenomena, the analytical

expressions of which it is impossible to determine

by the formation and integration of their differen-
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tial equations. Such are the effects of the solar

heat on the atmosphere, in the production of the

trade winds and monsoons, and in the regular

variations both annual and diurnal, of the baro-

meter and thermometer.



CHAPTER Xlt.

Of the Oscillations of the Atmosphere,-

The action of the Sun and Moon on the ocean

must previously traverse the atmosphere, which

must necessarily be subject to their influence, and

experience motions similar to those of the sea.

Hence result periodic variations in the height of

the barometer, and of the winds, the direction

and intensity of which are also periodic. These

winds are inconsiderable, and nearly insensible

in an atmosphere already very much agitated

from other causes : the extent of the oscillations

of the barometer is not a millimeter at the

equator itself, where it is greatest.

In the fourth book of the Celestial Mechanics

I have given the theory of all these variations,

and I have directed the attention of observers to

this subject. It is at the equator that observa-

tions on the variations in the height of the barome-

ter ought to be made, not only because they
are greater than in any parallel, but also because
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the clianges arising from irregular causes are

smaller there. However, as local circumstances

considerably increase the heights of the tides in

our harbours, they may produce a similar effect

in the oscillations of the atmosphere, and also in

the corresponding variations of the barometer,

it is therefore of importance to be assured of them

by observations.

The atmospheric tide is produced by the three

following causes ;
the first is the direct action of

the sun and moon on the atmosphere ; the se-

cond is the periodic elevation and depression of

the ocean, which is the moveable base of the at-

mosphere ; finally, the third is the attraction of

this fluid by the sea, the figure of which varies

periodically. These three causes arise from the

same attractive forces of the sun and moon j they

have, like their effects, the same periods as these

forces, (a) conformably to the principle on

which I have founded my theory of the tides.

The atmospheric tide is therefore subject to the

same laws as the tides of the ocean
; it is, like

to the latter, the combination of two partial tides

produced, the one by the action of the Sun, the

other by the action of the Moon. The period of

the atmospheric solar tide is half of a solar day ;

and that of the lunar tide is half of a lunar day.
The action of the Moon on the sea at Brest

being triple (b') of the action of the sun, the at-

mospheric lunar tide is at least double of the

solar tide. These observations should guide us

in the selection of observations proper to deter-
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mine sucli small quantities, and also in the

modes of combining them together, so as to ab-

stract as much as possible from the influence of

causes which produce great variations in the

height of the barometer. For several years the

heights of the barometer and thermometer have

been observed at nine o'clock A. M., at mid-day,
at three o'clock P. M. and at nine o'clock P. M.
These observations being made with the same

instrument, and almost by the same observer,

are from their precision, and their great number,

very proper to indicate an atmospheric tide, if

it be sensible. In the results of these observa-

tions, a diurnal variation of the barometer is

indicated very plainly : one month only is

sufficient to manifest it. The excess of the

greatest observed height of the barometer,

which occurs at nine o'clock, A. M., over the

least height, which happens at three o'clock

P. M., is at Paris eight-tenths of a millemetre,

according to the mean result of observations

made each successive day during six consecu-

tive years. As the height of the barometer

due to the solar tide, becomes the same at the

same hour of each day j
this tide is confounded

with the diurnal variation, which it modifies, so that

it cannot be distinguished by observations made
at the Royal Observatory. This is not the case

with respect to the barometric heights due to the

lunar tide, and which regulating itself by lunar

hours, does not become the same at the same

solar hours, until after the lapse of half of
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a month. The observations of which I have

spoken being compared from one half month to

another, are arranged in the most advantageous
manner for indicating the lunar tide. If, for

example, the maximum of this tide occurs at

one o'clock A. M. on the day of the syzygy, its

minimum will happen towards three o'clock

P. M. The contrary will be the case on the

day of the quadrature. This tide will therefore

increase the daily variation of the first of these

days y
it will diminish the daily variation of the

second
;

and the difference of these varia-

tions (je) will be twice the height of the atmos-

pheric lunar tide. But as the maximum of this

tide does not take place at nine o'clock A. M. in

the syzygy, it is necessary, in order to determine

its magnitude, and the hour it happens, to em-

ploy barometrical observations made at nine

o'clock A. M., at midday, and at three o'clock

P. M. for each day, both of the syzygy and of

the quadrature : We may likewise make use of

observations made on the days which precede or

which follow those phases by the same number

of days, and make all the observations of the

year concur in the determination of these delicate

elements.

An important observation may be made here,

without which it would have been impossible to

recognise so inconsiderable a quantity as the

lunar tide, in the midst of the great variations of

the barometer. The more the observations ap-

proach to each other, the less sensible will be
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the effects of these variations
;

it is almost no^

tiling on a result inferred {cl) from ohservations

made on the same day, and in the short interval of

six hours. The barometer varies sufficiently slow,

as not to derange in a sensible manner the effects

of regular causes. This is the reason why the mean
result of the daily variation of each respective

year is always very nearly the same, although
differences to the amount of several millemetres

may exist in the mean absolute barometrical

heights of different years : so that if the mean

height of nine o'clock A. M. of one year, be

compared with the mean height of three o'clock

P. M. of another year ; a diurnal variation will

result frequently very erroneous, and even some-

times affected with a sign the contrary of the

true sign. It is therefore of importance, in order

to determine such very small quantities, to deduce

them from observations made on the same day,

and to take the mean between a great number

of observations thus obtained. Consequently
we cannot determine the lunar tide, except by
a system of observations made on each day, at

three different hours at least according to the

method followed at the observatory.

M. Bouvard wished to insert in hisregisters,

barometric observations made on the [respective

days of each quadrature and syzygy, and also on

the day which precedes those phases, and on the

first and second days which follow it. They
embrace the eight years which have lapsed from

the first of October, 1815, to the first of October,
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1 8^0. I have made use of the observations of nine

o'clock in the morning, of midday, and of three

o'clock P. M. However I did not take into

account observations made at nine o'clock P. M.,
in order to diminish as much as possible, the in-

terval at which observations are made. Besides

those of the three first hours, which have been spe-

cified, were made more exactly at the time pointed

out, than those made at nine o'clock P. M., and

moreover the barometer being illuminated by the

light of the day at the three first hours, the differ-

ence (e) which may arise from the different manner
in which the instruments are illuminated, dis-

appears. From a comparison of these nu-

merous results (which embrace an interval of

1584 days,) with my observations, I have found

that the magnitude of the lunar atmospheric tide

is an eighteenth part of a millimetre, and the time

of its maximum, on the evening of the day of

the syzygy, is three hours and a quarter.

It is here particularly that the necessity is appa-
rent of employing a great number of observations,

ofcombining them in the most advantageous man-

ner, and of having a method for determining the

probability that the errors of the results, which (/)

are obtained, are confined within narrow limits,

without which we would be liable to present as

laws of nature the effects of irregular causes,

which is frequently the case in meteorology. I

have given this method in my analytical theory of

probabilities. And in the application of it to obser-

vations, 1 have determined the law of the anoma-

VOL. II. N
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lies of the diurnal variation of the barometer, am!

I have ascertained that we cannot without every

appearance of improbability, attribute the pre-

ceding results to these anomalies solely : it is pro-

bable that the lunar atmospheric tide diminishes

the diurnal variation in the syzygies, and that it

increases it in the quadratures, but it is so incon-

siderable that in the limits, this tide does not pro-

duce a variation in the height of a barometer of an

eighteenth of a millimetre, more or less ; which

shews, that the action of the Moon on the atmos-

phere, is nearly insensible at Paris. Although these

results have been obtained from 4752 observations,

the method already adverted to, shews that in or-

der to secure the requisite probability, and to obtain

with sufficient accuracy such a small element as

the lunar atmospheric tide, it is necessary to em^

ploy at least forty thousand observations. One
of the principal advantages of this method is, that

it indicates to what extent it is necessary to mul-

tiply observations, in order that no reasonable

doubt may rest on their results.

It follows from the laws of the anomalies of thei

diurnal variation of the barometer, which I ob-

tained, that there is a probability of ^, or of one to

one, that the daily variation from 9 o'clock A. M. to

three o'clock P. M. will be constantly positive in its

mean result for each month of 30 days, during 75
consecutive months. I have requested M. Bouvard
to examine whether this is the case for each of

the 72 months of the six years which have lapsed
from the first of January 1817 to the first of Ja-
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nuary 1823, from which lie inferred that the

mean diurnal variation was equal to 0./SOl. A

comparison of his observations has given the most

probable result, namely, that the mean diurnal

variation of each month has been always positive.

What is the respective influencjB on the lunar

tide, of the three causes already cited of the atmos-

pherical tide ;
it is difficult to give an answer to

this question. However the little density of the seri

comparatively to the mean density of the earth,

does not permit us to ascribe a sensible effect to

the periodic change of its figure. Without local

circumstances, the direct effect of the action of

the Moon would be insensible in our latitudes.

These circumstances have indeed a great influ-

ence on the height of the tides in our harbours ;

but as the atmospheric fluid is diffused about the

earth, much less irregularly than the sea, their in-

fluence on the atmospheric tide must be much
less than on the tide of the ocean. From these

considerations I am induced to (/) considei* the

periodic elevation or depression of the sea, as the

principal cause of the lunar atmospheric tide in

our climates. Barometric observations made every

il9.y in the harbours, where the sea ascends to a

considerable height, would throw considerable

light on this curious point of meteorolgy.

It may be remarked here, that the attraction

of the Sun and Moon, does not produce either in

the sea or in the atmosphere, any constant mo-

tion from east to west; that which is observed

between the tropics, under the name of trade

N S
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windsy must therefore arise from some other cause,

the following appears to be the most probable.
The Sun, which for greater simplicity, we

shall suppose in the plane (A) of the equator, ra-

rifies by its heat the strata of the air, and makes

them to ascend above their true level ; they must

therefore in consequence of their greater weight

subside, and move towards the poles in the higher

regions of the atmosphere ;
but at the same time

a fresh current of air must arrive in the lower re-

gions from the poles, in order to supply that

which has been rarified at the equator. There is

thus established two currents of air, blowing in

opposite directions, the one in the inferior, and

the other in the higher region of the atmosphere ;

but the actual velocity of the air, arising from the

rotation of the earth, is always less according as

it is nearer to the pole ; it must therefore, as it

approaches towards the equator, revolve slower

than the corresponding parts of the earth, and

bodies placed on the surface of the earth, must

strike it with the excess of their velocity, and thus

experience from its reaction, a resistance contra-

ry to their motion of rotation. Therefore to an

observer, who considers himself as immoveable,
the air appears to blow in a direction opposite
to that of the earth's rotation, i, e. from east to

west
;

this is in fact the direction of the trade

winds.

If we consider all the causes which derange the

equilibrium of the atmosphere, its great mobility

arising from its elasticity and mobility, the influ-
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ence of heat and cold on its elasticity, the im-

mense quantity of vapours with which it is alter-

nately charged and unloaded, finally, the changes
which the rotation of the earth produces in the

relative velocity of its molecules, from this alone

that they are displaced in the direction of the

meridians, we will not be astonished at the va-

riety of its motions, which it will be extremely
difficult to subject to certain laws.



CHAP. XIII.

Of tJtc Precession of the JEquinoxeSy and of (he

Nutation of the Axis ofthe Earth.

Every part of nature is linked together, and its

general laws connect phenomena with each other,

which appear to be altogether distinct. Thus, the

rotation of the terrestrial spheroid compresses the

poles, and this compression, combined with the

action of the Sun and Moon, produces the pre-

cession of the equinoxes, which, before the dis-

covery of universal gravitation, did not appear to

have any connection with the diurnal motion of

the Earth.

Let us suppose this planet to be an homogene-
ous speroid, protuberant at the equator, it may
then be considered as composed of a sphere of a

diameter equal to the axis of the poles, and of a

meniscus surrounding the sphere, of which the

greatest thickness corresponds with the equator
of the spheroid. The particles of this meniscus

may be considered as so many small moons ad-

hering together, and making their revolutions in

a period equal to the revolution of the Earth on
its axis.
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The nodes of all their orbits should therefore

have a retrograde motion, arising from the action

of the Sun, in the same manner as the nodes of

the lunar orbit ; and from the connection of these

bodies together, there should arise a motion of the

whole meniscus which would make its points of

intersection with the ecliptic to retrograde, but

this meniscus imparts to the sphere to which it

is attached, its retrograde motion, which, for this

reason, becomes slower
;
the intersection of the

equator and the ecliptic, that is to say, the equi-

noctial points, should consequently have a retro-

grade motion. Let us endeavour to investigate

both the law and the cause of this phenomenon.
And first let us consider the action of the Sun

upon a ring, situated in the plane of the equator.

If we conceive the mass of the Sun to be distri-

buted uniformly over the circumference of its or-

bit, (supposed circular) it is evident that the ac-

tion of this solid orbit will represent the mean ac-

tion of the Sun. This action, on every one of

the points of the ring above the ecliptic, being

decomposed into two, one in the plane of the

ring, and the other perpendicular to it, (a) it

follows that the resulting force, arising from these

last actions, on all the particles of the ring, is per-

pendicular to its plane, and situated on that diame-

ter of the ring, which is perpendicular to the line

of its nodes. The action of the solar orbit, on the

part of the ring below the ecliptic, produces also a

resulting force, perpendicular to the plane of the

ring, and situated in the inferior part of the same
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(liamctcr. These two resulting forces combine to

draw the ring towards the ecliptic, by giving it a

motion round the line of nodes ; its inclination,

therefore, to the ecliptic, would be diminished by
the mean action of the Sun, the nodes all tbe

time continuing stationary ;
and this would be the

case but for the motion of the ring, whicb we now

suppose to revolve in the same time as the Earth.

In consequence oftbis motion, the ring is enabled to

preserve a constant inclination to the ecliptic, and

to cbange the effect of the action of tbe Sun, into

a retrograde motion of the nodes. It gives to the

nodes a variation, which otherwise would be in

the inclination, and it gives to the (b) inclination

a permanency, which otherwise would rest vvith

the nodes. To conceive the reason of this singu-

lar effect, let us suppose the situation of tbe ring

varied by an infinitely small quantity, in such a

manner, that the planes of its two positions may
intersect each other, in a line perpendicular to the

line of the nodes.

At the end of any instant whatever, we may
decompose the motion of each of its points into

two, one of which should subsist alone in the fol-

lowing instant, the other being perpendicular to

the plane of the ring, and which should therefore

be destroyed. It is evident that the resulting force

of these second motions relative to all the points
of the upper part of the ring, will be perpendicu-
lar to its plane, and placed on the diameter which

we just now considered, and this is equally true

for the lower part of the ring. That this result-
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ing force may be destroyed by the action of the

solar orbit, and that the ring, by virtue of these

forces, may remain in equilibrio on its centre, it

is requisite that these forces should be contrary to

each other, and their moments, relatively to this

point, equal. The first of these conditions re-

quires that the change of position, supposed to

be given to the ring, be retrograde ; the second

condition determines the quantity of this change,
and consequently the velocity of the retro-

grade (c) motion of the nodes. And it is easily

demonstrated, that this velocity is proportional
to the mass of the Sun, divided by thecube of its

distance from the Earth, and multiplied by the

.cosine of the obliquity of the ecliptic.

Since the planes of the ring, in its two conse-

cutive positions, intersect each other in a diameter

perpendicular to the line of its nodes, it follows

that the inclination of these two planes to the

ecliptic is constant
; therefore the inclination of

the ring does not vary in consequence of the

mean action of the Sun.

That which has been explained relatively to a

ring, may be demonstrated by analysis, to hold

true in th^ case of a spheroid, differing but little

from a sphere. The mean action of the Sun pro-

duces in the equinoxes a motion proportional to

its mass, divided by the cube of its distance, and

multiplied by the cosine of the inclination to the

ecliptic. This motion is retrograde when the

spheroid is flattened at the poles ; its velocity de-

pends on the compression of the spheroid, but the
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inclination of the equator to the ecliptic always

remains the same.

The action of the Moon produces likewise a si-

milar retrogradation of the nodes of the terrestrial

equator in the plane of its orbit
; but the position

of this plane and its inclination to the equator in-

cessantly varying, by the action of the Sun, and as

the retrograde motion of the nodes of the equator
on the lunar orbit, produced by the action of the

Moon, is proportional to the cosine (d) of this

inclination, this motion is consequently variable.

Besides, even supposing it uniform, it would,

according to the position of the lunar orbit, cause

a variation both in the retrograde motion of the

equinoxes, and in the inclination of the equator

to the ecliptic. A calculation, by no means dif-

ficult, is sufficient to show, that the action ofthe

Moon, combined with the motion of the plane of

its orbit, produces. 1'' A (e) mean motion in the

equinoxes, equal to that which it would produce
if it moved in the plane of the ecliptic. 2'^^^ An
inequality subtractivey from this retrograde mo-

tion, and proportional to the sine of the longitude
of the ascending node of the lunar orbit. S^^^. A
diminution in the obliquity of the ecliptic, pro-

portional to the cosine of this same angle. These
two inequalities are repi-esented at once by the

motion of the extremity of die terrestrial axis

(prolonged to the heavens) round a small elipse,

conformably to the laws explained in Chap. XII.

of Book I. The greater axis of this ellipse is to

the lesser, as the cosine of the obliquity of the
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ecliptic is to the cosine of double this obliquity.
We may comprehend from what has been said*

the cause of the precession of the equinoxes, and
of the nutation of the Earth's axis, but a rigorous

calculation, and a comparison of its results with

observation, is the best test of the truth of a the-

ory. That of universal gravitation is indebted to

d'Alembert, for the advantage of having been thus

verified in the case of the two preceding pheno-
mena. This great mathematician first determin-

ed, by a beautiful analysis, the motions of the axis

of the Earth, on the supposition that the strata of

the terrestrial spheroid wei-e ofany density or figure

whatevei*, and he not only found his results ex-

actly conformable to observation, but obtained an

accurate determination of tiie dimensions of the

mall ellipse described by the pole of the Eai-th,

with respect to which the observations of Bradley
had left some little doubt.

The influence of a heavenly body, either upon
the motion of the axis of the Earth, or upon the

ocean, is always proportional to the mass of that

body, divided by the cube of its distance fcom tite

Earth. The nutation of the Earth's axis being
due to the action of the Moon alone, while the

mean precession of the equinoxes arises fr^aci tlic

combined actions of the Sun and Moon, it fol-

lows that the observed values of these two pheno-

mena, should give the ratio of their respective ac-

tions (f). If we suppose, with Bradley, the an-

nual precession of the equinoxes to be 154:'%, and

the cnthe extent of the nutation equal to 55%,
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the action of the Moon would be found to be double

that of the Sun. But a very small difference in the

extent of the nutation, produces a very consider-

able one in the ratio of the actions of these two

bodies. The most accurate observations give for this

extent 58'^02 hence it results that
-^-^ expresses the

ratio of the mass of the Moon to that of the Earth.

The phenomena of the precession and of the

nutation, throw a new light on the constitution of

the terrestrial spheroid. They give a limit to the

compression of the earth supposed elliptic, for it

appears from them that this compression does not

exceed 2^V.t> which accords with the experiments
that have been made on pendulums. We have

seen in Chap. VII. that there exists in the ex-

pression of the radius vector of the terrestrij^

spheriod, terms,' which, but little sensible in them-

selves, and on the length of the pendulum, cause

the degrees of the meridian' to deviate consider-

ably from the elliptic figure. These terms disap-

pear entirely in the values of the precession and

nutation, and for this reason, these phenomena
agree with the experiments on pendulums. The

existence, of these terms, therefore reconciles the

observations of the lunar parallax, those of the

pendulums and degrees of the meridian, and the

phenomena of precession and nutation.

Whatevier figure and density we may suppose in

the strata of the Earth, whether or not it be a

solid of revolution, provided it differs little from

a sphere, we can always assign an elliptic solid

of revolution, with which the precession and
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nutation will always be the same. Thus in the

hypothesis of Bouguer, of which we have spoken
in Chap. VII, and according to which the increase

of the degrees varies as the fourth power of the

sine of the latitude, these phenomena are

exactly the same as if the Earth was an el-

lipsoid, whose ellipticity was y^, but we have

seen that observations do not permit us to

suppose a greater ellipticity than 2T,t ^ that

these observations, and the experiments on pen-

dulums, combine to disprove the hypothesis of

Bouguer. y ^4

We have hitherto supposed the Earth en-

tirely solid, but this planet being covered in a

great part by the waters of the ocean, ought not

their action to change the phenomena of the

precession and nutation ? It is of importance to

consider this question.

The ocean, in consequence of its fluidity, is

obedient to the action of the Sun and of the

Moon. It seems at first sight that their re-ac-

tion should not affect the axis of the Earth.

D'Alembert and every subsequent mathematician,

who has investigated these motions, have entirely

neglected it, they have even commenced from

that point, to reconcile the observed quantity of

the precession and nutation, with the measures of

the terrestrial degrees. Nevertheless, a more pro-
found examination of this question has shewn us,

that the fluidity of the waters of the sea is not a suf-

ficient reason why their effect in the precession of

the equinoxes should be neglected j for if on one
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l)an(l, tlioy obey the action ofthe Sun and Moon, on

tlie other, the force of gravity tends to bring them

back without ceasing, to a state of equilibrium, and

consequently permits them to make but small os-

cillations ; it is therefore possible, that by their at-

traction and pression on the spheriod which they

cover, they may communicate, at least in part, the

same motion to the axis of the Earth, which

they would, if they could possibly become solid.

Besides, we may, by simple reasoning, be con-

vinced that their action is of the same order as

action of the Sun and Moon, on the solid part of

the Earth.

Let us suppose tliis planet to be homogeneous
and of the same density as the ocean, and more-

over, that the waters assume at every instant the

figure that is requisite for the equilibrium of

the forces that animate them. If in these hy-

potheses the Earth should suddenly become en-

tirely fluid, it would preserve the same figure,

all its parts would remain in equilibrio, and

the ^xis of the Earth would have no tendency to

move ; now it is evident that tlie same should be

the ease, if a part of this mass formed by be-

coming solid, the spheroid which the ocean covers.

The preceding hypotheses serve as a foundation

to the theories of Newton, relatively to the figure

of the Earth (g) and of the tides.

,
It is remarkable, that among the infinite num-

ber of those which may be chosen on this sub-

ject, this great geometrician has selected two
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which neither give the precession nor the nuta-

tion
;
the re-action of the waters destroying the

effect of the action of the Sun and Moon upon
the terrestrial nucleus, whatever may be its

figure. It is true that these two hypotheses, par-

ticularly the last, are not conformable to nature,

but we may see, a priori^ that the effect of the

re-action of the waters, although different from

that which takes place in the hypothesis of New-

ton, is nevertheless of the same order.

The investigations which I have made on the

oscillations of the ocean, have enabled me to

determine this effect of the re-action of the wa-

ters in the true hypotheses of nature, and have

led to this remarkable theorem.

Wliatever may he the law of tJie depth of the

ocean, and whatever he the figure of the spheroid
which it covers, the phenomena of the precession

and nutation will he the same as if the ocean

fmifned a solid mass with this spheroid.
If the Sun and Moon acted only on the Earth,

the mean inclination of the equator to the eclip-

tic would be constant, but we have seen that the

action of the planets continually changes the po-

sition of the terrestrial orbit, and produces a dimi-

nution of its obliquity to the equator, which is fully

confirmed by observations ancient and modern, the

same cause gives to the equinoxes, a direct annual

motion of 0''9659 ;
thus the annual Recession

produced by the action of the Sun and Moon,
is diminished by this quantity in consequence of

the action of the planets j without this action
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it would be 155'59'27. These effects of the

action of the planets are independent of the

compression of the teiTcstrial spheroid, but the

action of the Sun and Moon upon this spheroid,

modifies these effects and changes their laws.

If we refer to a fixed plane, the position

of the orbit of the Earth, and the motion of

its axis of rotation, it will appear, that the

action of the Sun in consequence of the varia-

tions of the ecliptic, will produce in this axis an

oscillatory motion similar to the nutation, but

with this difference, that the period of these

variations being incomparably longer than that

of the variations of the plane of the lunar orbit,

the extent of the corresponding oscillation in

the axis of the Earth, is much greater than in

the nutation. The action of the Moon produces
in this same axis a similar oscillation, because

the mean inclination of its orbit to that of the

Earth, is constant. The displacement of the

ecliptic, by being combined with the action of

the Sun and Moon upon the Earth, produces

upon its obliquity to the equator, a very dif-

ferent variation from that which would arise

from this change of position only : the entire

extent of this variation would be, by this altera-

tion of the ecliptic, about twelve degrees, how-

ever in consequence of the action of the Sun and

Moon, it is reduced to about three degrees.

The variation in the motion of the equinoxes,

produced by these same causes, changes the

duration of the (//) tropical year in different
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cenutries, The duration diminishes as this mo-

tion augments, which is the case at present, so that

the actual length of the year is now shorter by

about 13'', than in the time of Hipparchus. But this

variation in the length of the year has its limits,

which are also restricted by the action of the Sun

and Moon, upon the terrestrial spheroid. The

extent of these limits which would be about 500'/,

in consequence of the alteration in the position of

the ecliptic, is reduced to ISO^'by this action.

Lastly, the day itself, such as we have de-

fined it in the First Book, is subject by the dis-

placement of the ecliptic, combined with the

action of the Sun and Moon, to very small va-

riations, which though indicated by the theory,

are quite insensible to observation. According
to this theory, the rotation of the Earth is uni-

form, and the mean length of the day may be

supposed constant, an important result for astro-

nomy, as it is the measure of time, and of the

revolutions of the heavenly bodies. If it should

undergo any change, it would be recognized by
the durations of these revolutions, which would

be proportionably increased or diminished, but the

action of the heavenly bodies does not produce

any sensible alteration.

Nevertheless, it might be imagined that the

trade winds which blow constantly from east to

west between the tropics, would diminish the ve-

locity of the rotation of the Earth, by their ac-

tion on the continents and mountains. It is im-

possible to submit this action to analysis ; fortu-

VOL. II. o
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nately it may be demonstrated that this action on

the rotation of the Earth is nothing, by means of

the principle of the conservation of areas, which

we have explained in the Third Book. Accord-

ing to this principle, (i) the sum of all the parti-

cles of the Earth, the ocean and the atmosphere,

multiplied respectively by the areas which their

radii vectores describe round the centre of gra-

vity of the Earth, projected on the plane of the

equator, is constant in a given time.

The heat of the Sun can produce no effect,

because it dilates bodies equally in every direc-

tion ; now it is evident, that if the rotation of the

Earth should diminish, this sum would be less.

Therefore the trade winds, which are produced

by the heat of the Sun, cannot alter the rotation

of the Earth. The same reasoning shews us

that the currents of the sea ought not to produce

any sensible change. To produce any perceptible

alteration in its period, some great change must

take place in the parts of the terrestrial spheroid :

thus a great mass taken from the poles to the

equator, would make this rotation longer, it

would become shorter if the denser materials

were to (^) approach the centre or axis of the

Earth ;
but we see no cause that can displace such

great masses to distances considerable enough to

produce any variation in the length of the day,
which may be regarded as one of the most con-

stant elements in the system of the world. This is

likewise the case with respect to the points where

the axis of rotation meets the surface. If the Earth
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revolved successively about different diameters,

making with each other considerable angles, the

equator and the poles would change their positions

on the Earth j
and the ocean, flowing continually

towards the new equator, would alternately over-

whelm and then abandon the highest mountains :

but all the investigations which I have made

upon this change of position in the poles, have

convinced me that it is insensible.

o ^



CHAP. XIV.

On the Libration of the Moon,

We have now only to explain the cause of the

libration of the Moon, and of the motion of the

nodes of its equator.

The Moon, in virtue of its motion of rotation,

is a little flattened at its poles ; but the attrac-

tion of the Earth must have lengthened a little

that axis which is turned towards it. If the Moon
was homogeneous and fluid, it would (to be in

equilibrio) assume the form of an ellipsoid, of

which the lesser axis passed through the poles of

rotation ; (a) the greater axis would be directed

to the Earth, and in the plane of the lunar equa-

tor, and the mean axis would be situated in the

same plane, perpendicular to the other two. The
excess of the greatest above the least axis would

be quadruple the excess of the mean above the

least, and nearly equal 2tV4Co ^^^ ^^^^^ ^^is being
taken as unity.

We may easily conceive that if the greater

axis of the Moon deviates a little from the direc-
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tionofthe radius vector, which joins its centre

with that of the Earth, the terrestrial attraction

will tend to bring it down to this radius, in the

same manner as gravity brings a pendulum
towards the vertical. If the primitive motion of

rotation of this satellite had been sufficiently ra-

pid to have overcome this tendency, the period of

its rotation would not have been perfectly equal to

that of its revolution, and the difference would

have discovered to us (b) successively every point

in its surface. But at their origin the angular

motions of rotation and revolution having dif-

fered but little, the force by which the greater

axis of the Moon tended to deviate from the ra-

dius vector, was not sufficient to overcome the

tendency ofthis same axis towards the radius, due

to the terrestrial gravity, which by this means has

rendered their motions rigorously equal, and in

the same manner as a pendulum, drawn aside

from the vertical by a very small force, conti-

nually returns, making small vibrations on each

side of it, so the greater axis of the lunar spheroid

ought to oscillate on each side of the mean radius

vector of its orbit. Hence would arise a motion

of libration, of which the extent would depend on

the primitive difference between the angular mo-

tions of rotation and revolution of the Moon.

This difference must have been very small, since

it has not been perceived by observation.

Hence we see that the theory ofgravitation ex-

plains in a sufficiently satisfactory manner, the

rigorous equality of these two mean motions of
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rotation and revolution of the Moon. It would

be against all probability to suppose that these

two motions had been at their origin perfectly

equal, but for the explanation of this phenome-
non, it is enough to assume that their primitive

difference was but small, and then the attraction

of the Earth would establish the equality which

at present subsists.

The mean motion of the Moon being subject

to great secular inequalities, which amount to se-

veral circumferences, it is evident that if its

mean motion of rotation was perfectly uniform,
this satellite would, by virtue of these inequalities,

present successively to the Earth every point on

its surface, and its apparent disk would change

by imperceptible degrees, in proportion as these

inequalities were developed ; the same observei-s

would see pretty nearly the same hemisphere, and

there would be no considerable difference, except
to observers separated by an interval of several

ages. But the cause Avhich has thus established

an equality between the mean motions of revolu-

tion and rotation, must take away all hope from

the inhabitants of the Earth, of seeing the oppo-

site side of the lunar hemisphere. The terres-

trial attraction, by continually drawing towards

us the greater axis of the Moon, causes its mo-

tion of rotation to participate in the secular ine-

qualities of its motion of revolution, and the same

hemisphere to be constantly directed towards the

Earth.

The same theory ought to be extended to all



ON THE LIBRATION OF THE MOON. 199

the satellites, in which an equality between their

motions of rotation and of revolution round their

primary, has been observed.

The singular phenomenon of the coincidence

of the nodes of the equator of the Moon, with

those of its orbit, is another consequence of the

terrestrial attraction. This was first demonstrat-

ed by Lagrange, who by a beautiful analysis was

conducted to a complete explanation (c) of all the

observed phenomena of the lunar spheroid. The

planes of the equator and of the orbit of the

Moon, and the plane passing through its centre

parallel to the ecliptic, have always very nearly

the same intersection ;
the secular motions of the

ecliptic neither alter the coincidence of the nodes

of these three planes, nor their mean inclination,

which the attraction of the Earth constantly main-

tains the same.

We may observe here, that the preceding phe-
nomena cannot subsist with the hypothesis in

which the Moon, originally fluid and formed of

strata of different densities, should have taken the

figure suited to their equilibrium. They indicate

between the axes of the Moon, a greater inequa-

lity than would take place in this hypothesis. The

high mountains whicli we observe at the surface

of the Moon, have without doubt a sensible in-

fluence on these phenomena, and so much the

greater as its ellipticity is very small, and its mass

inconsiderable.

Whenever nature subjects the mean motions of

the celestial bodies to determinate conditions, they
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are always accompanied by oscillations, whose
extent is arbitrary. Thus the equality of the

mean motions of revolution and rotation produces
a real libration in this satellite. In like manner
the coincidence of the mean nodes of the equator
and lunar orbit, is accompanied by a libration of

the nodes of this equator round those of the orbit,

a libration so small as hitherto to have escaped
observation. We have seen that the real libra-

tion of the greater lunar axis is insensible, and it

has been observed, (Chap. VI.^ that the libration

of the three satellites of Jupiter is also insensible.

It is remarkable, that these librations, whose extent

is arbitrary, and which might have been consider-

able, should nevertheless be so very small
; we must

attribute this to the same causes which originally

established the conditions on which they depend.
But relatively to the arbitrary quantities, which

relate to the initial motion of the rotation of the

celestial bodies, it is natural to think that without

foreign attractions, all their parts, in consequence

of the friction and resistance which is opposed to

their reciprocal motion, would, in process of time,

acquire a permanent state of equilibrium, which

cannot exist but with an uniform motion of rota-

tion round an invariable axis ;
so that observa-

tion should no longer indicate in this motion, any
other inequalities than those derived from these

attractions. The most exact observations show

that this is the case with the Earth, the same re-

suit extends to the Moon, and probably to the

other celestial bodies.
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If the Moon had encountered a comet (which

according to the theory of chances ought to hap-

pen in the immensity of time), their masses must

have been very minute ; for the impact of a comet,

which would only be the hundredth millioneth

part of that of the earth, would be sufficient to

render the real libration of this satellite sensible,

which however is not perceived by observations.

This consideration, combined with those which

we (d) have presented in the fourth chapter, ought
to satisfy those astronomers who apprehend that

the elements of their tables may be deranged by
the action of these bodies.

The equality of the motions of rotation, and of

revolution, furnishes the astronomer, who may
wish to describe its surface, a universal me-

redian, (e) suggested by nature, and easy to be

found at all times, an advantage which geography
has not in the description of the earth. This

meridian is that which passes through the Poles

of the Moon, and through the extremity of its

greater axis, always very nearly directed towards

us. Although this extremity is not distinguished

by any spot, still its position at each instant may
be fixed, by considering that it coincides with the

line of ^the mean nodes of the lunar orbit, when

the line itself coincides with the mean place of

the Moon. The situation of different spots of the

Moon have been thus determined as exactly as

that of many of the most remarkable places on the

earth .



CHAP. XV.

Of the proper motions of thefixed stars.

After having considered the motions of the bo-

dies composing the solar system, it remains to ex-

amine those of the stars, all of which ought in

consequence of the universal gravitation of matter,

to tend towards each other, and describe im-

mense orbits. Already observations have indi-

cated {a) these great motions, which probably in

part arise from the motion of translation of the

solar system, which motion, according to the laws

of optics, is transferred in a contrary direction to

the stars. When a great number of them are

considered together, as their real motions have

place in every direction, they ought to disappear
in the expression of the motion of the Sun, which

is inferred from a consideration of their proper ob-

served motions taken collectively. By this means

we have recognised that the system of the Sun,

and of every thing which surrounds it, is carried

towards the constellation Hercules, with a velocity

at least equal to that (J?)
of the earth in its orbit.

But very exact and multiplied observations, made
for the interval of one or two centuries, will de.
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termine exactly this important and delicate point

of the system of the world.

Besides these great motions of the Sun and of

the Stars, we observe particular motions in se-

veral stars, which are called double. Thus two

stars are termed, which being very near, appear
to constitute but one, in telescopes whose mag-

nifying power is inconsiderable. Their apparent

proximity may arise from their being very nearly

in the same visual ray. But a similar disposition

is itself an index of their real proximity ; and

if moreover their proper motions are considerable,

and diifer little in right ascension and declina-

nation, it becomes extremely probable that they
constitute a system of two bodies very near to

each other, and that the small differences of their

proper motions arise from a motion of revolu-

tion of each of them, about their common centre

ofgravity : without this, the simultaneous existence

of these three circumstances, (c) namely the ap-

parent proximity of these two stars, and their mo-

tions both in right ascension and declination being

nearly equal, would be altogether improbable.
The 61""^ of the swan and the star next to it,

combine these three conditions in a remarkable

manner : the interval which separates them is only
60^' ; their proper annual motions from the time of

Bradley to the present day, have been 15'75, and

16'',03 in right ascension, and 10^24 and 9",56 in

declination : it is therefore very probable that

these two stars are very {d) near to each other,

and that they revolve about their common centre
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of gravity in the period of several ages. The di-

rection of their proper motions being almost con-

trary to that of the motion of the solar system,

seems to indicate that they are at least in a great

part an optical illusion due to this last motion ;

and as they are very considerable, the annual pa-
rallax of those two stars ought to be one of the

greatest. If we could succeed in determining it,

we would obtain by the time of their revolution,

the one about the other, the sum of their (e) mas-

ses relatively to those of the Sun and of the

Earth.

The contemplation of the heavens exhibits also

several groups of brilliant stars comprised in a

very small space ;
such is that of the Pleades. A

like disposition indicates, with much probability,

that the stars of each group are very near, rela-

tively to the distance which separates them from

the other stars, and that they have about their

common centres of gravity, motions which the

progress of time will make known.



BOOK THE FIFTH.

SUMMARY OF THE HISTORY OF ASTRONOMY.

Multi pertransibunt et augebitur scientia-

Bacon.

The principal phenomena of the system of the

world have been detailed in the preceding books,

according to the simplest and most direct analyti-

cal order. The appearances of the celestial mo-

tions were first considered, and then their mu-

tual comparison conducted us to the discovery of

the real motions which produced them. In order

to arrive at the principal regulator of those mo-

tions, it was necessary to know the laws of the

motion of matter, and accordingly, these have

been developed in all their detail. By applying
them to the bodies and motions observed in the

solar system, it was ascertained that there exists

not only between these bodies, but also between

their smallest molecules, an attraction which va-

ries as the respective masses divided (a) by the

square of their mutual distance. Finally, proceed-

ing in a reverse order, from this universal force to

its effects, it was shewn that not only all the known
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phenomena, and also those merely perceived by
astronomers, but likewise a gi^eat number of others

entirely new, which subsequent observation has ve-

rified, arise from this source. This indeed is not

the order according to which those results were

discovered. The preceding method supposes that

we have exhibited before our view the entire

series of ancient and modern observations, and

that in comparing them together, and in deducing
from them, the laws of the heavenly motions, and

the causes of their inequalities, we have employed
all the resources which are now furnished by

analysis and mechanics. But as our knowledge in

these two departments of science has advanced

concurrently with the improvements made in

Astronomy, their condition at its various epochs,
must necessarily have influenced our astronomi-

cal theories. Several hypotheses have been succes-

sively adopted, although directly contrary to the

known laws of mechanics
;
but of many of those

laws, even to this very day we are ignorant, so that

it should not be a matter of surprize if, in con-

sequence of this ignorance, difficulties have been

raised against the true system of the world, inter-

spersed as it is on all sides with such complicated

phenomena. Hence the progress of our astronomi-

cal knowledge has been frequently embarrassed,

and the evidence of our acquirement in this

science has been rendered doubtful, from the

truths with which it was enriched, being com-

bined with errors, which nothing but time, ob-

servation, and the progress of the other sciences
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could separate from it. We proceed to give, in

the following book, a summary of its history, and

in this account we shall have occasion to observe

how, after remaining for a long series of years, in

its infancy, it sprung up and flourished in the Alex-

andrian school ; that then it remained stationary,

until the time of the Arabs, who improved and

advanced it by their observations ;
and that, finally

passing from Asia and Arabia, where it originated,

it settled in Europe, where in less than three

centuries it has obtained the eminence which it

now holds among the sciences. This detail of the

most sublime of the natural sciences will furnish

the best excuse for the aberrations of the human
mind in the invention of Astrology, which from

the remotest antiquity has every where occupied
the attention of ignorant and timid man, but

which the improvements in this science have for

ever dissipated.



CHAP. L

Of the Astronomy of the Ancients^ till the Foun-

dation of the Alexandrian School,

The view of the firmament must at all times have

arrested the attention of mankind, and more par-

ticularly in those happy climates, where the sere-

nity of the air invited them to observe the stars.

Agriculture required, that the seasons should be

distinguished and their returns known. It could

not be long before it was discovered that the rising

and setting of the principal stars, when they are

immersed in the Sun's rays, or when they are

again extricated from his light, might answer this

purpose. Hence we find that among most na-

tions, this species of observations may be traced

back to such early times, that their origin is lost.

But some rude remarks on the rising and setting

of the stars, could not constitute a science. As-

tronomy did not commence till anterior observa-

tions being registered and compared, and the ce-

lestial motions examined with greater care, some

attempt was made to explain their motions and

their laws.

The motion of the Sun in an orbit inclined to
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the equator ;
the motion of the Moon, the cause

of its phases and eclipses, the knowledge of the

planets and their revolutions, and the sphericity
of the Earth, were probably the objects of this

ancient astronomy ;
but the few monuments, that

remain of it, are insufficient to determine either

its epoch or its extent. We can only judge of its

great antiquity, by the astronomical periods

which have come down to us, and which suppose
a series of observations so much the longer, as

they were more imperfect. Such has been

the vicissitude of human affairs, that printing, the

art, by which alone the events of past ages can be

transmitted in a durable manner, being of modern

invention, the remembrance of the first inventors

in the arts and sciences has been entirely effaced.

Great nations, whose names are hardly known in

history, have disappeared, without leaving in

their transit any traces of their existence.

The most celebrated cities of antiquity have

perished with their annals, and the language itself

which the inhabitants spoke ;
with difficulty can

the scite of Babylon be recognised. Of so many mo-
numents of the arts and of industry, which adorn-

ed their cities and passed for the wonder of the

world, there only remains a confused tradition,

and some scattered wrecks, of which the origin is

for the most part uncertain, but of which not-

withstanding the magnitude attests the power of

the people who have elevated these monuments.

It appears that the practical astronomy of these

early ages was confined to observations of the

VOL. ir. p
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rising and setting of the principal stars, with their

occultations by the Moon and planets, and of

eclipses. The path of the Sun was followed, by

means of the stars, the light of which was ob-

scured by the twilights, and perhaps by the vari-

ations in the meridian shadow of the gnomon.
The motion of the planets was determined by the

stars which they came nearest to, in their course.

To recognize all these stars and their various mo-

tions, the heaven was divided into constella-

tions ;
and that celestial zone from which the Sun,

Moon and planets were never seen to deviate,

was called the Zodiac. It was divided into the

twelve following constellations : Aries, Taurus,

Gemini, Cancer, Leo, Virgo, Libra, Scorpio,

Sagittarius, Capricornus Aquarius and Pisces.

These were called signs, because they served to

distinguish the seasons. Thus the entrance of

the Sun into Aries, in the time of Hipparchus,
marked the commencement of the spring, after

which it described the other signs, Taurus, Ge-

mini, Cancer, &c. but the retrograde motion of

the equinoxes changed, though slowly, the coin-

cidence of the constellations with the seasons of

the year, and at the sera of this great astronomer

it was already very different from what it was at

the origin of the zodiac
; nevertheless since astro-

nomy, according as it became more perfect, had
^ need of signs ta indicate the motion of the stars,

they still continued as in the time of Hipparchus
to denote the commencement of the spring by the

entrance of the Sun into sign ofAries. Afterwards
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they distinguished the signs of the zodiac from the

constellations, the first being ideal, and serving

only to designate the course of the heavenly bodies.

Now that we endeavour to refer our ideas to the

most simple expressions, we no longer use the

signs of the zodiac, but mark the positions of the

heavenly bodies on the ecliptic, according to their

distance from the equinoctial point.

The names given to the constellations of the zo-

diac were not assigned to them fortuitously ; for they

express relations which were the object of a great

number of investigations and of systems. Some of

these names appear to relate to the motion of the

Sun. Cancer and Capricorn, for example, seem to

indicate the retrogradation of this body from the

solstices, and Libra denotes the equality of the day
and night. The other names seem to refer to the

climate and agriculture of those nations to whom
the zodiac owes its origin. Capricorn, or the con-

stellation of the goat, appears to be more properly

placed at the highest than at the lowest point
of the Sun's course. In this position, which goes

backward fifteen (b) thousand years, the balance

was at the equinox of spring ; and the con-

stellations of the zodiac had striking relations with

the climate of Egypt and with its agriculture. All

these relations would also subsist if the constel-

lations of the zodiac, instead of being named from

their rising with tlie Sun, or the commenqemeiit

of the day, had been denominated from their set-

ting, at the beginning of night ; if, for example, the

setting of libra had at this moment indicated the

i> 2
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commencement ofspring. The origin ofthe zodiac,

which would not then go farther back than two

thousand years before our sera, agrees much bet-

ter than the preceding, with the little data which

we possess of the antiquity of the sciences, and

particularly of astronomy.
The Chinese are, of all people, those who fur-

nish the most ancient astronomical observations.

The first eclipses of which mention is made can-

not be made use of in chronology, in consequence
of the indeterminate manner in which they are

detailed ; notwithstanding this, these eclipses

evince that when the Emperor Yao lived, which

was more than two thousand years before our

sera, astronomy was cultivated in China as the

basis of their ceremonies. The calender, and

the announcement of eclipses, were important ob-

jects for which a mathematical tribunal was cre-

ated. At that period the length of the meridian

shadows of the gnomon, at the time of the sols-

tices, and the passage of the stars over the meri-

dian, were measured ;
time was measured by means

of clepsydne, and the position of the Moon, with

respect to the stars at the eclipses, was deter-

mined, which would give the sidereal positions of

the Sun and of the solstices. They also con-

structed instruments for measuring the angular

distances of the stars. From a combination

of these means, the Chinese ascertained that

the^ duration of the solar year exceeded, by a

quarter of a day very nearly, three hundred and

sixty-five days, and they fixed its commencement
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at the winter solstice. Their civil year was lu-

nar, and in order to reduce it to the solar year,

they made use of a period (c) of nineteen solar

years, corresponding to two hundred, and thirty

five lunations, which is exactly the same period
as that which Calippus, sixteen centuries after-

wards, introduced into the Grecian calendar.

Their months consisted alternately of twenty-
nine and thirty days, and their lunar year con^

sisted of three hundred and fifty-four days ; it

was consequently shorter than their solar

year hy eleven days and a quarter ;
but in the

year when the sum of these differences exceeded

a lunation, they intercalated one month. They
divided the equator into twelve immoveable

signs, and into eighteen constellations, in which

they carefully determined the position of the sol-

stices. The Chinese, instead of a century, made
use of a period of sixty years ;

and instead of a

week, a period of sixty days ; but this short cyclQ

of seven days, which was in use throughout the

entire east, was known to them from the most re-

mote periods. The division of the circumference

was always in China, subordinated to that of the

length of the year, so that the Sun described ex-

actly a degree every day ;
but the subdivisions of

the degree, ofthe day, ofweights, and of every kind

of lunar measure, were decimal
; and this prece-

dent, furnished for upwards of four thousand years
at least, by the most populous nation on the earth,

evinces that these divisions, which besides offer so

many advantages, may at length by use become ex-
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tremely popukr. The first observations which

were useful to astronomy are those, of Tcheou-

Kong, whose memory is still held in the highest
veneration in China, as one of the best princes
who ever swayed the sceptre. Being brother of Ou
Ouang, who founded the dynasty of Tcheou, he

governed the empire after his death, during the

minority of his nephew, from the year 11 04 to

the year 1098 before our sera. Confucius, ad-

dressed in the Chou-King, the book held in the

highest veneration by the Chinese, through this

great prince, to his pupil, the wisest maxims of

government and morality. Tcheou-Kong himself,

with his astronomers, made a great number of

observations, three of which have fortunately

come down to us, and they are of inestimable va-

lue, from their great antiquity. Two of them are

about the meridian lengths of the gnomon, which

were observed with the greatest care at the sum-

mer and winter solstice, in the town of Loyang ;

they assign an obliquity to the ecliptic, at this re-

mote period, which perfectly corresponds to the

the theory of universal gravitation. The other

observation is relative to the position of the win-

ter solstice in the heavens at the same epoch. It

likewise answers to the theory, as far as can be

expected from the means employed, to determine

such a delicate element. This remarkable agree-

ment does not permit us to doubt of the authen-

ticity of these observations.

The burning of the Chinese books, commanded

by the emperor Chi Hoanti, about the year 213,
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before our sera, destroyed all vestiges of the

ancient methods of computing eclipses, and

several interesting observations, so that in or-

der to discover those which may be useful to

the Atronomer, it is necessary to descend to

four centuries after Tscheou-Kong, and to pass

over to Chaldea. Ptolemy has transmitted se-

veral to us ; the most ancient are three eclipses

of the moon observed at Babylon in the years

719 and 7SO before our sera, and which he made

use of in determining the motions of the moon.

Unquestionably, Hipparchus and he were not in

possession of the most ancient, which were suffi-

ciently accurate to be employed in these determi-

nations, as their precision is always proportional to

the interval which separates the extreme observa-

tions. This consideration should diminish our

regrets on account of the loss of the Chaldean ob-

servations, which Aristotle, according to Porphyry,
as cited by Simplicius, caused to be communicated

by the interference ofCallisthenes, and which went

back to nineteen centuries before Alexander. But

the Chaldeans could not discover, except after a

long series of observations, the period of 6585

days an(? ^, during which the moon makes 223

revolutions with respect to the sun, 239 anoma-

listic revolutions, and 241 revolutions with res-

pect to its nodes. They added j^j of the circum-

ference, in order to obtain the sidereal revolution

of the sun in this interval, which supposes that

the length of the sidereal year is 865 days and ^.

Ptolemy, in recording this period, attributes it

to the most ancient mathematicians ;
but the as-
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tronomer Gerninus, wlio was ootemporary with

Sylla, affirms tliat the Chaldeans discovered this

period, and he explains the manner, in which

they deduced from it, the diurnal motion of the

moon, and the method hy which they computed
the lunar anomaly. His testimony should remove

every doubt on the subject, if it be considered

that the Chaldean saros, consisting of 223 lunar

months, which brings back the moon to the same

position with respect to the nodes, its perigee,
and the sun, makes a part of the preceding pe
riod. Thus, the eclipses observed during one period,
furnish a simple means of predicting those which

ought to occur in subsequent periods. This pe-

riod, and the ingenious manner in which they

computed the principal lunar inequality, required
a great number of observations, skilfully discus-

sed ; it is the most remarkable astronomical mo-

riument before the foundation of the Alexandrian

school. The preceding is all we know with cer-

tainty respecting the Astronomy of a people whom
all antiquity consider as the most advanced in

the science of the heavens. The opinions of the

Chaldeans respecting the system of the world have

been various, as must necessarily be the case,

concerning objects respecting which observation

and theory had previously furnished so little in-

formation. However, some of their philosophers,

more fortunate than others, or guided by juster

views of the order and immensity of the universe,

}iave thought that the comets were, like the
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planets, subject to motions regulated by immutable

laws.

We have very little positive information res-

pecting the Astronomy of the Egyptians. The

exact direction of the faces (dj of their pyramids
towards the four cardinal points, gives us a fa-

vourable notion of their mode of observing ; but

none of their observations have reached us. It is

surprising that the astronomers of Alexandria

were obliged to make use of the Chaldean ob-

servations, either because the record of the Egyp-
tian observations had been lost, or that the Egyp-
tians did not wish to communicate them, from a

feeling of jealousy, which might excite the favour

ofthe kings for the school which they had founded.

Previously to this epoch the reputation of

their priests had attracted to Egypt, the first

philosophers of Greece. Thales, Pythagoras,

Eudoxus and Plato, journeyed thither to acquire

from them the knowledge with which they enrich-

ed their own country ;
and it is extremely probable

that the school of Pythagoras is indebted to them
for the sound notions which they taught respect-

ing the constitution of the world. Macrobius ex-

pressly attributes to them the suggestion of the

motions of Mercury and Venus about the sun.

Their civil year consisted of three hundred and

sixty five days, and they added at the end of each

year five complimentary days called
i-wocyofj^ivoo.

But according to the ingenious remark of M.

Fourrier, the observation of the heliacal rising
of Sirius, the most brilliant of all the stars, might
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have taught them that the return of these risings

would then be retarded each year by a fourth part

of a day ;
and on this remark they founded (e) the

Sothiac period of 1461 years, which would very

nearly reduce their months and fetes to the

same seasons. This period is renewed in the

year 1S9 of our sera. If it had been preceded by a

similar period, as every thing induces us to sup-

pose, the origin of this anterior period would go

back to an epoch when we may, with great pro-

bability, suppose that the Egyptians gave names

to the signs of the zodiack, and when conse-

quently their Astronomy was founded. They had

observed, that in twenty-five of their years there

were three hundred and nine returns of the moon
to the sun, which assigns a very accurate value

to the length of the month. Finally we may per-

ceive, from what remains of their zodiacks, that

they observed with great care the position of the

solstices in the zodiacal constellations. According
to Dion Cassius the week is due to the Egyptians.
This period is founded on the most ancient sys-

tem ofAstronomy, which placed the Sun, theMoon,
and the Planets in the following order of distances

from the earth, commencing with the greatest ; Sa-

turn, Jupiter, Mars, the Sun, Venus, Mercury, the

Moon : the successive parts of the series of days,

divided respectively into twenty-four parts, were

consecrated in the same order to these stars. Each

day took the name of the star corresponding to

its first part; the week is found in India among
theJBramins with our denominations; and I am
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satisfied that the days denominated by them and

by us in the same manner, correspond to the

same physical instant. This period, which was

made use of by the Arabians, by the Jews, the

Assyrians, and throughout the entire East, is un-

interruptedly renewed, and always the same, per-

vading all nations and changes of empires. It is

impossible, among such a variety of nations, to as-

certain which was its inventor ;
we can only af-

firm that it is the most ancient monument of as-

tronomical knowledge. The civil year of the

Egyptians consisted of 365 days ; it is easy to

perceive that if the name of its first day was as-

signed (d) to each year ;
the names of these

years would be invariably those of the days of the

week. It is thus that weeks of years might be

formed, which was in use among the Hebrews,

but which evidently belonged to a nation whose

year was solar and consisting of 365 days.

The knowledge of astronomy appears to have

constituted the basis of all the theogonies, the

origin of which is thus explained in the simplest

possible manner. In Chaldea and ancient Egypt,

astronomy was only cultivated in their temples,

and by priests, who made no other use of their

knowledge than to consolidate the empire of su-

perstition, of which they were the ministers.

They carefully disguised it under emblems, which

presented to credulous ignorance, heroes and gods,

whose actions were only allegories of celestial

phenomena, and of the operations of nature ;
al-

legories which the power of imitation, one of the



220 ASTRONOMY OF THE ANCIENTS

chief springs of the moral world, has perpetuated

to our own days, and mingled with our religious

institutions. The better to enslave the people,

they profited by their natural desire of penetrat-

ing into futurity, and invented astrology. Man

being induced, by the illusions of his senses, to

consider himself as ths centre of the universe, it

was easy to persuade him, that the stars influenc-

ed the events of his life, and could prognosticate

to him his future destiny. This error, dear to

his self-love, and necessary to his restless curio-

sity, seems to have been co-eval with astronomy.

It has maintained itself through a very long pe-

riod, and it is only since the end of the last cen-

tury, that our knowledge of our true relations

with nature, has caused them to disappear.

In Persia and India, the commencement of

astronomy is lost in the darkness which envelopes
the origin of these people.

The Indian tables indicate a knowledge of astro-

nomy cosiderably advanced, but every thing shews

that it is not ofan extremely remote antiquity. And

here, with regret, I differ in opinion from a learned

and illustrious astronomer, whose fate is a terrible

proof of the inconstancy of popular favour, who,
after having honoured his career by labours useful

both to science and humanity, perished a victim

to the most sanguinary tyranny, opposing the

calmness and dignity of virtue, to the revilings of

an infatuated people, of whom he had been once

the idol.

The Indian tables have two principal epochs.
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which go back, one to the year 3102, the other

to the year 1491 before our sera. These epochs
are connected with the mean motions of the Sun,

Moon, and planets, in such a manner, that set-

ting out from the position which the Indian tables

assign to all the stars at this second epoch, and

reascending to the first by means of these tables,

the general conjunction which they suppose at

this primitive epoch, is found. Baillie, the cele-

brated astronomer, already alluded to, endeavours,

in his Indian astronomy, to prove, that the first

of these epochs is founded on observation. Not-

withstanding all the arguments are brought for-

ward, with that perspicuity he so well knew how
to bestow on subjects the most absract, I am
still of opinion, that this period was invented for

tlie purpose of giving a common origin to all the

motions of the heavenly bodies in the zodiac. Our
last astronomical tables being rendered more per-

fect by the comparison of theory with a great

number of observations, do not permit us to admit

the conjunction supposed in the Indian tables
; in

this respect indeed they made much greater differ-

ences than the errors of which they are still suscep-

tible, but it must be admitted that some elements

in the Indian astronomy have not the magnitude
which they assigned to them, until long before our

sera
;
for example, it is necessary to ascend 6000

years back to find the equation of the centre of

the Sun. But, independently of the errors to

which the Indian observations are liable, it may
be observed, that they only considered the in-
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equalities of the Sun and Moon relative to eclip-

ses, in which the annual equation of the Moon is

added to the equation of the centre of the Sun,
and augments it by a quantity which is very near-

ly the difference between its true value and that

of the Indians- Many elements, such as the equa-
tions of the centre of Jupiter and Mars, are very
different in the Indian tables from what they
must have been at their first epoch*
A consideration of all these tables, and particu-

larly the impossibility of the conjunction, at the

epoch they suppose, prove, on the contrary, that

they have been constructed, or at least rectified in

modern times. This also may be inferred from the

mean motions which they assign to theMoon, with

respect to its perigee, its nodes, and the Sun, which

being more rapid than according to Ptolemy in*

dicate that they are posterior to this astronomer,

for we know, by the theory of universal gravita-

tion, that these three motions have accelerated for

a great number of ages. Thus this result of a

theory so important for lunar astronomy, throws

great light on chronology. Nevertheless, the an-

cient reputation of the Indians does not permit us

to doubt, but that they have always cultivated

astronomy.
When the Greeks and Arabs began to devote

themselves to sciences, they drew their first ele-

ments from India. It is there that the ingenious
manner of expressing all numbers in ten charac-

ters originated, by assigning to them at once

an absolute and a local value, a subtle and
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important conception, of which the simplicity is

such that we can with difficulty, appreciate its

merit. But this very simplicity and the great fa-

cility with which we are enabled to perform our

arithmetical computations place it in the very first

rank of useful inventions
;
the difficulty of invent-

ing it will be better appreciated ifwe consider that

it escaped the genius of Archimedes and Appollo-

nius, two of the greatest men of antiquity.

The Greeks did not begin to cultivate astro-

nomy till a long time after the Egyptians, of

whom they were the disciples.

It is extremely difficult to ascertain the exact

state of their astronomical knowledge, amidst the

(e) variety of fable which fills the early part of

their history. Their numberless schools for phi-

losophy produced not one single observer, be-

fore the foundation of the Alexandrian school.

They treated astronomy as a science purely spe-

culative, often indulging in the most frivolous

conjectures.

It is singular, that at the sight of so many con-

tending systems, which taught nothing, the sim-

ple reflection, that the only method of compre-

hending nature is to interrogate her by experi-

ment, never occurred to one ofthese philosophers,

though so many were endowed with an admirable

genius. But we must reflect, that as the first obser-

vations only presented insulated facts, little suited

to attract the imagination, impatient to ascend to

causes, they must have succeeded each other with

extreme slowness. It required a long succession
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of ages to accumulate a sufficient number, to dis-

cover, among the various phenomena, such rela-

tions, which by extending themselves should united

with the interest of truth, that of such general

speculations is the human understanding delights

to indulge in.

Nevertheless, in the philosophic dreams of

Greece, we trace some sound ideas, which their

astronomers collected in their travels, and after-

wards improved. Thales, born at Miletus, 640

years before our sera, went to Egypt for instruc-

tion : on his return to Greece he founded the

Ionian school, and there taught the sphericity of

the Earth, the obliquity of the ecliptic, and the

true causes of the eclipses of the Sun and Moon
;

he even went so far as to predict them, employ-

ing no doubt the periods which had been com-

municated to him by the priests of Egypt.
Thales had for his successors Anaximander,

Anaximenes, and Anaxagoras ;
to the first is at-

tributed the invention of the gnomon and geo-

graphical charts, which the Egyptians appear to

have been already acquainted with.

Anaxagoras was persecuted by the Athenians

for having taught these truths of the Ionian

school. They reproached him with having des-

troyed the influence of the gods on nature, by

endeavouring to reduce all phenomena to im-

mutable laws. Proscribed with his children, he

only owed his life to the protection of Pericles,

his disciple and his friend, who succeeded in pro-

curing a mitigation of his sentence, from death to
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banishment. Thus, truth, to establish itself on

earth, has almost always had to combat esta-

blished prejudices, and has more than once been

fatal to those who have discovered it. From the

Ionian school arose the chief of one more cele-

brated. Pythagoras, born at Samos, about 590

years before Christ, was at first the disciple of

Thales. This philosopher advised him to travel

into Egypt, where he consented to be initiated

into the mysteries of the priests, that he might
obtain a knowledge of all their doctrines. The
Brachmans having then attracted his curiosity, he

went to visit them, as far as the shores of the

Ganges. On his return to his own country, the

despotism under which it groaned, obliged him

again to quit it, and he retired to Italy, where he

founded his school. All the astronomical truths

of the Ionian school, were taught on a more ex-

tended scale in that of Pythagoras ;
but what

principally distinguished it, was the knowledge
of the two motions of the earth, on its axis, and

about the Sun. Pythagoras carefully concealed

this from the vulgar, in imitation of the Egyptian

priests, from whom, most probably, he derived

his knowledge ; but his system was more fully

explained, and more openly avowed by his dis-

ciple Philolaus.

According to the Pythagoricians, not only the

planets, but the comets themselves, are in mo-

tion round the Sun. These are not fleeting me-
teors formed in the atmosphere, but the eternal

works of nature. These opinions, so perfectly
VOL. II. Q
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correct, on tk^ system of the universe, have been

admitted and inculcated by Seneca, with the en-

thusiasm which a great idea, on a subject the

most vast of human contemplation, ought natu-

rally to excite in the soul of a philosopher.
" Let us not wonder," says he ** that we are

**
still ignorant of the law of the motion of comets,

** whose appearance is so rare, that we can nei-

** ther tell the beginning nor the end of the revo-

** lution of these bodies, which descend to us from
*' an immense distance. It is not fifteen hundred
**

years since the stars have been numbered in

*

Greece, and names given to the constellations.

** The day will come, when, by the continued
"

study of succesive ages, things which are now
**

hid, will appear with certainty, and posterity
** will wonder that they have escaped our notice.'*

In the same school, they taught that the planets

were inhabited, and that the stars were suns, dis-

tributed in space, being themselves centres of pla-

netary systems. These philosophic views ought
from their grandeur and justness, to have obtained

the suffrages of antiquity ;
but having been taught

combined with systematic opinions, such as the

harmony of the heavenly spheres, and wanting,

moreover, thatproofwhich has since been obtained,

by the agreement witli observations, it is not sur-

prising that their truth, when opposed to the illu

sions ofthe senses, should not have been admitted.

The only observation which the history of

Grecian Astronomy furnishes us with, previously

to the foundation of the school of Alexandria, is
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that of the solstice of the summer of the year

432, before our sera, by Meton and Euclemon.

The former of these Astronomers is celebrated

for the cycle of nineteen years, which he intro-

duced into the calendar, corresponding to the

two hundred and thirty-five lunationfe already

mentioned. The simplest method of measur-

ing time, is that which makes use of solar re-

volutions, but in the infancy of society, the phases
of the moon presented to their ignorance so na-

tural a division of time, that it was universally

adopted. They regulated their fetes and games

by the return of those phases, and when the ne-

cessities of agriculture compelled them to have

recourse to the sun, in order to distinguish the

seasons, they did not give up the old custom of

measuring time by the revolutions of the moon,
the age of which may be thus determined by the

days of the month. They endeavoured to establish

between the revolutions of this star and those of

the sun, an agreement depending on the number of

periods, which contain entire numbers of these

revolutions. The simplest is that of nineteen

years. Meton therefore established this cycle

of nineteen years, of which twelve were common,
or consisting of twelve months, the seven re-

maining consisted of thirteen. These months

were unequal, and so constituted, that in two

hundred and thirty-five months of this cycle, one

hundred and ten contained twenty-nine days,

and one hundred and twenty-five thirty days.

This arrangement was proposed by Meton to the

q2
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Greeks assembled to celebrate the Olympic games,
and was unanimously adopted. But it was not

difficult to perceive that at the end of each period,
the new calendar retarded about the fourth part
of the day on the new moon. Calippus proposed
to quadruple the cycle of nineteen years, and to

form a period consisting ofseventy-six years, at the

termination ofwhich one day was to be subtracted.

This period was denominated the Calippean, from

the name of its inventor
;
and although not so an-

cient as the Saros of the Chaldeans, it is inferior to

it in accuracy. About the time of Alexander, Py-
thias rendered Marseilles, his country, celebrated

by his works as an Astronomical Geographer.
We are indebted to him for an observation on

the meridian length of the gnomon in this town,

at the summer solstice ; it is the most ancient ob-

servation of this kind after that of Tscheou-Kong.
And it is extremely important, in as much as it con-

firms the continued diminution of the obliquity of

the ecliptic. It is to be regretted that the ancient

Astronomers did not make a greater use of the

gnomon, which produces much more accuracy
than their armillse. By taking some easy pre-

cautions to level the surface on which the shade

is projected, they might have left us observations

on the declinations of the sun and moon, which

would be at this day extremely useful.



CHAP. 11.

Of Astronomy^ from tJie Foundation of tlie Alex-

andrian School to the Time of the Arabs,

Hitherto the practical astronomy of different

people has only offered us some rude observa-

tions relative to the seasons and eclipses -, objects

of their necessities or their terrors. Their theo-

retical astronomy consisted in the knowledge of

some periods, founded on very long intervals of

time, and of some fortunate conjectures, relative

to the constitution of the universe, but mixed with

considerable error. We see, for the first time,

in the school of Alexandria, a connected series of

observations
; angular distances were made with

instruments suitable to the purpose, and these

were calculated by trigonometrical methods. As-

tronomy then assumed a new form, which the fol-

lowing ages have adopted and brought to perfec-

tion. The positions of the fixed stars were deter-

mined with more accuracy than before, the paths of

the planetswere carefully traced, the inequalities of

the Sun and Moon were better known, and, final-

ly, it was the school of Alexandria that gave birth

to the first system of astronomy that ever com-

I
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preliended an entire series of celestial phenomena*
This system was, it must be allowed, very infe-

rior to that of the school of Pythagoras, but be-

ing founded on a comparison of observations, it

afforded, by this very comparison, the means of

rectifying itself, and of ascending to the true sys-

tem of nature, of which it was an imperfect
sketch.

After the death of Alexander, his principal gene-
rals having divided his empire among themselves,

Ptolemy Soter received Egypt for his share. His

munificence, and love of the sciences, attracted

to Alexandria, the capital of his kingdom, a great

number of the most learned men of Greece.

Ptolemy Philadelphus, who inherited, with the

kingdom, his father's love of the sciences, estab-

lished them there under his own particular pro-
tection. A vast edifice, in which they were lodg-

ed, contained both an observatory and that mag-
nificent library, which Demetrius Phalereus had

collected with such trouble and expence. Being

supplied with whatever books and instruments

were necessary to their pursuits, they devoted

themselves without distraction to their studies ;

and their emulation was excited by the presence

of a prince, who often came amongst them to

participate in their conversation and their la-

bours. The impulse given to the sciences by this

school, and the great men which it produced, or

which were cotemporary with them, constitutes

the epoch of the Ptolemies one of the most me-

morable in the history of the human mind.

I
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Arystillus and Thimocares were the first observ-

er's of the Alexandrian school ; they flourished

about the year 300 before the Christian sera.

Their observations of the principal stars of the

zodiac enabled Hipparchus to discover the pre-

cession of the equinoxes, and served as the basis

of a theory which Ptolemy gave of this pheno-
menon.

The next astronomer which the school of

Alexandria produced, was Aristarchus of Samos.

The most delicate elements of astronomy were

the subjects of his investigation, unhappily they

have not come down to us. The only one of his

works which remains is his Treatise on tJie magni-
tudes and distances of the Sun and of the Moon,
where he gives an account of the ingenious manner

in which he endeavoured to determine the ratio of

these distances. Aristarchus measured the angle

contained between the Sun and the Moon, at the

moment he judged half of the lunar disk to be il-

luminated by the Sun, at this instant the visual

ray drawn from the eye of the observer to the

centre of the Moon is perpendicular to the line

which joins the centre of the Moon and Sun, and

having found the angle of the observer smaller

than a right angle by about the thirtieth part of

this angle, he concluded that the Sun was nine-

teen times farther from us than the Moon. Not-

withstanding the inaccuracy of this result, it ex-

tended the boundaries of the universe much far-

ther than had been done before. In this treatise

Aristarchus supposes the apparent diameters of
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the Sun and Moon, equal to each other, and to

the 180th part of the circumference, which value

is much too great ;
but he afterwards corrected

this error, as we learn from Archimede that he

made the diameter of the Sun equal to about the

720th part of the zodiac, which is a mean be-

tween the limits which Archimede himself, a few

years afterwards, assigned by a very ingenious pro-

cess to this diameter. This correction was un-

known to Pappus, a celebrated geometer of Alex-

andria, who lived about the fourth century, and

commented on the treatise of Aristarchus. This

induces us to apprehend that the burning of a con-

siderable part of the library of Alexandria during
the siege which Cesar sustained in this city, had

already distroyed the greater part of the writings

of Aristarchus, and also a number ofother works

equally precious. Aristarchus revived the opinion
of the Pythagoricians, relative to the motion of

the Earth. But as his writings have not been

transmitted to us, we are ignorant to what extent

he carried this theory in his explanation of

the celestial phenomena. We only know, that this

judicious astronomer, from the consideration that

the motion of the Earth produced no change in

the apparent position of the stars, placed them
at a distance incomparably greater than the Sun.

Thus it appears, that of all the ancient astrono-

mers, Aristarchus had formed the most just no-

tions ofthe magnitude of the universe. They have

been transmitted to us by Archimede in his Trea-

tise on the Arenarea, This great geometer had
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discovered the means of expressing all numbers,

by conceiving them formed of successive periods

of myriads of myriads, the units of the first being

simple units ;
those ofthe second being myriads of

myriads, and so on. He denoted the parts of each

period by the same characters as the Greeks em-

ployed, as far as an hundred millions. In order

to evince the advantage of this method, Archimede

proposed to express the number of grains of sand

which the celestial sphere could contain, a prob-
lem of which he increased the difficulty by select-

ing the hypothesis which assigns to this sphere
the greatest extent : it is with this view, that he

adduces the opinion of Aristarchus.

The celebrity of his successor, Eratosthenes,

is principally due to his measure of the Earth, and

of the obliquity of the ecliptic. It is probable that

the measurement of the earth was undertaken a

long time before, but there only remained of these

observations some evaluations of the terrestrial

circumference, which it was sought by some ap-

proximations, more ingenious than certain, to

reduce to the same value, very nearly agreeing
with the result of modern observations. Having,
at the summer solstice, remarked a deep well,

whose whole depth, was illuminated by the Sun,
at Syene, in Upper Egypt, he compared this with

the altitude of the Sun, observed at the same sol-

stice at Alexandria. He found the celestial arc,

contained between the zeniths of these two places,

equal to the fiftieth part of the whole circumfer-

ence
;
and as their distance was estimated at five
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hundred stadia, he fixed at two hundred and fifty

thousand stadia, the length of the whole terres-

trial circumference. It is not at all probable that

for such an important result, this astronomer

would be content with the rough observation of a

well illuminated by the Sun. This consideration,

and the account given by Cleomedes, authorises

us to suppose that he made use of observations of

the meridian lengths of the gnomons at the sum-

mer and winter solstices at Syene and Alexandria.

This is the reason why the celestial arc between

these two places, as determined by him, differs

little from the results of modern observations.

Eratosthenes erred in supposing that Syene and

Alexandria existed under the same meridian
; he

also erroneously supposed that the distance be-

tween these two cities was only five thousand

stadia, if the stadium which he most probably

employed contained three hundred cubits of the

nilometer of Elephantinus. Then the two er-

rors of Eratosthenes would be very nearly com-

pensated, which would lead us to conclude that

this astronomer only employed a measure of the

earth, formerly executed with great care, the ori-

gin of which was lost.

The observation of Erastothenes on the obli-

quity of the ecliptic, is very valuable, inasmuch

as it confirms the diminution of it, determined

a priori, by the theory of gravitation. He found

the distance l3etween the tropics equal to eleven

parts of the circumference, divided into eighty-

three parts. Hipparchus and Ptolemy found no
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reason to alter this result by new observations.

It is remarkable, that if we suppose, with the

Alexandrian astronomers, the latitude of this city

equal to thirty-one sexagesimal degrees ; this

measure of the obliquity places Syene exactly un-

der the tropic, agreeably to the opinion of anti-

quity.

But of all the astronomers of aniquity, the science

is most indebted to Hipparchus of Nice, inBithynia,

for the great number and extent ofhis observations,

and by the important results he obtained, from a

comparison of them with those that had been for-

merly made by others ;
and for the excellent me-

thod which he pursued in his researches. He
flourished at Alexandria in the second century

before our sera. Ptolemy, to whom we are prin-

cipally indebted for a knowledge of his work, and

who recurs always to his observations and his

theorems, pronounces him, with justice, an astro-

nomer of great skill, of rare sagacity, and a sincere

friend of truth. Not content with what had al-

ready been done, Hipparchus determined to re-

commence every thing, and not to admit any re-

sults but those founded on a new examination of

former observations, or on new observations,

more exact than those of his predecessors.

Nothing affords a stronger proof of the uncer-

tainty of the Egyptian and Chaldean observations

on the Sun and stars, than the circumstance of his

being compelled to recur to the observations of the

Alexandrian school, to establish his theories ofthe

Sun, and ofthe precession ofthe equinoxes. He de-
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termined the length of the tropical year, by com-

paring one of his observations of the summer sol-

stice with one made by Aristarchus of Samos,
381 years before our sera. This duration appearec
to him less than the year of 865^ days, whicl

had been hitherto adopted, and he found that at

the end of three centuries we should subtract one

day. But he remarks himself on the little re-

liance that can be placed on a determination

from solstitial observations, and on the advantage
of employing observations of the equinoxes.

Those which he made in an interval of nearly

thirty-three years led him to the same result

very nearly. Hipparchus recognized also that

the two intervals from one equator to another,

were unequally divided by the solstices, so that

94 days and a half elapse from the vernal equi-

nox to the summer solstice, and 92 days and a

half from this solstice to the autumnal equinox.

To explain these differences, Hipparchus sup-

posed the Sun to move uniformly in a circular

orbit; but, instead ofplacing theEarth in the centre

he supposed it removed to the twenty-fourth part

of the radius from the centre, and fixed the apogee
at the sixth degree of Gemini. From these data

he formed the first solar tables to be found in the

History of Astronomy. The equation of the

centre, which they suppose, was too great ;
and it is

very probable, that a comparison of the eclipses,

in which this equation is augmented by the annual

equation of the Moon, confirmed Hipparchus in

his error, or perhaps even led him into it. For this

error, which surpasses a sixth of the entire value
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of the equation, is reduced to one sixteenth of

this value in the computation of these phenomena.
He was mistaken also in supposing the orbit of the

Sun, which is really elliptical, to be circular, and

that the real velocity of this body was constantly

uniform. The contrary is now demonstrated by
direct measures of the Sun's apparent diameter ;

but such observations were impossible at the time

of Hipparchus, whose solar tables, with all their

imperfections, are a lasting monument of his ge-

nius and which Ptolemy so respected, that he sub-

jected own observations to them.

This great Astronomer next considered the mo-

tions of the moon. He determined, by a compari-
son of a great number of eclipses, selected in the

most favourable circumstances, the durations of

their revolutions relatively to the stars, to the sun,

to its nodes, and to its apogee. He found that

an interval of l^GOOJ"^-^^ contained 4267 months,

4*573 returns of the anomaly, 4612 sidereal revo-

lutions of the moon minus n^^ of the circumfer-

ence. He found moreover, that in 5458 months,
the moon returns 5923 times to the same node
of its orbit. These results are perhaps the

most precious of ancient astronomy from their

accuracy, and becaus they represent at this

epoch the perpetually variable durations of its

revolutions (Note IV). Hipparchus determined
also the excentricity of the lunar orbit and its

inclination to the ecliptic, and he found them

very nearly the same as those which have
now place in eclipses, in which we know that

the one and the other of these elements are
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diminished by the evection, and the great inequali-

ties ofthe motion ofthe moon in latitude. This con-

stancy of the inclination of the lunar orbit to the

plane ofthe ecliptic, notwithstanding the variations

which this plane experiences relatively to the starsj

and which by the ancient observations are sensible

on its obliquity to the equator, is, as we have

seen in the fourth book, a result of universal gra-

vitation which the observations of Hipparchus
confirm. Finally, from the determination of

the parallax of the moon, he endeavoured to

conclude that of the Sun, by the breadth of the

cone of the terrestrial shadow, {a) in an eclipse at

the moment it was traversed by the Moon, which

led him nearly to the same result as had been

obtained by Aristarchus. He made a great num-

ber of observations on the planets, but too much
the friend of truth to explain their motions by un-

certain theories, he left the task of this investiga-

tion to his successors. A new star which appear-
ed in his time induced him to undertake a cata-

logue of the fixed stars, to enable posterity to re-

cognize any changes that might take place in the

appearances of the heavens. He was sensible

also of the importance of such a catalogue for the

observations of the Moon and the planets. The
method he employed was that of Arystillus

and Timochares, which we have already ex-

plained in the third chapter of the First Book.

The reward of this long and laborious task, was

the important discovery of the precession of the

equinoxes ; in comparing his observations with

those astronomers, he discovered that the stars had
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changed their situation with respect to the equator,

buthad preserved the same latitude with respect to

the ecliptic ;
he at first supposed that this was only

true for the stars situated in the zodiack, but

having observed that they all preserve the same

relative position, he concluded that this pheno-
nemon was general. To explain these different

changes, he assigned a direct motion to the celes-

tial sphere round the poles of the ecliptic, which

produces a retrograde motion in longitude of the

equinoxes with respect to the stars, which ap-

peared to him to be for each centuiy the three

hundred and sixtieth part of the zodiack. But he

announced his discovery with some reserve, being
doubtful of the accuracy of the observations of

Arystillus and Timoehares. Geography is in-

debted to Hipparchus for the method of deter-

mining places on the Earth, by their latitude and

longitude, for which he first employed the eclipses

of the Moon. Spherical trigonometry, also, owes

its origin to Hipparchus, who applied it to the

numberless calculations which these investigations

required. His principal works have not been

transmitted to us, and we are only acquainted
with them through the Almagest of Ptolemy^
who has transmitted to us the principal elements

of the theories of this great Astronomer, and

some of his observations. Their comparison with

modem observations having shewn their accuracy,
and their use even to astronomers at the present

day, makes us regret others, and particularly those

which he made on the planets, of which there re-

mains very few ancient observations. The only
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work of Hipparchus which has come down to us

is a critical commentary on the sphere of Eudoxus,

described in a poem of Aratus
; it is anterior to

the discovery of the precession of the equinoxes.
The positions assigned to the stars on this sphere
are so erroneous, and thay gave for the epoch of

its origin such different results, that it is asto-

nishing to see Newton establish on these imper-
fect positions a system of chronology, which be-

sides deviates considerably from dates assigned

with much probability to several ancient events.

The interval of near three centuries, which sepa-
rated these two astronomers, presents to us Gem-
inus and Cleomedes, whose works have come
down to us

;
and some observers, as Agrippa, Me-

nelaus and Theon of Smyrna. We may also no-

tice in this interval the reformation of the Roman
calendar by Julius Caesar, for which purpose he

made Sosthenes come to Alexandria, and the pre-

cise knowledge of the ebbing and flowing of the

sea. Possidonius observed the law of this pheno-

menon, which appertains to astronomy by its evi-

dent relation to the motion of the Sun and Moon,
and of which Pliny the naturalist has given a

description remarkable for its exactness.

Ptolemy, born at Ptolemais in Egypt, flourished

at Alexandria about the year 130 of our sera.

Hipparchus had given, by his numerous works, a

new face to Astronomy, but he left to his succes-

sors the care of rectifying his theorems by new

observations, and of establishing those which were

deficient. Ptolemy continued this labour, and has
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given a treatise on this science in his great work

entitled the Almagest.
His most important discovery is that of the evec-

tion of the Moon, Astronomers previously had

only considered the motion ofthis body relatively to

eclipses ; in which it was solely sufficient to have

regard to the equation ofthe centre, especially ifwe

suppose with this astronomer that the equation of

the centre of the Sun is greater than its true value,

which in part replaces the annual equation of the

Moon. It appears that Hipparchus had recognized
that this did not represent the motion of the

moon in its quadratures, and that observations

presented great anomalies in this respect. Ptolemy

carefully followed these anomalies, determined

its law and fixed its value with great accuracy.
In order to represent it, he supposed the moon to

move on an epicycle carried by a moveable ex-

centrick, of which the centre revolved about the

earth in a contrary direction to the motion of the

epicycle.

It was a general opinion of the ancients, that

the uniform circular motion being the most simple
and natural, was necessarily that of the heavenly
bodies. This error maintained its ground till the

time of Kepler, and for a long time impeded him

in his researches. Ptolemy adopted it, and, plac-

ing the Earth in the centre of the celestial mo-

tions, he endeavoured to represent their ine-

qualities in this false hypothesis. Conceive to

move on a circumference, of which the Earth oc-

cupies the centre, that of another circumference,

VOL, II. U
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on which moves that of a third, and so on, up to

the last circumference, on which the body is sup-

posed to move uniformly. If the radius of one of

these circles surpasses the sum of the others, the

apparent motion of the body round the Earth,

will be composed of a mean uniform motion, and

of several inequalities depending on the propor-

tions these several radii, the motions of their

centres, and of the Star, have to each other.

By increasing their number, and giving them

suitable dimensions, we may represent the in-

equalities of this apparent motion. Such is the

most general manner of considering the hypo-
thesis of epicycles and excentrics. For an ex-

centric may be considered as a circle of which

the centre moves about the earth with a greater

or less velocity, and which vanishes if it is im-

moveable. The Geometers who preceded Ptolemy
were occupied with the appearances of the mo-

tions of the planets on this hypothesis, and it

appears in the Almagest that the great geometer

Appollonius had already resolved the problem of

their stations and retrogradations. Ptolemy sup-

posed the Sun, Moon, and planets in motion round

the Earth in this order of distances the Moon,

Mercury, Venus, the Sun, Mars, Jupiter, Sa-

turn ; each of the planets superior to the Sun,
was moved on an epicycle, of which the centre

described an excentrick about the earth, in a

time equal to that of the revolution of a planet.

The period of the motion of the star on the epi-

cycle was that of the solar revolution
j
and it wm
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always found in opposition to the Sun, when it

attained the point of the epicycle which was

nearest to the earth. Nothing in this system de-

termines the actual magnitude of the circles and

of the epicyles. Ptolemy had only occasion to

know the ratio which the radius of each epicycle
had to that of the circle described by its centre.

In like manner he made each inferior planet, to

move on an epicycle of which the centre described

an excentrick about the earth ; but the motion of

this point wa& equal to the solar motion, and the

planet described its epicycle in a time which in

modern astronomy is that of the revolution of the

Sun : the planet was always in conju?iction with

it when it arrived at the lowest point of its epicy-

cle. Here also nothing determines the absolute

magnitude of the circles and of the epicycles.

Astronomers anterior to Ptolemy were divided in

their opinions as to the position of Mercury and
Venus ; Ptolemy followed the most ancient opi-

nion, and placed them below the Sun ; others

placed them above, and finally, the Egyptians
made them move round it. It is singular, that

Ptolemy does not mention this hypothesis, which

is equivalent to making the excentrics of those

two planets equal to the solar orbit. If moreover

he supposed the epicycles of the superior planets

equal and parallel to this orbit, his system would

make all the planets to move about the Sun,
while this star revolves about the earth, and then

there was but one step to make, in order to ar-

rive at the true system of the world. This man-

R 2
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ner of determining the arbitrary quantities in

Ptolemy's system, by supposing the circles and

epicycles described in an annual motion equal

to the solar orbit, renders the agreement of this

motion with that of the Sun evident. By thus

modifying this system, he can exhibit the mean dis-

tances of the planets from this star, in parts of

its distance from the earth ; for those distances

are the ratios of the radii of the excentricks to

those of the epicycles for the superior planets, and

of the radii of the epicycles, to the radii of the

excentricks for the two inferior. Such a simple
and natural modification of the system of Ptolemy

escaped all astronomers till the time ofCopernicus.
None of them appeared to have sufficiently consi-

dered the relations which subsist between the geo-

centrick motion of the planets and that ofthe Sun,

to have investigated its cause ; none of them were

curious to know their respective distances from the

Sun and Eai tli, they were content with connecting

by new observations the elements determined by

Ptolemy, without making any change in his hy-

pothesis. But even, if by means of epicycles we
could represent the inequalities of the motions of

the heavenly^bodies, still it would be impossible to

represent the variations in their distances. In

the time of Ptolemy, these variations were almost

insensible in the planets, whose apparent diame-

ters could not then be measured. But his obser-

vations on the Moon should have taught him that

his hypothesis was erroneous, according to which

the perigean diameter of the Moon in the quadra-
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tures, should be double of the apogean diameter

in the sysigies. Besides every new inequality

which the improvements in the art of observing

discovered, incumbered this system with an addi-

tional epicycle, which, instead of being confirmed

by the progress ofthe science, has only grown more
and more complicated ; and this should convince

us, that it is not that of nature. But in consi-

dering it as a method of adapting the celestial

motions to calculation, this first attempt of the

human understanding towards an object sa very

complicated, does great honour to the sagacity
of its author. Such is the weakness of the human

understanding, that it frequently requires the aid

of hypotheses to connect phenomena together,

and to determine their laws
;
and if hypotheses are

restricted to this use, by avoiding to ascribe any

reality to them, and by Testifying them perpetu-

ally by new observations, we arrive finally at the

true causes, or at least we can supply them, and

conclude from the observed phenomena those which

given circumstances ought to develope. The history

of philosophy furnishes us with several examples
which hypotheses may procure in this point of

view, and of the errors to which it is exposed
when they are realized.

Ptolemy confirmed the motion of the equinoxes
discovered by Hipparchus, by comparing his ob-

servations with those of this great astronomer.

He established the respective immobility of the

Stars, their invariable latitude to the ecliptic, and
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their motion in longitude, which he found con-

formahle to what Hipparchus had suspected.

We now know Uiat this motion is much more

considerable; which circumstance, considering the

interval between the observations of Ptolemy
and Hipparchus, implies an error of more
than one degree in their observations. Not-

withstanding the difficulty which attended tlie

determination of the longitude of the Stars, when

observers had no exact measure of time, we are

surprised that so great an error should hure been

committed, particularly when we observe the

agreement of the observations with each other,

which Ptolemy cites as a proof of the accuracy
of his result. He has been reproached with hav-

ing altered them, but this reproach is not well

founded
;

his error, in the determination of the

motion of the equinoxes, seems to have been de-

rived from too great confidence in the result of

Hipparchus, relative to the length of the tropical

year. In fact, Ptolemy determined the longi-

tudes of the stars, by comparing them eithei'

with the Sun, or with the Moon, which was equi-

valent to a comparison with the Sun, since the

synodical revolution of the Moon was well known

by the means of eclipses. Now, Hipparchus hav-

ing supposed the year too long, and consequently

the motion of the Sun, with respect to the equi-

noxes, too slow, it is clear that this error dimi-

nished the longitudes of the Sun employed by

Ptolemy. The motion in longitude, which he

attributed to the Stars, ought to be increased

by the arc described by the Sun in the time,
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equal to the error of Hipparclius in the length of

the year, and then it comes out very nearly wliat

it ought to be. The sidereal year being the tropical

year increased by the time necessary for the Sun

to describe an arc equal to the annual motion of

the equinoxes, it is evident that the sidereal year

of Hipparchus and of Ptolemy ought to differ

from the true year j
in fact the difference is only

the tenth part of that which exists between their

tropical year and ours.

This remark has led to the examination of ano-

ther question. It has been generally believed,

that the catalogue of Ptolemy, was that of Hip-

parchus, reduced to his time by means of a

precession of one day in ninety years. This opi-

nion is founded on the circumstance, that the

constant error in longitude of his Stars, disappears

when reduced to the time of Hipparchus. But

the explanation which we have givesn of the cause

of this error, justifies Ptolemy from the reproach

which has been imputed to him, of having taken

the merit of Hipparchus to himself; and it seems

fair to believe him, when he asserts that he has

obsei'ved all the Stars of his own catalogue, even

to the stars of the sixth magnitude. He adds, at

the same time, that he found very nearly the same

position of the Stars, relatively to the ecliptic,

as Hipparchus, and we 9,re always more induced

to think so, as Ptolemy continually endeavours to

make his results approximate to those of this

great astronomer, who was in fact a much more

accurate obseryer.
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Ptolemy inscribed on the temple of Serapis at

Canoeum the] principal elements of his system ;

this astronomical edifice subsisted near fourteen

centuries, and now that it is entirely destroyed, his

Almagest considered as a depositary of ancient

observations, is one of the most precious monu-
ments of antiquity. Unfortunately it contains but a

small number of the observations anterior to his

sera. The author only related those which were

necessary to explain his theory. The astronomical

tables being once formed, he judged it useless to

transmit with them to posterity the observations

which Hipparchus and he employed for this pur-

pose, and his example has been followed by the

Arabs and the Persians. The gi-eat collections

of precious observations collected solely for them-

selves, and without any application to theories,

belong to modern astronomy, and is one of the

fittest means of rendering it perfect. Ptolemy
has not rendered less service to geography, in col-

lecting all the known longitudes and latitudes of

different places, and laying the foundation of the

method of projections, for the construction of

geographical charts. He composed a gi^eat trea-

tise on optics, which has not been preserved, in

which he explained the astronomical refractions :

he likewise wrote treatises on the several sciences

of chronology, music, gnomonics, and mechanics.

So many labours, and on such a variety of sub-

jects, manifest a very superior genius, and will

ever obtain him a distinguished rank in the his-

tory of science. On the revival of astronomy.

I
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when his system gave way to that of nature, man-
kind avenged themselves on him for the despotism
he had so long maintained

; and they accused

Ptolemy of having appropriated to himself the

discoveries of his predecessors. But the honour-

able mention which he makes of Hipparchus,
whom he frequently cites to support his theories,

fully justifies him from this charge. At the revi-

val of letters among the Arabs, and in Europe, his

hypotheses combining the attraction of novelty

with the authority of antiquity, were generally

adopted by minds desirous of knowledge, and who
were anxious at once to obtain possession of that

which antiquity had acquired after long labour.

Their gratitude elevated Ptolemy too high, whom

they afterwards too much depressed. The fame

of Ptolemy has met with the same fate as that

of Aristotle and Descartes. Their errors were

no sooner recognized, than a blind admiration

gave way to an unjust contempt, for even in sci-

ence itself, the most useful revolutions are not

always exempt from passion and prejudice.



CHAP. III.

Of Astronomy from the time of Ptolemy to t)ie pe-

riod of its restoration in Europe,

The progress of astronomy in the school of

Alexandria terminated with the labours of Pto-

lemy. This school continued to exist for five

centuries, but the successors of Ptolemy and

Hipparchus contented themselves with com-

menting on their works without adding to their

discoveries. The phenomena of the heavens

continued unobserved during a period of more
than six hundred years. Rome, for a long time,

the seat of valour, glory, and learning, did no-

thing useful to science. The consideration that

was always attached by the republic to eloquence
and military talents, attracted all talents to

those pursuits: and science, offering no ad-

vantage, was necessarily neglected in the midst

of conquests undertaken by ambition, and of in-

ternal commotions, in which liberty expired,

and gave way to the despotism of the emperors.
The division of the empire, the necessary con-
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sequence of its vast extent, brought on its fall,

and the light of science, extinguished by the

barbarians, was only again revived among the

Arabians.

This people, actuated by a wild spirit of fana-

ticism, after having extended their religion and

arms over a great part of the Earth, had no

sooner reposed in peace, than they devoted them-

selves with ardour to letters and science.

It, however, was but a short time before that

they destroyed their most beautiful ornament, by

bm'ning the famous library of Alexandria.

In vain the philosopher Philoponus exerted

himself for its preservation. If these books, re-

plied Omar, are conformable to the alcoran,

they are useless ;
if they are contrary to it, they

are detestable. Thus (a) perished this immense

treasure oferudition and genius. Repentance and

regret soon followed this barbarous execution,

for the Arabians were not long before they per-

ceived their irreperable loss, and that they had

deprived themselves of the most precious fruits of

their conquests.

About the middle of the eighth century, the

caliph Almansor gave great encouragement to

astronomy ;
but among the Arabian princes who

distinguished themselves for their love of the

sciences, the most celebrated in history was Al-

mamoun, of the family of the Abassides and

son of the famous Aaron-al-Rashid, so celebrated

throughout Asia. Almamoun reigned in Bagdat
in 814

J having conquered the Greek emperor
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Michael III., he imposed on him, as one condi-

tion of peace, that he should have delivered to

him the best books of Greece
; the Almagest was

among the number
;
he caused it to be translated

into the Arabian language, and thus diffused the as-

tronomical knowledge which had formerly acquir-

ed so much celebrity for the Alexandrian school.

Not content with encouraging learned men by his

liberality, he was himself an observer, and deter-

mined the obliquity of the ecliptic ; he likewise

caused a degree of the meridian to be measured

on the vast plain of Mesopotamia. He did more

still, he wished to render the science more perfect,

and for this purpose he collected together several

distinguished astronomers, who after making a

great number ofobservations, published new tables

of the Sun and Moon, more accurate than those

of Ptolemy, and for a long time celebrated in the

East, under the name of the verified tables. In

this table, the solar perigee has the position which

it ought to have, the equation of the centre of the

Sun, which, according to Hipparehus, is con-

siderably greater, is reduced to its true value
;

but this precision became then a source of error

in the computation of the eclipses, in which

the annual equation of the Moon, partly cor-

rected the inaccuracy in the equation of the

centre of the Sun, which was adopted by

this astronomer. The duration of the tropical

year is much more exact than that of Hipparehus,
it is however too short by almost two minutes,

but this error arises from this ;
that the authors
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of the verified table compared their observations

with those of Ptolemy ; it would have been nearly

nothing if they had employed the observations

of Hipparchus. This is also the reason why they

supposed the precession of the equinoxes too great.

Almamon caused also to be measured, with great

care, in the extensive plane of Mesopotamia, a ter-

restrial degree which he found equal to two

hundred thousand five hundred cubits. This

measurement exhibits the same uncertainty as

that of Eratosthenes, relatively to the length of

the modulus made use of. These measures

cannot now interest us, unless their modulus

is made known
; but the errors to which these

observations were then liable do not permit us to

draw from thence the advantage, which can only
result from the accuracy of modern operations,

by means of which we can always find our mea-

sures if in the course of time their standards

should alter.

The encouragement given to astronomy by this

prince and his successors, produced a great num-
ber of astronomers, among whom Albategnius
deserves to be placed the first. His Treatise on

The Scie7ice of the Stars contains several interest-

ing observations, and the principal elements of

the theory of the Sun and Moon ; they differ lit-

tle from those of the astronomers of Almamon.

His work being for a long time the only known
treatise of Arabian astronomy, the advantageous

changes which were made in the tables of Ptole-

my have been attributed to him. But a precious
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fragment, extracted from the astronomy of Ebn.

Junis,and translated by Caussin, evinces that these

changes are due to the authors of the verified ta-

bles. Besides it has furnished us with precise and

very accurate notions of the Arabian astronomy.

Ebn. Junis, astronomer of Hakenn, caliph of

Egypt, observed at Cairo about the year one

thousand. He arranged a great treatise of astro-

nomy, and constructed tables of the celestial mo-

tions, which were celebrated through the East

for their accuracy, and which appear to have

served as the foundation of tables formed after-

wards by the Arabians and the Persians. We
perceive in this fragment, from the age of Alma-

non to the time of Ebn. Junis, a long series of ob-

servations of eclipses, of equinoxes, of solstices,

of conjunctions of planets, and of occultations of

stars
J observations important for the perfection of

astronomical theories, inasmuch as they have

enabled us to recognise the secular equation
of the Moon, and have thrown considerable

light on the great variations of the system of the

world. (Note 5). These observations are still

only a small part of those of the Arabian astro-

nomers, of which the number has been pro-

digious. They perceived the inaccuracy of the

observations of Ptolemy on the equinoxes,

aad by comparing their observations either to-

gether, or with those of Hipparchus, they deter-

mined very exactly the true length of the year ;

that of Ebn. Junis only exceeds ours by thirteen

seconds, and it ought to exceed it Iry five seconds.
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It appears by this work, and by the tables of several

manuscripts existing in our libraries, that the

Arabians were particularly occupied with the per-

fection of astronomical instruments, the treatises

which they left on this subject shew the import-
ance which they attached to it, which importance
is confirmed by the accuracy of their observa-

tions. They also paid particular attention to the

measure of time by clepsydrae, by immense solar

dials, and also by the vibrations of the pendulum.

Notwithstanding this, their observations of the

eclipses exhibit the same uncertainty as those of

the Greeks and of the Chaldeans ;
and their ob-

servations on the Sun and Moon are far from

having over those of Hipparchus that superiority,

which can compensate the advantage of the dis-

tance which separates us from this great astrono-

mer. The activity of the Arabian astronomers is

confined to observations : it is not extended to the

investigation of new inequalities, and in this

point of view they have added nothing to the

hypotheses of Ptolemy. That lively curiosity

which attaches us to phenomena till their laws

and cause are perfectly known, is what charac-

terises the learned of modern Europe, fNote 5.)

The Persians, after having for a long time

submitted to the same sovereigns as the Arabians,

and professing the same religion, about the middle

of the eleventh century shook off the yoke of

the Caliphs. About this time their Calendar re-

ceived a new form, by the care of the astronomer

Omar Cheyam j
it was founded on an ingenious
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intercalation, which consists in making in every

thirty-three years, eight of them bissextile
;
Do-

minick Cassini, at the end of the seventeenth cen-

tmy, suggested the adoption of this intercalation

as more exact and simple than the Gregorean :

not knowing that the Persians had for a long
time employed it. In the thirteenth centmy

Holagu Ilecoukan, one of their last sovereigns,

assembled the most learned astronomers at Ma-

ragha, where he constructed a magnificent ob-

servatory, the direction of which he entrusted to

Nassireddin. But no prince of this nation distin-

guished himself more for his zeal for Astronomy
than Ulugh-Beigh, whom we ought to place in

the first rank of great observers. He himself

formed at Samarcand, the capital of his states, a

new catalogue of the stars, and of the best astro-

nomical tables which we had before Tycho Brahe.

He measured in 1437* with a great instrument,

the obliquity of the ecliptic, and his results, when

corrected by refraction and the erroneous paral-

lax which he employed, gives this obliquity greater

by seven minutes than at the commencment

of this century, which confirms its successive di-

minution.

The annals of China furnish us with the most

ancient astronomical observations. They present

to us also twenty-four centuries after, the most

accurate observations which have been made pre-

viously to the restoration of Astronomy, and even

before the application of the telescope to the

quadrant of the circle. We have seen that the



TO ITS RESTORATmN IN EUR01?E. 257

astronomical year of the Chinese commenced
about the winter solstice, and that to fix its origin,

they repeatedly observed the meridian shades of

the gnomon near the solstices. Gaubil, one of the

most learned and judicious Jesuit missionaries

sent to this empire, has made us acquainted
with a series of observations of this kind, which

extend from the year 1100 before our sera, to

1280 years after. These indicate with great clear-

ness the diminution of the obliquity of the eclip-

tic, which in this long interval has been the thou-

sandth part ofthe circumference. Tsou-tchong, one

the most skilful astronomers of China, by a com-

parison of the observations made at Nankin in

461, with those which were made at Loyang in

the year IJS, determined the magnitude of the

tropical year more exactly than the Greeks had

done, or even the astronomers of Almamon. He
found it 365'^*^'24282, the same very nearly with

that of Copernicus. While Holagu Ilecoukan

made astronomy to flourish in Persia, his brother

Cobelai, who in I27I founded the dynasty of

Yuun, granted the same protection to it in China :

he named Cocheou King, the first of the Chinese

Astronomers, chief of the tribunal of mathema-

ticians. This great observer constructed instru-

ments much more exact than those hitherto made

use of
J
the most valuable of all being a gnomon

of forty Chinese feet, terminated by a plate of

brass which was vertical, and pierced by a hole of

the diameter of a needle. It is from the centre of

this opening that Cocheou King reckoned the

VOL. II. s
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height of the gnomon ;
he measured the shade to

the centre of the image of the Sun. ** Hither-

to," says he,
" the higher limb of the Sun has

been observed, and the extremity of the shade

can with difficulty be distinguished ;
besides the

gnomon of eight feet, which has been constantly

made use of, is too short. These reasons have

induced me to use the gnomon of forty feet, and

to take the centre of the image." Gaubel, from

whom we have these details, has recommended

to us several observations made from 1^77 to

1286, and they are precious for their accuracy,

and prove unquestionably the diminutions of the

obliquity of the ecliptic, and of the excentricity

of the earth's orbit, from that epoch to our days.

Cocheou King determined with remarkable preci-

sion the position of the lunar solstice with respect

to the Stars in 1280, he made it to coincide with

the apogee of the Sun, which took place thirty

years before. The length which he assigned to

the year is exactly that of our Gregorian year.

The Chinese methods for the computations of

eclipses are inferior to those of the Arabians and
of the Persians

;
the Chinese have not profited

by the knowledge acquired by these people, not-

withstanding their frequent communications with

them
; they have extended to Astronomy itself

their constant attachment for their ancient cus-

toms.

The history of America, before its conquest by
the Spaniards, exhibits some traces of astro-

nomy J
for the most elementary notions of this
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science have been amongst all nations the first

fruits of their civilization. The Mexicans had,

instead of the week, a short period of five days.

Their months were each twenty days, and eigh-

teen of these months constituted a year, which

commenced at the winter solstice, and to which

they added five complementary days. There is

reason to suppose they composed from the com-

bination of one hundred and four years, a great

cycle, in which they intercalated twenty-five days.
This supposes a duration of the tropical year
more exact than that of Hipparchus ; and what
is very remarkable, it is nearly the same as

that of the astronomers of Almamon. The Pe-

ruvians and the Mexicans carefully observed the

shades of the gnomon at the solstices and at the

equinoxes ; they had even elevated for this purpose
columns and pyramids. However, when we con-

sider the difficulty of obtaining such an exact

determination of the length of the year, we are in-

duced to thinkthat itwas not accomplishedbythem,

and that they obtained it from the ancient conti-

nent. But from what people or by what means

did they receive it ? Wherefore, if they received

it from the north of Asia, have they a division of

time so different from those in use in this part of

the world ? These are questions which it appears

impossible to determine. There exist in the nu-

merous manuscripts which our libraries contaiq,

several ancient observations yet unknown, which

would throw great light on astronomy, and espe-

cially on the seculai* inequalities of the heavenly
s2
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motions. To their discussion, the attention of the

learned skilled in the eastern languages ought to

be directed ;
for the great variations which have

taken place in the system of the world are not

less interesting to man than the revolutions of

empires. Posterity, which can compare a long
series of very exact observations with the theory
of universal gravitation, will much more enjoy the

agreeement of these results than we, to whom an-

tiquity has left observations for the most part very

uncertain. But those observations, subjected to a

sound discussion, can at least, in part, compensate
for the errors to which they are liable, and supply
the place of exact observations ; as in geography,
in order to fix the position of places, we compen-
sate for the want of astronomical observations, by

comparing together the different relations of tra-

vellers. Thus, though the account which the series

of observations from the ancient times to the pre-

sent day presents to us, be very imperfect ; still

we may perceive, in a sensible manner, the varia-

tions of the excentricity of the orbit of the Earth,

and of the position of its perigee ;
those of the

secular motions of the Moon, with respect to its

nodes, to its perigee, and to the Sun ; finally,

the variations of the elements of the orbits of the

planets. The successive diminution of the obli-

quity of the ecliptic during a period of nearly three

thousand years, is particularly remarkable in the

comparison of the observations ofTcheouKong, of

Pytheas, of Ebn Junis, of Cocheou King, of

Uleugh-Beigh, and of the moderns.



CHAP. IV.

Of Astronomy in modern Europe,

It is to the Arabians that modern Europe is

indebted for the first rays of light that dissipated

the darkness in which it was enveloped during
twelve centuries. They have transmitted to us

the treasure of knowledge which they received

from the Greeks, who were themselves disciples

of the Egyptians ;
but by a deplorable fatality

the arts and sciences have disappeared among
all these nations, almost as soon as they had com-

municated them.

Despotism has for a long period extended its

barbarism over those beautiful countries where

science first had its origin, so that those names

which formerly rendered them so celebrated, are

now utterly unknown to them.

Alphonso, king of Castille, was one of the

first sovereigns who encouraged the revival of as-

tronomy in Europe, but he was ill seconded by
the astronomers, whom he had assembled at a

considerable expense, and the tables which they

published did not answer to the great cost they
had occasioned.
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Endowed with a coiTect judgment, Alphonsa
was shocked at the confusion of the circles and

epicycles, in which the celestial bodies were sup-

posed to move; he felt that the expedients employ-
ed by nature ought to be more simple.

"
If the

Deityi^^ said he,
'* had askedmy advice^ these things

would have been better arranged,
' '

By these words,

in which he was charged with impiety, he meant
to express that mankind were still far from know-

ing the true mechanism of the universe.

In the time of Alphonso, Europe was indebted

to the encouragement of Frederic 11. Emperor of

Germany, for the first Latin translation of the

Almagest of Ptolemy, which was made from the

Arabic version.

We are now arrived at that celebrated epoch
when astronomy, emancipating itself from the

narrow sphere in which it was hitherto confined,

advanced by a rapid and continued progress
to its present exalted eminence. Purbach, Re-

giomontanus, and Walterus, prepared the way
to these prosperous days of the science, and Co-

pernicus gave them birth by the fortunate expla-

nation of the celestial phenomena, by means of

the motion of the Earth on its axis, and round

the Sun.

Shocked, like Alphonso, at the extreme com-

plication of the system of Ptolemy, he tried to

find among the ancient philosophers a more sim-

ple arrangement of the universe. He found that

many of them had supposed Venus and Mercury
to move round the Sun : that Nicetas, according
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to Cicero, made the Earth revolve on its axis,

and by this means freed the celestial sphere from

tliat inconceivable velocity which must be attri-

buted to it to accomplish its diurnal revolution.

He learnt from Aristotle and Plutarch that the

Pythagoreans had made the Earth and planets

move round the Sun, which they placed in the

centre of the universe. These luminous ideas

struck him
;
he applied them to the astronomical

observations which time had multiplied, and had

the satisfaction to see them yield, without diffi-

culty, to the theory of the motion of the Earth.

The diurnal revolution of the heavens was only

an illusion due to the rotation of the Earth, and

the precession of the equinoxes is reduced to a

slight motion of the terrestrial axis. The circles,

imagined by Ptolemy, to explain the alternate di-

rect, and retrograde motions of the planets, disap-

peared. Copernicus only saw in these singular

phenomena, the appearances produced by the com-

bination ofthe motion of the Earth round the Sun,

with that of the planets ;
and he concluded, from

hence, the respective dimensions of their orbits,

which, till then, were unknown. Finally, every

thing in this system announced that beautiful

simplicity in the expedients of nature, which de-

lights so much when we are fortunate enough to

discover them. Copernicus published it in his work,

On the Celestial Mevolutions ; not to shock re-

ceived prejudices, he presented it under the form

of an hypothesis.
**
Astronomers,'' said he, in

his dedication to Paul III.,
*'
being permitted to
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imagine clivles, to explain the motions of the
"

stars, I thought myself equally entitled to ex-
" amine if the supposition of the motion of the
** Earth would render tlie theory of these appear-
*' ances more exact and simple."

This great man did not witness the success of

J>is work. He died suddenly, hy the rupture of

a hlood vessel, at the age of seventy-one years, a

few days after receiving the first proof. He was

born at Tfiorn, in Polish Prussia, the 19th of

February, 1 lyS. After learning the Greek and

Latin languages, he went to continue his studies

at Cracovia. Afterwards, induced by his taste

for astronomy, and by the reputation which Re-

giomontanus had acquired, he undertook a jour-

ney to Italy, where this science was taught with

success : being greatly desirous to render himself

illustrious in the same career, he attended the

lectures of Dominique Maria, at Bologna. When
arrived at Rome, his talents obtained him the

place of professor, where he made several obser-

vations : he afterwards quitted this city, to esta-

blish himself at Fravenberg,. where his uncle,

then Bishop of Warmia, made him a canon. It

was in this tranquil abode that, by thirty-six years
of observation and meditation, he established his

theory of the motion of the Earth. At his death

he was buried in the cathedral of Fravenberg,
without any pomp or epitaph ; but his memory
will exist as long as the great truths which he

taught with a clearness that eventually dissipated

the illusions of the senses, and surmounted the
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difficulties which ignorance of the laws of me-
chanics had opposed to them.

These truths had yet to vanquish obstacles of

another kind, and which, arising from a re-

spected source, would have extinguished them al-

together, if the rapid progress of all the mathema-
tical sciences had not concurred to support them.

Religion was invoked to destroy an astronomi-

cal system, and one of its defenders, whose dis-

coveries did honor to Italy, was harassed by

repeated prosecutions. Rethicus, the disciple of

Copernicus, was the first who adopted his ideas
j

hut they were not in great estimation till towards

the beginning of the seventeenth century, and

then they owed it principally to the labours and

misfortunes of Galileo.

A fortunate accident had made known the most

wonderful instrument ever discovered by human

ingenuity, and which, by giving to astronomical

observations a precision and extent hitherto un-

hoped for, displayed in the heavens new inequali-

ties, and new worlds. Galileo hardly knew of

the first trials of the telescope, before he bent his

mind to bring it to perfection. Directing it to-

wards the stars, he discovered the four satellites of

Jupiter, which shewed a new analogy between the

Earth and planets ; he afterwards observed the

phases of Venus, and from that moment he no

longer doubted of its motion round the Sun. The

milky^way displayed to him an infinite number of

small stars, which the irradiation blends to the

naked eye, into a white and continued light 5 the
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luminous points which he perceived heyond the

line which separated the light part of the Moon
from the dark, made him acquainted with the ex-

istence and height of its mountains. Finally he

observed the singular appearances occasioned by
Saturn's ring, and by the spots and rotation of the

Sun. In publishing these discoveries, he showed

that they proved incontestibly the motion of the

Earth ;
but the idea of this motion was declared

heretical by a congregation of cardinals
;
and Ga-

lileo, its most celebrated defender, was cited to

the tribunal of the inquisition, and compelled to

retract this theory, to escape a rigorous prison.

One of the strongest passions in a man of

genius, is the love of truth. Full of the enthusi-

asm which a great discovery inspires, he burns

with ardour to disseminate it, and the obstacles

which ignorance and superstition, armed with

power, oppose to it, only stimulate and increase his

energy; besides, the subject is of the highest im-

portance to us, from the rank which it assigns to

the globe which we inhabit. Galileo, more and

more convinced by his own observations of the

motion of the Earth, had long meditated a new

work, in which he proposed to develope the proofs

of it. But to shelter himself from the persecu-

tion of which he had escaped being the victim, he

proposed to present them under the form of dia-

logues between three interlocutors, one of whom
defended the system of Copernicus, combated by
a Peripatetician. It is obvious that the advan-

tage would rest with the defender of this system ;
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but, as Galileo did not decide between them, and

as he gave as much weight as possible to the objec-

tions of the partisans of Ptolemy, he had a right

to expect that tranquillity which his age and la-

bours merited.

The success of these dialogues, and the tri-

umphant manner with which all the difficulties

against the motion of the Earth were resolved,

roused the inquisition. Galileo, at the age of

seventy, was again cited before this tribunal. The

protection of the Grand Duke of Tuscany could

not prevent his appearance. He was confined in

a prison, where they required of him a second

disavowal of his sentiments, threatening him with

the punishment incurred by contumacy, if he

continued to teach the system of Copernicus.
He was compelled to sign this formula of ab-

juration :

" / Galileo, in the seventieth year of my aye,
*'

brought personally tojustice, being on my knees,
" and having befor^e my eyes the holy evangelists,
*' which I touch with my own hands ; ivith a sin-

** cere heart andfaith, I objure, curse, and detest,
*' the error, and heresy, ofthe motion of the Earth,^^

''Sec.

What a spectacle ! A venerable old man, ren-

dered illustrious by a long life, consecrated to the

study of nature, abjuring on his knees, against the

testimony of his own conscience, the truth which

he had so evidently proved. A decree of the in-

quisition condemned him to a perpetual prison.

He was released after a year, at the solicitations
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of the grand duke
; but, to prevent his withdraw-

ing himself from the power of the inquisition, he

was forbidden to leave the territory of Florence.

Born at Pisa, in 1564, he gave early indications

of those talents which were afterwards developed.

Mechanics owe to him many discoveries, of which

the most important is the theory of falling bodies,

the most splendid discovery of his genius.

Galileo was occupied with the libration of the

Moon, when he lost his sight ; he died three years

afterwards, at Arcetre, in 1642, regretted by all

Europe, which he left enlightened by his labours*

and indignant at the judgment passed against so

great a man, by an odious tribunal.

While this passed in Italy, Kepler, in Grermany^

developed the laws of the planetary motions.

But, previous to the account of his discoveries, it

is necessary to look back and to describe the pro-

gress of astronomy in the north of Europe, after

the death of Copernicus.

The history of this science presents at this

epoch a great number of excellent observers. One

of the most illustrious was William IV., Land-

grave of Hesse-Cassel. He had an observatory

built at Cassel, which he furnished with instru-

ments, constructed with care, and with which he

observed a long time. He procured two cele-

brated astronomers, Rothman and Juste Byrge ;

and Tycho was indebted to his pressing solicita-

tions for the favours which were conferred on him

by Frederic King of Denmark.

Tycho Brahe, who was one of the greatest ob-
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servers that ever existed, was born at Knucksturp,
in Norway. His taste for astronomy was mani-

fested at the age of fourteen years, on the occa-

sion of an eclipse of the Sun, which happened in

1560. At this age, when reflection is so rare, the

justice of the calculation which announced this

phenomenon, inspired him with an anxious desire

to know its principles ;
and this desire was still

further increased by the opposition of his precep-
tor and family. He travelled to Germany, where

he formed connexions of correspondence and

friendship with the most distinguished persons,

who pursued astronomy either as a profession, or

amusement, and particularly with the Landgrave
of Hesse-Cassel, who received him in the most

flattering manner.

On his return to his own country, he was fixed

there by his sovereign, Frederic, who gave him
the little island of Huene, at the entrance of the

Baltic. Tycho built a celebrated observatory

there, which was called Uranibourg. There, dur-

ing an abode of twenty, one years, he made a prodi-

gious number of observations, and many important
discoveries. At the death of Frederic, envy, then

unrestrained, compelled Tycho to leave his re-

treat. His return to Copenhagen did not appease
the rage of his persecutors ; the Minister, Wal-

chendorp, (whose name, like that of all men who
have abused the power intrusted to them, ought
to be handed down to the execration of posterity,)

forbad him to continue his observations. Fortu-

nately, Tycho found a powerful protector in the
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Emperor Rodolph 11. who settled on him a con-

sOerahle pension, and lodged him commodiously
at Prague. He died suddenly at this city, on the

24th of October, 1601, in the midst of his labours,

and at an age when astronomy might have ex-

pected great services from him.

The invention of new instruments, and great

improvements made in the oldones, a much greater

precision in observations
; a catalogue of stars

much more accurate than those of Hipparchus, and

UlughBeigh ;
the discovery ofthat inequality ofthe

Moon, which is called variation
;
that ofthe inequa-

lities of the motion of the nodes, and of the incli-

nation of the lunar orbit; the interesting remark,

that the comets are beyond this orbit
;
a more

perfect knowledge of astronomical refractions
;

finally, very numerous observations of the planets,

which have served as the basis of the discoveries

of Kepler, are among the principal services which

Tycho Brahe has rendered astronomy. The ac-

curacy of his observations, to which he was in-

debted for his discoveries on the lunar motion,

shewed him also, that the equation of time with

respect to the Sun and the planets is not appli-

cable to the moon, and that the part depending
on the anomaly of the Sun, and even a quantity

much greater must be deducted from it. Kepler,

carried away by his imagination to investigate

the relations and the cause of those phenomena,

thought that the moving virtue of the Sun caused

the Earth to move more rapidly on itself in its

perihelion than in its appelion. The effect of
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this variation of diurnal motion could not be re-

cognized by the observations of Tycho, except in

the motions of the Moon, where it is thirteen

times more considerable than in that of the Sun.

But clocks brought to perfection by the application

of the pendulum, shew that this effect vanishes in

this last motion, and that the rotation of the earth

is uniform. Flamstead transferred to the Moon it-

self the inequality depending on the anomaly of

the Sun, which he had regarded as only appa-
rent. This inequality, which Tycho first per-

ceived, is that which is termed the annual eqim-

Hon. By this example we may perceive how ob-

servations, in becoming more perfect, discover to

us inequalities till then enveloped in errors. The
researches of Kepler furnishes us also with a still

more remarkable example. Having shewn in

his commentary on Mars, that the hypothesis of

Ptolemy necessarily differs from the observations of

Tycho by eight sexagesimal minutes, he adds ;

" This difference is less than the uncertainty ofthe
" observations of Ptolemy, which uncertainty, by
" the confession of this Astronomer, is less than
** ten minutes, but the divine goodness giving
" us Tycho Brahe, a very exact observer, it is

** meet to be grateful for the kindness ofthe divi-

*'

nity, and to render him thanks for it. Being
" now convinced of the error of the hypothesis
'* which we made use of, we ought to direct all

" our efforts to the true laws of the heavenly mo-
" tions. These eight minutes which I am no longer
"

permitted to neglect have enabled me to reform
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"
all Astronomy, and indeed constitute the mate-

'*
rials of the greatest part of tliis work." Struck

with the objections which the adversaries ofCoper-
nicus made to the motion of the Earth, and per-

haps influenced by the vanity of wishing to give his

name to an astronomical system, he mistook that

of nature. According to him the Earth is im-

moveable in the centre of the universe
;

all tlie

Stars move every day round the axis of the world
;

and the Sun, in its annual revolution, carries with

it the planets. In this system, which ought, in the

natural order of things, to precede that of Coperni-

cus, the appearances are the same as in the theory
ofthe motion ofthe Earth. For we may, in general,

consider any point we choose, for example, the cen-

tre of the Moon as immoveable, provided that we

assign the motion with which it is animated, to

all the stars in a contrary direction.

But, is it not physically absurd to suppose the

Earth immoveable in space, while the Sun carries

along the planets in the midst of which the Earth is

included? How could the distance from the Earth to

the Sun, which agrees so well with the duration of

its revolution in the hypothesis ofthe motion of the

Earth, leave any doubt of the truth of this hypo-
thesis in a mind constituted to feel the force of

analogy ? Ought we not to confess with Kepler,
that nature proclaims with a loud voice the truth

of this hypothesis. Indeed it must be admitted, that

Tycho, though a great observer, was not fortunate

in his research after causes
;

his unphilosophical
mind had even imbibed the prejudices of astro-

logy, which he tried to defend.
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It would be, however, unjust to judge him with

the same rigor, as one who should refuse at pre-

sent to believe the motion of the Earth, confirmed

by the numerous discoveries made in astronomy
since that period.

The difficulties which the illusions of the senses

opposed to this theory, were not then completely
removed. The apparent diameter of the fixed

stars, greater than their annual parallax, gave to

these stars in this theory, a real diameter, greater
than that of the terrestrial orbit. The telescope,

by reducing them to luminous points, made this

improbable magnitude disappear. It could not be

conceived how these bodies, detached from the

Earth, could follow its motion* The laws of me-

chanics have explained these appearances ; they

have proved, what Tycho, deceived by an erro-

neous experiment, had refused to admit, that a

body, falling from a considerable height, and

abandoned to the action of gravity alone, ought
to fall very nearly in a vertical line, only deviat-

ing towards the east by a quantity difficult to esti-

mate accurately by observation, from its minute-

ness, so that at present there is as much difficulty

in proving the motion of the Earth by the direct

experiment of a falling body, as formerly existed

to prove that it should be insensible.

The reformation of the Julian calendar is also

to be traced up to the aera of Tycho Brahe. It is

convenient that the months and festivals should

be attached to the same seasons, to make them

to be remarkable epochs for agriculture. But

VOL. II. T
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to secure this inestimable advantage to the inha-

bitants of a country, it was necessary by the re-

gular intercalation of a day, to compensate the

excess of the solar year above the common year

of three hundred and sixty-five days. The simplest

mode of intercalation was that employed by Ju-

lius Csesar ;
it consisted in making a bissextile to

succeed three common years. But as the length of

the year, which this intercalation supposes, was too

great, the vernal equinox always preceded it, so that

after the interval of fifteen centuries, it had ap-

proached to thecommencementofthe year byabove
eleven days and a half. In order to remedy this in-

convenience. Pope Gregory decreed in 1582, that

the month of October of that year should only

consist of twenty-one days ;
that the year 1600

should be bissextile; and that henceforth for

years which terminate each century, only three

of them should be bissextile in four centuries.

Even this intercalation assigns too great a length

to the year, so that the equinox would anticipate it

by about a day in four thousand years ;
but if the

bissextile which terminates this interval is consi-

dered as a common year, the Gregorian interca-

lation would be very nearly correct. In other

respects the Julian calendar has not been altered.

It would then have been easy to fix the origin of

the year, at the winter solstice, and to render the

length of the months more uniform, by assigning

thirty-one days to the first, and twenty-nine days
to the second month in common years, and thirty

days in bissextile years, and by making the other
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months alternately thirty and thirty-one days ;
it

would have been convenient also to denote them

by their numerical order, which would have done

away with the improper denominations of the

four last months of the year. If then this inter-

calation adopted by Gregory was corrected in the

manner specified above, the Gregorian calendar

would be as perfect as could be desired. But is

it requisite to give it all this perfection ? When it

is considered that this calendar has been now

adopted by almost every nation in Europe and

America, and that it required two centuries, and

all the influence of religion, to secure to it this

advantage, it will be immediately apparent that it

ought to be retained, notwithstanding some im-

perfections which attach to it, and which, it

may be observed besides, are comparatively of

trifling importance. For the principal object

of a calendar is, to connect by a simple

mode of intercalation events to the series of

days, and to make the seasons for a great num-

ber of years to correspond to the same months of

the year, which conditions are sufficiently well

secured in the Gregorian calendar. As the part

of this calendar which refers to the fixing of

Easter is foreign to the science of Astronomy, I

have not adverted to it here.

Towards the close of his life, Tycho Brahe

had Kepler for a disciple and assistant. He was

born in 1571, at Viel, in the duchy of Wir-

temberg, and was one of these extraordinary

men whom nature grants now and then to the
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sciences, to bring to light those grand theories

which have been prepared by the labour of many
centuries.

The career of the sciences did not appear to

him adequate to satisfy the ambition he felt ofren-

dering himself illustrious ; but the ascendancy of

his genius, and the exhortations of Msestlin,

led him to astronomy ;
and he entered into the

pursuit with all the avidity of a mind passion-

ately desirous of glory.

The philosopher, endowed with a lively imagi-

nation, and impatient to know the causes of the

phenomena which he sees, often obtains a glimpse
of them, before observation can conduct him to

them. Doubtless he might, with greater certainty,

ascertain the cause from the phenomena ;
but the

history of science proves to us, that this slow

progress has not always been that of inventors.

What rocks has he to fear, who takes his ima-

gination for his guide !

Prepossessed with the cause which it presents to

him, instead of rejecting it when contradicted by
facts, he alters them to make them agree with his

hypotheses ; he mutilates, if I may be allowed the

expression, the work of nature, to make it resem-

ble his imagination, without reflecting that time

destroys with one hand these vain phantoms, and

with the other confirms the results of calculation

and experience.
The philosopher who is really useful to the

cause of science, is he, who, uniting to a fertile

imagination, a rigid severity in investigation and
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observation, is at once tormented by the desire of

ascertaining the cause of the phenomena, and by
the fear of deceiving himself in that which he as-

signs.

Kepler owed the first of these advantages to

nature, and the second to Tycho Brahe, who gave
him useful advice, from which he too frequently de-

viated, but which he followed in all cases where he

could compare his hypotheses with observations,

which, by the method of exclusion, conducted

him from hypothesis to hypothesis to the laws of

the planetary motions. This great observer,

whom he went to see at Prague, and who had

discovered the genius of Kepler in his earliest

works, notwithstanding the mysterious analogies

ofnumbers and figures with which they were filled,

exhorted him to devote his time to observation,

and procured him the title of imperial mathema-

tician.

The death of Tycho, which happened a few

years afterwards, put Kepler in possession of his

valuable collection of observations, of which he

made a most noble use, founding on them three

of the most important discoveries that have been

made in natural philosophy.

It was an opposition of Mars which determined

Kepler to employ himself to examine, in prefer-

ence, the motions of this planet. His choice was

fortunate in this circumstance, that the orbit of

Mars, being one of the most eccentric of the pla-

netary system, the inequalities of his motion were

more perceptible, and therefore led to the disco-
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very oftheir laws with greater facilityand precision.

Though the theory of the motion of the Earth had

made the greater part of those circles with wliich

Ptolemy hadj embarrassed astronomy disappear,

yet Copernicus left several to remain, in order to

explain the real inequalities of the celestial bodies.

Kepler, deceived like him, by the opinion that

their motions ought to be circular and uniform,

tried a long time to represent those of Mars, in

this hypothesis. Finally, after a great number of

trials, which he has related in detail in his famous

work de Stella Martis, he surmounted the obstacle,

which an error, supported by the suffrage of every

period, had opposed to him
;
he discovered that

the orbit of Mars is an ellipse, of which the Sun

occupies one of the foci, and that the motion of

the planet is such, that the radins vector, drawn

from its centre to that of the Sun, describes

equal areas in equal times. Kepler extended

these results to all the planets, and published from

this theory, in 16S6, the Rudolphine tables, for

ever memorable in astronomy, as being the first

founded on the true laws of the planetary motions,

and freed from all the circles with which anterior

tables were encumbered.

If we separate the astronomical investigations

of Kepler from the chimerical ideas with which

they were frequently accompanied, we will per-

ceive that he arrived at those laws in the follow-

ing manner : He first ascertained that the equa-

lity of the angular motion of Mars had sensibly

place about a point situated beyond the centre of
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his orbit, with respect to the Sun. He recognised
the same thing for the Earth, by comparing toge-
ther select observations of Mars, of which the or-

bit, by the magnitude of its annual parallax, is

proper to make known the respective dimensions

of the orbit of the Earth. Kepler, from these re-

sults, concluded that the real motion of the pla-

nets were variable, and that at the points of the

greatest and least velocities, the areas described in

a day, by the radius vector of a planet, are the

same. He extended this equality of areas to all

the points of the orbit, which gives him the law

of the areas, proportional to the times. After-

wards, the observations of Mars, near his quadra-

tures, showed him that the orbit of this planet is

an oval, elongated in the direction of the diameter

which joins the points of the extreme velocities.

Finally, he concluded from this the elliptic mo-

tion.

Without the speculations of the Greeks, on the

curves formed from the section of a cone by a

plane, these beautiful laws might have been still

unknown. The ellipse being one of these curves,

its oblong figure gave rise, in the mind of Kepler,
to the idea of supposing the planet Mars, whose

orbit he had discovered to be oval, to move on it,

and soon, by means of the numerous properties

which the ancient geometricians had found in the

conic sections, he became convinced of the truth

of this hypothesis. The history of the sciences

offers us many examples of these applications of

of pure geometry, and of its advantages 5
for
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every thing is connected in the. immense chain

of truths, and often a single observation has been

sufficient to show the connection between a pro-

position apparently the most sterile, and the phe-
nomena of nature, which are only mathematical

results of a small number of immutable laws.

The perception of this truth probably gave
birth to the mysterious analogies of the Pythago-
ricians : they had seduced Kepler, and he owed
to them one of his most beautiful discoveries.

Persuaded that the mean distances of the planets
from the Sun, ought to be regulated conformably
to these analogies, he compared them a long

time, both with the regular geometrical solids,

and with the intervals of tones. At length, after

seventeen years of meditations and calculation,

conceiving the idea of comparing the powers of

the numbers which expressed them, he found that

the squares of the times of the planetary revo-

lutions, are to each other as the cubes of the

major axes of their orbits ; a most important

law, which he had the advantage of observing in

the system of satellites of Jupiter, and which ex-

tends to all the systems of satellites.

After having determined the curves which the

planets describe about the Sun, and discovered

the laws of their motions, Kepler was too near

the principle whence those laws are derived, not

to anticipate it. The investigation of this prin-

ciple frequently exercised his active imagination ;

but the moment of making this last step was not

yet arrived, which supposes the invention of dy-
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rmmics, and of the infinitesmal analysis. Far

from approaching this end, Kepler deviated from

it by vain speculations on the moving cause of

the planets. He supposed in the Sun a motion

of rotation on an axis perpendicular to the eclip-

tic
;
immaterial species emanating from this star,

in the plane of its equator, and endowed with an

activity decreasing in the ratio of the distances,

and preserving their primitive motion of rotation,

cause each planet to participate in this circular mo-

tion. At the same time the planet, by a sort of

instinct or magnetism, appr-oaches and recedes

alternately from the Sun, elevates itself above

the solar equator, or is depressed below it, so

as to describe an ellipse always situated in the

same plane, passing through the centre of the

Sun. In the midst of those numerous errors,

Kepler was nevertheless led to sound views on

universal gravitation in the introduction of the

work de Stella Martis, in which he presents his

principal discoveries.

**

Gravity," says he,
"

is only a mutual corpo-
** real affection between bodies, by which they tend
" to unite. The gravity of bodies is not directed
" towards the centre of the world, but towards that
" of the bodies of which they make a part ; and if

" the Earth was not spherical, heavy bodies placed
" on different parts of its surface would not fall

** towards the same centre. Two isolated bodies
*' are carried towards each other, as two magnets,
** in running to join, describe spaces inversely as

** their masses. If the Earth and Moon were not
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** retained at the distance which separates them
"
by an animal force, or by some other equi-

** valent force, they would fall towards each
** other ; the Moon would fall f| of the way, and
** the Earth would describe the rest, supposing
** them to be equally dense. If the Earth ceased
** to attract the waters of the ocean, they would
" flow towards the Moon, in virtue of the attrac-

** tive force of this star. This force, which ex-

** tends to the Earth, produces there the plieno-
** mena of the tides.*' Thus the important work

which we have cited contains the first germs of

the celestial mechanics which Newton and his

successors have so happily developed.

We may be astonished that Kepler should not

have applied the general laws of elliptic motion

to comets. But, misled by an ardent imagina-

tion, he lost the clue of the analogy, which should

have conducted him to this great discovery. The

comets, according to him, being only meteors,

engendered in ether, he neglected to study their

motions, and thus stopped in the middle of the

career which was open to him, abandoning to his

successors a part of the glory which he might yet

have acquired. In his time, the world had just

begun to get a glimpse of the proper method of

proceeding in the search of truth, at which ge-

nius only arrived by instinct, frequently connect-

ing errors with its discoveries. Instead of pass-

ing slowly by a succession of inductions, from

insulated phenomena, to others more extended,

and from these to the general law of nature, it
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was more easy and more agreeable, to subject all

the phenomena to the relations of suitableness

and harmony, which the imagination could create

and modify at pleasure.

Thus, Kepler explained the disposition of the

solar system by the laws of musical harmony. It

is a humiliating sight for the human mind to

behold this great man, even in his latest works,

amusing himself with these chimerical specula,

tions, even so far as to regard them as the **
life

and souV of astronomy. These being blended

with his true discoveries was unquestionably the

cause why the astronomers of his age, Des Cartes

himself and Galileo, who might have drawn the

most advantageous consequences from his laws,

do not appear to have perceived their importance.

They were not generally admitted till after that

Newton made them the base of his theory of the

system of the world.

Astronomy likewise owes to Kepler many use-

ful works. His treaties on optics are full of new
and interesting matter

;
he brought the teles-

copic theory to perfection ;
he there explains the

mechanism of vision, which was unknown before

him. He assgned the true cause of the lumiere

cendree of the Moon ;
but he gave the honour of

this discovery to his master, Maestlin, entitled

to notice from this discovery, and from having

recalled Kepler to astronomy, and converted Ga-

lileo to the system of Copernicus.

Finally, Kepler, in his work entitled Stereome-

tria DoUorumy has presented some conceptions
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on infinity, which have influenced the revol a-

tion experienced by geometry towards the end of

the last century ;
and Fermat, whom we ought to

regard as the true inventor of the differential cal-

culus, has founded on them his beautiful method

de maximis et de minimis.

With so many claims to admiration this great

man lived in misery, while judicial astrology,

every where honoured, was magnificently recom-

pensed.

Fortunately the enjoyment which a man of

genius receives from the truths which he disco-

vers, and the prospect of a just and grateful pos-

terity, console him for the ingratitude of his con-

temporaries.

Kepler had obtained pensions which were al-

ways ill paid : going to the diet of Ratisbon to

solicit his arrears, he died in that city the 15th

of November 1630. He had in his latter years

the advantage of seeing the discovery of loga-

rithms, and making use of them. This was due

to Nepier, a Scottish baron ; it is an admirable

contrivance, an improvement on the ingenious

algorithm of the Indians, and which, by reducing
to a few days the labour of many months, we

may almost say doubles the life of astronomers,

and spares them the errors and disgusts insepara-

ble from long calculations ; an invention so

much the more gratifying to the human mind,
as it is entirely due to its own powers : in the

arts, man makes use of the materials and forces
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of nature to increase his powers, but here all is

his own work.

The labours of Huygens followed soon after

those of Kepler and Galileo. Very few men
have deserved so well of the sciences, by the im-

portance and sublimity of their researches. The

application of the pendulum to clocks is one of

the most beautiful acquisitions which astronomy
and geography have made, and to which for-

tunate invention, and to that of the telescope,

the theory and practice of which Huygens

considerably improved, they owe their rapid

progress.

He discovered, by means of excellent object-

glasses which he succeeded in constructing, that

the singular appearances of Saturn were pro-

duced by a very thin ring with which this planet is

surrounded: his assiduity in observing enabled him

also to discover one of the satellites of Saturn.

. He published these two discoveries in his Systerna

Saturneuniy a work which contains some traces

of the Pythoragean notions which Kepler had so

much abused, but which the genuine spirit of

science, which in this celebrated age has made
so much progress, has for ever effaced. This sa-

tellite of Saturn rendered the number of satel-

lites equal to that of the planets then known.

Huygens judging this equality necessary for the

harmony of the system of the world, dared to

affirm, that there were [no more satellites to

discover; and Cassini, a few years afterwards
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discovered four new satellites belonging to the

same satellite.

He made numerous discoveries in geometry,
mechanics and optics ;

and if this extraordi-

nary genius had conceived the idea of combin-

ing his theorems on centrifugal forces with

his beautiful investigation on involutes, and

with the laws of Kepler, he would have pre-

ceded Newton in his theory of curvilinear mo-

tion, and in that of universal gravitation. But

it is not such approximations that constitute in-

vention.

Towards the same time, Hevelius rendered

himself useful to astronomy by his immense la-

bours. Few such indefatigable observers have

existed ;
it is to be regretted that he would not

adopt the application of telescopes to quadrants,
an invention for which we are indebted to Pi-

card, which gives to observations a precision

previously unknown to astronomy, and has ren-

dered the greater number of those of Hevelius

useless.

At this epoch astronomy received a new im-

pulse from the establishment of learned societies.

Nature is so various in her productions and

phenomena, that it is extremely difficult to as-

certain their causes, hence it is requisite for a

great number of men to unite their intellect and

exertions in order to comprehend and develope
her laws. This union is particularly requisite

when the progress of the sciences multiplying
their points of contact, and not permitting one
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individual to penetrate them all ; they can only
receive from several learned men the mutual

support which they require.

It is then that the natural philosopher has

recourse to geometry, to arrive at the general

causes of the phenomena which he observes,

and the geometrician in his turn interrogates

the philosopher, in order to render his own in-

vestigation useful, by applying them to expe-

rience, and to open in these applications a new
road in the analysis. But the principal ad-

vantage of learned societies is the philosophical

feeling on every subject which is introduced

into them, and from thence diffuses itself over

the whole nation. The insulated philosopher

may resign himself without fear to the spirit of

system ;
he only hears contradiction at a dis-

tance ;
but in a learned society the shock of

systematic opinions at length destroys them, and

the desire of mutually convincing each other, es-

tablishes between the members an agreement

only to admit the results of observation and

calculation. Hence experience has proved that

since the origin of these establishments, true

philosophy has been generally extended.

By setting the example of submitting every

opinion to the test of severe scrutiny, they
have detroyed prejudices which had so long

reigned among the sciences, and in which the

highest intellects of the preceding age had par-

ticipated. Their useful influence on opinion
has dissipated the errors accumulated in our



288 ASTRONOMY IN MODERN EUROPE.

own time, with an enthusiasm which at other

periods would have perpetuated them. Equally
removed from the credulity which admits every

thing, and the prejudices which would induce

us to reject every thing which was at variance

with preconceived notions, they have always
in difficult questions and in extraordinary phe-

nomena, sagely waited for the answers of ob-

servation and of experience, exciting them by

prizes, and by their proper works, regulat-

ing their estimation as much by the great-

ness and difficulty of a discovery, as by its

immediate utility ;
and convinced, by several

instances, that the most barren in appear-
ance may have one day the most important

consequences. They have encouraged the in-

vestigation of truth on all subjects, only ex-

cluding those which, by the limits of the ex-

tent of human understanding, will be for ever

inaccessible. Finally, it is among them that

those grand theories have been formed which

are placed above the reach of the vulgar by
their comprehensiveness ;

and which, extend-

ing themselves by the numerous occasions

in which they are applicable, to nature and

to the arts, are inexhaustible som'ces of de-

light and intelligence. Wise governments, con-

vinced of the utility of learned societies, and

viewing them as one of the principal founda-

tions of the glory and of the prosperity of em-

pires, have instituted and placed them near

themselves, to illuminate by their information,
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from which they have frequently derived great

advantages.

Of all the learned societies, the two most ce.

lebrated for the number and importance of their

discoveries in astronomy, are the Academy of

Sciences at Paris, and the Royal Society in Lon-

don.

The first was founded in 1666, by Louis XIV.

who foresaw the lustre which the arts and sci-

ences were to diffuse over his reign. This mo-

narch, worthily seconded by Colbert, invited

many learned strangers to fix themselves in his

capital. Huygens availed himself of this flatter-

ing invitation
;
he published his admirable work,

De horologio oscillatorioy in the midst of the aca-

demy, of which he was one of the first members.

He would have finished his days in this country,

had it not been for the disastrous edict which,

towards the end of the last century, widowed

France of so many valuable citizens. Huygens,

departing from a country in which the religion of

his ancestors was proscribed, retired to the

Hague, where he was born the 14th of April,

1629, and died there the 15th of June, 1695.

Dominic Cassini was likewise induced to go to

Paris, by the advantages held out by Louis XIV.

During forty years of useful labours, he enriched

astronomy with a crowd of discoveries : such are

the theory of the satellites of Jupiter, the motions

of which he determined from observations of their

eclipses ; the discovery of the four satellites of

VOL. II. u



290 ASTRONOMY IN M0U2illN EViiOVE.

Saturn, that of the rotation of Jupiter, of the

belts parallel to his equator, of tlie rotation of

Mars, of the zodiacal light, a very approximate

knowledge of the Sun's parallax, a very exact table

of refractions, and, above all, a complete theory

of the libration of the Moon.

Galileo had only considered the libration in

latitude, Hevelius explained the libration in

longitude, by supposing that the Moon always

presents the same face to the centre of the lunar

orbit, of which the Earth occupies one of the foci.

Newton, in a letter addressed to Mercator in

1675^ rendered the explanation of Hevelius per-

fect, by reducing it to the simple conception of a

uniform rotation of the Moon on itself, while it

moves unequally about the Earth. But he supposed
with Hevelius the axis of rotation always perpen-
dicular to the plane of the ecliptic. Cassini, by his

own observations, recognized that it was inclined

to the plane of the ecliptic at a small angle of an

invariable magnitude ; and to satisfy the condition

already observed by Hevelius, according to which
all the inequalities of libration are re-established

after each revolution of the nodes of the lunar

orbit, he made the nodes of the lunar equator to

coincide constantly with them. Such has been

the progress of opinions on one of the most curious

points of the system of the world.

The great number of astronomical academi-

cians of extraordinary merit, and the limits of this

historical abridgment, do not permit me to give
an account of their labours

;
I shall content mv-

^f
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self with observing, that the application of the

telescope to the quadrant, the invention of the

micrometer and heliometer, the successive propa-

gation of light, the magnitude of the Earth, its

ellipticity, and the diminution of gravity at the

equator, are all discoveries due to the Academy
of Sciences.

Astronomy does not owe less to the Royal So-

ciety of London, the origin of which is a few years

anterior to that of the Academy of Sciences.

Among the astronomers which it has produced, I

shall cite Flamstead, one of the greatest observers

that has ever appeared ;. Halley, rendered illus-

trious by his travels, undertaken for the advantage
of science, by his beautiful investigations concern-

ing comets, which enabled him to discover the

return of the comet in 1759 ',
and by the inge-

nious idea of employing the transit of Venus over

the Sun, in order to determine its parallax : I

shall mention, lastly, Bradley, the model for

observers, and who will be for ever celebrated

for two of the most beautiful discoveries that

have been made in astronomy, namely, the aber-

ration of the fixed stars, and the nutation of the

axis of the Earth.

When the application of the pendulum to

clocks, and of telescopes to quadrants, had ren-

dered the slightest changes in the position of the

celestial bodies perceptible to observers, they en-

deavoured to determine the annual parallax of the

fixed stars
;
for it was natural to suppose, that

so great an extent as the diameter of the terres-

u 2
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trial orbit, would be sensible even at the distance

of these stars. Observing them carefully, at

every season of the year, there appeared slight

variations ; sometimes favourable, but more fre-

quently contrary to the effects of parallax. To
determine the law of these variations, an instru-

ment of great radius, and divided with extreme

precision, was requisite. The artist who exe-

cuted it, deserves to partake of the glory of the

astronomer who owed his discovery to him,

Graham, a famous English watch-maker, con-

structed a great sector, with which Bradley dis-

covered the aberration of the fixed stars, in the

year 17^. To explain it, this great astronomer

conceived the fortunate idea of combining the

motion of the earth with that of light, which

Roemer had discovered at the end of the last

century, by means of the eclipses of Jupiter's sa-

tellites. We should be surprised that in the in-

terval of half a century, which intervened be-

tween this discovery and that of Bradley, none of

the distinguished philosophers who then existed,

and who knew the motion of light, should have

paid any attention to the very simple effects

which result from it, in the apparent position of

the fixed stars. But, the human mind, so ac-

tive in the formation of systems, has almost al-

ways waited till observation and experience have

acquainted it with important truths, which its

powers of reasoning alone might have disco-

vered.

It is thus that the invention of telescopes has
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followed by more than three centuries that of

lenses, and even then it was solely due to ac-

cident.

In 1745, Bradley discovered by observation,

the nutation of the terrestrial axis and its laws.

In all the apparent variations of the fixed stars,

observed with extiaordinary care, he perceived

nothing which indicated a perceptible parallax.

We are also indebted to this great man for the first

sketch of the principal inequalities of the satel-

lites of Jupiter, which was soon afterwards ex-

tended. Finally, he left an immense number
of observations of all the phenomena which the

heavens presented towards the middle of the last

century, for more than ten consecutive years. The

great number of these observations and the ac-

curacy which distinguishes them, form by their

collection one of the principal foundations of

modern Astronomy, and the epoch whence we

ought to set out in all the delicate investigations

of this science. He has given us a model for

several similar collections, which being rendered

successively more perfect by the progress of the

arts, are so many signs placed in the path of

the heavenly bodies to denote their periodic and

secular changes.

At the same epoch Lacalle flourished in France

and Tobias Mayer in Germany, both ofthem inde-

fatigable observers and laborious compilers ; they

have rendered the tables and astronomical theories

perfect, and from their own observations have

formedcatalogues ofthe stars, which, comparedwiih
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those of Bradley determine with great precision
the state of the heavens in the middle of the last

century.

The measures of the degrees of the terrestrial

meridian, and of the pendulum, (repeated in

different parts of the globe, of which France gave
the example, by measuring the whole arc of the

meridian, which crosses it, and by sending aca-

demicians to the north and to the equator, to

observe the magnitude of these degrees, and the

intensity of the force of gravity ;) the arc of the

meridian, comprised between Dunkirk and Bar-

celona, determined by very precise observations,

and forming the base of the most natural and

simple system of measures
;
the voyages under-

taken to observe the two transits of Venus over

the Sun's disk, in I76I and 1769, and the exact

knowledge of the dimensions of the solar system,

which has been derived from these voyages ; the

discovery of achromatic telescopes, of chrono-

meters, of the sextant, and repeating circle, in-

vented by Mayer, and brought to perfection

by Borda
;

the formation by Mayer of lunar

tables sufficiently exact for the determination

of the longitude at sea ; the discovery of the pla-

net Uranus, by Herschel, in I78I ;
that of its

satellites, and of the two new satellites of Sa-

turn, due to the same observer
; these, with the

discoveries of Bradley, are the principal obliga-

tions which astronomy owes to our century,

which, with the preceding, will always be consi-

dered as the most glorious epoch of the science.
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The present age has commenced under the

most favourable auspices for astronomy : its first

day is remarkable for the discovery of the planet

Ceres, made by Piazzi, at Palermo ;
and this dis-

covery was soon followed by those of the two

planets, Pallas and Vesta, by Olbers, and of the

planet Juno, by Harding.



CHAP. V.

Of the Discovery of universal Gravitation,

After having shewn by what successive efforts

the human mind has attained the knowledge of the

laws of the celestial motions, it only remains to

consider the means by which it has arrived at the

general principle, on which these laws depend.
Descartes was the first who endeavoured to reduce

the motions of the heavenly bodies to some mecha-

nical principle. He imagined vortices of subtle

matter, in the centre of which he placed these

bodies. The vortex of the Sun forced the planet,

its satellites, and their vortices, into motion
; that

of the planet, in the same manner, forced its sa-

tellite to revolve round it. The motion of comets

traversing the heavens in all directions, destroyed

these vortices, as they had before destroyed the

solid heavens, and the whole apparatus of circles

imagined by the ancient astronomers. Thus,

Descartes was no happier in his mechanical, than

Ptolemy in his astronomical theory. But their

labours have not been useless to science. Pto-

lemy has transmitted to us, through fourteen cen-
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turiS of ignorance, the few astronomical truths

which the ancients had discovered, and which he

had also increased. When Descartes appeared on

the stage, the impulse given by the invention of

printing, by the discovery ofthe New World, by the

Reformation, and by the Copernican system, ren-

dered people eager for new discoveries. But this

philosopher, by substituting in the place of ancient

errors, others most seducing, and resting on the au-

thority of his geometrical discoveries, was enabled

to destroy the empire of Aristotle, which might
have stood the attack of a more careful philo-

sopher ;
and his system of vortices, at first re-

ceived with enthusiasm, being founded on the

motion of the planets and Earth about the Sun,

contributed to make these notions be generally

adopted ;
but by establishing as a principle, that

we should begin by doubting of every thing, he

himself warned us to adopt his own system with

great caution, and his astronomical system was very

soon overturned by later discoveries, in which his

own, combined with those of Kepler and Galileo ;

and also, with the just philosophical notions then

entertained on all subjects, has rendered his age,

already illustrious for so many chefs d'oeuvre in

literature and the fine arts, likewise the most

remarkable epoch in the history of the human
mind. It was reserved for Newton to make known
the general principles of the heavenly motions.

Nature not only endowed him with a profound

genius, but placed his existence in a most fortu-

nate period. Descartes had changed the face of
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the mathematical sciences, by the application of

algebra to the theory of curves and variable

functions. Fermat had laid the foundation of the

geometry of infinites, by his beautiful method de

maximis and de minimis^ and of tangents. Wal-

lis, Wren, and Huygens,had discovered the laws of

motion ;
the discoveries of Galileo, on falling bo-

dies, and of Huygens on evolutes and on the cen-

trifugal force, led to the theory ofmotion in curves;

Kepler had determined those described by the

planets, and had formed a remote conception of

universal gravitation ;
and finally. Hook had

distinctly perceived that their motion was the

result of a projectile force, combined with the

attractive force of the Sun. The science of ce-

lestial mechanics wanted nothing more to bring

it to light, but the genius of a man, who, by gene-

ralizing these discoveries, should be capable of de-

ducing from them the law of gravitation : it is this

which Newton accomplished in his immortal work

on the mathematical principles of natural philoso-

phy. This philosopher, so deservedly celebrated,

was born at Woolstrop, in England, in the latter

end of the year 1642, the year in which Galileo

died. His first success in mathematics announced

his future reputation ;
a cursory perusal of ele-

mentary books, was sufficient for him to compre-
hend them ; he next read the geometry of Des-

cartes, the optics of Kepler, and the arithmetic

of infinites, by Wallis
5
but soon aspiring to new

inventions, he was, before the age of twenty-

seven, in possession of his motliod of fluxions,
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and of his theory of light. Anxious for repose, and

averse to literary controversy, which he had better

avoided by sooner making known his discoveries,

he delayed publishing his works. His friend and

preceptor, Dr. Barrow, exerted himself in his

favour, and obtained for him the situation of pro-
fessor of mathematics in the university of Cam-

bridge ; it was during this period, that, yielding

to the request of Halley, and the solicitations of

the Royal Society, he published his Prlncipia,

The university of Cambridge, whose privileges

he strenuously defended when attacked by James

II., chose him for their representative, in the con-

ventional parliament of 1688, and for that which

was convened in I7OI. He was knighted and

appointed director of the mint, by Queen Anne :

he was elected president of the Royal Society in

1703, which dignity he enjoyed till his death, in

17-7* During the whole of his life he obtained

the most distinguished consideration, and the

nation to whose glory he had so much contri-

buted, decreed him at his death, public funeral

honours.

In 1666, Newton, retired into the country,

for the first time, directed his thoughts to the sys-

tem of the world. The descent of heavy bodies,

which appears nearly the same at the summit of

the highest mountains as at the surface of the

Earth, suggested to him the idea, that gravity

might extend to the Moon, and that being com-

bined with some motion of projection, it might
cause it to describe its elliptic orbit round the
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Earth. To verify this conjecture, it was neces-

sary to know the law of the diminution of gra-

vity. Newton considered, that if the Moon was
retained in its orbit by the gravity of the Earth,

the planets should also be retained in their orbits

by their gravity towards the Sun, and demon-
strated this by the law of the areas being propor-
tional to the times. Now it results from the rela-

tion of the squares of the times to the cubes of

the greater axes of their orbits, discovered by

Kepler, that their centrifugal force, and conse-

quently their tendency to the Sun, diminishes

inversely as the squares of the distances from this

body. Newton, therefore, transferred to the

Earth this law of the diminution of the force of

gravity, and reasoning from the experiments of

falling bodies, he determined the height which the

Moon, abandoned to itself, would fall in a short

interval of time. This height is the versed sine

of the arc which it describes in the same interval
;

and this quantity the lunar parallax gives in parts
of the radius of the Earth, so that, to compare
the law of gravitation with observation, it was

necessary to know the magnitude of this radius
;

but Newton having, at that time, an erroneous

estimate of the terrestrial meridian, obtained a

different result from what he expected, and sus-

pecting that some unknown forces operated con-

currently with the gravity of the Moon, he aban-

doned his original idea. Some years afterwards,

a letter from Dr. Hook induced him to investigate

the nature of the curve described by projectiles
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round the centre of the Earth. Picard had lately

finished the measure of a degree in France, and

Newton found, by this measure, that the Moon was

retained in its orbit by the force of gravity alone,

supposed to vary inversely as the square of the dis-

tance. From the action of this law he found that

bodies in their fall, describe ellipses, of which the

centre of the Earth occupies one of the foci, and

then, considering that the planetary orbits are like-

wise ellipses, having the Sun in one of their foci, he

had the satisfaction to see, that the solution which

he had undertaken from curiosity, could be ap-

plied to the greatest objects in nature. He ar-

ranged the several propositions relative to tlie el-

liptic motions of the planets, and Dr. Halley hav-

ing induced him to publish them, he composed
his grand work, the Principla, which appeared in

1087. These details, which have been transmit-

ted to us by his friend and cotemporary. Dr. Pem-

berton, prove that this great philosopher had, so

early as 1666, discovered the principal theorems

on centrifugal force, which Huygens published

sixteen years afterwards, at the end of his work

De Horologio Oscillatorio ;
indeed it is extremely

probable that the author of the method of fluxions,

who seems then to have been at that time in posses-

sion of it, should easily have discovered these theo-

rems. Newton arrived at the law ofthe diminution

of gravity, by the relation which subsists between

the squares of the periodic times of the planets,

and the cubes of the greater axes of their orbits,

supposed circular. He demonstrated that this rela-
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lion exists in elliptic orbits generally, and that it

indicates an equal gravity of the planets towards

the Sun, supposing them at an equal distance

from its centre. The same equality of gravity

towards the principal planet, exists likewise in all

the systems of satellites, and Newton verified it

on terrestrial bodies, by very accurate experi-

ments. Whence it results, that the development
of gases, of electricity, of heat, and of affinities,

in the mixture 'of several substances contained in

a closed vessel, do not alter the weight of the sys-

tem, neither during, nor after the mixture.

This great geometrician, by considering the

question generally, demonstrated that a projectile

can move in any conic-section whatever, in con-

sequence of a force directed towards its centre,

and varying reciprocally as the square of the dis-

tances. He investigated the different properties

of motion in this species of curves ;
he deter-

mined the conditions requisite for the section to

be a circle, an ellipse, a parabola, or an hyper-

bola, which conditions depend entirely on the

velocity and primitive position of the body.

Any velocity, position, and initial direction of

a body being given, Newton assigned the conic

section which the body should describe, and in

which it ought consequently to move, which refutes

the objection advanced by John Bernouilli against

him of not having demonstrated, that the conic

sections are the onfy curves which a body, soli-

cited by a force varying reciprocally as the squares

of the distance, can describe. These investiga-
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tions, applied to the motion of comets, informed

liim that these bodies move round the Sun, ac-

cording to the same laws as the planets, with the

difference only of their ellipses being very excen-

tric
; and he indicated the means of determining

by observations the elements of these ellipses.

He learned from the comparison of the distances

and durations of the revolutions of the satellites,

with those of the planets, the respective densities

and masses of the Sun, and of planets accompa-
nied by satellites, and the intensity of the force of

gravity at their surface.

By considering that the satellites move round

their planets very nearly, as if the planets were

immoveable, he discovered that all these bodies

obey the same force of gravity towards the Sun.

The equality of action and reaction, did not

permit him to doubt, but that the Sun gravitated

towards the planets, and these towards their sa-

tellites ; and even that the Earth is attracted by all

the bodies that gravitate on it. He extended this

proposition afterwards to all the celestial bodies,

and established as a principle, that each particle

of matter attracts all others directly as its niass^

and inversely as the square of its distancefrom the

attracted particle.

Arrived at this principle, Newton saw that the

great phenomena of the system of tlie world

might be deduced from it. By considering the gra-

vity at the surfaces of the celestial bodies, as the

result of the attractions of all their particles, he

ascertained this remarkable and characteristic pro-
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perty of tlie law of attraction varying inversely as

the square of the distance, namely that two spheres

composed of concentrical strata and of densities

varying according to any given law, attract each

other mutually as if their masses were united in

their centres
; hence the bodies of the solar system

act on each other, and likewise on the bodies

placed at their surfaces, as so many attracting

points, which result contributes to the regularity of

their motions, and enabled this great geometer
to recognise the terrestrial gravity in the force

which retains the moon in its orbit.

He proved that the motion of rotation of the

Earth ought to have flattened it in the direction

of the poles, and he determined the law of the

variation of the degrees and of gravity at its sur-

face.

He demonstrated that the action of the Sun and

Moon on the terrestial spheroid combined with its

rotatory motion, ought to produce the retrogi'ade

motion of the equinoxes, to elevate the waters of

the ocean, and to produce in this great fluid mass

the oscillations which are observed under the

name of tides.

Lastly, he was convinced that the lunar ine-

qualities and the retrograde motion of the nodes

were produced by the combined action of the

Sun and Earth on this satellite. This prin-

ciple is not simply a hypothesis that satisfies phe-

nomena, which may be otherwise explained, as

the equations of an indeterminate problem may
be satisfied in different ways. Here the problem
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is determined by laws observed in the celestial

motions, of which this principle is a necessary

result. The gravity of the planets towards the

Sun is demonstrated by the proportionality of the

areas to the times ;
the diminution in the inverse

ratio of the squares of the distances is proved by
the ellipticity of the planetary orbits ;

and the

law of the squares of the times of the revolu-

tions, proportional to the cubes of the greater

axes, demonstrates that the solar gravity would

act equally on all bodies supposed at the same

distance from the Sun, ofwhich the weight would

therefore be proportional to the masses. The

equality of action to reaction shews that the Sun

gravitates in its turn towards the planets, propor-

tionably to their masses divided by the squares of

their distances from this star
;
the motions of the

satellites prove that they gravitate at the same
time to the Sun and to the planets, which reci-

procally gravitates towards them, so that there

exists between all the bodies of the solar system a

mutual attraction directly proportional to the

masses, and inversely as the squares of the dis-

tances. Finally their spherical figure, and the phe-
nomena of gravity at the surface of the earth,

do not permit us to suppose that this attraction

appertains to the bodies considered in mass, but

belongs to each of their particles.

Considering then the elevation of the earth at

the equator as a system of satellites adhering to

its surface, he found that the combined actions of

the sun and moon tended to make the nodes of the

VOL. II. V
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circles which they describe about the axis of the

earth, to retrograde, and that all these tendencies

being communicated to the entire mass of the

planet ought to produce, in the intersection of the

ecliptic and equator, that slow retrogradation

which is termed the precession of the equinoxes.

Thus the cause of this phenomenon depends on

the compression of the earth, and on the retro-

grade motion which the action of the Sun com-

municates to the nodes, two facts which Newton
first announced, and which could not before his

time be suspected. Kepler himself, carried along

by an ardent imagination to explain every thing

by hypotheses, was obliged to admit the inutility

of his efforts on this subject. But, with the ex-

ception of what concerns the elliptic motion of

the planets and comets, the attraction of spheri-

cal bodies, and the intensity of gravity at the

surface of the Sun, and of those planets that are

accompanied by satellites, all these discoveries

were only sketched by Newton. His theory of

the figure of the planets is limited by the suppo-
sition of their homogeneity : his solution of the

problem of the precession of the equinoxes,

though very ingenious, is, notwithstanding the

apparent agreement of his result with observa-

tion, in many respects defective ; among the great
number of the perturbations of the celestial mo-

tions, he has only considered those of the lunar

motion, of which the most considerable, the

ievection, escaped his investigation. He per-

fectly established the existence of the prin-
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ciple which he discovered, but the developement
of its consequences and its advantages, has been

the work of the successors of this great geome-
trician. The state of imperfection in which

the infinitesmal calculus must have been in the

hands of its inventor, did not permit him to

resolve completely the difficult problems which

the theory of the system of the world presents ;

and he has been often obliged to give conjectures,

always uncertain, till they have been verified by
a rigorous calculation. Notwithstanding these

inevitable defects, the importance and extent of

his discoveries, the great number of original and

profound conceptions, which have been the germ
of the most brilliant theories of the geometricians
of this century, and arranged with much ele-

gance, insures to his Principia a pre-eminence
over all other productions of the human intellect.

The case is not the same with the sciences as

with general literature : this has limits which a

man of genius may reach, when he employs a

language brought to perfection ; he is read with

the same interest in all ages ; and time only adds

to his reputation by the vain efforts of those who

try to equal him.

The sciences, on the contrary, like nature her-

self, without bounds, indefinitely increase by^the
labours of successive generations, the most perfect

work
\
and thus by raising them to a height from

which they can never again descend, gives birth to

new discoveries, which produce in their turn new

works, which efface those from which they

X 9.
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originated. Others will present in a point of

view more general and more simple, the theories

detailed in the Frlncipia, and all the truths which

it has brought to light ; but it will ever remain as

an eternal monument of the profundity of that ge-

nius which has revealed to us the greatest law

of the universe.

This work, and the equally original treatise by
the same author on optics, have still the merit of

being the best models which can be proposed in

the sciences, and in the delicate art of making

experiments and submitting them to calculation.

We there see the most beautiful applications
of the method, which consists in tracing the

principal phenomena to their causes, by a suc-

cession of inductions, and afterwards in rede-

scending from these causes, to all the details of

the phenomena.
General laws are impressed in all individual

cases, but they are complicated with so many
extraneous circumstances, that the greatest ad-

dress is often necessary to develope them. The

phenomena most proper for this object must

be chosen, and these must be multiplied by vary-

ing the attendant circumstances, so that whatever

they have in common may be observed.

We thus ascend successively to relations more

and more extended, until we arrive at length
at general laws, which are verified either by proofs
or by direct experiment, if that is possible, or by

examining if they satisfy all the known pheno-
mena.

This is the most certain method by which we
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can be guided in the search of truth. No philo-

sopher has adhered more closely to this method

than Newton ; none ever possessed, in a higher

degree, that felicitous tact of discerning in ob-

jects the general principles involved in them,

and which enabled him to recognise in the fall

of bodies, the principle of universal gravita-

tion. Other philosophers in England, cotempo-
raries of Newton, adopted the method of induc-

tions by his example, which thus became the ba-

sis of a great number of excellent works in phy-
sics and analysis.

The philosophers of antiquity following a con-

trary path, and considering themselves as the

source of every thing, imagined general causes to

explain them.

Their method, which was only productive of

vain systems, had not greater success in the hands

of Descartes. In the time of Newton, Leibnitz,

Malebranche and other philosophers employed it

with as little advantage.
At length the inutility of the hypotheses to

which it led its followers, and the progress for

which the sciences are indebted to the method of

inductions, have recalled all philosophers to

this last method, which was explained by Chan-

cellor Bacon, with the whole force of reason and

eloquence, and which Newton has yet more

strongly recommended by his discoveries.

At the period of their appearance, Descartes

had substituted for the occult qualities of the Pe-

ripatetics, the intelligible ideas of motion, of im-

pulse, and centrifugal force. His ingenious sys-
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tern of vortices, founded on these ideas, were re-

ceived with avidity by the learned, who rejected

the obscure and trifling doctrines of the school ;

and they thought that they perceived to arise in the

doctrine of universal gravitation, those occult qua-

lities which the French school had so justly pro-

scribed. It was not till after the vagueness of

Descartes' explanation v/as recognised, that at-

traction was considered as it ought to be, L e. as

a general fact, to which Newton was led by a se-

ries of inductions, and from which he descended

again to explain the heavenly motions. This

great man would justly have merited the reproach

of re-establishing the occult qualities, if he was

content to ascribe to universal attraction, the

elliptic motion of the planets and of the comets,

the inequalities of the motion of the Moon, those

of terrestrial degrees and of gravity, the preces-

sion of the equinoxes and the ebbing and flowing

of the sea, without demonstrating the connection

of his principle with the phenomena. But as the

Geometers who corrected and generalized these

his demonstrations, and compared all the observa-

tions to the same principle, found the most

perfect agreement between them and the results

of analysis ; they therefore have unanimously

adopted his theory of the system of the world,

which has thus become, by their researches, the

basis of all Astronomy.
This analytical connection of particular with

general facts, is what constitutes a theory. It is

thus that having deduced, by a rigorous calculus,
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all the effects of capillary action, from the sole

principle of a mutual attraction between the par-

ticles of matter, which is only sensible at imper-

ceptible distances, we may presume that we have

found out the true theory of these phenomena.
Some philosophers, struck with the advantages

which the admission of unknown causes have pro-

duced in several branches of the natural sciences,

have brought back the occult qualities of the an-

cients, and their trifling explanations. Viewing
the Newtonian philosophy under the same point

of view which made it reject the Cartesians, they

have assimilated their doctrines to it; which,

however, have nothing common in the most

essential circumstance, namely, the rigorous

agreement of the results with the phenomena.
It is by means of synthesis that this great geo-

metrician has explained his theory of the system
of the world. It appears, however, that he disco-

vered the greater part of his theorems by analysis,

the limits of which he has considerably extended,

and to which he allows himself to have owed his

general results on the quadratures of curves.

But his great predilection for synthesis, and

his esteem for the geometry of the ancients, has

induced him to represent his theorems, and even

his method of fluxions, under a synthetic form.

And it is evident, by the rules and examples which

he has given of these transformations in many
works, how much importance he attached to it.

We may regret with the geometricians of his

time, that he has not followed in the exposition
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of his discoveries, the path by which he arrived

at them ;
and that he has suppressed the demon-

stration of many results, such as the equation of

the solid of least resistance, preferring the plea-

sure of leaving it to be divined, to that of enlight-

ening his readers.

The knowledge of the method which has guided

a man of genius is not less serviceable to the pro-

gress of the sciences, and even to his own glory,

than his discoveries. This method is frequently

the most interesting part ; and if Newton, instead

of merely announcing the differential equation of

the solid of least resistance, had, at the same

time, furnished the analysis of it, he would have

the honour of giving the first essay on the method

of variations, one of the most fruitful branches

of modern analysis j
and his example has perhaps

prevented his countrymen, from contributing as

much as they might to the advancement, which

astronomy has made, from the application of ana-

lysis to the principle of universal gravitation.

The preference of Newton for the synthetical

method, may be explained by the elegance with

which he connected his theory of curvilinear mo-
tion with the investigations of the ancients on

the conic sections, and the beautiful discoveries

which Huygens had published according to this

method. Geometrical synthesis has besides the

property of never losing sight of its object, and

of enlightening the whole path which leads from

the first axioms to their last consequences, while

algebraic analysis soon makes us forget the prin-
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cipal object, to occupy ourselves with abstract

combinations, and it is only at the end that it

brings us back to it. But though it thus separates

itself from the object of investigation, after having
assumed what is indispensably necessary to arrive

at the required result ;
still by directing our at-

tention to the operations of analysis, and reserving

all our forces to overcome the difficulties which

present themselves, we are conducted by the uni-

versality of this method, and by the inestimable

advantage of thus transferring the train of reason-

ing into mechanical processes, to results often in-

accessible to synthesis. Such is the fecundity of

analysis, that if we translate particular truths into

this universal language, we shall find a number
of new and unexpected truths arise merely from

the form of expression. No language is so sus-

ceptible of the elegance which arises from the

developement of a long train of expressions con-

nected with each other, and all flowing from the

same fundamental idea. Analysis unites to all

these advantages, that of always being able to con-

duct us to the most simple methods. Nothing
more is requisite than to apply it in a convenient

manner by ajudicious selection ofunknown quan-
tities, and by giving to the results the form most

easily reducible to geometrical construction, or to

numerical calculation. Newton himself furnishes

many examples in his Universal Arithmetic. The

geometricians of this century, convinced of its

superiority, have principally applied themselves

to extend its domain, and enlarge its boundaries.
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However, geometrical considerations ought not

to be abandoned
; they (a) are ofthe greatest utility

in the arts. Besides, it is curious to show how the

different results of analysis may be represented in

space ; and reciprocally, to read all the affections of

lines and surfaces, and all the variations in the mo-

tionsofbodies, in the equationswhich express them.

This connection of geometry and analysis, dif-

fuses a new light over the sciences
;
the intellec-

tual operations of the latter, rendered perceptible

by the images of the former, are more easy to

comprehend, and more interesting to pursue *,

and when observations realizes, and transforms

these geometrical results into laws of nature, and

when these, embracing the whole universe, dis-

play to our view its present and future state, the

view of this sublime spectacle presents to us

one of the most noble pleasures reserved for

mankind.

About fifty years passed after the discovery of

the theory of gravitation, without any remark-

able addition to it. All this time had been re-

quisite for this great truth to be generally under-

stood, and to surmount the obstacles opposed to

it by the system of vortices, and the authority of

geometricians contemporary with Newton, who
combated it perhaps from vanity, but who have

nevertheless accelerated its progress by their la-

bours on the infinitesmal analysis.

Among the contemporaries of Newton, Huy-

gens, who appears more than any other to have

appreciated the value of this discovery, admits the
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gravitation of the heavenly bodies towards each

other in the inverse ratio of the squares of the dis-

tances, and all the results which Newton deduced

relative to the elliptic motion of the planets, of

the satellites and comets, and relative to the gra-

vity at the surfaces of planets, which are accom-

panied by satellites. On these points he rendered

to Newton all the justice to which he was en-

titled. But his erroneous notions respecting the

cause of gi-avity, made him to reject the mutual

attraction of molecules, and the theories of the

figure of the planets and of the variation of gra-

vity at their surface, which depends on it. It must

however be observed, that the law of universal

gravitation had not, for Newton himself and his

cotemporaries, all the certainty which the subse-

quent progress of observations and of mathema-

tical sciences has secured to it. Euler and Clair-

ault, who first with D*Alembert applied analysis to

the perturbations of the celestial motions, did not

deem it sufficiently established, to attribute to the

inaccuracies of approximations and computations,
the differences which were found to exist between

observation and their results, on the motions of

Saturn and the Lunar Perigee. But these three

great Geometers having rectified these results,

perfected the methods, and carried the approxi-

mation as far as is necessary, succeeded in ex-

plaining by the sole law of universal gravitation

all the phenomena of the system of the world,

and have thus assigned to the tables and astrono-

mical theories a precision which could not be an-

ticipated.
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It is about three centuries since Copernicus
first introduced into his tables the motions of the

Earth, and of the planets round the Sun ;
about

a century after Kepler introduced the laws of

elliptic motion, which depend on the solar at-

traction alone
;
now they contain the numerous

inequalities, which arise from the mutual attrac-

tion of all the bodies of the sola)* system, so

that all empiricism is banished, and they only

borrow from observations indispensable data.

It is principally in the application of analysis

that the power of this wonderful instrument is

evinced, without which it would be impossible to

penetrate a mechanism so complicated in its

effects, at the same time that it is so simple in its

cause. The Geometer now embraces in his for-

mulae the entire of the solar system and its suc-

cessive variations; he can ascend in imagina-

tion to the various changes which this system has

undergone at the remotest periods, and he can

redescend to all those which time will reveal

to observers. He perceives those great changes,
of which the entire developement requires mil-

lions of years, to be repeated in a few centuries,

in the system of the satellites of Jupiter, by the

quickness of their revolutions, and thus to produce
those remarkable phenomena, just conjectured by

Astronomers, but which were too complicated or

too slow to enable them to determine the laws.

The theory of gravity becomes, by so many appli-

cations, a means of discovering, as certain as ob-

servation itself
j it has made known a great num-
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ber of new inequalities, of which the most re-

markable are the inequalities of Jupiter and Sa-

turn, and the secular inequalities of the Moon
with respect to its nodes, to its perigee and the

Sun. By this means the Geometer has known
to derive from his observations, as from a fruitful

source, the most important elements of the sys-

tem of the world, which would remain for ever

concealed, without the aid of analysis. He
has determined the respective values of the

masses of the Sun, of the planets, and of the

satellites, by the revolutions of these different

bodies, and by the developement of their peri-

odic and secular inequalities : the velocity of

light, and the ellipticity of Jupiter have been

made known to him by the eclipses of the satel-

lites with more precision than by direct observa-

tion : he has inferred the rotation of Uranus, of

Saturn, and of its ring, and the ellipticity of

these two planets, from the respective position of

the orbits of their satellites ; the parallaxes of the

Sun and of the Moon, and the ellipticity itself of

the earth, are indicated in the lunar inequalities ;

as we have already seen that the moon by its mo-

tion reveals to astronomy, when brought to per-

fection, the compression of the earth, of which it

made known the round form to the first observers,

by its eclipses. Finally, by a fortunate combina-

tion of analysis with observations of the Moon,
which seems to have been given to the Earth to

illuminate itjn the night, it has become the surest

guide to the mariner, which guards him from the
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dangers to which he has for a long time been ex-

exposed by the errors of his reckoning.
The perfection of the lunar theory, to which

this inestimable advantage is owing, and that of

determining accm'ately the position of the places

where he lands, is the fruit of the laboui-s of

Geometers for the last half century, so that during

this short interval, geography, by the use of the

lunar tables and of the chronometer, has made
more progress than in all preceding ages. These

sublime theories thus combine every thing which

can give importance to discovery : the greatness

and utility of the object, the fruitfulness of the

result, and the merit of surmounted difficulties.

It has been necessary, for this object, to bring to

perfection at the same time mechanics, optics, and

analysis, whichprincipally owe theirrapid improve-
ments to their being necessary to the purposes of

physical astronomy. It might be rendered yet

more correct and simple, but future ages will no

doubt see with gratitude that the geometricians of

this century have transmitted no astronomical

phenomenon to posterity, of which they have not

determined the cause and the law.

Justice to France requires us to observe, that if

England had the advantage of giving birth to the

discovery of universal gravitation, it is principally

to the French geometricians, and to the encou-

ragements of the Academy of Sciences, that the

numerous developments of this discovery are due,

and the revolution which it has produced in as-

tronomy. (b)
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The attraction which regulates the motions and

the figures of the heavenly bodies, is not the only

force which exists between their molecules ; they

are also subject to attractive forces, which depend
on the internal constitution of these bodies, and

which are only sensible at distances inappreciable

to our senses. Newton gave the first example of

the calculation of this species of force by demon-

strating that in the passage of light from one

transparent medium to another, the attraction of

the media refracts it so, that the sines of refrac-

tion and incidence are always in a constant ratio :

experience had previously made known this. He
has moreover conjectured that cohesion, all che-

mical affinities and capillary phenomena arise

from the action of similar forces; but the ex-

planations which he gave of them are not satisfac-

tory, and the complete mathematical theory of

these phenomena is the work of his successors.

Is the principle of universal gravitation a pri-

mordial law of nature, or is it a general effect from

an unknown cause ? Can we not reduce to this

principle, the explanation of affinities ? Newton,
more wary than his successors, has not ventured

to pronounce on these questions, which, in our

present ignorance respecting the intimate pro-

perties of matter, we cannot answer satisfactorily.

Instead of forming hypothesis, we shall restrict

ourselves to some reflections on this principle,

and on the manner in which it has been employed

by geometers.

Newton inferred from the equality between

action and reaction, that each molecule of a body
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should attract as it is attracted, and tliat conse-

quently the gravity is the resultant of the attrac-

tions of all the molecules of the attracting hody.

The principle of action being equal to reaction,

is embarrassing, when the mode of action of the

forces is unknown. Thus Huygens, who had

founded on this principle his investigations on tlie

collisions of elastic bodies, did not find it suffi-

cient to establish the mutual attraction of each

molecule. It was therefore necessary to confirm

this attraction by observation, in order to remove

every doubt on this important point of the New-

tonian theory. The celestial phenomena may be

divided into three classes. The first comprehends
all those which depend on the mutual tendency
of the heavenly bodies towards each other ;

such

are the elliptic motions of the planets and satel-

lites, and their reciprocal perturbations, which

are independent of their figures. Under the

second class are contained those phenomena
which are produced by the tendency of the mole-

cules of the attracted body towards the centres of

the attracting bodies; such are the ebbing and

flowing of the tide, the precession of the equi-

noxes, and the libration of the Moon. Finally, I

have arranged under the third class, the pheno-

mena which depend on the action of the mole-

cules of the attracting bodies, on the centres of

those which are attracted, and on their own mole-

cules. The two lunar inequalities which arise

from the compression of the Earth, the motion of

the orbits of the satellites of Jupiter and Saturn,
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the figure of the Earth and the variation of gra-

vity at its surface, are phenomena of this kind.

The Geometers who, in order to explain the cause

of gravity, surround each of the heavenly bodies

with a vortex, ought to admit the Newtonian theo-

ries relative to the phenomena of the two first

classes j but they ought to reject, as Huygens did,

the theories of the phenomena of the third class,

founded on the action of the molecules of the

attracting bodies. The perfect agreement of these

theories with all observations, ought now to re-

move every doubt of the mutual attraction of the

molecules. The law of attraction, inversely as

the square of the distance, is that of emanations

which proceed from a centre. It appears to be

the law of all forces, of which the action is sensible

at a distance, as has been recognised in electrical

and magnetic forces. Hence, as this law corres-

ponds exactly to all the phenomena, it should be

regarded from its simplicity and generality, as

rigorously true. One of its remarkable proper-
ties is, that if the dimensions of all the bodies in

the universe, their mutual distances and veloci-

ties, increase or diminish proportionably, they
would describe curves entirely similar to those

which they at present describe ; so that if the uni-

verse be successively reduced to the smallest ima-

ginable space, it would always present the same

appearances to observers. These appearances are

consequently independent of the dimensions of the

universe, as they are also, in consequence of the

law of the proportionality of the force to the ve-

VOL. II. Y
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locity, independent of the absolute motion which

it may have in space. The simplicity of the laws
|

of nature therefore only permits us to observe the

4'elative dimensions of the universe.
(Jj)

In the law of attraction, the heavenly bodies

attract each other very nearly as if their masses

were united in their centres of gravity ;
their sur-

faces and orbits also assume in this law the ellip-

tical form, which is the simplest after the spheri-

cal and circular, which last the ancients deemed

to.be essential to the stars and their motions.

Is the attraction communicated instantaneously

from one body to another ? The time of its trans-

mission, if it was sensible to us, would be parti-

cularly evinced in a secular acceleration of the

Moon's motion. I suggested this as a means of

explaining the acceleration which is observed in

this motion ;
and I have found, that in order to

satisfy observations, we must ascribe to the force of

gravity, a velocity seven million of times greater

than that of a ray of light. As the cause of the se-

cular equation of the Moon (c) is now well ascer-

tained, we may affirm that the attraction is trans-

mitted fifty millions of times more rapidly than

light. We can therefore assume, without any

apprehension of error, that its transmission is

instantaneous.

The attraction may also produce, and continu-

ally maintain the motion in a system of bodies

which were primitively in repose ; for it is not

true, as some philosophers have asserted, that it

must at length reunite them all about their com-
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mon centre of gravity. The only elements whieli

must always remain equal to nothing, are the

motion of this centre, and the sum of the areas

described about it, in a given time, by all the mole-

cules of the system projected on any plane what-

ever.

yS



CHAP. VI.

Considerations on the system of the World, and

future progress of Astro7iomi/,

\ The preceding summary of the history of As-

tronomy presents three distinct periods, which

referring to the phenomena, to the laws which

govern them, and to the forces on which these

laws depend, point out the career of this science

during its progress, and which consequently ought
to he pursued in the cultivation of other dsiences.

The first period embraces the observations

made by Astronomers antecedently to Coperni-

cus, on the appearances of the celestial motions,

and the hypotheses which were devised to explain
those appearances, aud to subject them to com-

putation. In the second period, Copernicus de-

duced from these appearances, the motions of the

Earth on its axis and about the Sun, and Kepler
discovered the laws of the planetary motions.

Finally in the third period, Newton, assuming
the existence of these laws, established the prin-

ciple of universal gravitation j
and subsequent
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Geometers, by applying analysis to this principle,

have derived from it all the observed phenomena,
and the various inequalities in the motion of the

planets, the satellites, and the comets. Astro-

nomy thus becomes the solution of a great prob-
lem of mechanics, the constant arbitraries ofwhich

are the elements of the heavenly motions. It

has all the certainty which can result from the

immense number and variety of phenomena,
which it rigorously explains, and from the simplir

city of the principle which serves tb explain

them. Far from being apprehensive that the dis-

covery of a new star will falsify this principle,

we may be antecedently certain that its motion will

be conformable to it
; indeed this is what we our-

selves have experienced with respect to Uranus

and the four telescopic stars recently discovered,

and every new comet which appears, furnishes us

with an additional proof.

Such is unquestionably the constitution of the

solar system. The immense globe of the Sun,
the focus of these motions, revolves upon its axis

in twenty-five days and a half. Its surface is

covered with an ocean of luminous matter.

Beyond it the planets, with their satellites, move,

in orbits nearly circular, and in planes little

inclined to the ecliptic. Innumerable comets,

after having approached the Sun, recede to

distances, which evince that his empire ex-

tends beyond the known limits of the planetary

system. This luminary not only acts by its at-

traction upon all these globes, and compels them
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to move around him, but imparts to them both

light and heat
;
his benign influence gives birth

to the animals and plants which cover the surface

of the Earth, and analogy induces us to believe,

that he produces similar effects on the planets ;

for, it is not natural to suppose that matter, of

which we see the fecundity develop^J itself in such

various ways, should be sterile upon a planet so

large as Jupiter, which, like the Earth, has its

days, its nights, and its years, and on which ob-

servation discovers changes that indicate very
active forces. Man, formed for the temperature
which he enjoys upon the Earth, could not, ac-

cording to all appearance, live upon the other

planets 5
but ought there not to be a diversity of

organization suited to the various temperatures of

the globes of this universe ? If the difference of

elements and climates alone causes such variety
in the productions of the Earth, how infinitely

diversified must be the productions of the planets

and their satellites ? The most active imagina-
tion cannot form any just idea of them, but still

their existence is, at least, extremely probable.

However arbitrary the elements of the system
of the planets may be, there exists between them

some very remarkable relations, which may throw

light on their origin. Considering it with atten.

tion, we are astonished to see all the planets move

round the Sun from west to east, and nearly in

the same plane, all the satellites moving round their

respective planets in the same direction, and nearly

in the same plane with the planets. Lastly, the Sun,
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the planets, and those satellites in which a motion

of rotation have been observed, turn on their own

axes, in the same direction, and nearly in the

same plane as their motion of projection.

The satellites exhibit in this respect a remark-

able peculiarity. Their motion of rotation is

exactly equal to their motion of revolution ; so

that they always present the same hemisphere to

their primary. At least, this has been observed

for the Moon, for the four satellites of Jupiter, and

for the last satellite of Saturn, the only satellites

whose rotation has been hitherto recognized.

Phenomena so extraordinary, are not the effect

of irregular causes. By subjecting their probability

to computation, it is found that (a) there is more

than two thousand to one against the hypothesis

that they are the effect of chance, which is a pro-

bability much greater than that on which most of

the events of history, respecting which there does

not exist a doubt, depends. We ought therefore

to be assured with the same confidence, that a

primitive cause has directed the planetary mo-

tions.

Another phenomenon of the solar system equal-

ly remarkable, is the small eijccentricity of the

orbits of the planets and their satellites, while those

of comets are very much extended. The orbits

of this system present no intermediate shades be-

tween a great and small excentricity. We are

here again compelled to acknowledge the effect of

a regular cause
;

chance alone could not have

given a form nearly circular to the orbits of all
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the planets. It is therefore necessary that the

cause which determined the motions of these

bodies, rendered them also nearly circular. This

cause then must also have influenced the great

excentricity of the orbits of comets, and their mo-

tion in every direction 5 for, considering the or

bits of retrograde comets, as being inclined more

than one hundred degrees to the ecliptic, we find

that the mean inclination of the orbits of all the

observed comets, approaches near to one hun-

dred degrees, which would be the case if the bo-

dies had been projected at random, (b)

What is this primitive cause ? In the concluding

note of this work I will suggest an hypothesis

which appears to me to result with a great degree
of probability, from the preceding phenomena,
which however I present with that diffidence,

which ought always to attach to whatever is not

the result of observation and computation.
Whatever be the true cause, it is certain that

the elements of the planetary system are so ar-

ranged as to enjoy the greatest possible stability,

unless it is deranged by the intervention of foreign

causes. From the sole circumstance that the

motions of the planets and satellites are per-

formed in orbits nearly circular, in the same direc-

tion, and in planes which are inconsiderably in-

clined to each other, the system will always oscillate

about a mean state, from which (c) it will deviate

but by very small quantities. The mean motions of

rotation and of revolution of these different bodies

are uniform, and their mean distances from the
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foci of the principal forces which actuate them
are constant

;
all the secular inequalities are pe-

riodic.

The most considerable are those which affect the

motions ofthe Moon, with respect to its perigee, to

its nodes and the Sun ; they amount to several

circumferences, but after a great number of cen-

turies they are reestablished. In this long in-

terval all the parts of the lunar surface would

be successively presented to the earth, if the at-

traction of the terrestrial spheroid, which causes

the rotation of the Moon to participate in these

great inequalities, did not continually bring back

the same hemisphere of this satellite to us, and

thus render the other hemisphere (d) for ever invi-

sible. It is thus that the primitive attraction of the

three first satellites of Jupiter originally esta-

blished, and maintains the relation which is ob-

served between their mean motions, and which

consists in this, that the mean longitude of the

first satellite minus three times that of the second,

plus twice that of the third is equal to two right

angles. In consequence of the celestial attrac-

tions the duration of the revolution of each pla-

net is always very nearly the same. The change
of inclination of its orbit to that of its equa-
tor being confined within narrow limits, only

produces slight changes in the seasons. It seems

that nature has arranged every thing in the

heavens, to secure the continuation of the pla-

netary system, by views similar to those which

she appears to follow so admirably on the earth.
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for the preservation of individuals and the perpe-

tuity of the species. It is principally to the at-

traction of the great bodies which are placed in

the centre of the system of the planets, and the

system of the satellites, that the stability of these

systems is due, which the mutual action of all the

bodies of the system, and extraneous attractions

tend to derange. If the action of Jupiter ceased ;

his satellites, which now appear to move with

such admirable regularity, would be immediately

disturbed, and each would describe about the Sun

a very excentric ellipse ; (e) others would recede

indefinitely in hyperbolic orbits. Thus an atten-

tive inspection of the solar system evinces the ne-

cessity of some paramount central force, in order

to maintain the entire system together, and se-

cure the regularity of its motions.

These considerations of themselves will be suffi-

cient to explain the disposition ofthis system, unless

the Geometer extends his view farther, and seeks,

in the primordial laws of nature, the cause of the

most remarkable phenomena of the universe.

Some have been already reduced to these laws.

Thus the stability of the poles of the Earth, and

that of the equilibrium of the seas, which are

both necessary for the preservation of organised

beings, are simple consequences of the rotation of

the earth and of universal gravitation. By its ro-

tation the earth has been compressed, and its axis

of revolution is become one of the principal axes

about which the motion of rotation is invariable.

In consequence of this gravity the denser strata
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are nearer to the centre of the earth, of which

the mean density thus surpasses that of the waters

which surround it, which is sufficient to secure

the stability of the equilibrium of the seas, and
to put a check to the fury of the waves

; in fine,

if the conjectures which I have proposed on the

origin of the planetary system have any founda-

tion, the stability of this system is also a conse-

quence of the laws of motion. (/) These pheno-
mena, and some others which are explained in a si-

milar manner, induce us to think that every thing

depends on these laws by relations more or less

concealed
;
but of which it is wiser to avow our ig-

norance than to substitute imaginary causes, for

the sole purpose of dissipating our anxiety. I

must here remark how Newton has erred on this

point, from the method which he has otherwise

so happily applied. Subsequently to the publi-

cation of his discoveries on the system of the

world and on light, this great philosopher aban-

doned himself to speculations of another kind,

and inquired what motives induced the author

of nature to give to the solar system its present

observed constitution. After detailing in the

scholium which terminates the principles of natu-

ral philosophy, the remarkable phenomenon ofthe

motions of the planets and of the satellites in the

same direction, verynearly in the same plane, and in

orbits Q. P. circular, he adds, all these motions, so

very regular, do not arise from mechanical causes,

because the comets move in all regions of the hea-

vens, and in orbits very excentric. (^)
" This ad-

'* mirable arrangement of the Sun, of the planets,
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" and of the comets, can only be the work of an
"

intelligent aud most powerful being.'' At the end

of his optics he suggests the same thought, in which
he would be still more confirmed, if he had
known that all the conditions of the arrangement
of the planets and of the satellites are precisely

those which secure their stability.
" A blind

"
fate," says he,

" could never make all the pla-
** nets to move thus, with some irregularities
**

hardly perceivable, which may arise from the
" mutual action of the planets and of the comets,
** and which, probably, in the course of time will

** become greater, till in fine the system may re-

**
quire to be restored by its author." But could not

this arrangement of the planets be itself an efl"ect

of the Laws of motion ; and could not the supreme
intelligence which Newton makes to interfere,

make it to depend on a more general phenome-
non ? such as, according to us, a nebulous mat-

ter distributed in various masses throughout the

immensity of the heavens. Can one even affirm

that the preservation of the planetary system en-

tered into the views of the Author of Nature ?

The mutual attraction of the bodies of this system

cannot alter its stability, as Newton supposes ; but

may there not be in the heavenly regions another

fluid besides light? Its resistance, and the dimi-

nution which its emission produces in the mass of

the Sun, ought at length to destroy the an*ange-

ment ofthe planets, so that to maintain this, a reno-

vation would become evidently necessary. And do

not all those species of animals which are extinct,
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but whose existence Cuvier has ascertained with

such singular sagacity, and also the organization in

the numerous fossil bones which he has described,

indicate a tendency to change in things, which

are apparently the most permanent in their na-

ture? The magnitude and importance of the

solar system ought not to except it from this general
law

5
for they are relative to our smallness, and

this system, extensive as it appears to be, is but

an insensisble point in the universe. If we trace

the history of the progress of the human mind,
and of its errors, we shall observe final causes

perpetually receding, according as the boundaries

of our knowledge are extended. These causes,

which Newton transported to the limits of the solar

system, were, in his time, placed in the atmosphere
in order to explain the cause of meteors : in the

view of the philosopher, they are therefore only
an expression of our ignorance of the true causes.

Leibnitz, in his controversy with Newton, re-

lative to the invention of the infinitesmal calculus,

attacks him with great force on account of his in-

troducing the divinity to restore order into the

solar system.
" It is," says he,

" to have too
** confined notions of the wisdom and power of
" the Deity." Newton rejoined by an equally

severe critique on the preestablished harmony
of Leibnitz, which he denominated a continual

miracle. Subsequent ages have not admitted

these vain hypotheses ; they have, however, ren-

dered the most ample justice to the mathematical

labours of these two great men ;
the discovery of
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universal gravitation, and the efforts of its author

to explain all the heavenly phenomena by means

of it, will for ever secure to him the admiration

and gratitude of posterity.

Let us now pass in imagination beyond the

solar system to the innumerable suns distributed

in the immensity of space, at such a distance from

us, that the entire diameter of the terrestrial or-

bit, observed from their centre, would be insen-

sible. Several stars experience in their colour

and splendour remarkable periodical changes,

which indicate the existence, at the surface of

these stars, of great spots, which their motion

of rotation alternately presents and removes

from our view. Other stars, on the contrary,

have suddenly appeared, and then disappeared,
after having shone for several months with the

most brilliant splendour. Such was the star ob-

served by Tycho Brahe in the year 157^2, in the

constellation Cassiopeia. In a short time it sur-

passed the most brilliant stars, and even Jupiter
himself. Its light then waned away, and finally

disappeared sixteen months after its discovery.

Its colour underwent several changes ;
it was at

first of a brilliant white, then of a reddish yellow,

and finally of a lead coloured white like to Sa-

turn. What great changes must take place on
these great bodies, in order that they may be per-

ceptible at the distance which intervenes between

them and us ? How much must they surpass those

which are observed on the surface of the Sun,

and convince us that nature is far from being al-
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ways every where the same. All these stars, after

they become invisible, do not change their place

dm-ing their appearance. Therefore there exists,

in the immensity of space, opaque bodies as con-

siderable in magnitude, and perhaps equally nu-

merous as the stars.

It appears that far from being distributed at

distances which are nearly equal, the stars are dis-

posed in groups, some of which contain thousands

of these objects. Our Sun, and the most brilliant

stars, probably constitute part of one of those

groups, which, seen from the earth, appear to sur-

round the earth, and form the milky way. The great

number of stars, which are seen in the field of a

powerful telescope, directed towards this way,
evinces its immense distance, which is a thousand

times greater than the distance of Syrius from the

earth, so that it is probable that rays emanating
from these stars have employed several centuries

tQ reach the earth. To a spectator at an immense

distance from the milky way, it would present

the appearance of an uninterrupted band of white

light, having a very inconsiderable diameter, for

the irradiation which subsists even in our best con-

structed telescopes, would not cover the interval

between the stars. It is therefore probable, that

amongst the nebulae several consist of groups of a

great number of stars, which, viewed from their

interior, appear similar to the milky way. If now
we reflect on the profusion of stars and nebulae

distributed through the heavenly regions, and on
the immense intervals between them, the ima-
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gination, struck with astonishment at the magni-
tude of the universe, will find it difficult to assign

any limits to it.

^/Herschel,
while observing the nebulae by means

of his powerful telescopes, traced the progress of

their condensation, not on one only, as their pro-

gress does not become sensible until after the lapse
of ages, but on the whole of them, as in a vast

forest we trace the growth of trees, in the indivi-

duals of different ages which it contains. He first

observed the nebulous matter diffused in several

masses, through various parts of the heavens,

of which it occupied a great extent. In some of

these masses he observed that this matter was

fully condensed about one or more nuclei, a little

more brilliant. In other nebulae, these nuclei

shine brighter, relatively to the nebulosity which

environs them. As the atmosphere of each nu-

cleus separates itself by an ulterior condensa-

tion, there result several nebulae constituted of

brilliant nulcei very near to each other, and each

surrounded by its respective atmosphere ;
some-

times the nebulous matter being condensed in a

uniform manner, produces the nebulae which are

termed planetary. Finally, a greater degree of

condensation transforms all these nebulae into stars.

The nebulae, classed in a philosophic manner, in-

dicate, with a great degree of probability, their

future tranformation into stars, and the anterior

state of the nebulosity of existing stars. Thus, by

tracing the progress of condensation of the nebu-

lous matter, we descend to the consideration of



AND FUTURE PROGRESS OF ASTUONOMY. 337

the Sun, formerly surrounded by an immense

atmosphere, to which consideration we can also

arrive, from an examination of the phenomena
ofthe solar system, as we shall see in our last note.

Such a marked coincidence, arrived at by such

different means, renders the existence of this an-

terior state of the Sun extremely probable./

Connecting the formation of comets with that

of nebulae, they may be considered as small ne-

bulae, wandering from one solar system to another,

and formed by the condensation of the nebulous

matter which is so profusely distributed throughout
the universe. The comets will be thus, relatively to

our system, what the meteoric stones appear to be

relatively to the earth, to which they do not ap-

pear to have originally belonged, (e) When these

stars first become visible, they present an appear-
ance perfectly similar to the nebulae ;

so much so,

that they are frequently mistaken for them, and it

is only by their motion, or by our knowing all the

nebulae contained in our part of the heavens, that

we are able to distinguish one from the other. This

hypothesis explains, in a satisfactory manner, the

increase of the heads and tails of the comets, ac-

cording as they approach the sun, and the extreme

rarity of their tails, (which, notwithstanding their

great depth, do not sensibly diminish the brilliancy

of the stars seen through them ;) the motions ofthe

comets, which are performed in every direction,

and the great excentricity of their orbits.

From the preceding considerations, which are

founded on telescopic observations, it follows, that

VOL. ir. z
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the motion of the solar system is extremely com-

plicated. The Moon describes an orbit nearly cir-

cular about the earth, but seen from the Sun,
it appears to describe a series of epicycles, of

which the centres exist on the terrestrial orbit.

In like manner, the earth describes a series of

epicycles, of which the centres lie on the curve,

which the Sun describes about the common centre

of gravity of the group of stars, of which it makes
a part. Finally, the Sun himself describes a series

of epicycles, of which the centres lie on the

curve described by the centre of gravity of this

group, about that of the universe. Astronomy has

already made an important step, in making us ac-

quainted with the motion of the earth, and the

epicycles which the Moon and the satellites de-

scribe on the orbits of their respective primary

planets. But if ages were necessary in order to

know the motions of the planetary system, what

a great length of time must be required for the de-

termination ofthe motions ofthe Sun and the stars ;

notwithstanding this, such motions appear to be

already indicated by observations. From all ofthem

considered together, it has been inferred, that the

bodies ofthe solar system are in motion towards the

constellation Hercules
j
but however they at the

same time seem to prove that the apparent motions

of the stars result from a combination of their pro-

per motions with that of the Sun. (f^
There are also remarked some singular motions

in the double stars : we have denominated such,

those stars which, when seen through a telescope.
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appear to be composed of two neighbouring stars.

These two stars revolve about one another in a

manner sufficiently sensible to enable us to de-

termine for some of them, by means of a few years

observation, the duration of their revolutions.

All these motions of the stars, their parallaxes,

the periodic variations of the light of the change-
able stars, and the durations of their motions of

rotation
;
a catalogue of those stars which just

appear and then disappear, and their position at

the instant of their transient passage ; finally,

the successive changes in the figure of those nebu-

Ise which are already sensible in some of them,

and particularly in the beautiful nebula of Orion,

will be, relatively to the stars, the principal objects

ofAstronomy in subsequent ages. Its progress de-

pends on these three things : the measure of time,

that of angles, and the perfection of optical in-

struments. The two first are nearly as perfect as

we could wish ;
it is therefore to the improvement

of the latter that our attention should be direct-

ed, for there can be no doubt but that if we suc-

ceeded in enlarging the apertures of our achro-

matic telescopes, they would enable us to discover

in the heavens, phenomena which have been

hitherto invisible, especially if we were able to re-

move them to the pure and rare atmosphere of the

high mountains of the equator.

There are also numerous discoveries to be

made in our own system. The planet Uranus

and its satellites, which have been lately disco-

7 Q.

k
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vered, give grounds to suppose that other pla

nets, as yet not observed, exist. It has been

even conjectured that one must exist between

Jupiter and Mars, in order to satisfy the double

progression, which obtains (^) very nearly, between

the intervals of the planetary orbits, to that of

Mercury. This conjecture has been confirmed

by the discovery of four small planets, whose dis-

tances from the Sun differ little from that, which

this double progression assigns to a planet inter-

mediate between Jupiter and Mars. The action

of Jupiter on these planets increased by the mag-
nitude of the excentricities and of the inclina-

tions of the intersecting orbits, produces con-

siderable inequalities in their motions, which

throw new light on the theory of the celestial

attractions, and will enable us to render them

more perfect. The arbitrary elements of this

theory, and the convergence of its approxima-

tions, depend on the precision of observations

and on the progress of analysis, and this should

thereby acquire every day more and more accu-

racy. The great secular inequalities of the hea-

venly bodies, which is a consequence of their

mutual attractions, and which has been already
indicated by observation, will be developed in the

course of ages. By means of observations on the

satellites, made with powerful telescopes, we shall

be able to render their theory more perfect, and

perhaps to discover new satellites. By accurate

and repeated measures of the Earth, all the ine-

qualities of the figure of the Earth, of gravity at
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its surface, will be determined, and in a short

time all Europe will be covered with a chain of

triangles, which will accurately determine the po-

sition, the curvature, and the magnitude of all its

parts. The phenomena of the tides, and their re-

markable varieties in the two hemispheres, will be

determined by a long series of observations, com-

pared with the theory of gravity. We will ascertain

whether the motions of rotation and revolution

of the Earth are sensibly changed by the changes
which it experiences at its surface, and by the im-

pact ofmeteoric stones, which, according to all pro-

bability, come from the depths of the heavenly re-

gions. The new comets which will appear ;
those

which, moving in hyperbolic orbits, wander from

one system to another
j
the returns of those which

move in elliptic orbits, and the changes in the form

and intensity of light, which they undergo at each

appearance, will be observed ; and also the petur-

bations which all those stars produce in the pla-

netary motions, those which they experience

themselves, and which, at their approach to a

large planet, may entirely derange their motions
;

finally, the changes which the motions and the

orbits of the planets and satellites experience
from the action of the stars, and perhaps likewise

from the resistance of ethereal media ; such are

the principal objects which the solar system offers

to the investigations of future Astronomers and

Mathematicians.

Astronomy, from the dignity of the subject,

and the perfection of its theories, is the most
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beautiful monument of the human mind ^the

noblest record of its intelligence. Seduced by
the illusion of the senses, and of self-love, man
considered himself, for a long time, as the centre

about which the celestial bodies revolved, and his

pride was justly punished by the vain terrors they

inspired. The labour of many ages has at length

withdrawn the veil which covered the system. And
man now appears, upon a small planet, almost im-

perceptible in the vast extent of the solar system,

itself only an insensible point in the immensity of

space. The sublime results to which this disco-

very has led, may console him for the limited

place assigned to the Earth, by showing him his

proper magnitude, in the extreme smallness of

the base which he made use of to measure the

heavens. Let us carefully preserve, and even aug-

ment the number of these sublime discoveries,

which constitute the delight of thinking beings.

These indeed have rendered important services

to navigation and astronomy ;
but their great bene-

fit consists in their having dissipated the alarms

occasioned by extraordinary celestial phenomena,
and thus exterminating the errors arising from the

ignorance of our true relation with nature ; errors

and apprehensions which would speedily spring up^

again, if the light of the sciences was extinguished. ]



NOTES.

NOTE I.

A Separate history of the Chinese Astronomy
was pubHshed by the Jesuit Gaubel, who appears
to have been particularly well acquainted with the

subject. He discussed again in much detail, in the

26th letter of the Instructive Letters, the ancient

part ofthis history. I published in the Connaisance

des Terns for the year 1809, an invaluable manu-

script of the same Jesuit, on the solstices and me-

ridian shadows of the gnomon observed at China.

From these treatises it appears that Tcheou Kong
observed the meridian shadows ofa gnomon eight

Chinese feet long, at the solstices in the city of

Loyang, now called Honan Fou, in the province

of Honan. He carefully traced the meridian, and

levelled the earth on which the shadow was pro-

jected. He found the length of the meridian sha-

dow to be one foot and a half at the summer sol-

stice, and thirteen feet at the winter solstice. In

order to infer from these observations the obliquity

of the ecliptic, he applied several corrections to
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them ; the most considerable is that of the Sun's

semi-diameter, for it is evident that the extremity
of the shadow of the gnomon indicates the height
of the upper hmb of this star

;
it is therefore neces-

sary to subtract from tliis height the apparent
semidiameter of the Sun, in order to obtain the

height of its centre. It is strange, that so simple
and essential a correction should have escaped
the observation of all the old Astronomers of the

Alexandrian school ; it must have caused their

geographical latitudes to have erred by a quantity

very nearly equal to this semidiameter. A second

correction respects the astronomical refraction,

which not being observed, may without sensible

error be supposed such as would correspond to a

temperature of ten degrees, and to a height of

the barometer equal to 0,76. Finally, a third

correction respects the parallax of the Sun, and

reduces these corrections to the centre of the

Earth. By applying these three corrections, to

the preceding observations, the height of the cen-

tre of the Sun, referred to the centre of the Earth,

is found to be equal to 87,904^9 at the summer

solstice, and to 34^7924 at the winter solstice.

These heights assign 38^6513 for the height of the

pole at Layang, which result differs very little

from the mean between all the observations of the

Jesuit missionary on the latitude of this city :

they make the obliquity of the ecliptic at the

epoch of Tcheou-Kong to be about '26,6563. This

epoch may without sensible error be fixed at the

year 1100 before our sera. If by means of the
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formula given in the sixth book of the treatise on

Celestial Mechanics, we go back to this epoch,

we shall find that the obliquity ought then to

be equal to 26,51 61. The difference 402" will

appear very inconsiderable, if we consider the un-

certainty wbich exists relative to the masses of the

planets, and that which the observations on the

gnomon present, especially on account of the

penumbra, which renders the umbra itself very in-

distinctly terminated.

Tcheou-Kong also observed the position of the

winter solstice, with respect to the stars, and he

fixed it at two Chinese degrees of iVw, a Chinese

constellation, which commences with of Aqua-
rius. In China, the division of the circumference

was always regulated by the length of the year,

so that the Sun described a degree every day -,
and

the year at the epoch of Tcheau-Kong being sup-

posed equal to SGd'^-l ; two degrees correspond to

2, 1905 of the decimal division of the quadrant
of the circle. The stars having been at the same

epoch referred to the equator, the right ascension

of the star was, according to this observation,

about 297%8096. By the formulae of the celestial

mechanics it ought to be 298,7265, in the year
1 100 before our sera. In order to get rid of the

difference 9169 ^ it is sufficient to go back fifty-

four years beyond this, which is inconsiderable if

we consider the uncertainty of the precise epoch at

which this great prince made his observations, and

particularly that of the observations themselves.

There also exists an observation on the instant of
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the solstice, but the greatest error to apprehend is

in the manner of referring the solstice to the star

i of Aquarius ; whether Tcheou-Kong made use of

the difference in time, between the passages of the

star and Sun over the meridian, or whether he

measured the distance of the Moon from this star,

at the moment of the occurrence of a lunar

eclipse, two means employed by the Chinese

Astronomers.

NOTE II.

By means of a long series of observations, the

Chaldeans recognised that in 19756 days, the

Moon made 669 revolutions with respect to the

Sun, 717 anomalistic revolutions, i, e, with res-

pect to the points of its greatest velocity, and

726 revolutions with respect to its nodes. They
added ^% of a revolution to the position of those

two stars, in order to obtain in this interval 7^3

sidereal revolutions of the Moon, and 54 of the

Sun. Ptolemy, in explaining this period, attri-

butes it to the ancient Astronomers, without spe-

cifying the Chaldeans ; but Geminus, a cotempo-

rary of Sylla's, whose treatise on Astronomy has

come down to us, removes all doubt on this head,

for he not only attributes this period to the Chal-

deans, but he even gives their method for com-

puting the anomaly of the Moon. They supposed
that from the least to the greatest velocity of the

Moon, its angular motion accelerated by a third

of a degree every day, during one half of the

anomalistic revolution, and that it retarded by the
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same quantity during the other half. He is mis-

taken in supposing that the increments, which are

proportional to the cosines of the distance of the

Moon from its perigee, are constant. Notwithstand-

ing this error, the preceding method is creditable to

the sagacity ofthe ChaldeanAstronomers ; itis^the

only monument of this kind which remains previ-

ously to the foundation of the Alexandrian school.

The period of which I have spoken supposes that

the sidereal year is very nearly equal to S65^^ ; that

of 365,2576, which Albaterius ascribed to the

Chaldeans, cannot only belong to times posterior

to Hipparcus.

NOTE iir.

In the second book of his Geography, chap, iv.,

Strato states, that according to Hipparcus, the pro-

portion ofthe shadow at Byzantium to the gnomon,
is the same which Pythias asserts that he observ-

ed it to be at Marseilles ;
and in the 5th chapter

of the same book he quotes from Hipparchus, that

at Byzantium at the summer solstice, the propor-
tion of the shadow to the gnomon is that of 42

minus i to 1 20. It is unquestionable from this ob-

servation, that Ptolemy, in the 6th chapter of the

second book of the Almagest, makes the parallel

on which the duration of the longest day of the

year is, five-eighths of the astronomical day, to

pass through Marseilles ; which supposes that the

proportion of the meridian shadow to the gno-
mon at the summer solstice, is that of 42 minus ^
to 120. Pytheas was at the latest, a contemporary
of Aristotle

j
therefore we may without sensible
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error refer his observation to the year 350 before

our sera. By correcting it for the refraction, the

parallax of the Sun, and its semidiameter, it

makes the zenith solstitial distance of the centre

of the Sun from the zenith of Marseilles, equal to

21,6386. The latitude of the Observatory of this

city is 48,1077. If the preceding distance be sub-

tracted from it, the obliquity of the ecliptic at the

time of Pytheas comes out equal to 26,4691. This

obliquity, when compared with that given in the

time of Tcheou-Kong, indicates already a dimi-

nution in this element. From the formula given in

the Celestial Mechanics, the obliquity of the eclip-

tic 350 years before our sera comes out equal to

26,4095 ;
the difference 596" between this result

and that of the observation of Pytheas, is within

the limits of the errors of this kind of observa-

tion.

NOTE IV.

Hipparcus found, from comparing together a

great number of eclipses of the Moon, 1 st, that

in the interval of 126007'* plus -^-^
of a day, the

Moon performs 4267 revolutions with respect to

the Sun, 4573 revolutions relatively to its perigee,

and 4612 revolutions relatively to the fixed stars,

minus eight degrees and one-third ; 2dly, that

during 5458 synodic months it performs 5923 re-

volutions relatively to its nodes. According there-

fore to this result, the motions of the Moon in the

interval of 126007'^^^ are
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with respect to the Sun 17068OO'

with respect to the perigee 1829200

with respect to the node 1852212% 89368.

A comparison of these motions with those which

have been determined by combining together all

the modern observations, should render their acce-

leration, which is indicated by the theory of uni-

versal gi-avitation, very sensible. In fact, those

Avho have thus determined it for the commence-

ment of this century, assign, for the same in-

terval of time, the preceding quantities increas-

ed respectively by +2657^0; +10981^9; +
432",8. The acceleration of these three motions

from the time of Hipparchus to the present, is

evident : we see, moreover, that the acceleration

of the motion of the Moon with respect to the

Sun, is about four times less than that of its mo-

tion with respect to the perigee, whilst it sur-

passses considerably the acceleration of its motion

with respect to the node. This is very nearly con-

formable to the theory of gravity, according to

which, these accelerations are Q. P. in the ratio

of the numbers 1
; 4,70197 ; 0,3879-5. Hippar-

chus supposed that Babylon was more eastward

than Alexandria, by 3472' of time. According to

the observations of Beauchamp it was still more
eastward by 557''. This ought to increase a little

the mean lunar motions, which Hipparchus in-

ferred from a comparison of his observations, with

those of the Chaldeans.

Ptolemy has not transmitted to us the epochs
of the lunar motions of Hipparchus ; but from
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the slight changes which lie made in these mo-

tions, and from his always endeavouring to^make
his results approximate to those of this [great

Astronomer, we are justified in supposing that

the epochs of Hipparchus differ very little from

those of the tahles of Ptolomy, which assign at

the epoch of Nobonassar, L e. the 26th of Febru-

ary of the year 746 before our sera, at mid-day,
mean time of Alexandria,

distances from ft*^'^'^ 78, 4630

the Moon
-J

to the perigee 98,6852
vto the ascending node 93 , 6111

If we go back to this epoch, by means of the mean
motions determined for the commencement of this

century, from the comparison of modern obser-

vations solely J if, moreover, we suppose, agree-

bly to the latest observations, that Alexandria is

more eastward than Paris by 7731'',48 of time,

we shall find the distances less than the preceding

by the respective quantities 1,6316;

7,6569 ; 0,805. These differences, which are

much too great to be ascribed to the errors of

either ancient or modern determinations, evince

incontrovertibly the acceleration of the lunar

motions, and the necessity of admitting the secu-

lar equations. The secular equation of the dis-

tance of the Sun from the Moon, which equation

is the same as that of the mean motion of the

Moon, since that of the Sun is uniform, becomes

at the epoch of Nabonassar, S, 0480. In order to

obtain those of the distance of the Moon from its

perigee and its ascending node at the same epoch.
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it is necessary to multiply the preceding, by the

numbers 4,70197 and 0,38795 respectively. There-

fore the three secular equations will be 2,480 ;

9%6299 ; 0,7949. By adding them to the three pre-

ceding differences, they are reduced to the three -

following +4164" 5+19730^' ; 260''. These differ-

ences thus reduced may depend on the errors of

ancient and modern observations, for the secular

mean motion of the node being determined, for

example, by a comparison of the observations of

Bradley with those made since his time, ^. e, by
the observations made in the last half century ;

there may exist in its value, an uncertainty of half

a minute at least.

NOTE V.

The Astronomers of Almamon found, by their-

observations, the greatest equation of the centre of

the Sun equal to 2,2037, greater than ours by
635"^. Albatenius, Ebn Junis and a great num-

ber of other Arabian astronomers, make very

slight changes in this result, which evinces incon-

trovertably, the diminution of the excentricity of

the terrestrial orbit from their time to the pre-

sent. The same astronomers found the longi-

tude of the apogee of the Sun to be 830, equal to

91,8333 ; which corresponds very nearly with the

theory of gravity, according to which the longi-
tude at the same epoch ought to be 92,047. This

theory assigns 36,''44 for the annual motion of

this apogee with respect to the fixed stars
\ and

the preceding observation gives the same motion
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to within a few seconds. Finally, from a compa-
rison of their observations of the equinoxes with

those of Ptolemy, they found the duration of the

period of the tropical year to be 36.3^,240706.
About the year 803, which is more than twenty-
five years before the formation of the verified

table, the Arabian astronomer found by comparing
his observations with those of Hipparchus, a much
more exact duration of the year ; he determined

it to be 365,242181. Almost all the Arabian as-

tronomers supposed that the obliquity of the eclip-

tic was about 26,2037 ; but it seems that this re-

sult is influenced by the erroneous parallax which

they assigned to the Sun
;

at least it is certainly

the case with respect to the observations of Ebn

Junis, which when corrected for this erroneous

parallax, and for the refraction, make this obli-

quity 26,1932 for the year 1000. Theory makes
it at this epoch, 26,2009, the difference 77'^ is

within the limits of the errors of the Arabian ob-

servations. The epochs of the astronomical tables

of Ebn Junis, confirm the secular equations of the

motions of the Moon
;
the great inequalities of

of Jupiter and Saturn are likewise confirmed by
these epochs, and by the conjunction of these two

planets, observed at Cairo by this astronomer.

This observation, one of the most important in

Arabian astronomy, was made on the 31st of

October, 1007, at 0^^,16 of mean time at Paris.

Ebn Junis found the excess of the geocentric lon-

gitude of Saturn above that of Jupiter, equal to

4444'^ The tables constructed by M. Bouvard,
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according to my theory, and fronn a comparison
of all the observations made by Bradley, Maske-

line, and at the Royal Observatory, make this ex-

cess 5191''; the difference 747'' is less than the

error of which this observation is susceptible.

NOTE VI.

The observations of the meridian shadows of the

gnomon, made by Cocheou-King, and inserted

in the Connaissance des Tems of the year 1809,

assign ^,1759 as the greatest equation of the Sun

for the year 1 280, which exceeds its actual value

by about 377''. They likewise make the obliquity

of the ecliptic at the same epoch, about 26^,1489,

which is greater by 757''? than the actual obli-

quity. Hence it appears that the diminution of

these two elements is demonstrated by these ob-

servations.

An observation of the obliquity of the ecliptic

by Ulug-Beigh, when corrected for refraction and

parallax, makes the obliquity in 1437 equal to

26^1444 j
it is smaller than the preceding, as it

ought to be, on account of the interval of 157

years, which separates the corresponding epochs.

The following table clearly points out the suc-

cessive diminution of this element in an interval

of 2900 years.

VOL. II. A A
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Tcheou King, 1100 years

before our sera - - '2i'f,5d6S 402''

Pythias, 350 yeai-s before

our sera - - - S6,4691 596''

Ebu Junis, the year one

thousand - - - 26% 193^ 77

Cocheou-King, 1280 - 26%1489 62

Ulug-Beigh, J 437 - 26%1444 130

In 1801 - - - 26,073S.

The second row of numbers indicates the excess

of this obliquity over the results of the formulae

given in the Celestial Mechanics.

NOTE VII. AND LAST.

From the preceding chapter it appears, that

we have the five following phenomena to assist

us in investigating the cause of the primitive

motions of the planetary system. The motions of

the planets in the same direction, and very nearly
in the same plane ; the motions of the satellites

in the same direction as those of the planets ; the

motions of rotation of these different bodies and

also of the Sun, in the same direction as their mo-

tions of projection, and in planes very little inclined

to each other
j
the small eccentricity of the orbits

of the planets and satellites ; finally, the great ec-

centricity of the orbits of the comets, their inclina-

tions being at the same time entirely indeterminate.

BufFon is the only individual that I know of,

who, since the discovery of the true system of the

world, endeavoured to investigate the origin of

the planets and satellites. He supposed that a

comet, by impinging on the Sun, carried aw^y a
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torrent of matter, which was reunited far off, into

globes of different magnitudes and at different

distances from this star. These globes, when

they cool and become hardened, are the planets
and their satellites. This hypothesis satisfies the

first of the five preceding phenomena ; for it is

evident that all bodies thus formed should move

very nearly in the plane which passes through the

centre of the Sun, and through the direction of

the torrent of matter which has produced them :

but the four remaining phenomena appear to me

inexplicable on this supposition. Indeed the abso-

lute motion of the molecules of a planet ought to

be in the same direction as the motion of its cen-

tre of gravity ;
but it by no means follows from

this, that the motion of rotation of a planet should

be also in the same direction. Thus the Earth may
revolve from east to west, and yet the absolute mo-

tion of each of its molecules may be directed from

west to east. This observation applies also to the

revolution of the satellites, of which the direction

in the same hypothesis, is not necessarily the same

as that of the motion of projection of the planets.

The small eccentricity of the planetary orbits

is a phenomenon, not only difficult to explain on

this hypothesis, but altogether inconsistent with it.

We know from the theory of central forces, that if

a body which moves in a re-entrant orbit about the

Sun, passes very near the body of the Sun, it will

return constantly to it, at the end ofeach revolution.

Hence it follows that if the planets were originally

detached from the Sun, they would touch it, at

A A 2
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each return to this star
;
and their orbits, instead

of being nearly circular, would be very eccentric.

Indeed it must be admitted that a torrent of matter

detached from the Sun, cannot be compared to a

globe which just skims by its surface : from the

impulsions which the parts of this torrent receive

from each other, combined with their mutual at-

traction, they may, by changing the direction of

their motions, increase the distances of their peri-

helions from the Sun. But their orbits should be

extremely eccentric, or at least all the orbits

would not be q.p, circular, except by the most ex-

traordinary chance. Finally, no reason can be as-

signed on the hypothesis of Buffon, why the orbits

of more than one hundred comets, which have

been already observed, should be all very eccen-

tric. This hypothesis, therefore, is far from satis-

fying the preceding phenomena. Let us consider

whether we can assign the true cause.

Whatever may be its nature, since it has pro-
duced or influenced the direction of the planetary

motions, it must have embraced them all within the

sphere of its action
; and considering the immense

distance which intervenes between them, nothing
could have effected this but a fluid of almost in-

definite extent. In order to have impressed
on them all a motion q. p, circular and in

the same direction about the Sun, this fluid

must environ this star, like an atmosphere. From
a consideration of the planetary motions, we
are therefore brought to the conclusion, that in

consequence of an excessive heat, the solar at-

mosphere originally extended beyond the orbits
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of all the planets, and that it has successively con-

tracted itself within its present limits.

In the primitive state in which we have sup-

posed the Sun to he, it resembles those sub-

stances which are termed nebulae, which, when
seen through telescopes, appear to be composed
of a nucleus, more or less brilliant, surrounded

by a nebulosity, which, by condensing on its sur-

face, transforms it into a star. If all the stars

are conceived to be similarly formed, we can sup-

pose their anterior state of nebulosity to be pre-

ceded by other states, in which the nebulous mat-

ter was more or less diffuse, the nucleus being at

the same time more or less brilliant. By going
back in this manner, we shall arrive at a state of

nebulosity so diffuse, that its existence can with

difficulty he conceived.

For a considerable time back, the particular ar-

rangement of some stars visible to the naked eye,

has engaged the attention of philosophers. Mitchel

remarked long since how extremely improbable it

was that the stars composing the constellation cal-

led the Pleiades, for example, should be confined

within the narrow space which contains them, by
the sole chance of hazard

;
from which he infer-

red that this group of stars, and the similar groups
which the heavens present to us, are the effects

of a primitive cause, or of a primitive law of

nature. These groups are a general result of the

condensation of nebulae of several nuclei
;

for it

is evident that the nebulous matter being perpe-

tually attracted by these different nuclei, ought
at length to form a group of stars, like to that of
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the Pleiades. The condensation of nebulae con-

sisting of two nuclei, will in like manner form stars

very near to each other, revolving the one about

the other like to the double stars, whose respective

motions have been already recognized.

But in what manner has the solar atmosphere

determined the motions of rotation and revolu-

tion of the planets and satellites ? If these bodies

had penetrated deeply into this atmosphere, its

resistance would cause them to fall on the Sun.

We may therefore suppose that the planets were

formed at its successive limits, by the condensation

of zones of vapours, which it must, while it was

cooling, have abandoned in the plane ofits equator.

Let us resume the results which we have given
in the tenth chapter of the preceding book. The
Sun's atmosphere cannot extend indefinitely ;

its

limit is the point where the centrifugal force aris-

ing from the motion of rotation balances the gra-

vity ;
but according as the cooling contracts the

atmosphere, and condenses the molecules which

are near to it, on the surface of the star, the mo-
tion of rotation increases ;

for in virtue of the prin-

ciple of areas, the sum of the areas described by
the radius vector of each particle of the Sun and
of its atmosphere, and projected on the plane of

its equator, is always the same. Consequently the

rotation ought to be quicker, when these particles

approach to the centre of the Sun. The centrifu-

gal force arising from this motion becoming thus

greater ; the point where the gravity is equal to it,

is nearer to the centre of the Sun. Supposing



NOTES- 359

therefore, what is natural to admit, that the atmos-

phere extended at any epoch as far as this limit, it

ought, according as it cooled, to abandon the mole-

cules, which are situated at this limit, and at the

successive limits produced by the increased rota-

tion of the Sun. These particles, after being

abandoned, have continued to circulate about this

star, because their centrifugal force was balanced

by their gravity. But as this equality does not ob-

tain for those molecules of the atmosphere which

are situated on the parallels to the Sun's equator,
these have come nearer by their gravity to the at-

mosphere according as it condensed, and they
have not ceased to belong to it, inasmuch as by
this motion, they have approached to the plane of

this equator.

Let us now consider the zones of vapours,
which have been successively abandoned. These

zones ought, according to all probability, to form

by their condensation, and by the mutual attrac-

tion of their particles, several concentrical rings
of vapours circulating about the Sun. The mu-
tual friction of the molecules of each ring ought
to accelerate some and retard others, until they
all had acquired the same angular motion. Conse-

quently the real velocities of the molecules which

are farther from the Sun, ought to be greatest.

The following cause ought likewise to contribute to

this difference of velocities : The most distant par-

ticles of the Sun, and which, by the effects of cool-

ing and of condensation, have collected so as to

constitute the superior part ofthe ring, have always
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described areas proportional to the times, because

the central force by which they are actuated has

been constantly directed to this star
;

but this

constancy of areas requires an increase of velo-

city, according as they approach more to each

other. It appears that the same cause ought to di-

minish the velocity ofthe particles, which, situated

near the ring, constitute its inferior part.

If all the particles of a ring of vapours con-

tinued to condense without separating, they would

at length constitute a solid or a liquid ring. But

the regularity which this formation requires in all

the parts of the ring, and in their cooling, ought
to make this phenomenon very rare. Thus the

solar system presents but one example of it
;
that

of the rings of Saturn. Almost always each ring

of vapours ought to be divided into several masses,

which, being moved with velocities which differ

little from each other, should continue to re-

volve at the same distance about the Sun. These

masse-s should assume a spheroidical form, with

a rotatory motion in the direction of that of their

revolution, because their inferior particles have a

less real velocity than the superior ; they have

therefore constituted so many planets in a state

of vapour. But if one of them was sufficiently

powerful, to unite successively by its attraction, all

the others about its centre, the ring of vapours
would be changed into one sole spheroidical mass,

circulating about the Sun, with a motion of rota-

tion in the same direction with that of revolu-

tion. This last case has been the most common ;
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however, the solar system presents to us the first

case, in the four small planets which revolve be-

tween Mars and Jupiter, at least unless we sup-

pose with Olbers, that they originally formed one

planet only, which was divided by an explosion into

several parts, and actuated by different velocities.

Now if we trace the changes which a farther

cooling ought to produce in the planets formed of

vapours, and of which we have suggested the for-

mation, we shall see to arise in the centre of each

of them, a nucleus increasing continually, by the

condensation of the atmosphere which environs

it. In this state, the planet resembles the Sun in

the nebulous state, in which we have first sup-

posed it to be ; the cooling should therefore pro-
duce at the difl'erent limits of its atmosphere, phe-
nomena similar to those which have been described,

namely, rings and satellites circulating about its

centre in the direction of its motion of rotation,

and revolving in the same direction on their axes.

The regular distribution of the mass of rings of

Saturn about its centre and in the plane of its equa-

tor, results naturally from this hypothesis, and,

without it, is inexplicable. Those rings appear to

me to be existing proofs of the primitive extension

of the atmosphere of Saturn, and of its successive

condensations. Thus the singular phenomena of

the small eccentricities of the orbits of the planets
and satellites, of the small inclination of these or-

bits to the solar equator, and of the identity in the

direction of the motions of rotation and revolution

of all those bodies with that of the rotation of the
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Sun, follow from the hypothesis which has been

suggested, and render it extremely probable. If

the solar system was formed with perfect regula-

rity, the orbits of the bodies which compose it

would be circles, of which the planes, as well as

those of the various equators and rings, would co-

incide with the plane of the solar equator. But

we may suppose that the innumerable varieties

which must necessarily exist in the temperature
and density of different parts of these great

masses, ought to produce the eccentricities of

their orbits, and the deviations of their motions,

from the plane of this equator.

In the preceding hypothesis, the comets do not

belong to the solar system. If they be considered,

as we have done, as small nubulse, wandering from

one solar system to another, and formed by the con-

densation of the nebulous matter, which is diffused

so profusely throughout the universe, we may con-

ceive that when they arrive in that part of space
where the attraction of the Sun predominates, it

should force them to describe elliptic or hyperbolic
orbits. But as their velocities are equally possible

in every direction, they must move indifferently

in all directions, and at every possible inclination

to the ecliptic ; which is conformable to observa-

tion. Thus the condensation of the nebulous

matter, which explains the motions of rotation

and revolution of the planets and satellites in the

same direction, and in orbits very little inclined to

each other, likewise explains why the motions of

the comets deviate from this general law.

1
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TFie great eccentricity of the orbits of the co-

mets, is also a result of our hypothesis. If those

orbits are elliptic, they are very elongated, since

their greater axes are at least equal to the radius of

the sphere of activity of the Sun. But these orbits

may be hyperbolic; and if the axes of these hyper-
bolae are not very great with respect to the mean
distance of the Sun from the Earth, the motion of

the comets which describe them will appear to be

sensibly hyperbolic. However, with respect to the

hundred comets, ofwhich the elements are known,
not one appears to move in a hyperbola ; hence

the chances which assign a sensible hyperbola, are

extremely rare relatively to the contrary chances.

The comets are so small, that they only become

sensible when their perihelion distance is inconsi-

derable. Hitherto this distance has not surpassed
twice the diameter of the Earth's orbit, and most

frequently, it has been less than the radius of

this orbit. We may conceive, that in order to

approach so near to the Sun, their velocity at the

moment of their ingress within its sphere of ac-

tivity, must have an intensity and direction con-

fined within very narrow limits. If we determine

by the analysis of probabilities, the ratio of the

chances which in these limits, assign a sensible

hyperbola to the chances which assign an orbit,

which may without sensible error be confounded

with a parabola, it will be found that there is at

least six thousand to unity that a nebula which

penetrates Avithin the sphere of the Sun's activity

so as to be observed, will either describe a very
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elongated ellipse, or an hyperbola, which, in con-

sequence of the magnitude of its axis will be as

to sense confounded with a parabola in the part of

its orbit which is observed. It is not therefore

surprising that hitherto no hyperbolic motions

have been recognised.

The attraction of the planets, and perhaps also

the resistance of the ethereal media, ought to

change several cometary orbits into ellipses, of

which the greater axes are much less than the

radius of the sphere of the solar activity. It is

probable that such a change was produced in the

orbit of the comet of 17^9, the greater axis of

which was not more than thirty-five times the dis-

tance of the Sun from the Earth. A still greater

change was produced in the orbits of the comets

of 1770 and of 1805.

If any comets have penetrated the atmospheres
of the Sun and planets at the moment of their

formation, they must have described spirals, and

consequently fallen on these bodies, and in conse-

quence of their fall, caused the planes of the or-

bits and of the equators of the planets to deviate

from the plane of the solar equator.
If in the zones abandoned by the atmosphere of

the Sun, there are any molecules too volatile to be

united to each other, or to the planets, they ought in

their circulation about this star to exhibit all the

appearances of the zodiacal light, without oppos-

ing any sensible resistance to the different bodies

of the planetary system, both on account of their

great rarity, and also because their motion is very
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I

nearly the same as that of the planets which they

meet.

An attentive examination of all the circum-

stances of this system renders our hypothesis still

more probable. The primitive fluidity of the

planets is clearly indicated by the compression of

their figure, conformably to the laws of the mutual

attraction of their molecules
;

it is moreover de-

monstrated by the regular diminution of gravity,

as we proceed from the equator to the poles. 1^
This state of primitive fluidity to which we are

conducted by astronomical phenomena, is also ap-

parent from those which natural history points out.

But in order fully to estimate them, we should take

into account the immense variety of combinations

formed by all the terrestrial substances which were

mixed together in a state of vapour, when the de-

pression of their temperature enabled their ele-

ments to unite ;
it is necessary likewise to con-

sider the wonderful changes which this depression

ought to cause in the interior and at the surface

of the earth, in all its productions, in the con-

stitution and pressure of the atmosphere, in the

ocean, and in all substances which it held in a

state of solution. Finally, we should take into

account the sudden changes, such as great volca-

nic eruptions, which must at diff'erent epochs have

deranged the regularity of these changes. Geology,
thus studied under the point of view which con-

nects it with astronomy, may, with respect to se-

veral objects, acquire both precision and certainty.

One of the most remarkable phenomena of the

solar system is the rigorous equality which is observ-



363 NOTES.

ed to subsist between the angular motions of rota-

tion and revolution of each satellite. It is infinity to

unity that this is not the effect of hazard. The

theory of universal gravitation makes infinity to

disappear from this improbability, by shewing
that it is sufficient for the existence of this pheno-

menon, that at the commencement these motions

did not differ much. Then, the attraction of the

planet would establish between them a perfect

equality ;
but at the same time it has given rise to

a periodic oscillation in the axis of the satellite di-

rected to the planet, of which oscillation the ex-

tent depends on the primitive difference between

these motions. As the observations of Mayer on

the libration of the Moon, and those which Bou-

vard and Nicollet made for the same purpose, at

my request, did not enable us to recognize this

oscillation
;- the difference on which it depends

must be extremely small, which indicates with

every appearance of probability the existence of a

particular cause, which has confined this differ-

ence within very narrow limits, in which the at-

traction of the planet might establish between the

mean motions of rotation and revolution a rigid

equality, which at length terminated by anni-

hilating the oscillation which arose from this equa-

lity. Both these effects result from our hypothesis ;

for we may conceive that the Moon, in a state of

vapour, assumed in consequence ofthe powerful at-

traction ofthe earth the form ofan elongated spher-

oid, of which the greater axis would be constantly
directed towards this planet, from the facility with

which the vapours yield to the slightest force im-
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pressed upon them. The terrestrial attraction

continuing to act in the same manner, while the

Moon is in a state of fluidity, ought at length, by

making the two motions of this satellite to ap-

proach each other, to cause their difference to fall

within the limits, at which their rigorous equality

commences to establish itselfo Then this attrac-

tion should annihilate, by little and little, the os-

cillation which this equality produced on the

gi'eater axis of the spheroid directed towards the

earth. It is in this manner that the fluids which

cover this planet, have destroyed by their friction

and resistance the primitive oscillations of its axis

of rotation, which is only now subject to the nu-

tation resulting from the actions of the Sun and

Moon. It is easy to be assured that the equality

of the motions of rotation and revolution of the

satellites ought to oppose the formation of rings

and secondary satellites, by the atmospheres of

of these bodies. Consequently observation has

not hitherto indicated the existence of any such.

The motions of the three first satellites of Jupiter

present a phenomenon still more extraordinary

than the preceding ;
which consists in this, that

the mean longitude of the first, minus three times

that of the second, plus twice that of the third, is

constantly equal to two right angles. There is the

ratio of infinity to one, that this equality is not

the eff'ect of chance. But we have seen, that in

order to produce it, it is sufficient, if at the com-

mencement, the mean motions of these three

bodies approached very near to the relation

which renders the mean motion of the first, minus
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three times that of the second, plus twice that of

the third, equal to nothing. Then their mutual

attraction rendered this ratio rigorously exact, and

it has moreover made the mean longitude of the

first minus three times that of the second, plus

twice that of the third, equal to a semicircurafer-

ence. At the same time, it gave rise to a pe-
riodic inequality, which depends on the small

quantity, hy which the mean motions originally

deviated from the relation which we have just an-

nounced. Notwithstanding all the care Delambre

took in his observations, he could not recognise

this inequality, which, while it evinces its extreme

smallness, also indicates, with a high degree of

probability, the existence of a cause which makes

it to disappear. In our hypothesis, the satellites

of Jupiter, immediately after their formation, did

not move in a perfect vacuo ; the less condensible

molecules of the primitive atmospheres of the

Sun and planet would then constitute a rare me-

dium, the resistance of which being different for

each of the stars, might make the mean motions

to approach by degrees to the ratio in question ;

and when these movements had thus attained the

conditions requisite, in order that the mutual

attraction of the three satellites might render

this relation accurately true, it perpetually di-

minished the inequality which this relation ori-

ginated, and eventually rendered it insensible.

We cannot better illustrate these effects than

by comparing them to the motion of a pendulum,

B'hich, actuated by a great velocity, moves in a
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medium, the resistance of which is inconsiderable.

It will first describe a great nmnber of circum-

ferences
;

but at length its motion of circula-

tion perpetually decreasing, it will be converted >^-*^*viL

into an oscillatory motion, which itself diminish-

ing more and more, by the resistance of the me-

dium, will eventually be totally destroyed, and then

the pendulum, having attained a state of repose,
will remain at rest for ever.

VOL. ir. B B





NOTES TO CHAPTER I.

I

{a) The uniform velocities are proportional to the cir-

cumferences of the circles described,^ divided by the pe-

riodic times, or times of their description, /. e, vzz ^ ;

2 1

and as by hypothesis P*cor^ /. v^ co 1-co
, hence F which

ir^ 1
is : : / to varies as ; this, however, only proves, that if

r r^

the orbits of the planets were circular, the forces by which

they are retained in their respective circumferences vary

inversely as the squares of their distances from the sun.

{b) The areas being proportional to the times, the bases

described in the interval di are inversely as the altitudes or

perpendiculars let fall from the centre of force on the tan-

gents to the curve described ; but as dt is assumed indefi-

nitely small, the velocities with which the bases are des-

cribed may be considered as uniform, and therefore propor-

tional to the bases, consequently they are reciprocally, as the

perpendiculars from the centre of forces ; hence, as at the

perihelion, the distance is least, the velocity at this point

must be a maximum. As the body is supposed to describe

an ellipse, its tendency to recede from the sun at the
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perihelion must be greater than its gravity towards it, for,

otherwise, if they were equal, the body would describe a

circle about the sun ; and if this tendency was less at the

perihelion than the gravity towards it, the body would fall

within this circle, which is contrary to the hypothesis ;

this is also evident from the ratio which the centripetal bears

to the centrifugal force at the same distance ; it is likewise

apparent from the circumstance of the velocity in the

ellipse decreasing in a greater ratio than the inverse sub-

duplicate ratio of the distance, and therefore in a greater

ratio than the velocities of bodies moving in circles at the

same distance {see note {d) of this chapter;) therefore, as

the velocities decrease in a greater ratio than the velocities

of bodies moving in circles at the same distance, the velo-

city of the body moving in the ellipse, continually ap-

proaches to the velocity of a body moving in a circle at

the same distance ; there is a certain point in the curve

where the velocity becomes equal to the velocity in a cir-

cle at the same distance ; this is at the mean distance of

the body from focus ; but though the velocities are in this

case the same, the curves described will not coincide, for

as the angle of projection in the ellipse is obtuse, the body
will continue to recede from the centre, until it arrives at

the point where the direction of its motion is at right

angles to the radius vector, and as at this point the velo-

city is less than in a circle at the same distance, the path
described by the body will fall within the circle, and the

body will return to the perihelion, tracing a curve precisely

equal and similar to that by which it arrived at aphelion.

(c) See note {b) page 256 of first volume. Let, as in

notes page 248 of first volume, x and j/ represent the

rectangular coordinates of the planets, the origin being in

the sun to which the force soliciting the bodies is directed,

(it is not necessary to introduce a third coordinate, be-

cause the areas being proportional to the times, the curve

described is of single curvature,) by what is stated in the
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notes already adverted to, o = -_ -f P ;
o = -^ + Q,

multiplying the first equation by y, and the second by

X, and then adding them together, we have d (
^ ^ ^ ^

\

-{- xQ 7/Pzzo; but the first member being the dif-

ferential of ^ ^
, vi^hich is constant and = to cdi,

dt

XQy P= 0; V ^ j/
P Q> ^"^ ^^ force is directed

to the origin of the coordinates; if the first of the preced-

ing equations be multiplied by d x, and the second by di/,

and then added together, we obtain -^^
JT' -{-Pda:

+ QJj/= 0, and therefore (by including the constant arbi-

trary under the sign/)
^

J/-^ + 2/ {? dx + Qdy)=
(I z

0, substituting for dt its value
^ ^ y f

, this equation
c

becomes

{xdyydxY
' ^ ^ -^ j/;j

but if r be the radius vector, and v the angle which r

makes with the axis of x, we have x = r. cos. v, y=r,
sin. V, and therefore d x^ -{- dy^zzr^ .dv^ + dr^

, x.dyy.dx =
r^dv, P= ^ cos. V, Q= ^sin.t;, ^ being = v' p* + Q* , /.

by substituting we obtain

^,JrW-fr^ ^ therefore
r'^.dv^

' y r J

cdr

we can obtain u in a function of r, by the method of qua-

dratures; but if ^ be unknown, and the nature of the

curve described be given, we obtain (by differentiating the

preceding expression)

(j)
=: __.t?. jA^ ^^2 J now, as the planetary orbits are

7
*'"^ .... -uv z=. ,

, when is given m terms of r.
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,,. 1 _14-^. COS. (u w) .

ellipses, ^^-

c* 1 . h
<l>
=

jr T' ^^^ conversely, if ^ varies as , the

preceding equation will satisfy the differential equation,

which expresses the value of 6, for then h = , is

an equation of condition between a and e, and therefore

the three quantities a e C> are reduced to two distinct quan-

tities, which is enough, as the differential equation be-

tween r and v is only of the second order. The coefficient

TT.
determines the intensity of the force d> for each

planet and comet ; but it is easy to show that this is the

same in passing from one planet to another, for from the

proportionality of the areas to the times of their descrip-

cdt^

of the ellipse) as ^^ : P the periodic time,

tion, we have : tt a^ ^ I e^ (which expresses the area

/, c = f5
) but smce the squares of the pe-

riodic times are as the cubes of the greater axes of the

ellipses, we have P^=F.^ k being the same for all the

planets, and therefore we have by substituting,

c = ^i -^ ; .'.as 2a{l e^) expresses the prin-
tc

cipal parameter of the orbits traced by the planets, c which

is -rrl to the areas traced in equal times, varies as the

square root of the parameters. In the case of the comets,

as their orbits are parabolic, the preceding value of c be-

2 77-
Vo JD

comes .

, D being the perihelion distance ; in this
tC

case the preceding proportion becomes
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2 7r.v'2D
^^

. ^JV2D y.dt:?, and /. P^=F5 there-
2/c

fore when P is known we can determine a. The value of

c gives

and /.
<^
=

-jj- -7 ; which shows that

varies from one planet to another, only In consequence of

the change of distance, and therefore at equal distances

from the sun the accelerating force of all the planets is

the same, and the moving force varies as their masses ;

therefore, if all the planets fell at the same instant from

different points of the same spheric surface towards the

sun, they would reach it in the same time, just as all

bodies near to the surface of our earth are equally acce-

lerated by the force of terrestrial gravity, and the weight
of the planets to the sun is proportional to their masses di-

vided by the squares of their distance from the sun. The

greatest and least values of r in the ellipse, correspond to

? w=7r, ?w=0, therefore they are respectively (!+'),

(1 ^), consequently they lie in directum, hence it follows

that when
<^

varies as , the apsides are 180 distant, and

vice versa if the apsides are 180 distant, the force varies as

. See Principia Math, book 1, prop. 45; and note (?)

chapters. From the equation c'^zzh,a{le'^), it follows

^hat the synchronous areas vary generally as the square
root of the absolute forces into the square roots of the

parameters of the orbits described, and therefore if the ab-

solute forces be different, we have

"^k.aile^). dt : irar, V \IIe^ \: dt : P, and .*. P2=-^^
i e, the square of the periodic time varies as the cube of

the distance divided by the absolute force. Generally

speaking, the quantity c, which results from the integra-
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tion of the equation d. y
^^'^ ^\ zz o, is common to

all laws of central forces, therefore it does not depend on

the law of the attractive force, but on its absolute quantity,

and it will serve to determine the ratio of the central force

of the sun, to every other ; v the velocity

di
""

dt r

= (as dJr^,dv) = 0,) 2^. (-_!), (Celestial Mechanics,
\ r a/

Nos. 18, 26.)> therefore v is a maximum when r is a mi-

nimum, and vice versa ,- if U denotes the velocity which

the body would have if it described a circle about the

sun at the unit of distance, then

r = a=l, and /. U^= ^, /. v^ = U^
0-i) ,

hence given the velocity of projection and distance, we

can determine the axis major , as a is positive in the

ellipse, infinite in the parabola, and negative in the hyper-

bola, the section described will be an ellipse, a parabola,

or hyperbola, according as

v is Z = or > than U.v -
,

r

it is remarkable that the direction of projection does not in-

1 2 w*
fluence the specks of conic section, for _ =

,

a r U^

therefore, when r and v are given, a and therefore P re-

main the same ;
as U v - = the velocity in a circle at the

distance of r from the sun, in the ellipse the velocity at any

point is to that in a circle at the same distance, in a less

ratio than that of ^2 : 1 j in the parabola this ratio is

that of ^^2 : 1 ; in the hyperbola the ratio is greater than

that of ^^2 : 1 ; in the ellipse, when v diminishes r in-

creases, and when v=o, r= 2a, in which case ^=1 ; in the
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hyperbola, when r is infinite, the limit of the velocity is

U^.i = the square of the velocity in a circle at the dis-

a

tance of a from the focus, when r = at, v=UV - = the

velocity in a circle at the same distance, and in general

V : u. V i::'v^2a-r: V;

hence we see the truth of what is stated in notes page

dr
372. As expresses the velocity resolved in the direc-

tion of the radius, it is z= to v. cos. e, c. being the angle
which the radius vector makes with the tangent, therefore

fi.a (1 e*) = Q/Lir
^ ^ -

, and substituting for

-
, its value, we obtain

df-

a{\ c^) = r* sin. '^E
( ), a{\ e^) expresses the para-

meter, whicb when r and a are given, varies as the square
of the sine of projection ;

.'. the parameter, when every

thing else remains the same, depends on that part of the

velocity which acts perpendicularly to the radius vector,

it is termed the paracentric velocity, and is evidently a

maximum at the extremity of the focal ordinate.

From the expression a (1 <?^)=:?-^. sin. ^e.
( J

, it

follows that sin. ^c varies inversely, as /
.(

^ ^

J
, but as

VOL. ir. c c
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r f 2flr r is given, their product is a maximum, and /. the

sine of projection the least possible when r = a, i, e, at

mean distance.

(/) It appears from what has been established with respect

to the relation which exists between the velocity in a circle

and the velocity in a conic section at the same distance,

that the hyperbola and ellipse are equally possible, with

this sole difference, that the hyperbola supposes a greater

velocity than the ellipse ; the parabola is infinitely less

probable than the two other conic sections, since it sup-

poses an unique case, the circle likewise requires a 'perfect

equality^ The parabolas may be considered as the

asymptotes to which very excentric ellipses perpetually

approach in the perihelion. It is on this supposition that

the investigation of the cometary motions is founded.

See Vol. I., page 394.

As r^dv expresses the elementary area, it follows that

cdt
dv = ) i, e, the angular velocity, varies as the square

root of the parameter or of the sychronous areas divided

by the square of the distance, therefore the angular velo-

city in a conic section is to that in a circle at the same

distance r, as c : V r
,
and they are equal at the extre-

mity of the focal ordinate, as

- 27^^^^I^ dv _ 27r g^ ^F^T?
^

P
"

'

dt
~

P.r^
'

if a circle is described at the unity of distance in a time

equal to P, we have = the mean angular velocity in

the ellipse, therefore when the angular velocity in the

ellipse is equal to the mean angular velocity, we have

^ = llLfl'QHf , and .-. r=a{l -e^)^=^ meae P*o.
P P.>^
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portional between the semiaxcs; in this position the

equation of the centre is a maximum,

{g) See Celestial Mechanics, No. 58, and also Princip.

Math. Section 9. If X represents the quantity by which

the force deviates from the inverse ratio of the square af

the distance, then the distance between the apsides

^rrx"

the square of X being neglected.

If a represent the mean distance of the satellite from

the centre of Jupiter, P' its period, expressed in seconds,

*2 n IT
- will represent the arc described in a second ; and

which is equal to the versed sine of the arc de-

scribed, is the space through which the attractive force of

the planet causes the body to descend in a second ; and if

a' P'' , &c. represent the same quantities for another sateU

lite, the ratio of ^ to -5^ j expresses the ratio of ^ to

^', the attractive forces of Jupiter at the distances cr, a!\ but

as by observation

'

P'* : P"^ : :
3 .

^/s ^^ \,^^q a
:
a' : : _L , See^ ^ a^ a"'

page 10 of the text.

In note (w), page 356 of the first volume, we showed

how the number of oscillations performed by a pendulum
in a given time indicated the diminution of gravity.

(//)
In note (0, page 426, we gave the method of deter-

mining the velocity which should be impressed on a pro-

jectile,
in order that, setting aside the resistance of the

air, it might perpetually revolve about the earth.

It may be shown, by a comparison of the apparent an-

gular motion of the moon with her apparent diameter.
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that she describes equal areas in equal times about the

earth ; and therefore that the force by which she is re-

tained in her orbit is directed to the earth. See notes

page 315, Vol. I. Indeed, as will be shown in the fifth

chapter, if great accuracy be required, the observations

ought to be made in the syzygies and quadratures; for in

the other points of the orbit the disturbing action of the

sun is not directed to the centre of the earth. Newton

shows, from the small quantity by which the apsides are

observed to prograde, that the force must be nearly in-

versely as the square of the distance; for if the orbit was

elliptical, the earth being in one of the foci, the distance

between the apsides would be 180, and the force by which

the moon would be retained in her orbit would vary as

. See notes, page 375. Now the apsides are observed

to prograde 3, 3' every month, and the law of the force

which would produce such a progression must vary in-

versely as some power of the distance, intermediate be-

tween the square and the cube, but which is nearly sixty

times nearer to the square ; consequently, on the hypothesis

that the progression is produced by a deviation from the

law of elliptical motion, it must be nearly in the inverse

ratio of the squares of the distance ;
but as Newton proves

this motion ofthe apsides to arise from the disturbing action

of the sun, it follows that the force varies accurately as

~. See Luby's Physical Astronomy, page 197.

(/)
He computes the space through which the moon would

fall in a second, in consequence of the action of the force

by which she is retained in her orbit; which force, in con-

sequence of the proportionality of the areas to the times,

is directed towards the centre of gravity of the earth ; and

assuming that the force decreases in the inverse ratio of the

square of the distance, he determines, from knowing the
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space described by a body falling near the earth's surface

in a second, the space through which, in consequence of

the action of the same force diminished in the inverse ratio

of the square of the distance of the moon from the earth,

a body would fall at this distance ; and as this space comes

out equal to that by which the moon is deflected from

the tangent to the orbit, he justly concludes, that this

force is the terrestrial gravity diminished in the ratio of

the square of the distance.

In consequence of the disturbing action of the sun, the

moon's distance and motion are subject to several inequa-

lities, which are detailed in Chapter IV. of the First

Volume. The particular explanation of the most remark-

able of them will be given in notes to Chapter V. of this

Volume.

Knowing the parallax and radius of the earlh, it is

easy to obtain the distance.

In determining the space through which the moon falls

in a second, in consequence of the force which soilicits it,

there are two corrections applied ; one arising from the

disturbing action of the sun, which, taking into account

the entire orbit, diminishes the lunar gravity ^^j^th part,

see note {/) Chapter V. ; and in consequence of this the

result obtained should be increased a ^j^th part. The
other correction arises from this, that in the relative mo-

tion of the moon about the earth, the point about which

it really revolves is the common centre of gravity of the

earth and moon, and the central force which should exist

in the centre of the earth, which would cause the moon
to revolve about this centre in the same time in which slie

actually revolves about the common centre of gravity of

the earth and moon, should be equal to m-\-m\ the sum

of the masses of the earth and moon ; for if a be the dis-

tance of the earth from the moon, y the distance at which
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the moon would revolve about the earth by itself, considered

as quiescent,

I

(I til~ '

J, (Princip. Math. prop. 59, book 1.), .*.

.3

P* = -^ =
; ; , I. e. if a be the distance, the central

m^ m -j- m'

force should be m-\-m\ .*. as the versed sine of the arc de-

scribed in a second is the space through which the moon
descends in consequence of the combined actions of the

earth and moon, it must be multiplied by

-,,
I, >. -f

, to obtain the space described by them + ;w' 76

sole action of m,

{k) Let a b represent the major and minor semiaxes

of the terrestrial spheroid, its solid content = -I^^-^^
,

and if r be the radius of the equicapacious sphere, its con-

tent

47rr^ ^^ 1 1= , .'. a^b = r^, .*. as r z= ^ 2 we have
3

' \^e\ cos.
*A)

4. 2
i,2f

44
a^ .b^ = -r- , /. e. a^ = 6^. (1 -{-e^. cos. ^A) very

1 ^*.cos. *A -

nearly ; and if a = Z> (1 +), 'c being a very small quantity

of which the square may be neglected, then

1 -f -. = l-|-2. cos. ^A, and .'. cos. ^A = -;

now, as the efficient part of the centrifugal force at any

parallel of latitude A diminishes as cos. ^A, and as the

centrifugal force at the equator is the ^^^th part of

gravity, the centrifugal force at the parallel in question

2
=: - . ^^^ = ^jgth part of gravity, .*. if ^^ represent the
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lunar parallax, v the versed sine of the arc described by
the moon, and 5 the space fallen through near the surface

of the earth in the same time,

2rt7r* 6369809 . i .uV
, a =

; ,
. . applying the corrections

p* sin.
j:?

specified above,

2.63.69809^ 369 75 ,
, a- - -

\ ^
-

,\
V = rr . . , and s when diminished in the

sin. p. P^ 368 76*

ratio of the square of the distance

= 3'''.65631 n + .j.sin. */;; now these two expres-

sions come out q,p equal, .*. it follows that the force varies

as . In the Celestial Mechanics, the identity of ter-

restrial gravity with the force deflecting the moon, is

proved from the equality of ;?, the lunar parallax, as de-

termined by observation, and from the preceding equa-
tion.

With respect to the diminution of the force of gravity

on the summits of the highest mountains, see note {v)

Chapter Vlll.

(Z) In consequence of the equality of action and reaction,

whatever motive force is produced in the planet by the ac-

tion of the sun, an equal ^d contrary force is produced in

the sun by the planet's reaction ; now, if M ? represent

the respective masses of the sun and planet, and d their

mutual distance, the motive force of any planet is -frl to

-^ ; .*. at equal distances from the sun, the motive

force towards that body is proportional to the masses of

the planets ; and, therefore, as the accelerating force of

the planets is the same at equal distances from the sun, it

follows that the moving force is 44-1 to the mass ; and the

same is true for bodies near the earth's surface, as is evi-
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dent from experiments made with pendulums. The acce-

lerating force of the planet is expressed by

-
, and the accelerating force of the sun = -

; now,
CL CL

if we impress on the sun and planet in a contrary direc-

tion to the motion of the sun, an accelerating force equal

to -
, the sun will be at rest, their relative motion is evi-

dently not affected, and the planet will be actuated by the

accelerating force

,
and also by , i. e, by -^Jt , and as P the periodic

time =:
, it will be less than if the sun was im-

moveable in the ratio of 'v/m+ zw, to "^M j .'. the ratio of

P^ to d^i is, strictly speaking, different for each planet;

however, as in point of fact, this ratio is nearly the same

for all the planets, it follows that the masses of the planets

must be very small compared with that of the sun. This

comparative small ness is also evinced by the circumstance

of Kepler being able to announce his laws, for from the

universality of gravitation each botly is attracted by every
other body, therefore those laws do not accurately obtain ;

still their effect must be q.p small, as the elliptic orbit sa-

tisfies the observations.

In addition to what is stated in page 15, it is to be re-

marked, that every computation founded on this hypo-

thesis, if it satisfies all the observed phenomena, furnishes

an additional proof of the truth of the theory of universal

gravitation ;
and in this way, all physical astronomy, and

in particular the theory of perturbations, by means of

which the modern tables accord so perfectly with obser-

vation, is one of its most satisfactory confirmations.

We shall, in the subsequent Chapter, find this fact of
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the universality of attraction, confirmed by numerous as-

tronomical observations, the precession of the equinoxes,
the nutation of the earth's axis, and the compression of

the planets, have been computed on this hypothesis, and

its truth is evinced by the accurate agreement of the re-

sults of the computation with actual observation. See

Chapters V. and VI. of this Volume, pages 48 and 55,

(m) For suppose the attracted body to approach towards

the earth until it came in contact with it, if the reaction,

was not exactly equal to action, the two bodies would

move with a common velocity in the direction of the pres-

sure which predominates, therefore the centre of gravity of

the two bodies would have a rectilinear motion in some

direction, in consequence of the force of gravity, which

is contrary to what is established in notes page 440, Vol. I.

This principle of reaction is of the greatest consequence
in physics. Let, as before, M m represent the masses of

two attracting bodies, V v the velocities which they com-

municate to each other, AB the intensities of their forces,

d their mutual distance, we shall have, in consequence of

reaction,

MV=wv /. V : \llm : M, i, e, as

V= ~,vz=4;B. : A::V. : v:B: A::;w:Mj2>.
d^ d^

the intensity of the forces is ~l to the masses, and the ve-

locities communicated are inversely as the masses. It also

appears that if the bodies do not receive an initial im-

pulse, they will approach each other in a right line, and

meet in their common centre of gravity.

VOL II. D D
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(a) The formulae which analysis has furnished for the

determination of the perturbations, are composed of two

different descriptions of terms. The first are proportional
to the sines or cosines of certain angles ; the second are pro-

portional to the angles themselves. The first description

of terms have periods, at the term of which they attain their

greatest or least values, without ever passing these limits,

so that they can never accumulate, and thus, at the end

of millions of years they will not be more considerable

than they are at present. As very accurate observations

are required to detect them, it is only recently that they
have been observed, with the exception of the inequalities

of the Moon, and one relating to the motion of Jupiter
and Saturn, which have been known a considerable time.

The other terms, which are not proportional to the sines,

but to the arches, or to the time in which these arches are

described, have no period, and, therefore, continually ac-

cummulate. When the interval between the time of mak-

ing observations is not considerable, these progressive per-

turbations are confounded with those which are periodical ;

but they at length become more and more detached from
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them, so that eventually they are so different, that it is

impossible to mistake the one for the other. Like the

mean motions of the planets, they may be determined by
means of observations separated by considerable intervals

from each other, though not with the same accuracy.

Such, in particular, is the manner in which the motion of

the nodes and of the apsides has been determined, which,

in one hundred years, amounts to more than one degree.

The observations of several ages would, in this way, indi-

cate whether the change of the longitudes of the aphelia
and of the nodes corresponds to the retrogradation of the

equinoctial points, or if the apsides have a proper motion

of their own ; by means of such observations, we might
determine with great accuracy theprogressive perturbations,

and then theory has only to account for them ; they are

useful in this respect, in the investigation of the periodical

perturbations, inasmuch, as being easily observed, they en-

able us to determine the constant coefficients, masses, &c.

But although the coefficients are furnished in this way by ob-

servation, \\\Qform of the equations which indicate the pe-

riodic pertubations can only be determined by theory; and

this form, in the case in which the coefficients are un-

known, is of the greatest importance in the empirical de-

termination of the equations ; for, by pointing out the

arguments on which they depend, they suggest a mode ac-

cording to which the observations should be made. They
also indicate the period of each inequality, and conse-

quently the epoch and situation in which it is at its maxi-

mum, and therefore easiest to be observed, and thus fur-

nish a means of separating one perturbation from the

other, and of determining them separately by observation.

As the progressive perturbations, or those which are pro-

portional to the times or the arcs, are commonly so small,

that they do not become apparent until after the lapse of

one or of several ages ; their value is generally indicated

for every hundred years ; hence it is that they have been
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denominated secular inequalities. The following is a brief

outline of the method by which the different perturbations

of the planetary system are investigated. The differential

equations of the second order, which are given in page 420,

Volume I., furnish at once both the elliptic motion and

the perturbations
: the first integration of these equations,

which is not difficult, consists of differential equations of

the first order, and determines the variations of all

the elements. The second integration, if it is expressed

by polar coordinates, would determine the longitude

and latitude, and the other elements; but it has hither-

to baffled the skill of mathematicians, who have had re-

course to various artifices to effect it. They have only

ascertained, that if even the exact integral could be ob-

tained, it would be so complicated, that in order to render

the result applicable, it should be developed into a series.

Thus, the only practicable method is to develope the re-

sult in an approximative manner, in which the quantities,

which are extremely small with respect to others, are ne-

glected ; and the integral should be also exhibited in a

series, the form of which is indicated by that of the diffe-

rential equation, and its coefficients are determined by

comparing the differential of the supposed integral with

the given differentials. Therefore, the solution of the

problem consists in expressing the integral by a conver-

gent series, which necessarily supposes that the mass or

distance, or, in short, that the attraction of one of the

bodies is inconsiderable relatively to that of the other, the

last body being termed the central, and the first the dis'

turhing body. In such a case the disturbed orbit will de-

viate very little from the laws of Kepler. It can be con-

sidered as a variable ellipse, subject to these laws, as La-

grange has proved. Indeed, if the disturbed orbit de-

viated considerably from an ellipse, which, for instance,

would be the case with the moon if she was four times far-

ther from the earth than she is, (in which case the sun

might be regarded as the central body equally as the
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eartli,) the computation of its orbit would surpass the

powers of our analysis. Fortunately the solar system is

so arranged that we may assume the elliptic motion as the

basis of each disturbed orbit.

The constant arbitrary quantities which are introduced

at each integration, are the elements of the planetary el-

lipses. They are data which cannot be determined by
theory, but solely from observation. They do not affect

the differential equations, or general laws of motion, but

solely the arbitrary modifications of the elliptic orbits,

which, for each planet that moves according to the laws of

Kepler, may be indefinitely varied. There are, in general,
six constant arbitrary quantities independent of each other.

See Book 3, Vol. I., page 185. For, as is mentioned in

page 428, each body being referred to three rectangular

coordinates, and then putting the second differentials of

the coordinates, divided by the square of the element of

the time, equal to the attractions which the body expe-
riences from the other bodies, we shall have the three

differential equations of the second order which determine

the motion of the body. As each body of the system fur-

nishes three similar equations, the entire number of these

equations is triple that of the bodies ; therefore their com-

plete integrals contain six times as many arbitrary quan-
tities as there are bodies. These constant quantities are

determined by the initial coordinates of each body, and by
the initial velocities resolved in the direction of the co-

ordinates. The bodies of the system are almost always re-

ferred to one principal one ; and this is done by subtract-

ing the differential equations of its motion resolved in the

direction of each coordinate from the corresponding diffe-

rential equations of the motions of the other bodies ; by
this means the differential equations relative to their mo-

tions about the principal body will be obtained. See

Celestial Mechanics, Vol, II. page 259. By means of

these differential equations, there have been obtained
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seven integrals relatively to the motion of a system ; three

of these refer to the motion of the centre of gravity of the

bodies of a system which are not acted on by any extra-

neous forces. The four remaining integrals, v^^hich are

furnished by the principles of the conservation of areas

and of living forces, are differentials of the Jirst order.

They are, as has been noticed in the Fourth Book, the

generalization of the law of the areas, proportional to

the times, and of the expression for the square of the velo*

city, which Newton announced in the motion of the sys-

tem of two bodies. The determination of the motion in

the case of two bodies, is reduced to the integration of

differential equations of the first order, which is easily

effected ;
but when there is a greater number of bodies the

problem becomes extremely complicated, and we are ob-

liged to have recourse to approximations.

{b) If, as is stated in the text, a body A be supposed to

describe about the sun an ellipse, the elements of which

vary by insensible gradations, and if the planet B be sup-

posed to describe an epicyle about it, as the satellites do

about their respective primaries, the motion of A would

represent the primitive orbit changed imperceptibly by
the secular inequalities, while the motion of B in the

epicyle would represent the periodic inequalities.

{c) Calling a the mean distance, nt n't the mean mo-

tions, the value ot - z= - - cos. (tut tnt-\-h),

and Z the mean motion

= ^^^'^^^'^
. sin. ihh-int) . In this case the disturb-

lx{i'n'inY
^

ing action of the planet m' on m is solely considered ; and as

it appears that i'nf^in does not vanish, the quantities a and

Z, only contain periodical inequalities, the approximation

being continued as far as the first power of the disturbing

force ; and as i i' are integral numbers (See No. 54, Ce-

lestial Mechanics,) the equation i'n'-^inzzO, cannot have
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place wlien the mean motions of m and m' are incommen-

surate, which is the case of the planets. Here the dis-

turbing action of m' on m was only considered
; but if the

disturbing actions of all the planets m' m" m"\ &c. were

taken into account, we should have, instead o^i'n'i7iz=.0^

in-\- in' i'n" Sic.^Oy which is still more improbable than

the equation i'n' iiiO, In the Supplement to the third

volume, Laplace extended this conclusion in the manner

mentioned in the text; however, what is stated here may
suffice to point out the principle of the method. It fol-

lows, consequently, from this, that the greater axes of the

orbits of the planets and their mean motions are only sub-

ject to periodical inequalities, depending on their mutual

configuration, and therefore if these are neglected, the

greater axes are invariable, and the mean motions are uni-

form. It is not, perhaps, generally known, that Mr.

Simpson made this observation respecting the inequalities

of the planets. See Miscellaneous Tracts, 179.

(c) Calling ee' e", &c. the eccentricities of the orbits of

m m' jn", &c., it is proved, in No. 57, Book 2, of the Ce-

lestial Mechanics, that

= ede.m'^a -f e'de'.m"^'^ + e"de".m"'^'^^ -f- &c. ;

now, as a a a'\ &c. have been shown to be constant, if we

integrate this expression, we shall have

e'-m'^'a -\- (/^ni"^c^+ e"\m"'^a^+ &c. = C a constant

quantity, and as the planets all revolve in the same direc-

tion, the signs of ^a, *^a\ *^ a", &c. must be the same;
therefore each of the terms of the first member of the pre-

ceding equation is positive, and consequently less than C ;

hence, if at any given epoch the eccentricities e e' e"^

&c. are very small, the constant quantity C will be very
small ; therefore each of the terms of the equations will

always remain very small ; consequently the orbits will al-

ways remain q-p \ circular. See Celestial Mechanics, p.
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332. The eccentricities of the planetary orbits are there-

fore subject to this condition, scilicet, that the sum of their

squares, multiplied respectively by their masses, and by the

square roots of their greater axes, is constantly the same.

By a similar analysis, if 0, ^\ (p", &c. represent the incli-

nations of the orbits of w, m\ m", &c. to a fixed plane, we

can obtain the equation

C = tan. ^(I>.m'^a + tan. y.w'^Z+ tan.yW^^ +
&c. ; and as, by hypothesis, the orbit is inclined at a very

small angle to the fixed plane, it may be shown that its

inclination to this plane will be always inconsiderable,

and consequently the system is always stable, for the in-

clinations, as well as for the eccentricities.

(h) It is evident, from what has been stated in page

501, Vol. L, that if 7 be the inclination of the invariable

plane to the plane 073/ and w, the longitude of its ascend-

ing node tan. y sin. w,

= ^ , but we have ^JMi;!^ = Va{\e% = the
^ c' dt

square root of the parameter. See page 374. But if the

area be referred to a fixed plane, it should be multiplied

by the cosine of its inclination ,to this plane,

/. eJmzimI^ z= cos. ^. v;^[r:=Z) zz^==
dt

^ ^ ' Vi j^ tan. '^

in like manner,

cc'dy'-^y'dx' __. Va^(l~0
^ ^ g.^^

dt Vi^tan. y'
*

,

/. neglecting quantities of the order m ??/, &c.

(l + tan.-^^)

^
1+tan. y

hence, if
/j

== tan. 0. sin. 0, q ^ tan. ^. cos. 0, we have

V 1 + tan.
'.^ -'^14- tan. >'
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c'^ -^.mp W !^^ 4-?w p V ^^

'-r + &c.,^
1 + tan.^^

^
l+tan.*^'

. . c"
/. substituting for , these values, and concinnating, we

c

may arrive at the expression given in the text for the tan-

gent of w.

(/) It is shown in No. 9 of the Celestial Mechanics, if

the central body of the system, which in this case is the

sun, be considered as unity, that h a constant quantity

= S m ^^ ,

we have also from No. 18,

S = S S w 1

-^ ^
,

. . multiplymg by
a r dt^

fJbJ
Sw, and neglecting quantities of the order m*, &c. we ob-

tain

^ = S , 2. ^. = + ^
4- + &c.

a a a a"

{k) These inequalities which have very long periods, are

expressed in this form

? = i^ ./fa kn'' dt\ sin. {i'?i'tint+ A),

which double integration gives a term

= ,!f^/^^ ",
. sin. (i'n't^int-\-k\ in which the de-

ju [in' my
nominator is very small, when nt : n't very nearly in the

ratio of i' : i ; from which there result inequalities in ?

which increase very slowly, and which, on that account,

might induce us to to suppose that the mean motions of

m and m' were not uniform ;
n n' the mean motions of Ju-

piter and Saturn, are such that 5n' = very nearly 2w, .*.

the term of the expression for ?, which depends on Sn't-^

VOL. II. E E
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2nty though of the third order, becomes extremely sen-

sible.

Besides the stability which is secured to our system by

the law of gravity varying as , it is likewise a peculi-

arity of that law, that the orbits of the heavenly bodies,

their distances, &c. are independent of their dimensio7is and

absolute motion in space ; for ifM represent the mass of a

central body, d its distance, if the dimensions are changed

in any ratio of 1 to -
, every line such as d becomes -

,n n

and every mass m becomes --
, if ^ {d) be the function of

the distance, which determines the law of attraction, so

that determines the action of ? on a body revolving

about w, the new force at the distance - will be ^
,

"
'

but the orbits being supposed to be similar, the force must

change in the ratio of 1 to - , because the lines which the
n

forces cause the bodies to describe are -H-1 to the forces.

"*

must be such a function of d, that if- be substituted in
n

place of J, the function after being multiplied by rf has

the same value as before, L e, =
<l> (d), .*. all the terms in

which n occurs must respectively vanish, this only obtains

when (t>{d) = Cd% for if
<p (d) = Ad"",

^!^
= A. ^ and
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n\ ^ (^ = At?"', w*-^, this must be = ^ (d\ = AtZ' , .*.

2= m, .*. the force with which m acts on a body at a dis-

tance = d

=
-y

= j^ . This law also gives the simplest possible

expression ; for spherical bodies made up of particles at-

tracting according to this law, attract each other accord-

ing to the same, which would not be the case if the attrac-

tion decreased according to any other law ; likewise ,

the expression for this force, is of one dimension, which

should be the expression of a force reduced to its utmost

simplicity ; and the lines described by two bodies acting

according to this law are always of the second order;

therefore, as no other law could secure the same stability,

neither could any other give the same simplicity.
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(a) In fact there are, as appears from the details of this

Chapter, two ways of determining the ratio of the mass of

a planet to that of the sun ; either from a consideration of

the inequalities and perturbations which the actions of

these bodies produce, or from knowing accurately the pe-

riods and distances of the primary planets, and of the sa-

tellites which accompany them. In the former case, we

may make use of either the periodic or secular inequali-

ties ; the latter, if accurately determined, would obviously

give the most accurate results ; but as these are as yet not

sufficiently well determined, we are obliged to make use

of those periodic inequalities, which are determined by a

great number of exact observations.

{b) If
JUL ijf represent the sum of the masses of the sun

and earth, and planet and satellite, A a the respective dis-

tances of the earth and satellite from the sun and primary,
and P p their respective periods, we have, by what is stated

in page 384<,

r^ CO
, and co as - . . ^

, t,e. -rr-^
=

-j-r; tt- ;



NOTES. 397

if?/?' be very small relatively to ???, and m very small witU

respect to M, we have --=-,. ; this would be ac-

curately true, if we had M : w 1 1 w : m' , rejecting m! and

^
. . , m a} V^ . m nf-

retammff w, we nave - =
-r-, . r- ,

?.^' ttt -inr,

yy3 pa fjl P2 y2J

= ^ . ?!1 . fi 4- ^J_ , E!_V now if 8 be the sine of the
A^ p"" \ A3 ]j^

J

angle under which 7n appears at the mean distance A from

the sun, ~ = ^^ ^ (^
"^ T3 ^) ' ^'^^^^^^^^^ ^^ *^^ ^""

and earth, if tt II denote the horizontal parallaxes of the

sun and moon,
^' =

!^3
/. ^ = ^I ^3

'

^ ^ as
'A3 n' M i?* n' M

7r3

-j-j
, hence any error in the parallax produces an error

three times as great m ^^ .^ M
{c) The duration of the several revolutions has been in-

P T
ferred by means of the formula , given in page

328 of the First Volume, corrected for the inequalities of

light and motion of the apsides, &c.

{d) The action of the satellites, and also of the ring of

Saturn, contribute to induce perturbations in the system,
I
Illy to the quantity of matter which they contain. See

page 17.

{e) Let s = the arc described in I'Vand % its versed sine,

the mean distance of the sun from earth being assumed,

__ __ s^ 1 . _ 2X3.14159 . s* __ U79565- 1, ^ - _,
l^l^5-3^225636';i "2 \^^ '
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the space described at the latitude, the square of the sine

of which = -
, relatively to r the radius of this parallel, is

_!
, and relatively to R the radius of the earth's

6369809
-^

, .
.,

. 3.'"^66477 r 3.*"^66477 .

orbit It IS = . = . sin. tt,
6369809 K 6369809

. 3."''^664<77 . 7'* ame^r^A^^ siu. TT. sin. *7r
. . . Sin. TT --.= 3.'^664;77. = g,

6369809 R2 6369809
^

is the earth's attraction reduced to the mean distance of

the sun from the earth, for the number of metres in this

distance : 6369809 : 1 1 : sin. tt ;

but = 2-, (see page 17.) and- = g,m g
' ^ "" M / j_g.

s

As the cube of the parallax is involved in this expres-
sion of the ratio of the masses, it follows that it is of the

greatest consequence to obtain this quantity, or, in fact,

the dimensions of the solar system, as accurately as pos-
sible ; we shall see, in the sequel, that the perturbations of

the moon furnish perhaps the most accurate means of ob-

taining it. See note (o) in Chapter V.

(/) Let w= 2966'' the apparent diameter of the sun as

seen from the earth, A a the respective densities of the sun

and earth, V v their respective volumes, we have

hence it appears that the density is independent of the

parallax of the sun, or of the magnitude of the solar sys-

tem. This would not be the case if the law of attraction

was different from that of nature. See last note of preced-

ing Chapter.

{g) ^f g' represent the space described by a body in a
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second, at the latitude on the earth of which the square of

the sine is -, the acceleration //, or the space which a

body would describe at the distance r from the centre of /

another planet, equal to the terrestrial radius is equal to

m.g'^ /. G the space described at a distance, = k the ra-

dius of the planet at the latitude of which the square of the

sine IS - =z , but k = , . . G = = % =

_2

M.g^ -^r- 5 w is the apparent diameter of 7W, seen from the

earth.

In the numerical expressions for the masses, volumes

and densities of the planets, the only absolute c^oxiiyi^' is the

fall of heavy bodies at the surface of the planets. For, in

the expressions for the masses and densities, their ratios to

the mass and density of the earth is all that is given. In the

Sixth Chapter there are several methods given of deter-

mining the mean density of the earth, which can be had

relatively to that of v/ater; but as the absolute density of

water, or of any substance, is not given, this itself is only

a ratio. See Book 5, p. 259, Vol. I. It is worth remark-

ing, that the density ofthe sun, according to the preceding

computation, does not differ much from that of water, and

is considerably less than the mean density of the earth.

The methods given in the text are not applicable to the

moon. For obtaining the density and quantity of matter

of this body, see Chapter VIII., note (g).
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(a) What constitutes the difficulty in investigating the

motions of the comets, arises from the eccentricities of

their orbits, and the inclinations to the ecliptic being so

considerable, that the formulae which furnished expres-

sions for the disturbed orbit of the planet, are not at all

applicable in this case ; therefore, in the present state of

our analysis, we cannot express these perturbations by

analytical formulae, which embrace, as in the case of the

planets, an indefinite number of revolutions.

The following is the method which Laplace made use

of to compute the perturbations which the comet of 1759

experienced in its successive revolutions, which he deter-

mined so exactly, that he was enabled to predict its next

return to the perihelion, to within thirteen days of its ac-

tual appearance. From a careful discussion of the obser-

vations of this comet in 1682 and 1759, the elements of

the orbit at these two epochs, on the hypothesis that it is

an ellipse, of which the greater axis answers to the dura-

tion of a revolution from 1682 to 1759, were computed.

Then, assuming the elements of 1682 as strictly accurate, he

determines, by what is established in the Ninth Book, the
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changes which have taken taken place in the elements,
and in the mean anomaly, in the three first quadrants of

the excentric anomaly, i, e, from m = 0, to m = 270.
See Volume I., page 395. In order to determine the

changes in the last 90, it is better to go back from

1759 to the extremity of this quadrant, which is the same

thing as if we fixed the origin of this angle at the peri-

helion of 1759, and then went back to 1682, making u ne*

gative, and commencing with the elements and epoch ob-

served in 1759. As the comet is nearer to the disturbing

planets, particularly to Jupiter, in the first and last quar-
ters of the ellipse, than in the second and fourth, it is ne-

cessary to have as exactly as possible its position and dis-

tance from these planets, the attractions of which may
make a change of a considerable number of degrees in the

elongation of the comet. To obtain still greater accuracy,
the changes in the elements and mean anomaly from 1682

should be computed, making use of the greater axis cor-

responding to this epoch, which is given by the preceding

approximation ; then, as far as 25 of excentric anomaly, we
can employ the elements of the new ellipse, which answer to

this anomaly; and afterwards, in this ellipse, thus rectified,

compute the perturbations from 22^ to 45. The funda-

mental ellipse is rectified in the same manner, from 90 to

180; and the perturbations up to 270 of eccentric ano-

maly are then determined. The alterations in the last

quadrant of the eccentric anomaly are then obtained

by rectifying the ellipse to 22^ 45 and 90; by this

means the perturbations of the comet from 1682 to

1759 will be given much more accurately by a second

approximation. Similar operations may be performed
from 1759 to the next perihelion ; but as the moment of

the passage through this last point is unknown, when we

arrive at 270, the ellipse is rectified for every 22^ up
to 360. These computations, when carefully performed,

ought to give, within a very few days, the instant of the

VOL. II. F F
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passage of the comet through the next perihelion ; the

only uncertainty is with respect to the mass of Uranus, the

determination of which is perhaps best determined by ob-

serving this passage.

(b) Lalande computed whether, among the sixty co-

mets whose orbits and returns had been observed and

discussed when he wrote, any of them had their nodes

near to the circumference of the earth's orbit ; and he

found, that there were only eight of the sixty whose dis-

tance from the sun when at their node, did not differ much
from that of the earth from the sun. In fact, the ques-

tion comes to this, to determine whether, among the sixty

known comets, it ever happens, that at the time their dis-

tance from the sun is equal to the distance of the earth

from the sun, they are also in their node, and consequently
in the plane of the ecliptic? for in that case it might hap-

pen, among an infinite number of revolutions, that the

earth might be at that very part of its orbit at the mo-

ment of the comet's passing through the node ; in which

case there would be necessarily a collision between the

two bodies. If even the distances were not precisely the

same, still if the difference was not very great, the mutual

attractions of the earth and comet, and also the actions of

the other planets, might cause them to be exactly equal ;

and consequently produce an impact between them ; and

we know, from experience, that very eonsiderable changes
are frequently produced in the cometary orbits. If a

comet, equal to the earth, approached three times nearer

to it than the moon, the effects which it would produce in

elevating the waters of the ocean would be such as en-

tirely to inundate the earth ; but then, when the rapid mo-
tion is taken into account, and also the inertia of the wa-

ters of the sea, it will be apparent that they would soon

be beyond the effect of the earth's attraction. From all

these circumstances taken into account, it appears there

are the following conditions to be satisfied, 1st, That the
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exact coincidence of the node with the orbit of the earth,
which is itself instantaneous, should occur at the very
time that the comet passes through it : 2dly, Granting this

coincidence, it is necessary that these two bodies of which
the orbits accurately intersect, should meet at the same
time in the very point of their intersection. The probabi-

lity of this last might be estimated in the following man-

ner, as the diameter of the earth seen from the sun is only
17'^ it does not occupy more than the 76th thousand part of

the circumference of its orbit ; therefore, on the hypothesis
that the comet traverses accurately the orbit of the earth,

there is, at the instant it is in the node, 76 thousand to one

that the earth is not in that point of its orbit where it can

be struck. Besides, the passages through the nodes are

of rare occurrence, since each revolution requires a con-

siderable time, and thus thousands of revolutions may be

performed without the nodes being accurately on the cir-

cumference of the earth's orbit.

With respect to the effect of the attraction of comets,

which, though they do not actually impinge, approach to

the earth so as to effect an elevation of its waters, Sejour

shows, that in consequence of the inertia of the waters, if

even the sea was diffused over the whole earth, it would

take 10^ 52' to produce its entire effect; but then the true

circumstances of the problem are not so favourable to

those great perturbations ; for, 1st, The comet is not al-

ways perpendicular to the same point of the earth, in con-

sequence not only of the rotatory motion of the earth, but

also on account of the very rapid motion of the comet it-

self; besides, the waters are not diffused over the entire

earth, which necessarily diminishes the effect of the earth's

attraction ; and, 3dly, there is only a very short time (less

considerably than 10'' 52') during which the comet is at

the distance at which its effect might raise the waters of

the sea. The velocity with which the comet moves at the

k
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distance of the earth from the sun is easily obtained, on

the hypothesis that the orbit is parabolic, for this velocity

is to that of the earth as ^^^2 to 1.

(c) See note (n) to Chapter Vlll. of this Volume. Ac-

cording to Cuvier, the appearances exhibited by various

strata on the lowest parts of the earth, and also on the

tops of mountains, where shells and various marine pro-

ductions have been dug up, may be adduced as decisive

proofs of a number of revolutions having taken place on

the surface of our globe. That these revolutions have

been very sudden, he infers, from the circumstance of the

carcasses of some large quadrupeds having been arrested

and preserved entire, with their skin, hair, and flesh, which

could not be the case unless they were frozen almost as

soon as they were killed. See note (w) Chapter VIII.,

where the real cause of these productions being found in

these regions is assigned.

{d ) From knowing the place of the ascending node, the

inclination of the orbit of 1770, &c., Laplace determines

the epoch at which the comet passes out from the sphere
of Jupiter's attraction ; and then, by means of these data,

he computes the elements of the relative orbit of the

comet about the sun, from which the elements of the el-

lipse at its entrance into the sphere of Jupiter's attraction

are computed ; and the value of the axis major = 13,293,

and of the perihelion distance= 5,0826, shows that the

comet is perpetually invisible. Buckardt, in like manner,
determined the effect of the action of Jupiter on the comet,
which appeared in 1779, at the moment it entered within

the sphere of its attraction ; and an investigation of its ele-

ments at that instant showed that they differed very little

from the preceding; and then, by computing the effect

of Jupiter's action, he found that the axis major became

6,388, and the perihelion distance 3,3346, at which dis-

tance the comet also remains invisible. Hence we see how
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the action of Jupiter may have rendered (Mechanique Ce-

leste, Tom. II., p. 226.) this star visible in 1770, which

was previously invisible, and render it then invisible from

the year 1779. The changes produced in the orbit of

this comet are the greatest instance of perturbation ob-

served among the bodies of our system.

{e) n n' being the mean motions of the earth and comet,

a a the greater axes of their orbits, by assuming o! the ra-

dius of the earth's orbit = to unity, we have

?iL= 104.791.7W'., e. e. as -^ = :^ ,
?^ = 104.791.?w'.

3

-
, ifT represents the duration of the comet's revolution,

T' that of the earth, and S T a variation corresponding to

Sw, we shall have T = 2 tt

=
( + 8n).{T + 8T), .-. :^=-|T,but^, = y,n JL Ti X.

,\11l = - 104.,791.w' (^/)^T ; hence substituting for T'

and m\ their numerical values, we find ^T = 2*^,046 ;

this is the quantity by which the action of the earth di-

minishes the period of the comet; and as, by No. QtS of the

First Book of Celestial Mechanics,

g^^'=-i^'^.^^^, and .-.^ = - i^ . n_

1 s 2

_ ^ t,e. as - = V _. and as - = 104'.791.
'

L-, 2.^. as - = V _^, and as = 1 04,791 .

n _? w 2
71^

- "
n^

?^ = - 104,791. w, and .-. 8T'= 104,791 mT, hence if

m^=zm, we shall have ^T'=0,11612; and as accurate ob-

servations prove that ST' does not exceed 2'', 5, it follows

that m is not the j^Vo^^ P^^^ ^^ ^'
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NOTES TO CHAPTER V.

(a) Let the distance of the sun from the earth (which for

the present we shall suppose to be constant) = a, and let
j/,

z be the distances of the moon from the earth and sun, ^

the elongation of the moon from from the sun, -^= Fzz

the force with which the earth is solicited towards the

sun, (= P>)-^ are the forces with which the moon is

sollicited to the earth and sun, (jx being the mass of the

sun relatively to the earth represented by unity,) and it is

evident, that if the sun was infinitely distant, -^ and tL

might be considered as =, and acting in parallel direc-

tions. If -^ be resolved into two forces, one in the direc-

tion of j/,
and the other in the direction of , they will be

respectively ^ = Q, ^ = R, if R= F, the relative mo-

tion of the moon about the earth would not be changed,
the only effect would be to make the sun approach the
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common centre of gravity of these two bodies. Hence it

follows, that the moon is drawn from the earth parallel to

AT, in virtue of the force u a. I ^ '-1 = 8; now as the

greatest value of zrra+j/, and its least value =a--i/, and

consequently the mean value =:a, it might seem that in

general this force cannot alter the mean distance of the

moon from the earth ; but this is not the case. See note
( g)

of this Chapter. From what precedes, it appears, therefore,

that the forces which affect the relative motion of the moon
about the earth, are P+Q in the direction of 3/ the radius

of its orbit, S in a direction parallel to a, the line connect-

ing the earth and sun ; therefore, if in a line drawn from the

place of the moon in its orbit, parallel to a, a portion be

assumed= S, and if this force be resolved into two, one in

the direction of /, and the other in the direction of a tan-

gent to the moon's orbit, we have N the whole central

force of the moon

= 4- c^ . i -J , cos. 0, and M the force in the
3/* %^ a^ z^

/^3 ^3\
direction of the tangent = fx

-

^ j-^
sin. ^ .

{b) The manner in which the perturbations of the moon
are investigated, is not essentially different from the man-

ner employed to determine those of the planets ; however,

they are not exactly the same, for though the fundamental

equations have the same form, still we cannot assume, as in

the case of the planets, that the mass of the disturbing body
is inconsiderable relatively to that of the central, for the sun

is in this case the disturbing body, whose mass is 354'790

times that of the earth ; this quantity is indeed multiplied

by the ratio of the radius of the lunar to that of the ter-

restrial orbit, i. e, by ^4 oVo 00 j
^^^^^ however, the product

is too considerable to permit us to neglect its square, which

we can do for the most part in case of the planets. Notwith-
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standing the facilities mentioned in the text, the theory
of the moon is embarrassed with peculiar difficulty, owing
in a great measure to the magnitude of its numerous in-

equalities, and also very much to the little convergence of

the series which furnish them ; hence results the necessity
of a judicious selection of ordinates, &c., insisted on in

the text. The solution of the problem of the three bodies

which is given by Laplace, is called the direct method,
in contradistinction to the more simple and indirect me-

thod which Newton followed, which is by no means so ac-

curate as the first, in which the terms of the series by
which the motions of the moon are expressed may be

computed to an indefinite extent, or at least until the

quantities omited are too small to affect observations,

whereas, in the method of Newton, we cannot go farther

than the first, or at most a few of the leading terms of

each series.

(c) Though it is difficult to determine the precise quan-

tity by which the apsides advance, it is easy to show that, in

consequence of the disturbing force of the sun, they must

'prograde ; for, as is evident from the nature of an elliptic

orbit, if a body leaves an apsis, it will arrive at the other

apsis after describing 180 ; (see notes, page 375. ;) but as

the mean disturbing force in the direction of the radius

vector tends, on the isohole, to diminish the gravitation of

the moon to the earth, (see note (/*), ) the portion of her

path described in any instant will be less deflected from

the tangent than if this disturbing force did not exist ;

therefore the actual path of the moon will be less incur-

vated than the elliptic orbit, which would be described if

the moon was influenced solely by the force of gravity, and

consequently it will not be brought to intersect the radius

vector at right angles, until it has moved over a greater

arc than 180; therefore, in consequence of the action of

the solar force, the apsides advance. The term which

Clairault proposed to add to , was one of which the
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effect could be only sensible in the motion of the apogee,
and not on the other lunar inequalities. However, when
he proceeded to fix the form of the quantity which

would make this new supposition represent the motion of

the apsides, he found it necessary to perform the compu-
tations more rigorously, and to extend his approximation
farther than before, so as to include terms which he had

previously neglected ; and when these terms were taken into

account, he found that it was not necessary to make any
correction to the Newtonian theory ; consequently it fol-

lowed that no such term as was required, or, in

other words, that a force varying inversely as the square
of the distance was sufficient to explain the motion of the

apsides. For an able and satisfactory analytical statement

of the process by which Clairault arrived at the true ex-

pression for the motion of the lunar apsides, see Wood-
house's Astronomy, Vol. IL, Chap. 13.

According to Buffon, it is more philosophical to sup-

pose that every primordial law of nature depends on

one sole function of the distance ; for if two powers of

the distance were introduced, the function expressing the

law of attraction would necessarily contain one constant

arbitrary quantity at least, so that the ratio of the at-

tractive forces at two different distances of the attracting

body would not depend solely on two different distances,

but would also involve some parameter, which would mo-

dify and complicate this ratio ; thus the attraction would

depend not only on the distance, but also on this parameter,

for the introduction of which there does not appear to be

a sufficient reason.

As the method by which Clairault determined the pre-

cise motion of the lunar apsis was analytical, it was supposed

by several mathematicians that the direct synthetic method

of Newton was inadequate to the determination of its exact

VOL II. G G
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quantity, and it is thought that Newton himself Was con-

scious of the insufficiency of his method, from the circum-

stance of his omitting, in the later editions of the Prin-

cipia, any mention of the motion of the apogee. However,

though Newton certainly did not mention the quantity of

this progress, still there can be no doubt but that his

method is fully equal to determining its exact quantity.
See Stewart's Mathematical and Philosophical Tracts.

If <[ t// represent the relative motions of the moon and

apsis, then it is easy to show that d\p, the differential of

the motion of the apsis = -i^- {da 3nd ^. cos. 2 ^),

when d a is the periodic, and d
(j)

the synodic motion of

the moon, and n : 1 the ratio of d\p to d ^,

.-.;/.
= i/^ . (d -^w. sin, 2 ) ; ^^ 270 is the mean

motion of the apsides in a periodic month. The second

term ^^-^ . n. sin. 2^, gives the libration of the ap-

sides; it evidently vanishes in syzygies and quadratures, is

a positive maximum in the octants which precede the quad-
ratures ; and a negative maximum in the octants which

precede the syzygies. This equation of the apsides pro-

duces a correction to be applied to the equation of the

centre; the argument for which depends on the distance

of the sun from the moon's apogee.

{d) In the conjunctions N, given in note (a), becomes,

(as ^ = 0, and

i, e^ as y is very small relatively to a = -^ , in op-

position N = 1 + ^I^) - 4 = 1 - ?^^ in the
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quadratures, cos. ^ = 0, and 5? = a, .*. N = + -^ 5

hence in the syzygies the central force , experiences

the greatest diminution, and in the quadratures the great-

est increase ; and it is evident that the diminution in

syzygies is twice the increase in quadratures. Conceive

a perpendicular from the place of the moon on
,
the part

of intercepted between the perpendicular and the centre

of the sun is nearly

= to ^, .*. 5f = rt
J/,

cos.
(f),

and z^ =a^ 3a ^y, cos. ^,

hence, by substituting this value of ^^ in the expression for

M, given in note (), page 324-, we obtain

lyi _ 3/xj/. sin.
<^.

cos. __ S^t z/. sin. 2
<^

N - ^
4. ..,. (l-3-cos. ^<^) 1 ^3/(1 +3 . COS. 2^)

7 + ^'^
j^ p 2^5

'

hence it appears that M attains its greatest positive value

in the octants which precede the syzygies, and its greatest

negative value at the octants which precede the quadra-

ture I and that the central force varies as --
, when 1 + 3

.COS. 2 = 0, /. e. when cos. 2 ^ =z , and /. ^ = 54<,

44.'; = 125, 16'; = 135, 16/; = 2.34, 44'; .*. in

these four points, two of which are nearly at 10 before

the octants which precede the syzygies, and two at 10 af-

ter the octants which precedes the quadratures, the cen-

tral force varies inversely at the square of the distance.

It is easy to show, that in the quadratures the force va-

ries in a ratio less than that of the inverse square of the

distance, for in that case N = ^-XiiiL
, and if 7/ differs
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very little from
j/,

N' being the central force at the di

tance y, then

1+a . 1+a'a a' = ^^-, ^^:^ respectively, N : N'
a^ a^

^ '^' y y*
'

# now, as
j/
= 60 radii of the earth, q.jy all powers of

j/, whe-

ther integral or fractional, whose index is positive, are

necessarily greater than unity; therefore we may assume

1+^=3/^ 1 4- a' = y^ , y I being a small positive frac-

tion, and consequently

N:N'::lL:i^^-:_^:_^:: 1

, . . as is

y y y-^ y^*-^ ,

y y

a positive fraction near to the quadratures, the force va-

ries in a less ratio than the square of the distance; in like

manner, at the syzygies

^ . y... a3-2,uy . ^3_2^y3 ,.i_g ^ i_p/
y y- y

'

y*

: : ^-_ : :L_ : : - _ : .

,^ , when i3 = a very small

fraction, .*. as 1+ a z=y , and 1 /3 =y^i we have ^.p

)3
= 2a .*. X = 27 ,

/. if N =z ^ ,
7w is > than 2, and

^ 2iz:2(2 7t), therefore in the syzygies the central force

varies in a greater ratio than the inverse square of the dis-

tance ; N is a maximum, and = ^ in the syzy-

gies; but its actual value depends on the situation of the

apsides ; as N : N' near to the syzygies are as

^
^^ :

~
,^^ , which would be the inverse 1 1 of

the squares of the distances, if the numerators were =, .'.
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it will be the more deranged, according as 3/ y' differ more

from each other ; but the difference is evidently a maxi-

mum, when the line of apsides coincides with that of the

syzygies; therefore the ellipse suffers the greatest de-

rangement in this case ;
from the first and last quadratures

to the syzygies, M increases the velocity of the moon,
and from the syzygies to quadrature, M retards by the

same quantity the velocity of the moon
;
hence the velo-

city is a maximum in the syzygies, and a minimum in the

quadratures, and at its mean value in the octants, since the

velocity is a maximum, and the central force a minimum in

the syzygies, the moon in these points deviates less from

the tangent; therefore the moon approaches the earth least

in syzygies, and most in quadratures; and as the orbit is a

curve returning into itself, it follows that, as the moon
commences to recede from the earth at the syzygies, and

to approach the earth in the quadratures, that the dis-

tance of the moon from the earth in an orbit which, with-

out the disturbing force action of the sun, would be circu-

lar, is greatest in quadratures and least in syzygies. If

the orbit be an ellipse, i. e, if the force varied as
, then

if, in going from apogee to perigee, the force increases

in a greater ratio (see page 341), the true orbit will fall

within the ellipse, and the perigean distance will be less

than for the ellipse, consequently the eccentricity will in-

crease so much the more as the axis major diminishes ;

for a like reason, if the moon departs from the perigee,

and the force decreases in a greater -H- than the in-

verse square of the distance, the moon, when in the apogee,
will have receded farther from the earth than if the orbit

described was an ellipse ; therefore, in the other half of

the orbit the eccentricity will be also increased, and the

contrary to this will obtain if the force varies in a less ratio

than the inverse square of the distance. Now, as the
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force varies in a greater or less ratio than , according

as the apsides coincide with the syzygies or the quadrature,
it follows that the eccentricity is a maximum in the for-

mer, and a minimum in the latter case ;
2. e, when the

greatest equation of the centre coincides with the quadra-

tures the eccentricity is a maximum, when this equation
occurs near to the syzygies this eccentricity is a minimum,
and generally in the progress of the apsides from the

syzygies to quadratures the eccentricity diminishes, and

from quadratures to syzygies the eccentricity increases.

This is the explanation of the phenomenon known by the

name of evection. See note {t) Chapter IV., Vol. I.; and

Princip. Math. Prop. 66.y Cor. 9.

(e) In order to compute the mean quantity of the force

^^. (1 3 cos. *^), which is continually directed to or

from the centre of the earth, if we multiply it by d
tf),

the

differential of the arc of elongation, we have -^. {d(j>

3d^ cos. 2^), the integral of which

=
J- ( ^ -}-

- . sin.
(j).

COS.
(J> ] , which, when extend-

ed to the whole orbit, i. e, when ^ is four right angles, be-

comes ^^ X , which therefore expresses the sum

of the forces for an entire revolution j and .*. when divided

by TT gives the mean force ^ , which being negative,

shows that the mean effect of the solar force is to diminish

the gravitation of the moon to the earth.

Calling f T the periods of the earth and moon, F the

gravity of the moon, we have
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2/; if 7)1 represent the mean anomalistic motion of the

sun, so that Sa=m^t, we shall have 8*0

rz . (1 + -e^) (cos. I -^ - e cos. 21) ,

179 V 2 / I797n \ 2 /

. . /S^d> = fe^dt ( sm. I + -e, sin. 2/ ).^ ^
179 358-^ 179 w \ 4 /

The first term of this expression is included under the

mean motion of the moon, namely fii ; in fact, it is the

mean diminution of the lunar motion, constituting, as ap-

pears, the 179th part of the primitive motion or ^^^^
; the

I- / y

second term would also belong to the mean motion, if e

was constant; but as the eccentricity of the earth is

changed in consequence of the action of the planets, there

results from it a seailar equation of the mean motion of

3
the moon = fe^St: the third term gives the an-

358-^
^

7iual equation of the moon ; and if their values 13,37, and

be substituted for and e, we shall obtain the value
60 711

of the greatest equation given in Chapter IV., Vol. I.,

note [u) ; and it is evident, that is, if the same form, only

affected with an opposite sign, as the equation of the centre

of the sun. See note {u\ Chapter IV., Vol. L

(Ji)
If the mean distance =1, ^ equal -; , and A, A+

are the respective angular velocities, we have

A : (A+ ) : 1 : fl -j- V :: 1 : 1 + , f-iV being^ ^ '
V 60/ 30 \60/

"

A
neglected, .*. aj = ; in like manner the mean value of

the diminution of the mean motion n:
, and as this

179
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varies inversely as the cube of the distance, at perigee it is

= ^I^ . {l + e)~^, .'. neglecting e^ and e^, and substituting

its numerical value for e, the increase of the diminution

= =
, .'. as the arguments of the equation

20.l7y 3580
^ ^

of the centre and of the annual equation are the same, they

are as their coefficients, /. e. as to
30 3580

{i) If the mean motion of the moon, as determined by
observations made . at considerable intervals from each

other, varies, its correction a, as it depends on the time,

must be given by a series of the form at-{-bt^-\'Ct^-{- , &c.;
but all terms of the form at, being already included in the

mean motion, we shall have azr^/^+ c/^-f* j &c.
; therefore

the secular equation, or rather the most considerable of its

terms is proportional to the square of the time, which is

indeed otherwise evident from the following consideration,

the force, whatever it be, which accelerates the motion of

the moon, must be considered as constant, otherwise it

could not produce a real secular equation ; therefore dv,

the increment of velocity communicated at each instant,

may be considered as constant; hence dv= ydt, and

v:=ic-{-yt, /. if 5 be the mean motion in the time t, we shall

have SszzvSt=:cSt+ yt^t, and s= ct -\-
1

, cv being the

mean motion, therefore the acceleration or the secular

equation is proportional to the square of the time, hence

appears the reason of what is stated in the text, page 65^

that as the increase takes place successively, and propor-

tionally to the time, the effect on the moon's motion is

half what it would be, if, during the entire century it

VOL. IT. H H
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was the same as at the end, and also the reason why the se-

cular equation may be considered as increasing propor-

tionally to the square of the time, as long as the dimi-

nution of the square of the eccentricity of the earth's orbit,

is supposed to be proportional to the time.

IfX be the mean motion of the moon between two ob-

servations, at the interval of /i years, then and =
71 n

X will be the annual and secular motions. If y be the

number of seconds by which the mean motion of the moon
is greater than x in the following century, and less than x
in the preceding, the correct mean motion in the following

century will x-{-y, and in m centuries = 7n^-\-m^i/ ; hence,

if C be the mean longitude at the commencement of the

epoch, the mean longitude m centuries after the epoch
= C+ mX'\-m^y^ and for m centuries befoi^e the epoch the

mean longitude = C mx-\-rr^yy for in the last case m
must be taken negatively, and

( ?w)*= m* ; hence in both

cases the secular equation is additive,

(k) The second term of the value of f^''6 = .^ ^ 358

fe*^t = - . / St, hence, as has been remarked al-

ready in page 416, since e is variable, this expression will

not remain always the same. If be value of e at the com-

mencement of the present century, then the value of e at

any subsequent time ^ = -\-t.^ -j

"

^_L and e* =
vt 1 .2 o^

+ 2t
e.^A-t^l + .-^), by means of this equation

we can deduce the value of -^ in terms of and -=^, which
ct^ ct

are respectively given, ^ being the variation of the ec-
o t
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centricity, and .*. known; consequently, by substituting
their numerical values, we obtain

e~= e''-2LO,"U67\t,.^0."0006027, and :.^,fe^Sl =
358 -^

i. e. substituting for n its value, and neglecting the first

term of this expression, which is included under the mean

motion, we have the part of the mean motion which de-

pends on the variation of the eccentricity

= /'.MO,"18+ 2f.^O,"018538,

hence appears the reason why, as stated in page 66, he

adds a term proportional to the cube of the time.

{I)
As fe^St is affected with a negative sign, it is

evident that the motion will be accelerated when e^, or the

eccentricity of the earth's orbit is diminished, and that it

will be retarded when the quantity to be subtracted in-

creases with the increase of e^, or the eccentricity of the

earth's orbit.

(m) In reference to what is stated in page 67, it may be

observed, that after a most complicated investigation, and

by substituting their numerical values, the secular equa-

tion of the perigee comes out = to 3,03. -m^fe.^nSt, and

has a contrary sign to the secular equation of the longi-

tude ; the secular equation of the motion of the nodes

comes out = to 0,735452. - m* fe^ n.^t, and as in the

same circumstances, the secular equation of the mean mo-

tion = -m^yfehi^t; it follows that when the two first
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are accelerated, the last is retarded, and their ratio in

numbers is that given in the text.

(n) In consequence of the attraction of the terrestrial

spheroid, a nutation arises in the orbit of the moon,

corresponding to that which the attraction of the moon

produces in our equator, so that one of these nutations

may be shown to be the reaction of the other; (see

Chapter XIII. notes;) as the extent of this oscillation

or nutation depends on the compression of the earth, it

can throw considerable light on this important element.

The existence of this inequality in the latitude of the

moon, was indicated by observations long before the

law which it observed was discovered. It can be per-

fectly represented by the expression S'^ sin. L, if the

compression of the earth was assumed = -
, whereas,

if the compression was that which resulted from the hypo-

thesis of homogeneity, namely, , (see Chapter VIII.,

page 108,) the expression of this inequality would be

13.5. sin. L. The manner in which the quantity of the

compression is determined is as follows : the theoretic ex-

pression for this inequality, which involves the compres-
sion of the earth, is compared with the value furnished

from a careful discussion of a number of observations, and

then substituting numerical values for sin. L, the value of

the compression is thence deduced. In like manner, the

inequality of the motion of the moon in longitude, which

depends on the compression of the earth, is = 6^,8 cos. L
(L expressing, as before, the longitude of the ascending

node) on the hypothesis of a compression = ^}^, which
is exactly conformable to observation; whereas, on the

hypothesis of homogeneity, this inequality would be =
1 1 /'5. sin. L, contrary to observation. There is, accord-

ing to theory, a certain given relation between the co-
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efficient of the lunar inequality in longitude and latitude,

from which the value of the coefficient of the inequality

in lonoritude may be determined ; and on the supposition

that the coefficient of that in latitude is 8", namely, that

which results from the hypothesis of a compression of the

earth = ^^^, the coefficient of the inequality in longitude

comes out 6j84?5, very nearly that which is given by obser-

vation. A phenomenon analogous to the preceding, and

arising from the same cause, is produced in the orbit of

Jupiter's satellites. See Chapter VI. Besides these in-

equalities depending on the compression of the earth, La-

place also investigated whether the difference which is

known to exist in the quantity of land distributed over the

northern and southern hemispheres, had any sensible in-

fluence
;
but a careful discussion showed that this effect

was altogether inappreciable.

{())
In an inequality depending on the true distance of

the moon from the sun, which Laplace terms the parallactic

inequality, (see Mechanique Celest. Tom. 7., page 281,) the

argument is v mv ; it depends on the ratio of the moon's

distance from the earth to the sun's distance from the

same, i. e. on the ratio of their horizontal parallaxes, which,

as that of the moon is determined in the Second Chapter,
it is easy to find

;
the result ought to be considered as ex-

tremely accurate, inasmuch as the approximation is ex-

tended to quantities of the fifth order inclusively. The

only point in the theory of the moon's motion which re-

mains to be cleared up after the delicate investigations of

Messrs. Plana, &c. and Damoiseau, is a small change
which astronomers have thought they discovered in the

mean motion of the moon. However, as the existence of

this change, though extremely probable, is not incon-

trovertably established, a greater number of accurate ob-

servations, made in the most favourable circumstances, is

required before there will be occasion to ascertain its
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cause. The imperfect manner in which accurate obser-

vations have been made and transmitted to us, may also

explain why we have not been hitherto able to appreciate
the changes produced in the motions of the planets and

satellites, in consequence of the attraction of comets, and

also of the impact of meteoric stones, which are observed

sometimes to impinge on our earth, and which appear to

come from the depths of celestial space. The only thing
which can throw light on this subject is a series of accu-

rate observations.

{p) Laplace, in the Sixth Chapter of the Second Part

of his Tenth Book, investigates in what cases we can ri-

gorously obtain the motion of a system of bodies, which

mutually attract each ; and as, in order that this may be

secured, it is necessary that the resultants of the forces by
which each of the bodies of the system is actuated should

pass through their common centre of gravity, and be

proportional to the respective distances of the bodies from

that point, he shows, that if the position of the bodies of

the system be such, that the lines connecting them consti-

tutes a polygon, existing in the same plane, which remains

always similar to that formed by joining the bodies at the

commencement of their motion, then (the law of attraction

being proportional to any power of the distance between the

bodies) the resultants of the forces by which the bodies are

actuated must pass always through the common centre of

gravity; but it is evident that these resultants, at the com-

mencement, being supposed to pass through the centre of

gravity, and to be proportional to the distances from that

centre, they will always remain so, if, on the several bodies

of the system, velocities be impressed in directions equally

inclined to those distances, and respectively proportional

to them ; then the polygons formed at each instant by

lines connecting the bodies will be airways in the same

plane, and similar, and the curves which the bodies will

describe about their common centre, and about each other,
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will be similar to each other, and the}' will be of the same

species with that which a body, actuated by the same law

of force, would describe about a fixed point. See Princip.

Math., Sect. 11, Prop. 58. Let the preceding conclu-

sions be applied to the case of three bodies, m m' m'', act-

ing on each other. If 5 be the distance between m and m',

s' the distance of w? from m'\ and 5'' the distance between

vV and m", it is easy to perceive that the force by which

m is actuated parallel to the axis of x^ is

m' ill)
(a:-a;') + m i$. . (.v^x") ,

(the attractive force being proportional to (s). ) and

parallel to the axis of3/ will be

s

similar expressions may be obtained for the forces parallel

to these axis, acting on w' and m" ; now, as by hypothesis,

the resultant of the two forces parallel to the axes of x and

j/, which act on m, passes through the centre of gravity,

we have

rLS.{a;-x')}-m"i^.{x-x")
s s'

s s

therefore the force which solicits m towards the centre of

i^.(>/-^)+m".ii^.^!/-t,"]

gravity is K. ^x^-{-i^^ ;
in like manner, it might be shown,

that the force soliciting m' towards this point is K^^ x^^-{-^^^j

and as, by hypothesis, the forces are as the distances,

K = K'
; therefore, for the forces acting on m m' m" parallel

to the axis of ^, we have the three following equations:

s i ,

m, tifl .(.t'~^)+ m". iSfi. {x'--'x")= Kx' (a)
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s s

Similar equations may be obtained for the forces parallel

to
t/, changing x x' x" into

3/, y,y , &c.

Multiplying the preceding equations by 7n m' m" respec-

tively, and then adding them together, we obtain

Oz:imx-\-m'x' -{m"x" ;

which shows that the point to which the forces are directed

must be the centre of gravity; by combining this equation

with the first of the equations (), we obtain

.xy which, if 5=s', gives K=(w+7w'-h2"). ^^ , the same

value of K will be obtained, if we suppose s=-s", /. if 5=
s'zzs"

y
this expression satisfies the equations (a), and the

corresponding ones in yy'y", .'.if on this supposition r r' r"

represent the respective distances of m, m', w", from the

centre of gravity of the system, the forces which solicit w,

w', m", towards this point are Kr, K/, ILr" ; and if, on these

bodies, velocities be impressed proportional to ?-, r\ r'^,

respectively, and in directions equally inclined to r r' r", we

will have, during the motion szzs^= s", i. e. the three

bodies will always exist in the vertices of an equilateral

triangle formed by connecting them, and they will de-

scribe similar curves about each other, and about their

common centre of gravity; Princip. Math. Prop, 52, Sect.

11. He next proceeds to determine the expression for

K in a function of r, which will evidently determine the

law of force Kr in a function of r. For this purpose, let

the origin of the coordinates be any point different from

X, Y, the centre of gravity ; as, for instance, the centre

of m, then xy are = to cypher, X* +Y*=r*= generally
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JT ^= ;
and 5*= 5'*, i. e. {x' xY -f- ( y' yf z=

/. as K=(m+?w^+?") ^-^
> we have

hence, as we have the expression for the law of force, we

can, by what is stated in notes page 373, determine the

nature of the curve described, when the form of ^ is

given ; if ^ (5) = , then the force which solicits the

body m towards the centre of gravity

7k'* 4-mV 4- m"*l 2
. , , , ,. . 1 .1= ; ; J- jp, ^ I i

- the three bodies will describe

similar conic sections about the centre of gravity of the

system, the lines connecting them. constituting always an

equilateral triangle, the sides of which continually vary,

and become infinite, if the section be a parabola or hy-

perbola, which circumstance depends on the initial velo-

city. But if 5 s' 5'^ are not =, then we have

Kx. As a similar equation obtains between
7/
and y, we

have X : x'Wy : y\ .*. mm' exist in the same right line

with the centre of gravity ; therefore m m' m" are in the

same right line. Suppose that this right line is the axis of

VOL. II. I I
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the abscissae, and that the bodies are ranged in the order

m m' m'', their common centre being between m and m\
let x' = ixx, x" = Vx, then if ^ (s)=5", as 5=
(14-/Lc).a;, 5'=(1+V)j;, from this and the equations () we

obtain K=^-'. [w'(l-f-)u)"+w"(l+ V)"], ^[7;^'(l4-^) +
w" (I + V)"] = m{l + fiY-vi\ (V - ^Y; let V-^ 1=

(I + /u) . sf, then 1 + V=(l + ft). (1 +:2;); consequently,

li[[mf-^vi"), {l-\-zY]
z=i m mV, and as the equation

mx+ wiV 4- m".r"= , gives m m'ju ttz"V = ;

//-.

therefore we have

{mm"^), {m'-\-m"{\ +^)"=(w'+m").(l +5?)} . (m' mV);
when 11 =. 2, this equation becomes

7n"
{ (1+^)5-^3] =0,

which is of the fifth degree, therefore it has one real root,

which is necessarily positive, for when 2?=0, the first

member of this equation is negative, and when 2;= co, this

first member is positive. If m be the sun, m! the earth,

nnd m" the moon, then, as % and m\ m" are very small

quantities relatively to m, we have Sm %^zzm^-\-?n" very

nearly, and = v > which, by substituting their
OlYh

values, gives % = yi^ q.'p ;
/. if, as is stated in the text,

the earth and moon were placed in the same right line, at

distances from the sun proportional to 1 and 1 + y^o' ^"^

if velocities were impressed on these bodies in parallel

directions, and proportional to their distances from the

sun, the moon would be always in opposition, and these

two luminaries would succeed each other alternately ; and

as the extent of the earth's shadow ranges from 213 to

220 semidiameters of the earth, and therefore is much less

than the y^^th part of the earth's distance from the siin,
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the moon would be never eclipsed, consequently, during
the night, its light would succeed that of the sun ; it is

assumed here that the sole use of the moon was to afford

light in the absence of the sun, but though this may be one

use, there are others equally important, such as to elevate

the waters of the ocean and air, and thus produce a con-

tinual circulation of the sea and of the atmosphere, &c.

This opinion of the Arcadians, mentioned in page 80,

that their ancestors inhabited the earth before the moon
was a satellite, has been transmitted to us by Ovid and

other authors. In his Fasti, speaking of Arcadia, Ovid

has these remarkable words :

*' Orta prior Luna, de se si creditur ipsi

A raagno Tellus Arcade noraen habet.

Ante jovem genii urn terras Iiabiiisse feruntur

Arcades et Lana gens prior ilia fait."

And in Apollonius Rhodius we have

apKadsQ 01 icat irpoffOi ffeXtjvatijg vdeoPTai.

It was in consequence of these authorities, combined

with the appearance which the moon presents through a

telescope, and its almost total absence of atmosphere, that

some philosophers fancied they perceived on the surface

of the moon, vestiges of a body burned up by the sun,

and this led them to think that the moon might one time

or other have been a comet, which passing very near the

earth after the perihelion, was forced by the attraction of

the earth to become its satellite. However, it is easy to

show, by means of what has been established in notes to

Chapter T. of this Volume, that no comet moving in a

parabolic or in a hyperbolic orbit can become a satellite

of the earth. If a comet, moving in an elliptic orbit be-

comes a satellite, it must, at the moment it enters within

the sphere of the earth's attraction, be at right angles to the

extremity of the upper apsis of the ellipse which the comet
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describes about the sun ; for if, instead of being perpendi-

cular, it made an acute angle with it, it is evident, that

however small the velocity of the comet at this point, the

comet cannot remain always within the sphere of the

earth's attraction ; for when, by the nature of conic sec-

tions, the comet arrives at a distance from the earth equal

to that which it had when it commenced to be subject to

the action of the earth, the radius vector of the comet is

situated relatively to the axis of the conic section, in a

manner similar to the radius vector by which the comet

entered within the sphere of attraction, and the tangential

velocities will be equal ; but in the first case the direction of

the motion makes an acute, and in the second case an ob-

tuse angle with the radius vector, and therefore will cause

the comet to move out of the sphere ofthe earth's attraction ;

consequently the comet must, at the time of its entrance

within the sphere of the earth^s attraction, be at its highest

apsid ; hence it appears how extremely improbable it is,

that a comet, moving in an elliptic orbit, can ever become

a satellite of the earth ; but with respect to our moon the

improbability is still greater, as it is considerably within the

sphere of the earth's attraction ; besides, it appears to be

firmly connected with the earth : its motions, rigorously

computed and estimated, by going back to the remotest

periods, do not present any circumstances from which we
can infer that it could be in a condition to cease to revolve

about the earth.

Knowing the quantity of matter and magnitude of the

earth and moon, it is easy to estimate the point of equal
attraction. If these two bodies were at rest, a body pro-

jected from the surface of the moon, with the velocity of

12,000 feet in a second, would be carried beyond the point
of equal attraction, if the moon's mass was ^^^y^, which was

Newton's estimation; but this estimation is now admitted

to be too great : see notes to Chapter X., where its true

value yV is assigned, therefore a force a little more than
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lialf of the above power would be sufficient to produce that

effect, i, e, a force capable of projecting a body with a ve-

locity a little more than a mile and a half in a second ;

but cannon balls have been propelled with a velocity of

2500 per second, which is upwards of half a mile ; and in

the experiments of Perkins, the balls were driven by the

force of steam with a still greater velocity; therefore a pro-

jectile force, causing a velocity three times greater than

that with which a cannon ball is projected, would move a

body beyond the point of equal attraction, and cause it to

reach the earth ; and there can be no doubt but a force

equal to that is exerted by volcanoes on the earth, and
also by the steam produced by subterraneous heat, for

huge masses of rock, many times larger than cannon

balls, are thrown much higher ; and a like cause of mo-

tion exists in all probability in the moon, as well as in

the earth, and that it is even in a superior degree, is

probable from the circumstance that there is no sen-

sible atmosphere to resist or retard the motion of bodies,

as at the surface of the earth ; and besides, the appear-
ances observed in the moon indicate traces of more

powerful and extensive volcanoes than on the surface of the

earth. After the body passes the point of equal attraction,

the path which it describes in approaching the earth must

in a great measure depend, as is stated in the text, on the

direction of the primitive impulsion ; for as, besides this im-

pulsion, it also participates in the absolute motion of the

moon, it must, when it reaches the point of equal attraction,

be actuated by the tangential velocity ofthe moon, combined

with the force drawing it to the centre of the earth ; these

two would cause it to describe an ellipse about the earth,

and the sun*s action would disturb its motion in the same

manner as the moon's motion is disturbed ; when the

body reaches our atmosphere it has not lost much of its

heat, inasmuch as the space which it traversed being com-

paratively a vacuum, it enters the upper regions of the at-
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mosphere with little diminution of its original tempera-

ture, from which circumstance, combined with its very

great velocity, which is then more than ten times greater

than that of a cannon ball, and passing through a part of

the atmosphere consisting chiefly of inflammable gas, (see

notes, page 373, Volume I.,) it is easy to conceive how
the body will be suddenly ignited.

These stones consist always of the same ingredients,

namely, silex, magnesia, sulphur, iron in a metallic state,

nickel, and a small quantity of chromium. As these are

invariably the constituents of these stones, it has been

justly concluded that they have a common origin^ be-

sides, iron is never found in a metallic state in ter-

restrial bodies ; even what is found in volcanic eruptions
is always oxidized ; nickel is likewise very seldom met

with, and never on the surface of the earth
; and chro-

mium is rarer still. At the period when they burst forth,

they are a considerable height about the earth's surface,

as appears from estimating their parallaxes, by means of

simultaneous observations, made at the instant of their

explosion. Beside the threefold opinion of their origin,

given in the text, namely, a lunar, a volcanic, and atmo-

spheric, some philosophers have supposed that they were

small planets, or fragments of planets, like those lately dis-

coved, revolving in space, and which, meeting with the

earth's atmosphere, are ignited by the friction which they

experience in the earth's atmosphere.
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As Jupiter and his satellites are considerably more dis-

tant than the earth from the sun, and as the mass of Jupi-
ter is much greater than that of the earth, the part of the

sun's force which disturbs the motions of the satellites is

much less than the corresponding part of the sun's force

in case of the earth ; therefore the principal cause of the

inequalities in the motions of the satellites arises from their

mutual attraction.

(a) It is impossible to give a perfect explanation of the dif-

ferent inequalities of these satellites without discussing the

theory of these bodies more in detail than the limits which

these notes admit of. The reader will find them satisfac-

torily accounted for in the Sixth Chapter of the Second

Book, and in the Eighth Book of the Celestial Mechanics.

m m' m" m'" being the masses of the satellites, in the or-

der of their distances from the sun, n v! n" w% &c. their

respective mean motions, "r/r", &c. their radii vectores,

and V v' v" their longitudes, then, as has been observed in

notes, page 405 of the First Volume, since the mean mo-
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tions of the three first satellites constitute very nearly a

duplicate progression, 2n', w' 2"?i must be very small

fractions of w, and their difference ?i 2w' (' 2''), or

nS7i'-{-2n'\ is incomparably less than either of them.

It is easy to prove that the action of w' on m produces in

the radius vector r, and the longitude v, a very sensible in-

equality, depending on the argument 2{n'tnt-{-e't);
the terms relative to this inequality have for a divisor

which, in consequence of the smallness of the factor n^ii',

is very sensible. It appears also, from a consideration of

the same expressions, that the action of m on m' produces

in / and v' an inequality depending on the argument

n'tnt+ E^e,

which, as its divisor is

(w' w)* 71% or w(/i 2w'),

is also extremely sensible. In like manner, the action of

m" on ?w', and vice versa, of m' on m'', produces respec-

tively, in their respective longitudes and radii vectores, in-

equalities depending on the arguments 2[n"t n't~\-i" e^),

and 7i'^i 'n!t-\-i!' e' ; (see as above ;) therefore the value of

lv'z^w!'W,^\n,%n"t^n't\^'-^E')\mYl, sin. {vH-^nt^E'z).

{b) By hypothesis we have 27i"t-\-2i!' 2n't2E' = 7r-{-

n't -~nt+ee, .'. m" F\ sin. 2 (n't n't+ e" /) =
m"YJ' sin. {n't nt-\-E'i), consequently the value of

^v' becomes (mW m"!^") sin. (n't w^+ f' )
iii which

we see how the two inequalities are made to coalesce into

one.

The manner in which it may be shown that the mutual

action of the satellites rendered this proportion, which

was originally only approximate, accurately true, is as

follows: assuming Vi^tz/ 3w'/+ 2w'7+ Se'+^f'', it is

easy to prove that - - = Qn.^ sin. V; C being a constant
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coefficient depending on the masses of m m' m'\ n being
likewise supposed constant, and by integrating we have

a^ = + , === ; now, as
(

-
)
=

Vc-.2C/2^ COS. V \dtJ

(7t^3n'+2n'')\ c 2 Cn.'' cos. V= (^)*=

{?i S?i'+2n'')^ ; and if this last quantity be greater than

+ 2Cw*.(l COS. V), c must be positive and > than 2C^^%
in which case, as the radical can never vanish, V, or its

equivalent, should increase continually, and become =
Stt, 47r, 67r, &c. ; but this is not the case, for let w=7r V,
and we have

dt=: -^
; and when c is not less than 2Cn^,

yc+2Cn\cos, w

"^c-i^^CrFcosTu) is > than ^2Cn^ from w= tow = -J ;

therefore t the time in which the angle w passes from

to a right angle, is Z than ^=:\ and this last angle,
2rW2Q

by substituting for C and n comes out Z than two years ;

but as w has always remained insensible, this last case,

namely that of c, not less than 2Cw*, is not the case of Ju-

piter and his satellites. If c is Z than + 2C*, V will

oscillate about a mean state either of two right angles,

if C be positive, in which case *^c 2Q7f cos. V becomes

imaginary, when V=0, or 27r, 47r, &c., /. w can never be-

come equal to cypher, its value is therefore periodic, os-

cillating about a mean state= 7r. If, in the same circum-

stances, C be negative, then the radical is imaginary,

when V= 7r, Stt, Stt, therefore w can never reach tt, and

its mean value is cypher. Now all observations of Jupiter

and its satellites give a positive value to C; therefore

in the case of Jupiter, V oscillates about a mean state

= TT. From the equation

VOL. II. K K
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we deduce, by putting the parts which are not periodic

separately = to cypher, nl-^S?i't-\-2n"t-{-ESB -\-2e" = 7r ,

/. n 3;i'+2;i''=0; therefore the mean motion of the first

satellite + twice that of the third, minus three times that of

the third = 0, and c Se'-f-Sc" = ^r, i.e, the mean longitude

of the first + twice that of the third, minus three times

that of the second = tt; and since according to observa-

tion the angle w in the equation

dt = i^ must be always very small> we
'V^c-i-^Cw'cos. w

can assume cos. <5 = 1
, and the preceding equa-

tidn will give by integrating w=X. sin. [nf^ Q,\'^\ where

X and y are two constant arbitrary quantities.

(c) As three differential equations of the second order are

necessary to determine the motion of each body of the

system, and as the integration of each equation involves

two constant arbitrary quantities, there are in the deter-

mination of the motion of each body six constant arbi-

traries ; therefore, in general, as is stated in the text, the

number of arbitrary quantities is sextuple of the number

of bodies ; consequently, in the case of the four satellites

of Jupiter, there are twenty-four arbitrary quantities,

which are reduced to twenty-two, in consequence of the

two relations between the epochs of mean longitudes and

also the mean motions of the three first satellites, which is

established by the two preceding theorems ; but these two

are supplied by the new arbitraries, which the expression

of w contains.

If the satellites were affected either by a secular inequa-

lity analogous to that of the moon, as stated in the text, Oj.

by one arising from the resistance of a medium, it would

be necessary to add to - a quantity of the form ^ ,
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which can only become sensible by integrations; therefore

ifV=7r w, when di is very small, the differential equa-

tion in V will become of the form

as the period of the angle nt ^C embraces but five years^

while the quantities contained in are either constant,
at''

or extend to several centuries, we shall obtain, very nearly,

by integrating,

ii =X.si.(.Vc+,)_^,,
therefore the value of w will be always very small, and the

secular equations of the mean motions of the three first

satellites will be so coordinated by their mutual action, that

the secular equation of the first plus twice that of the

third, is equal to three times that of the second.

(d) It has been already stated, in notes, page 405, that

from the circumstance of the length of the year not having
been altered 2",8 by the action of the comet of 1770, its

mass is not the j^jVu^^ P^^^ ^^ ^^^^ ^^ ^^^ earth ; and if^ as

is stated in the text, in the lapse of ages these bodies have

more than once impinged on the satellites, the effect

would be particularly perceptible in a real libration of

these satellites, and also of the moon ; for, as will be

stated hereafter, in notes to Chapter XIV., it is by no

means probable that the equality which obtains between

the motion of rotation and revolution subsisted at the

very origin of the planetary system.

{e) The compression of Jupiter has also a considerabhe

influence on the motion of the apsides of the satellites, as

well as on the motion of the nodes ; and it is from the ac-

curacy with which these quantities have been determined,

that we are able to deduce such an exact expression for

the compression of Jupiter.
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The masses of the satellites, and the value of the com-

pression, are determined relatively to the mass and equa-
torial diameter of Jupiter. In order to determine these

five unknown quantities, it is necessary to have five data

furnished by observation. Those are selected in which

the quantity required to be known has most influence.

As the ratio of Jupiter's mass to the earth's is given in

page 42, we can have the mass of the satellites relatively

to that of the earth, and by substituting their numerical

values, it is found that the mass of the third satellite, which

is nearly double of the fourth, is also double of the moon's

mass.

(f) Three differential equations of the second order

are necessary to determine the circumstances of the mo-
tions of each satellite ; and for the integrations of each of

them, two constant arbitrary quantities are introduced;

this gives twenty-four constant arbitrary quantities, in ad-

dition to which, the masses of the four satellites, the com-

pression of Jupiter, the inclination of his equator, and the

position of his nodes, furnish seven more, which make

thirty-one in all. See note (c)

(g) See notes to Chapter II., Book 2., Volume I.

{h) Assuming that the velocity of the light which comes

from the stars was such as is given from a comparison
of the eclipses of Jupiter's satellites, the quantity of the

aberration comes out exactly equal to what is deduced

from actual observation, which shows that the velocity of

the light which comes from the stars is equal to that which

is reflected from Jupiter's satellites. The uniformity of

the velocity through the diameter of the earth's orbit

might be evinced by taking into account the effect of the

ellipticity of the orbit of the earth. It also follows,

that the velocity of a ray of light which emanates from

stars of different magnitudes, and at different distances, is

uniform and the same through the diameter of the earth's

orbit.
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(i) It is easy to show that the velocities of pulses which

are propagated in any elastic medium, are in the direct

subduplicate ratio of F the elasticity, and the inverse

subduplicate ratio of d the density of the medium; con-

sequently when F varies as d, the velocity must be uni-

form. (See Princip. Math. Prop. 4-8., Book 2.) It is to be

observed here, that on the hypothesis of the materiality

of light, it is supposed that light is emitted from stars of

different magnitudes with the same velocity.

(Z) See note {b) of this Chapter.
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() The expression for the part of Saturn's compression
which disturbs the satellite at the distance a from Saturn,

, where ^ is the centrifugal force at the equa-

^ 2

T^2

tor of Saturn, and /. = -
^ , t being the time of Sa-

turn's rotation, and p the compression ; and as the com-

pression of the earth is to - I .' p : ^, we have
289

A m.T^ .

*"
2 m.T- 1 ...

text ; therefore, the more distant the satellite from Saturn

the less will be this quantity ;
and for the last satellite, it

is so small, that the disturbing action of the sun predomi-
nates over it, causing the satellite to deviate from the plane
of Saturn's equator.

Laplace also infers from this deviation of the last satel-

lite, that its mass must be inconsiderable, for otherwise its

action on the last but one would cause it to deviate from

the plane of Saturn's equator, in which, however, it ac-

curately moves.

The preceding formula is not applicable to the case of

Uranus's satellites 5 for we do not know the precise amount
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of /, the rotation of the satellite. If the orbits are per-

pendicular to the plane of Uranus's orbit, the theoretic

discussion of the disturbing action of the sun on these sa-

tellites would require formulae different from those used to

investigate and express the disturbances produced in the

planets, moon, and other bodies of our system.
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(a) See note {d) page 453 of Volume I., where it is

proved, that the equation of the figure which the fluid

affects in the hypothesis of the text, is that of a sphere ;

and as the density must be a function of the pressure,

the fluid will be arranged in strata of equal pressure, and

the same density, having the strata which are nearer to

the centre denser than those which are more remote.

If the earth was fluid, and at rest, it would necessarily

assume a spherical shape; for the mutual attraction of the

particles would so collect them together, that if any par-

ticles were more protuberant than the others, the direction

of gravity would not be perpendicular to its surface, and

as it would not remain in such a form, the projecting parts

would flow down
;

in consequence of the centrifugal force

induced by the motion of rotation, all the particles

have a tendency to recede from the axis of rotation, which,

as it is greater near the equator, will enlarge the earth

more than near the poles, and thus make the earth as-

sume a spheroidical shape.

(b) A particle placed without a sphere of which each of

the particles attracts in the inverse ratio of the square of

the distance, is urged to the centre of the sphere with a

force which varies in the inverse ratio of the square of the

distance from the centre; (see Princip. Math. Book I.,

Section 12., Prop. 74, 3) therefore, if /denotes the distance
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of the particle from the centre of the sphere, the attrac-

tion of the sphere upon the particle will be expressed by

A .

; (
A being a constant quantity, which can be deter-

mined by the actual attractive force, at any determinate

distance from the centre;) if r denote the radius of the

sphere, and M its mass, since no part of the matter of the

sphere is nearer the attracted particle thany r, and none

more remote than f-\-ry the attraction of the sphere on

the particle will be > than

M MA_ -
, and < than ,

.'.^
being always con-

tained between those limits, A must be = to M, for if

A > M, such values of / could be found as would make

. = or > than -
, and if A is < than M, such

values of/could be found as would render _ z= or < than

, which can never be the case j /. A = M, and

M
the attraction of the sphere = , or the same as if all

y

the matter were collected in the centre. Now, if p de-

notes the density of the matter contained in the sphere,

we have M = J^L-2.
,

/. the attraction at the distance

f =: t!!Z_P
J and at the surface, where r=/the attraction

(c) Suppose a system of bodies m mf m!\ &c., whose mu-

tual distances from each other are inconsiderable relatively

to their respective distances from the attracted point, let the

VOL. II. L L
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origin of the coordinates be in the attracted point, xy z^

x'2/ z'i j/', &c. being the coordinates of the m w! m'\ &c.

X Y Z, those of the centre of gravity, we have

^=X+^^, j/=Y+j/,, ;^= Z+^.,^'=X+^;, &c.

x,y^ z^ being the coordinates of m with respect to the centre

of gravity ; if r r', &c. denote the distances of the at-

tracted point from m m' , &c. and R the distance of the

centre of gravity from the same, the action of m on the

mx
attracted point resolved parallel to ^ = -^ , /. the sum of

the attractions ofmw'w",&c. resolved parallel to:r=S.
mx

but . z= X+-^/ -
^'

( (X-j-^,r + (Y+j/,r+ (Z+ ;.,)^)^

neglecting very small quantities of the second order, as is

stated in the text, namely, the products and squares of

x^y, %j x\ &c.

X.(X* + 2X^, + Y* +2Y2/,+ Z^+ 2Z^,)"^

+ X,, (X^+Y^+Z^r^ = X.(X*+Y* + Z^)'^ - -.

2^ _ 3. X (_X^.+Yj/,
+ Z^.)

, and as ^m^^O, ^my,=

3 X .

(X.Sm^, + Y.S7;2^,+ Z.S^2:,) \
^
_ X^Sm

^ ^j^.^j^

is the same as if the bodies were united in the centre of

gravity. Now, if m, m'^ m'\ &c., are so near as to be parts

of the same attracting body, this will be more accurately

true, as in the case of spheroids differing little from a

sphere ; then, as in a sphere, an exterior point is at-
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tractedj as if the whole mass was united in the centre ; in

a spheroid differing little from a sphere, the error or the

difference from what would be the case if the body was a

sphere, is of the same order as the eccentricity for all

points contiguous to the surface ; for if a sphere be sup-

posed to be described concentrical with the given spheroid
whose radius is equal to the distance of any assumed point
on its surface from centre of spheroid, then this sphere at-

tracts as if the entire matter was collected in the centre ;

therefore the difference between its attractions and that of

the spheroid must be of the same order as the eccentricity ;

and as for very distant particles, in estimating the effect of

the attraction of a body of any figure whatever on them,
in showing that its action is nearly the same as if the en-

tire mass was collected in the centre of gravity ; by what

has been just established, the ratio of the quantities which

are neglected to those which are retained is that of the

square of the radius to the square of the distance of the

point attracted ; the error for a spheroid in the case

of very distant points, must be the product of the excen-

tricity into the square of this ratio. It would not be dif-

ficult to show, that if the force varied directly as the dis-

tance, then a point outside a body of any figure "whatever^

is attracted as if the entire mass was condensed into the

centre of gravity.

{(I) In order to demonstrate this property, it may be ob-

served, that if a homogeneous sphere attracts a point

placed without it, as if all the matter was united in its

centre, the same result will have place for a spherical stra-

tum of a uniform thickness ; for if we take away from the

sphere a spherical stratum of a uniform thickness, we

shall obtain a new sphere of a smaller radius, which will

possess the property equally with the first sphere of at-

tracting, as if the entire mass was united in its centre
;
but

it is evident, that if this property belongs to the two

spheres, it belongs also to their difference ; therefore the
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problem reduces itself to determine the laws of attraction,

according to which a spherical stratum of a uniform and

indefinitely small thickness attracts an exterior point, as if

the entire mass was collected in its centre. Let r repre-

sent the distance of the attracted point from the centre of

the stratum, u the radius of the stratum, B the angle
contained between r and w, w the angle which the plane

passing through r and u makes with a fixed plane, then it is

easy to prove that u^du.dtJ.dO, sin. is = to the element

of the spherical stratum; and if/ be the distance of this

element from the attracted point, /^=:r* 2ru, cos. B+ u'^,

, df r iu COS. 7/j li fdf -r . / ^\
. . -f- = ; dO. sm. = ^ ^

; if 6 (/) ex-
dr f r,u

presses the law of attraction, then the action of the element

resolved parallel to r, and directed towards the centre =

u'du.dC>M. sin. e.
(^ ^' COS. B)

^ ^ ^^^^ ^j^j^j^
/

j^^^^

~ * ' = (-7^ ) ) assumes the form u^,du,dio.dB sin.

/ KdrJJ

^'&)'^ (/). ^'- ^. if we denote/^ (/). ^. (/) by ^,. (/),

we obtain the entire action of the spherical stratum, by
means of the integral u^du.fdC).dB. sin. B. <pAf)i differenced

with respect to r, and divided by dr.; relatively to w, the

preceding integral, should be taken from 5=0, to w= 27r,

the circumference, i,e, the preceding integral, becomes

^TTM^dufdB, sin. B, (^J=: (by substituting for

dB. sin. B,) 27r. "i^ . ffdf, <p, (/). Now, as relatively to

B, the integral should be taken from = to 0=:7r, which

corresponds toy=r tif/^r-^u, when*^^-^ is substituted

for dB, sin. 0, the integral relatively to / must be taken
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fvom/=r 2i to y=r4-w; .*. if we make ffdf, ^^. (/)=
'^[.f)'> we shall have

2'iriidu rrjr ^ t r\ ^irudu , , , , ^ , , s

7' r

if (/) =iLjdf,^{f):=:<^,{f) = - I,and/^^^X/)

=\P{J') zz .y= at the limits r u, r u, .'. ^ (r+w)

^ (r w)= 2u, .'. the differential coefficient of the second

member of this equation with respect to r, (which, as has

been observed, gives the attraction of the spherical stra-

turn,) =r , ( 2u) = , z. e, as ttw = the

area of a circle whose radius is u, 4firu^ = the surface of the

spherical stratum, and ^tTru^du = the mass of the stratum

whose thickness = du; .*. when ^ {J') = ^ > an exterior

point is attracted, as if the whole mass was united in its

centre; but to determine
<j> {/) generally^ when the at-

traction of the stratum is the same as if the mass was col-

lected in its centre ; in that case the attraction would be

=
4;7rM^du,<l>{r) which, by hypothesis,

xdJ-Ll^P(r-\'U)^^P^r-u)2)\ .

=:2^udu, I _LL -1 ) J mtegra-
\ dr J

ting with respect to r, and dividing by ^Trudu^ we shall

have

^(r'^u)'-'\p (ru) = 2ru.fdr.(l> (r) + rlJ,

U being a function of u, and of constant quantities, let

\p(r+u) T//(r w) = R, and then differentiating twice

with respect to r, we obtain

dr''
^ dr

and differentiating twice with respect to u, we obtain
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= r.
^-^ , but from the nature of the function R

we have

dyR___, d^
dr* du"

......
(.,.+il<r.))

= .(^).
' '

r dr 2u du^

(see Celestial Mechanics, Book 2, page 68,) therefore as

the first member is independent of w, and the second mem-
ber is independent of r, they must each be equal to a con-

stant quantity, which denoting by 3 A, we have

2^(r) _^
d<^{r) _ ^^^ ^^^^^^^^ ^^ multiplying both sides

by r^dr-, gives

2r.Jr.0(r)+ r*.6?0(r)=:3Ar.^6?r, /. r^^(r)=: Ar^-fB, /.

D

(r) = Ar H ^; /. as is stated in the text, all the laws

in which the sphere acts on an exterior point, as if the

whole mass was condensed in the centre, are comprised in

T>

the general formula Ar + ;
in fact, this value of ^(r)

will satisfy the equation given in the preceding page. If

the point be situated within a spherical stratum of uniform

thickness, then since m is > r, the expression for the at-

traction of the stratum whose thickness = du is

rd.\U{u+r)^-^[u^r))y^
2Trudu.{

^ S ). In order that
V dr J

this function should vanish, we should have ;//(M+r)

ip{icr)= t\J) and it is evidently the case when ^ (/)=__ ,

but to show that this vanishes onlj/ when
(j> (/) = _, if
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d^(u+r)-dmu-,;) ^ .,^,.)_^(_^) = ^ = ,

df'^ dr

.'. as \P'Xu+ r) is always = \p"{u r), each of them must be

equal to a constant quantity, /. ^^''if) = a constant quan-

tity, and ^P''\f)= ; but as ^P' (/) = /^X/). ^'''(/) =2<^

(./)HT/f(/) /.^.0=2^(/)+y:f(A or xp{f)=ff.df<l>,{/),

^'(f)=/'<!>A f), and ^"(/)= ^, (y)+/^(/),and ^'"(/)=:

^(/)+ (/) +/^' (/)=0 J multiplying by/^ we obtain

2/-^ {ndf+f.Yf.df=0, .\r<l>{f) = B, and ^(/) =^ J .*.

a point situated within the interior of a spherical stratum is

equally attracted in every direction when the force ofgravity
is inversely as the square of the distance ; the same is true,

for a spheroid in the circumstances specified in the text,

for any common chord to the two spheroids drawn through
the interior point, has the portions of it which are inter-

cepted between the two spheroidical surfaces equal ; there-

fore, if the point in the interior be conceived to be the

vertix of two similar pyramids, whose common axis is the

chord, its gravitation to the pyramid whose axis is the

distance of the point from the exterior surface, is equal

and opposite to the gravitation to the matter contained in

the Jrustrum, of the similar cone, whose axis being the

part of the chord intercepted between the two spheroids

at the other side, is equal to the axis of the first cone,

and as this is true whatever he the direction of the chord

drawn through the given point, this point is in equilibrio

in every direction. From the expression
^^^

given in

page 4)4-1, it follows that when the density p is given, the

force of gravity is proportional to r ; but if the strata

nearer the centre are denser, then this force varies evi-

dently in a less ratio.
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{e) As the centrifugal force at the equator is greatest,

the weight of a column of water extending from the sur-

face to the centre, must be less than the weight ofan equal
column at the poles, reaching from surface to centre ;

therefore to compensate for the loss of weight produced by
the centrifugal force, the equatorial columns should be

longer than the polar.

iy) What is here stated may be analytically expressed

in the following manner : calling m the equatorial, and

n the polar diameter, r the radius belonging to any pa-

rallel X, then if A and F denote the gravity and centri-

fugal force at the equator, the gravity at X = '-^ , and

the efficient part of the centrifugal force = ,

(see notes Volume I., page 427.,) therefore the gravity di-

..,,,, ^ .p 1 r Ajn^ F.r. COS. ^X
mmished by the centntugal force = ,

and conceiving a canal, of an indefinitely small thickness,

to extend from the surface at A to the centre, the weight

of an element at the surface = Amr, ,

r* m

therefore, by integrating, the weight of the entire canal

Am^. Fr*. cos.^X ^ ^, ^ j ^ ^i= , at the equator and at the

poles these quantities become respectively

m A,mAm , , and as in the case of equilibrium,
2 n

these quantities must be equal, we have

-^ = ^^ = fas^ = -J-
(see notes, Vol. I., p. 427.) )m 2A-i-F V A 289/ ^ /

578 Am^
; and in general as = (if ?w= w+^) A?i + A2e

579 n ^



NOTES. 449

and as
^A

+
j

. wz =
(a + j ( 4- e)y we have

(since

(a + j.^
= A.

(;z+
2e),j

A :

y''^' ^* "owif ;2-fc?^j

= r, G the gravity at the pole is to G' the gravity at any
parallel :: {n-\-dn)^ : n^, i.e. n-^2dn : tiy hence it appears
that the diminution of gravity is nearly twice the increase

of the terrestrial radius
; and as the centrifugal force ai the

surface is equal to the same quantity, we can obtain the whole

diminution which arises from the two causes of decrease.

{g) As the spheroids are by hypothesis similar, if they
be supposed to be divided into an indefinite number of

similar and similarly situated particles, the attractions are as

the quantities of matter, and inversely as the squares of the

distances, i. e. directly as their similar dimensions, which

vary by hypothesis as the distances from the centre. In

like manner, the centrifugal forces are as the radii of the

respective circles described by the two particles, which are

by hypothesis as their distances from the centre. Hence
as the two forces which affect the particle, namely, the cen-

trifugal and the attractive forces are respectively in the

same ratio, the directions in which the two particles will

have a tendency to move will be parallel.

{h) It is to be remarked here, that Newton did not prove
that if the earth revolved on an axis, it would necessarily

have the figure of an ellipsoid of revolution. He as-

sumed it was an elliptic spheroid, differing little from a

sphere ; and he then estimated, in a manner similar to

that indicated in the text, the weight of a column extend-

ing from the pole to the centre, and the weight of another

column extending from the equator to the centre, and as

the equatorial column must compensate for its loss of

weight, by its greater length, by making the difference of

the weights of the two columns equal to the sum of the

centrifugal forces of the parts of the equatorial column, he

VOL. II. M M
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has at once the ratio of the axes. (As for every particle

in a column which reaches from the surface at the equator
to the centre, the diminution is proportional to the distance

from centre ; the whole diminution must be the same as if

each particle of the column lost half as much as the outer-

most particle loses.)

Since the weights of the corresponding parts are to each

other as the magnitudes of the parts into the force of gra-

vity at the points where they terminate, they are (as the

parts are proportional to the whole lengths) as the whole

lengtlis into the force of gravity.

M'Laurin's proof consists in the demonstration of the

three following particulars : l5^, That the direction of

gravity affected by the centrifugal force of rotation is every

where normal to the surface of the spheroid, for other-

wise the fluid would flow off towards that quarter to which

the gravity inclines ; ^2(11^, That all canals from the centre

to the surface, must balance at the centre, otherwise the

preponderating column would subside, and pressing up the

other, would produce a change in the surface; ^dly^ Any
particle of the whole mass must be in equilibrio, being

equally pressed in every direction ; and he shows that

these conditions will be secured in an homogeneous spheroid

revolving on its axis, if the gravity at the pole be to the

equatorial gravity diminished hy the centrifugal force

arising from the rotation, as the radius of the equator to the

semiaxis ; which was the conclusion Newton arrived at.

It would be impossible, in these notes, to demonstrate

these points in all their details ; we shall only advert to

some inferences which M'Laurin makes from establishing

the first condition
; namely, that the sensible gravity of any

particle at the surface, is to the polar gravity, as the part of

the normal terminated by the axis to the radius of meridional

curvature at pole; and it is to the equatorial gravity as

part of the normal, terminating in the equator to the ra-

dius of meridional curvature at the equator; from which



NOTES. 451

it follows, that the sensible gravity is every where inversely
as perpendicular from centre on tangent, and the gravity
estimated in the direction of a radius to the centre is in-

versely as the distance from the centre. Hence it fol-

lows, from what has been established in Volume I.,

page 34-8, with respect to the decrements of the radii

vectores, that the sensible increment of gravity, which,

as we have seen, varies as the decrement of distance, is

proportional to the square of the sine of the latitude*

It is to be observed here, that M'Laurin, no more than

Newton, does not prove that a fluid sphere, revolv-

ing on an axis, must assume the form of an elliptical

spheroid, but only that it is a possible form. In fact, all

that M'Laurin demonstrates is,^ that whatever be the pro-

portion between the axes of an oblate spheroid, there is a

certain velocity of rotation which will induce such a rela-

tion between the diminished equatorial and polar gravity,

as is required in order to satisfy the three conditions of

equilibrium above adverted to. Clairault, indeed, requires

other conditions to be satisfied, such as : I5/, That a canal

of any form whatevet^ must be every where in equilibrio ;

2ndli/^ That such a canal, reaching from any one part to the

other, shall exert no force at its extremities; Sdlr/^ That a

canal of any form, returning into itself^ shall be in equi-

librio through its whole extent. But it is not difficult to

show, as Professor Robinson remarks, that these condi-

tions are contained in the three previous ones.

What has been just established, only proves, as has

been remarked, the competency of an elliptical spheroid
for the rotation of- the earth; another point remains to

be determined, namely, given the velocity of rotation

to determine the corresponding proportion which exists

between the diameters. In order to determine this,

M*Laurin investigated the gravitation of a particle at the

pole of a spheroid, to the matter which is redundant over

the inscribed sphere, and of a point in the equator to the

excess of matter by which the circumscribed sphere exceeds
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the spheroid. The former comes out t :l to .e, e being
15

= the difference between the equatorial and polar diame-

ters, and the latter is half this quantity, and very nearly

= ,e; now, the gravity at the pole to the inscribed

2 8
sphere is ::1 to - ^. {r-^x), add to this . ^re, the gra-

\j 1. o

vitation to the redundant matter, and the sum is =
2 2 1

9rr rr,e, and the gravitation of a particle at the

equator to a sphere, whose radius = r = - tt r, from this

substract ,7re, the deficiency of gravitation, and the

2 4
undiminished equatorial gravity comes out = -ttt .-re,

2
therefore, dividing by - ^r r, the ratio of E, the equatorial3

to P, the polar gravity comes out that of r , e to r
Q

, i, e, as e is very small relatively to r, as r : r ,
or

5 5

q.TP, as r + I : r /.P zrE + ./.E-c : E-f \\r : r+^,5 br 5t

ue.E :E-t- + c:.V:r+^, /.E: ^^ + c : r : e,.\Ee5r 5r

= -. +rc, and - = ?t ; . . e = __ and - , or the el-
5 5 4E r

lipticity = -n > as is stated in \}ie text; hence, when cand

E are given, we can determine -
;

.'. as c = ^^ and E =
7' T*

r. p, = _ . -J- . (See Princip. Math., Book 3, Prop.

19.)



NOTES. 453

(/) In No. 18, Book 3, Laplace investigates the figure

which satisfies the equilibrium of an homogeneous fluid

mass endowed with a motion of rotation ; and assuming

that the figure is an ellipsoid of revolution, if the forces

which result from this hypothesis, when substituted in the

equation = Fda-^-Qdb+Rdc, which is the equation of

equilibrium at the free surface of a fluid, give the dif-

ferential equation 'of the surface of an ellipsoid, the elliptic

figure satisfies the equilibrium of a fluid mass endowed

with a rotatory motion, then by substituting for P Q R,

their values in the case of an ellipsoid of revolution affected

with a rotatory motion, he obtains the following equation,

(9 4- 2gX^) X _ ^^^ ^ ^^^^^ ^ = _i_, andX* =
3(3+ X*)

^
^TTp'

1 ^^
^-^

, m being the coefficient of
j/.

in the equation of
m

an ellipsoid oc^-\-m7^^ + nz^=:k^.

If this equation tj ^^^ t^"* ^ = 0, = 0, is sus-

ceptible of several real roots, then several figures of

equilibrium may correspond to the same motion of rota-

tion, it is evident that if X= it is satisfied, but this is

not the case of nature ;
if X is very small, then arc tan.

X=:a, becomes =rX ; therefore in this case, <p
is positive; if

o is = -, X = 1, which renders ^ negative; now sup-
4?

pose a curve of which X is the abscissa, and ^ the or-

dinate, this curve intersects the axis when X = 0, the ordi-

nates will then be positive, and increasing until they at-

tain their maximum, after which they will diminish ; and

when the abscissa has that value of X which renders = 0,

i. e. which corresponds to the state of equilibrium of the

fluid, the curve will cut the axis a second time; the ordi-

nates will afterwards become negative ; and since they are

positive when X= co, it is necessary that the curve should

meet the axis a third time, which intersection determines a
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second value of X, which renders ^ = 0, or satisfies the

condition of equilibrium, /. for the same value of
g',

or for

a given rotatory motion, there are several figures with which

the equilibrium is possible ; in order to determine the

number of figures, we should determine how many maxima
exist between the roots, and by taking the derivitive

function of ^, we find only two maximum ordinates on

the positive side, and the same number on the side of the

negative abscissae; therefore, on this side, the curve inter-

sects its axis in three points only, of which the origin is

one, consequently there are only insDo figures which satisfy

the equilibrium ;
for as even powers of X only occur in the

determination of these figures, those furnished by the po-

sitive and negative abscissae are identically the same. If

q is very small, as in the case of the earth, the equation

^=0, may be satisfied either by making X* very small, or

very great ; in the first case, as has been already remarked,

we have X* = q{2,B + 5,35'7.^+ 23^* -f U%q'^ + , &c.)

which, by substituting the value of q, gives 1 + ^"^ =
1,008746 123; therefore we can obtain X, and consequently

the ratio of the axes which comes out -^ <7.P ; in the se-
231

^^

cond case, arc tan. X is nearly = ZT
;

.'. X = a,

where a is very small, so that its tangent is z=
^'.p

~-
,

A

JL 4 _ &c. = -^ , and by reversion of series
X 3X* 9-f-3X*

^

we can obtain X, which, by substituting for q its value,

give the ratio of the axes = 680.

If two of the roots of ^= were equal, then we would

have evidently ^=0; 6?0
= O; in which case the curve

will touch the axis at the origin; therefore the value of

</>
can never become negative at the side of the positive
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abscissae; consequently the value ofq, determined by these

two equations = 0, ^<^
= 0, will be the limit of those with

which the equilibrium can subsist j and if q has a greater

value, the equilibrium would be impossible ; for in that

case the curve would not meet the line of the abscissae.

It follows, from what precedes, that there is only one

value of q which satisfies the equations ^=0, dcji^zO, these

equations give the following values,

arc tan. X ; the value of X which satisfies the last equation,

isX=2,5292, .-. 5'=0,337007, and "^1^^=2,1197, as in

case of the earth ^=,00344957, this value corresponds to a

rotation =0,^^99727, but
9^

co
, note {h) page 453, .*.

for a mass of the same density as the earth, T the time of

rotation, which corresponds to 0,337007 = 0,10090, which

is the limit ; for if the time of rotation be less than this,

the equilibrium is impossible ; if it be greater, there are

two figures which satisfy the equilibrium. It appears also,

as is stated in page 106, that the time of rotation varies

generally inversely as the square root of the density.

If the rotatory motion should increase so as to be greater
than that which answers to the limit of

5^,
it does not neces-

sarily follow that the fluid cannot be in equilibrio with an

elliptic figure; for we may suppose, that according as the

compression increases, the motion of rotation will become

less rapid; therefore, if there exists between the molecules

of the fluid mass a force of tenacity, this mass, after a great
number of oscillations, may at length arrive at a motion of

rotation, comprised within the limits of equilibrium, and

fix itself in that state. In fact, when the rotation is in-

creased, the spheroid becomes more oblate, and the fluids

having less velocity of rotation than the equator, accumu-

late about that circle, and retard the motion ; this goes on
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for some time, until the true shape is overpassed, and then

the accumulation relaxes. Now, the motion is too slow

for the accumulation, and the waters flow back towards

the poles ; in this way an oscillation is produced, which,

however, in consequence of the mutual tenacity of the par-

ticles of the fluid, gradually subsides, and the appropriate
form is eventually assumed.

In order to determine the ellipticity of Jupiter, resum-

ing the equation = ^ = arc tan. X, '^l + X*"^ ^
9+ 3X'

is the ratio of the equatorial to the polar diameter, and k

the axis ;
.*. to determine X we must have q ; now if D be the

distance, and P the periodic time of the fourth satellite, t the

time of Jupiter's rotation, M the mass of Jupiter, and F
the centrifugal force, we have F to the force retaining the

satellite m its orbit, z- e. as ~ : p ,
. . F =

-^^ ,

M = i 7r.kK (1 +X'), /. as D = 26.63 of the radius of Ju-

piter's equator, .'. _J '^^"^ > = i
; and as ^ =^ ^ D 26,63

0,41377, P= 16,.'^6S902, Jl_ = ^ = rCs
=

Itt
^ t\D'

0,0861450 .(1+ X~) 2, hence the preceding equation in X,

becomes

= 9 X. + 2il!?|;^ (9+3X*). arc tan. X. and .'. X=
^1 -hX^

0,481, and if the polar diameter be unity, axis of equator
== 1,10957. This is the ratio of the axes on the hypo-
thesis of homogeneity ; but the observed proportion being

1,0769, as deduced from actual observation, and also from

the motion of the nodes of the satellites, (see page 452,)

it follows that Jupiter is not homogeneous, but his den-

sity increases as we approach towards the centre. The

limits of the ellipticity of the planets, if they were primi-
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lively fluid, are i
, ^ ; (see pages 107 and 459;) and

^*g ^g

as the observed ellipticity is within these limits, it follows

that the density increases towards the centre.

From the expressions given in page 454, we can com-

pare the ellipticities of Jupiter and the earth on the hypo-
thesis of homogeneity ; or even when the densities at dis-

tances proportional to their diame'ters are in a given ratio.

In the first case, _ = = --. -
, for g is proportional

r 4^ 4 Q,t*
o r sr

to or, and c =
; in the other case, - = . .'

^* r 9g 5/2.-3./
See note (.r) of this Chapter.
And from what has been established in the notes, page

493., Volume I., it appears, that whatever be the manner
in which the fluid particles act on each other, whether by
their tenacity, their mutual attraction, or even by im-

pinging on one another, in which case they experience
finite changes of motion ; if through the centre of gravity
of this fluid, supposed immoveable, we conceive a plane to

pass, with respect to which the sum of the areas described

on this plane by each molecule, and multiplied respectively

by their corresponding molecules, is at the origin a maxi-

mum, this plane will always possess the property ; there-

fore, when, after a great number of oscillations, the fluid

mass assumes a uniform motion of rotation about a fixed

axis, this axis will be perpendicular to the preceding plane,

which will be, from what is stated in notes page 512.,

Volume I., the plane of the equator, and the motion of

rotation will be such, that the sum of the areas described

in the instant dt by the molecules projected on this plane,

will be the same as at the commencement of the motion;

and the axis in question is that with respect to which the

sum of the moments of the 'primitive forces of the system is a

maximum ; it evidently preserves this property during the

VOL. II. N N
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motion of the system, and finally becomes the axis of rota-

tion. The actual velocity of rotation, as well as the axis

of the ellipsoid of revolution which the fluid assumes, are

determined by this 7naximum i and from what has been

established in page 454, there is evidently only one pos-
sible figure of equilibrium.

{It) As it would be impossible, in the limits of these notes,

to give the complete investigation of the figure of the earth,

when the density increases towards the centre, we shall

confine ourselves to pointing out some remarkable conse-

quences which follow from the results, as given by Clairault

and others. If 7i denotes the density of the nucleus, and/
that of the rarer fluid which is spread over it, the value of

-, is . ; if the density of the interior part be
r 2g 5713/

^ ^

infinitely greater than that of the ambient fluid, (which is

the hypothesis of page 101.,) - = ; if w =y then -=

, as we have before deduced ; therefore the ratio of the

ellipticity when the spheroid is homogeneous, to the ellip-

ticity when the nucleus is infinitely denser than the fluid,

is that of 5 : 2. These, as we shall see presently, are the

extreme cases; likewise it appears, from the above ex-

pression, that according as J^ becomes less with respect to

w, the ellipticity diminishes, and conversely. In the pre-

ceding hypothesis, it is easy to show that the expression

of the increase of the force of gravity from the equator to

the poles is expressed by the fraction . ^ ; the
'^ ^

^g 5n3f

sum of this and of . =
, vvhich is double

the ratio of the centrifugal force at the equator to the

force of gravity at the equator ; or of the ellipticity of a
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homogeneous spheroid ; for, in the case of homogeneity,
the ellipticity and increase of the force of gravity are both

expressed by the same fraction.

(/) Hence, if we can find the ratio of the equatorial and

polar gravities, the ellipticity will be had by substracting

the fraction expressing this ratio from twice the ellipticity

of a homogeneous spheroid ; and as a mean of a great

number of observations made with the pendulum, gives

0,00561 for the increase of the force of gravity,
-

,00561 =
, which shows that the mean density of the

y4,8
'^

interior parts of the earth is > than the exterior; there-

fore, if / be the length a pendulum vibrating seconds at

the equator, and l-{-d the length of an isochronous pendu-
lum at the pole, which is easily determined from the length

of an isochronous pendulum at any latitude X, and from

knowing that the increments of the lengths are as sin, ^A,

,, d Be ^n^Sf . 4w 3/ 2sd , n
then - = . ^ . . . ^ = -^^ , and -j,

=
/ 2g 5n3f' 5n Sf 5 cl

' f

ZLlM.
, &c. See notes, page 347, Volume I.

'lOcllOgd
^ ^

The inequalities observed in the measurement of con-

tiguous arcs of the meridian, which, according to Laplace,

are to be attributed to the earth's not being spheroidical,

arise in some measure also as well from the unequal distribu-

tion of the rocks which compose it, as from inequalities in

the surface of the earth ; which, according to Playfair, ac-

count for the discrepancy observed between the preceding

ellipticity and that deduced from the measurement of de-

grees of the meridian. As a remarkable instance of this

discrepancy, the spheroid which best agrees with the de-

grees measured in France, is one of which the ellipticity=

-
, which is very nearly double of what may be reckoned

the mean ellipticity.
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The equation here adverted to, in
(/) page 110, is that

which is given in No. 1 1 of the Second Book, and is de-

tailed at greater length in the Second Chapter of the

Third Book of the Celestial Mechanics. It is of the fol-

lowing form :

and may be generally announced in the follovi^ing manner ;

that the sum of the three partial differences of the second

order of the function V, which expresses the sum of the

attracting molecules of a spheroid, divided respectively by
their distances from the attracted point, (of which function

the partial differences with respect to any line, is the re-

sultant of its attractions decomposed according to this

line,) is constantly equal to cypher. By combining this

fundamental equation with a differential equation of the

first order, which the preceding function must satisfy when

the attracted point is at the surface of a homogeneous

spheroid, which differs little from a sphere, Laplace ob-

tained by developing, the attraction of a spheroid com-

posed of fluid or solid strata of any density whatever, and

endowed with a motion of rotation ; the molecules being

supposed to attract each other inversely as the square of

the distance. The general and simple relations between

the attractions and the figure of the spheroids, which are

furnished by this expression, enabled Laplace directly to

determine the figure of the fluid strata in the case of equili-

brium, and the law of gravity at their surface. From the

fecundity of the fundamental equation, which is the basis

of his analysis, and is reproduced in the theory of the

fluids, and in that of heat, Laplace was induced to think

that the formulae which he obtained were the simplest and

most general which could be obtained.

{m) See note [k) of this Chapter.
In the general hypothesis, the strata increase in density

and diminish in ellipticity from the surface ; therefore, if a
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line be conceived to be drawn from the surface to the cen-

tre, the tangents drawn to the strata at the intersection of

this line with them, will not be parallel, and consequently

the perpendicular to these tangents which indicate the

direction of gravity will not be parallel ; now, if the num-
ber of these strata be increased indefinitely, these perpen-
diculars will form a curve. In fact, the direction ofgravity

being a curve line, all those elements are perpendicular to

the strata of level which it traverses ; this curve is the tra-

jectory which intersects at right angles all ellipses which,

by their revolution, form these strata.

The following is the analytical expression of what is stated

{71) p. 1 1 7, y' = P.
(l
- i a (/ y ) + J

a
^./i^)

, when

J)" is the force of gravity at the surface of the spheroid, P
the force of gravity at the surface of the sea and at the

equator, a a constant coefficient, so small that its square

and higher powers are neglected, and a{l t/")
= the depth

of the sea, and a<^
= the ratio of the centrifugal force to

the force of gravity at the equator ; p", P are determined

by means of isochronous pendulums, and aj/'
is the eleva-

tion of points of the surface of the spheroid above the sur-

face of the sea, aj/" is the elevation of corresponding

points of the atmosphere, al = ayf a^, and al and aj/"

can be always determined by means of barometrical mea-

surement, ju* is the square of the sine of the latitude, and

.*. -
a<^/i* is the increase of gravity at any latitude ju;

now, from what has been established in page 107., it ap-

pears, that - d)= 0,004<325, /. the increase is 0,004325.Pju%

which being less than the observed increment, it follows

that the earth is not homogeneous.
In the Eleventh Book, besides the causes mentioned in

the text, and which are detailed at length in the Third

Book of the Celestial Mechanics, another source of devia-



402 NOTES,

tion from the law of the square of the sine of the latitude,

arises from the errors to which the observations of the am-

plitudes of the measured arcs are liable, which are, rela-

tively to the measured arc much more considerable than

the errors of the pendulum ; the reason of which appears

to be, that the intensity of gravity is much less affected

by local variations than its direction ;
for the inequalities

on the earth's surface, and unequal distribution of the

rocks which compose it, must produce great local irregu-

larities in the direction of the plumb line, which, in all

probability, are the causes of the inequalities observed in

the measurement of contiguous arches of the meridian, re-

duced to the level of the sea.

It may not be unnecessary to mention, that in general
there are three modes of determining the ellipticity of the

earth given in the text, either by observing the lengths of

isochronous pendulums, or by measuring the arcs of de-

grees ; or, thirdly, by means of some lunar inequalities.

By means of the observed quantity of the precession of the

equinoxes, Laplace shows, in the Eleventh Book, that D,
the mean density of the earth = l,587(p) where (p) de-

notes the density at the surface ; and as this density is, by
the experiments of Maskeylyne and Cavendish, which will

be detailed in note {r) of this Chapter, three times that of

water, we have D= 4,761 ; that of water being unity,

which agrees very well with the conclusions of Maskey-
lene.

(u) In the Eleventh Book the author shows, that the

radius of the terrestrial spheroid zi I -h ah (fx^ ) + ax,

where ax is a very small quantity with respect to a/i, and
of the same order as the mean elevation of the continents ;

in like manner, the expression for the radius of the sur-

face of the sea is al a(h^-\-h) .

(/i^ -) -i-ax^, where al

is a constant quantity and ax' of the same order as ax*
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The depth of the sea is very nearly = the difference of

these radii, and /. = ala/t^ff/- -j-{-ax^a.v; at the

equator the continents occupy a great extent, for which

this expression becomes negative; but the sea occupies a

still greater extent, for which this expression is positive.

In the first case, al -{-
- ah' is < ; and in the second case
3

it is > than ax^aa:'; consequently al -\--ah' is of the
o

same order as ax; very near to the north pole, where

;u=l/ the sea covers part of the terrestrial spheroid, and

leaves another part uncovered ; in the first case, al ~
is >, and in the second case it < than the value o^ axax^

corresponding to ju=:l. .*. as al + , a/ are re-

spectively of the order ax, their difference ah' and also

the constant quantity al are of the same order; conse-

quently the depth of the sea must be inconsiderable, and

of the same order as the elevations of continents above the

level of the sea; but as there are mountains which rise

very high above the level of the adjacent continents, so

there may be some parts of the sea of very considerable

depths. Hence it follows, that the surface of the ter-

restrial spheroid is q,p elliptic, for, by what precedes, the

equation of the equilibrium of the surface of the sea,

would become that of the equilibrium of the surface of the

terrestrial spheroid supposed fluid, if the sea was to dis-

appear. It is generally admitted, that at least two-thirds

of the surface of the earth is at the present time fluid, and

from this circumstance, combined with what is stated in

the text, it would seem to follow that the earth was primi-

tively Jluid.



464 NOTES.

{a) If n represents the pressure, and p the density, the

equation adverted to in the text may be expressed as fol-

lows, ^ = 2kpf2k being constant, /. n = A:.(p*-{p*) )

dp

{p) being the density at the surface, where 11= 0; and as

it is proved in No. 30, of the Third Book of the Celestial

Mechanics, that = 4-7r. - . J^pa^da, where a de-

p a^

notes the radius of the stratum of which the pressure

= n, we have -^ = !L . f pa^'da , where w* =
'

da * -^ *^

-iL
,
if p' = r, then a^dg = ado' pJda^ .*. -^

p'
k da

= n^'fp'ada^ .*. by differentiating ^4-72*p' = 0;

and the integral of this equation is p'=A sin. w + B. cos.

w, A and B being constant arbitrary quantities, therefore

A B
p = sin. an '\' . cos. an\ as p is not = to infinity at

a a

the centre where a vanishes, B must be = 0, and .*. p=
A

. sin. an. This is the law of the density of the strata

of the terrestrial spheroid, on the hypothesis that =
dp

2A;p, at the surface = 1 and p = (p), .*. (p) = A. sin. n
;

\ da J ^ I , and as D is the mean density of

(p)
tan. 71.

the earth, fpaMa = D. fa^da = ; but at the surface

the equation -^ = -./*pa*c?, becomes^ da a^
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n* / tan. ??/ n^^ ^
tan. 7i (p)

ratio of the mean density of the earth to the density of its

surface, and 7i^ = -
, hence we can determine k and /. /?%

k

when D is known, and vice versa. From these results, La-

place obtains expressions for the gravity, ellipticity, &c,

which accord sufficiently well with observation; from
whence he infers, that it is extremely probable, the inter-

nal constitution of the earth is conformable to the pre-

ceding hypothesis. It is worthy of remark here, though

Laplace infers, in page 120, that the primitive fluidity

of the earth is clearly indicated by the regularity of gra-

vity, and by the figure at its surface, Playfair, in his Out-

lines, asserts the express contrary: he states, that the ap-

proximation, which, notwithstanding the irregularities in

the measured degrees, the figure of the earth has made to

the spheroid of equilibrium, cannot, in consistency with

other appearances, be ascribed to its having been once in

a fluid state, for though the action of water may be evi-

dently traced in the formation of those stratified rocks

which constitute a large proportion of the earth's sur-

face, it is of water depositing the detritus of solid bodies :

with respect to those rocks which contain no such detritus,

but have the character of crystallization in a greater or

less degree, it is not evident that they are of aqueous for-

mation. Indeed, the only action of water of which we

have any distinct evidence in the natural history of the

globe, is partial and local, and therefore insufficient to ac-

count for the spheroidical figure of the earth.

{p) See note {c) page 465, Volume I. ; and No. 27 of

the First Book of the Celestial Mechanics.

[q) It follows from the theorem announced in the text,

that the three principal axes of rotation of the imaginary

spheroid, are the principal axes of the earth.

VOL. IT. o O
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The expressions for these radii, according as the earth

revolves about the first, second, or third principal axes,

are, l+al+au-.- ^ ^*

\ +/+ mi -f
^.((i^^~J)-(l-iU^).cos. (2tu'-2n))

therefore, if these be added together, their mean value is

l+./+fl?^, so that it is independent of the centrifugal

force a.^, as is stated in the text.

(r) The principal of areas in reference to the present

subject, may be announced in the following manner: if

we project, on a fixed plane, each molecule of a system of

bodies which react on each other, and if, moreover, we

draw from these projections to a fixed point assumed on

this plane, lines which we shall term radii vectores, the

sum of the products of each molecule by the area which

its radius vector describes in a given time, is propor-
tional to Ui time ; so that if A denotes this sum, and t

the time, we shall have k-=.lityh being constant. Now, in

the case of earthquakes, volcanoes, &c. it is easy to show,

ihat while these phenomena diminish the motion of the

earth in one way, there exist simultaneous causes which

produce the contrary effect, so that the value of A re-

mains the same : but if, as is stated in the text, consider-

able masses are brought from the poles to the equator, the

radii vectores increase ; therefore, in order that the value

of A may remain unvaried, the other factor must diminish,

consequently the rotatory motion of the earth must di-

minish.

is) If we counterpoise a quantity of ice in a delicate
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balance, and 'then leave it to melt, the equilibrium will

not be in the slightest degree disturbed ; or if we substi-

tute for the ice, boiling-water or red-hot iron, and leave

them to cool, the result will be precisely the same ; and if

a pound of mercury be placed in one scale, and a pound of

water in the other, and if they then be heated or cooled

through the same number of degrees, although thirty

times more heat either enters or leaves the water than the

mercury, in consequence of its different capacity for heat,

they will still balance each other; likewise if a beam of

solar light, be condensed by means of a burning glass, and
then made to fall upon the scale of a delicate balance,

it will not depress the scale, as would be the case if the

beam of light had the least inertia or weight.

(0 If a be the arc described in a given time, r the ra-

dius, and V the angle, we have V = -, but the area =

.r= V.P, therefore if the angular velocity of rotation does

not increase, the areas described in the plane of the equa-
tor are proportional to r* ; and as the decrement of r is

the 100,000th part, the decrement of r* will be very nearly

double of this, or the 50,000th part.

If this diminution of r arose from a decrease of tem-

perature equal to one degree ; and if the duration of

the earth's rotation be 100,000 decimal seconds, the

duration of rotation will be diminished 2" in this hy-

pothesis;* now, as it appears from the comparison of

observations with the theory of the secular equation of

the moon, that the duration of rotation since the time

of Hipparchus has not varied y^^th of a second, the

variation of the internal heat of the earth since that

time is insensible. Indeed, the dilatation, specific heat, and

greater or less permeability to heat, which are all un-

known, may not be the same in the earth and the glass

globe, in which a diminution of yj^" in a day corresponds
to a diminution ^^^ of a degree in temperature. But still
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this difference can never increase from ^^^ of a degree

to ^^ of a degree, the loss of terrestrial heat correspond-

ing to a diminution of y^^ of a second in the duration of a

day ; but a diminution of j^q of a degree near the sur-

face, supposes a much greater diminution in the tempera-

ture of the inferior strata ; for, eventually, the temperature

of all the strata diminishes in a geometric progression, so

that the diminution of a degree near the surface, implies a

much greater diminution in the strata which are nearer to

the centre ; therefore tlie dimensions and moment of inertia

of the earth diminish more than in the case of the sphere of

glass. From what precedes, it follows, that if, in the pro-

gress of time, any change is observed in the mean height

of a thermometer placed at the bottom of a deep cavern,

it must be ascribed to a change in the climate of the place,

and not to a variation in the mean temperature of the

earth. It is worthy of remark, that the discovery of the

true cause of the secular equation of the moon, makes

known at the same time the invariability of the duration

of the day, and of the mean temperature of the earth.

Connaissance des Temps, 1813, compared with text.

According to M. Fourier, who has discussed the sub-

ject of the interior temperature of the globe, the heat dis-

tributed within the earth is susceptible of three distinct

modifications, arising, 1st, from the rays of the sun, which

penetrating the globe, cause diurnal and annual varia-

tions in its temperature. These periodical variations

cease to be perceptible at a certain distance beneath the

surface. Beyond that depth, and even to the great-

est accessible excavations, the temperature due to the

sun has long since become fixed and stationary ; the

whole quantity of solar heat which regulates the periodi-

cal variations, oscillates in the exterior shell of the earth,

descending further within the surface during one portion

of the year, and rising up to be dissipated into space dur-

ing the opposite or the winter season. Secondly, the

temperature for deep excavations, which, though constant
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for any one place, varies for localities more or less distant

from the equator; so that the solar heat penetrates farther

at the equinoctial zones, to reascend and be dissipated at

the polar regions. But besides the external focus of heat,

there is also to be considered the proper or intrinsic heat of

the earth; and if, as the experiments mentioned in p. 471

seem to prove, the temperature of the deep recesses of the

earth becomes perceptibly greater according as we penetrate

farther into the interior, it is impossible to ascribe this in-

crease to the heat of the sun
;
it can only arise from a primi-

tive heat, with which the earth was endowed at its origin, and

which may diminish with greater or less celerity, by diffusion

from its surface ; it is evident that the increase will not be

always the same in amount as at present, it will diminish

progressively; but a number of ages must elapse before it

is reduced to half of its present value; in general the ex-

tent of this diffusion will be proportional to its primitive

intensity, and to the conducting quality of the surround-

ing materials.

If V be the heat of a molecule at the surface, it is

proved by analysis, that the increment of heat at the

depth %' relatively to r the radius of the earth, is equal to

the product of this depth by the elevation of the tempera-
ture of the surface of the earth above the mean state of

temperature, i. e. iz %' (-\ which becomes =zfz'V,

when we only consider in V the part of the heat, which is

independent of the action of the heating causes at the ex-

terior.

It is to be remarked here, that at all distances to which

we can penetrate, the temperature of the sea decreases^

and at the equator at a depth of 600 metres, the tempera-
ture of the water was 7,5 of the centrigrade thermo-

meter, while that at the surface was 30 ; but this is not

inconsistent with what is stated in the text, as this decrease

of temperature is owing to currents of water coming from

the poles to the equator.
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It is the opinion of geologists, that originally there ex-

isted in the interior of the crust of the earth, a great

magazine of fire, which, according to them, was the cause

of the deluge, and the numerous catastrophies to which

an accurate examination of the various appearances of the

internal constitution of the earth proves that our globe has

experienced, previous to the deluge, particularly the alter-

nation of marine and fresh-water products. According to

them, this heat was much more intense formerly than at pre-
sent J and as in consequence of the fluidity of the earth in

its primeval state, very little heat was lost in its transmission

from the interior to the surface, any warmth imparted to the

bottom of the ocean would be transmitted without sensible

loss to the surface. In this order of things, a genial climate

would exist over the whole surface of the earth, from one

pole to another; and, in like manner, this intrinsic source

of heat would, when its diffusive energy was thus slightly

obstructed, predominate over the solar, so that the position

of the sun with respect to the equator would act a compa-

ratively subordinate part in modifying climate ; therefore,

as in this case, the difference of the temperature at the

pole and equator would be comparatively small, a con-

siderable uniformity of temperature would thus ob-

tain over the whole earth ; and this may explain why ani-

mals and plants which are now peculiar to the tropical

regions, might have formerly existed as far north as the

arctic and antartic circles; (see page 88.)

According as the deposits after each successive catas-

trophe to which the earth was subjected, thickened, there

was a progressive interception from the ocean of the sub-

jacent heat; but besides the thickenings of the deposits

of the ocean, a great mechanical change took place on the

terraqueous constitution, the influence of which, in re-

frigerating climates, is considerable ; for, at every catas-

trophe, the area of the land in proportion to the sea would

be diminished, and that of the sea increased, with a pro-

portionate diminution of depth, /. e. the cooling surface
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would be increased, and the ocean would rest on a cooler

bed, because it is more distant from the central heat of the

earth ; and besides these two, there is a third cause of the

decrease of heat, namely, that which arises from its diffu-

sion into the ambient space.

The elephant mentioned in p. 117, whatever its hide

may have been, required necessarily for its subsistance an

enormous supply of vegetable food, which necessarily im-

plied a luxurious herbage in the northern regions ; and

the freshness of his carcass proves that the animal perished

at once, with its kindred, in a sudden revolution, accom-

panied by a sudde7i change of climate, which prevented the

decomposition of its flesh, and of the bones of its kindred,

which are found in great abundance on the banks of the

Tanais.

Suppose that three thousand metres beneath an exten-

sive plane, there existed a vast reservoir of water, pro-

duced by rain water ; at this depth it would acquire,

from the heat of the earth, a temperature very nearly

equal to that of boiling-water ; and if now, in consequence
of the pressure of the adjacent columns of water, or from

the action of vapours, which ascend in the reservoir, these

waters ascend to the height of the inferior part of the sur-

face from which they had flowed down, they will constitute

a source of warm water, impregnated with such substances

of the strata through which it flowed, as were soluble by
it. This furnishes an extremely probable explanation of

the natural tepid waters which are found in different

parts of the earth.

(y) It is easy to estimate what would be the effect of the

attraction of a spherical and homogeneous mass near to

which a plumb-line is suspended, for if^ denote the force

of gravity, and x the angle which the direction of the

plumb-line makes with the vertical, g sin. x expresses the

force of gravity resolved perpendicular to the direction of

the plumb-line ;
and if

j/ denote the distance of the centre
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ofgravity of the attracted body from the centre ofthe homo-

geneous sphere, jll
the mass of the attracting body, and /

the intensity of the attractive force at the unity of

distance, and for the unity of mass; ^^ =z the attraction

of the spherical mass on the suspended body ; now, if a

denote the distance of the point of suspension from the

centre of the sphere, and a the angle which this line makes

with the verticle, ax is the angle, which a makes with

the plumb-line ; the cosine of the angle which a perpen-
dicular to the direction of the plumb-line makes with

J/,
= sine of angle which

7/ makes with plumb-line =
a. sm. ^a x)

^

, fi ^gg^iygj jj^ ^^^^ direction of this per-

pendicular = R/ ^'

sm^.
(^a t;

^ ^hi^h, when the plumb-

line is at rest = g. sin. x; if 3/ be supposed = a, we have

^^ = -.
^

, by means of this equation, when u, f
ga"- sm. (a x)

^ n r*jy

and a are given, we can determine the deviation x. Now,
if we denote the mass of the earth, g its mean density, and

r its radius, and p',r' the density and radius of the attract-

ing body, u : mi: r'V '

?'^.pj and ^ = ^-^ , and mf=m p.r^

g,r^ ,
/. ZfZ. = J_

J
/. from what precedes we have

g p.r

e^ = ^J}}hJ: . The value of ^ will be so much the

pra* sm. (a ^)

greater as a diminishes, and as a approaches to a right

angle; and as the least value of a is /, it follows that the

deviation from the vertical will be a maximum when a= r'

and a= 90, in which case we have tan. x zz ^ -, .'. if p',p
p.r

r',r be given, we can determine the deviation and conversely,
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it is easy to show that if ()'=p the radius of the sphere,
which would cause a deviation = 1% should be = 30'",866,

But in nature it is not easy to determine the ratio of p to

(>',
&c. The manner in which Maskelyne determined the

value of X is as follows, by observation of the zenith dis-

tances of the stars on the north and south sides of

Schehallien, he determined the difference of the latitudes

of two stations; from a trigonometrical survey of the

mountain, the distance between the same two points was

ascertained ; and thence, from the known length of a de-

gree of the meridian at that parallel, the difference of

the latitudes of the two stations was again inferred, and it

was found less by 11 "6, than by astronomical observations.

This could only arise from the zeniths of the two places

being separated from each other by the attraction of the

mountain on the plummets. From the quantity of this

change of direction, the ratio of the attraction of the moun-

tain to that of the earth was concluded to be that of 1 to

17804?; and from the magnitude and figure of the moun-

tain, which was given by the survey, it was inferred that

p' was to p
*

: 5 : 9, /. p is nearly double of p' the den-

sity of the rocks which compose the mountain; indeed

these last appear to be considerably more dense than the

mean of those which compose the exterior crust of the

earth, and at least two or three times more dense than wa-

ter, /. p is four or five times more dense than water;

hence, as the earth is four times denser than the sun, it

follows that the density of the sun is nearly = that of

water. See notes, page 399.

However, as was already remarked in page 399, it is to

be observed here, that the density obtained is only rela-

tive, as we do not know the absolute density of water ; and

indeed, we are so far from knowing the actual mean den-

sity of the earth, that there are considerable discrepancies

in the results which determine the ratio of its mean den-

sity to that of water.

VOL. II, P P
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Though the Cordillieries exhibit evident traces of their

being volcanic, and therefore hollow in their interior, there

is no reason to suppose that Schehallien is of that nature ;

on the contrary, it is very probable that it is an ex-

tremely dense mountain. The universality of the at-

traction of every particle of matter is clearly established by
this deflection ;

also it follows, that the force of gravity

varies inversely as the square of the distance, for if the at-

traction of the hill was to that of the earth only as their

respective masses, the efi^ect of its attraction would be al-

together insensible, in consequence of the comparative
smallness of its mass.

We might, by means of the oscillations of the pendulum,
determine the length of the pendulum, which vibrates se-

conds at the level of the sea, for if / be the length of a

pendulum vibrating seconds at the height h of the Cor-

dellieries, the length of an isochronous pendulum at

the level or the sea = /. ^
' = / + , omittmo:

as a very small fraction ; now, it is observed, that the

value of the correction of the length of the pendulum, de-

termined by observation, is less than what theory assigns

to it from a diminution of distance, which can only
arise from the action of the mountain itself making the

difference less than it ought to be, from its increased

distance from the centre of the earth. The ratio de-

duced from the effect of the mountain in deflecting the

plummet, is considerably less than the estimation by means

of the attraction of two leaden balls, the effect of which

Cavendish rendered sensible by the balance of torsion,

an instrument by means of which we can determine very

small, and apparently inappreciable forces; it consists of a

very delicate metallic thread, attached to a fixed point, at

the extremity of which is suspended an horizontal lever ;

while the thread is not twisted, the lever quiesces in a cer-

tain position, termed the line of repose j according as it
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deviates from this position the thread becomes twisted,

and this torsion tends to cause the lever to revert to the

line of repose ; therefore, in order to retain it in this po-

sition, it is necessary to apply to its extremities equal and

contrary forces, existing in the horizontal plane, and act-

ing perpendicular to its length j the common value of these

forces will be the measure of the force of torsion, which,

when the thread remains the same, is proportional to

the angle through which the lever is deflected. Now, if

two leaden balls be brought near to the opposite extremi-

ties of this line, their attraction will cause the lever to de-

viate from the line of repose, and according as the devia-

tion increases, the force of torsion increases, and there

exists a position in which this force constitutes an equili-

brium with the attraction of the two spheres ; but as the

lever attains this position with an accelerated velocity, it will

pass beyond it, and will perform oscillations on each side,

like a hofizontal pendulum ; from observing the relation be-

tween the length of this pendulum and that of an ordinary
isochronous pendulum, we can infer the ratio of the attrac-

tion ofeach sphere to that gravity, and consequently the pro-

portion of the mass of this sphere to that of the earth. As
it would be impossible here to enter into all the details of

this experiment, we shall give the resulting equation, i e,

= -iL-l^-li , Where m, a dehote the masses of the

earth and sphere, IV the lengths of the lever and isochro-

nous pendulum, a the distance of the centre of the attract-

ing body from the point of bisection of the lever, a the

angle which c the line from the centre of attracting body
to quiescent extremity of the lever subtends at its point

of bisection, and b a constant arbitrary quantity ; as all

the terms of the second member are-given, we can deter-

mine the ratio of m to
ju,

and as we know the magnitudes,

we have the ratio of the densities.
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(x) If / 1' dfenote the times of the earth's and Jupiter's

rotation, c c' the respective centrifugal forces at their

equators, of which the radii are rr\ and gg^ their gravi-

ties, we have, on the hypothesis of homogeneity,

e : tf' : :- 1 1 - 1

*
- : -

, (see page 452,) i. e, because sf

varies as p.r, e \ e' \' :
; , ; if C be the centrifugal

g'9 g'9

force of the fourth satellite, whose distance from the centre

of Jupiter is given in terms of r', c' : C i; : _ (T be-

M
ing the period of the satellite), but C =

-^-^ > M being the

mass of Jupiter, /. c' zz ; therefore knowing the ra-
t xJ

tio of the centrifugal force to that of gravity, we can ob-

tain the proportion of the axes, on the hypothesis of ho-

mogeneity, in the manner indicated in the text; which

proportion not agreeing with that furnished by accurate

observations, it follows that Jupiter is not homogeneous ;

this also follows from the proportion e \ e' y. : -; 7 for

g9 g^'p'

the ellipticity deduced from the preceding proportion, by

substituting for e,gyg\p,p\ does not agree with observa-

tion.

I
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(a) Suppose a to be the distance of the centre of this el-

lipse from that of Saturn, which by hypothesis is very great

relatively to the dimensions ofthe ellipse, and let c represent
the centrifugal force due to the motion of rotation at the

distance of unity from the axis of rotation, then if the coor-

dinates of a molecule of the ring referred to its centre as

origin be w, z, the centrifugal force of this molecule, mul-

tiplied by the element of its direction, will be equal to

{a-]^u),cdu, and the attraction of Saturn on the same mo-

S
lecule is

-

^ , (S beinff the mass of Saturn, sup^

posed to be condensed into its centre,) and as the element of

Its direction is d. ^(a+w) +^*, = ^

^

^ ^

if the squares of % and u be neglected, by multiplying

, S u . Sdu
,
2Sudu S.zdz ^,

by , we obtain + = = , the

attractions which the same molecule experiences from the

ring itself, when multiplied by the element, du^ dz are

, , . 4f7rudu '^ir\%dz ^,

given by the expressions , ^ > the equa-

tion of the generating ellipse being ?+XV=P; and

therefore its differential equation is Ozniidu+X^zdz, which be-

ing compared with the preceding, gives the two following,
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S .47rX . S,,::^^.,K *t _ 3S _. ^ ,

^'X+l-^^^^^^^^^^^A+l
= X* ; the

first equation determines the rotatory motion of the ring ;

the second determines the ellipticity of its generating figure,

making e = -^ we obtain, by means of the second
47r.a^

equation, e = L, '

, and since e is positive, X^
(X+1).(3X*4-1)

' ^

must be greater than unity ; as the axis of the ellipse di-

rected towards Saturn, which measures the breadth of the

ring, is = 2A:, the axis which is perpendicular to it = ,

and as it measures the thickness of the ring, it must be

less than its breadth
;
as ^=0, when X=:0, and also when

X= co, it follows that for the same value of ^, there are two

different values of X ; but we should select the greatest,

which gives the most compressed form to the ring ; when,

therefore, ^ is a maximum, X= 2,594^, in which case d?=

0,0543026., and as S.= -?r.p.R^,^ being the density,
3

T>3

and R the radius of Saturn, c = ^ r , .*. the greatest value
3a^

a}
of which p is susceptible is 0,1629078. ; but this limit is

Jtii

not well defined, in consequence of the difficulty of obtain-

ing the exact ratio of a to R, owing to the effects of irra-

diation, and the smallness of the apparent magnitudes;

if
=j-
= 2 for the innermost ring, this limit = very nearly

^g. It is probable that the irradiation increases consider-

ably the apparent magnitude of the ring, and it is likely

that, in consequence of it, several rings are blended into

one. As the centrifugal force c, arising from the motion
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s
of rotation =

^ , the motion of rotation is evidently equal

to that of a satellite whose distance from the centre of

Saturn is a. Robison shows, from a consideration of the

distance and period of the second satellite, that the period
of the ring is not the same as that of a satellite at the same

distance. See Mechanical Philosophy, page 514.

Relatively to what is stated in page 135, it is shown in

page 165 of the Third Book of the Celestial Mechanics,
that if the ring was circular, the attraction of Saturn on
an element of the ring is always negative, whatever may be

the distance of the centre of Saturn from that of the ring ;

hence then it follows, that the centre of Saturn always

repels that of the ring, consequently the curve which the

second centre describes about the first is always convex

towards Saturn, therefore eventually the second centre is

elongated more and more from that of the planet, until its

circumference touches the surface; and as a ring per-

fectly symmetrical in all its parts would be composed of an

infinity of circumferences similar to that which we have

just considered, its centre would be repelled by that of

Saturn, provided that these two centres ceased to coincide,

and then the ring would eventually be attached to the

surface of Saturn.

Laplace's theory of the ring has been severely criti-

cised by Professor Robison, who is so far from admit-

ting Laplace's conclusions, that he thinks the inequa-
lities in the form of the ring are incompatible with the

equilibrium of forces among incoherent bodies, such as, ac-

cording to our author, the parts composing the ring are :

besides, as by supposition, there is no cohesion in it, any

inequalities in the constitution of its different parts cannot

influence the general motion of the whole in the manner

he assumes, but merely by an inequality of gravitation,

the effect of which would be to destroy the permanency of
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its construction, without securing, as Laplace imagines,

the steadiness of its position ; likewise, as he thinks, that

the equilibrium of the fluid ring is one of instability, any,

the slightest disturbance, would derange it. Robison sup-

poses that the ring consists of coherent matter, the cohe-

sive force being considerable, in order to counteract the

centrifugal force, which is greater than the weight; its

substance, according to him, is viscid, like to melted glass,

and if the ring is not uniform, which is indicated from a

consideration of its spots, but more massive on one side of

the centre than the other, then the planet and the ring

may revolve about a common centre, very nearly, but not

accurately coinciding with the centre of the ring.
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(a) As the density p of the atmosphere is a function of

the pressure p, according as we ascend in the atmosphere

p and therefore p diminishes. See note {k) page 365,
Volume I.

{b) It should follow from this, that at the surface of the

atmosphere, the force of gravity would be equal to the

centrifugal force arising from the motion of rotation. See
as above.

(c) See notes page 492, Volume I. As r^dv expresses

the elementary area described by a molecule projected on

the plane of the equator ; (see page 467
;)

if r diminishes,

dv and therefore the angular velocity of rotation muist

increase,

(d) See notes page 454 of Volume I. The mutual at-

traction of the molecules of the atmosphere is not taken

into account here ; however, it is easy to perceive, that

in consequence of the rarity of the atmosphere, this attrac-

tion is inconsiderable. If r be the distance of a molecule

dM. of the atmosphere from the centre of gravity of the

earth, (which we shall suppose spherical,) 9 the angle
which r makes with the axis of rotation, n the angular ve-

locity of rotation, the centrifugal force of c?M= w^r. sin. 0,

and the element of its direction = d.{r, sin. 6), therefore

the integral of this force into the element of its direction,

is iwV^ sin. % .-. as ^ = Pgx+ QSj/+Rg^; page 454,
^ p

VOL. II. Q Q
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Volume I., we have / ^ = C+V+ lwV^ sin.0, V re-

p 2

presenting the sum of the molecules of the earth divided

by their respective distances, i, e, as the earth is supposed

to be spherical, V zz
, being the integral of

/ (-T7) d^'i now at the exterior surface jp
= 0, /. we

shall have C = + ,r^ sin. *0, = . . = - \ .r
; 2 m r m

9 C 2 w*
sin. ^0. or c = - = _

-|- a ?*^ sin. *0, a denoting , /. e,

m r m

the ratio of the centrifugal force at the earth's equator to the

force of gravity, the radius of the equator being supposed
= 1, if R denotes the radius of the pole of the atmosphere,

2 .22.
we have c= -

, for then vanishes, .*. =:
{- at\^ sin.

R K r

^Of and if R' denote the radius of the equator of the earth's

2 2
atmosphere, wehave, as 0=90, =-_-{- aR'*, .*. aR'^ =

'
^ L

; the greatest value of which R' is susceptibleR
is evidently that which belongs to the point in which the

centrifugal force is equal to gravity, in which case we have

W 2
and therefore 1 =aR'^, consequently - = _

; this ratio of
JlXi o

W to R is the greatest possible, for supposing flR^^ = l
js^

% being necessarily positive or cypher, we shall have

-p^ = "-II_ : it is evident that r increases with 0, and is aR 2

maximum at the equator, for differentiating

2
c = -

-|- ar^ sin. ^0 the equation of the surface, v.e obtain
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T arJ dd. sin. d. cos. ^u i . r idr = 5 : -7; ; now the denomniator of this
1 ar^ sin.^0

fraction is always positive, for as am.r, sin. is the centri-

fugal force of a molecule whose radius = r, {am being r=w*),

this force resolved in the direction of r, = amr, sin. 0, and

as it must be less than the gravity , we have ar^ sin. ^Q

< 1, therefore r increases with 0, and consequently is a

maximum at the equator.

The atmosphere has only one possible figure of equili-

brium, for making the equation of the surface of the at-

mosphere to assume the form

aR. sm. ^u a sin. *t^

the values of r, from what precedes, which satisfy the prob-

lem, must be positive, and such that l ar^ sin. ^0, is

greater than cypher, but there is but one root of this kind,

for if r'r"r''' be the three values of r given by the preced-

ing equation, and if two of them are positive, which is the

greatest number that can be so, inasmuch as the absolute

quantity in the preceding equation is positive, then as 1 -ar^

sin. *0 is >0, both r' and r" must be positive and < than

and as the second term is wanting in the

Wa. sin. =^0

given equation r-"' = r'r\ .*. r"' is negative, and as it

IS r: r' r" it must be less than
Vasin.^0

2
must be less than ; --^ ; but as the absolute quantity

asm.''^
^

is always equal to the product of the roots with the sign

2
changed, -r/rj'r'" should be = : ^ , hence it ap-

a. sin. (7

pears that the supposition of their being two positive values

of r is impossible, and therefore there is only one possible

figure of equilibrium.
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{e) The solar atmosphere only extends to the orbit of a

planet which would circulate about the sun in a time equal

to that of the rotation of this star, namely, in twenty-five

days and one half; and according as the rotatory motion

increases, the limit of atmosphere must be continually con-

tracted. See note (VI.) of this Volume.

(/") Knowing the mass of the moon, and also the time

in which it revolves on its axis, and likewise the mass of

the earth, it is easy to obtain this distance ; for if a be the

distance of the earth from the moon, x the required dis-

tance, m the mass of the earth, and n the angular velocity

of the moon, we have = h n^a:,
75.a;* (a o;)^
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(a) In notes, page 414, the ratio of the disturbing

force of the sun to the force of gravity was determined.

Let J',/'' represent the disturbing force of the sun on the

moon, and on a particle of the terrestrial spheroid, of

which the radius is r', r being the distance of the moon

from the earth, c being the force which retains the moon
in her orbit, and p, P the periods of the earth and moon,

we have

/: c::y: P^andc:/'::i,:^. ../:/'::,:/;

and as we have the ratio of/ to gy the force of gravity, (see

notes page 448,) we can obtain the ratio of/' to g. Ac-

cording to Newton's estimation, this ratio expressed in

numbers is that of 1 to 386046000, this gives the value of

the additious force in places 90 distant from the sun, the

ablatitious force in places to which the sun i vertical, and

in their antipodes is twice greater ; therefore the sum of

the forces is to the force of gravity as 1 : 1286200 ; and

this sum is the whole force which the sun exerts to raise

the waters of the sea
;
for the effect is precisely the same

whether the additious force depresses the water at places

90 from the sun, or elevates the water in the places be-

neath the sun, and in their antipodes. Now, as we have

the ratio of c' the centrifugal force tog the force of gravity,

and as we have the ratio of g : 3 /, we have the ratio of

c^ to 3/, namely, that of 1 to 44527 j hence, as according
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to Newton*s theory, the centrifugal force makes tlie height
of the water at the equator exceed the height at the pole

by 85472 feet, by a proportion we find the height of the

water under the sun, and in the opposite regions, 1 foot

11
^-^yth,

of an inch. He determines this elevation some-

what differently in the Systema Mundi, and makes the

height = 9.2 inches.

Newton deduces the force of the moon to move the sea

from its proportion to that of the sun, which proportion

he infers from the proportion of the motions of the sea,

which arise from these forces. If L represent the force of

the moon in the equator, and at its mean distance from the

earth, S that of the sun in the same circumstances; as at

the conjunction and opposition, the height of the tide is

the sum of S and L, and in the quadratures it is produced

by their difference, we have L+ S : LSII^S : 25,

these numbers expressing the mean of the observed heights

in syzygies and quadratures. If the sea covered the entire

earth, supposed spherical, the figure which it would as-

sume in consequence of the action of each luminary se-

parately, would be that of an oblong spheroid, in which

the elevation above the equicapacious sphere is double of

the depression below this sphere ; for in this case the ca-

pacity of the spheroid - ir^aU^ :=. - Tr.r^ r being the ra-
o o

dius of the equicapacious sphere, then <af s=r=54-^, we

4 4
have -7r.(r-|-5) (r ^Y = -Tr.r^, .'. neglecting the squares

3 3

and higher powers of S and 5, we have r^z:r^+r"5 2r^^,

.'. 5=23, if the spheroid was oblate we would have ^= 2^,

.*. in the first case, r = ^
, in the other, r = JL- .

3 3

Aiid it is evident, from the expression r =
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q.j), h.\\-\-e^ COS. -A), that the difference between the

elevation at any point X and tlie greatest elevation, varies

as sin. ^X ; and it is easy to show, that the elevation of any

point about the greatest depression, varies as cos. % there-

fore it is easy to show, that the elevation of any point

above the equicapacious sphere = S.
(cos.

^X -
j

, and

the depression of any point beneath this sphere =

S.
(sin.

'X -
^)

. See page 382.

{b) Let S represent, as before, the mass of the sun, a its

distance from the earth, r the radius of the terrestrial

spheroid, and ^ the distance of any place from the point
where the sun is vertical, it is evident, from notes, page
4-10, that a particle of matter at that place is drawn

towards the moon bv a force = . cos. 0, and be-

sides, its gravity towards the earth is increased by an-

Sr
other force = ^ ; and since, in the hemisphere op-

posite to the sun, is > -
, tt being the semicircumfe-

rence, and therefore cos. is negative; the effect of the force

is to draw the particle from the earth in a direction oppo-
site to that which it has in the other hemisphere. As

T- ) is nearly always the same, it does not disturb the

equilibrium of the waters. In order to obtain the whole

force by which the action of the sun diminishes the gravity

of a molecule, we should resolve
' ' ^ into a force

in the direction of the radius vector, and another at right

angles to the radius, then the whole force =

LJ 1-i
, and the other force draws the particles
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tangentially or horizontally, and it is = . sin. ^. cos. 0;

if a
<l>\ represent corresponding quantities for the moon,

its force in the direction of the radius = y^- . (cos.

*^' Lr). Newton does not take into account the effect

of- Lr*. sin. ^<p; its effect is to increase the previous quan-

tities.

(c) It follows from this construction, that near to high
and low water the difference of the depths from those of

high and low water, are as the squares of the times since

high or low water.

{d) Besides, the value of cos.
~<^ relatively to different

parts of the same sea, must be considerably different, in

order that an oscillation may be produced ; for the dis-

turbance of the equilibrium of the waters of the sea is only

produced by the inequality of action on different parts of

the mass of waters ; and this, combined with what is stated

in page 143, explains why the tides of the Caspian and

other inland seas are so inconsiderable.

[e) If L, S represent the actions of the moon and sun,

or the difference between the respective semiaxes of the

ellipsoids mentioned in the text, it is evident that in syzy-

gies the total rise of the water arises from L-f-S, and in

the quadratures this height is produced by L S, for the

height is regulated by the situation of the moon. From

this it follows, that L is more than twice as great as S; in-

deed, it was observed by Newton, as stated in page 486,

that L : S I

*

7 : 2
;
or more accurate observations since

his time, make

L+S : L-S::2 : i, and .*. L : S::3 : l.

S L
Hence we can obtain the mass of the moon, for ^ -. ,

are the forces of the sun and moon to move the waters ;



N0TE3. 489

therefore
*

,
1 1 1 : 3, and consequently L = %- .

L in this way is found to be - of the mass of the earth.
75.5

In a given distance A of the sun from the moon, it is easy
to determine the point where the elevation produced by
the combined action of these luminaries is a maximum ;

for in that case we have

I,
(cos.

^A~
I)

+g'.
(cos.

'X'
i)

,

a maximum, (see note page 486 ;) and consequently
I. d\, sin. 2X + l\d\', sin. 2V=0, but as X+ X'=: A, r7X=

d\\ and /. g. sin. 2A=S' sin. 2A^; hence, if twice A be

divided into two parts, such that the ratio of the sines may
be given, half of each part will give the distances of S and

L from the high water.

(y*) If the harbour be not in the equator, it follows,

from the expression for the elevation above the equi-

capacious sphere in page 487, that the difference of the

semiaxes must be multiplied by cos. ^A.

It is evident, that as the place of high water coincides

with the moon in the syzygies, and in the following quad-

rature, and is always between her place and that of the

sun, that it must for some time be gradually left behind,

and afterwards overtake the moon. To determine when

the separation of the moon from the place of high water is

a maximum, call co the distance between L and S, and ?/,

the distance of the moon from the place of high water, then

sin. 2?/ : sin. (2^ 2j/) !! 8' : ^, therefore we have tan.

V (sin. 2^)
2?/ = -r;^ ^,-r-^ , and .*. is a maximum when 2.r= 90,^

g-fg'cos.2^'

i,e, when a:= 45, therefore in this case 2j/ is a maximum,

and dy:=.% i.e. the motion of high water, or its sepa-

ration from the sun to the eastward, is equal to the

moon's easterly motion, i.e, in the octants the tide day is

VOL. II. R R
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equal to a lunar day; and as the height of the lunar

tide is proportional to Sr. cos.
^(jt,

its momentary dimi-

nution is proportional to sin. ^ cos. 0, or to sin. 20.

(g) According to Newton's theory, which we are at pre-

sent assuming to be correct, the water at every instant as-

sumes the figure of an oblong spheroid, of which the

greater axis is directed to the luminary, when a luminary

has north declination, the duration and magnitude ofthe su-

perior tide will be greater than the duration and magnitude
of the inferior tide; if the declination of the luminary was

equal to the.colatitude of the place, there would be only one

tide in the day. For places in the equator, whatever be

the place of the luminaries, the superior and inferior tides

of the same day are the same, though from one day to an-

other they differ, their value is L. cos. ^d, d being the de-

clination, at the pole there is no daily tide, but there is a

gradual subsidence and rising by the moon's declining

from the equator.

{h) The manner in which Laplace estimates the velocity

of the propagation of gravity, is as follows: he supposes a

force which, like light, though acting in a contrary direc-

tion, rushes towards the sun with an immense rapidity ;

the resistance which the planet experiences from this

current in the direction of the tangent, he conceived to

produce a perturbation in the elliptic motion, like to the

aberration of light. Calling v the velocity of the gravific

fluid which acts in the direction of r a radius vector drawn

towards the sun, if ^s represent the arc described by a

planet in an inconceivably short interval of time, then the

planet will be actuated by two forces in the direction of r

and 5, which are respectively as v and -, the force in the

M
direction of ?* being , the resistance in the direction of

the tangent = ^ =r- , and if this force be resolved into
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two, one in the direction of r, and the other perpendicular

to r, thev will be respectively ; ^c- and %^ , for the

arc perpendicular to r=:r^(p, ^ being the angle which r

makes with the axis of ^
; therefore the entire force di-

rected towards the centre = .(l-\ ^ ) ; if this force
r* \ v.ht /

be resolved into two, parallel to a: and
j/, they will be

force - ^ , resolved parallel to x and j/, gives

MS</>. cos. d> MSfb.s'in.d) ^i c 1 . ^ .

^-
?r: -} ^^, ~; therelore the entire force in

rvM r.v.ht

the directions of ^ and
j/, are

M f gr. COS. ^ ^ r^. sin. 0\
r* V

^ ^
vd^ J

M / .
,

gr. sin. ^ + rg0. cos. ^\ .

therefore, by means of the equations in 273, we obtain

-A-St^ (l + -^j ; if i; be supposed to be in-

finite, these equations would give those of elliptic motion .

multiplying by r and integrating, we obtain r*S^= A8^

2gM^if-^, if V is not infinite it is probably a function of

r, however, relatively to the small variations of distance for

each planet, we may assume it as constant, particularly as

the integral /*
-^ is extremely small, .*. /*

-^ zz ^
, and

-^

r V V

consequently (xp
= ^ z

* * squarmg and ne-
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T ,. 1 , ,
. rg0* A^ 4X/ANU

,
.

,

c:lectiii<>: , we obtain ^ =
,

-T - '-
,

wincli

being substituted in the second of the foregoing equations,

will give = *i + ^
3

^ + ^V- -^.^^'"g

neglected as inconsiderable; making ^ = ?i/ + aS,r =
(1 + aw), w^ will be the mean motion, a the mean distance,

and a^, az< very small numbers, 7zT= 27r, T being the

AT A
time of a revolution, and as tt = , 7i = -

; thus the

preceding equations will become q.p

ct a^ a V

Ozz-^~ (1 32^) + -^ +-^ I 2az/)5 or

by substituting h.^z=.2gMa,

0= -KT- + '2nu -f ; = -_ + fi^u + ;

ct av St^ av

the form of the integral of the second of these equations
is 7^= D. cos. {fit-\-b) +Et, /. as r= a {l-\-au), aD is the

eccentricity, and f^i+ b is the anomaly of the ellipse; if

the epoch from which we reckon is the time of passing

through perihelion, b must be = ; hence if y' denote

the eccentricity, ?< = ^ cos. Qt-^-Et, and .*. -^ = ^
a ct a

/3^ COS. fdt, and = .^!zl y cos. j3t+ n't fE+^Y.*.

jd
= n; E =

, and uzz ^ , cos. nt . t, and
av a V

by substituting we obtain

c4 = tct 7 St. cos. ?//, and 4 z= .r ^. sm. ?it,
V a ' '

2v a
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1 4" 7* COS. [5t tj , and =

?U 2y sin. iU + -^
i^

; ^^^ being the mean motion, 2y,

Sn' a
.J,sin. / the first term of the equation of the centre, and

the secular equation proportional to the square of the time,

which would appear to explain the secular equation of the

moon. See page 63. If the secular equation of the

moon was known, on the hypothesis that it arose from this

catise, we could determine v, for if i be the number of

months m the time t, then ?it=:2iri, and the secular equa-

tion = ^!^^^; in 2000 years /=2000.i?^^ ,
/. ? the

V
'

. 39343

secular equation for 2000 years =

6W (2000) -(-^^soeg): ^^^ .f ^^.^ .^ ^ ^^^ ^ ^
(3934-3fi;

.n'. 4000000. fi^^^y, now n = 32", 94 if the time
1 V 39343 /

is expressed in seconds, and a = 0,0025138 a, a being the

distance of the sun from the earth ; therefore

^ _ 5M^ = 0,0549, and for one minute,
1 600

w = 7r^549. 1,00552. (:^?^^)''a
= 973753 , i,e, in a

minute of time the gravific fluid passes over one million of

the earth's semidiameters; and its velocity is 80C0000

greater than that of light, as the secular equations of

the different planets, ? = ^^^-^
vary as nai^ or as ri^a^

V

we can find the secular equation for all planets, knowing

that of any one.

{i) From the characteristic property of fluids, namely,
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the perfect mobility of its particles, it follows, that when a

fluid mass is in equilibrio, each of its particles must like-

wise be in equilibrio, in consequence of the forces which

solicit it. This is the general principle which Laplace

applies to determine the relation which must exist between

the forces which solicit the system when this condition is

satisfied; and in determining the figure of the earth, he ap-

plies it to determine the equilibrium of a homogeneous fluid

mass spread over a solid nucleus ofany figure whatever. In

the theory of the tides he introduces into the differential

equations ofthe motion offluids, the forces which disturb the

equilibrium, namely, the attraction of the sun and moon ;

and secondly the attraction of the aqueous stratum, of which

the interior radius is that of the spheroid of equilibrium,

and the exterior that of the disturbed spheroid. The in-

tegrations of these differential equations present almost in-

superable difficulties, even in the case in which the depth

of the sea is assumed to be a function of the latitude ; for

even then the determination of the radius of the troubled

spheroid would lead to a linear differential equation which

cannot be integrated ; however, the integration of this

equation is not necessary, it is sufficient if we are able to

satisfy it, for that part of the oscillations which depend on

the primitive state of the sea must disappear very soon,

from the action of exterior obstacles, so that, as without

the action of the sun and moon, the sea would long since

have attained a permanent state of equilibrium, it is only
the action of these two stars which causes them to deviate

from this state, and therefore it is solely necessary to con-

sider the oscillations which depend on this action, now if

the terms which produce these be developed, the part of

the action of the star which disturbs the fluid molecule, is

(neglecting the fourth powers of -, See page 166)
r

^f (cos. 0. sin. V + sin. 0. cos. v.) cos. (w/+w ^)* -J,
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wliere r is the distance of the attracting body from the

centre of the earth, v its declination, 1//
it right ascension,

nt the rotatory motion of the earth, and w the angle which

a plane passing through x and r makes with the plane
:r, y^ the preceding expression is equivalent to the three

following :

J
fsin. ^2^ - cos.

^t^)
. (1+3 cos, 2 0)

SL+ -^. sin. d. cos. 0. sin. v. cos. v, cos. (w/+ c5 ^)

3 L+ -
. ^ sin. *0. COS. ^z;. cos. 2. {nt-\-Ci ^) .

Now, (as has been remarked,) the only oscillations which

it is necessary to consider, are those which depend on

the action of the sun and moon, for those which depend
on the primitive state of the sea, must long since have

disappeared, from the resistance which the waters of the

sea have experienced in their motion, h&r v and -^ vary

with extreme slowness relatively to nt^ the three preceding
terms give rise to three different species of oscillations.

The periods of the oscillation of the first species are very

long ; they are independent of the rotatory motion of the

earth, and depend solely on the motion of L in its orbit.

The periods of the oscillation of the second species depend

principally on nt^ the motion of rotation of the earth, their

duration is very nearly a day. Finally, the periods of the

oscillations of the third species, depend principally on 2/?^,

their duration is about half a day. As the resulting equa-

tion which determines the oscillation of the sea is linear,

it follows, from what is stated in page 286, Volume I.,

that these oscillations mix, without interfering with each

other, therefore we may consider each separately.

With respect to the oscillations of the first species, they

can be obtained in an approximate manner, if the spheroid
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covered by the sea is an ellipsoid of revolution, in which

case the depth of the sea must be a function of the latitude.

The part of these oscillations which depends on the mo-

tion of the nodes of the lunar orbit, may be very consider-

able; however, in consequence of the resistance which the

waters of the ocean experience, the oscillations of this

species are very much diminished, and their extent be-

comes very inconsiderable, so that, in virtue of these re-

sistances, the oscillations are very nearly the same as if

the sea should be in equilibrio under the attracting star.

With respect to the oscillations ofthe second species, they

can be determined when the depth of the sea is supposed

to be very nearly constant. The difference of the two

tides of the same day depends on these oscillations ; now

it appears from observations that this difference is very

small, and as it would seem to follow from the expression

for the difference, that the height of the superior tides is

>? than that of the inferior, the depth of the sea is greater

near to the poles than at the equator; but this depends on

an hypothesis which we know not to be true, namely, that

the sea is spread over the entire earth.

With respect to the oscillations of the third species, these

also are easily determined, if the depth of the sea be

supposed every where the same ; according as the depth
is increased, these oscillations approach to what they
would be if the sea was in equilibrio under the attract-

ing body.

In reference to what is stated in page 154, as to the

effect of local circumstances, he shows, in the Thirteenth

Book, that in consequence of the rotation of the earth,

and of these local circumstances, the daily tide is re-

duced very nearly to a third, while the semidiurnal tide

becomes at least sixteen times greater ; however, when it is

considered that the rotation of the earth destroys, in a sea

of a M/?//br7 depth, the daily tide altogether, and likewise
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tli.it if the depth of the sea was y^^^th of the earth's radius,

the height of the semidiurnal sea in the syzygies would

be 11 metres, we should not be surprised at these results.

See note (x) and Chapter XII.

It is easy to show, that in the hypothesis of a great

depth, the two tides of the same day v/ould be very dif-

ferent at Brest, if the declinations of the sun and moon
were considerable

;
in fact, one tide would be eight times

greater than the other ; but according to observation they
are very nearly equal, therefore the hypothesis of a great

depth of sea is inadmissible.

Laplace proves, that the value of the quantity by which

the sea is elevated, in consequence of the action of extra-

neous attracting bodies, ceases to be periodic, (which is a

condition necessary in order to insure an equilibrium,)

when the density of the sea surpasses that of the nucleus

over which it is spread; when the contrary is the case, the

equilibrium is stable, whatever may be the original agita-

tion ; but if otherwise, the stability of the equilibrium de-

pends on the original disturbance.

He likewise shows, from the relations which exist be-

tween the depth of the sea and the oscillations of the second

species, that these oscillations must disappear for the entire

earth when the depth of the sea is constant; but no admis-

sible law of the depth of the sea can render the oscillations

of the third species equal to nothing for the whole earth.

In some harbours the oscillations of the second species

may be insensible, while in others the oscillations of the

third species can hardly be recognized.

The reason why the principle stated in page 155 is ap-

plicable to the tides, is, that the forces become the same

after the interval of half a day.
This principle being combined with that of the co-

existence of very small oscillations already adverted to,

enables us to obtain an expression for the height of the

VOL. II. s s
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tides, of which the arbitrary quantities comprise the effect

of the local circumstances of the port and each harbour ;

for this purpose Laplace reduced into a series of sines and

cosines of angles, increasing proportionally to the time,

the expression of the solar and lunar forces. He con-

siders each term of the series as representing the action of

a particular star, which moves uniformly at a constant

distance in the plane of the equator ; hence arise several

species of partial tides, of which the periods are nearly

half a day, an entire day, half a year, an entire year, eigh-

teen years and a half.

When the sun and moon do not move in the plane of

the equator, then the effect produced may be conceived to

be made up of the action of several stars respectively mov-

ing in the plane of the equator at different distances and

at different periods; and the total tide due to the action

of the sun is the combination of the partial tides due to the

action of each of those stars.

(/) Each observation has for its analytical expression a

function of the elements which we want to determine, and
if these elements are very nearly known, this function be-

comes a linear function of their corrections. By putting
it equal to an observation, we form what is called an equa-
tion of condition ; and if there be a considerable number

of like observations, they are combined so as to form as

many final equations as there are elements; and then, by

resolving these equations, we determine the corrections of

the elements. The artifice consists in combining the

equations of condition in the most advantageous manner ;

for this purpose, it is to be observed, that the formation

f a final equation by means of equations of condition, is

effected by multiplying each of them by an indeterminate

factor, and then combining these products ; but it is ne-

cessary to select the system of factors which gives the

smallest error ; now it is evident, that if we multiply each

error of which an eloment determined by a system is still
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susceptible by the probability of this error, the most ad-

vantageous system is that in which the sum of these pro-

ducts, taken positively, is a minimum ; for a positive or ne-

gative error may be considered as a loss. Therefore, by

forming this sum of products, the condition of the mini-^

mum will determine the most advantageous system of fac-

tors, and the minimiim of error to be apprehended on each

element. In the analytic theory of probabilities, Laplace
shows that this system is that of tlie coefficients of the ele-

ments in each equation of condition, so that a first final

equation is formed by multiplying respectively each equa-
tion of condition by the coefficient of its first element, and

then combining all these equations thus multiplied. A
second final equation is formed by employing the co-

efficients of the second element, and so on. In the same

work he gives the expression of the minimum of error,

whatever may be the numher of the elements. This mini'

mum gives the probability of the errors of which the cor-

rections of these elements are still susceptible, and which

is proportional to the number of which the hyperbolic

logarithm is unity, raised to a power of which the expo-
nant is the square of the errors taken negatively, and di-

vided by the square of the minimum of the error, mul-

tiplied by 27r. The coefficient of the negative square of

the error may therefore be considered as the modulus of

the probability of errors, since the error remaining the

same, the probability decreases with rapidity, when it in-

creases, so that the result obtained inclines towards truth

so much the more as the modulus is greater. Laplace, for

this reason, terms this modulus tlie weight of the result ;

and by a remarkable analogy of those weights with those

of bodies, referred to their common centre of gravity, it

happens that if the same element is furnished by diffe-

rent compound systems, each consisting of a great num-

ber of observations, the most advantageous mean re-
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suit of them all taken together is the sum of the pro-

ducts of each partial result by its weight, this sum

being divided by the sum of all the weights; more-

over, the total weight of different systems is the sum

of iheir partial weights, so that the probability of the

errors of the mean result of their aggregate sum is pro-

portional to the number of which the hyperbolic lo-

garithm is unity, raised to a power of which the expo-

nent is the square of the error taken negatively, and

multiplied by the sum of the weights. Indeed, each

weight depends on the law of probability of the errors in

each system, and almost always this law is unknown ; but

Laplace fortunately succeeded in eliminating the ftictor

which contains it, by means of the sum of the squares of

the deviations of the observations of the system from their

mean result. It were therefore desirable, in order to per-

fect our information on the results obtained from a collec-

tion of a great number of observations, that at the side of

each result the weight which corresponds to it should be

written. In order to facilitate the computation, Laplace

developed the analytical expression when there were only

four elements to determine. But as the number of ele-

ments increases, this expression becomes more and more

complicated. He gives a very simple means of determin-

ing the weight of a result, whatever be the number of ele-

ments, and then a regular process of arriving at our object

is preferable to the employment of analytical formula.

When by this means the exponential which represents the

law of the probability of the errors of the result is ob-

tained, the integral of the product of this exponential

by the differential of the error, being taken within defi-

nite limits, will give the probability that the error of the

result is comprised within those limits, by multiplying it by

the square root of the weight of the result divided by 27r.

See Celestial Mechanics, page 82, and Volume I., page 473.

[vi)
Observation agrees with theory in making the di-
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niinutioii of the total tide, reckoning from the maximum,
to be proportional to the square of the times. Likewise

the solstitial tides are less than those in equinoxes in

the proportion of the square of the cosine of declination

to radius, which is exactly the proportion between them

which can be inferred from theory. In like manner, agree-
able to the formula in page 494, the variations of dis-

tance must have some influence on the height and retarda-

tion of the tides, in which there is also a perfect conforma-

bility between theory and observation.

The ratio of the action of the moon to that of the sun

can be determined either from the syzygial heights com-

pared with the heights in quadratures, or from the varia.

tion of retardation in syzygies and quadrature, or from the

actual diminution of the heights in these positions of the

sun and moon.

If e be the proportion of the mass of the moon,

-rrded by the cube of its mean distance from the earth to

the mass of the sun, divided by the cube of its mean dis-

tance from the earth, it is q.p-=i3.

The proportion of the solar to the lunar action is Jd in

the harbour of Brest ; but it would be nothing at a har-

bour constructed at the extremity of two canals, whose

embouchures being near each other, are so situated that

the solar tide employs a day and a half to arrive by
one canal at the harbour, and only a quarter of a day to

arrive by the other. The low water of the second cor-^-

responds to the high water of the first canal; therefore,

if, at the common termination of the two canals, the tides

are of equal height, the sea, as far as the action of the sun

is concerned, will then be stationary ; but as the lunar day

surpasses the solar, the low lunar tide of one canal does

not correspond with the high lunar tide of the other, so

that at their common extremity they will not destroy each

other.

The number of observations from which Laplace de-
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duced the ratio of the heights in solstitial syzygies to those

in the syzygies of quadratures, in the Fourth Book of the

Celestial Mechanics, was twenty-four, made respectively

in the quadratures and syzygies of these luminaries,

whereas the number from which he deduced the cor-

responding proportions in 1820, were 128 in each; there-

fore a greater degree of accuracy was to be expected from

the last ; however, an inspection of the results from an-

cient and modern observation, shows that there is a per-

fect conformity between them.

(o) Suppose a canal communicating by means of its

two extremities with the ocean, the tide in any harbour

situated on the banks of this canal will be the result of un-

dulations transmitted by its two emhouchwes^ but its situa-

tion maybe such, and the undulations of the tides may ar-

rive at it at such different times, that the maximum of the

one may coincide with the minimum of the other; and if

they are equal, it is evident that, in consequence of these

undulations, there is no tide in this harbour, but there will

be a tide produced by the oscillations of second species,

of which, as the period is twice as long, will not so cor-

respond that the maximum of those which arrive by one

embouchure may correspond with the minimum of those

which come by the other. In this case there will be no

tide on the day when the sun and moon are in the plane
of the equator, but when the moon has declination, there

will be only one tide in the lunar day, so that, if the high
water is at the rising, the low water will happen at the

setting of the sun, and vice versa. See Princip. Math.,

Vol. III. Prop. 24..

( p) See notes, page 489.

Ifj as is stated in page 166, there is any tide depending
on the fourth power of the distance of the moon from the

earth, it would be evinced in the difference between the

action of the moon, in the new compared with its action

in full moon, and between its action in the northern and
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southern quadratures ; and it is certain, from the theory
of probabilities, that the increased number of observations

can supply their want of accuracy, so that, by means of

them, we can appreciate inequalities much less than the

errors of which they are susceptible. The differences

above-mentioned ought to be sensibly indicated in the

numerous observations of the height of the tides discussed

by Bouvard. The terms divided by the cube of the dis-

tance, which are the only ones hitherto considered, do not

indicate any difference between the lunar tides of full and

new moon : but a comparison of a great number of ob-

servations proves, that tlie terms divided by the fourth

power of the distance indicate an excess of the full moon
tides over those of the new moon, both in the equinoxes
and also in the solstices; and, conformably to theory, the

excess is greater in the equinox than in the solstices.

Bouvard having separated, in the computation of the

solstitial syzygies, the tides in which the declination of the

moon was southern, from the tides in which the declination

of the moon was northern, found, from taking the sum of

a great number of each, that the action of the southern

moon on the sea exceeded the action of the northern

moon.

Newton thus accounts for this phenomenon : there

are two inlets to this port ; and if, through one of

those inlets, a tide arrives at Batsha at the third hour

after the moon passes the meridian, and through the other,

six hours after, if these tides are equal, as one is flowing

while the other is ebbing, the water must stagnate, this is

the case when the moon is on the equator, but when the

moon declines to the north of the equator; the morn-

ing tide exceeds the evening, as appears by what is already

stated in notes, page 490, so that two greater and two

lesser tides arrive at Batsha by turns. The difference of

these will produce an ebbing and flowing, which will at-
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tain its maximum at the middle, between the two greatest

tides, and be lowest at the middle, between the two lowest

tides; therefore, at the setting of the moon it is high, and

at the rising it is low water; when the moon is at the

other side of the water, or the evening exceeds the morn-

ing tide, the case is reversed, and it is high water as

the moon rises, and low water when she sets.
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() Besides the oscillations of the atmosphere due to

the attractions of the sun and moon, there are also move-

ments excited in it by the variations of the solar heat ; but

it is impossible to subject these last to analysis. The first

mentioned oscillations are given by an analj'sis similar

to that which determines the oscillations of the sea when

the depth is uniform.

The oscillations in the atmosphere ought to produce cor-

responding oscillations in the heights of the barometer; and

indeed it is only by means of the variations of the barometer

that the existence of the very inconsiderable wind, which is

produced by the action of the sun and moon in an atmo-

sphere already considerably agitated by other causes, can

be indicated. These barometric observations ought to

be made within the tropics, where, as is stated in page

173, the changes arising from irregular causes are fewer;

indeed, the gravity of the mercury in the barometer must

be affected, however, not so much as the more distant air.

The principle referred to here, is that stated in page 155.

(b) See notes to the preceding Chapter, page 501.

(e) Since, on the day of the syzygy, the lunar action

combines with the greatest diurnal variation, and on the

day of quadrature, it is greatest when the diurnal variation

is least, the difference of these heights must be evidently

equal to twice the lunar action, and therefore equal twice

the height of the atmospheric lunar tide.

VOL. rr. T T
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The diurnal variation which has been observed being

regulated by the solar day, indicates evidently that this

variation is due to the action of the sun ; however, when

we consider the smallness of the effects due to the combined

attractions of the sun and moon, the attractive force of the

sun alone must be considered as almost insensible, there-

fore it must be by the action of heat, that the sun

produces the daily variation of the barometer. It is,

however, as has been already remarked, impossible to

submit to analysis the effects of this action on the height
of the barometer ; it is principally apparent at the equa-
tor ; however, notwithstanding the inconstancy of our

climates, it is also indicated, though less sensibly, to

observations without the tropics; besides the maximum
and minimum mentioned in the text, there is a second

maximum at eleven o'clock, p. m., and a second minimum
at four o'clock, a. m. See Essai Philosophique su?' les Pro^

babilities, page 123, Bme edition.

{(J) By comparing the heights at nine a. m., with those

of the same days, at three p. m., he found that its mean

value for each month remained constantly positive for

each of seventy- two months, reckoning from the 1st of

January 1817 to the 1st of January 1823, its mean value

in these seventy-two months is very nearly -f-^
of a milli-

meter, which is much less than at the equator ; it is re-

markable that the mean result of the diurnal variations of

the barometer from nine a. m., to three p. m., is only

0,5428 for the three months of November, December, and

January, and that it increases to l'",0563 for the three fol-

lowing months
; nothing similar to this occurs in the fol-

lowing six months.

{e) As there is a calorific quality accompanying the colo-

Hfic action of light in the spectrum, so in every modifica-

tion of the rays of light a calorific quality is a concomitant.

Its existence is clearly established by means of the photo-

meter, an instrument which is contrived to point out the
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power of illumination by the slight elevation of tempera-
ture which it occasions. It consists of a differential ther-

mometer, having one of its balls diaphonous, and the other

blown of a deep black enamel, and when the light incident

on the two balls is of the same intensity, the temperature
of the black ball will rise more than that of the other, ow-

ing to its absorbing a greater number of calorific rays;

and vice versa^ if the two balls were precisely the same, it

is evident that the one which was most illuminated would

be that whose temperature would be most increased.

(f) Before he applied the calculus of probabilities to this

phenomenon, he determined the law of the probability of

the anomalies of the diurnal variation, which may arise

from chance, and then, by applying it to the observations

of this phenomenon, he found that there was more than

300,000 to 1 that it was produced by a regular cause.

The following is the outline of the method for determining

the probability of the mean error of a great number of

values of the diurnal variation : let w denote a great num-

ber of values of the diurnal variation of the barometei",

the sum of them all divided by n gives the mean value; if

c denotes the sum of the squares of the differences of this

mean value from each of their values, and 2i the mean

error of a great number s of values of the diurnal variation,

the probability of u will be proportional to c .7^*,

as in this case, nz=. 1584, and .*. e = 54-73,98 , and /. =
2e

0,144685, and if s expresses the number of diurnal varia-

tions near the syzygies, weiiave 6'zi:792, and the probabi-

lity of the mean error u will be proportional to e"^^^^^^*,

and the probability of a mean error u' near the quadra-

tures, is proportional to ^-ii^.^'^; /. if v denotes the excess

of // over //, by the method of die work already cited, the

probability of z will be proportional to 114,59. -^ .
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It is to be observed here, that the observations employed

by Laplace, are taken without any reference to the time of

year, therefore ihe partial lunar tides which would depend
on the declinations of the moon and on its parallax, dis-

appear in the collection of these observations. The ana-

lytic expression for the lunar tide, like to that for the sea,

is expressed by the formula

R. COS.
[2nt-\~2{:) 2mt2{tn'tmt)'2\']

R depends on the action of the moon on the atmosphere,
whether direct or transmitted by the sea, mt m't represent

the mean motions of the sun and moon, ni the rotation of

the earth, w the longitude of the place, nt-\-^ ^^ is the

horary angle of the sun, and A' is an indeterminate constant

quantity.

The combined action of the sun and moon must cause

a tendency in the air as well as the ocean to move west-

ward ; however, as the rate is, according to Laplace, only

four miles during each revolution of the earth on its axis,

it is evidently too small to be subjected to observation.

Qi) At the parallel of 25, the mean temperature is 4

of the centigrade thermometer lower than at the equator.

This difference of heat may be supposed to graduate

through the atmosphere to the height of 10,000 feet ;

therefore the expansion of air at the equator, which draws

to it a meridional wind, will amount to a column of 100

feet. The velocity of the current thence produced, must

be 8. '^100, or 80 feet in a second, i.e, 54? miles in an

hour ; but as the velocity of a point in a parallel of 24? is

seven miles an hour faster than on the parallel of 25,
when the wind arrives at the parallel of 24, it will seem to

a spectator to have acquired a tendency of seven miles an

hour to the west ; at its arrival at the parallels of 23, 22,

21, &c. it will gain continual though decreasing additions

to its apparently westerly course, which, at the equator,

will be increased to 104 miles in an hour. The same ob-
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tains also for the southern hemisphere ; however, as the

mean temperature for a given latitude is greater on the

northern than on the southern side of the equator, in-

asmuch as a larger land surface is presented to the action

of the solar rays in the northern hemisphere, the mean

path of the easterly current of the air is 3 to the north

of the equator. It is also to be observed, that the

sun is not always vertical to the same place; therefore,

though the hottest region for the entire year is 3 north

of the equator, still its position must in some measure be

dependent on the seasons. In the summer months it shifts

towards the tropic of Cancer; during winter the hottest pa-

rallel passes to the other side of the equator ; hence, in the

progress of summer the trade wind oscillates about a point

towards the north, and it declines towards the south with

the advance of winter. But the trade winds experience a

much more considerable modification, arising from the cir-

cumstance of the sun acting more powerfully upon the land

within the torrid zones than upon the water ; hence, when

he moves towards the northern hemisphere great heat is

communicated to the desarts of Africa, the consequence
of this greater heat acquired in the sands of these desarts

than in the seas which lie to the east and north east of

them, is a rarefaction in the columns of air incumbent on

them, and therefore a tendency in the adjacent columns

which are more moderately heated to flow in and displace

the heated air
;

this changes the direction of the wind.

These periodical winds are called monsoons
; and on the

north side of the equator, in the Arabian and Indian seas,

it is north west during the summer months, from April to

October, and in the opposite direction, or south east, dur-

ing the winter months j on the south side of the equator
it is the direct contrary, being north east in summer, and

south west in winter. In order that the equilibrium be-

tween the parts of the atmosphere may be preserved, it is

necessary that in the upper regions of the atmosphere
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there should be a perpetual current towards the poles. As

these streams, after they pass the tropics, descend towards

the surface, with the celerity due to the equatorial regions,

they will appear to blow to the west with the excess of

their previous velocity over that of the parallel which they

reach. This is the reason why, in places above the lati-

tude of 30 the prevailing wind is westerly, and this is

also the reason why westerly winds are generally warm, as

coming from a warmer region; and on the same prin-

ciple the north and east winds are cold, as they originate

in regions nearer to the arctic circle.

Jupiter's atmosphere must be much more agitated than

ours is by the moon, from the joint attractions o^ the four

satellites ; however, the effect of the sun's action cannot be

so considerable, in consequence of its much greater dis-

tance.

\
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(a) There are two cases in which there would be no pre-

cession of the equinoxes, namely, first if the earth was a

perfect sphere; in which case the solar force, on any par-
ticle in the hemisphere turned towards the sun, which is

proportional to the distance of the particle from the plane
of the circle of light and darkness, is equal and contrary to

the force by which similarly situated particles in the oppo-
site hemisphere are drawn j therefore the solar forces in

the opposite hemispheres balance each other; see page 407,

from which it is evident, that the mean quantity of the

solar force is r-. ?'. cos. S, where S denotes the mass of

the sun, a the mean distance of the sun from the earth, r

the radius of the equator, and d the declination of the

sun. The part of this force, which is perpendicular to the

3S
plane of the ring , r. sin. ^. cos. d, ;

or secondly, if

the axis of the earth was always perpendicular to the eclip-

tic, in which case the action of an external body would be

absolutely equal on the two parts of the spheroid above and

below the ecliptic, therefore it would not produce any al-

teration in any of its motions. Since to each of the moons

mentioned in the text we can apply what has been stated

respecting the lunar orbit, which, in consequence of the

solar action, intersects at each of its revolutions the plane

of the ecliptic in a point anterior to that in which it met
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the ecliptic at a previous revolution, which causes the

lunar nodes to retrograde ; in the very same manner, each

point of the ring intersects the ecliptic in a point anterior

to that at which it had intersected it twentyfour hours

before ; and from the action of all these moons on the

globe of the earth, there will result every day a small re-

trogradation or angular motion of the intersection of the

equator and ecliptic, which, on account of the rapidity of

the earth's revolution, and the greatness of its mass rela-

tively to that of the ring, must be very small
; however,

as this retrogradation is repeated 365 times in the course

of the year, there results at the end of the year a retro-

grade motion of several seconds, produced by the sole ac-

tion of the sun. The part of the solar action which is per-

3 S
pendicular to the ring = ^

. r. sin. S. cos. 8. Hence,

. S . .

if F =-- the force with which the sun acts on a particle

at the centre of the earth, and if ^ T represent the times of

the diurnal and annual revolutions of the earth, and e the

centrifugal force we have

F. . .
r J . -171 e ,t^ a

^ r-^ and . . F = -
X2 t"- T.^r

and the part of the solar action perpendicular to the plane
of the ring

3^^ ca '
:^ K^= pr^ . . sm. 6. cos. d.

1* r

{b) Besides the motion round the line of the nodes

which the force
^

. r sin. 8. cos. ^ has a tendency to

produce, the ring in twenty-four hours revolves on an
axis perpendicular to its plane ; therefore, since these two
forces act on it simultaneously, the consequence will be,

that the ring will neither revolve on this axis, nor on the

line of the nodes, but on an axis which lies in the same

plane with each, dividing the angular distance between
them in such a manner that the sine of the angular dis-
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tance between them is inversely as the angular velocity

nbout that axis ; for the composition of angular motions

follows the general law of the composition of forces ; but as

the axes are perpendicular to each other, the sine of the an-

gular distance of the new axis from the line of the nodes

is equal to the cosine of the angular distance of the first ax-

is of rotation from the second. Hence, if ir w represent the

angles which, in consequence of the earth's rotation and of

the solar force, the equator and axis of the earth describe

in an indefinitely small portion of time, the axis of the

earth will be changed by the simultaneous action of the

two forces, by an angle of which the tangent = ;
but

TT

these forces are not of the same kind, for that which pro-

duces w' acts incessantly, while the other acts only once ;

hence it follows, that as the quantity w is continually re-

newed, the position of the earth's axis is continually

changing. However, though this axis is continually

shifting its position, neither the angular velocity of the

axis or its inclination would undergo any change, if

3S
J-

. r. cos. S. was constant. For if w as before, represents

the angular velocity of a body, and if
j-

r. cos. S would

generate in 1" an angular velocity = a, then if 1'^ be di-

vided into n parts, the velocity produced in each of these

parts = -, hence, from what has been just stated, by

compounding the angular velocities w and -
, of which the

axes are at rigki angles to each other, the resulting angu-

lar velocity = v w* -f , compounding this with the

angular velocity generated in the second, third, fourth, &c.

intervals, the compound angular velocity becomes

VOL. II. U U
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+ ^ = (when 71 is indefinitely increased) w,
72n

hence it follows, that when the axis of rotation is at right

3S
angles \o the axis about which r. sin. S cos. S has a

tendency to produce a motion of rotation, the angular velo-

city is uniform, when is a uniform force Nei-

ther is the inclination to the line of the nodes altered. For

suppose this force to generate an angular velocity a in 1'^, if

this time be divided into n parts, then - will be the velo-
n

city generated in each of them ; consequently, from what

has been just established, it follows, that the tangent of

the angle contained between two successive positions of

the axes of rotation = -^ , which, when n is increased

indefinitely, is the expression for the arc between them,

and since, by what preceds, w remains constant, at every

successive interval, angles = will be added to this an-

gle; therefore, at the end of I" the two axes will be in-

clined at an angle = ^^-^ = -^, and as this obtains for
71 <j5 Co

each successive interval = 1", the axis of rotation will

shift its position with an angular velocity = ^r j
Jind as

is)

the angle -:r- is very small, the axis of rotation at the end
w

of 1" will deviate from the solstitial colure by an angle

which is indefinitely small with respect to -^ , therefore
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this axis will describe a circle round the pole of the

ecliptic, moving in antecedentia with an angular velocity

equal to that of the line of the equinoxes. This would be

the case if ^ r, sin. S cos. 8 was constant, which, how-

ever, is not the case, for it is at the equinoxes, besides,

as the arc described by the pole is _L to the plane pass-

ing through the sun and the earth's axis, it is not always
in the direction of a tangent to the circle whose centre

exists in a perpendicular to the plane of the ecliptic j

hence, strictly speaking, neither the angular motion of the

pole of the equator, nor its inclination to the ecliptic, is

invariable, however, the changes are confined within very

narrow limits. This is the cause of the solar inequality,

of precession, &c.

The decomposition of motion adverted to in pago

184?, is, in fact, an application of the principle of D*Alem-

bert, explained in page 287, Vol. I.

[c) Differentiating the expression . . sin. 8 cos ^.

with respect to t and 8, and then integrating, the pre-

cession for the entire year, comes out = 360. -= . .

2 1 r

cos. of obliquity, it appears from this expression, that in

order to obtain the exact quantity of the precession, we

should know the compression of the earth.

[d) It appears, from what has been already stated, that

(every thing else being the same) the retrogradation

is proportional to the cosine of the inclination of the plane
of the ring to that in which the external body moves ; and

as, in the case of the moon, this inclination is continually

varying, the precession and inclination of the axis is sub-

ject to continual change from the lunar action. It

also follows, from this, that the greatest inclination of the

ecliptic to the equator is in the new moon of spring, and

the full moon of autumn, the moon being at the same time
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in its ascending node ;
or in the full moon of spring, and

new moon of autumn, the moon being then in the descend-

ing node. The least obliquity has place in the first and

last quarter, at the beginning of summer or winter, the

moon being at this time 90 from her node.

(e) Strictly speaking, the inequalities produced by the

action of the moon are of two kinds* the period of the

first being equal to that of the moon in her orbit, and that

of the second equal to the time of a revolution of the

moon's nodes. Hence it follows, that there are limits

within which the variations of the precessional motion

and obliquity of the ecliptic are contained ; the inclina-

tion to the ecliptic returning to its former value in the

time of a revolution of the moon's nodes.

(/) Subtracting the expression for the lunar precession

from the entire annual precession produced by the com-

bined action of the sun and moon, we obtain the ratio of

the solar annual precession to that of the lunar ; which,

as it involves the ratio of the sun's to the moon's mass, ena-

bles us to determine the relative proportions of these qua-

lities.

In reference to what is stated in page 189, it is to be

remarked, that the cause of D'Alembert's error arose from

his supposing that as the molecules of the sea, with which

the earth is in a great measure covered, yield to the ac.

tion of the stars, they could not contribute to the motions

of the earth's axis, so that, in computing those motions,

he employed the ellipticity of the spheroid, which was

covered by the ocean, which ellipticity he supposed to be

less than that of the surface of the sea. But Laplace, by

subjecting to analysis the oscillations of the fluid spread
over the terrestrial spheroid, and also the pressure which

it exerts on the surface of the spheroid, proved that this

fluid transmits to the terrestrial axis the same motions as

if it constituted a solid mass with the earth. He also, by
means of the principle of the conservation of areas,
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showed that the action of the stars on the sea, in whatever

manner it was spread over the spheroid, produced on the

nutation and precession the same effects as if the sea con-

solidated itself about the spheroid.

{g) The theories of Newton relatively to the figure of

the earth and the seas, are those which suppose the earth

homogeneous, the sea having the same density as the earth

which it covers, and that the waters of the ocean assume

every moment the figure in which they would be in equi-

librio under the action of the sun.

(h) The effect of the action of each of the planets is to

induce a motion of the common section of the planes of

the two orbits of the earth and planet, while their mutual

inclination is not altered: see page 25, Vol. II. In the

case of precession and nutation, the variation is in the

equator and earth's axis
; but in this case the variation is

in the ecliptic, to which the axis is referred. Laplace

proved, by a careful analysis, that if the earth was per-

fectly spherical, the variation of the obliquity of the true

ecliptic to the equator, which is caused by the attractions

of the planets, would be much more considerable than they

are, and from the same cause the variation of the length

of the tropical year, which would be caused by the sole mo-

tion of the ecliptic, is reduced to a fourth of what it would

be if the earth was a sphere. However, the sidereal year

remains invariable.

(2) If the right ascension of a star reckoned from the

true equinox be converted into time, it will be expressed

by two terms, one of which gives the mean rotation, and

the other is the correction, which is variable; this would

seem to imply that the rotation of the earth was variable.

However, as has been remarked, this is only an illusion,

for the term which is added to the mean rotation, is inde-

pendent altogether of the motion of the earth on its

axis.
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It follows, .*. from the rotation being given by one

sole term, compared with what is stated in Vol. I., page

465, that if the earth revolves on a principal axis the ro-

tation is perfectly uniform. Even if the axis of rotation

was not a principal one, still the actions of sun and

moon would not affect its motion, as appears from what

is just stated ; but in this case, in consequence of the

centrifugal forces, the rotation cannot be uniform. How-

ever, as from the observation of a long scries of years,

no irregularity has been discovered in l,he rotation

of the earth, we must conclude that it revolves about

a principal axis, which is confirmed from a conside-

ration of the variations of the obliquity and of the pre-

cession which result from it; for if the axis of rotation

deviated 1" from the principal axis, the obliquity and pre-

cession, or what is the same thing, the latitudes and longi-

tudes of the stars would experience, in the course of six

months, variations of 2" and 5", which would be mdicated

by observations. The uniformity of rotation is likewise

proved from the following consideration, namel}^ that if it

was deranged by the actions of the sun and moon, the

centrifugal force which depends on the rotation, would ex-

perience, in the course of a month and year, variations de-

pending on the different positions of the sun and moon ;

therefore the gravity which is diminished by the centri-

fugal force, and consequently the length of a pendulum
which vibrates seconds, would be liable to analogous va-

riations ; but no change has been observed in the length

of a pendulum vibrating seconds under a given latitude.

{Ic) When a body descends from a considerable height,

or moves from the equator towards the poles, it brings in-

to its new situation more velocity than it can retain, con-

sequently it must impart some of it to the general mass of

the earth ; the contrary obtains when a body recedes from

the axis of the earth. In general, the momentum of rota-
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tion of the entire mass of the earth is to the change of the

momentum of rotation of the displaced body, as the veloci-

ty ofdiurnal rotation to the variation in that velocity, arising

from the motion of the body. In this way, the continual

degradation of mountains and alluvial deposits produced by

rain, &c. which is incessantly going on, should cause an

increase in the length of the day.
In addition to what is stated in page 194', it may be re-

marked, that there is a general compensation of the effects

produced by the current of air from the poles to the equa-
tor, (which is the cause of the trade winds,) which tends

to diminish the motion of the earth, by a contrary cur-

rent in the upper regions of the air, which sets in from the

equator to the poles.

Some geologists maintain, that the level of the sea was

once 15000 feet higher than at present, from which it fol-

lows, that a mass equal to the 440th of the whole earth

must have been degraded from being above the level of

the present sea, to being underneath it; and if the density
of water was equal to the mean density of the earth, it

would be easy to show that, in consequence of this degra-

dation, the duration of a revolution on the earth's axis

must have been deminished by 5', 682; see preceding page.

As, however, the mean density is to that of water as

4.71 : 1, this acceleration is reduced to 1/12" This

change on the surface, or even in the interior of the earth,

would also produce great changes in the position of the

axis of rotation; it may, if an explosive force existed in

the interior of the earth, as was suggested in notes, page
470, have changed by the action of such a force con-

tinually its position, and with it that of the earth*s equa-

tor; and that such a force was formerly in very active

operation, appears to be indicated by many facts in the na-

tural history of the earth, and of the mineral kingdom.
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NOTES TO CHAPTER XIV.

(a) What is termed tlie mean axis in the text, is the

second principal axis of rotation ; and it is shown, in the

Celestial Mechanics, Vol. II., page 370, that if the moon

was homogeneous, the excess of the first above the second

is to the excess of the second above the third, as 40 : 10,

i.e. 4 : 1. But as the ratio of these axes deduced from sub-

stituting numerical values for the terms of the proportion,

and of the principal moments referred to them, does not

agree with observation, it follows that the moon is not ho-

mogeneous : see note (e).

{!)) Laplace obtained the difference between the motion

of rotation and revolution of the moon, by the integration

of a differential equation of the second order; this quantity

is composed entirely of periodic terms, and contains two

constant arbitrary quantities ; therefore, there results from

this a libration, of which the extent is also arbitrary.

Hence it follows, that the mea7i motion of rotation of the

moon is equal to her mean motion of revolution. The dif-

ference between the motions of rotation and revolution

should be comprised between the greatest and least of the

values of which the periodic quantity was susceptible^ It

is necessary, to secure the stability of equilibrium, that the

periodic terms which multiply the time should be real ;

for if they were imaginary, the arguments which depend
on them would be changed into exponentials and arcs of

circles susceptible of indefinite increase, or at least the
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slightest cause might produce it. The condition of this

reality requires that the greatest of the principal axes be

directed to the earth. According to the theory of proba-

bilities, the chances are almost that of infinity to one

that this alone, of all possible cases, namely, the equality
of rotation and revolution, should accurately obtain at

the commencement; and even if it did, it would not con^

tinue long, if the moon was not a perfectly homogeneous

sphere ; for the attraction of the earth would derange its

rotation, and besides the mean motion of the moon, to

which it is supposed to be equal, is not perfectly invariable.

The perturbations of the motion of revolution depend on

the action of the sun and of the planets on the centre of

gravity of the earth, while the perturbations of rotation

result from the action of the earth on the elongated figure

of the moon, and it is impossible that these two actions,

produced by different bodies, and having different argu-

ments, should be perfectly equal.

In general, it may be remarked, that the librations of

the moon are of two kinds, the first arising from inequali-

ties in its motion, the second from the attraction of the

earth ; the first cause gives the apparent or optical libra-

tion, the second gives the real or mechanical one. The

libration in latitude is altogether optical, that in longitude

is partly optical and partly real ; it is the most consider-

able libration.

(c) It is not at all probable that these nodes coincided

accurately at the commencement, no more than that the

motions of rotation and revolution were perfectly equal ;

but a consideration of the arbitrary inequalities introduced

by the integration of the second differences, shows, that

if the difference between their positions was originally

inconsiderable, the terrestrial attraction would establish

and maintain the coincidence of their mean nodes. From

the expressions previously established, three conditions are

VOL. ir. XX
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given relative to the moments of inertia of the lunar sphe-

roid; and by a comparison of them with iho?,Q furnished

by the theory of the figure of this spheroid, it appears

that these conditions cannot be satisfied by supposing the

moon homogeneous and fluid, nor on the hypothesis that

it is originally fluid, and of a variable density ; hence it

follows that the moon has not the figure which it would

have, if it was primitively fluid, consequently it must

have been at its origin a hard body of irregular figure,

which is confirmed by a consideration of its spots. New-
ton determines the ratio of the greater to the lesser

lunar axis, (on the supposition that the moon is fluid,)

from knowing the height to which the sea is elevated

by the lunar action ;
for the force of the earth to raise

the lunar fluid is to the corresponding force of the

moon to raise the waters of our ocean, in a ratio com-

pounded the accelerating gravity of the moon to the earth

to the accelerating gravity of the earth to the moon,
and of the diameter of the moon to that of the earth,

which by substituting numerical values become the ra-

tio of-1081 to 100; and as the tide by the lunar action

alone is raised 8f feet, the lunar fluid ought to be raised

93 feet, .*. the major axis should exceed the minor by 186

feet, and as the lunar equator is inclined at a very incon-

siderable angle to the plane -of its orbit, the effect of the

rotation on its axis ought to increase this excess.

{d) See notes page 435.

(^) The position of this meridian being determined, we

are enabled to establish every circumstance connected

with the moon's rotation, from a computation of a great

number af longitudes and latitudes as seen from the centre

of the moon, by means of observations ofa spot made at dif-

ferent epochs, it is found that these longitudes and latitudes

differ from each other, and vary with the time ;
hence it

follows that the moon revolves on an axis inclined to the

ecliptic. As a comparison of the latitudes indicates but
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inconsiderable changes, the axis of rotation does not dif-

fer much from that of the ecliptic, i. e. the lunar equator
is inclined at an inconsiderable angle to the ecliptic.
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(a) According to what is established in page 290, vol.

X, it follows that the common centre of gravity is either

in perfect repose, or has a uniform rectilinear motion

in space. But there is 071I2/ one case in which the centre

would remain in perfect repose, while there is an infi-

nite number in favour of a motion in some one direction or

other with some determinate velocity ; it is .*. much more

probable that our sun and the fixed stars, which are bodies

of the same nature, have a proper motion in space, than

that they are absolutely at rest. With respect to the sun,

its motion of translation may be, with great probability,

inferred from its rotatory motion ; it is likewise probable
for the stars, as will appear from the following note.

{b) Herchell found, that if we suppose the sun to be

in motion towards that region of the heavens in which

the constellation Hercules is situated, there should arise

a separation between several stars situated on that side,

while, on the other hand, there would arise a contraction

between those which are situated on the opposite side ;

and he found, that out of forty-two stars which appear to

have experienced particular motions, there were upwards
of thirty, pari of whose motions corresponds to what

should result from the motion of our sun towards the one,

and from the other. He specified that only part of their

motions arose from this, for as the stars have proper mo-

tions of their own in different directions, it is evident that
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their apparent motion results from their true motion

combined with that of the sun. It is evident from the

principle of universal gravitation, adverted to in the text,

that the stars, which we may consider as the centres of

so many different systems, must revolve about some com-

mon centre, for otherwise, as they exert attractive forces

on each other, they must tend to approach towards each

other ; and though in consequence of their immense dis-

tance, this tendency may be extremely feeble, still as it

would be caused by a motion continually accelerated, after

a great lapse of time, they would all meet in the common

centime of gravity. See page 446, vol. 1.

When the proper motion of the star is in an opposite

direction to that of the sun, it is in the most favourable

circumstances to be be observed, for in that case the appa-
rent motion is = to the sum of these two motions. Sup-

pose, then, that a star = to our sun moved with an = and

contrary motion, they will be at the same distance from the

centre of our system, and the apparent motion from the sun,

considered as immoveable, will be double of the true mo-

tion, hence A the arc described in any time = half
jT,

the

distance of the star from the sun multiplied into 0, the

apparent motion of the star in that time, i. e. A z='l^^

in 50 years <^
is observed to be = 45", and .*. in one year

=0",9and^ = 0",45. = 0,00000218166, which mul-

tiplied by/ (
= 300000 semidiameters of the earth's or-

bit) gives A = 0,654, in one year, but an arc of the earth's

orbit = 0,654 subtends an angle at the sun = 37, 30',

which is described by the earth in 38 days /. the velocity

of the star will be to that of the earth inversely as the

times i, e, W 38 : 365 .'. 1:9; now it appears from

what is stated in Notes, page 371, that the velocities of
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bodies which describe circles about a common centre, are

inversely as the square roots of their distances from the

centre, /. if the star revolved about the sun in virtue of

the central force of the sun, its velocity would be _^

= of that of the earth, t. e. 61 times less than the ac-
648

tual velocity, it is /. 61 times more than it would be, if it

depended on the central force of the sun ; hence we must

conclude, either that it results from a central body, of

which the mass is much >/ than that of the sun, or to

which the star is much nearer than to the sun ; as the last

case is extremely improbable, it follows that the stars re-

volve about a central body of which the mass is much

greater than that of the sun.

(c) It was proposed by means of these double stars to

find the parallax of these stars, for as the spaces which in-

tervene between them appear to enlarge according as the

earth in its annual route approaches nearest to them, and

therefore ought to be least six months afterwards, when the

earth is at the greatest distance from them, Herchell

made a great number of observations in order to deduce

their relative parallax, supposing that the least star is the

most remote, and as they have the same longitude, lati-

tude, altitude, &c., they are all affected by refraction,

aberration, &c. in the same manner, so that their relative

position and apparent distance is not at all changed.

(d) Bessel announced in 1812, that a consideration of

the observations of Bradley proved, that the double

stars constitute a particular system by themselves. Seve-

ral stars of this kind evince by their motion a mutual de-

pendence on each other, particularly the two stars men-

tioned in the text. This system of two stars moves with

considerable velocity, they seem to be connected with

each other by the law of attraction, and in 60 years
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they appear to have described a considerable part of their

orbit round the common centre of gravity.

(e) From a consideration of the observations of previous

astronomers he inferred the position for the year 1800,

also the annual motion, the time of revolution, which he

thought to be = 400, the semiaxis major which he as-

sumed = 25", and the annual parallax = 0",46 : it is

evident from the formulse previously established in page

374, that if the axis major and period are known we can

obtain the ratio of the sum of their masses to that of the

earth.

Nole to page 205.

(a) It thus appears that the laws of motion and general

properties of matter are the same in every partof ihe uni-

verse, and that all are explained by the o?ie principle of

the mutual gravitation of bodies ; it is likewise evident

that the existence of this force was not hypothetically as-

sumed, but was deduced as a necessary consequence of the

laws of Kepler, combined with the laws of motion.
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{b) In fact, on the supposition that the Zodiac origi-

nated in Egypt, and that it was first invented in order to

serve as a sort of kalendar to point out the different cir-

cumstances of the rural year, then there are two ways of

reconciling what is indicated by the signs of the Zodiac

with the climate of Egypt and its agriculture, either by

making the Zodiac to have originated at a period long an-

terior to that at which it is at present supposed to com-

mence; or by supposing that the constellations of the

Zodiac are named9 not from their rising with the sun, or

the commencement of the day, but from their setting, or

the beginning of night. The former hypothesis would

make the world to be created at a time long anterior to

that which we know from all history both sacred and pro-

fane, and also from contemporary records, it actually was ;

besides it would assign to the human race a duration lon-

ger than what Laplace himself admits it had, see page 50.

Likewise, it may be remarked, that in these rude times,

when the observations of the stars were made by the

naked eye, it is much more likely that the stars were

observed at night, when they are easily seen, and not

in the day-time, when they are with difficulty discerned ;

the latter then is the true mode of reconciling the names
of these signs with the different circumstances of the

year : indeed on the first hypothesis if we consider the
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positions which the signs are observed to have in the

Zodiac^ their names do not indicate any thing connected
'

with the climate of Egypt ;
for if Capricorniis was origi-

nally at the lowest point, then the sign Virgo, represent-

ing a gleaner, could not indicate the harvest; for three

thousand years ago, the principal star of this sign rose

for Memphis, 45 days after the summer solstice, and set

about 15 days before the autumnal equinox, during which

time Egypt was inundated by the Nile. Besides, Capricor-
nus is represented half goat and half fish, and Aquarius,
in the most ancient Zodiac, by a simple urn. The sign

Pisces, from their very denomination, can only designate

the rainy season and an abundance of waters, and notwith-

standing all this, the principal stars belonging to these con-

stellations, rise and set heliacally at the very time Egypt is

most dry. But according to the second of the preceding

suppositions, there is a striking correspondence between

these signs and the different circdmstances of the Egyptian

year, for then Aries is placed at the autumnal equinox,
and Libra at the vernal; Capricornus at the summer solsti-

tial point, then Aquarius, and after them Pisces; the Nile

begins to rise in June, or a little before it ; now this phe-

nomenon, combined with the motion of the sun, through
the highest point of his course, could not be better indi-

cated than by an animal half a fish and half a quadruped,

remarkable for seeking always the highest points of the

mountains. The months of August and September, dur-

ing which Egypt is overflowed, could not be better de-

signated than by the Urn and Pisces. To these signs

succeeds Aries, symbol of the reviving of nature, which

excites animals to reproduction : the Bull, emblematic of

labour, which in Egypt begins in November; after this sign

comes that ofTwins, which is a symbol of the regeneration

of all natural productions. The return of the sun or its re-

trogradation, was thus represented by the Cancer, which is

vulgarly supposed to march backwards. The Lion, which

VOL. II. Y Y
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succeeds the Crab, might denote the reviving force of the

Sun, and the sign Virgo or tlie gleaner, denotes the har-

vest, which in Egypt takes place in February and March.

For the remaining three signs. Libra, the balance, denotes

the return of equal day and night. The Scorpion, the

maladies caused by the southern winds in the following

months. Sagittarius, the season for hunting, &c.

Now that the first point of Aries should be at the au-

tumnal equinox, we should go back 12960 years; for in

that time 180*^ will be performed very nearly at the rate of

a degree every 72 years ; to this is to be added, the quan-

tity by which the first point of Aries has retrograded since

the time of Hipparchus, which would make up the era

1 5000 years anterior to the present time
; but on the hy-

pothesis that the signs were denominated from their setting

with the sun ; then we would have only to go back to the

era usually assigned to the commencement of the Zodiac,

and at the same time retain the correspondence between

the signs and the seasons, and the circumstances of the

year.

(c) If the revolution of the sun be supposed equal to

365^i or 365^, as the lunar year = 354
,*

940
^ 940'

88*7
their difference is lO'^ :

, which multiplied by 19, gives

673
206^* which = seven lunar months, each of which

consists of29^t^.
940

It was by this period that the Chinese reckoned the

years of the empire, and of the emperors who reigned over

them ; and this period of 60 years corresponds to our

century or period of 100 years: each of the years of this

period has a particular name composed of two terms,

which are applied in the following manner ;
there are two
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series of terms, one consisting of ten and the other of

twelve terms ; the first of the one are combined with the

first of the other, so that as one series has ten terms, and

the other twelve, after the first series is exhausted, its first

term is combined with the eleventh term of the second

series, and the second term of the first series with the

twelfth term of the second series, and this goes on until

the first term of the first series concurs with the first term

of the second series; but this, as is evident from the theory

of combinations, does not take place until after sixty diffe-

rent combinations with respect to the days ; the first day
of each year bears the name of the year, after which we

reckon them by the names composed of the sexagenary

period which is recommenced whenever it is necessary.
The Luni Solar period of 600 years, to which we ad-

verted in page 68, was invented by the Chaldean astro-

nomers. This supposes a tolerably accurate knowledge
of the solar year, and also of a lunation ; for in 600

years, each consisting of 365'* 5^ 51', 36" there are exactly

7421 lunations, each of which consists of 29^ 12'^ 44' 3",

but if the motions of the sun and moon were the same

then as at the present day, at the end of this period there

would be a considerable aberration.

{d) Such an exact situation of the pyramids could not be

the effect ofchance ; we infer from it that they had accurate

means of finding the meridian line, which is extremely dif-

ficult to trace accurately, as is evident from the error which

Tycho Brache committed, in tracing the meridian line at

the observatory of Uraniburgh. According to some his-

torians, the Pyramids were observatories from which the

Egyptian priests surveyed the heavens.

{e) The rising and inundation of the Nile, an event

which excited the attention of all Egypt, was at the com-

mencement of this empire announced by the Heliacal ris-

ing of Sirius. It is probable that it was on this account

that they made their years to commence then, which; ac-
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cording to tljeir estimation of tiie length of the year, made

its commencement continually to retrograde, so that if it

commenced for any one year at the summer solstice, four

years after it would commence a day sooner, on the hypo-

thesis that the true length of the year exceeded 365^ by
the fourth part of a day ; in this way the commencement

of the year would retrograde continually, and in 1461

years take place at every season of the year, at the end of

which time it would recommence at the summer salstice,

for 21^=365+ i.
4 4

{d) topage 2 19.2 For = 52 + -, hence it appears

that the last day of the year is of the same denomination

as the first, and /. if the first day of the week denotes

the first year, the second day of the week will represent

the second year, and so on.

{e) In fact, previously to the time of Thales, who derived

all his information on these subjects from the Egyptian

priests, their astronomy consisted only in having given de-

nominations to some constellations, and in having noted

the heliacal rising and setting of certain stars. This is all

which is furnished by Hesiod and Homer, their most an-

cient writers. Thales, at his return from Egypt, made

them acquainted with some of the important astronomical

truths known to the ancients.
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This constancy of the inclination of the lunar orbit to

the plane of the ecliptic, adverted to in page 238, was

remarked by Kepler at the conclusion of his Epitome of

the Copernican Astronomy; but the reason which he as-

signed for it was very remarkable. " It is agreed," says he,

"that the moon, a secondary planet and satellite of the

earth, is inclined at an invariable angle to the plane
of the earth's orbit, whatever be the variations which this

plane experiences in its position with respect to the fixed

stars ; and if ancient observations on the greatest latitudes

of the moon, and on the obliquity of the ecliptic are

irreconcileable with this hypothesis, it should be rejected

sooner than call them in question." Here the reasons

of suitableness and harmony have conducted Kepler to a

just result; but how often have they bewildered him;
when we give ourselves up to imagination and conjecture,

it is only by a lucky chance that we can light on truth ;

but the almost total impossibility of arriving at it in the

midst of the errors with which it is almost always encum-

bered, ought to induce us to ascribe all the merit of its

discovery to him who establishes it solidly by observation

and computation, the sole bases of human knowledge.

(a) Knowing the duration of a total and central eclipse

of the moon, and also the periodic time of the moon, the

angle which the semisection of the shadow subtends at the
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earth is known; hence, as the apparent diameter of ihe sun,

and also the horizontal parallax of the moon are known,
we obtain an expression for the horizontal parallax of the

sun. See Brinkley's Astronomy, page 255.
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() A celebrated peripatetic philosopher, John, sur-

named the Grammarian, who was in high favour with the

Saracen general who took the city, requested as a present

the royal library. The general replied, that it was not in

his power to grant such a request without the knowledge
and consent of the Caliph; he accordingly wrote to Omar,
who was then Caliph, and the answer has been given in

the text. This account is, however, now doubted.
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(a) The very first applications of analysis to the motions

of the moon furnish an example of this superiority. For

they give with the greatest ease not only the inequality of

the variation, which is obtained with the greatest difficulty

by the synthetic method, but likewise the evection which

Newton did not even suppose was caused at all by the

law of gravity. It would certainly be impossible to obtain

by means of synthesis, the numerous lunar inequalities, the

values of which, determined by analysis, represent obser-

vations as exactly as our very best tables, which are form-

ed by combining an immense number of observations with

theory.

(b) The endeavours of geometers to demonstrate

Euclid's twentieth axiom about parallel lines, have been

hitherto unsuccessful. However no person questions the

truth of this axiom, or of the theorems which Euclid has

deduced from it. The perception of extension contains

.*. a peculiar property, which is self-evident, without which

we could not rigorously establish the doctrine of parallels.

The motion of a limited extension, for example of a circle,

does not involve any thing which depends on its absolute

magnitude ; but if we conceive its radius to be diminished,

we are forced to diminish also in the same proportion its

circumference, and the sides of all the inscribed figures.
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This proportionality was, according to Laplace, an axiom

much more obvious than that of Euclid. It is curious to

observe, that agreeably to what is stated in page 322,

this axiom is pointed out in the results of universal gra-

vitation.
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{a) There are altogether forty- three motions in the

same direction in our system, which have been recognized,
and by the application of the analysis of probabilities
which has been adverted to in note {/), page 498, it is

found that there is more than four thousand million of

millions to one, that this disposition is not the effect of

chance.

{b) It is clear that if the inclinations of the orbits of a

comet to the plane of the ecliptic, be supposed to increase

insensibly from cypher, after it exceeds a right angle, its

motion will be in a contrary direction from what it was

previously to its attaining 90.

{c) See chapter II. of this volume, and also notes, page
390.

(d) See notes, page 521.

(e) At present the orbit described by each of the satel-

lites in space, is a species of epiclyoid resulting from the

twofold motion with which the satellite is actuated, namely,

its own motion about Jupiter, with which is to be com-

bined the motion of Jupiter about the sun, in which also

the satellite participates, and the result of the two, is evi*

dently a species of epiclyoid; if, however, the action of

Jupiter ceased suddenly, then each satellite would be un-

der the immediate influence of the sun's action, and the

species of conic section, which it would describe, would
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depend on the ratio which the velocity by which it w^as

actuated bore to the velocity in a circle at the same dis-

tance See notes, page 376. J^

(/) See the sm^ and last note. ''^^"^-

{g) It is worthy of observation, that this Scholium was

not published with the first edition of the Principia ; up
to that time Newton was only engaged in mathematical

investigations, and, according to Laplace, he would have

consulted more his own glory had he always confined his

attention to those sciences.

THE END.
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Page 37 line 14 after the words may be read also.

86 5 from bottom, for millionetb read thousandth.
157 9 for solstices read quadratures.
175 6 for one read nine.

201 5 for millioneth read thousanth.

236 17 for their read its.

300 18 after fall read through.
330 - 11 for each read some.
347 11 for Albatenus read Albatenius.
ib. 16 for Strato read Strabo.

466 9 for principal read principle.

3679 4 h











liiinuinia 9C.UT. MUD o^ i^n

QB Laplace, Pierre Simon
42 The system of the world
L313
V.2

Physical A:

Applied Sd.

PLEASE DO NOT REMOVE

CARDS OR SUPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY




	The System of the World, Vol 1 - Pierre Simon, Marquis de Laplace 1749-1827, 1830 A.O
	The System of the World, Vol 2 - Pierre Simon, Marquis de Laplace 1749-1827, 1830 A.O

