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—Chapter 1—

Introduction

Some scientists invest an entire career in the study of organisms of a sin-
gle species, others in understanding particular types of cells or in deter-
mining the role of a certain gene. The elements of each level of biological 
organization can take more than a lifetime to understand. How then can 
we put all this information together? Understand how genes interact to 
drive the cell, how cells interact to form organisms, and how organisms 
interact to form groups and societies? These questions are fundamental 
to the scientific endeavor: how do we use our understanding of one level 
of organization to inform us about the level above?

Linking different levels of organization involves the study of collec-
tive phenomena: phenomena in which repeated interactions among many 
individuals produce patterns on a scale larger than themselves. Collec-
tive phenomena are within us and all around us: the clustering of cells 
to build our bodies, the firing of neurons in our brains, flocks of birds 
twisting above our heads, and the pulsating mass of bodies surrounding 
us on a Saturday night dance floor. Understanding these phenomena is 
an important part of the fields of developmental biology, neuroscience, 
behavioral ecology, and sociology, to name just a few. Even researchers 
studying the most intricate details of the components of a particular sys-
tem are acutely aware of the need to understand how these components 
fit together to create a whole system.

The study of collective phenomena is founded on the idea that a set of 
techniques can be applied to understand systems at many different physi-
cal scales. This idea originated from mathematics, theoretical physics, 
and chemistry. Books by Wiener (1948), Ashby (1947), von Bertalanffy 
(1968) and Nicolis & Prigogine (1977) all aimed at providing a frame-
work for the study of collective phenomena. Von Bertalanffy argued for 
the existence of general growth laws of social entities as diverse as manu-
facturing companies, urbanization, and Napoleon’s empire. Wiener ar-
gued that homeostasis, a stable functioning of natural systems, could be 
achieved through simple feedback loops. Nicolis and Prigogine aimed to 
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pin down a rigorous theory of non-Â�linear thermodynamics, explaining 
similarities between systems at very different scales. For example, could 
the flow of traffic be described by the mathematics of fluid flow? And 
if this were the case could we make general statements about the flow 
of any type of matter, be it swarms of locusts, crowds leaving football 
grounds, or water running down the drain?

Over the last 30 years, research into collective phenomena and com-
plex systems has rapidly expanded. The completion of the human and 
other genome projects was followed by a call for systems biology, a 
combination of experimental and computational approaches to in-
tegrate our collected database of biological facts (Kitano 2002). The 
challenges of assessing changes in the global environment require under-
standing of ecological interactions that occur over many different tem-
poral and spatial scales (Levin 1992, 2000; Stainforth et al. 2005). Study 
of neuroÂ�biology and the immune system again involve understanding 
how neurons or cells interact to make decisions (Bays & Wolpert 2007; 
George et al. 2005). Modern sociology and social psychology aim to 
link the decisions of individuals to the social behavior of the many (Hed-
strom 2005; Milgram 1992; Schelling 1978). Accompanying the realiza-
tion of the importance of collective phenomena within different fields 
has been the development of mathematical modeling tools for investigat-
ing these systems.

Animal groups provide many key examples of collective phenomena. 
They also provide some of the most spectacular and fascinating sights 
in the natural world (figure 1.1). Flocks of birds turning in unison or 
migrating in well ordered formation; fish shoals splitting and reform-
ing as they outmaneuver a predator; swarms of honeybees settled on a 
branch of a tree while colony members use dances to debate where they 
will fly; and the long bifurcating trails along which ants transport food 
and materials have all long fascinated scientists. There is something 
captivating about the patterns these groups create. They are neither 
entirely regular, nor are they entirely random. They are, quite simply, 
complex.

This book is about such collective animal behavior. It is a study of how 
interactions between animals produce group level patterns and why these 
interactions have evolved. It is aimed at two different types of reader: at 
the behavioral ecologist who is interested in how techniques for studying 
collective phenomena and complex systems are applied to animal groups; 
and at the general scientist who would like to see solid examples of the 
application of techniques for the study of collective phenomena. I will 
start by arguing, for the sake of the bookshop browser who has at least 
read this far, why you should now buy this book.
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Why Collective Animal Behavior?

The study of collective animal behavior gives a key example of how 
experiment can be combined with a theory of complex systems to better 
understand the world around us. As we have gained empirical knowl-
edge of group behavior across species there has been an increasing need 
for theoretical concepts, as well as mathematical and simulation models, 
that allow us to unify this knowledge into a general understanding. This 
book describes such concepts and tools, and shows how they can be 
applied.

Far from being a book solely about mathematical models, an equal 
focus is made on empirical examples. Each chapter describes a large 
number of different biological systems, and how one or two models can 
be applied in aiding our understanding of these different systems. This 
approach is taken in order to demonstrate the applicability of the theory 
to experiment and observation. Furthermore, by showing how similar 
models can be applied to very different systems I aim to demonstrate the 
logical relationships that can be drawn between very distinct biological 
systems. Modeling is a tool for understanding general properties of dif-
ferent systems.

Animal behavior provides a wealth of interesting and accessible ex-
amples of collective phenomena and complex systems. Most people are 
familiar with ant trails; cockroach aggregations; fish schools; bird migra-
tions; honeybee swarms; web construction by spiders; and locust march-
ing, even if they have not observed them personally. In these systems 
there are two clearly defined levels of organization that we aim to link 
together: the animal and the group. This clarity stands in contrast to 
many other collective phenomena, such as protein interactions or eco-
logical webs, where it can be difficult to establish exactly on which level 
to observe a system. Thus animal behavior provides much needed case 
studies of how complex systems theory can be put into practice.

What the study of animal behavior might gain in terms of accessibility, 
it loses in terms of experimental precision. Animals are intrinsically more 
complicated than proteins or cells and it can be difficult to provide a 
clean description of the behavior of individuals. Individual variation and 
difficulty in collecting large numbers of replicates means that we can sel-
dom write down all-Â�encompassing mathematical models for the actions 
and interactions of animals. The study of collective animal behavior tests 
to the limit the supposed unifying nature of mathematical modeling. In-
dividual animals are inherently difficult to predict, but can we still make 
strong predictions about their collective behavior? The answer is that in 
many situations we can. Applied correctly, mathematical models are able 
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Figure 1.1â•‡T he collective life of animals. (a) The flow of traffic of Lasius niger ants between 
nest and food have been studied both in terms of their recruitment (chapter 3) and conges-
tion (chapter 8). Copyright: Daniel Perrin, CNRS, phototeque. (b) The decision-Â�making of 
sticklebacks reveals that they can reach consensus about their direction of travel (chapter 
4). Copyright: Jolyon Faria. (c) Locusts form large coherent marching bands despite only 
local interactions (chapter 5). Copyright: Iain Couzin. (d) Homing pigeons compromise in 
finding their route home, but only if conflict between their directional information is low 
(chapter 5). Copyright: Dora Biro. (e) Honeybees, in this case Apis florea, form bivouac 
structures (chapter 6) while they decide where they should move for a new home (chapter 
10). Copyright: James Makinson. (f) Temnothorax ants communicate during their search 
for a new home by leading tandem runs between prospective nest sites (chapter 10). Copy-
right: Stephen Pratt.

(d)

(e)

(f)
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to make predictions about the group behavior of even the most complex 
of animals, including humans.

The study of collective animal behavior also allows us to better un-
derstand the various approaches to studying biology. The two main 
approaches are known as mechanistic and functional. The mechanistic 
approach looks at how animals interact to produce group level patterns. 
This approach concentrates on identifying communication mechanisms, 
such as visual and chemical signals, and tries to determine how these 
mechanisms are integrated to produce collective patterns. Traditionally, 
the study of collective phenomena and complex systems is more closely 
associated with such mechanistic explanations.

Functional explanations are based on arguments about why a behavior 
evolved through natural selection: animals with behaviors that improve 
their chances of reproduction will increase in frequency in the popula-
tion, and those with behaviors detrimental to survival will die out. Thus 
natural selection acts to produce behaviors consistent with the selfish 
interests of the individual or, more properly, the genes carried by the 
individual (Dawkins 1976, 1982). Functional explanations take a central 
role in understanding why individuals co-Â�operate to form collective pat-
terns, why these patterns persist despite the conflicting interests of the 
individuals creating them, and why some collective patterns are inconsis-
tent with the selfish individual or selfish gene.

Collective animal behavior provides an excellent opportunity to study 
the link between function and mechanism. While these two forms of ex-
planation are complementary, they are also interdependent. We cannot 
understand why co-Â�operation evolves without knowing the mechanisms 
by which co-Â�operative patterns are generated. Nor can we study mecha-
nisms without considering the potential conflicts that can arise between 
individuals. This book seeks to clarify the relationship between mecha-
nistic and functional explanations, by providing both sorts of explana-
tion and showing how they fit together.

Mathematical Modeling

The study of collective phenomena goes hand in hand with the use of 
mathematical and simulation modeling. The arguments made in this book 
often rely on mathematics, and include applications of a wide range of 
mathematical models. What all of these models have in common is that 
they are logical arguments, taking us from one set of statements about 
the real world to another. Mathematics is a way of traveling logically 
from A to B, where A is a set of precisely stated rules or assumptions that 
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are thought to characterize a system and B is a set of predictions logi-
cally arising from these properties. Mathematics is a language for making 
precise statements about the world and following their consequences to a 
logical conclusion (Feynman 1965).

In its idealized form, the mathematical modeling cycle proceeds as 
follows: (1) by formalizing some of our knowledge about a system in 
a mathematical model we generate a set of assumptions A, (2) we use 
mathematical analysis or computer simulations to make a set of predic-
tions B, (3) we confirm or refute these predictions against our available 
knowledge and against the outcome of new experiments, and (4) we re-
turn to step 1 and revise our assumptions in light of the outcome of the 
model and any new experiments. In theory, the cycle converges to a more 
and more accurate picture of reality.

Rather then being a strictly defined procedure, however, the modeling 
cycle is a convenient way of summarizing a whole range of mathematical 
and scientific activities. We are seldom in a position to consider or refine 
only a single set of assumptions or predictions. Instead, many different 
sets of assumptions can all have consequences consistent with the known 
relevant properties of a system. In such situations, modeling can suggest 
experiments that can discern which of several alternatives is the most 
accurate description of a system. It is often when we propose a model, 
make predictions, and find that these predictions are wrong that model-
ing provides its greatest insights into the real world.

Increased understanding of natural systems also arises from simply 
playing with mathematical models. By looking at how different assump-
tions lead to different predictions and comparing these outcomes with 
what we know about a system, we can ensure that our own understand-
ing of a system is logically consistent. Thus a great deal of worthwhile 
modeling remains at the stage of dividing our understanding of a system 
into the empirical observations we take to be assumptions and the obser-
vations we label as predictions. For example, we might ask the question: 
what is the minimal set of assumptions we can make that predicts all 
known system properties? This application of Occam’s razor serves to 
clarify and condense our understanding of a system in terms of its basic 
underlying principles.

It must be borne in mind that any particular mathematical model does 
not provide a unique way of thinking about the world. It is often the 
case that two completely different mathematical descriptions of a system 
are entirely compatible with each other. In particular, we can make two 
different sets of assumptions about a system, follow both of them to 
their logical conclusion, and produce two entirely different predictions. 
Provided the assumptions do not contradict one another, then neither do 
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the predictions necessarily contradict each other. Remembering this ap-
parently innocuous fact can resolve a lot of arguments about which of a 
variety of models of a system is “best.”

From Individuals to Collectives

Models of collective animal behavior are often based on assumptions 
about the behavior at the level of individuals and then are used to make 
predictions about the patterns created at the level of the group. For ex-
ample, we might describe how individual ants leave and follow chemical 
trails and predict the collective structure of their trail network. This divi-
sion between the individual and the group leads us to expressions like 
“emergence” and “self-Â�organisation” (Bonabeau et al. 1997; Camazine 
et al. 2001; Deneubourg & Goss 1989; Holland 1998; Kauffman 1993; 
Nicolis & Prigogine 1977). We make some relatively simple assumptions 
about individual behavior from which emerge predictions about group 
behavior. The group level pattern is said to self-Â�organize because it was 
not encoded directly in the individual-Â�level rules. Mathematical models 
are a way of extracting otherwise difficult-Â�to-Â�see connections between 
the interactions of individuals and the patterns created at a group level. 
The connection to mathematics removes any mystical meaning or am-
biguity that might lurk within phrases such as “emergence” and “self-Â�
organization.” These phrases serve primarily to highlight the fact that 
simple interactions between individuals can produce sometimes surpris-
ing and empirically testable predictions about collective patterns.

There is a sense in which it is useful to talk about the principles arising 
from mathematical models of collective behavior (Sumpter 2006). This 
is where the same model provides insights into many different and seem-
ingly unrelated systems. Every chapter of this book provides an example 
where the same mathematical model has explanatory power across dif-
ferent biological systems. For example, one model creates connections 
between firefly flashing and human applause (chapter 6) or another 
model connects ants foraging for food to cockroaches finding a shelter 
(chapters 3 and 4). This universal application of certain mathematical 
models is a remarkable observation. We can pick up the assumptions 
we have used to describe one system and apply them directly to produce 
predictions about a second system. Adding to this the fact that we can 
perturb our model and still produce the same predictions, or see changes 
in the predictions that reflect differences in the systems, would suggest 
fundamental laws encoded within these models.

These logical connections between systems prove extremely useful. In 
this book, I proceed on a case by case basis through different examples 
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of collective animal behavior. For each particular system, I classify how 
individuals interact with each other and make this the basis of math-
ematical models. When a similar mathematical model has been previ-
ously applied to another system, this helps us understand the behavioral 
algorithms and thus the system.

Functional and Mechanistic Approaches

Making assumptions about how individuals behave and predicting out-
come at a group level is a mechanistic approach to the study of behavior. 
We collect all the information about how individuals behave in response 
to their environment and to other individuals and incorporate this detail 
into a mathematical model that predicts the collective patterns gener-
ated by the group. In this way, we attempt to determine the mechanisms 
through which the collective outcome is formed.

The mechanistic approach to biology is often contrasted with the func-
tional approach. In the functional approach we ask what the reproduc-
tive value or function is of a particular behavioral strategy. Mathematical 
models of function are usually based on assumptions about the costs 
and benefits, in terms of their impact on survival and reproduction, of a 
particular strategy. If we can identify the costs and the benefits associated 
with a strategy and compare them to those associated with an alternative 
strategy, we can predict how behavior evolves through natural selection. 
We can also measure the extent to which animals are able to change their 
behavioral strategy in response to changing costs and benefits.

Functional questions are particularly interesting in the context of more 
than one individual, because what might be a benefit to one individual 
can be a cost to another. When natural selection acts to increase the fre-
quency of a particular type of behavioral strategy in the population, it 
simultaneously changes the cost-Â�benefit relationship for others in the 
population. As such, instead of acting to maximize some static function, 
natural selection acts to increase or decrease different types of strategy 
until an equilibrium is reached where no individual can evolve to do 
better by changing strategy (Dugatkin & Reeve 1998; Maynard Smith 
1982). This picture is complicated by interactions with relatives. If a gen-
otype evolves that helps relatives then it can be selected for, not because 
it directly increases the survival value of the individual carrying the geno-
type, but because it increases the survival value of other individuals that 
also carry the genotype (Hamilton 1964).

Krebs & Davies (1993) provide a number of excellent examples of 
the difference between functional and mechanistic explanations. For ex-
ample, female lions living in groups tend to come into oestrus at the 
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same time. Krebs & Davies argue that there are functional benefits to the 
synchronisation of oestrus cycles. Mother lions suckle their young com-
munally, so cubs born to a group of simultaneously lactating lions will 
have feeding opportunities even when their mother is out hunting. This 
benefit is further increased by the fact that the lions are relatives. Related 
lionesses pass on their genes not only through their own offspring, but 
also by raising the offspring of their sisters or cousins.

A mechanistic explanation looks at the process through which syn-
chronization occurs. Lionesses’ oestrus cycles are known to be coupled 
by the release of pheromones. When living alone, individual lionesses 
may have cycles with slightly different periods, but these cycles become 
entrained through the release of pheromones. Pheromone release by a 
lioness coming into oestrus will speed up or slow down those that are out 
of phase with her. Eventually, all lionesses will adopt the same cycle. This 
mechanistic explanation is well supported by mathematical models of 
synchronization (Strogatz 2003). These models predict that when group 
members behave periodically, but each with a different phase and pos-
sibly a different period, then, provided there is some means to communi-
cate phase, the members can synchronize their cycles. The mathematical 
models give predictions about how factors such as individual variation 
and strength of coupling affect the degree of synchronization.

Despite such clear examples, demarcating mechanistic and functional 
explanations can be a walk through a minefield. Let us for argument’s 
sake consider a hypothetical study in which it was found that highly 
related females had synchronized oestrus cycles and less related females 
did not. It would be tempting to conclude from this study that unre-
lated females do not benefit from synchronization and thus do not syn-
chronize their cycles. This is a functional prediction consistent with kin 
selected benefits. However, the mathematical results about synchrony 
state that if there is too much between-Â�individual variation in the period 
of cycles, as there may be between less related individuals, then syn-
chronization becomes impossible (see chapter 6). The lack of synchrony 
may be due simply to a mechanistic “failure” in unrelated groups. This 
alternative explanation could be partially resolved by, for example, mea-
suring pheromone release or experimentally manipulating group com-
position to consist of unrelated lions with similar oestrus cycles. Even 
after these tests there can remain problems in making functional inter-
pretations. For example, did synchrony evolve because of kin selected 
benefits or do lion females remain in kin groups in order to syncronize 
their oestrus cycles?

Biologists are aware of these kinds of problems and I am confident 
that there would be some route through my rather simplified discussion 
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of lion oestrus cycles. My point, however, is to re-Â�emphasize that an 
increased knowledge of the mechanisms at work in any particular sys-
tem can change our functional explanation of its behavior. Mechanisms 
should not simply be considered as a way of obtaining parameters for 
the cost-Â�benefit curves of functional models. Rather we should aim to 
form functional explanations that fully account for the underlying mech-
anisms. This point is particularly relevant where interactions produce 
highly non-Â�linear patterns. Our intuition is not used to dealing with these 
outcomes and it becomes easy to miss important aspects of mechanisms 
that completely change our functional predictions. This book is full of 
examples of how mechanisms and functional explanations must be con-
sidered simultaneously if we are to come to a fuller understanding of 
group behavior.

A more philosophical conflict sometimes arises between proponents 
of functional and mechanistic explanations. This conflict centers on the 
question of which type of explanation is more relevant to understanding 
biology. Factors influencing survival value are often described as “ulti-
mate,” while “proximate” is used to describe those governing mecha-
nisms. These labels can give the impression, and probably reflect the 
feelings of many behavioral ecologists, that functional questions have 
a greater importance than mechanisms (Krebs & Davies 1997; West et 
al. 2007). This observation means that theories about self-Â�organization 
sometimes sit rather uncomfortably alongside the theory of evolution 
through natural selection. Throughout this book, I emphasize how the 
same mechanisms arise again and again in many different systems. Math-
ematical models formalize these logical connections between systems. For 
some scientists this gives these models and the principles that underlie 
them an equal, if not greater, importance than natural selection (Hoelzer 
et al. 2006; Kauffman 1993; Pepper & Hoelzer 2001; Wolfram 2002).

This book avoids such conflict, which usually obscures the real sci-
entific questions. Whether verbal or mathematical, functional and 
mechanistic models are based on different assumptions and different pre-
dictions. More often than not these assumptions and predictions are con-
sistent with each other. In other cases different decisions have been made 
about what is relevant or irrelevant in the construction of the models. 
As emphasized in the mathematical modeling section of this chapter, it is 
perfectly consistent to have different models of a particular system, each 
of which makes a different link between assumptions and predictions. 
My main criterion for the choice between functional or mechanistic ex-
planations in a particular instance is the strength of their explanatory and 
predictive power. Ideally, both types of explanation should be possible 
and we should be able to see the link between them.
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Human Society

One reason why animal groups are such a popular subject for scientific 
study is the importance of social interactions in our own everyday ex-
perience. Humans are inherently social animals, whose activities exhibit 
many of the elements of co-Â�operation and conflict found in other animal 
societies. These social activities are extremely important to us: they de-
termine our economic welfare; they produce a great deal of emotional 
turmoil, often providing the main reasons for whether we are happy 
or not; they determine how we are governed and how we structure our 
workplaces; and they even determine simple every day activities, such as 
how long we have to wait in queues.

Can some of the techniques used to study collective animal behavior 
be applied to understanding human societies? The answer is a qualified 
“yes.” In narrowly defined social situations, such as in pedestrian move-
ment and spectator crowds, some of the techniques used to understand 
collective animal behavior can be applied to humans. In wider situations, 
such as consumer decision-Â�making and the “evolution” of fads and fash-
ions, there could also be applications. Recent studies have looked at how 
our tendencies to buy particular items, find employment, and even com-
mit crime change with the behaviors of those around us. Many of the un-
derlying dynamics of these processes are similar to those seen in animal 
groups and this book seeks to highlight how these similarities arise.

Book Structure

Before exhibiting any form of collective behavior, animals must first come 
together. Chapter 2 looks at how and why animal groups form and the size 
distribution of these groups. This chapter sets the stage for more detailed 
investigations of the behavior of animals once they have formed groups.

One advantage of living in a group is information transfer. Chapter 3 
investigates signals that social animals have evolved to share information 
about the presence and location of food, as well as cues that some indi-
viduals use to parasitize the information possessed by others. Chapter 4 
shows that similar principles of information transfer underlie collective 
decision-Â�making. During migration, cockroaches, ants, and bees all use 
similar rules to decide whether to move to a new home or shelter. These 
rules allow for consensus, whereby individuals “agree” where to move, 
and are thus able to choose the best of several options.

Some spectacular examples of collective behavior, which almost every-
one has seen at some time, are moving animal groups. Chapter 5 looks 
at how simple models can capture the motion of fish schools, bird flocks, 
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and insect swarms. Chapter 6 then turns to synchronization in time, 
looking at how fireflies co-Â�ordinate their flashing and opera audiences 
co-Â�ordinate their clapping.

Chapter 7 also concentrates on how simple rules can produce complex 
spatial patterns, but this time in the context of construction. This chapter 
looks at how termites and ants can build structures, such as nest mounds 
and trail networks, that are many orders of magnitude larger than they 
are. Chapter 8 looks at how interactions can lead to congestion and seg-
regation. I discuss how economic and social systems often self-Â�regulate to 
avoid these pitfalls, but sometimes also fail. Similar ideas can be applied 
to traffic congestion in ants and humans.

The repeated mantra that simple behavior by individuals can produce 
complex patterns can sometimes be taken too far. Animals are not just sim-
ple individual units; each possesses a great deal of behavioral and physiolog-
ical complexity. In chapter 9, I describe some methods for dealing with such 
intrinsic complexity and modeling complicated networks of interactions.

Although throughout this book I try to emphasize both mechanistic 
and functional approaches to studying collective animal behavior, it is 
often the former approach that takes a larger role in each of the chap-
ters. Chapter 10 readdresses this balance by returning to the examples 
elsewhere in the book and discussing how they might have evolved 
through natural selection. The main aim of this chapter is to show how 
a Â�thorough mechanistic understanding can also clarify our ultimate func-
tional understanding of biological systems.

Working with Models

Each chapter of this book has two or three boxes providing descriptions 
of key mathematical models. These models are most often simplified ver-
sions of those found elsewhere in the literature. The simplication and 
detailed description in the boxes has two complementary aims. Firstly, 
I hope that by simplifying the models I can illustrate better their central 
points. Secondly, I hope that the reader will be inspired to investigate and 
learn more about these models.

Understanding mathematical models requires more than just reading 
through their description. It is important to play around with them and 
find out how they work for different parameter values and react to small 
changes. For this reason, I have made the code for simulating most of 
the models presented in this book available online. The simulations run 
in Matlab and can be downloaded from www.collective-Â�behavior.com.

The website also contains links to the homepages of many of the re-
searchers mentioned in the book and links to key references.



— Chapter 2 —

Coming Together

Animal groups vary in size from two magpies sitting on a branch to 
plagues of millions of locusts crossing the desert. Not only do the sizes 
of groups vary between species, but they can change dramatically within 
species. In some cases, a change in group size depends on changes in 
the environment. For example, locust outbreaks are thought to origi-
nate where resources are patchily distributed, causing locusts to move 
towards these limited resources (Collett et al. 1998; Despland et al. 
2004). In other cases, individuals in similar environments are found in 
very different-Â�sized groups. Fishermen are used to such intrinsic variation 
in fish school size. Some days a net contains three fish, while the next 
day it contains tens of thousands (Bonabeau & Dagorn 1995). Human 
settlements also show similar variety in size, from tiny villages to mas-
sive cities, with differences in size arising without large differences in the 
environments in which they were originally founded (Reed 2001).

Can we then make general predictions about animal group sizes? In 
this chapter I approach the group size question from the two directions 
of functional and mechanistic explanation. The functional approach 
looks at how the costs and benefits of group membership can be used 
to calculate the optimal group size, at which individuals maximise their 
fitness, and the stable group size, at which no individual can improve its 
fitness by moving to another group. The mechanistic approach attempts 
to explain the large variation in group sizes observed empirically. By de-
scribing the mechanisms by which individuals join and leave groups a 
distribution of group sizes is predicted.

Optimal Group Size

There are many ways an individual can benefit from being a member of 
a group. The movement of a water skater as a predator approaches both 
confuses the predator and alerts other skaters of its presence (Treherne 
& Foster 1981); the starling in a flock can invest less time scanning for 
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potential danger and more time probing the ground for food (Fernandez-Â�
Juricic et al. 2004b); the homing pigeon released with members of its 
roost can shorten its route home (Biro et al. 2006); the fish at the front of a 
school is less likely to be attacked than a straggler outside the group (Par-
rish 1989); and the pelican at the back of a v-Â�formation saves energy in the 
wake of those in front (Weimerskirch et al. 2001). These and many other 
experimental observations explain why individuals form and join groups.

There are also always costs associated with group membership. While 
some less obvious costs, such as increased parasite burden (Brown & 
Brown 1986), have been demonstrated, they have not been studied em-
pirically to the same degree as benefits (Krause & Ruxton 2002). In part 
this is because it is reasonable to assume that as group size increases, 
eventually so too does competition for local resources. For an overview 
and categorization of the different costs and benefits of group living see 
Krause & Ruxton (2002). For any single species, Brown & Brown’s 
(1996) study of cliff swallows is probably the most comprehensive inves-
tigation of the costs and benefits of group living.

The functional approach to grouping considers how natural selection 
will act to shape group size. Individuals that live in groups where benefits 
outweigh costs will have a higher fitness, i.e., relative probability of sur-
vival and reproduction, than those in groups where the costs outweigh 
benefits. Thus a starting point for making predictions about how group 
sizes will evolve is to identify a group size fitness function. This fitness 
function can be calculated as the benefit minus the cost for individuals in 
groups of different size (figure 2.1).

The main practical consideration in determining the group size fitness 
function is finding a common currency or units, such as energy intake 
or time budgets, in which to measure costs and benefits (Krebs & Da-
vies 1993). For example, Caraco used a theoretical model of the percent-
age of time yellow-Â�eyed junkos feed, fight with each other, and scan for 
predators to make and test predictions about how behavior changes with 
group size (Caraco 1979a, 1979b) and how group size changes with food 
supply and predation risk (Caraco et al. 1980).

Whatever the currency chosen, a general observation about the group 
size function is that as groups become very large the costs will always 
exceed the benefits. Eventually local competition for resources outweighs 
any other benefits. The result of this observation is that the fitness func-
tion will have at least one maximum. Figure 2.2 gives three examples of 
theoretical group size fitness functions. In general, even if the group size 
has more than one local maximum, there is only one global maximum. 
This maximum is known as the optimal group size.

Determining the group size fitness function directly from the energy or 
time budget of individual animals for different group sizes is difficult in 
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practice, not least because some unknown factor is easily omitted. There 
are however numerous empirical studies that have been able to relate 
group size to a particular variable that is likely to contribute to fitness. 
Pride (2005) found that stress, measured by levels of cortisol concentra-
tion, was higher for individuals in smaller and larger groups of Lemur. In-
dividuals in intermediate sized groups showed lower stress (figure 2.3a). 
Brown and Brown (1996) found that during years where overall survival 
of young was low, cliff swallows in colonies of between 30 and 80 nests 
produced more surviving young than smaller or larger colonies. Due to 
difficulties in measuring survival of these offspring, they were unable to 
give a clear estimate of survival to adulthood. Without this estimate it is 

Figure 2.1â•‡ Derivation of a theoretical group size fitness function, f(n), where n is group 
size. The thick dark line is the group size fitness function. This is derived from subtracting 
the cost function (dotted line) from the benefit function (dashed line). The cost function in 
this case is 3.75/(n + 1.5), which is a typical predation dilution curve: the rate at which an 
individual is attacked decreases in inverse proportion to the number of group members. We 
suppose the benefit function relates to rate of food intake, and is 2(1â•›- n5/n5â•›+ K5), where 
K = 10 is the group size at which individuals forage with exactly half the efficiency they 
forage with when alone. The optimal group size no is the value of n that gives the maximum 
difference between costs and benefits. The Sibly group size ns is the maximum value of n 
for which f(n) > f(1).
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difficult to measure lifetime reproductive success, which accounts for the 
total number of individuals passed from one adult to the next generation 
of adults and is thus the preferable measure of fitness. Female lifetime 
reproductive success has been measured in social spiders (figure 2.3b) 
and individuals in intermediate sized groups of 23 to 107 had the highest 
fitness (Aviles & Tufino 1998).

Stable Group Size

While a particular group size may be optimal, this does not imply that it 
is stable. One theoretical prediction is that stable group sizes will usually 
be larger than the optimal group size. The argument for this prediction, 
first proposed by Sibly (1983), is that there is a benefit for individuals 
on their own or in smaller groups to join a group of optimal size, thus 
increasing the group size. More rigorously, this argument is made by 
considering a series of individuals arriving sequentially and choosing be-
tween a number of available resource sites. We assume their choices will 
be made on the basis of the fitness function, f(n), in figure 2.2b. Further 
assuming there is no intrinsic difference between sites, the first arriving 
individual will choose a site at random. The second arriving individual 
will then choose the same site as the first, since it has a higher fitness there 
than on its own. Further individuals will continue to make the same deci-
sion provided the fitness gained from joining the group is larger than that 
of being on their own, f(n +1) > f(1). The important observation here is 
the advantage to the arriving individual to join a group even after that 
group has exceeded the optimal group size, no. If ns is the largest group 
size for which f(ns) ≥ f(1) then, under this process, all groups will become 
of size ns. For most realistic fitness functions ns > no and the resulting 
group size will be larger than the optimal size (although see Giraldeau & 
Gillis (1985) for an exception to this rule where ns = no).

The above argument has led some researchers to refer to ns as the stable 
or equilibrium group size (Beauchamp & Fernandez-Â�Juricic 2005; Clark 
& Mangel 1986; Giraldeau 2000). This interpretation suggests a para-
dox whereby groups reach a stable size for which membership confers 
no benefit over being alone, thus calling into question how grouping can 
evolve under free entry (Giraldeau 1988, 2000). The paradox arises how-
ever under three very strict, and in most cases biologically unrealistic, 
assumptions about how groups are formed: individuals (a) arrive sequen-
tially starting with empty sites; (b) are unable to leave once they have 
chosen a site; and (c) are naïve to the order in which they arrive.

What happens if we relax assumptions (a) and (b) and individuals are 
free to move between sites? Box 2.A describes a simulation model, also 
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based on an argument first given by Sibly (1983), in which individuals 
are free to leave their current resource sites and join a site with higher fit-
ness, with fitness being determined by the same function as in figure 2.2b. 
Figures 2.4a and 2.4b show the outcome of this model, given an initially 
random distribution of individuals between sites. Despite the highly vari-
able starting distribution, the groups quickly converge to a stable size 
distribution with a mean slightly larger than the optimal group size. This 
stable group size distribution is not unique. Figures 2.4c and 2.4d show 
that if individuals are initially distributed with sizes close to no then the 
mean group size remains close to no.

In fact, most distributions of group sizes where all individuals are in 
groups of size greater than that which is optimal quickly become stable 
without greatly increasing in size. So unless the initial group size distribu-
tion has mean ns there is no reason that it should be favored as the mean 
stable group size over any other mean group size greater than no. Indeed, 
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Figure 2.3â•‡ Empirical group size fitness functions. (a) Female cortisol levels for female 
ring-Â�tailed lemurs averaged throughout the year per individual (reproduced from R. Ethan 
Pride, “Optimal Group Size and Seasonal Stress in Ring-Â�Tailed Lemurs (Lemur catta),” 
Behavioral Ecology, April 2005, fig. 3, p. 555, by permission of Oxford University Press). 
(b)â•¯Proportion of surviving offspring per female in the colony for the social spider Amelosi-
mus eximius (reproduced from Avilés & Tufiño, “Colony Size and Individual Fitness in the 
Social Spider Anelosimus eximius,” The American Naturalist, January 1998, fig. 1, p. 409, 
© The University of Chicago Press).
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the simulations suggest that for a wide range of initial group size distribu-
tions, stable group sizes will be only slightly larger than optimal.

There are of course many realistic situations in which individuals do 
arrive sequentially at a resource site and are unable to leave without in-
curring a cost. A typical example is birds arriving at a nesting site. How-
ever, before we predict stable group sizes close to ns for sequential arrival 
we must consider what occurs if we remove assumption (c) and allow 
individuals to know how many individuals will arrive after them. In this 

Box 2.A. Sibly’s Stable Group Size Model

Consider an environment with sâ•›=â•›2000 available sites. Assume 
initially that at half the sites, iâ•›=â•›1 to 1000, the number of indi-
viduals at the site, ni(0), is drawn from a uniform distribution with 
minimum 10â•›-â•›r and maximum 10â•›+â•›r. Thus the average number 
of individuals at these occupied sites is 10 individuals, equal to 
the optimal group size in figure 2.2b. The other half of the sites, 
iâ•›=â•›1001 to 2000, are unoccupied, i.e., ni(0)â•›=â•›0. The unoccupied 
sites ensure that grouping in the model does not result simply from 
a limitation of available sites.

The rules of the model are as follows. On each time step t a random 
individual is picked. It then calculates the fitness function for all 
of the sites were it to move to that site, i.e., f(nj(t)â•›+â•›1) for all sites 
apart from the site i that it is already at. In this case we use the 
group size fitness function shown in figure 2.2b, which is 

f(n)â•›=â•›n exp(n/10).

If f(nj(t)â•›+â•›1) > f(ni(t)) for some j then the individual moves to the site 
that has the maximum value of f(nj(t)â•›+â•›1). If more than one site has 
the same value of f(nj(t)â•›+â•›1) then one of these sites is picked at ran-
dom. This process is continued until no further moves are possible.

An example outcome of this process is shown in figure 2.4 for both 
wide (r = 10) and narrow (r = 2) initial distributions of group sizes. 
Small groups quickly reduce in size as members join larger groups. 
The optimal group size is unstable in both cases and is smaller than 
the stable group size. The stable group size differs with r, with 
larger stable group size for larger initial variation in distribution 
among sites. In no case is the stable group size as large as the Sibly 
group size, ns.
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case, it is best for early arrivals to occupy empty resource sites, secure in 
the knowledge that it will be best for later arrivals to join them. Given 
full knowledge of the sequence of arrivals it is conceivable that the sta-
ble strategy will result in group sizes very close to the optimal. A simple 
example of this can be constructed by considering four birds arriving 
with a group fitness function: f(1)â•›=â•›1; f(2)â•›=â•›3; f(3)â•›=â•›2; and f(4)â•›=â•›1. To 
optimize its fitness the third arrival must choose a site on its own (if the 
second has not already done so) thus ensuring that the fourth joins it. 
Turning the so-Â�called group size paradox on its head, we see that even if 
some of the early arrivals are not joined, they will still have a fitness equal 
to that obtained if they ended up in a group of size ns. Thus even with a 
high degree of error group sizes will in general be less than ns. Although 
a complete knowledge of arrival sequence is not particularly realistic, 
changes in strategy dependent on arrival position are observed in birds 
(Brown & Brown 1996, chapter 13).

The above discussion highlights some of the difficulties in making gen-
eral predictions about stable group sizes using the evolutionarily stable 
strategy models first proposed by Sibly. I would agree with the careful 
conclusion of Sibly (1983), “Flocks of optimal size are unstable and will 
tend to increase in size.” However, group sizes only slightly above opti-
mal are stable and only under a very limited set of assumptions is there 
a group size paradox. I thus follow the wording of Krause & Ruxton 
(2002) and call ns the Sibly group size. The stable group size lies some-
where between the optimal, no, and the Sibly group size, ns. Group size is 
likely to be highly dependent on the mechanisms through which groups 
form and the information available to potential group members about 
whether further individuals will join a group.

Natural Group Size Distributions

How do the actual sizes of animal groups compare to theoretical predic-
tions about optimal and stable group sizes? Data to answer this ques-
tion is lacking in many of the cases where group size fitness functions 
have been calculated, and where it is available it is often ambiguous 
(Krause & Ruxton 2002). One notable exception is Aviles & Tufino’s 
(1998) study of social spiders. Figure 2.5a shows the distribution of 
group sizes of spider colonies under natural conditions. Compared to 
the predicted optimal group size of 50 (figure 2.3b) the mean group size 
is 425.6. Moreover, of the approximately 18,500 individual spiders sur-
veyed, only 300 were in the optimal group size category of between 50 
and 100 spiders. There is little evidence that the spiders usually obtain 
the optimal group size.
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While these observations do provide support for the hypothesis that 
stable groups are larger than optimal, the most striking feature of the 
spider colony size distributions is that they are highly skewed. There are 
lots of small groups and a few exceptionally large groups. Similar group 
size distributions are seen throughout the animal kingdom. In addition to 
social spiders, figure 2.5b–d shows group size distributions for two mam-
malian herbivores and tuna fish schools. All these distributions have long 
tails corresponding to groups that are often several scales of magnitude 
larger than the modal group size.

Long-Â�tailed group size distributions are clearly not expected from sta-
ble group size theory, which predicts a very narrow group size distribu-
tion (figure 2.4). This discrepancy between theory and data led Gerard 
et al. (2002) to question the validity of the stable group size approach 
to predicting group size. They suggested that although natural selection 
may play some yet to be established role in determining group size, the 
dynamics of fission and fusion in mobile mammalian and fish groups 
means that the sizes of the groups individuals find themselves in will vary 
widely, are seldom optimal, and certainly not stable. Aviles & Tufino 
(1998) are also sceptical about stable group size theory even for immo-
bile spider aggregations. They cite population growth and dispersal costs 
as reasons for a wide range of group sizes. Although I would be less 
inclined than Gerard et al. to dismiss the optimal and stable group size 
approach entirely, it is clear from these empirical studies that a theory is 
needed that explains not only why groups of particular sizes arise, but 
also why there is such a variation in the size distribution of these groups.

Power Law Distributions

Long tailed distributions can often be described as a power law. A simple 
test of whether group size data might be power law distributed is to plot 
the logarithm of the group size against the logarithm of the frequency. 
If the data in this log-Â�log plot is fitted by a straight line then it suggests 
that the data is power law distributed. Specifically, if the slope -a fits 
the data then a group size n occurs with frequency p(n)â•›â•›n–a. Here a is 
referred to as the exponent of the power law.

Figure 2.5c shows such a log-Â�log plot for American buffalo group sizes. 
This data fits a power law with exponent aâ•›=â•›1.04. Figure 2.5d shows 
that the frequency of sizes of tuna fish catches is also fitted by a power 
law, with exponent aâ•›=â•›1.5, over several orders of magnitude. Once 
group sizes become very large, frequency distributions usually tail off 
exponentially. The tuna fish data thus fits a truncated power law: a power 
law over several orders of magnitude but then tailing off exponentially 
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Figure 2.5â•‡ Group size distributions for (a) social spiders (reproduced from Avilés & Tufino, 
“Colony Size and Individual Fitness in the Social Spider Anelosimus eximius,” The Ameri-
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perimeter. (Reprinted with permission from E. Bonabeau & L. Dagorn 1995, “Possible 
Universality in the Size Distribution of Fish Schools,” Physical Review E 51, fig. 1, R5220–
R5223, © 1995 by the American Physical Society.) http://link.aps.org/doi/10.1103/Phys
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for very large groups. Since there is usually a limit to how large a real ani-
mal group can get, we expect most power laws to be truncated at some 
point. Truncated power laws give a reasonably good fit to many data of 
animal group sizes from spiders (Aviles & Tufino 1998), fish (BonaÂ�beau 
et al. 1999; Niwa 1998; Niwa 2003), seals (Sjoberg et al. 2000), and 
mammalian herbivores (Gerard et al. 2002; Sinclair 1977).

Long tails in frequency distributions cause great excitement in the minds 
of theoretical physicists. These distributions are thought to characterize 
systems with highly non-Â�linear dynamics or amplification of stochastic 
fluctuations (Sornette 2004). How are we meant to make biological sense 
of these ideas? We can start by investigating the assumptions underlying 
mathematical models that generate power laws. Do models that generate 
power laws have properties we can relate to the way individual animals 
interact? It turns out that there are a number of models, each based on 
reasonable biological assumptions that can generate power laws with 
slopes that match the data (Newman 2005; Sornette 2004). The problem 
is determining which is most realistic and could actually account for the 
observations.

Merge and Split Models

Power law distributions can be generated from very minimal assumptions 
about animal behavior. Bonabeau & Dagorn (1995) proposed a model 
for animal grouping based on a single assumption: that when groups 
meet they always merge to form a larger group. The model has s sites, 
each containing a group of size ni(t) at time step t. On each time step of 
the model each group picks a new site to visit at random. If two or more 
groups choose the same site then they merge, e.g., if the group at site i 
and the group at site j both move to site k, then nk(tâ•›+â•›1)â•›=â•›ni(t)â•›+â•›nj(t). 
The resulting model is identical to a model of particles that stick to-
gether (Takayasu et al. 1988). When these particle (or animal) groups are 
equally likely to pick any of the available sites, and particles are added to 
the system at a constant rate, then the probability that a group is of size n 
is proportional to n–Â�3/2 (Takayasu 1989). This was very close to the power 
law exponent observed in the catch sizes of tuna (figure 2.5d).

Despite the claim that the above model might provide a universal law 
for fish school distributions, species other than tropical tuna do not have 
exponents of -3/2. Using computer simulations and further analytical re-
sults (Takayasu 1989; Takayasu et al. 1991), Bonabeau (1999) argued 
that exponents of between -4/3 and -3/2 could be accounted for by a re-
duction in the spatial dimension of the fishes’ habitat; for example, attrac-
tion to specific resource sites. However, empirically measured exponents 
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have a much wider range of between -0.7 and -1.8 (Bonabeau et al. 
1999; Niwa 1998). A further limitation of the model is that it requires 
that individuals are continuously added, so that although the scaling rule 
continues to hold the population increases to infinity with time. If this 
assumption is removed then the theoretical exponent is -2 and, even less 
realistically, local populations at sites can become negative (Takayasu et 
al. 1991). There may be ways to overcome this technical limitation and 
recover an appropriate range of exponents, but these have not been fully 
investigated. In summary, while Bonabeau and Dagorn’s work was useful 
in showing power laws in group size distributions, the theoretical model 
they used is not particularly biologically realistic nor a robust explanation 
of the available data.

Despite the limitations of early models, there does appear to be a uni-
versal scaling law for fish school sizes. Niwa (2003) took all available 
data on fish school sizes and re-Â�plotted group sizes (Ni) versus frequency 
(Wi), this time dividing the group sizes by the expected group size experi-
enced by an individual. This expected group size is given by

N
N W

N W
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i ii

g

i ii
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=
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2

1

1
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where g is the number of group size classes. NP is not the same as the 
observed mean group size, which is g

i=1NiWi. Rather, NP is the ex-
pected group size of an individual picked at random. NP is always equal 
to or larger than the expected group size, since we are more likely to 
pick an individual in a larger group. Niwa found that by normalizing the 
data in this way, distributions for six different fish species all fall on the 
same curve (figure 2.6a). All these distributions had exponents close to 
-1 until normalized group size reaches one, at which point they tailed 
off exponentially.

The data is well fitted by the predictions of a simple model of group 
aggregation and breakup. The model’s assumptions about aggregation 
were the same as Bonabeau and Dagorn’s—groups move on each time 
step and when they meet they always merge—but Niwa further assumed 
that on each time step there is a fixed probability that groups break apart, 
splitting into two groups the size of which is uniformly distributed (see 
box 2.B for details of the model). The central prediction of this model is 
that the probability that a site contains a group of size N is
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This equation captures the qualitative observation that group size 
distribution at first decreases inversely with N, but once the group size 
reaches NP it starts to decrease exponentially. It fits both simulations of 
the above model (figure 2.7b) and the available fish data (figure 2.6a).

Niwa’s work is remarkable in its generality. Bonabeau and Dagorn’s 
model of truncated power laws has 4 parameters, all of which needed to 
be tuned for particular species. Niwa’s model has one parameter that is 
naturally measured from the data and fits all available fish size data. In 
theory, measuring the average group size experienced by an individual 
allows the entire group size distribution to be predicted. Since equation 
2.1 does not contain any model parameters, it is entirely independent of 
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Figure 2.6.â•‡N iwa’s scaling of fish and mammal group size distributions (reproduced from 
Hiro-Â�Sato Niwa, “Power-Â�Law versus Exponential Distributions of Animal Group Sizes,” Jour-
nal of Theoretical Biology, October 2003, figs. 5 & 7, vol. 224 issue 4, 451–457, ©â•¯Â�Elsevier). 
(a) Empirical distribution of pelagic fish school sizes, six different species represented by 



C o m i n g  T o g e t h e r

31

the rates at which groups merge and split. This may seem strange at first, 
but it should be borne in mind that NP is determined by these rates. 
Indeed, Niwa (2004) showed that NPâ•›â•›1/p not only for his simple 
model, but also for a range of spatially explicit simulation models (see 
also chapter 5). Niwa has established a universal rule for fish schooling 
that does not depend on specific types of interactions and environmental 
structure. Provided fish schools merge when they meet and tend to split 
uniformly at random, we expect Niwa’s predictions to hold.

The result does come with a couple of words of warning. When nor-
malised so that they share at least one point in common and stretched 
out on a log-Â�log plot, very different distributions can begin to appear 

different symbols, scaled by the average group size experienced by an individual. The solid 
line is equation 2.1. (b) Empirical distribution of mammalian herbivore group sizes, six differ-
ent species represented by different symbols. The solid line is equation 2.1 and the dotted line 
is a modified version of equation 2.1 with one extra parameter (see Niwa 2003 for details).
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very similar. A similar method of data fitting has led to misleading con-
clusions about invariance in life history traits (Nee et al. 2005). Niwa’s 
approach does not suffer from the same deficiencies, because group size 
and frequency are independent variables. The second warning is that the 
data used was based on fish catches and observations at fish aggregation 
devices. Such data is subject to sampling errors, with catches of certain 

Box 2.B Niwa’s Merge and Split Model

Assume that space is divided into s sites on which a total of m in-
dividuals are initially randomly distributed. The ni individuals on 
site i are said to constitute a group. On each time step there are two 
stages to the model: move and split. First all groups move to a new 
site chosen uniformly at random. If two groups of size ni and nj 
meet at site k then they form a new group nkâ•›=â•›niâ•›+â•›nj, thus groups 
always merge when they meet. The same rule applies if three or 
more groups meet. After moving each group with a size greater 
than or equal to 2 will split into a pair of groups with probability 
p. When a group splits the size of the two components is chosen 
uniformly at random, so that all group sizes are equally likely. On 
the next time step the two split groups move separately to new ran-
domly chosen sites, as do all unsplit groups, and the process con-
tinues. Figure 2.7a shows a time series of the number of individuals 
occupying a randomly chosen site for a simulation of this model 
for parameters sâ•›=â•›mâ•›=â•›2000 and pâ•›=â•›0.3. Figure 2.7b shows the 
distribution generated by this simulation over 100,000 time steps.

Niwa used simulations to determine the form for the variance in the 
above model and applied results from Richmond (2001) to obtain 
an expression for the group size distribution in terms of NP. This 
expression is given by equation 2.1 in the main text. Niwa went on 
to show that for a variety of individual based models of schooling

N
pP ≈

3 08. λρ

φ
,

where l is the probability per time step that a school merges; p is 
the probability per time step that a school splits; r is the population 
density, i.e., râ•›=â•›g

i=1NiWi/s; and  is the proportion of the s sites 
occupied by a school (see chapter 5 box 5.A for details of spatially 
explicit models).
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sizes being preferred by the fishermen. With this in mind, it would be re-
assuring to see a confirmation of these results for more fish species, with 
data collected using other measuring devices. I make these comments 
not because I doubt Niwa’s findings but because, if the results were con-
firmed through independent field observations, his work would stand as 
one of the most fundamental laws of group behavior.

While Niwa’s model might provide a universal rule for fish school-
ing, it does not appear to generalize to mammalian herbivores. Figure 
2.6b shows herd size distributions for six different species. Although all 
six species lie on a similarly shaped curve, the data are not the same as 
given in equation 2.1. Niwa suggests that mammals might not break up 
according to the uniform splitting rule given in his model. Another pos-
sibility is that groups merge and split as a function of their size, and that 
the resulting group size distribution is a reflection of this behavior.

Preferential Attachment

With mammalian herbivores in mind, Gueron & Levin (1995) proposed 
a general framework for models where the probabilities of fission and 
fusion are a function of group size. They studied particular examples 
of this model in which the probability of two groups of size x and y 
merging could be written as (x,â•›y)â•›= aa(x)a(y), while the probability of 
a group of size x splitting as p(x)â•›= bxa(x). They considered three cases: 
a(x)â•›=â•›1; a(x)â•›=â•›x; and a(x)â•›=â•›1/x. The use of a(x) in both the splitting 
and joining probabilities produced a mathematical symmetry that al-
lowed them to determine a function for group size frequency (Gueron 
1998). Like Niwa’s model they predict that the frequency of larger 
groups decreases exponentially with group size. This prediction was 
also made in Okubo’s (1986) classic review of animal grouping, where 
he also argued that the available data on mammalian groups fitted an 
exponential model. However, closer examination of the data in figures 
2.5b and 2.5c reveals that mammalian data has a longer tail than pre-
dicted by these models (see also Bonabeau et al. 1999). Although the 
framework of Gueron & Levin (1995) may well, for particular func-
tional forms for (x,â•›y) and p(x), produce group size distributions simi-
lar to those seen in mammalian herbivores, the details of these forms 
have yet to be established.

One candidate for appropriate joining functions is preferential attach-
ment. Preferential attachment is where the probability of an individual 
joining a group increases with group size. Box 2.C gives an example of a 
model where the probability of an individual joining a group is a linearly 
increasing function of its size, while the probability of a group splitting is 
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Figure 2.7.â•‡N iwa’s merge and split model (a and b) and a preferential attachment model 
(c and d). (a) A time series of the number of individuals occupying a randomly chosen 
site for a simulation of Niwa’s model (see box 2.B for details) for parameters s = m = 2000 
and p = 0.3. (b) The group size distribution generated by this simulation over 100,000 time 
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steps. (c) A time series of the number of individuals occupying a randomly chosen site for 
a simulation of a preferential attachment model (see box 2.C for details) for parameters 
s = m = 2000 and c = 1. (d) The group size distribution generated by this simulation over 
100,000 time steps.
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Box 2.C Preferential Attachment Model

Price (1976) proposed a preferential attachment model for scien-
tific citations. In the model, papers are written one after another 
with no overlap or delay in publication time and each paper cites 
b previous papers. When each new paper is published, the prob-
ability that a currently existing paper i is cited by this new paper 
is proportional to the number of times, ni, that the existing has 
already been cited. In particular, the probability it is cited is

	
( )

( )

n c

n c

i

j
j

m

+

+
=

∑
1

	 (2.C.1)

where m is the total number of papers and c is a constant. This 
model is known as preferential attachment since the probability 
of attachment increases with the number of previous attachments 
(i.e., citations).

We let pn be the probability that under this system a paper is cited 
n times. Newman (2005), following a method first developed by 
Simon (1955), shows that the tail of the distribution of citations is 
according to a power law, i.e., for large n, pnâ•›~â•›na, with

	 α= +2
c
b

.	 (2.C.2 )

Empirically, we see that paper citations are distributed with a power 
law with slope 3.04 (figure 2.8b). Were the model to fit the data 
we would thus predict that c  b. In general, appropriate choice 
of c and b can produce a power law with any slope greater than 2.

The above model applies in cases where the population contin-
ues to grow, as it clearly does with scientific papers. In modeling 
animal populations that do not change in total population, as in 
Niwa’s model, that space is divided into s sites on which a total 
of m individuals are initially randomly distributed. The ni in-
dividuals on site i are said to constitute a group. In the spirit of 
preferential attachment, on each time step we choose a site i at 
random and remove all individuals, modeling perhaps a distur-
bance by a predator. We then redistribute them between the sites 
according to equation 2.C.1. Figure 2.7c shows a time series of 
the size of the group at the randomly chosen site and figure 2.7d 
shows the distribution of these group sizes on a log-Â�log plot. 
This simulation also appears to give a power law distribution.
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independent of group size. This particular model generates a power law 
distribution of group sizes with an exponent of approximately 2.5. In this 
model I assumed that the population size remains constant. This assump-
tion is consistent with the dynamics of mobile animal groups where total 
population size usually changes more slowly than the rate at which indi-
viduals leave or join groups. While the mathematical properties of con-
stant population models have not been extensively investigated, analysis 
of preferential attachment models in which the population continues to 
grow suggests that, depending on the details of the rules for attachment, 
power laws with exponents of greater than or equal to two can be gener-
ated (again see box 2.C).

Many of the distributions associated with human behavior exhibit 
power laws with exponents greater than or equal to two. A now classic 
example is the growth and connection of websites on the World Wide 
Web. The frequency of the number of connections to websites follows 
a power law with a slope of 2.1 over four orders of magnitude (Bara-
basi & Albert 1999; Barabasi et al. 1999). Figure 2.8 shows a large 
number of examples of distributions that have been claimed to follow 
power laws. Newman (2005), who produced this figure, emphasizes that 
it is difficult to confirm that these data really do follow a single power 
law rather than multiply-Â�overlaid power law or non-Â�power law distri-
butions. Furthermore, since power laws often only hold in the tail of 
a distribution, a somewhat arbitrary cut-Â�off point has to be selected 
above which the exponent a is estimated. These technical limitations do 
not substantially detract from the ubiquity of power laws (Ball 2004; 
Buchanan 2000). Across many different types of systems, not only those 
associated with humans but also in the physical and biological world, 
power laws provide a good fit to the distribution of events occurring in 
these systems.

Is the ubiquity of power laws a consequence of preferential attachment 
mechanisms? The key question is whether the individuals that contribute 
to systems with power law distributions behave in a way consistent with 
preferential attachment. We can see how this could be the case with, 
for example, the growth of the internet or citations of scientific papers, 
where the probability that we link to a web site or cite a particular paper 
increases with the number of previous links or citations.

Let’s consider preferential attachment applied to scientific citations. As-
suming that the constant c in equation 2.C.1 is equal to the mean number 
of citations per paper then using equation 2.C.2 we recover the power law 
with exponent approximately 3 seen in the science citation data (figure 
2.8). In the model, initial citations are chosen entirely at random then 
further citations are made according to how many previous citations have 
been made, rather than on the basis of anything written in the papers. 
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We are led to the rather disturbing conclusion that citations may be due 
entirely to amplifications of initially random decisions on the part of sci-
entists and are independent of the supposed quality of the papers.

While not ruling out the above model of scientific citations it should 
be pointed out that it is by no means a unique explanation. For exam-
ple, although the famous bell-Â�shaped or Normal curve is an accurate 
description of the empirical distribution of IQ near to the mean of the 
distribution, the tails of this distribution are much wider than predicted 
by the Normal distribution (Burt 1963). In general, large deviations in 
distributions are often better characterized by power laws than the Nor-
mal approximation (Sornette 2004). Assume that the quality of papers 
is proportional to author IQ, and scientists working in academia come 
from the upper tail of the IQ distribution (I do realise the limitations of 
this assumption). If papers are cited in proportion to their quality then 
the distribution of citations will simply reflect the power law distribution 

Figure 2.8.â•‡ Distributions or “rank/frequency plots” of twelve quantities reputed to follow 
power laws (reproduced from M. E. J. Newman, “Power laws, Pareto distributions, and 
Zipf’s law,” Contemporary Physics vol. 46, no. 5, September–October 2005, 323–351, 
fig. 4). Data in the shaded regions were excluded from the calculation of the estimated 
power law exponents, a. (a) Numbers of occurrences of words in the novel Moby Dick 
by Hermann Melville, a = 2.20. (b) Numbers of citations to scientific papers published in 
1981, from time of publication until June 1997, a = 3.04. (c) Numbers of hits on web sites 
by 60,000 users of the America Online Internet service for the day of 01 December 1997, 
a = 2.40. (d) Numbers of copies of bestselling books sold in the US between 1895 and 
1965, a = 3.51. (e) Number of calls received by AT&T telephone customers in the US for a 
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of the IQ of their authors. Likewise, the links to webpages might be pro-
portional to the intelligence of their designer or the funds possessed by 
their owner (figure 2.8j).

Neither preferential attachment nor extreme IQs provide entirely satis-
factory mechanistic explanations of the power laws arising in figure 2.8. 
Indeed, there are at least a dozen distinct mathematical models—from 
self-Â�organised criticality (Bak 1996) to highly optimized tolerance (Carl-
son & Doyle 2002; Doyle & Carlson 2000)—in which power laws can 
be derived (Newman 2005; Sornette 2004). Even the causes of power 
law distributions in physical systems such as meteorite sizes and earth-
quakes have no generally accepted explanations. In themselves, power 
laws provide a very weak predictor of the mechanisms that generate 
them. We should not however be overly discouraged by these observa-
tions. Each of the mechanisms for generating power laws has its own set 

single day, a = 2.22. (f) Magnitude of earthquakes in California between January 1910 and 
May 1992. Magnitude is proportional to the logarithm of the maximum amplitude of the 
earthquake, and hence the distribution obeys a power law even though the horizontal axis 
is linear, a = 3.04. (g) Diameter of craters on the moon. Vertical axis is measured per km, 
a = 3.14 (h) Peak gamma-Â�ray intensity of solar flares in counts per second, measured from 
Earth orbit between February 1980 and November 1989, a = 1.83. (i) Intensity of wars 
from 1816 to 1980, measured as battle deaths per 10,000 of the population of the partici-
pating countries, a = 1.80. (j) Aggregate net worth in dollars of the richest individuals in the 
US in October 2003, a = 2.09. (k) Frequency of occurrence of family names in the US in the 
year 1990, a = 1.94. (l) Populations of US cities in the year 2000, a = 2.30.
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of assumptions, which are experimentally testable. Further experiments 
can be performed to test the various models against each other.

Bearing in mind our general caution about power laws, we can now 
begin to think about how to apply our models to explaining the group 
size distribution of, for example, mammalian herbivores. The example 
model I give in box 2.C probably does not encompass the behavioral 
rules whereby buffalo groups join and split. Furthermore, the model also 
gives a significantly larger exponent than aâ•›â•›1.04 estimated from the 
data in figure 2.5c. However, the preferential attachment model incorpo-
rates realistic behavioral rules into grouping models: individuals prefer to 
join larger groups, which are then split by random disturbance. With fur-
ther refinement, this model may begin to capture empirically measured 
behavior of real animals.

The possibility of including behavioral rules whereby individuals at-
tempt to maximize some variable, in this case group size, brings me back 
to the functional models with which I began this chapter. Power law dis-
tributed group sizes and the instability of the optimal group size become 
complementary ideas. Preferential attachment is the mechanism by which 
individuals are more likely to attach themselves to larger groups. The 
functional reason for this strategy follows from the advantage of being in 
a larger group, even if that group is larger than the optimal size.

Group Size and Population Density

Niwa’s and Sibly’s models give different predictions about how group 
size changes with population density. While keeping the same basic rules 
for merging and splitting, Niwa (2004) showed that, for a variety of 
individual based models of schooling, the mean group size experienced 
by an individual, NP, was proportional to the population density. Thus 
Niwa’s model predicts that mean group size will strictly increase with 
population density. Sibly’s stable group size model (box 2.A) predicts 
that, provided the total population is larger than the Sibly group size, 
group size will remain constant as population density increases. Under 
this model, increases in population density will lead to further groups 
being created, of stable group size somewhere between the optimal and 
Sibly group size. Under Niwa’s model we also expect increases in group 
number with population density, but this would be less pronounced than 
under Sibly’s model.

Laboratory experiments on killifish support the predictions of Niwa’s 
model (Hensor et al. 2005). Both group size and group number increased 
with population density. There was no indication of the modal group 
size leveling off at a particular “stable” number and it appears that the 
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distribution of group sizes had a large variance. Hensor et al. (2005) 
developed an individual-Â�based model, based on mechanistic principles of 
local individual attraction, which gave a very good match to the experi-
mental data.

Field experiments on killifish gave qualitatively similar results to the 
laboratory experiments (Hensor et al. 2005). Both group number and 
group size increased with population density. Quantitatively, however, 
results from laboratory and field were very different. The number of 
groups was much smaller and group sizes were much larger in the field 
than in the laboratory, and were no longer consistent with Hensor et al.’s 
model. The differences between laboratory experiments and fieldwork 
may be accounted for in terms of environmental heterogeneity. The fish 
may be attracted to a certain feature of their environment that simply is 
not present in homogeneous laboratory conditions. Furthermore, Hen-
sor et al. found that fish body size has an important role in determining 
group size distribution. The failure of models to accurately predict the 
outcome of field experiments brings me to a final word of warning about 
the assumptions that underlie the models discussed in this chapter.

Alternative Explanations for Grouping

Most of the models discussed in this chapter assume that groups consist 
of genetically unrelated individuals that have similarly shaped group size 
fitness functions and live in relatively homogeneous environments. One 
species for which these assumptions have been explicitly tested are cliff 
swallows, which are not genetically related, exhibit no relationship be-
tween site availability and group size, but do have between-Â�individual 
differences in group size fitness functions (Brown & Brown 1996). In-
deed, Brown & Brown attribute these last differences to much of the 
between-Â�group size variation observed in cliff swallows. In general we 
can’t hope that these assumptions hold exactly for all the species we are 
interested in but we can expect them to be a reasonable approximation 
of reality.

Particular care should be taken with the assumption of environmen-
tal homogeneity. Figure 2.8 shows that many features of the physical 
world have distributions similar to those seen in animal groups. The sizes 
of animal groups could then simply be attraction to particular physical 
features, rather than aggregation in response to other animals. Another 
possibility is that the distribution of a predator species is simply a reflec-
tion of the distribution of prey. For example, a predatory fish might gain 
greatest fitness foraging alone but due to the clustered distribution of its 
prey it is found in group size distributions similar to that of its prey.
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Giraldeau & Caraco (2000) refer to this type of attraction to resources 
as a “dispersion economy” (group size fitness function as in figure 
2.2a) while attraction to conspecifics is referred to as an “aggregation 
economy” (group size fitness function as in figure 2.2b,c). It is usually 
straightforward to discern if animals are part of a dispersion economy by 
testing whether individuals in homogeneous environments are attracted 
or repelled by conspecifics. More difficult is separating effects of attrac-
tion to aspects of the environment from those to other individuals in 
aggregation economies. If an animal is weakly attracted to a particu-
lar environmental feature then this weak attraction can be amplified as 
Â�others copy the choices made by some individuals. One experimental ap-
proach uses binary choice tests where individuals are presented with two 
identical environments (Amé et al. 2004; Goss et al. 1989). I will discuss 
such tests in more detail in the next chapter.

Linking Mechanistic and Functional Approaches

There is less contradiction between mechanistic models discussed in the 
second half of this chapter and the functional models than is sometimes 
supposed. All mechanistic models make implicit assumptions about the 
group size preferred by individuals in groups. The rules of the models 
mean that individuals experience a typical group size. For example, in 
Niwa’s model the group size experienced by an individual is NPâ•›â•›1/p 
and this can be controlled by the individuals by adjusting the rate at 
which they split, i.e., changing p. What is not investigated in these models 
is how an individual can adjust its probability of leaving a group in order 
to increase its own fitness. Indeed, it is usually the probability of a group 
joining another group that is used in these models, rather than the prob-
ability of an individual leaving or joining a group.

Surprisingly, no one has investigated fission and fusion models within 
the context of optimizing group size. This is unfortunate since basic fis-
sion and fusion or joining and leaving rates can be empirically measured 
and these models could be used to make predictions about what animals 
are trying to optimize. The approach of Gueron & Levin (1995) would 
be a good starting point, but the symmetrical fusion and fission used in 
their model is counter-Â�intuitive. For example, in their model large groups 
are simultaneously more likely to split and to join other groups. These 
assumptions are particularly strange in the light of optimal group size 
theory, where we might expect merging to increase below optimal group 
size and splitting to increase above optimal group size, and vice versa.

An interesting question is the circumstances under which individuals 
following a simple set of leaving and joining rules will reach a group size 
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distribution with a mean or mode close to the optimal group size. Beau-
champ & Fernandez-Â�Juricic (2005) have made a start on this question. 
They assumed that individuals decide to leave resource sites on the basis 
of an estimate of their food intake at that site (Bernstein et al. 1988). The 
food intake is then a function that first increases but later decreases with 
group size (e.g., figure 2.2b). Using this model they showed that groups 
formed with a modal size near to that of the optimal group size and much 
lower than the Sibly group size. Furthermore, the distribution of group 
sizes had a large variance consistent with empirical data.

More work is needed in understanding how and why groups of unre-
lated individuals form. Indeed, it is quite surprising how little this basic 
problem of collective behavior has been studied either theoretically or 
experimentally. In comparison to aspects of how individuals act once 
established in groups, the process by which they have formed has re-
ceived less attention. This disparity may be due to the fact that without 
understanding aspects such as information transfer, decision-Â�making, 
and synchronization we cannot discern the benefits and costs of group-
ing. The models presented in this chapter, and particularly the work of 
Niwa, should however encourage us that it is possible to make predic-
tions about individuals coming together without knowing the details of 
what animals do once the group has formed.



— Chapter 3 —

Information Transfer

A key benefit of being near to others is access to information. Animals 
often live in environments where resources are distributed in patches 
that exist only temporarily. In such an environment, a single individ-
ual has a very low rate of finding a resource patch if they search inde-
pendently. When large numbers of individuals search at the same time, 
however, the probability that one of them finds one of the patches is 
considerably larger. If individuals are able to monitor and use the dis-
coveries of others in their own search, they can increase their own rate 
of finding resources.

Many of the mechanisms underlying information transfer are the same 
across species. Underlying all information transfer is some form of posi-
tive feedback: one individual finds food, a second moves towards the 
first individual and then still a third moves towards the second and so 
on. This chapter uses a couple of simple mathematical models of positive 
feedback to provide a reference point for different forms of information 
transfer. These models help us classify information transfer seen across 
species.

Information Centers

Living in a communal nest or den provides a good opportunity for infor-
mation transfer, and in some cases may be the reason communal living 
has evolved (Zahavi 1971). Individuals returning to the nest with food 
also carry with them information about its location and quality. This 
information can be used by nestmates. In social insects, sophisticated sig-
nals have evolved to actively communicate food discoveries. Such signals 
have also evolved in some birds and mammals, but they are not a neces-
sary requirement for information transfer. Communally nesting animals 
can also use passive cues, such as flight direction and smell, to identify 
where food has come from.
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Ant Pheromone Trails

Many species of ants deposit chemicals, known as pheromones, to mark 
the route from food to nest (Hölldobler & Wilson 1990; Wilson 1971). 
After finding a food source and feeding, an ant returns to the nest, paus-
ing at regular intervals on its way to leave small amounts of pheromone. 
The ant then makes repeated trips from nest to food source, often leaving 
more pheromone to reinforce its trail. Other ants, which were previously 
unaware of the food source but encounter the trail, follow the trail and 
find the food. Once they have collected food, these follower ants also 
leave pheromone on their return journey. Through this reinforcement, 
the pheromone trail builds up and after a short time we see a steady trail 
of ants walking between food and nest. Pheromone trails are formed 
purely on the basis of local information. They are started by a single in-
dividual or a small group of ants responding to the presence of food and 
they are reinforced by ants that encounter and follow the trail.

Pheromone trails act not only to inform nestmates where food is lo-
cated, but can also be used to find the shortest path to it. For example, 
Beckers et al. (1992b) presented starved colonies of the ant Lasius niger 
with two alternative bridges between food and nest, then measured the 
number of ants using the two bridges 30 minutes after the first ant had 
found food. When one of the bridges was only 40% longer than the 
other, over 80% of the ants took the shorter bridge in 16 out of the 20 
experimental trials (figure 3.1a). Individual ants make little or no com-
parison of the two bridges, instead the slightly longer trip time means 
that pheromone is laid less rapidly on the longer bridge. Thus when trail 
following ants make the choice between two bridges they detect a higher 
concentration of pheromone on one of the bridges, i.e., the shorter one 
(Beckers et al. 1993). As a result the shorter bridge is chosen with a 
higher probability by the follower ants and when these ants return home 
they further reinforce the shortest path. Since pheromone continually 
evaporates on both paths but is more strongly reinforced only on the 
shortest path, the ants rapidly concentrate their trail on the shorter path.

The basic principle underlying pheromone trails is positive feedback: 
the one ant that first finds the food starts a feedback loop as more and 
more ants are recruited, and as more ants are recruited the rate of recruit-
ment increases further. Positive feedback can be succinctly captured by a 
differential equation model (box 3.A). The key assumption in the model 
is that the probability that an ant takes bridge X is proportional to

	 x k

x k y k

+( )

+( ) + +( )

α

α α
,	 (3.1)
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where x and y are the amount of pheromone on each of the respective 
bridges, and k and a are constants. k and a have been measured for 
Â�Lasius niger (Beckers et al. 1993), in which case a = 2, and argentine ants 
(Vittori et al. 2006), where a = 5.

The fact that a > 1 means that the ants’ response to pheromone is non-Â�
linear and differences between the amount of pheromone on two alterna-
tive bridges are amplified. Solving the model shows how a relatively small 
bias in the travel time is amplified to give a large bias in number of ants 
taking a particular route (figure 3.2a). The model predicts that at equilib-
rium the bias to the shorter route will be much greater than a simple ratio 
of route lengths. This prediction is reflected in the data in figures 3.1a and 
3.1b where small differences in route lengths are amplified so that nearly 
all the ants take the shortest route in the majority of experiments.

The model makes a further counter-Â�intuitive prediction: that a small 
initial bias towards the longer of the two routes can be amplified so that 
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Figure 3.1.â•‡O utcome of Beckers’ experiment with ants on bridges. Each panel gives the 
distribution of the proportion of experiments in which the ants followed the shortest avail-
able path to food. The length ratios of the paths were: (a) 1:1.4; (b) 1:2; (c) 1:2, but with a 
second path introduced later; and (d) 1:1. Results reproduced from Beckers et al. (1992b) 
for (a),(b), and (d), and Camazine et al. (2001) for (c).
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Box 3.A Model of Ant Foraging and Symmetry Breaking

Deneubourg et al. (1990a), and later Beckers et al. (1993), devel-
oped the following model to describe the trail-Â�laying of ants that 
are offered a binary choice between two alternative bridges be-
tween their nest and food. Each ant approaching the branching 
point will choose bridge X with probability

	 x k

x k y k

+( )

+( ) + +( )

α

α α
,	 (3.A.1)

where x, respectively y, is the concentration of pheromone on 
bridge X respectively Y; k and a are constants. Beckers et al. (1993) 
determined experimentally that for Lasius niger ants, measured 
k = 6 and a = 2. They further assumed: that ants left the nest at a 
constant rate ; that individual ants would take the same bridge 
back on their outward and return journeys; that these ants deposit 
an amount of pheromone, qx or qy, in proportion to the quality of 
the food or the length of the bridge; and that this pheromone will 
evaporate at a rate v (see Camazine et al. 2001 page 232 for a de-
tailed list of assumptions). Under these assumptions a differential 
equation model can be written to express the rate of change of the 
pheromone concentration, or equivalently the number of ants on 
the two bridges:
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dt
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(Nicolis & Deneubourg 1999). See Sumpter & Pratt (2003) for de-
tails of how to derive this and similar differential equation models.

Figures 3.2a and 3.2b show numerical solutions of equations 
(3.A.2) and (3.A.3) through time for different initial conditions. 
For these parameter values, the bridge ultimately taken is deter-
mined by the initial conditions. If the majority initially take the 
shortest bridge (X) then this bridge is ultimately chosen (figure 

(Box 3.A continued on next page)
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3.2a), but if a majority take the longer bridge (Y) in the beginning 
then it is instead chosen (figure 3.2b). Figure 3.2c shows how the 
bridge ultimately chosen depends upon the initial conditions and 
the flow rate  out of the colony. This figure is known as a bifurca-
tion diagram. For low flow rates there is a single stable equilibrium 
where the ants divide themselves between the two bridges roughly 
in proportion to their quality. For high flow rates there are two sta-
ble equilibriums, one corresponding to the majority of ants using 
bridge X, the other to the majority of ants using bridge Y.

In the case where the bridges are equal, q = qx = qy we can analyze 
these equations to find the equilibriums. An equilibrium occurs 
when dx/dtâ•›=â•›dy/dtâ•›=â•›0, i.e.,

( ) ( ) ( )

( ) ( ) ( )

v
q
x k x x k k

v
q

k y x k y k

y

y

φ

φ

+ = + + +

+ = + + +

α α α

α α α

_

_

i

i

Adding the left and right hand sides of both equations shows that 
x + y = q/v. Dividing the first equation by the second then gives

	 ( )
v
q

x x k x
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q

x k
φ φ

− + = − +α
α

d dn n 	 (3.A.3)

In the case where a = 2 there are equilibriums at x = y = q/2v and

,x
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x
2 2 2

2
2φ φ φ

= + − = −d n .

The first equilibrium only exists when q/2v > k, thus in terms 
of flow out of the nest â•›=â•›2kv/q is a bifurcation point at which 
the number of stable equilibriums changes. Such a bifurcation is 
known as symmetry breaking since above this flow rate there exist 
two different stable equilibriums, one of which corresponds to 
more ants using bridge X and the other to more ants using bridge 
Y. Symmetry is broken despite the fact that the recruitment func-
tion to both bridges is the same. For further analysis of this model, 
see Nicolis & Deneubourg (1999). A typical simulation and a bi-
furcation diagram for this model when q = qx = qy are shown in 
figure 3.3.
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this route will ultimately be taken by the majority of the ants (figure 
3.2b). This prediction is borne out by the experimental data, in which the 
three trials that were not biased to the shorter route were biased toward 
the longer route (figures 3.1a and 3.1b). To further test how initial condi-
tions determined final outcome, Beckers repeated the bridge experiments, 
this time starting with only the longer bridge available (28 cm between 
nest and food). Once the ants established a trail on this bridge, a shorter 
bridge (14 cm) was introduced. The established feedback on the longer 
bridge was so strong that in 16 out of 20 trials the ants did not switch to 
the shorter bridge (figure 3.1c). Strong positive feedback locked the ants 
in a suboptimal path choice.

Positive feedback with non-Â�linear responses to pheromone differences 
also amplifies small environmental differences. Dussutour et al. (2005a) 
offered colonies of Lasius niger ants two equal length bridges to food, 
one with a 2-Â�mm high wall on the inner edge of the bridge. In 16 out 
of 19 trials (84%) the majority of the ants followed the bridge with the 
wall. In itself this result is not surprising, since it is well known that 
ants like many other animals follow edges. Interestingly, however, when 
Dussutour repeated the experiment, this time only letting one ant at a 
time onto the bridges, she found that 66% of ants chose the bridge with 
the wall. Thus, while individual ants did show a small bias towards wall 
following, the strong tendency of ant trails to follow walls is due to an 
amplification of this small initial bias.

The degree to which an initial bias is amplified and the ants show a 
strong preference for a particular route depends upon the rate at which 
the ants leave the colony. Figure 3.2c shows a bifurcation diagram of how 
the equilibrium number of ants taking each route depends upon the initial 

Symmetry breaking requires that a > 1, i.e., that the probability of 
taking a particular bridge is disproportionately higher for the one 
with more pheromone on it. In the text I discuss a model of honey-
bee dance following that has the same functional form as the bridge 
following, but a = 1. Here the probability is of following a dance to 
a particular flower patch, rather than choosing a particular bridge, 
but the principle remains the same. Substituting a = 1 into equation 
3.A.4 gives only a single stable equilibrium x = y = q/2v, indepen-
dent of the flow of bees or the initial number of bees at the two 
flower patches. There is thus no symmetry breaking in honeybee 
dance recruitment. Even when the quality of the two feeders is dif-
ferent there is only a single equilibrium (see figure 3.4).
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number taking bridge X and the flow of ants out of the nest. When the flow 
out of the nest is low there is a unique equilibrium whereby only slightly 
more ants take the shortest route and the longer route continues to be used. 
At a flow rate of about 3.5 ants per minute the bias towards taking bridge 
X (the shortest route) increases, and once 5 ants per minute are flowing out 
of the nest, nearly all of them take bridge X. However, at flows of just over 
5 ants per minute, a second stable equilibrium appears, i.e., a bifurcation 
occurs. For these flows, an initial bias towards bridge Y will be preserved 
and the majority of ants will take bridge Y instead of the shorter bridge X.

Strong preference at the level of the group can occur even in the absence 
of any bias in the length of the bridges. The model in box 3.A predicts that 
given two equal routes to the feeder, instead of splitting 50:50 between 
the two routes one route will be chosen over the other (figure 3.3a). When 
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Figure 3.2.â•‡O utcome of model in box 3.A when bridge lengths are unequal: (a) Simulation 
of model where the initial bias is to bridge X, x(0)â•›=â•›0.35 and y(0)â•›= 0.2. (b) Simulation of 
model where the initial bias is to route 2, x(0)â•›=â•›0.3 and y(0) = 0.1. (c) Bifurcation diagram 
for model. Thick lines going from left to right are the stable equilibrium, while the arrows 
show which set of initial conditions arrive at different equilibriums. The thicker arrow in 
(c) denotes the case where â•›=â•›6.3, corresponding to the simulations in (a) and (b). Other 
parameter values are qxâ•›=â•›1, qyâ•›=â•›0.95, vâ•›=â•›1, kâ•›=â•›2 and aâ•›=â•›2.

(c)
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Figure 3.3.â•‡O utcome of model in box 3.A when paths lengths are equal. (a) Simulation of 
model where the initial bias is to bridge X, x(0) = 0.35 and y(0) = 0.2. Swapping these ini-
tial conditions would create an equilibrium, where more ants use bridge Y. (b) Bifurcation 
diagram for model. Thick lines going from left to right are the stable equilibrium, while 
the arrows show how different initial conditions go to different equilibriums. The thicker 
arrow in b denotes the case where  = 6.3, corresponding to the simulation in (a). Other 
parameter values are qx = qy = 1, v = 1, k = 2 and a = 2.
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(b)
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Beckers et al. (1992b) offered Lasius niger ants two identical bridges be-
tween food and nest, after 30 minutes, the majority of the ants took only 
one of the two bridges (figure 3.1d). Sumpter & Beekman (2003) reported 
similar results for Pharaoh’s ants when they offered the ants two identi-
cal feeders in opposite directions from the nest. Instead of a 50:50 split 
between feeders, the split was closer to 70:30 or 30:70, giving a u-Â�shaped 
distribution of number of ants at one of the feeders over all the trials. The 
“winning” feeder was the one that had the most ants nearby when it was 
initially placed in the foraging arena (Sumpter & Beekman 2003).

The emergence of an asymmetrical distribution of individuals in a 
uniform environment is a characteristic property of positive feedback 
(Camazine et al. 2001; Deneubourg & Goss 1989; Pasteels et al. 1987). 
Whether a recruitment system will exhibit such symmetry breaking de-
pends on the strength of the positive feedback. Figure 3.3b shows that 
when the total number of foraging ants is low the model predicts an even 
split of ants between food sources. When the total number of foraging 
ants reaches a critical value this symmetry is broken and one food source 
is chosen almost exclusively. These symmetry breaking bifurcations arise 
in many situations where the response is disproportional to the difference 
between two signals (i.e., a > 1).

A symmetry breaking bifurcation is also predicted to occur as the 
amount of pheromone laid per individual foraging ant is increased. This 
prediction was confirmed by Portha et al. (2002). They found that Lasius 
niger engage in a higher intensity of pheromone laying when feeding on 
a sucrose food source than on a protein food source. As a result colonies 
fed on carbohydrate showed a stronger tendency to break the symmetry 
between two feeders than those fed on protein.

Portha et al.’s (2002) results allow us to explain symmetry breaking in 
terms of the ants’ need to respond differently to different types of food. 
Under natural conditions, Lasius niger collect sucrose by extracting honey-
dew from a limited number of aphid colonies. These are long lasting food 
sources that require defense against competitors and predators, and are 
thus best exploited by a concentrated response by large numbers of forag-
ing ants. Conversely, natural protein sources take the form of dead insects 
that are not usually spatially clustered and require only small groups of 
ants to retrieve. By adjusting their individual pheromone laying behavior in 
response to food type the ants regulate their collective foraging response to 
that required to deal with that particular food. These observations provide 
a functional explanation for what may at first appear as a mathematical 
oddity of the model in box 3.A. Symmetry breaking occurs when it is ben-
eficial for the majority of individuals to make the same choice.

The model presented in box 3.A makes a number of simplifications, 
which mean that while improving our qualitative understanding of 
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patterns, it does not give accurate quantitative predictions about distribu-
tion of foragers between routes or food sites. More detailed and quantita-
tively accurate models have been developed of the foraging of Argentine 
ants (Goss et al. 1989) and Lasius niger (Beckers et al. 1992a; Beckers et 
al. 1992b; Beckers et al. 1993). In the latter case, ants taking the longer 
bridge were found to be more likely to make U-Â�turns than those following 
the shorter bridge (Beckers et al. 1992b). When taking this additional bias 
into account, reasonably accurate quantitative estimates of the distribu-
tion of ants between bridges can be made (Camazine et al. 2001).

Honeybee Dances

Probably the most celebrated mechanism for transferring information 
about food is the waggle dance of the honeybee (Seeley 1995; von Frisch 
1967). Waggle dances are performed by honeybee foragers that have suc-
cessfully found nectar or pollen. The dance is a figure eight pattern: a 
waggle run, where the bee vibrates its abdomen and wings as it walks 
forward, followed by a turn to the right circling back to the point at 
which the run begun, followed by another waggle run and a further turn 
back, this time to the left. The direction and the duration of the run are 
correlated with the direction and the distance from the bee hive to the 
food source. Uninformed bees in the hive follow a dance and then fly in 
the direction of and for the distance encoded by the dance, after which 
they search locally using odor and visual cues (Riley et al. 2005). Usu-
ally this recruited bee will fail to find the advertised food site, but by 
repeatedly returning to the dance floor and following further dances she 
will eventually find and return with food (Seeley & Towne 1992). Since 
recruited bees may later perform dances themselves the waggle dance acts 
as a positive feedback mechanism through which information about food 
is transferred.

We can put the waggle dance in the framework of our model in box 
3.A. If only two food sources equidistant to the hive, X and Y, are avail-
able to the colony then the probability that an unemployed bee is re-
cruited to feeder X can be expressed as

	
x y k
x k

2+ +
+ ,	 (3.2)

where x is the number of bees dancing for site X, y is the number of 
bees dancing for site Y, and k is a constant (Sumpter & Pratt 2003). 
This equation reflects the observation that choice of foraging site is di-
rectly proportional to the level of dancing for that site (Seeley & Towne 
1992). When the total number of dancing bees, x + y, is small then the 
probability of going to either site is close to one-Â�half, consistent with the 
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observation that honeybees search independently for food in the absence 
of dance information (Beekman et al. 2007; Seeley 1983).

Equation 3.2 is a specific example of equation 3.1 with a = 1. Honey-
bees are known to retire from foraging at a rate inversely proportional to 
a feeder’s profitability, so the parameters qx and qy in box 3.A can be set 
to reflect the relative profitability of feeders X and Y. Figure 3.4a shows 
a bifurcation diagram for the case where two feeders have unequal profit-
ability. The majority of bees forage at the most profitable site. Unlike the 
comparable bifurcation diagram in figure 3.2c there is, for any flow of 
foragers out of the hive, a unique steady state number of foragers going to 
each site. Further analysis in box 3.A shows that, independent of the qual-
ity and number of food sources, there is a unique steady state for all initial 
conditions. Similarly, figure 3.4b shows that when both feeders are of equal 
quality honeybees never exhibit symmetry breaking. The bees will always 
divide their workforce equally between two equally profitable feeders.

Although not extensively tested for different foraging scenarios, the 
above model’s predictions do seem to hold in experiments. Seeley et al. 
(1991) offered honeybees two feeders of different quality in opposite di-
rections from the hive and after four hours swapped the feeder quality. 
The bees were able to track this change and re-Â�allocate their workforce 
appropriately. Although the subject of theoretical debate (Camazine & 
Sneyd 1991; de Vries & Biesmeijer 2002), symmetry breaking for two 
equal feeders has never been tested directly for honeybees. Bartholdi et al. 
(1993) has, however, shown that the ratio of recruitment over retirement 
equilibrates when a colony is offered two feeders of different quality, i.e., 
differing concentration of sugar solution, but with limited capacity, i.e., 
the number of bees per minute that can access the feeder. The overall pic-
ture of honeybee foraging is one of decentralized tracking of the environ-
ment, with each honeybee a relatively complex information storage unit 
that uses dance language to share details of how the environment changes 
(Biesmeijer & de Vries 2001; Seeley 1997; Seeley 2002).

This picture of honeybee foraging contrasts with the picture of foraging 
of Lasius niger and other ants, where large numbers of ants are quickly 
mobilized to lock into a particular sucrose food source. We have already 
seen that Lasius niger colonies adjust the degree of symmetry breaking 
in their foraging to match the properties of the food they are collecting. 
In this context, it is important to note that by sampling more than one 
dance and taking directional information from the dance for which the 
majority of sampled bees are dancing, an uninformed forager could bias 
its probability to forage at the most popular site to be greater than the 
proportion of dances for that site. Such sampling would then produce a 
symmetry breaking in the distribution of foragers between sites (Cama-
zine & Sneyd 1991). Whether such repeated sampling has not evolved 
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Figure 3.4.â•‡ Bifurcation diagrams for honeybee foraging model (a = 1 in the model in box 
3.A), (a) when feeders have unequal profitability, qx = 1 and qy = 0.95; and (b) when feed-
ers have equal profitability, qx = qy = 1. There is a small difference in the position of the 
equilibrium that is difficult to see. It is interesting to contrast this small difference with the 
large difference in the bifurcation diagrams in figure 3.2c and figure 3.3b. Other parameter 
values are v = 1 and k = 2.

(a)

(b)
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because of physiological limitations at the level of individual foragers or 
because the environment honeybees typically experience is not usually 
highly clustered is an interesting, but difficult to answer, question.

As with ant foraging, more detailed models have been built of honeyÂ�
bee foraging. Based on and parameterized by Seeley’s experiments, 
Camazine & Sneyd (1991) developed the first differential equation model 
of honeybee foraging. This was developed further and put in the general 
context of social insect foraging by Sumpter & Pratt (2003). De Vries & 
Biesmeijer (1998) developed an individual-Â�based model of honeybee for-
aging and pointed out a number of limitations in the differential equation 
models in making accurate quantitative predictions about foraging. De 
Vries & Biesmeijer (2002) suggest that symmetry breaking does occur in 
their individual-Â�based model. However, rather than finding two symmet-
rical stable distributions of foragers between food sources, the maximum 
asymmetry (i.e., the maximum absolute difference between the numbers 
of foragers visiting the two sources) differed greatly between simulation 
runs with the same parameter values. A similar dependence on initial 
conditions is seen in the differential equation model of honeybee foraging 
when k = 0 and is due to the maintenance, rather than the amplification, 
of a fluctuation in the early between-Â�feeder distribution of foragers. I 
would thus challenge the assertion that the individual-Â�based models dem-
onstrate symmetry breaking. Indeed, the detailed individual-Â�based model 
loses out to the simple model in box 3.A in terms of generality, while pro-
viding little additional understanding of positive feedback. Individual-Â�
based models can, however, prove more powerful in understanding the 
multiple feedbacks inherent in complicated co-Â�operative systems, and I 
will return to such models in chapter 9.

Other Signal-Â�based Recruitment

Recruitment signals made at or emanating from a central nest are not 
limited to honeybees or pheromone trail laying ants. Stingless bees show 
an array of contact-Â�based, visual, scent-Â�based, and acoustic communica-
tion signals that allow foragers that have found food to recruit those that 
have not (Biesmeijer & Slaa 2004; Nieh 2004). Many species of ants ex-
hibit group and tandem-Â�running recruitment where, after a signal made 
in the nest to attract would-Â�be followers, an ant that has found food leads 
recruits directly there (Franks & Richardson 2006; Hölldobler & Wilson 
1990). Symmetry breaking is observed in tent caterpillars. When offered a 
choice between two equal food sources, a caterpillar colony will aggregate 
on only one of the two (Dussutour et al. 2008; Dussutour et al. 2007).

Recruitment signals are not limited to insects. For example, Norway 
rats deposit odor trails from the food back to the nest (Galef & Buckley 
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1996). By attracting nestmates, these trails spread information about 
widely scattered, ephemeral food sources, reducing the time it takes in-
dividuals to find food (Galef & White 1997). Naked mole rats also leave 
odor trails on finding food, make chirping noises during their return trip, 
and display the collected food for nestmates (Judd & Sherman 1996). 
There is evidence for a weak form of positive feedback with follower 
naked mole rats vocalizing when they find food, but with a lower prob-
ability than the initial discoverer. Recruited mole rats appear to look for 
the trail left by a specific individual, suggesting that recruitment to a par-
ticular food source is proportional to the number of recruiting individu-
als. However, chemical signals and food calling both have the potential to 
generate disproportional recruitment and symmetry breaking.

Cue-Â�based Recruitment

In all of the above examples, information exchange about the location 
of food has involved a signal from an informed individual to an unin-
formed individual. A signal is defined as “an act or structure that alters 
the behavior of another organism, which evolved because of that effect, 
and which is effective because the receiver’s response has also evolved” 
(Maynard Smith & Harper 2005). Information can also be exchanged by 
cues, which are “a feature of the world that can be used by the receiver 
as a guide to future action” (ibid). Such features might be an aspect of 
an informed individual’s behavior, such as the direction it moves, but 
can also be a way in which the individual has modified its environment, 
such as leaving footprints or carrying an odor. Rather than evolving to 
communicate the existence of a resource, cues arise when a particular 
behavior happens to be correlated with obtaining a particular resource. 
Uninformed individuals then use this correlation to gain information. 
The cue may incur a cost to the informed individual in terms of increased 
competition for the resource, but not as a result of the behavior itself.

There are a number of examples of information transfer by cues. Rat-
cliffe & Hofstedeter (2005) showed that observer bats that first inter-
acted in the nest with a “demonstrator” bat chose the same food type 
as that eaten by the demonstrator. Since the observers experienced novel 
food cues only on the breath or body of the demonstrator, the experi-
ments suggest that the interactions served to induce the bats to search for 
a particular type of food source. In this case the information exchanged 
was simply about the existence of a particular food rather than its loca-
tion. By following informed nestmates, however, an uninformed individ-
ual can ascertain the location of food without the need for signals. Such 
following of informed individuals is seen in hooded crows (Sonerud et al. 
2001) and cliff swallows (Brown 1986).
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A problem with inferring that information exchange is solely cue-Â� 
rather than signal-Â�based is that it is difficult to completely rule out the 
existence of a signal. For example, ravens certainly use cues, but possibly 
also use signals, in information transfer at their communal roosts. When 
naïve North American ravens were added to communal roosts they fol-
lowed their informed roost-Â�mates to new feeding sites (Marzluff et al. 
1996). At the beginning of these flights some birds produce noisy “kaws” 
and “honks,” although it is not known whether these noises are more 
often produced by informed birds. There is, however, evidence based on 
a small number of observations of European ravens that the first birds 
to be seen at a bait carcass were also those that performed flight displays 
and vocalizations the evening before and appeared to initiate morning 
departures from the roost (Wright et al. 2003). These observations would 
suggest that informed ravens actively signal the location of food. Other 
animals may use only cues at the nest, but use evolved signals once they 
arrive near food. For example, although not known to use any signals 
to recruit from the nest, cliff swallows are known to use a vocal signal 
when they arrive at food that alerts other nearby swallows of its location 
(Brown et al. 1991).

Foraging Success and Group Size

When food is difficult to find then an individual using information pro-
vided by others can increase its rate of finding food. The honeybee dance 
improves efficiency of food collection during seasons and in environ-
ments where forage is clustered (Dornhaus & Chittka 2004; Dornhaus et 
al. 2006; Sherman 2002). Likewise, Brown et al. (1991) suggest that cliff 
swallow signals about food location occur only when the insects upon 
which they feed are spatially clustered.

Information transfer can produce a synergism for group members (see 
Synergism in chapter 10). Specifically, it can lead to increasing per capita 
foraging success with group size. Brown & Brown (1996) provide evi-
dence for this in cliff swallows, where both the total number of food de-
liveries to brood per parent per hour and the amount of food collected 
per foraging trip per parent increases with group size (figure 3.5a). Stud-
ies of the Pharaoh’s ant (Beekman et al. 2001) and Argentine ants (Hal-
ley & Burd 2004) also show that the per capita number of ants arriving 
at a feeder increases with colony size (figure 3.5b). In general, however, 
the study of per capita productivity in insect societies has been mainly 
focused on the early stages of colony foundation, where increases in pro-
ductivity are usually attributed to co-Â�operative building (see Tunnels and 
Tents in chapter 7) and defense than to foraging success (Bernasconi et 
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Figure 3.5.â•‡ How foraging success increases with group size for (a) cliff swallows (adapted 
from Brown & Brown 1996) and (b) pharaoh’s ants (adapted from Beekman et al. 2001).
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al. 2000). One study of the early stages of colony foundation that could 
relate to information transfer looked at brood raids by fire ants on other 
nearby ant colonies. Adams & Tschinkel (1995) found that nests consist-
ing of multiple queens produced more workers and then had an increased 
success during raids on other colonies.

While information transfer can lead to per capita gains in foraging 
success, it can require a minimum number of individuals to function ef-
fectively. If an ant in a small colony finds a food source a long way from 
the nest, then by the time another ant passes over the place she left phero-
mone trail, the pheromone will probably have evaporated. In this case, 
the trail does not help other ants find the food. For large colonies of ants, 
however, it is more likely that an ant will find the pheromone trail before 
it evaporates, follow it, and thus reinforce it. 

Beekman et al. (2001) formalized this argument in a differential equa-
tion model, similar to that in box 3.A, of trail laying to a feeder. The 
model predicted that (a) as the number of ants in the colony increased 
the number of ants visiting the feeder would increase non-Â�linearly and 
(b) provided the rate at which ants found the food without following a 
trail was small, then at a critical colony size there would be a sudden 
switch from few ants visiting the feeder to a large proportion of the ants 
visiting the feeder. This prediction was confirmed experimentally for ants 
foraging at a single feeder (Beekman et al. 2001). Small colonies of Mono-
morium Pharonis were unable to establish an effective pheromone trial, 
while above a critical size trails were formed between nest and food (figure 
3.5b). These observations could help explain why pheromone trail laying 
has evolved primarily in ant species that contain large numbers of workers 
(Beckers et al. 1989) and that ants of the same species change their trail 
laying behavior dependent on their colony size (Devigne & Detrain 2002).

Evolution of Information Centers

Synergism and Altruism

The reason it is important to draw a distinction between cues and signals 
in information transfer is that signals incur an efficiency cost to the in-
formed individual producing them (Guilford & Dawkins 1991). The cost 
can be either a direct result of the time or energy expended in making the 
signal, e.g., in performing a dance or producing pheromone chemicals, or 
a result of increased competition for the signaled resource. In order for 
a costly signal to have evolved there must also be an associated benefit. 
This benefit must on average be greater than the cost. The key evolution-
ary question about all systems where we see signaling is: what are the 
benefits of signaling?
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Such questions do not usually have one simple answer but depend on 
a whole range of factors. In chapter 10, I discuss three general settings 
under which co-Â�operative signals can evolve in spite of the possibility 
that other individuals could cheat by following others’ signals while not 
producing their own. These are repeated interactions, synergism, and in-
clusive fitness.

Although information centers involve repeated interactions, a central 
requirement for this type of co-Â�operation—that individuals are able to 
identify one another—is not usually fulfilled (Repeated Interactions in 
chapter 10). Instead, one or more of synergism and inclusive fitness are 
likely to be the most important factors in the evolution of information 
centers. The key idea in synergism is that although individuals pay a 
cost in signaling the location of food, the fact that all individuals in the 
group produce this signal provides a per capita benefit that outweighs 
the cost. In particular, provided per capita foraging success increases at 
least linearly with group size, synergies can evolve even if it would not 
pay an individual to start signaling in a group of non-Â�signalers (Syner-
gism in chapter 10). The key idea of the inclusive fitness argument for 
co-Â�operative signaling is that signals that increase the chance of geneti-
cally related individuals finding food provide indirect fitness benefit to 
the focal individual (Inclusive Fitness in chapter 10).

Cliff swallows do not nest in colonies of related individuals and in-
clusive fitness plays little or no role in the evolution of their foraging 
behavior (Brown & Brown 1996). Correspondingly, there is a lower 
degree of signaling between colony members than for social insects and 
communication about food location is primarily cue-Â�based. However, 
signaling between birds is seen in the form of food calling at mobile in-
sect swarms. The signaling birds can track the swarm while being able to 
make return journeys between the colony and the insects. A functional 
explanation of cliff swallow foraging based on synergism is supported 
by the per capita foraging success of these birds, which increases with 
colony size (figure 3.5a).

Many social insect species have a high degree of within-Â�colony related-
ness, and there is little doubt that inclusive fitness contributes to the co-Â�
operation inherent in these species (Bourke & Franks 1995; Foster et al. 
2006). Several authors have argued that because relatedness within these 
colonies is lower than first predicted, inclusive fitness may have a less im-
portant role in co-Â�operation than once supposed (Korb & Heinze 2004; 
Wilson & Holldobler 2005). It is here that the observation that signaling 
in foraging increases per capita foraging success with group size plays 
an important role. Synergism leads to an increase in benefits and thus 
a lower requirement for within-Â�colony relatedness for the evolution of 
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co-Â�operation. Similarly, for naked mole rats, the relevance of high within-Â�
group relatedness (Reeve et al. 1990) has been questioned because the 
degree of competition between relatives has not been measured (Griffin 
& West 2002). With or without competition for resources, synergism 
whereby co-Â�operation increases the amount of available resources could 
lead to the evolution of signaling during foraging. Further empirical tests 
of the foraging performance of different sized colonies are needed to clar-
ify the role of synergism in these species.

The system that is possibly most difficult to provide a functional expla-
nation for co-Â�operative signaling are the flight displays by ravens (Wright 
et al. 2003). For these birds, groups may be sufficiently small that re-
peated interactions, either in terms of direct reciprocation or indirect 
reputation building, could play a role (Repeated Interactions, chapter 
10). However, these groups are relatively fluid and it would be interesting 
to have more data on the probability of repeated interaction needed to 
justify reciprocation.

Social Parasitism

Cues can be thought of as unavoidable consequences of possessing infor-
mation. For example, bats that carry the smell of food also carry informa-
tion about its existence. Similarly, it is difficult for a bird to fly to food 
without revealing to others where it is going. In these cases the informed 
individual may pay some cost associated with being followed, in terms 
of increased competition for food. However, because the cue is not an 
evolved communication mechanism, we no longer need to find an associ-
ated benefit with information transfer. Instead, cues are an example of so-
cial parasitism (Parasitism, chapter 10). The bat who collects food gathers 
information and those back at the nest parasitize that information.

One question that now arises is whether the informed individual might 
evolve some mechanism to disguise the information it possesses, and thus 
avoid paying competition costs. Disguising of information has not been 
observed in the systems discussed in this chapter. For example, cliff swal-
lows show no signs of disguising the fact they have found food (Brown 
1986) and away from the nest they actively recruit other individuals to 
food. Given the possible benefits, or at most small costs, of information 
sharing for cliff swallows, the lack of disguising behavior is hardly surpris-
ing. Indeed, the systems I have described are chosen precisely because they 
showed some form of information transfer and are not likely candidates 
for observing hiding behavior. Strategies to disguise the position of food 
do, however, occur in other species, such as hording by scrub jays (Emery 
& Clayton 2001), where there are large costs to sharing information.



c h a p t e r  3

64

Exploiting the Finds of Others

Information transfer does not always occur at or originate from a cen-
tral point. There are many situations where animals copy the choices of 
others that have information about food, mates, or shelter (Dall et al. 
2005; Danchin et al. 2004; Wagner & Danchin 2003). In some cases, 
observers can gain information directly about the quality of the environ-
ment from the success or otherwise of others. For example, starlings use 
observations of their flockmates’ success in probing for food to decide 
when to leave a patch in search of another (Templeton & Giraldeau 
1996; Templeton & Giraldeau 1995). In other cases, copying can occur 
without an obvious way in which the observer can assess the success of 
the participant. For example, female quails show a tendency to mate 
with males that they have previously seen mating with other females 
(White & Galef 1999a; White & Galef 1999b) and even prefer other 
males that share the characteristics of a male they have seen mating 
(White & Galef 2000).

Simply copying the behavior or blindly following others can allow ani-
mals to make better choices, even if they are unable to assess the qual-
ity of the information possessed by the copied individual. For example, 
consider the options available to a foraging bird when it arrives at a field 
and sees one other bird with its head down in the ground pecking for 
food. From this observation alone the observer is unable to assess with 
certainty whether the pecking bird has found food or is simply looking. 
However, the pecking bird is more likely to have its head down if it has 
found something. Thus the proportion of time the bird has its head down 
is a good indicator of the pecking bird’s success. The observer need not 
know exactly how long a bird has had its head down, but can gain an in-
stantaneous estimate of its foraging success simply from whether its head 
is down or not at the time of arrival. A simple rule for deciding whether 
to join could be as follows: always join a bird with its head down, never 
join a bird with its head up. If the observer applies this rule whenever it 
arrives in a field it will, on average, do better than if it joined or not at 
random. Experiments where geese flocks were presented with models of 
an artificial flock of model birds, some with heads down and others with 
heads up, show that flocks are more likely to land near groups of models 
where more birds have their heads down (Drent & Swierstra 1977).

There is evidence for increased foraging success through group mem-
bership. Grunbaum & Veit (2003) found that albatrosses spent a larger 
proportion of their time feeding when in larger groups. With these ob-
servations it is difficult to separate cause and effect. Is the larger group 
simply due to more abundant food at certain points in the environment? 
However, Grunbaum and Veit found only a weak relationship between 
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density of albatrosses and the density of available krill, suggesting that for-
aging success had a stronger positive relationship with the number of birds 
foraging than with prey density. More direct evidence is available from ex-
periments on fish. In experiments where food was available in only one of 
a large number of pots, the time it took goldfish and minnows to find food 
decreased roughly in proportion to one over the group size (Pitcher et al. 
1982). This would suggest that the transfer of information is highly effec-
tive in these groups, with finds rapidly communicated between individuals.

Producers and Scroungers

Before we can sensibly discuss information transfer by animals foraging 
in loosely formed groups we have to ask when it is beneficial to copy 
the behavior of others. When food items are highly clustered, relying 
solely on your own independent search is not always the best strategy. If 
another individual finds a cluster of food, then it pays to join that indi-
vidual and take a share in the find rather than continuing an independent 
search. On the other hand, it is usually difficult to watch others and 
search at the same time. If everyone spends all their time watching what 
others have found then no one will ever find anything. This dilemma has 
been posed as the producer-Â�scrounger game.

The producer-Â�scrounger game and other related models (box 3.B) pre-
dict that—assuming (1) food patches are large enough so that they can-
not be quickly consumed by one individual and (2) there is some cost 
to copying others in terms of lost possibilities of independently finding 
food—some proportion of a group will join others that have found food 
rather than searching themselves. The models further predict that when 
food patches are larger, or food is more patchily distributed, the pro-
portion of observations of joining behavior will increase. These predic-
tions have been shown to hold for spice finches (Giraldeau & Beauchamp 
1999; Giraldeau & Livoreil 1998), where joining behavior increases with 
the patchiness of food distribution (figure 3.6).

The producer-Â�scrounger game can be further interpreted as predicting 
that group members will learn to adopt one of two alternative strategies: 
producing, where individuals look for food independently; or scroung-
ing, where individuals copy the finds of others. While changes in find-
ing and joining rates with food distribution provide evidence that the 
birds have some mechanism to tune their social behavior to better exploit 
their environment, it does not in itself constitute evidence that birds have 
learned to adopt these alternative strategies. To test whether spice finches 
learn to adopt appropriate strategies, Mottley & Giraldeau (2000) set 
up a barrier, one side of which allowed “producers” to open a foraging 



c h a p t e r  3

66

Box 3.B The Producer-Â�Scrounger Game

In the basic producer-Â�scrounger game individuals can choose to 
adopt either one of two distinct strategies: producers search the 
environment and find food clumps at a constant rate (Giraldeau 
2000; Giraldeau & Beauchamp 1999; Ranta et al. 1996; Vickery et 
al. 1991). They get a finder’s share a of the food they find, but are 
unable to consume a further (1â•›-â•›a) before the scroungers, which 
do not search themselves but instead watch the producers, arrive 
at the find and divide the remaining share between themselves and 
the finder. In general, 1â•›-â•›a will increase with the size of a food 
patch. The average rate of food intake or, in game theory terms, the 
payoff of the producer in a group of size N of which a proportion 
s are scroungers is
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From these payoffs we can see that when the population consists 
purely of producers, i.e., s = 0, then wP(0) = 1 but wS(0) = (1 - a)N, 
so provided 1 - a > 1/N, it always pays to be a scrounger. Likewise, 
in a population purely of scroungers wS(1) = 0 while wP(1) > 0, so it 
always pays to become a producer. By solving wP(s*) = wS(s*) for s* 
we can find the evolutionarily stable proportion of scroungers in the 
population (see chapter 10 or Giraldeau (2000) for details). This 
is s* = (1 - a) - 1/N. The group will consist of some proportion of 
scroungers and some producers, the proportion of scroungers in-
creasing with the size of the available food patches.

Many bird species have a visual field that allows them to simul-
taneously scan for scrounging opportunities while searching the 
ground for food (Fernandez-Â�Juricic et al. 2004a). This observation 
can be accounted for as the opportunistic strategy, where we as-
sume bâ•›<â•›1 is the rate at which opportunists find food while still 
able to scrounge whenever an opportunity arises (Vickery et al. 
1991). This strategy has payoff
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compartment that was then also accessible to “scroungers” on the other 
side. They found that the proportion of finches on the scrounging side 
quickly converged to that predicted by the stable state of the producer-Â�
scrounger model. However, the setup for these experiments was some-
what artificial, with the barrier forcing the birds to choose one of two 
distinct strategies.

Establishing that distinct strategies occur in natural foraging environ-
ments requires identifying specific behavioral features to be associated 
with particular strategies. Barnard & Sibly (1981) found evidence for 
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where s is now the proportion of opportunists. The evolution-
arily stable proportion of opportunists is s* = (1 - a)/(1 - b) - 1/N. 
Thus, opportunists will make up a larger proportion of the popula-
tion than scroungers. However, provided there is a cost to being 
an opportunist (i.e., bâ•›<â•›1) then the producer strategy can always 
invade a group of pure opportunists. Similar predictions hold for 
other game theory models of how individuals in groups can par-
asitize information about the location of food (Clark & Mangel 
1984; Ranta et al. 1996; Ruxton et al. 2005). Provided there is a 
cost to opportunism or scrounging then this strategy will coexist 
with that of producing, and joining behavior will increase with the 
size of food patches. In general, I would classify all of these games 
as capturing a form of social parasitism (chapter 10).

In the above discussion I have used the producer-Â�scrounger model 
to make functional predictions about how foraging strategy will 
change with food patch size. It is possible, however, to further 
interpret the producer-Â�scrounger model as a mechanistic model. 
In this case, it predicts that individuals in a group will switch be-
tween two distinct types of behavioral strategies until they reach 
the evolutionarily stable strategy (Giraldeau & Beauchamp 1999). 
Much of the experimental research on producer-Â�scrounger games 
has concentrated on this interpretation and has identified situa-
tions where some individuals adopt a scrounging strategy and 
some individuals a producing strategy. However, this mechanistic 
interpretation is not necessary for many of the key predictions of 
producer-Â�scrounger models to hold.
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Figure 3.6.â•‡T he mean (+SD) observed proportion of finders and joiners observed in three 
flocks of N = 5 spice finches (reproduced from L. A. Giraldeau & G. Beauchamp, “Food 
exploitation: searching for the optimal joining policy,” Trends in Ecology and Evolution, 
March 1999, vol. 14, no. 3, 102–106, fig. 2, © Elsevier). Each flock experienced a distinct 
sequence of three seed distributions for 6 consecutive days, each of which was characterized 
by a different number of seeds per patch. Patchiness levels were low (200 seeds in 10 patches, 
estimated finders share a = 0.33), medium (200 seeds in 20 patches, estimated finders share 
a = 0.27), and high (200 seeds in 40 patches, estimated finders share a = 0.2). The broken 
horizontal lines are the producer–scrounger predictions of the maximum food intake rate.
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this in an experiment on house sparrows. They noted that birds that 
found more food through independent searching performed “a charac-
teristic zig-Â�zag hopping andâ•¯.â•¯.â•¯. frequent head-Â�cocking,” while those that 
found more food through interactions with others either remained still or 
hopped directly towards other birds. Coolen et al. (2001) found similar 
correlations for spice finches. Hopping with the head pointing down was 
correlated with finding, while hopping with the head up was correlated 
with joining. There was also evidence that the finches learned to adapt 
their strategy to their environment. When offered a seed distribution 
where patches contained only one seed, i.e., in which scrounging was a 
poor strategy, joining was no longer observed after four days and after 
six days hopping with the head up also decreased to zero.

Quorum Mechanisms for Information Transfer

While birds of some species may adopt alternative producer-Â�scrounger 
strategies, the existence of distinct strategies is not a requirement for in-
formation transfer. One simple strategy that allows individuals to exploit 
food finds of others is copying. Behavioral responses whereby an animal’s 
probability of exhibiting a particular behavior is an increasing function 
of the number of conspecifics already performing this behavior, are a 
common feature of animals that form groups (Sumpter 2006). Collins & 
Sumpter (2007) looked at the feeding patterns of commercially farmed 
chickens. We found that the probability that a bird starts feeding at a 
particular point along a feeding trough was an increasing function of the 
number of birds already feeding there (figure 3.7a) and that the prob-
ability that a bird stops feeding at a particular point was a decreasing 
function (figure 3.7b).

Copying often takes the form of a quorum response, where the prob-
ability of performing an action sharply increases when a particular group 
size, or quorum, is reached (Sumpter & Pratt 2008). Box 3.C gives a sim-
ple example of a quorum response model of bird feeding dynamics. The 
probability of taking a particular action is a sharply increasing non-Â�linear 
function of the number already performing it and repeated interactions 
lead to positive feedback. This model exhibits both the symmetry-Â�
breaking and the potential for enhancement of sub-Â�optimal choices seen 
in the ant foraging model (box 3.A). This model is studied in more detail 
in chapter 6. Here, I compare the predictions of quorum-Â�response models 
to data on bird foraging.

The observation in figure 3.7 of how rates of finding and joining change 
with food distribution can be explained using the quorum response model. 
The model in box 3.C predicts an increase in joining behavior with food 
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Figure 3.7.â•‡ How the rates of arrival and leaving of chickens change as a function of the 
number of other chickens already at a particular point along a feeding trough. Measured 
frequencies of (a) arrival and (b) leaving the feeder as a function of a moving average of 
the local density at a section on the feeder. The solid lines are fitted response functions. See 
Collins & Sumpter (2007) for details.
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Box 3.C Quorum Response Model of Bird Feeding

The model of Collins & Sumpter (2007) uses the rates of join-
ing and leaving (shown in figure 3.7) along with those for moving 
along the feeder measured from observations of chicken feeding, to 
predict the dynamics of feeding over time. Here I describe a sim-
pler version of that model in which only the probability of joining 
depends on the number of individuals at a food patch and there is 
no explicit spatial structure to the patches. In this model I assume 
that there are f distinct food patches and n birds. Let C(i, t) be the 
number of birds at patch i at time t and B(t) be the number of birds 
that are not at a food patch. Initially, B(0) = n and C(i, 0) = 0 for all 
i. On each time step, the probability per bird not at the food patch 
of arriving at food patch i is

	 s m s
C i t

k C i t
+ −

+
( )

( , )
( , )

α

α α 	 (3.B.1)

where s, m, a, and k are the constants: s is the probability per time 
step that a bird arrives at the patch in the absence of other birds, 
m is the maximum probability per time step that a bird arrives at 
the patch, k is the threshold number of birds at which the prob-
ability of arrival at the patch is (s + m)/2 and a is the steepness of 
this threshold. The probability per bird at a food patch of leaving 
is constant l. 

To model natural foraging conditions, where food is limited, we 
set a constant probability, p, per time step that d food units ap-
pear at a patch. The birds arriving at the patch eat one unit of 
food per time step. Once all the food at that patch is eaten all the 
birds leave. In order to simulate different levels of food clustering 
we can change d. The larger the value of d, the more clustered 
the distribution of food. Setting pâ•›â•›1/d ensures that on average a 
constant amount of food is available. Figure 3.8a shows how the 
rate of food intake changes, and figure 3.8b shows how the rate of 
finding and joining changes with the degree of food clustering. In 
the model, and consistent with experimental observations of spice 
finches (Giraldeau & Livoreil 1996; Giraldeau & Beauchamp 
1999), as clustering of food increases, so too does the frequency 
of joining behavior.
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patch size. The key idea here is that when food patches are larger, the 
birds that find them stay there longer. If other birds have a probability 
of joining that increases with the number of other birds at a patch, then 
larger food patches will attract more joiners, leading to a positive feed-
back loop whereby joining becomes still more common. The result is that 
the individuals using a quorum response will increase their joining rate 
with the degree to which food is clustered (figure 3.8). Instead of requiring 
the birds to learn a strategy in response to food distribution, the quorum 
response automatically tunes joining rate to patch distribution.

The quorum response model is a mechanistic explanation, while the 
producer-Â�scrounger model is primarily a functional explanation. When 
these two approaches are combined they give a very powerful framework 
for thinking about social parasitism in foraging groups. The producer-Â�
scrounger model identifies a stable strategy for individuals foraging in a 
group, and the quorum response model shows how that equilibrium can 
be reached by individuals that do not have complete information about 
the structure of the environment in which they live. The quorum response 
model gives a simple but plausible explanation of how individuals can 
tune their response to optimize the intake of food in variable environ-
ments. It suggests that animals can achieve this balance without having to 
learn to adopt particular strategies based on previous experience.

It would be nice to be able to interpret the chicken data in terms of 
information transfer among animals that have evolved in natural envi-
ronments. However, farmed chickens have been bred for rapid growth 
over many generations (Weeks et al. 2000). This breeding may have led 
to increased copying behavior, which in turn would lead to increased 
feeding and thus more rapid growth. Thus copying in chickens may tell 
us more about the qualities farmers want to see in chickens and less 
about how they use the behavior of others to gain information about 
their environment. 

Further studies are needed to quantify copying responses in the foraging 
of other birds than farmed chickens. Such studies could produce interest-
ing results in a research area where it is difficult to conduct clear-Â�cut ex-
periments (Giraldeau & Beauchamp 1999). In parallel with experiments, 
a more thorough combination of producer-Â�scrounger theory with mecha-
nistic descriptions of how individuals react to the behavior of those nearby 
would shed light on the question of when and where social parasitism 
will be observed. The quorum response model has strong similarities with 
models of social insect foraging, described in box 3.A. The self-Â�organized 
tuning of response to patch size is similar to that achieved by ants and 
honeybees when tuning their collective response to food quality. The dif-
ference here is that the individual, not the colony, should be thought of as 
the optimizing agent. Thus, while it is interesting that a simple mechanistic 
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Figure 3.8.â•‡S imulation of the model described in box 3.C when food at the patches is 
limited. (a) Intake per forager and (b) proportion of foragers finding and joining changes 
with the degree of spatial clustering of food. Here, n = 25, f = 10, and p = 0.1/d. As the 
number of food items appearing each time food becomes available, d, increases, so too does 
the degree of clustering of the food. Other model parameter values are s = 0.001, m = 0.4, 
k = 1, and a = 4.
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model appears to reach the stable equilibrium of the producer-Â�scrounger 
model, further theoretical investigation is needed to test whether particular 
response thresholds could be exploited by other alternative strategies.

From Copying to Culture

A good theory of the reasons for and the effects of copying could have 
consequences that go beyond understanding chickens scrabbling in farm-
yard dirt. It could reveal something about the fads, the fashions, and 
even the religions of our own society. Conventions and customs of our 
society are established by information transfer among individuals and it 
is plausible that the roots of these social norms lie in something as simple 
as copying the behavior of others.

A classic experimental demonstration of copying behavior by humans 
was conducted by Milgram et al. (1969). On a busy New York street they 
placed a small stimulus crowd of individuals, each of which looked up 
at a window of a nearby building. They then observed passersby as they 
walked past the crowd. They found that the larger the crowd the larger 
the proportion of passersby who would stop and/or look up. Hale (2008) 
repeated these experiments in Oxford and found similar results, although 
with a weaker response by passersby. Figure 3.9a, b shows how propor-
tion of passersby looking up increases with crowd size in both cases. In 
both cases the functions relating proportion looking up to crowd size are 
initially approximately linear (i.e., aâ•›â•›1 in equation 3.1), and not the 
quorum-Â�like (i.e., a > 1) relationship in, for example, the ants’ response 
to pheromone.

Quorum-Â�like responses are also observed in humans. Another classic 
experiment by Asch (1955) looked at individuals in situations where they 
felt under social pressure to conform. He showed subjects two cards. One 
card showed a single line of a “standard” length and the other showed 
three different length lines, only one of which was the standard length. 
He asked the subjects to identify the standard length line. When on their 
own, individuals nearly always successfully identified the standard line. 
When a single subject was placed in a group of “opponents,” who were 
instructed beforehand to deliberately choose the same but incorrect line, 
the subject would often concur with the opponents. Figure 3.9c shows 
how the proportion of individuals making an error increases with the size 
of the group of opponents. In this case the response is a sharp quorum 
threshold at approximately 2 individuals. Having two or more oppo-
nents leads individuals to make mistakes.

Both linear and quorum-Â�like responses have been the focus of a great 
deal of theoretical interest in sociology and economics. Granovetter 
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(1978) describes a model where individuals decide whether to engage in 
some form of action (such as a rioting, use of contraception, or voting for 
a particular party) when a quorum threshold of others have already en-
gaged in the action. He showed that groups with similar average prefer-
ences may generate very different collective behavior, depending upon the 

Figure 3.9.â•‡R esponses of humans to the behavior of others. The relationship between the 
probability that passers-Â�by will copy the gaze of the stimulus group as a function of stimu-
lus group size, in (a) New York (Milgram 1968) and (b) Oxford (Hale 2008). (c) The prob-
ability that an individual will concur with a group of opponents as a function of the number 
of opponents (Asch 1955). The fitted line is the function P(N) = m(Nk/Tkâ•›- Nk), where P(N) 
is the observed frequency of looking up and N is the group size (opponents or crowd). The 
fitted parameters, T, m, and k characterize the type of response: m is the maximum propor-
tion of individuals that will look up, T is the threshold group size at which m/2 individuals 
will look up, and k determines the shape of the functional response. The parameters are 
(a) m = 0.63, T = 6.4, and k = 1.42; (b) m = 0.91, T = 1.2, and k = 1.05; and (c) m = 0.35, 
T = 2.13, and k = 6.66.
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order in which they make the decision. Schelling (1978) proposes similar 
models and introduces concepts like “tipping points” and “critical mass” 
to describe how social activities suddenly take off when, through some 
essentially random fluctuation, a threshold is passed.

At some point copying can become culture. Ball (2004) provides an 
excellent summary of how the “critical mass” idea has been applied in 
the study of crime, wars, and economics. For example, sudden increases 
or drops in crime may be attributable to the passing of a critical thresh-
old at which criminal behavior is socially “acceptable” (Ormerod et al. 
2001). Similarly, Skog (1986) studied long term changes in consumption 
of alcohol in Norway and showed that it was consistent with a simula-
tion model of changes due to social interactions. Saam & Sumpter (2008) 
showed that these models could explain decision-Â�making by nation states 
during treaty negotiations.

It is very hard to disentangle cause and effect when dealing with so-
ciological phenomena. There are lots of rapidly changing external fac-
tors, such as economics, population levels, and large scale social change, 
which correlate with crime levels and alcohol consumption. To overcome 
this problem, Hedström and Åberg use log linear regression to test the 
relative importance of social factors and other correlating factors in the 
probability of unemployed residents of Stockholm gaining employment 
over a period of time (Hedström 2005). This study suggests that social 
interactions do determine whether people search for work.

The challenges remaining in this research area are substantial (Ehrlich 
& Levin 2005). Can we work out how culture is transmitted between in-
dividuals and the consequences this has for the development of religion, 
economics, and our environment? This will require a combination of sta-
tistical analysis of correlations between different types of social behavior 
with an understanding of how ideas are transmitted between individuals.



— Chapter 4 —

Making Decisions

The previous chapter looked at how information is transferred between 
individuals, in particular when they are looking for food. In one sense 
we can talk about individuals making decisions about where to collect 
food. The ants decide which of two food sources to exploit. Under natu-
ral conditions, however, food is often depleted or moves. As a result the 
available alternatives change and it is difficult to define when or if a de-
cision has been made, or to even usefully talk about decisions between 
alternatives.

There are, however, many situations when animals have to decide be-
tween two or more options, whose qualities remain stable through time. 
This chapter focuses on such situations, where individuals have a number 
of options and where we can define an end point at which all individu-
als have made a choice. Most of the examples I consider in this chapter 
concern how groups choose a new shelter or migrate to a new home. 
Here we can sensibly talk about decision-Â�making: once all individuals 
have settled at their new home or shelter, then we can say that a collective 
decision has been reached. The collective decision-Â�making investigated in 
this chapter is thus information transfer in a specific, albeit interesting 
and important, setting. A setting in which there are multiple alternative 
choices available to a group, and the alternatives remain stable until a 
point at which we can say a decision has been made.

There are a number of important benefits to an individual in using 
the information possessed by others in reaching decisions (Sumpter & 
Pratt 2008). One benefit is the maintenance of cohesion. Choosing the 
same destination as others, for example, can make an animal less likely 
to be picked out by a predator. In the search for a new home there are 
often benefits to consensus, simply because group members do not want 
to have to invest time and effort re-Â�coalescing because of an initial split.

While information transfer often results in cohesion, the underlying 
reason individuals followed or copied each other was not necessarily to 
promote group cohesion. Information transfer can be a form of social 
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parasitism, and cohesion is a disadvantage to the individual who first 
found the food. There are, however, other potential benefits of informa-
tion transfer in decision-Â�making. Most importantly, the speed and ac-
curacy of decision-Â�making can both be improved by copying the choice 
of a better-Â�informed neighbor. Decisions in which cohesion, speed and 
accuracy are important factors and in which all or nearly all group mem-
bers come to agree on the same option are often referred to as consensus 
decisions (Britton et al. 2002; Conradt & Roper 2005). The key question 
is how individuals reach a rapid consensus for the best of a number of 
available options.

Consensus Decisions

Cockroaches

Various species of cockroach benefit from increased growth rates when 
in aggregations (Prokopy & Roitberg 2001). The German cockroach 
Blattella germanica can reduce water loss in dry conditions by cluster-
ing together with other cockroaches (Dambach & Goehlen 1999). These 
cockroaches rest during daytime periods in dark shelters where they ag-
gregate in stable populations (Ishii & Kuwahara 1968; Rivault 1989). 
These aggregations are at least in part due to attraction to chemical odors 
on the body of the cockroaches (Rivault et al. 1998). Cockroaches that 
are collected from different locations and kept isolated as different strains 
have different odors and are attracted more strongly to the odor of their 
own strain (Rivault & Cloarec 1998).

Amé et al. (2004) performed symmetry breaking experiments to test 
the extent of aggregation due to social interactions. Figure 4.1 shows 
the result of these experiments. Cockroaches were placed in an arena 
with two identical shelters both with sufficient capacity to shelter all of 
the cockroaches. In a majority of experiments over 80% of the cock-
roaches chose the same shelter. These results held even when two differ-
ent cockroach strains were put in the arena, with different strains usually 
choosing the same shelter (Amé et al. 2004). Independent of difference 
in strain, the cockroaches make a consensus decision about which of the 
two shelters to occupy.

The consensus decision is reached through a very simple rule followed 
by individual cockroaches: the probability per unit time of an individ-
ual leaving a shelter decreases as a function of the number of cock-
roaches under the shelter. This probability of leaving decreases rapidly 
as the number of cockroaches under the shelter increases (figure 4.2a). 
By incorporating this quorum response into differential equation and 
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stochastic simulation models of cockroaches finding and leaving shel-
ters, Amé et al. (2004) showed that it could explain consensus shelter 
choice. The model they used has strong similarities to the models of ant 
foraging described in box 3.A. A disproportional response to the pres-
ence of other cockroaches is the key to a consensus decision. Amé fitted 
the function

	 θ

ρ
α

1+










x
S

	 (4.1)

to the probability per second per cockroach of leaving a shelter, where x 
is the number of cockroaches under the shelter.

The model predicts that if a = 1, i.e., the time spent in the shelter is 
directly proportional to the number of cockroaches under it, then the 
cockroaches would divide equally between the two shelters. If a > 1, i.e., 
the time spent in the shelter increases more than linearly with the number 
of cockroaches under the shelter, then symmetry breaking occurs and a 
consensus is reached for one of the two shelters (Millor et al. 2006). The 
experimentally measured value of aâ•›â•›2 thus accorded with the consensus 
decisions seen in the earlier experiments (figure 4.1). Further investiga-
tion of the model shows that provided that a > 1, only a relatively weak 
positive response to the presence of conspecifics is sufficient to produce 
symmetry breaking. This could explain why combinations of different 
strains exhibit an equally strong tendency to make consensus decisions, 
despite the fact that each strain has only a weak attraction to the odor of 
the other strain (Leoncini & Rivault 2005).

Figure 4.1.â•‡R esults of Amé’s experiments where cockroaches were offered two identical 
shelters showing the frequency distribution of the proportion of individuals choosing one 
of the two shelters over 49 trials. (Reprinted by permission from J. M. Amé, C. Rivault, 
& J. L. Deneubourg, 2004, “Cockroach aggregation based on strain odour recognition,” 
Animal Behavior 68:4, 798–801, © Elsevier.)
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Figure 4.2.â•‡E xamples of empirical quorum responses in the decisions of migrating insects. 
(a) Cockroaches. Crosses indicate measured leaving times, dashed line is fit given by Amé 
et al. (2006) of /(1â•›+â•›ï†²((x-1)/S)a, with parameter values S = 40,  = 0.01, ï†² = 1667 and 
a = 2; and solid line is the best fit of the equation â•›+â•›/(1â•›+â•›ï†²((x-1)/S)a, with parameter 
values S = 40,  = 0.00051,  = 0.0067, ï†² = 1667 and a = 1.73. This second fitted line al-
lows for the fact that the probability of leaving does not go to zero with the number under 
the shelter. (b) A quorum rule governs the probability of a Temnothorax scout switching 
from tandem run recruitment of fellow scouts to faster transport of the bulk of the colony. 
Crosses show proportions of scouts choosing transport over tandem runs at different popu-
lations under high urgency. Open circles show corresponding data under low urgency. Solid 
and dashed lines, respectively, show a Hill function fit to these data: probability of trans-
port = xk/(xkâ•›+ Tâ†œk), where x is the new site population. Reproduced from Pratt (2005b).

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8
x 10–3

Pr
ob

ab
ili

ty
 o

f l
ea

vi
ng

 p
er

 in
di

vi
du

al
 p

er
 s

ec
on

d 

Number of non-self cockroaches under shelter

(a)

Number of ants in nest

Pr
ob

ab
ili

ty
 o

f t
ra

ns
po

rt

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 70

(b)

10 30 50

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8
x 10–3

Pr
ob

ab
ili

ty
 o

f l
ea

vi
ng

 p
er

 in
di

vi
du

al
 p

er
 s

ec
on

d 

Number of non-self cockroaches under shelter

(a)

Number of ants in nest

Pr
ob

ab
ili

ty
 o

f t
ra

ns
po

rt

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 70

(b)

10 30 50

(a)

(b)



M a k i n g  D e c i s i o n s

81

Social Insect Migration

As with many other aspects of collective behavior, social insects provide 
the most detailed experimental studies of decision-Â�making. For many so-
cial insects, the survival of the colony depends upon remaining together 
and making a good decision about where to live. For example, honeybees 
invest heavily in comb construction, brood-Â�rearing, and food storage at 
their nest. A poor initial choice of nest site or a failure of all colony 
members to choose the same nest site can greatly reduce the colony’s 
reproductive success.

Ants of the genus Temnothorax live in colonies of between 50 and 500 
individuals in small rock or wood cavities. In the laboratory, a colony 
whose nest has been damaged moves to a new site within a few hours, 
reliably choosing the best site from as many as five alternatives, discrimi-
nating among sites according to cavity area and height, entrance size, and 
light level (Franks et al. 2003b; Pratt & Pierce 2001). Around 30% of 
the ants actively partake in the process of choosing a new nest site. These 
active ants undergo four phases of graded commitment to a particular 
nest site (Pratt et al. 2005). Each ant begins in an exploration phase dur-
ing which she searches for nest sites. Once she finds a site she enters an 
assessment phase, carrying out an independent evaluation of the site, the 
length of the evaluation being inversely proportional to the quality of 
the site (Mallon et al. 2001). Once she has accepted the site she enters 
a canvassing phase, whereby she leads tandem runs, in which a single 
scout follower is led from the old nest to the new site. These recruited 
ants then in turn make their own independent assessments of the nest and 
also recruit once the assessment period is over. The nest population thus 
increases through a process of recruitment and of independent discover-
ies of the nest. Since ants take longer to accept lower quality nests, when 
two alternative nests are presented to the ants recruitment is more rapid 
to the better quality nest (Pratt et al. 2002).

Recruitment via tandem runs is rather inefficient: ants move at one third 
of the usual walking speed when leading a tandem run (Pratt et al. 2005). 
However, rather than indefinitely continuing to recruit using tandem runs, 
ants recruit in this manner only when the nest population is below a thresh-
old population, referred to as the quorum threshold. Once the population 
exceeds this quorum threshold a recruiting ant enters a committed phase, 
where she carries passive adults and brood items to the new nest site (Pratt 
et al. 2002). These transports are rapid, as carrying another ant does not 
significantly reduce an ant’s walking speed. The meeting of the quorum 
thus marks a shift from slow to rapid movement into the new nest.

Honeybee emigration usually occurs in spring, when the queen and a 
swarm of roughly 10,000 worker bees leave their nest and cluster in a 
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densely packed swarm in a nearby tree. Several hundred scout bees then 
fly from the swarm and search for tree cavities and other potential new 
homes. Successful scouts use the waggle dance to recruit other scouts 
to these sites, and those recruited bees may in turn dance for a site. A 
positive feedback loop of recruitment to sites begins, similar to that seen 
when honeybee colonies forage for food (Information Centers, chapter 
3). Dances are more frequent for, and thus recruitment is stronger to, bet-
ter quality sites so the population of recruited scouts grows faster (Seeley 
& Buhrman 1999; Seeley & Visscher 2004a). Once the number of bees at 
a site reaches a quorum the bees begin an additional recruitment strategy 
to dancing, known as piping (Seeley & Visscher 2003; Seeley & Visscher 
2004b). Piping is a signal to other non-Â�scout bees at the swarm to warm 
their flight muscles in preparation for the entire swarm to lift off and fly 
to the new nest site (Seeley et al. 2003). Over the two or so days during 
which the scouts search and recruit to new nests, there is dancing for a 
large number of alternative sites but usually only one site reaches quorum 
and induces swarm liftoff. Usually at the point of liftoff only one site has 
reached the quorum threshold population, but in rare cases, split deci-
sions are observed. In these cases the bees lift off in different directions 
but are then forced to return to the tree branch to begin the process again 
(Lindauer 1955; Lindauer 1961).

There are strong similarities between the decision processes of Temno-
thorax ants, honeybees, and even cockroaches. All three species exhibit 
positive feedback and quorum responses (figure 4.2b). The ubiquity of 
these features and their importance in producing asymmetrical choices (see 
again box 3.A) suggests that these similarities are, at least in part, an evo-
lutionary consequence of a need by individuals to reach consensus. Non-Â�
quorum based recruitment would not give the same degree of consensus.

There are also illuminating differences between species. The ants’ and 
bees’ recruitment signals, such as tandem runs, dances, and piping noises, 
are highly sophisticated. Communication between cockroaches is through 
attraction to hydrocarbons present on all parts of the cockroaches’ bod-
ies (Rivault et al. 1998). Attraction to other cockroaches is thus likely 
to be cue-Â�based, although the fact that these hydrocarbons differ among 
strains may indicate that they are an evolved signal to individuals of the 
same strain (Information Centers, chapter 3). Whether the hydrocarbons 
are signals or cues, they are certainly a less complicated and probably less 
costly form of communication than those employed by migrating ants 
and bees. This greater complexity on the part of the ants and the bees is 
probably due to a greater requirement for consensus and colony unity. In 
chapter 9 I discuss how the complex migration algorithms employed by 
ants and honeybees provide for improved accuracy and an ability to tune 
decision-Â�making to different environmental conditions.
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Other Insects and Spiders

U-Â�shaped distributions, such as that in figure 4.1 for cockroaches and 
figure 3.1d for ant foraging, are a ubiquitous feature of binary choices by 
social and gregarious animals (Deneubourg et al. 2002). When offered a 
T-Â�shaped climbing structure, spiders construct draglines between the bot-
tom and only one side of the two ends at the top of the T-Â�shape (Saffre 
et al. 2000); when confronted with the choice between ascending from 
one of two ends of a T-Â�shaped structure, weaver ants build a chain down 
from only one side (Lioni & Deneubourg 2004); social caterpillars for-
age on only one of two available branches (Dussutour et al. 2007); and 
migrating Messor ants leave pheromone trails to only one of the available 
nest sites (Jeanson et al. 2004a)—all show such U-Â�shaped choice distri-
butions. Jeanson et al. (2004b) showed that even “solitary” spiderlings 
have the same pattern of decision-Â�making when building with draglines. 
By using the dragline shortcuts provided by the spiders that have already 
climbed up one side of a Y-Â�shaped cotton thread these spiderlings remain 
cohesive.

In cases such as these, where individuals modify their environment, it 
is not entirely clear whether decisions arise because it is advantageous for 
individuals to be in a group, or because a choice made by one individual 
alters the environment in a way that makes it easier for other individuals 
to follow the same path. Thus, while U-Â�shaped distributions are indica-
tive of decision-Â�making in response to the previous actions of others, they 
should not be necessarily interpreted as resulting from individuals acting 
in order to promote cohesion.

From a mechanistic viewpoint, U-Â�shaped choice distributions imply a 
disproportional response to the actions of others. For many of the ex-
amples listed above individuals exhibit some form of quorum threshold, 
similar to those seen in the migrating Temnothorax ants and cockroaches. 
Either the probability of leaving a group decreases as a sharply non-Â�linear 
function of the number of members (figure 4.2a), or the probability of 
joining a group increases as a sharply non-Â�linear function of the number 
of members (figure 4.2b). These empirical observations demonstrate a 
basic property of all collective decision-Â�making and information trans-
fer: positive feedback together with quorum responses lead to U-Â�shaped 
choice distributions.

Evolutionarily Stable Decisions

There are many situations where it is beneficial for individuals to reach 
consensus, but the number of individuals that can take a particular action 
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is limited. Again looking at how cockroaches divided themselves between 
two shelters, Amé et al. (2006) investigated how the capacity of shelters 
affected the distribution of cockroaches between them. They found that 
when the capacity of a single shelter was insufficient to house all the 
cockroaches, the cockroaches split 50:50 between the two shelters, but 
when the capacity of both shelters was sufficient for all then the majority 
would choose the same shelter. The split in this case was nearer to 80:20 
or 20:80. Furthermore, the switch from 50:50 to 80:20 occurred when 
both shelters had almost exactly the capacity to house all of the cock-
roaches (figure 4.3a). These results were consistent with predictions of 
their earlier mechanistic model of cockroach aggregation, with equation 
4.1 playing a central role in determining that a majority choose the same 
shelter (figure 4.3b).

Based on these experimental results and earlier studies of the advan-
tages of aggregation, Amé et al. (2006) suggested an optimality model 
for shelter choice. They proposed that the benefit of being in a shelter 
increases at first with number under the shelter, but as the capacity of the 
shelter is reached this benefit decreases due to overcrowding and the pos-
sibility of being exposed on the edge of the shelter. Box 4.A describes how 
the fitness function arising from their analysis can be used to determine 
both the optimal group size and the evolutionarily stable group size as a 
function of shelter capacity (see chapter 2 for a discussion of optimal and 
stable group sizes).

Amé et al. (2006) looked only at the optimal group size (figure 4.3c) 
and concluded that the mechanisms employed by the cockroaches and 
the experimental data supported the hypothesis that the cockroaches are 
able to make optimal decisions. This result is surprising from the view-
point of individuals maximizing their own fitness, since the stable group 
size gives a quantitatively different prediction (figure 4.3d). The optimal 
group size model predicts that the distribution of cockroaches between 
shelters will bifurcate from 50:50 to being biased towards one of the two 
shelters at roughly S = N, i.e., when the size of each shelter equals the 
number of cockroaches. The stable group size model predicts that the 
switch to a biased distribution will occur while Sâ•›<â•›N. Even when each 
shelter is too small to house all cockroaches, it is often beneficial for an 
individual cockroach to aggregate with the majority. Thus if each cock-
roach tries to maximize its own fitness, the average cockroach does worse 
than were it to aggregate according to the optimal group size.

Theoretical comparison of optimal and stable group size raises a num-
ber of interesting questions. Assuming that cockroaches are not highly re-
lated to each other and/or are competing locally for resources, we would 
expect them to adopt the evolutionarily stable rather than the optimal 
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strategy in shelter choice (see chapter 10). Despite this, at first sight it is 
the optimal model (figure 4.3c) that gives the best fit to the data (figure 
4.3a) and best matches the mechanistic model (figure 4.3b). However, 
the data is a distribution of experimental outcomes and it is difficult to 
be sure at exactly which point the bifurcation occurs. Different param-
eterizations of the models give different bifurcation points and tuning the 
parameters, none of which have been measured for the fitness function, 
can give quite different quantitative predictions. The experimental setup, 
where cockroaches are placed in an unfamiliar arena, is different from 
their natural environment, where they also learn about and use navi-
gational cues in finding shelter (Durier & Rivault 1999). More detailed 
studies are needed to find out exactly what individual cockroaches might 
be trying to optimize.

Despite these potential problems, Amé’s results are powerful because 
of their simultaneous study of experimental, mechanistic, and functional 
explanations within a single system. Theoretical studies of evolutionarily 
stable strategies for choosing resource sites have also found bifurcations 
in site choice. For example, Moody et al. (1996) model individuals that 
can choose between two patches with the aim of maximizing food intake 
rate while minimizing predation risk. Both food intake and predation risk 
decrease with the number of conspecifics at the patch, but with differing 
functional forms. They found that as a predator dilution factor increased, 
i.e., there were greater benefits to cohesion, a bifurcation occurred from 
a relatively even distribution of individuals between patches to individu-
als aggregating at one of two patches. This study, based on a functional 
explanation of patch choice, shows that even if the exact functional form 
of Amé’s cost/benefit function is not correct, the mechanism adopted by 
cockroaches in decision-Â�making is consistent with the principle of indi-
viduals making decisions that attempt to increase their fitness.

As with many aspects of information transfer in groups, an exciting 
challenge in this area is linking mechanistic and functional approaches. 
Jackson et al. (2006) have begun to address this challenge by looking at 
how natural selection might act on mechanistic rules for how individuals 
change their vigilance behavior and decide to migrate between patches 
when confronted with a predation risk. These models again predict bifur-
cations and U-Â�shaped distributions of numbers of individuals choosing 
different patches. Indeed, many of the predictions are highly reminiscent 
of the predictions first arising from purely mechanistic models (Cama-
zine et al. 2001). This would suggest that the models of Jackson and 
others could benefit by incorporating the response thresholds, empha-
sized by Deneubourg, Amé, and colleagues, into evolutionary models of 
decision-Â�making.
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Figure 4.3.â•‡ Distribution of cockroaches among 
shelters for different shelter size. (Reproduced from 
J.M. Amé, J. Halloy, C. Rivault, C. Detrain, & 
J.Â€L. Deneubourg, 2006, “Collegial decision mak-
ing based on social amplification leads to optimal 
group formation,” PNAS 103, 5835–5840, figs. 1b 
& 2b, © 2006 National Academy of Sciences, USA) 
(a) Experimental results; (b) predictions of Amé’s 
mechanistic model, white bars show model predic-
tion while dark bars show experimental outcome 
(reproduced from Amé et al. 2006); (c) predictions 
of optimal group size model (see box 4.A); and 
(d)â•¯predictions of stable group size model (again see 
box 4.A).
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Many Wrongs

In the last chapter I looked at situations where one individual has a piece 
of information, such as the location of some food, which is transferred to 
others through positive feedback. In such situations it is often clear that 
there is an advantage to copying the behavior of the individual with the 
information. There are, however, many decision-Â�making situations when 
a group of individuals are faced with two or more options, with none of 
them having more information than the rest about which of the options is 
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Box 4.A Optimal and Stable Cockroach Distributions

Amé et al (2006) proposed the following fitness function for a 
cockroach under a shelter where a fraction x of the other cock-
roaches are under the same shelter:

f(x)â•›=â•›(1â•›+â•›p(x/s)2)(1â•›-â•›x/s),

where p is a constant and s = S/n, where S is the size (or capacity) 
and n is the total number of cockroaches in the arena. Group fit-
ness, i.e., the average fitness per individual, is xf(x)-(1â•›-â•›x)f(1â•›-â•›x).

To find the maximum of this expression, we differentiate it and 
solve after setting equal to zero. This gives three solutions at 
x = 1/2 and

x
p

=
±p -3p -2p +3 p2 2 2σ σ

2
.

The solutions corresponding to maxima are shown in figure 4.3c as 
a function of the normalized shelter capacity s. At a critical value 
of s group fitness goes from having a single maximum at x = 1/2 to 
having two maxima corresponding to an aggregation in one of the 
two shelters. The exact value of this critical point is determined by 
the value of p, but for a wide range of these values the critical point 
is slightly larger than s = 1.

As we saw in chapter 2, and is further illustrated in a number of 
examples in chapter 10, the strategy or behavior that is optimal for 
the group is not necessarily that which is stable with respect to indi-
viduals attempting to maximize their own fitness. For example, as-
sume that n = 10, s = 1 and p = 10. It is then optimal for the group 
to split 5:5 between the two shelters. In this case f(5/10) = 1.75 
but f(5/10 + 1/10) = 1.84. Thus if one of the five individuals at one 
shelter moves to another shelter it will increase its fitness, while 
simultaneously decreasing the fitness of those in the shelter it leaves 
as well as the average fitness of all individuals in the population. 
The group optimal distribution between shelters is not the stable 
distribution between the shelters. Individuals trying to maximize 
their own fitness will not choose the group optimal distribution.
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best. For example, in an unfamiliar environment individuals must choose 
where to look for food. In such cases, each individual has some probabil-
ity of making the “correct” decision, but no individual is a priori more 
likely to be correct than any other.

In binary choices, we can assume that each individual has a probability 
p of making a correct decision in the absence of others with which to 
confer. Figure 4.4 shows the probability that the majority make a correct 
decision, provided each individual makes its decision independently of 
the others (see box 4.B for details). Although the probability that each 
individual is correct is only p = 0.6, the probability that the majority of 
the group is correct increases steeply with group size. Groups of size 100 
will hardly ever make a majority error. This result was first applied in the 
18th century by Condorcet to designing the jury system. In general, it il-
lustrates that majority decisions are good at pooling information and im-
prove decision-Â�making accuracy (King & Cowlishaw 2007; List 2004).

A related concept is that of many wrongs. For example, navigating 
animals possess directional information—from visual landmarks, internal 
compass, smell and so on—that is subject to error. Assuming this error is 
unbiased, then the average direction of the group is more likely to be cor-
rect than that adopted by one randomly chosen individual (Simons 2004; 
Wallraff 1978). This argument can be formalized as an application of the 
central limit theorem, which predicts that the error in the average direction 
decreases in proportion to the square root of the group size. Experimental 
tests of this theory on navigating birds have had mixed results, but do ap-
pear to show some increase in accuracy with group size (Biro et al. 2006; 

The stable distribution of cockroaches among shelters corresponds 
to the values of x at which f(x)â•›=â•›f(1â•›-â•›x). At this proportion it is no 
longer beneficial for individuals to move to another shelter. Solving 
f(x)â•›=â•›f(1â•›-â•›x) gives

x
p

=
±p -3p -4p +4 p2 2 2σ σ

2
.

Provided p > 2s then there will exist carrying capacities where an 
equal division between the two shelters is optimal but not stable. 
Figure 4.3c and 4.3d show an example where an equal division 
between shelters becomes unstable when s = 0.815, but is optimal 
for the group up until the point that s = 1.017. In general, a range 
of carrying capacities exists where the stable and optimal propor-
tions at the shelter differ.
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Simons 2004; Tamm 1980). Oldroyd et al. (2008) looked at the dances 
of Apis florea honeybees within a swarm prior to liftoff. These dances 
encode the direction of proposed nest sites. They found that the actual 
direction taken by the swarm was very close to that of the average direc-
tion indicated by the dances. This would suggest that the dancing bees can 
effectively integrate their directional information and lead a large group of 
uniformed individuals in the average of their proposed directions.

In humans, the “many wrongs” principle is highlighted by an observa-
tion by Galton (1907). He examined 800 entries into a “guess the weight 
of the ox competition,” where a crowd of fairgoers each paid a small 
amount to guess how much a large ox would weigh after slaughter, with 
the most accurate guess winning a prize. Although the guesses had a 
wide variation the average guess was only 1 pound (450 g) less than the 
1197 pounds (544.5 kg) that the ox weighed. Acting independently, the 
crowd “knew” the weight of the ox. There are many such examples of 
collective accuracy in humans: ask the audience on “Who wants to be a 
millionaire?” ; the accurate prediction of American presidential elections 
by betting; and the Google search engine using links to a webpage to 
measure its popularity are just some (Surowiecki 2004).

Variability is an inherent feature of animal groups, including insect so-
cieties (Jeanne 1988; Seeley 1995). From only one-Â�week old, before they 
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Box 4.B Condorcet’s Theorem and the Central Limit Theorem

Condorcet’s theorem is as follows. Assume that an odd number of 
individuals n have to make a choice between two options indepen-
dently of the others and each has a probability p of being correct. 
The probability that the majority make the correct choice follows 
directly from the derivation of the binomial distribution, i.e.,

m n p
n

i
p pi

i
n

n
n i( , ) ( )=









 −

=
+

−∑ 1
1

2

.

Figure 4.4 plots this function for p = 0.6. As the number of individ-
uals goes to infinity, m(n,â•›p)â•›râ•›1 and the majority decision is always 
correct. In the case where n is an even number we have to make a 
choice about how we treat cases where an equal number make the 
same choice, but the overall shape of the curve remains the same.

The principle of many wrongs assumes that there are n indepen-
dent individuals each of which attempts to estimate some continu-
ous variable that has a correct value v. We let Xi be the estimate 
of the value by individual i, such that the expectation is unbiased, 
i.e., E[Xi] = v, and the variance in the Var[Xi] = sâ†œ

2 estimate is the 
same for all individuals. The Xi can be distributed according to any 
distribution with finite variance. Figure 4.5 shows the distribution 
of average estimates of n = 1, 5, and 25 individuals under various 
estimate distributions. For distributions with large variance, such 
as the Bernoulli and lognormal, the estimate of a single individual 
often lies a long way from the correct value v. Indeed, individuals 
making estimates according to a Bernoulli distribution never esti-
mate correctly. However, even if the individual estimates are widely 
scattered the average of 25 and even only 5 estimates lies much 
closer to the true value. As in Condorcet’s theorem, the more indi-
viduals that we average over, the closer we come to the true value.

The central limit theorem states that for large n the mean estimate, 
1/nn

i=1Xi, is distributed normally with mean v and variance sâ†œ2/n. 
This theorem gives us three useful pieces of information: (1) that 
independent of the distribution of estimates by a single individual, 
the mean estimate becomes normally distributed; (2) the degree of 

(Box 4.B continued on next page)
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have left the hive for the first time, honeybees have different levels of re-
sponse to sucrose, which later in life determines their propensity to collect 
water, nectar, and pollen (Pankiw & Page 2000). This variability can lead 
to benefits for the colony. For example, genetically diverse honeybee colo-
nies keep a more constant brood nest temperature than genetically uni-
form ones (Jones et al. 2004; Mattila & Seeley 2007). Stability is thought 
to be maintained because of individual differences in the temperatures at 
which individuals begin and stop fanning (Graham et al. 2006; Jones et 
al. 2007; Weidenmuller 2004). Individuals responding at different tem-
peratures avoid all or nothing responses that could lead to the colony 
overshooting its target temperature (Sumpter & Broomhead 2000).

Integrating Many Wrongs

The assumption that individuals are independent leads to a paradox in 
the theory of many wrongs. On the one hand the theory says that the 
group is collectively wise, but on the other hand it requires individuals to 
be independent. If there is too much conferring among individuals before 
they reach a final decision then their decisions are no longer independent. 
Positive feedback can spread particular information quickly through the 
group, encouraging all individuals to make the same, possibly incorrect, 

error in the average of n estimates has standard deviation s / n; 
and (3) for very large n this error tends to zero. Figure 4.5 shows 
the frequency of average estimates predicted by the central limit in 
comparison with the actual distribution. By n = 25 this mean esti-
mate is very close to the correct value.

Although the many wrongs principle seems to provide a power-
ful way for groups to make correct decisions it relies on two key 
assumptions, that individuals are independent and that they are 
unbiased. In the main text I discuss the various problems with the 
assumption of independence. The assumption of lack of bias must 
also be treated with care. For example, if we set up a navigation 
experiment that deliberately misleads subjects, then no matter how 
many subjects we independently examine they will each be mis-
led and thus choose a biased and less accurate route. Determining 
variation due to error and variation due to internal bias thus poses 
a difficult problem in practice.
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choice. Alternatively, if there is too little conferring then each individual 
will act independently and fail to benefit from the input of others.

In human decision-Â�making, in situations where all individuals are 
agreed on the best outcome but are individually unsure about the best 
course of action to secure this outcome, the many wrongs paradox lies 
at the basis of the phenomena of “groupthink” (Janis 1972, 1982). 
Groupthink is where pressures of group members on each other lead 
to a narrowing down of opinions. It is most likely to occur in groups 
where members have similar backgrounds and interests. Janis (1972) 
proposed that groupthink can be prevented by allowing a large number 
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the central limit theorem, i.e., the predicted frequency for a normal distribution with mean 
v = 0.5 and variance sâ†œ2/n.
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of individuals to first collect information independently before presenting 
their recommended course of action to a smaller number of centralized 
evaluators. By correctly weighting the information presented by the inde-
pendent individuals, which is itself no easy task, the evaluators can then 
make a decision based on an average of the opinions presented.

While human groups may be able to integrate complex information 
from a large number of sources when making decisions, this is not always 
possible for animal groups. In most cases decision-Â�making by animal 
groups is decentralized (Seeley 1995, 2002) and as such positive feedback 
plays a necessary role in their decision-Â�making (Bonabeau et al. 1997; 
Deneubourg & Goss 1989). As we saw in the last chapter, although not 
always leading to the correct choice, positive feedback through phero-
mone trails usually allowed ants to choose the best of two available food 
sources. Similarly, not only do Temnothorax ants and honeybees make 
consensus decisions, but they are also able to choose the best of a number 
of alternatives (Mallon et al. 2001; Seeley & Buhrman 2001).

Box 4.C investigates how positive feedback combined with quorum 
responses can aid accuracy in decision-Â�making by groups without full 
consultation of all group members. The model assumes very limited cog-
nitive powers on the part of individuals. In particular, they have no way 
of directly comparing the two available options. Instead the probability 
of choosing an option is simply an increasing function of the number 
already there. The question is what functional form of response gives 
the most accurate decisions? The model shows that accurate decision-Â�
making is achieved with quorum-Â�like responses at a fixed threshold, 
rather than smooth linear responses (figures 4.6 and 4.7). This modeling 
result suggests that response thresholds not only provide cohesion, but 
also facilitate accuracy (Sumpter & Pratt 2008).

While the quorum mechanism leads to some improvement in accu-
racy over individual decisions, it does not achieve the level predicted by 
Condorcet’s theorem. Indeed, Condorcet’s theorem provides an upper 
bound for the accuracy of collective decision-Â�making. For example, given 
N = 40 individuals, each with a 1/3 probability of making the wrong 
choice, then by Condorcet’s theorem, the probability of a majority error 
is just 3.33%. This is lower than even the most accurate decisions made 
using quorum responses: for steep thresholds of between 5 and 15 and 
low spontaneous accept rates, approximately 10% of individuals take 
the least favorable option. Despite not reaching the upper bound for ac-
curacy, a simple copying rule based on threshold responses substantially 
reduces errors compared to purely independent decision-Â�making.

To test both decision-Â�making mechanisms and the extent to which 
decision-Â�making improves with group size, Ward et al. (2008) investi-
gated how fish make movement decisions in response to others. They 
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Box 4.C Quorum Responses and Decision-Â�making Accuracy 

Consider a group of n individuals initially uncommitted to either 
of two available options. Each of these finds one of the two op-
tions with a constant probability r per time step. This probability 
is independent of the actions of others. If an individual arrives at an 
option and no one else is there, then he or she commits to it with 
probability apx for option X and apy for option Y. If an individual 
arrives at an option and other individuals are present, the prob-
ability of committing and remaining at the option is an increasing 
function of the number already committed. Specifically, if x is the 
committed number at the option then the probability that the ar-
riving individual commits is

	 p a m a
x

T xx + −
+









( )

α

α α ,	 (4.C.1)

where a and m are respectively the minimum and maximum proba-
bility of committing; T is the quorum threshold at which this prob-
ability is halfway between a and m; and a determines the steepness 
of the function. Equation 4.C.1 encodes a range of possible re-
sponses to the number that have chosen a particular option. In par-
ticular, as a increases the response approaches a step-Â�like switch, 
or quorum response, at the threshold T. In the model, a similar 
function determines the probability of selecting option Y, and by 
setting pxâ•›>â•›py, we assume that individuals prefer X to Y.

Figures 4.6a and 4.6b give examples of the choices over time of 
n = 40 individuals for shallow proportional responses (T = 10 and 
a = 1) and steep quorum responses (T = 10 and a = 9), respectively. 
For both types of responses, the proportion of committed individu-
als grows slowly for the two options, but slightly faster for the 
preferred option X. After the number of adherents to X reaches 
the threshold T, commitment to X significantly outpaces commit-
ment to Y. Averaged over 1000 simulations, 75.5% of individuals 
choose X for a shallow response, while 83.3% do so for the steep 
quorum response. In both cases the proportion choosing the better 
option is higher than were each to make an independent decision, 
in which case px/(px + py) = 66.7% would be expected to choose 
X. Thus, in these simulations choices based on copying Â�others 

(Box 4.C continued on next page)
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presented small groups of three-Â�spine sticklebacks with a Y-Â�shaped 
maze. A drag line was set up down either side of the maze, along which 
replica conspecifics were drawn. The proportion of individuals follow-
ing to either side of the maze was plotted as a function of the number of 
replicas traveling in each direction and the group size. The sticklebacks 
tend to follow the replica, with smaller groups (1 or 2 fish) more likely 
to be influenced by the replicas than large groups (4 or 8 fish). If the dif-
ference between the number of replicas going to the two sides was only 
1 (e.g., if left:right was 1:0 or 2:1) the larger groups were not influenced 
by the majority. If the majority was 2 however (e.g., if left:right was 
2:0 or 3:1) then the larger groups were much more likely to follow the 
majority.

A model similar to that presented in box 4.C fit the data. The main dif-
ference in this case is the inclusion of the number of undecided fish in an 

reduce Â�individual errors and make group decision-Â�making more 
accurate than independent assessment alone. While a steep quorum 
response led on average to more accurate decisions, the distribu-
tion of decision-Â�making accuracy is wider for a = 9 than for a = 1 
(figures 4.6c and 4.6d). This observation reflects the amplification 
of small initial errors for steep responses. If through random fluc-
tuations, the least favorable option happens to be chosen by more 
than a threshold number of individuals, then the quorum rule am-
plifies these early errors and nearly all individuals make the same 
incorrect choice.

Decision-Â�makers typically face a trade-Â�off between speed and ac-
curacy. In the simulations, a steep quorum function, a = 9, yielded 
a more accurate decision, but the time taken for all individuals to 
choose was longer on average (307.8â•›±â•›71.0 time steps, meanâ•›±â•›stan-
dard deviation) than when a = 1 (253.7â•›±â•›64.0 time steps). In order 
to investigate how different values for a, T, and a affect speed and 
accuracy, the parameters are systematically varied and their effect 
on the time needed for all individuals to make a choice and the pro-
portion choosing the better option are measured (figure 4.7). The 
results show that speed is maximized by setting a to its maximum 
value of 1 (assuming that m = 1 as well). Greater speed, however, 
comes at the expense of more individuals choosing the worse op-
tion. Accuracy is maximized with low a, high a, and T of around 
10, but these values also produce relatively slow emigrations. For 
a more detailed analysis of this model see Sumpter & Pratt (2008).
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individual’s decision to go left or right. In particular, we assumed that the 
probability of an individual going left on time step tâ•›+ 1 is

	 a m a
L t L t

U t L t L t R t R t
+ −

− −

+ − − + − −
( )

( ( ) ( ))
( ) ( ( ) ( )) ( ( ) ( ))

τ

τ τ

α

α α α
,	 (4.2)

where m is the maximum probability of committing to a decision; U(t) 
is the number of uncommitted individuals at time t; and L(t) and R(t) 
are, respectively, the total number of individuals that have gone left and 
right by time t. Three parameters—a, which is the spontaneous accept 
rate; a, which is the steepness of response; and t, which is the number of 
time steps over which fish are influenced by individuals that have already 
made decisions—determine the shape of this response (Ward et al. 2008). 

Figure 4.6.â•‡S imulations of a simple quorum response model, for (a, c) shallow (k = 1) and 
(b, d) steep (k = 9) thresholds. Both (a) and (b) plot the change in the number of individuals 
committed to options X (solid line) and Y (dotted line) for one simulation with k = 1 and 
k = 9, respectively; (c) and (d) show the distribution of the proportion of individuals choos-
ing X after everyone has decided. Other parameters are r = 0.02, px = 1, py = 0.5, T = 10, 
a = 0.1, and m = 0.9. Reproduced from Sumpter & Pratt (2008).
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The parameters of this model were measured from the experiments and 
it was found that a steep quorum-Â�like response (aâ•›â•›3) gave the best fit 
to the data. It appears that in deciding whether to go left or right the fish 
weigh the numbers going in each direction and their current group size 
and are disproportionately likely to take the direction of the majority.

Further experiments on sticklebacks looked at the likelihood of a 
group following a leader into a potentially dangerous situation. Groups 
of 4 or 8 fish swam past a predator replica only when guided by 2 or 
more replicas, whereas single replicas were mostly ignored in this situa-
tion. On the other hand, single individuals could be fooled into following 
a single replica past a predator that they would almost never approach 
when alone. Interpreting these results in terms of our model we see that 
uncommitted individuals in larger groups only follow above a threshold 
number of leaders. This threshold dramatically reduces the probability of 
errors being amplified throughout a group because if the probability one 
individual makes an error is small, say e, then the probability that two 
fish independently make errors at the same time becomes very small, i.e., 

Figure 4.7.â•‡S peed and accuracy of decision-Â�making for the simple quorum response model. 
Predicted effects of the parameters a, T, and k on (a–d) the time until all individuals have 
made a decision and (e–h) the accuracy of that decision. Darker shading corresponds to 
slower and less accurate decisions. In each image, a and T are varied for different threshold 
steepness, k. The plots show mean duration (time steps of the model) and accuracy (pro-
portion of individuals choosing the less attractive option Y) over 1000 simulations for each 
parameter combination. Reproduced from Sumpter & Pratt (2008).
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Figure 4.8.â•‡ Fish movement decisions in response to different replicas. In the experiments a 
large (more attractive) replica fish moved in one direction and a standard-Â�sized fish moved 
in the other direction. (a) Comparison of data (histogram) and model (solid lines) in terms 
of proportion of fish following the most attractive replica. (b) Proportion of fish making the 
“more attractive” choice (top panel) and proportion of trials in which all fish make the “more 
attractive” choice (bottom panel) for the data (crosses) compared to the average of 1000 
simulations of the quorum-Â�response model (solid line). See Sumpter et al. (2008b) for details.
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e2. Interestingly, this rule of following only when two other individuals 
make a particular choice is consistent with experiments where humans 
are asked to make a decision after hearing the opinions of others (chapter 
3, figure 3.9).

The quorum rule allows fish to make more accurate decisions as group 
size increases. Sumpter et al. (2008b) looked at how well groups of fish 
could discern between two replica leader fish as a function of group size. 
Figure 4.8a shows the results of an experiment in which a group ob-
served one large replica fish move in one direction and one standard sized 
fish move in another direction. As group size increases more of the fish 
follow the larger, more attractive fish. Similar results were observed in 
9 other trait comparisons (e.g., fat vs. thin, dark vs. light, etc.). These 
results were reproduced by a model based on equation 4.2. The model 
predicted that the frequency with which fish choose the correct option 
would increase with group size, while the frequency with which all fish 
would choose the correct option would decrease would group size. This 
prediction was confirmed in the data (figure 4.8b). The data also confirm 
Condorcet’s prediction that decision-Â�making improves with group size 
(Sumpter et al. 2008b).

As with the cockroaches, ants, honeybees, and humans (see Quorum 
Mechanisms for Information Transfer, chapter 3), we see that positive 
feedback and quorum responses are a key mechanism in fish decision-Â�
making. Measuring the form of these responses across species will further 
help determine the importance of information transfer in the evolution 
of group-Â�living in these species. Interestingly, these steep threshold re-
sponses can sometimes amplify random fluctuations and lead to mass 
adoption of incorrect choices (Sumpter et al. 2008b). This sort of pro-
cess may account for observations of mass copying (Dall et al. 2005; 
Â�Laland 1998) or peer pressure in humans (Milgram 1992; Milgram et 
al. 1969), and may lead animals in groups to make decisions they would 
not make by themselves. Although quorum responses lead to poor deci-
sions in some notable cases, on average they allow greater accuracy than 
do complete independence or weak responses to the behavior of others. 
Quorum responses allow effective averaging of information without the 
need of complex comparison between options.



— Chapter 5 —

Moving Together

Some of the most mesmerizing examples of collective behavior are seen 
overhead every day. V-Â�shaped formations of migrating geese, starlings 
dancing in the evening sky, and hungry seagulls swarming over a fish 
market, are just some of the wide variety of shapes formed by bird flocks. 
Fish schools also come in many different shapes and sizes: stationary 
swarms; predator avoiding vacuoles and flash expansions; hourglasses 
and vortices; highly aligned cruising parabolas, herds, and balls. These 
dynamic spatial patterns often provide the examples that first come into 
our heads when we think of animal groups.

While the preceding three chapters described the dynamics of animal 
groups, they did not explicitly describe the spatial patterns generated by 
these groups. For example, the decision-Â�making of insects and fish was 
studied in situations where individuals have only two or a small number 
of alternative sites to choose between. In models of these phenomena, 
space is represented as the number of individuals who have taken each 
of these alternatives. This approach often simplifies our understanding 
of the underlying dynamics of these groups, but in doing so it can fail to 
capture the spatial structure that characterizes them. As a simple conse-
quence of the fact that these groups move, we need to give careful consid-
eration to how they change position in space as well as time.

The main tool I will use in describing the dynamics of flocking are self-Â�
propelled particle (SPP) models (Czirok & Vicsek 2000; Okubo 1986; 
Vicsek et al. 1995). In SPP models “particles” move in a one-Â�, two-Â�, or 
three-Â�dimensional space. Each particle has a local interaction zone within 
which it responds to other particles. The exact form of this interaction 
varies between models but typically, individuals are repulsed by, attracted 
to, and/or align with other individuals within one or more different zones. 
These models allow us to investigate the conditions under which collec-
tive patterns are produced by spatially local interactions.
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Attraction

Before animals can create spatial patterns they must first come together. 
In chapter 2, I discussed how and why animal groups form without spe-
cific reference to spatial structure. A good starting point for explicitly 
representing space comes from Niwa (2004). His model, which is an ex-
tension of a non-Â�spatial model described in chapter 2, describes groups 
of individuals that are constrained to move on a lattice (see box 5.A). 
Each group performs a random walk and when groups meet they merge. 
Groups split with a fixed probability per time step. Figure 5.1a shows an 
example of how composition of these groups changes through time and 
space. Over time groups “clump” together. Sites containing large groups 
are usually located near to other sites containing large groups, while sites 
with few individuals are surrounded by other sites with few individuals. 
The position of these clumps changes through time as the groups move 
according to a random walk.

The unit of description in Niwa’s model is the group. The model de-
fines rules for how groups merge and split. The strength of this approach 
is that it reproduces the empirical distribution of fish school sizes (com-
pare figure 5.1b and figure 2.6). The main limitation of this model is that 
it does not describe how between-Â�individual interactions produce group 
dynamics. Establishing such a connection is often the central question in 
the study of flocking. It is here that self-Â�propelled particle models play an 
important role.

In the simplest SPP model the only interaction between individual 
“particles” is attraction (box 5.B). Figure 5.2a shows the outcome of a 
one-Â�dimensional SPP model in which individuals are attracted to other 
individuals within a fixed distance. As in Niwa’s model, relatively stable 
clusters of individuals quickly form. Unlike Niwa’s model, larger clus-
ters move slower than solitary individuals. This is because individuals on 
the edge of the cluster are attracted inwards, resulting in a constant pull 
towards the center of the cluster’s mass. As clusters increase in size they 
move less and less, while solitary individuals and smaller groups move 
and eventually join the clusters (Okubo 1986). After some time a small 
number of large stationary clusters form.

Such aggregation dynamics are seen in cockroach groups (Jeanson et 
al. 2005). Cockroaches interact via antennal contact and are attracted to 
other cockroaches through physical contact. Thus, relative to the size of 
their environment, their zone of attraction is small. Jeanson et al. (2005) 
placed small groups of cockroaches in a circular arena and watched their 
aggregation behavior. Since cockroaches are strongly attracted to walls, 
most of their movement is constrained to the edge of this arena. In effect, 
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Figure 5.1.â•‡S imulation of Niwa’s spatial merge and split model. Simulation of model de-
scribed in box 5.A with s = m = 200 sites/individuals and split probability p = 0.05. Initially 
each site contains a single individual, i.e., a group of size 1. (a) Time evolution of the 
number of individuals across the sites. Darker shading indicates larger groups at a particu-
lar site; white indicates sites containing no individuals. (b) Distribution of the number of 
individuals in a randomly chosen site over 100,000 simulation time steps. The solid line is 
equation 2.1 with NP estimated directly from the simulation.

Ti
m

e

Position
0 20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

500

600

700

800

900

1000

0.0 1.0 1.5 2.0 3.0 4.0
−7

−6

−5

–4

−3

−2

−1

0

log(Group size)

lo
g(

Fr
eq

ue
nc

y)

4.52.5 3.50.5

(a)

(b)



c h a p t e r  5

104

the attraction to the arena edge means that movements of the cockroaches 
take place in one dimension and the aggregation process can be visual-
ized by plotting the angular position of the cockroaches through time 
(figure 5.2b). In experiments where cockroaches were initially placed at 
random within the arena, a cluster quickly formed containing nearly all 

Box 5.A Niwa’s Spatial Merge and Split Model

The basic assumptions of this model are the same as in box 2.B. 
A total of m individuals are initially randomly distributed across s 
sites, and ni represents the number of individuals on site i. The key 
difference in the spatial model is how the groups move. Here we as-
sume that groups move on a d-Â�dimensional lattice of discrete sites, 
such that each site has 2d neighboring sites, e.g., in one dimension 
each site has neighbors to the left and right and in two dimensions 
each site has neighbors to the north, east, south, and west. The lat-
tice is structured so that individuals moving off, for example, the 
north edge of the lattice reappear at the south. Thus the lattice is 
a circle in one dimension and a torus in two dimensions. On each 
time step, each group either moves to one of the neighboring sites, 
each chosen with equal probability 1/(2d); or with probability p 
the group splits into two groups, one that stays on the same site 
and the other that moves to a randomly chosen neighboring site. 
When a group splits the size of the two components is chosen uni-
formly at random, so that all group sizes are equally likely. If two 
groups of size ni and nj meet at site k, then they form a new group 
nk = ni + nj. Thus, groups always merge when they meet. The same 
rule applies if three or more groups meet.

Figure 5.1a shows a simulation of the above model in one dimen-
sion (d = 1). From an initial distribution where each individual oc-
cupies one site, larger groups quickly form. These groups perform 
a random walk and increase in size as they meet other groups. 
After 1000 time steps there are around five or six large groups and 
a number of smaller groups. Figure 5.1b shows the distribution of 
group sizes at a randomly chosen site over 100,000 time steps of 
the simulation. Niwa (2004) went on to show that the distribution 
of group sizes in these simulations is characterized by the same 
curve as in his earlier non-Â�spatial model (box 2.B). By finding the 
mean group size experienced by an individual it is possible to give 
an expression for the entire distribution of group sizes.
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Figure 5.2.â•‡O utcome of (a) the simple attraction model in box 5.B compared to (b) ex-
periments on cockroach aggregation (reproduced from R. Jeanson, C. Rivault, J. L. Deneu-
bourg, S. Blanco, R. Fournier, C. Jost, & G. Theraulaz, 2005, “Self-Â�organized aggregation 
in cockroaches,” Animal Behaviour 69:1, 169–180, fig. 4b, © Elsevier), and (c) Jeanson et 
al.’s detailed individual-Â�based model (reproduced from Jeanson et al. 2005, fig. 4c).
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Box 5.B Self-Â�propelled Particle Models

The term self-Â�propelled particle (SPP) was introduced by Vicsek 
et al. (1995), but the idea of building models where individuals 
interact through zones of repulsion, attraction, and alignment had 
been proposed independently by a number of authors (Aoki 1982; 
Gueron et al. 1996; Helbing & Molnár 1995; Okubo 1986; Reyn-
olds 1987). This box presents some of the simplest of these models, 
including a model of aggregation and Vicsek et al.’s original SPP 
model of alignment, as well as a more detailed model by Couzin et 
al. (2002) including repulsion, attraction, and alignment.

The general SPP model involves a group of N particles in a 
d-Â�dimensional space. Let the vectors xi and ui represent the position 
and velocity of individual i. Let r represent the interaction radius 
of the individuals. On each time step t, all individuals update their 
position and velocity as follows

x t x t v u t

u t u t s e
i i i

i i

( ) ( ) ( )

( ) ( ) ( )

+ = + +

+ = + − +

1 1

1 1
0

α α ,

where vo is a constant determining a baseline distance that indi-
viduals move per time step, and a is the inertia of an individual 
(i.e., its tendency to keep the same direction as on the previous 
time step). The vectors s and e are determined on each time step for 
each individual: s is a vector (usually a unit vector) with a direction 
that depends on the position and velocity of the set of particles Ri, 
which are within distance r of the individual, excluding itself; e 
is a random vector incorporating noise into the movement of the 
individual and may also be a function of the position and velocity 
of i’s neighbors.

Attraction: To model individuals that are attracted to one another 
the vector s should point toward the average position of an indi-
vidual’s neighbors. In one dimension we can set
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The function sign{a} returns 1 if a > 1, -1 if aâ•›<â•›1, and 0 if a = 0. 
We set e to be a number selected uniformly at random from a range 
[-/2, /2], where  is a constant.
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Figure 5.2a shows a simulation of this model on a one-Â�dimensional 
ring. In this model aggregations form and move more slowly as 
their size increases.

Alignment: Individuals align by adopting the same direction as 
their neighbors. In one dimension, Czirok et al. (1999) use
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and e as in the attraction model above. The function G ensures that 
velocities of individuals equilibrate around either -1 or 1. Figure 
5.4 gives examples of simulations of this model for different num-
bers of individuals. As density increases collective motion emerges 
in the form of a single large group of individuals all going in the 
same direction.

In two dimensions, Vicsek et al. (1995) let s + e be a unit vector 
with direction given by the average angle of the vectors plus some 
random term. Specifically,

s e

t

t

j
j R

j
j R

i

i

+ =

+












+






















∈

∈

∑

∑

cos ( )

sin ( )

θ ε

θ ε











,

where the j are the directions of i’s neighbors and ï†¥ is chosen uni-
formly at random from a range [-/2, /2]. Unlike the two mod-
els above, in Vicsek’s model a = 0, but the individual i is always 
included in the in the set Ri of neighbors. Thus each individual 
includes itself as a neighbor when averaging velocities. Figure 5.7 
gives snapshots of simulations of this model for different magni-
tudes of noise. Noise plays the opposite role of density: for higher 
noise motion is less ordered.

Repulsion, attraction, alignment, and blind angles: Couzin et al.’s 
(2002) model involves three zones of interaction: an inner zone of 
repulsion, an intermediate zone of orientation and an outer zone of

(Box 5.B continued on next page)
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of the cockroaches. As in the SPP model, cockroaches within the cluster 
move much less than those outside of it.

Jeanson et al. (2005) developed a parameterized model based on ex-
periments on groups of two to four cockroaches. The principle under-
lying this model was similar to the simple aggregation SPP model, but 
it included more detail of walking trajectories in different parts of the 
two-Â�dimensional arena, probabilities of individuals starting and stop-
ping walking, and the effect of collisions from different directions such 
as front and behind. The model showed that local contacts alone were 
sufficient for the rapid aggregation observed in experiments (figure 5.2c).

Whether animals aggregate depends on their environmental context 
(Krause 1994; Krause & Ruxton 2002). Larger groups provide dilution 
from predator attack and individuals in smaller groups get a larger share 
of food discoveries (chapter 2). Hoare et al. (2004) found killifish group 
sizes were significantly smaller in the presence of food odor and larger 
in the presence of an alarm odor. To explain the behavioral mechanisms 
that produced these observations they used an SPP model of fish interac-
tions, with terms for repulsion, attraction, and alignment. They showed 
that the observed change in group size distribution could be explained 
solely by a change in the size of the interaction zone. The distance at 
which a fish is attracted to another fish decreases in the presence of food 
and increases in the presence of a predator. This study provides a nice 
link between mechanism and function: the regulation of group sizes to 
perceived risk results directly from a change in interaction radius.

The mechanisms underlying spatial aggregation have been studied 
for a range of species: from midges (Okubo & Chiang 1974) and bark 
beetles (Deneubourg et al. 1990b) to primates (Hemelrijk 2000). More 
than twenty years since its publication, the review by Okubo (1986) still 

attraction (figure 5.8a). The individuals have a blind angle be-
hind them within which they do not respond to individuals that 
would otherwise be in their orientation or attraction zone. The 
rule for repulsion is simply that individuals move directly away 
from nearby individuals. The rules for attraction and alignment 
are similar to those described for the two simple models, but are 
only active in their respective zones. Figure 5.8 investigates a three-Â�
dimensional version of this model for different sizes of orientation 
zones. Provided there is a sufficiently large blind angle, the group 
goes through a transition from swarm to milling torus to a highly 
aligned group.
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provides the best synthesis of mathematical and empirical aspects of 
aggregation.

Alignment

Attraction alone cannot explain the dynamics of most animal flocks. In 
particular, the aggregative clusters formed by between-Â�individual attrac-
tion move slower as cluster size increases (figures 5.1a and 5.2a,c). These 
observations are in direct contrast to those of fish schools, locust swarms, 
and migratory birds that, while remaining a cohesive group, move rap-
idly in the same direction. Indeed, it is the rapid propagation of direc-
tional information that characterizes these groups, and poses the greatest 
challenge to our understanding of them (Couzin & Krause 2003). How 
is it that a bird flock or a fish school can apparently turn in unison such 
that all members almost simultaneously change direction?

It was the pioneering experimental work by Radakov (1973) that first 
showed how changes in direction can be rapidly propagated by local 
interactions alone. He used an artificial stimulus to frighten only a small 
part of a school of silverside fish. The fish nearest to the stimulus changed 
direction to face directly away from it. As these fish changed direction 
they stimulated others nearby, but further away from the artificial stimu-
lus, to also change direction. A “wave of agitation” spread away from 
the artificial stimulus (figure 5.3). This propagation of directional infor-
mation was much more rapid than the displacement of the fish. The fish 
nearest to the stimulus moved less than 5 cm in the same time it took 
every fish within 150 cm of the stimulus to change direction to face away 
from the stimulus. Changes in direction propagated at speeds of up to 
11.8–15.1 meters per second over distances of between 30 and 300 cm.

While not directly inspired by Radakov’s work, the transfer of direc-
tional information was the key ingredient in the self-Â�propelled particle 
models of Vicsek et al. (1995). In fact, Vicsek’s model has only two in-
gredients determining the direction particles move: alignment to nearby 
particles and noise (box 5.B). Figure 5.4a–c shows examples of these 
simulations in one dimension for different particle densities. A central 
prediction of Vicsek’s model is that as the density of particles increases, a 
transition occurs from disordered movement to highly aligned collective 
motion (Czirok et al. 1999; Czirok et al. 1997; Vicsek et al. 1995). Fig-
ure 5.4d–f shows how the mean direction, or the degree of alignment, of 
particles changes through time in a one-Â�dimensional version of the model 
from box 5.B for three different particle densities. At low densities, the 
alignment remains close to zero (figure 5.4a, d). At intermediate densi-
ties, all particles adopt a common direction for a period of time but this 
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direction switches at random intervals (figure 5.4b, e). At high densities, 
particles adopt a common direction, which persists for a long period of 
time (figure 5.4c, f). The transition from disorder (random motion) to 
order (aligned motion) occurs at a critical density, below which align-
ment is zero and above which absolute alignment increases with group 
size (Czirok et al. 1999).

Such a transition from disordered to ordered motion is seen in the col-
lective motion of locusts. Buhl et al. (2006) looked at the alignment of 
various densities of locusts in an experimental ring-Â�shaped arena. This 
setup effectively confined the locusts to one dimension and the degree 

1.5 1.0 0.5 0.0 m

Figure 5.3.â•‡E xample of Radakov’s experiment where fish schools are presented with a 
fright stimulus. The position of fish was filmed and projected on a wall so that a picture 
could be made of the position and orientation of the fish. Reproduced from D. V. Radakov, 
1973, Schooling in the ecology of fish, John Wiley & Sons.
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of alignment could be measured as the average direction of movement 
relative to the center of the arena. For small populations of locusts in the 
arena there was a low incidence of alignment among individuals. Where 
alignment did occur, it did so only after long initial periods of disordered 
motion (figure 5.5a). Intermediate-Â�sized populations were characterized 
by long periods of collective rotational motion with rapid spontaneous 
changes in direction (figure 5.5b). At large arena populations, sponta-
neous changes in direction did not occur within the time scale of the 
observations, and the locusts quickly adopted a common and persistent 
direction (figure 5.5). As predicted by Vicsek’s model, alignment of lo-
custs becomes non-Â�zero above a critical density (figure 5.6). The sim-
plicity of Vicsek’s SPP model suggests that phase transitions should be a 
universal feature of moving groups (Buhl et al. 2006). Similar transitions 
are observed in fish (Becco et al. 2006) and in tissue cells (Szabo et al. 
2006).

When extended to two or three dimensions, Vicsek’s model generates 
spectacular dynamical patterns that are highly reminiscent of the move-
ment of flocks (figure 5.7). Again the two-Â�dimensional model undergoes 
a phase transition where alignment becomes non-Â�zero above a critical 
particle density or below a critical noise level (Vicsek et al. 1995).

While reproducing many of the characteristics of animal flocks, Vic-
sek’s model is by no means sufficient to explain all aspects of flocking. 
To start with, it does not contain an attraction term of the type discussed 
in the previous section. In fish, attraction between individuals has long 
been viewed as having equal importance to alignment in determining 
group dynamics (Partridge 1982). The omission of attraction from Vic-
sek’s model means that a bounded group cannot form. In an SPP model 
without an attraction term, a large group of particles moving in the same 
direction spreads out and particles will “escape” from the back of the 
group (Gregoire et al. 2003). When confined to a small space this diffu-
sion will not lead to a significant breakup of the group because stragglers 
are picked up when they meet the large group again, but in an infinite (or 
large) space the group will eventually break apart.

A cohesive moving group can form if both attraction and alignment 
terms are included in an SPP model. Gregoire et al. (2003) drew a phase 
diagram for a two-Â�dimensional SPP model that included terms for attrac-
tion, alignment, and noise. They found that when attraction was weak 
relative to alignment, particles behaved as either a disordered or moving 
“gas,” similar to those seen in the two-Â�dimensional Viscek model (figure 
5.7). This gas was characterized by the proportion of particles that were 
members of the largest group being less than one. When attraction was 
increased, the proportion of particles within the largest group tended to 
one, and Gregoire et al. classified this state as a liquid “droplet.” Within 



Figure 5.4.â•‡E xample simulations from one-Â�dimensional SPP models. Simulation of the 
SPP model of alignment in one dimension. The change in particle density through time 
for (a) N = 10, (b) N = 50, and (c) N = 100 particles. The alignment at time t is defined as 
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this droplet two close together particles diffused away from each other 
through time while remaining within this large group. Compared to the 
gas in figure 5.7, in which groups split apart and reform, individuals 
moved around within the single droplet but did not leave it. As the attrac-
tion term was further increased, the liquid turned into a solid “crystal” 
and the particles remained at a fixed position within the crystal through 
time. Provided alignment was sufficiently large relative to noise, both 
liquids and solids exhibited cohesive collective motion where all particles 
moved as a group in the same direction.

A number of aspects of Gregoire et al.’s model resemble the motion 
of animal flocks. Moving crystals and droplets both exhibit periods of 
ballistic flight, where the mean square displacement of the group was 
proportional to (time)2, i.e., groups fly in a straight line. Furthermore, the 
lengths of these ballistic flights increased with the size of the group. This is 
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Figure 5.5.â•‡E xperiments on locusts in a ring (reproduced from J. Buhl, D. J. T. Sumpter, 
I.Â€D. Couzin, J. J. Hale, E. Despland, E. R. Miller, & S. J. Simpson, “From Disorder to 
Order in Marching Locusts,” 2 June 2006, Science 312, 1402–1406, fig. 2, © The American 
Association for the Advancement of Science). The alignment over the experiment of (a)Â€7 
locusts, (b) 20 locusts, and (c) 60 locusts. (d to f) Corresponding samples of time-Â�space 
plots (3 min), where the x-Â�axis represents the individuals’ angular coordinates relative to 
the center of the arena, and the y-Â�axis represents time.
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in contrast to the non-Â�moving phases where attraction is dominant, e.g., 
as in figure 5.2a. In this case, the mean square displacement of the group 
was proportional to time, and the lengths of ballistic flights decreased in-
versely proportionally to group size. Crystals and droplets both resemble 
various forms of moving animal groups: crystals look roughly like highly 
parallel groups of fish or birds, while the droplets possibly resemble fly-
ing locust swarms. Particularly interesting is the existence of mesoscopic 
“hydrodynamical” structures, such as jets, vortices, etc., within droplets 
(Gregoire et al. 2003). It is this dynamical patterning on a meso-Â�scale 
within a generally coherent motion on the scale of the entire group that 
might be said to best characterize the collective motion of many flocking 
animals. However, the “zoology” of these meso-Â�scale shapes has not been 
fully investigated and compared to empirical observations.

Figure 5.6.â•‡C omparison of the mean alignment in the (a) SPP model and (b) the locust data 
as a function of the number of particles (or locusts). Reproduced from Buhl et al. (2006).
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Figure 5.7.â•‡E xample of patterns from the two-Â�dimensional SPP model with alignment. 
“Heads” indicate position of the individual and “tails” give direction. Model is as described 
in box 5.B. Parameters are n = 200, v0 = 0.5, L = 25, and r = 1. The noise is varied between 
simulations (a)  = 3, (b)  = 1.5, and (c)  = 0.5.
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Rules of Motion

The attraction and alignment models discussed in the previous sections 
have not been calibrated against real data of how fish, birds, or locusts 
interact with one another. Instead, the philosophy of these models is to 
provide the simplest possible model that reproduces the key features of 
flocks. This philosophy is aimed at ensuring that model outcomes are 
not dependent on some particular biological feature, but reveal universal 
properties of all flocks. The approach is also to some degree unavoidable. 
Empirical determination of the detailed interactions of fish or birds is 
technically difficult. These groups move in two or three dimensions and 
often come in close contact with each other, making automated or even 
manual tracking difficult (Hale 2008).

There are, however, a number of high quality studies of fish interac-
tions, most notable those of Partridge in the early 1980s. Studies of the 
structure of schools of saithe, cod, and herring show that fish maintain 
a minimum distance between each other, supporting evidence for local 
repulsion (Partridge et al. 1980). By tracking individual fish, Partridge 
(1981) established that saithe match their swimming direction and speed 
to their two nearest neighbors, but probably not to more distant neigh-
bors. Partridge & Pitcher (1980) found that “blindfolded” saithe con-
tinued to match short-Â�term changes in the velocity of their neighbors 
using their lateral line (the motion detecting sense organ that runs down 
fish bodies). Vision was, however, important in maintaining between-Â�
neighbor distance, with blind fish having increased nearest-Â�neighbor dis-
tances. Fish that had their lateral line disabled compensated by changing 
postion so they could see direction changes by neighbors. In general, the 
lateral line appears to determine alignment, while vision determines at-
traction and repulsion.

An impressive step forward in the understanding of both the global 
structure of groups moving in three dimensions and the behavior of indi-
viduals within these groups is the Starflag project (Ballerini et al. 2008a; 
Cavagna et al. 2008a; Cavagna et al. 2008b). Using multiple cameras these 
researchers were able to determine the position of most of the starlings in 
flocks consisting of thousands of birds. Like fish, the starlings maintain a 
minimum distance from each other, i.e., have a zone of repulsion (Ballerini 
et al. 2008a). Starlings are also less likely to have neighbors behind or in 
front of them than to have neighbors on either side. As distance from a 
focal bird increases this spatial organization disappears, so that birds fur-
ther away from a focal bird are equally likely to be at any angle.

Local spatial structure in starling flocks is not simply a function of dis-
tance but rather a function of neighbor number. The nearest neighbor is 
much more likely to be to the side of than directly in front of or behind a 
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focal bird. This tendency then decreases for the second neighbor then the 
third neighbor and so on. After the sixth or seventh neighbor the spatial 
structure vanishes and these neighbors are equally likely to be at any 
angle relative to the focal bird (Ballerini et al. 2008b). This relationship is 
less robust when considering only the distance between neighbors. Even 
when the flock is more tightly packed spatial correlations are seen only 
between a fixed number of neighbors. The relationship would suggest 
that instead of interacting with all or some birds within a certain fixed 
radius, as is assumed in most models, starlings interact with their 6 or 7 
nearest neighbors.

Complex Moving Patterns

The shapes of bird flocks, fish schools, and locust swarms are not limited 
to groups of aggregated or aligned individuals. Some of these shapes can 
emerge from simple interactions of repulsion, attraction, and alignment 
alone. For example, Couzin et al. (2002) proposed a model in which 
individual animals have three zones—repulsion, alignment, and attrac-
tion—of increasing size, so that individuals are attracted to neighbors 
over a larger range than they align, but decrease in priority, so that an 
individual always moves away from neighbors in the repulsion zone (fig-
ure 5.8a). These individuals also have a rear blind zone within which they 
cannot sense others.

Keeping the repulsion and attraction radii constant, Couzin et al. 
found that as the alignment radius increased, individuals would go from 
a loosely packed stationary swarm (figure 5.8b), to a torus where indi-
viduals circle around their center of mass (figure 5.8c) and finally, to a 
parallel group moving in a common direction (figure 5.8d). This transi-
tion from milling to torus to departure is typical of the motion of real 
fish schools. The model shows that these three very different collective 
patterns self-Â�organize in response to small adjustments to one factor: the 
radius over which individuals align with each other.

Other patterns seen in animal flocks may be more difficult to produce 
from models of identical “memoryless” self-Â�propelled particles interact-
ing in a homogeneous environment. For example, Radakov (1973) re-
ports “feeler” structures in silverside fish during their evening migration 
away from the shore. A few fish swim away from the group forming a 
ribbon-Â�like structure as others follow. The leading group then reduces 
speed and starts feeding, at which point a “neck” builds up as more and 
more fish are drawn from the main group. In some cases this neck leads 
the whole group to the new feeding ground, while in others the neck 
breaks off and a sub-Â�group separates from the main group. Overall, the 
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process gives the impression of the school making a tentative investiga-
tion of whether it is worth moving feeding grounds.

Another common pattern in fish schools is the fountain response to 
the approach of a predator towards a group of prey (Hall et al. 1986). 
In this response the fish fan out in front of a predator and circle around 
behind it. Self-Â�propelled particle models can reproduce this type of group 
response to predators (Inada 2002 and see Leading the Swarm, chap-
ter 5). However, Hall et al. (1986) argue that a fountain response can 
occur simply by each individual prey moving away from the predator 
while keeping it at the edge of its field of view. Fish have a blind angle of 
roughly 60°, so by keeping the predator behind them at an angle of 150° 

Figure 5.8.â•‡T ransition from swarm to torus to alignment. (a) Illustration of the rules gov-
erning an individual in the fish model. The individual is centered at the origin: zor, zone of 
repulsion; zoo, zone of orientation; zoa, zone of attraction. The possible “blind volume” 
behind an individual is also shown as a, field of perception. Collective behaviors exhibited 
by the model: (b) swarm, (c) torus, and (d) dynamic parallel group.
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the fish are moving away from the predator as rapidly as possible without 
losing sight of it. This argument appears consistent with experimental 
data on the response of shoals of juvenile whiting (Hall et al. 1986), but 
it is not entirely clear whether social interactions may also play a role in 
creating the fountain effect.

Determining the degree to which simple rules for attraction and align-
ment capture the shapes produced by real animal groups remains a key 
problem (Parrish et al. 2002). No detailed statistical comparison has been 
made between the motion of and within real flocks and those predicted by 
SPP models. For example, Uvarov (1977) describes the marching bands 
of locusts as having a dense front and columns that go through an other-
wise diffuse cloud of individuals. These observations have little in com-
mon with the shapes arising from, for example, Gregoire et al.’s (2003) 
model. Similarly, Ballerini et al.’s (2008a) observation that starling flocks 
have a dense boundary and a sparser interior directly contradicts most 
SPP models, which predict either homogeneous density within a group or 
a density that decreases with distance from the group’s center. Explaining 
the emergence of complex moving structures will require greater consid-
eration of the rules adopted by individuals, of how individuals interact 
with the environment, and of between-Â�individual differences.

Decisions on the Move

When navigating, animals in moving groups usually have access to two 
types of information, their own experience or internal compass informa-
tion and the direction taken by other group members. A central prob-
lem faced by animals traveling in these groups is how to integrate this 
information, especially when members cannot assess which individuals 
are best informed. In the context of avian navigation, two alternative 
schemes have been proposed (Wallraff 1978). The “many wrongs” hy-
pothesis, which is described in more detail in chapter 4, is that individu-
als average their preferred direction, leading to a compromise in route 
choice. The average of these many wrongs should lead to an improvement 
in navigational performance. Wallraff’s alternative to the many wrongs 
hypothesis is the “leadership” hypothesis. Under this hypothesis, one or 
a small number of the animals takes a leading role and the others follow.

Neither the many wrongs nor the leadership hypothesis accounts for 
how information is transferred between group members through local 
interactions. Indeed, the many wrongs hypothesis leads to the paradox, 
discussed in Integrating Many Wrongs, chapter 4, that for information to 
be transferred some individuals must follow others but at the same time 
too much following will reduce the success of the averaging. To bypass 
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this limitation, Biro et al. (2006) developed a mechanistic model of navi-
gational conflict between pairs of individuals. In the model (described 
in box 5.C), individuals interact according to two hypothesized forces: 
attraction to its own target position (own information) and attraction to 
the partner’s current position (social information).

Figure 5.9a shows, for the model in box 5.C, the effect of varying the 
distance between the individuals’ targets, d, on the final decision reached. 
The model predicts that at small distances between established routes, 
individuals average, with their position equilibrating at d/2. At a critical 
between-Â�route distance, of approximately twice the range at which indi-
viduals are maximally attracted to their established routes, a bifurcation 
occurs. For d larger than this critical value, both individuals move closer 
to that of one of the individuals. A third possible outcome is splitting, 
where each individual moves exclusively towards its own target. Such 
outcomes occur over a wide range of d but always result from initial dif-
ferences in the individuals’ positions.

While the model in box 5.C provides an abstract representation of navi-
gational decision-Â�making, it was designed specifically with the behavior of 
homing pigeons in mind. Predisposition to a target models the phenom-
enon of route recapitulation and route loyalty by homing pigeons and 
between-Â�individual attraction models social cohesion between birds. Biro 
et al. (2006) tested the model’s predictions against data we collected on 
homing pigeons. Homing pigeons were first released repeatedly in order 
that they could establish their own route home from a release site. Once 
individuals had learned their own routes they were released in pairs. In 
these paired releases instances of many wrongs compromise and of leader-
ship were observed, even within a single journey of a single pair of birds.

In order to test how the distance between the birds’ “target” routes af-
fected the outcome of their paired flight, the distance between the birds’ 
independent flights were compared to the distance between their routes 
when in a pair. Figure 5.9b shows the largest and second largest modes 
of the distribution of distances between routes taken by individuals dur-
ing their paired flight and the immediately preceding single (established) 
route as a function of distance between the birds’ established routes at 
the corresponding point of the journey. We see a similar bifurcation in 
this data as we see in the model prediction (figure 5.9a). As the distance 
between the birds’ targets increases a bifurcation occurs from compro-
mise to leadership.

The model in box 5.C is limited because it deals with only two individu-
als and abstracts away possibly important aspects of spatial interactions. 
Couzin et al. (2005) proposed an SPP model where individual parti-
cles move in a two-Â�dimensional space according to rules of attraction, 
alignment, and repulsion. In this model a large group of “uninformed” 
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Box 5.C Model of Paired Navigational Decision-Â�making

We consider a dynamic model for decision-Â�making, where two in-
dividuals, X and Y, each decide on a real-Â�valued “position,” start-
ing from initial positions x(0) and y(0). These individuals come to a 
final position as a result of a combination of two forces: predisposi-
tion to move toward a target position and local attraction toward 
the other individual’s current position.

Predisposition to target: X, respectively Y, is attracted to a target 
position with value 0, respectively d. The rate at which an individual 
moves toward its predisposed choice initially increases with distance 
from the target, but above a point of maximum attraction the rate 
decreases. For individual X, we model this rate with the function

	 - -x x raexp( / ),	 (5.C.1)

where x is the current position and ra is the point at which the attrac-
tive force toward the target reaches a maximum. Individuals farther 
from the target than ra have a weaker attraction toward it due to 
difficulties in perceiving the target, while individuals nearer than ra 
have a decreasing but positive attractive force, modeling an increas-
ing degree of “comfort” with decreasing distance to the target.

Between-Â�individual attraction: We model this with the function
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where x and y are the current positions of the two individuals and 
rb is the point of maximum attraction to other individuals. Attrac-
tion only occurs locally, so that once individuals move out of the 
range of perception, the rate of attraction quickly decreases.

We combine the two forces acting on the individuals to give a dif-
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dx
dt

x x r x y
x y

r

dy
dt

a

b

=− − − −
−























=

exp( / ) ( )exp
( )

α

β

2

2

(( )exp( / ) ( )exp
( )

d y y r x y
x y

ra

b

− + − −
−























α
2

2

.â•… (5.C.3 and 5.C.4)



M o v i n g  T o g e t h e r

123

individuals interacts with two small groups of informed individuals that 
each move toward different targets. As the angle between the targets in-
creases there is a bifurcation where the group goes from taking a direc-
tion intermediate to the two small leading groups to taking the direction 
preferred by one of the two groups.

Leading the Swarm

An interesting prediction of the Couzin et al. (2005) model is that a small 
number of informed individuals can lead a large group. In these simula-
tions groups of 200 uninformed individuals were almost always success-
fully led to a target by groups of less than 10 leaders. Thus observations 
of large numbers of birds, fish, or insects moving in the same direction do 
not imply that even a majority of individuals know where they are going 
or even know which individuals know where they are going. The Couzin 
et al. (2005) model thus suggests a “subtle guide” mechanism: a largely 
uninformed group can be led by a small group of informed “leaders” 
even when the identity of the leaders is unknown.

One of the most impressive examples of a large group of uninformed 
individuals being led by a small group is the flight of honeybee swarms 
from their temporary bivouac on a tree branch to a new nest site (see 
Honeybee House-Â�hunting, chapter 9). Up to around 10,000 bees of which 
only 2 or 3% are informed of the location of the nest site fly as a single 
swarm to the site. How does such a small group lead such a large group 
to a small nest site? Lindauer (1955) hypothesized that the informed in-
dividuals repeatedly “streak” through the swarm in order to inform the 
other bees of the direction of the nest. Janson et al. (2005) formalized 
this hypothesis in an SPP model and showed that 150 “streaker bees” 
could lead a swarm of 3,000 uninformed bees, and these swarms could 
avoid obstacles in their path without splitting. While streaking might 
help guide a swarm, the “subtle guide” hypothesis presented above sug-
gests that streaking is not a requirement for a small number of individu-
als to lead a large swarm. A further alternative to the “subtle guide” or 

The parameter a determines the ratio of the maximum between-Â�
individual attraction over the maximum attraction to the target. 
b determines the ratio (Yâ•›:â•›X) of the strength of the individuals’ 
attraction to their targets. Figure 5.9a shows the equilibrium solu-
tions to the model equations as a function of the distance d be-
tween the individuals’ targets.
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Figure 5.9.â•‡O utcome of decision-Â�making in pairs. (a) Prediction model in box 5C. Equi-
librium solutions of equations 5.C.3 and 5.C.4 as a function of the distance between the 
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“streaker bee” hypotheses is a “vapor trail,” where the informed bees 
move to the front of the swarm and release a chemical pheromone creat-
ing a gradient that the other bees follow (Avitabile et al. 1975).

Beekman et al. (2006) tested the “vapor trail” hypothesis by seal-
ing, in the bees, the glands that release pheromone and comparing the 
flight of sealed gland colonies with control colonies. Gland sealing had 
no significant effect on the flight speed of the swarm nor on the time it 
took the swarm to reach a nest box, contradicting hypotheses based on 
pheromones. Beekman et al. (2006) noted that some bees in the swarm 
were moving at maximum speed (9–10 m/s) while the swarm as a whole 
moved at only 2–3 m/s, providing evidence for the “streaker bee” hy-
pothesis. Schultz et al. (2008) provided stronger evidence of streaking 
by filming a swarm from below. They found that bees in a top portion 
of the swarm flew quickly in the direction of the nest site and these fast 
moving bees were observed at the front, middle, and back of the swarm. 
However, while it appears clear that some bees streak along the top of the 
swarm and then return through it at slower speeds, there is still no direct 
link between these fast flying bees and the scouts.

Evolution of Flocking

Hamilton (1971) and Vine (1971) were the first researchers to look at 
how the geometry of an animal group might be shaped by natural selec-
tion. They both proposed “selfish herd” models in which individuals in 
the group are motivated to move into the center of the group by the risk 
of predation. In Hamilton’s model, individuals live on a one-Â�dimensional 
lattice and follow the rule: if the site an individual occupies has a larger 
population than sites to the left and right then it stays there, otherwise 
it moves to the neighboring site that is occupied by the largest number 
of other individuals. In contrast to the mechanistic model of aggrega-
tion described in box 5.A, Hamilton’s model is motivated by functional 
considerations. However, the outcome of both models is similar: tightly 
packed clumps of individuals emerge (as they do in figure 5.2a). Vine 
and Hamilton both expand on this initial model and find similar results: 
tight aggregations are a consequence of selfish individuals’ attempt to use 
other individuals as cover.

The geometrical predictions of selfish herd models hold for a wide 
range of species that form stationary groups (Krause 1994; Krause & 
Ruxton 2002; Quinn & Cresswell 2006; Rayor & Uetz 1990). Individu-
als near the center of these groups are less likely to be attacked than those 
on the edge. Several studies have revealed that when there is a predation 
risk, fish move closer together (Krause 1993; Tien et al. 2004). On the 
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other hand, Focardi & Pecchioli (2005) found that the foraging success 
of deer increased with distance from the center of the group. There is thus 
a trade-Â�off between increased food intake on the outside of the group and 
increased safety in the center. We might then expect position in a group 
to be determined by nutritional state, with well-Â�fed individuals moving 
towards the center and hungry individuals moving to the outside.

In moving groups it is less clear how the position in a group relates 
to safety from predation. Parrish (1989) showed in laboratory experi-
ments that grouping silverside fish are attacked less often by sea bass 
than stragglers that have recently departed from the group. However, 
in contrast to the idea that those fish in the center of the group can use 
those on the outside as a shield, Parrish also found that when the group 
is attacked it is the fish in the center that are targeted by the predators. 
Parrish suggested that this is because the predators attack the center of 
the group, which then splits in two leaving central individuals exposed. 
This interpretation is supported by simulations of SPP models (Inada & 
Kawachi 2002). Parrish’s study is limited, however, by the fact that very 
few attacks by the predators were successful: only five group members 
were killed throughout all experiments, three of which were in the center 
and two on the periphery.

The complex dynamic patterns generated by flocking animals should 
convince us that a selfish desire to be shielded by others is not the only 
evolutionary force that has shaped them. Group membership may also 
allow individuals to gain information about the location of food (Pitcher 
et al. 1982) and of predators (Treherne & Foster 1981), to benefit in 
terms of energetic efficiency (Weimerskirch et al. 2001), and even to hunt 
co-Â�operatively (Partridge et al. 1983). A problem, however, is disentan-
gling functional and mechanistic explanations for dynamic patterns. 
Many patterns may be a consequence of the interactions between indi-
viduals and have little or no adaptive significance (Parrish et al. 2002). 
For example, the transition from disorder to order in locust marching 
appears to be a fundamental property of SPP models, suggesting that 
rather than resulting from the fine tuning of natural selection it is simply 
a necessary feature of all moving animal groups (Grunbaum 2006). Simi-
larly, it would be wrong to conclude that a moving fish torus has evolved 
to signal among group members that departure is imminent, but rather 
it could be an unavoidable consequence of all members increasing their 
tendency to align with each other (Couzin & Krause 2003).

Behaviors that produce flocking patterns are in some cases themselves 
subject to natural selection. For example, one intrinsic property of SPP 
models is dynamic instability. Such instability was seen at intermediate 
densities in experiments on locusts, with changes in direction rapidly 
spreading through the entire group (figure 5.5e). If a small number of 
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locusts spontaneously change direction, the others rapidly change their 
direction in response. This spread of directional information is reminis-
cent of Radakov’s (1973) experiments on fish. Information about the 
presence of a stimulus is rapidly transmitted through the entire group.

Several modeling studies have investigated how the rules governing the 
alignment, repulsion, and attraction of self-Â�propelled particles might be 
optimized so as to allow the particles to avoid predation (Inada & Kawa-
chi 2002; Lee 2006; Lee et al. 2006; Zheng et al. 2005). In these studies a 
predator particle that is introduced into the simulation attempts to attack 
the group of prey particles. Inada & Kawachi (2002) varied the maximum 
number of neighboring individuals with which each prey aligned. They 
showed that if prey aligned with only one nearest neighbor then group 
movements were uncoordinated in response to a predator, but if they in-
teracted with two or three the group was able to effectively align away 
from the predator. However, if prey individuals align with larger numbers 
of neighbors then the group would change direction slowly in response 
to a predator, because the minority of individuals that had sensed the 
predator and begun to move away from it would be “outvoted” by the 
uninformed majority that continue in their previous direction. Zheng et 
al. (2005) obtained similar results to Iwada by changing a different model 
parameter. They showed that there is an optimal weighting that individu-
als should put on aligning with other prey relative to orienting away from 
the predator. By aligning with each other rather than purely away from 
a predator, the prey avoid costly collisions. The collective outcome is a 
confusion effect, whereby the predator repeatedly changes target without 
successfully focusing on and killing one particular prey.

Most modeling studies of predator avoidance have looked at group 
success, measured in terms of number of group members captured by 
a predator, as a function of model parameters. From a functional view-
point, however, the question is how individuals regulate their propensity 
to align, or their interaction range, or other aspects of their behavior so 
as to minimize their own probability of being caught by the predator. 
While aligning with others may increase the confusion effect for the pred-
ator, the best strategy for a focal individual may be to move directly away 
from the predator. As a result a social parasitism dilemma arises: while 
co-Â�operating individuals can generate a pattern that optimizes group suc-
cess, a defecting individual surrounded by co-Â�operators can benefit to the 
greatest degree by not participating in the pattern. The pattern is then not 
evolutionarily stable (see chapter 10).

Wood et al. (2007) investigated the evolutionary stability of self-Â�
propelled particles to predation. They used the same model for particle 
movements as Couzin et al. (2002) but allowed the particles to evolve 
their interaction zones in response to predation. The main parameters 
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governing the interaction zones are the relative size of the attraction, Ra, 

and orientation zones, Ro, as well as the angle  over which the particles 
can “see” their neighbors. The total area over which a particle could 
monitor its neighbors, i.e., pRa

2 was fixed to a constant for all par-
ticles. This constraint means that their viewing area is restricted to a local 
neighborhood of constant area. On the first generation a population of 
80 individuals each with its own values of Ra, Ro, and  was simulated 
for a sufficient number of time steps so as to allow a dynamic pattern to 
form. A predator, which attempted to capture the prey individuals, was 
then introduced into the simulation. After a fixed number of time steps 
those surviving individuals, i.e., those that had not been caught by the 
predator, went on to the next generation and those individuals that were 
caught were replaced by “offspring” of the surviving individuals. These 
offspring were subject to small mutations in the parameter values so that 
individuals with new values for Ra, Ro, and  entered into the population.

There was a clear pattern in the evolution of the parameters. Firstly, 
the angle over which the particles could see evolved to be large, â•›â•›280º 
leaving a blind angle of 80º. This is reasonably close to the blind angle of 
60º of many species of fish (Hall et al. 1986). The evolution of the small 
blind angle constrained the attraction radius Ra within which the orienta-
tion radius Ro was then free to evolve. Two evolutionary outcomes were 
possible for Ro, evolving either to be close to, but slightly larger than 0, 
or to be close to, but slightly smaller than Ra. In the first case the particles 
formed a slow moving milling group (figure 5.10a) while in the second 

Figure 5.10.â•‡T ypical example of the two types of evolutionarily stable flock types in the 
Wood and Ackland (2007) model. Each flock is shown before and during the attack of 
a predator; (a) is a compact milling torus that responds relatively slowly to the preda-
tor, while (b) is a dynamic parallel group with a high degree of alignment but only loose 
between-Â�individual attraction. When a predator attacks, the group fans out to avoid it. Prey 
heads are marked with a circle and the line indicates their current velocity. Predators are 
larger in gray and marked with an arrow.

a b
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they formed a fast moving dynamic group (figure 5.10b). Which of these 
outcomes evolves depends on the initial values of Ro within the popula-
tion and the rate of mutation during selection. If Ro was initially large, a 
dynamic group would evolve and if it was initially small, a slow moving 
mill would evolve.

While both evolving through “natural selection,” the dynamic group 
was more efficient than the slow moving mill at avoiding predation. 
The dynamic group had similar responses to predators as the optimized 
groups of Inada & Kawachi (2002) and of Zheng et al. (2005). It pro-
duced a confusion effect and split to avoid predation in 60–70% of cases. 
On the other hand, the predator was almost always successful in catch-
ing prey when faced with a slow moving mill. Wood et al.’s (2007) study 
is important because it provides evidence that complex collective level 
phenomena can evolve between “selfish” individuals without the need 
to invoke arguments based on kin selection or repeated interactions be-
tween individuals.



— Chapter 6 —

Synchronization

Synchronization occurs when large numbers of individuals co-Â�ordinate 
to act in unison. In this wide definition of the word, many different types 
of collective behavior are examples of synchronization. A highly aligned 
group of birds, fish, or particles can be said to have synchronized their di-
rection of movement. More commonly, however, when we use the word 
synchronization we are thinking about time. Bank robbers synchronize 
their watches before a robbery, the instruments of the orchestra are syn-
chronized by the conductor and the sound is synchronized to the pictures 
in a film. It is this narrower sense of the word synchronization I use in 
this chapter. How and why do behaviors become synchronized in time?

Given that synchronization is a specific type of collective behavior 
it should come as no surprise that it shares many properties with sys-
tems looked at in earlier chapters of this book. In particular, and unlike 
with the bank robbers or the orchestra, synchronization can be achieved 
without a leader or centralized control. As with other types of collec-
tive behavior, we can also build mathematical models that describe how 
synchronization emerges from individual interactions. Indeed, some of 
the models of synchronization are among the most elegant models of col-
lective behavior and have been employed successfully in understanding a 
wide variety of biological and social systems.

Rhythmic Synchronization

While the instruments of a concert orchestra are, at least in part, synchro-
nized by signals from the conductor, the applause of the audience after 
the performance is not usually centrally controlled. Despite the lack of 
a central controller, in Eastern Europe and Scandinavia this applause is 
often rhythmical, with the entire audience clapping simultaneously and 
periodically. Neda et al. (2000a, 2000b) recorded and analyzed the clap-
ping of theater and opera audiences in Romania and Hungary and found 
a common pattern: first an initial phase of incoherent but loud clapping, 
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followed by a relatively sudden jump into synchronized clapping that, 
after about half a minute, was again rapidly replaced by unsynchronized 
applause (figure 6.1a). A surprising observation was that the average vol-
ume of the synchronized clapping is lower than that of unsynchronized 
applause, both before and after the synchronized bouts. While an audi-
ence presumably wants to maximize their volume and thus their appre-
ciation of the performance, they are unable to combine louder volumes 
with synchronized clapping.

Neda and co-Â�workers went on to record small local groups in the au-
dience and asked individuals, isolated in a room, to clap as if (I) “at the 
end of a good performance” or (II) “during rhythmic applause.” Both 
modes of clapping were rhythmical at the individual level, with individu-
als clapping in mode I twice as fast as those clapping in mode II (figure 
6.1b). The important difference was in the between-Â�individual variation 
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for the two modes. When asked to clap rhythmically, isolated individuals 
chose similar, though not precisely identical, clapping frequencies, while 
when given the freedom to applaud spontaneously the chosen frequencies 
spread over a much wider range.

To interpret this observation, Neda et al. (2000b) used a classical 
mathematical result about coupled oscillators. Kuramoto (1975) studied 
a model of a large number of oscillators, each with its own frequency 
but coupled together so that they continually adjust their frequency to be 
nearer that of the average frequency. Kuramoto showed that provided the 
oscillators’ initial frequencies are not too different, they will eventually 
adopt the same frequency and oscillate synchronously (Kuramoto 1984). 
This is what happens to audiences clapping according to mode II. Their 
initial independent clapping frequencies are close together, and by listen-
ing to the clapping of others, they synchronize their clapping. Audiences 
clapping in mode I have initial frequencies that are less similar to each 
other. Thus even if they try to adjust their clapping in reaction to the 
sound around them, the Kuramoto model predicts that they will never 
arrive at a state of synchronized clapping. This is exactly what happened 
in the recorded audiences: faster clapping, with greater inter-Â�individual 
variation never synchronized. Concert audiences are thus forced to choose 
between two different manners of showing their appreciation: loud, fre-
quent, unsynchronized or quieter, less frequent, synchronized clapping.

The importance of Kuramoto’s model, which is presented in detail in 
box 6.A, is that it shows that individuals with slightly different frequen-
cies can synchronize, each by moving their frequency slightly towards 
the average. It further predicts that above some critical level of between-Â�
individual variation synchronization does not occur at all (figure 6.2). In 
their empirical study, Neda et al. proposed that the opera crowds with 
unsynchronized clapping have a level of intrinsic variation above this 
critical level, and those with synchronized clapping have an intrinsic 
variation below the critical level. The switch in clapping mode from I to 
II reduces the between-Â�individual variation and synchronization ensues.

Synchronized rhythmic activity is seen in many different animal groups 
and across much of biology (Strogatz 2003). As discussed in chapter 1, 
the oestrus cycles of female lions are usually synchronized within a pride 
(Bertram 1975) and the phase of these oscillations can be reset by the 
takeover of the pride by a new male (Packer & Pusey 1983). Likewise, 
human females’ menstrual cycles become synchronized when the females 
are living or working closely together (Stern & McClintock 1998). 

For many systems there is a good understanding of the physiological 
mechanisms involved in coupling individuals. Probably the best under-
stood mechanism within animal behavior is the simultaneous flashing of 
some species of fireflies (Buck 1988; Buck & Buck 1976). Isolated fireflies 
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flash approximately once every second, but if they are subjected to an 
artificial flash at some point between flashes then their next flash is sup-
pressed until approximately 1 second after the artificial flash (Buck et al. 
1981). Mirollo & Strogatz (1990) developed a model to show that such 
phase resetting oscillators will synchronize, although they deal only with 
the case where all oscillators have the same intrinsic frequency. A number 
of good reviews have been written both of firefly flashing (Buck & Buck 

Figure 6.2.â•‡ How coherence changes in the Kuramoto model with (a) coupling strength 
and (b) oscillator variation. The solid lines are the average coherence after 2000 time steps 
over 1000 runs of N = 800 oscillators. The dotted line in (a) is the approximation râ•›

r K K KC C≈ −( )π , where KC = 23 πσ . In this simulation s = 1. (b) The dotted line is the ap-
proximation r C≈ −( )π σ σ σ , where σ πC K= 23 . In this simulation K = 2.
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Box 6.A The Kuramoto Model

Kuramoto (1975; 1984) proposed a simple model for the synchro-
nization of coupled oscillators. Kuramoto assumed that the fre-
quency, i.e., the rate of change of the phase kâ†œ, of each oscillator k, 
was determined by

	
d

dt
K
N

k
k j k

j

Nθ
ω θ θ= + −

=

∑sin( )
1

,	 (6.A.1)

where N is the number of oscillators and K is the strength of cou-
pling between the oscillators. k is the natural frequency of the 
oscillator, the frequency it will adopt if it is not coupled to other 
oscillators (i.e., when K = 0). Under this model, each oscillator ad-
justs its frequency in response to the phases of the other oscillators. 
If oscillator k has a smaller phase than the average phase of all other 
oscillators, then it will increase its frequency and thus become more 
in phase with the other oscillators. Likewise, if oscillator k has a 
larger phase than average, then it will decrease its frequency.

Intuitively, we would expect such a regulation to result in the 
phases of the oscillators becoming more similar. What is less clear 
is how we expect the degree of synchronization to change as a 
function of the coupling strength, or of the initial frequency dif-
ferences between the oscillators. Kuramoto defined the coherence, 
i.e., the degree of phase synchronization, between the oscillators to 
be the complex number

	 re
N

ei i

j

N
jψ θ=

=

∑1

1

,	 (6.A.2)

where i= −1. By recalling the definition of a complex number, 
re r iiψ ψ ψ= +(cos( ) sin( )), and doing some algebraic manipulation 
we see that
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Thus  gives the average phase and r is a measure of the variation 
between the phases of the oscillators. When all the oscillators have 
the same phase, j = , then
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r
N

N N= + =
1

12 2 2 2cos sinψ ψ .

If all oscillators have a random phase, independent of that of the 
other oscillators, then as N r ∞, r r 0. Thus larger values of r in-
dicate a more coherent population of oscillators.

Figure 6.2b shows how coherence changes with the variation of 
the initial frequency, i.e., the standard deviation of the distribution 
of the k. When the standard deviation is small r is large. As the 
standard deviation increases r decreases. There is a critical level 
of between-Â�oscillator variation, above which there is no coherence 
and below which coherence begins to emerge.

The definitions of r and  not only provide a convenient way of 
measuring coherence, but also allow an elegant mathematical anal-
ysis of Kuramoto’s original model. A more detailed mathematical 
discussion of Kuramoto’s model is provided in Strogatz (2000) . 
Here I summarize some of the main results presented by Strogatz. 
If we multiply both sides of equation 6.A.2 by e i k− θ and then equate 
the complex parts we get

r
Nk j k

j

N

sin( ) sin( )ψ θ θ θ− = −
=

∑1

1

.

Substituting this into equation 6.A.1 we see that

	
d

dt
rKk

k k

θ
ω ψ θ= + −sin( ).	 (6.A.3)

When the coherence r is small or the coupling K is weak then the 
pull away from the natural frequency is small. Conversely, strongly 
coupled oscillators with high coherence have a strong pull away 
from the natural frequency.

Kuramoto assumed an infinite number of oscillators with initial 
frequencies k taken from a distribution with a symmetrical prob-
ability density function with mean  = 0, e.g., the normal distribu-
tion. From equation 6.A.3 we see that at equilibrium

ω θk krK= sin( ).

(Box 6.A continued on next page)
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1976; Camazine et al. 2001) and rhythmic synchronization in general 
(Strogatz 2003; Strogatz & Stewart 1993).

Stochastic Synchronization

Anyone who has seen a flock of sheep or a group of hens pecking in 
a farmyard knows that domestically farmed animals commonly syn-
chronize their behavior. Hens (Hughes 1971), pigs (Nielsen et al. 1996), 
and sheep (Rook & Penning 1991) are just some examples of animals 
that feed simultaneously. While simultaneous feeding may in part be ac-
counted for by synchronized circadian rhythms and environmental cues, 
it can also be due to increased feeding in response to the feeding of others. 
For example, Barber (2001) found that laying hens were more motivated 
to feed in the presence of feeding companions.

Collins & Sumpter (2007) looked at how the number of feeding chick-
ens at a particular point in a commercial chicken house influenced the 
rate at which other chickens began feeding nearby. Chicken houses are 
large homogeneous environments where a supply of food is provided 
along a feeding trough. The food constantly moves along this trough, 
ensuring that the supply is equal at all points of the feeder and that, in the 
absence of other birds, no part of the environment is consistently more 
attractive to the birds than any other. Figure 3.7 shows how the rate at 
which chickens join and leave a point at a feeding trough changed as a 
function of the number of birds already at that point. As the number of 

Those oscillators with ωk rK<  approach this equilibrium, while 
those with ωk rK>  “drift” without arriving at the equilibrium. 
Kuramoto went on to derive a number of useful results. For ex-
ample, if the k are initially normally distributed with mean 0 
and variance sâ†œ2 then synchronization occurs, i.e., r > 0, whenever 
K> 23 πσ . Below the critical value KC = 23 πσ the oscillators 
all act independently of each other. For values of K slightly above 
this critical value the proportion of the synchronized oscillators is

r
K K

K
C

C

≈
−







π .

Figure 6.2a compares this approximation with an average outcome 
of 1000 simulations of 800 oscillators.
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chickens feeding at a point increases, the rate of arrival increases and the 
rate of leaving decreases.

Based on these observations, we developed a model to predict the long 
term dynamics of chickens arriving and leaving the feeder. The model 
predicted the dynamics of real chickens feeding (figure 6.3a) and the dis-
tribution of the number of chickens feeding at points along the feeder 
(figure 6.3b). Rather than being Poisson, as it would be if the chick-
ens did not respond to the feeding of others, the distribution is skewed 
toward observations of either none or lots of chickens at the feeder. A 
qualitatively similar distribution was seen in further observations of the 
number of chickens at the feeder through space and time (figure 6.3c, d). 

Figure 6.3.â•‡C omparison of simulation model and observations of real chickens. (a) Ex-
ample of simulated number of birds feeding at different sections along the feeder through 
200 simulated minutes. Darkness of shading indicates number of birds at that point along 
the feeder. (b) The distribution of number of chickens feeding per three adjacent feeding 
sections over 10,000 simulated minutes. (c) Example of activity at different sections along a 
real chicken feeder through 10 minutes. (d) Distribution of number of chickens feeding per 
three adjacent feeding sections over these 10 minutes. Fitted lines in (b) and (d) show distri-
bution of the number of chickens assuming a Poisson distribution. See Collins & Sumpter 
(2007) for parameter values and details of the model and experimental setup.

0 1 2 3 4 5 6 7
Number at feeder

Fr
eq

ue
nc

y

0 1 2 3 4 5 6 7
Number at feeder

Fr
eq

ue
nc

y

0

1

2

3

4

5

Ti
m

e 
(m

in
ut

es
)

Position along the feeder

(a) (b)

(d)(c)

10 15

2000

2050

2100

2150

2200

0

1

2

3

4

5

Ti
m

e 
(m

in
ut

es
)

Position along the feeder
0 5 10 15

0

2

4

6

8
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5



c h a p t e r  6

138

Box 6.B Stochastic Synchronization of Feeding

Box 3.C in chapter 3 describes a model of birds that choose to feed 
at a particular food patch as an increasing function of the number 
of birds already at that patch. Here, we consider a simulation of this 
model with access to only one food patch, f = 1. Birds can Â�either 
forage at the food patch or rest away from the food patch. The 
probability of joining a food patch per bird not at the food patch is

	 s m s
C t

k C t
+ −

+









( )

( , )
( , )

1
1

α

α α ,	 (6.B.1)

and the probability per bird of leaving the food patch is a constant 
l (see box 3.C for an explanation of the parameters).

Figure 6.4b shows a time series of how many birds are visiting 
the feeder for a simulation of a group of n = 7 birds. Figure 6.4a 
shows the distribution through time of individuals at the food 
patch. There are bouts during which there are no birds at the food 
patch and bouts during which nearly all the birds are at the food. 
These resting and feeding bouts are relatively stable with most of 
the birds synchronizing their feeding.

To help understand how this synchronization arises, figure 6.4c 
shows the average number of birds joining the food patch per time 
step, i.e.,

	 n C t s m s
C t

k C t
−( ) + −

+









( , ) ( )

( , )
( , )

1
1

1

α

α α 	 (6.B.2)

as a function of the number of birds on the patch. The probability 
of one bird going to the feeder when none are there is relatively 
small, but once one bird is there, the probability is greater that 
another bird arrives than that the bird leaves. Furthermore, once 
two birds are there the probability of arriving becomes greater still 
until the number of birds climbs up to between 3 or 4. The average 
number of birds leaving the food patch per time step is lC(1,â•›t) as 
shown in figure 6.4c.

The points at which the average joining and leaving rates are 
equal correspond to feeding equilibriums. There are three such 
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The sharp quorum response and positive feedback mean that, despite no 
environmental differences along different sections of the feeder, at any 
one time certain parts of the feeder will be preferred over others.

Box 6.B presents a simplified version of the chicken feeding model for 
a group of seven chickens visiting only a single feeder. Figure 6.4 illus-
trates how synchronized feeding occurs in this model. The birds alternate 
between most of them feeding and nearly all resting, but are not periodic 
in their feeding bouts. During resting periods there are small fluctuations 
with some individuals engaging in feeding. At some point these fluctua-
tions take the number of individuals to a level at which the average rate 
of joining the feeder exceeds the average rate of leaving. The population 
quickly climbs to a point where the majority of birds are feeding. The 
number feeding fluctuates around this equilibrium, and at some point 
a large fluctuation leads to the number of foragers falling close to zero 
again. This pattern continues, but with no clearly defined frequency.

Gautrais et al. (2007) found that small groups of sheep synchronize 
their bouts of activity, and these bouts are not necessarily periodic. They 
fitted a Markov chain model to the data, where the state of the model 
was the number of active individuals. The measured transition probabili-
ties of the Markov chain were such that the rate at which inactive indi-
viduals became active increased with the number of active sheep in the 
group and decreased with the number of inactive sheep. The opposite 
effect was seen on inactive sheep. These relationships produced rapid 
switching between the all-Â�active and all-Â�inactive states, without any obvi-
ous periodicity in the activity patterns.

From Randomness to Rhythm

The model in box 6.B is an example of synchronization without period-
icity: there is no well-Â�defined frequency in the activity patterns either of 

equilibriums, the smallest of which corresponds to a stable rest-
ing equilibrium and the largest to a stable feeding equilibrium. The 
middle equilibrium is unstable, such that if by chance the number of 
feeding birds drops below this unstable equilibrium then the birds 
quickly equilibrate at mostly resting. Alternatively, if the number 
of feeding birds goes above the unstable equilibrium, the number 
of feeding birds quickly equilibrates with 3 or 4 feeding. Thus the 
number of birds at the food patch jumps between the two stable 
equilibriums of none and, alternatively, 3 to 4 birds at the patch.
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individuals or of groups. Conversely, the Kuramoto model describes a 
situation where both individuals and groups have an inherent periodic-
ity. Ants provide an interesting example of activity cycles that is not suc-
cessfully modeled by either of these approaches. Figure 6.5 shows time 
series and frequency power spectra of both isolated individuals and whole 
colonies of the species Temnothorax allardycei. Single ants have no well-Â�
defined period between their bouts of activity, while whole colonies of 
these ants have synchronized, periodic activity bouts (Cole 1991a, 1991b).

A model based on box 6.B could be adopted to explain ant activity 
cycles. Under such a model ants would be assumed to have two states, 
active and inactive. We would further assume that encounters with active 
ants increase the probability of other active ants remaining active and/or 
the probability of inactive ants becoming active. Such a model certainly 
creates synchronization, but it is less clear how it generates periodicity.

How then can periodicity arise at the group level when absent in iso-
lated individuals? An initial suggestion by Goss and Deneubourg (1988) 
was that after a bout of activity, inactive ants have an “unwakeable” 
period where interactions with others do not result in them becoming 
active. Under this model, isolated individuals’ inactive bouts have a de-
terministic minimum time plus an exponentially distributed period until 
the start of the next active bout. In groups, this latter part of the inactiv-
ity bout can be interrupted by disturbance from other ants, whereby all 
ants are woken by the first ant coming out of its bout of inactivity. As 
a result, the inactive bouts become equal to the length of the “unwake-
able” periods and the “unwakeable” periods become synchronized. An 
alternative assumption is that active ants are “unsleepable” with some 
minimum length of activity bouts (Cole & Cheshire 1996; Sole & MiraÂ�
montes 1995; Sole et al. 1993). The effect of this assumption is similar 
to in the “unwakeable” model: although there was a minimum time be-
tween the start of activity bouts in isolated ants, the time between bouts 
has no well-Â�defined period. When in groups, however, the ants became 
synchronized with the gaps between the starts of bouts determined by 
the “unsleepable” periods. These observations are largely consistent with 
observations of real ants (figure 6.5).

Activity bouts within ant colonies are not always periodic. Franks et 
al. (1990) found that colonies of Leptothorax acervorum have synchro-
nized, but not always periodic bouts of activity. Boi et al. (1999) found 
that periodicity was strongest amongst workers further from the entrance 
to the nest and was disturbed by the return of workers to the colony. 
They also found that activity originated in the center of the nest, where 
the brood is kept, and spread outwards. In experiments where forager 
returns were prevented activity started first and lasted longer in the center 
of the nest than at the nest entrance.
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Why Synchronize?

Synchronized activities are beneficial to individuals in a range of situa-
tions. For example, sheep (Ruckstuhl 1999), deer (Conradt 1998), and 
other ungulates have synchronized bouts of feeding and digestion. By 
choosing to forage for food together, individuals reduce their probability 
of being attacked by a predator and increase their opportunity for infor-
mation transfer (see chapters 2 and 3). Synchronized activity could be a 
requirement for the social cohesion that allows animals to benefit from 
being in a group (Conradt & Roper 2000).

Box 6.C describes a simple functional model of a pair of animals, each 
of which chooses between either resting or foraging for food. The model 
assumes that the benefit of foraging decreases with the nutritional state of 
an individual. There is a cost associated with foraging, which is smaller 
if both individuals forage simultaneously. Two key points arise from the 
analysis of this model. The first point is that the evolutionarily stable 
strategy is for the individuals to synchronize their actions, i.e., forage 
at the same time and rest at the same time, even when their nutritional 
states are different (figure 6.7). The second point is that synchronization 
of actions does not imply synchronization of nutritional state. Instead, 
the individual with the lower nutritional state initiates foraging and the 
individual with higher nutritional state follows, because of the benefit 
it gains from foraging with a partner. Once the individual with higher 
nutritional state reaches a level of nutrition such that it no longer pays 
to forage, even with a partner, it will stop foraging. At this point the less 
well-Â�nourished individual will also stop, because it does not pay to for-
age alone. The less well-Â�nourished individual thus never “catches up” 
with the better nourished individual (figure 6.6b) and the two nutritional 
states remain at different levels.

The model has implications for how we think about leadership of 
groups. The less well-Â�nourished individual in the pair takes the lead in 
initiating foraging, while the better-Â�nourished takes leads in stopping for-
aging (Rands et al. 2003). These results are robust to the addition of 
noise. If the increase q and decrease r in nutritional state are random 
rather than constant on each time step then, on average, one of the indi-
viduals remains better nourished than the other (figure 6.6c). However, 
contrary to a suggestion by Rands et al. (2003), differences in nutritional 
states are not a consequence of synchronization. Rather, both individu-
als have a nutritional state that increases and decreases at the same rate: 
individuals with similar nutritional states maintain similar nutritional 
states on average, while those with different states maintain this differ-
ence on average. Any differences over time only arise through random 
drift. In other words, while nutritional state depends on how individuals 
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Box 6.C State-Â�based Synchronization

Rands et al. (2003) proposed a model of a pair of foragers who, 
based on their own nutritional state and that of their partner, de-
cide whether to forage for food or rest. Here, I present a simpli-
fied version of their model, which captures the essential features of 
the argument they present. Assume that on each day an individual 
must decide between foraging and resting. Foraging incurs a cost 
c due to predation risk but also gives a benefit b/s where b is a 
constant and s is the nutritional state of the individual. The benefit 
in foraging thus decreases inversely proportionately to nutritional 
state. Further assume that if an individual forages at the same time 
as its partner it gains benefit e from dilution of risk. Thus the pay-
off for foraging together with a partner is b/sâ•›-â•›c + e and the payoff 
for foraging alone is b/sâ•›-â•›c. We assume that resting incurs neither 
benefit nor cost.

What strategy should an individual adopt? First consider the case 
where both individuals in the pair have the same nutritional state, 
s. In this case, if sâ•›<â•›b/c then it always is better to forage than to 
rest and both individuals will forage. If sâ•›>â•›b/(câ•›-â•›e) then it always 
is better to rest than to forage and both individuals will rest. For 
the intermediate values of b/câ•›<â•›sâ•›<â•›b/(câ•›-â•›e) the maximum payoff 
is obtained if both individuals forage. However, if the focal indi-
vidual forages and its partner rests then the focal individual will get 
the lowest of the possible payoffs. Furthermore, if both individuals 
are resting then swapping to foraging without the certainty that 
your partner will also swap is costly. The individuals thus do best 
if they co-Â�ordinate their foraging and resting, i.e., they synchronize 
their active and inactive periods.

When b/câ•›<â•›sâ•›<â•›b/(câ•›-â•›e), the evolutionary game defined in table 1 
is known as a co-Â�ordination game (see chapter 10 for more about 
evolutionary games). There are two evolutionarily stable strate-
gies to such games and deciding which strategy will evolve is not 
straightforward. On the one hand it is optimal, in terms of higher 
benefits, for both individuals to forage. On the other hand, unlike 
resting, foraging is prone to errors resulting from one individual 
failing to co-Â�ordinate. Here, I resolve this co-Â�ordination issue by as-
suming that in repeated iterations over a number of days, whenever 
b/câ•›<â•›sâ•›<â•›b/(câ•›-â•›e) an individual will adopt the same behavior as it 
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are synchronized, differences in nutritional state between the two indi-
viduals are largely independent of the degree of synchronization.

If each individual within a group has its own “ideal” point in time 
to perform an action, then as group size increases the heterogeneity of 
rhythms within the group also increases. Conradt and Roper (2003) used 
a model to show that in most situations it is beneficial to group mem-
bers that decisions about the timing of events are made by consensus 
rather than “despotically.” Their argument is based on the principle of 

adopted on the previous day. Nutritional state can now be made 
time-Â�dependent, i.e, represented by st. Individuals rest whenever 
sâ•›>â•›b/(câ•›-â•›e) or when b/câ•›<â•›sâ•›<â•›b/(câ•›-â•›e) and both individuals rested 
on the previous day, resulting in a decrease in nutritional state 
i.e., st+1 = stâ•›-â•›r. Individuals forage whenever sâ•›<â•›b/c or b/câ•›<â•›sâ•›<â•›b/
(câ•›-â•›e) and the individuals foraged on the previous day, resulting in 
an increase in nutritional state, i.e., st+1 = st + q. Figure 6.6a shows 
the outcome of such dynamics. The individuals’ foraging bouts 
are periodic and synchronized and their nutritional states remain 
synchronized.

What happens if the individuals have different nutritional states, 
s1,t and s2,t? Figure 6.7 summarizes the conditions under which it 
is optimal for a focal individual to co-Â�operate given its own nu-
tritional state and the state of its partner. If we assume that the 
individuals are aware of each other’s nutritional state, then if s1,t > 
s2,t both individuals will always forage when s2,tâ•›<â•›b/c and s1,tâ•›<â•›b/
(câ•›-â•›e). Likewise, if s1,tâ•›>â•›b/(câ•›-â•›e) and s2,tâ•›>â•›b/c then both individu-
als rest. When b/(câ•›-â•›e)â•›>â•›s1,t, s2,tâ•›>â•›b/c, it is best for individuals to 
co-Â�ordinate. As in the case of identical nutritional states, however, 
it is not immediately clear upon which activity they should co-Â�
ordinate. Assuming as before that co-Â�ordination is determined by 
the individual’s previous action, the actions of the two individuals 
become synchronized (figure 6.6b). Interestingly, nutritional state 
does not become synchronized. Instead, foraging is initiated by the 
individual with the worst nutritional state, while resting is initiated 
by the individual with the best nutritional state. As a result, the 
individual with lower nutrition never “catches up” with its partner. 
If r and q are random variables, varying from day to day, instead 
of constant values the same pattern is seen (figure 6.6c). In general, 
there is no correlation between the nutritional states of the indi-
viduals despite a strong synchrony in their foraging patterns.
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Figure 6.6.â•‡S imulations of model in box 6.C. Standard parameters are b = 10, c = 5, e = 4, 
r = 0.5, and q = 1. (a) Case where both individuals initially have the same nutritional state 
s1,1 = s2,1 =â•›1. The dots and crosses at the top of the figure indicate days on which individual 
1 and respectively individual 2 foraged. (b) Case where both individuals have different nu-
tritional states s1,1 = 5 and s2,1 = 1. (c) Simulations of the model where each time step q and 
r are selected uniformly at random with ranges [0.7, 1.3] and [0.2, 0.8] respectively (note 
different time scale).
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“many wrongs” presented in box 4.B. It is better to time events accord-
ing to the average preference, rather than adopting the preference of a 
single individual. Obtaining consensus among heterogeneous individu-
als is difficult, simply because different individuals want different things. 
Conradt and Roper (2007) develop an evolutionary game theory model 
of decision-Â�making in groups of three or more members and show that 
over a wide range of conditions evolutionary stability of consensus can 
be obtained.

A prediction that arises both from Conradt and Roper’s functional 
models and from Kuramoto’s mechanistic model is that, if between-Â�
individual variation in the timing of events becomes too large then syn-
chrony will break down. Conradt (1998) observed that male-Â�only and 
female-Â�only groups of red deer had more synchronized bouts of activity 
than mixed sex groups. This loss of synchrony could result from differ-
ences between males and females in the amount of food they need and the 
digestion time for this food (Ruckstuhl & Neuhaus 2002). Interestingly, 
within the mixed sex groups the female-Â�female and male-Â�male synchrony 
was much lower than that in the single sex groups. Similar observations 
have been made of alpine ibex (Ruckstuhl & Neuhaus 2001).

In terms of a functional explanation, desynchronization in mixed sex 
groups could be attributed to male harassment of females, competition 
between males in the presence of females, or some other social conflict 
within the group (Conradt 1998). However, such desynchronization is 
also explainable purely in terms of mechanisms. If the distribution of 

Figure 6.7.â•‡E volutionarily stable strategy, according to the model in box 6.C, for a focal 
individual as a function of the focal individual’s nutritional state and the partner’s nutri-
tional state.
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initial frequencies are bimodal, Kuramoto’s model predicts that those in-
dividuals with initial frequencies nearer to the mean initial frequency will 
synchronize, while those with initial frequencies further away from the 
mean will remain close to their initial frequency (Strogatz 2000). Thus 
a proportion of the males become more synchronized with the females, 
increasing the degree of male-Â�female synchrony, above that of separate 
groups, while decreasing male-Â�male synchrony.

In Conradt’s observations there were more females than males within 
mixed groups (Larissa Conradt, personal communication). Under these 
circumstances, Kuramoto’s model further predicts that the pull on the 
males to synchronize with the females is stronger than the pull of the 
males on the females. This pull in opposite directions leads to desynchro-
nization of both sexes, but greater desynchronization among males than 
among females. These predictions are confirmed in Conradt’s observa-
tions of mixed groups, with male-Â�male synchrony near to zero, female-Â�
female synchrony dropping slightly compared to single sex groups and 
male-Â�female synchrony below that of female-Â�female synchrony. Kura-
moto’s model provides us with null hypotheses about whether groups of 
diverse individuals will synchronize. It is only when these null hypotheses 
fail that we need to invoke additional functional explanations.

Temporal synchronization can produce patterns in the spatial orga-
nization of animal groups. Conradt (1998) hypothesized that the lack 
of synchrony in mixed sex groups leads to segregation of males and fe-
males. If females benefit from leaving an area before males then mixed 
sex groups are more likely to split than same sex groups. Ruckstuhl & 
Neuhaus (2002) found that sexual segregation was more common in un-
gulate species in which males and females were of different sizes and as 
a result had different activity budgets. The question of whether failure 
to synchronize is the primary explanation of spatial segregation in un-
gulates remains controversial. A number of studies have provided mixed 
results about the importance of synchrony in this context and suggest 
that spatial segregation is caused by a range of different factors (Cal-
him et al. 2006; Kamler et al. 2007; Loe et al. 2006; MacFarlane 2006). 
While temporal synchronization is unlikely to be a universal explanation 
of segregation, it remains an important factor in determining the spatial 
patterns produced by animal groups.

Anti-Â�phase Synchronization

Kuramoto’s model explains synchronization through locking of phases. 
Oscillators can, however, synchronize without adopting the same phase. 
Indeed, the first recorded observations of synchronization between 
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pendulum clocks, made by their inventor Christiaan Huygens, were of 
out of phase synchronization (Bennett et al. 2002; Strogatz 2003). Huy-
gens noticed that two pendulums hanging from the same beam became 
synchronized, such that when one pendulum was at its right extreme, 
the other was at its left extreme. This anti-Â�phase synchronization occurs 
because of a weak coupling through lateral motion of the structure upon 
which the pendulums are mounted. Bennett et al. (2002) constructed an 
experimental setup with two pendulums, which allowed them to repro-
duce Huygens’ findings. They developed a mathematical model to show 
that anti-Â�phase synchronization is the only stable outcome for this system 
provided there is sufficiently strong coupling between the pendulums. As 
in the Kuramoto model, synchronization occurs even when the natural 
frequencies of the pendulums are slightly different.

An example of pairs or small groups of animals becoming anti-Â�phase 
synchronized is sentinel behavior. McGowan & Woolfenden (1989) ob-
served small groups of Florida scrub jays and noted when each member 
engaged in vigilance, looking around for potential threats, and foraging, 
looking for food. They found that vigilance was co-Â�ordinated, such that 
periods of vigilance overlapped less than expected than if the decision to 
become vigilant was independent of the behavior of other individuals. 
One of the birds acted as a sentinel while the others fed. The periods of 
sentinel behavior were out of phase with each other, reducing the prob-
ability that a predator could attack unnoticed.

A functional explanation of sentinel behavior poses a challenge, be-
cause the individual keeping watch is losing the opportunity to forage for 
food. What is to stop the sentinel from cheating and skipping its turn to 
continue foraging instead? The dilemma here is similar to that of produc-
ers and scroungers (box 3.B) and is a typical example of social parasitism 
(see chapter 10). Although the group would have the least risk of preda-
tion were individuals to take turns being sentinels, for each individual 
the incentive is to often skip their turn to keep watch. Bednekoff (1997) 
proposed a simple solution to this problem based on selfish sentinels. He 
considered how nutritional state should influence the relative costs and 
benefits to an individual of foraging and sentinel behavior. Individuals 
that have just fed have a lower need for food and thus a greater incentive 
to take a safe position where they can keep watch. Bednekoff’s model pre-
dicted that if being sentinel provided extra safety compared to foraging 
and that if a sentinel detected a predator this information spread to for-
agers then co-Â�ordinated sentinels was an evolutionarily stable behavior.

Bednekoff & Woolfenden performed experiments on pairs of Florida 
scrub jays to test the plausibility of Bednekoff’s model. They found that 
when scrub jays were fed they spent less time feeding and more time 
acting as sentinels (Bednekoff & Woolfenden 2003). Furthermore, the 
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partners of the fed individuals reduced their time acting as sentinels and 
foraged more (Bednekoff & Woolfenden 2006). In pairs of scrub jays 
these responses can lead to a “seesaw” synchronization of feeding and 
sentinel behavior. Individual A finds food, eats it, and then begins to act 
as a sentinel, while individual B searches for food. When individual B 
has found and eaten food, its tendency to become a sentinel increases, 
while individual A’s tendency to feed increases. In this case, and unlike 
the model of in-Â�phase synchronization in box 6.C, anti-Â�phase synchroni-
zation arises from and sustains differences in nutritional state.

Animals in larger groups also exhibit turn taking in sentinel behavior. 
Meerkats forage by digging into the ground, in a manner that makes it 
impossible to observe what is going on around them. The meerkats usu-
ally forage in groups. When not digging, some individuals stand guard, 
looking around for potential predators. Clutton-Â�Brock et al. (1999) ob-
served that meerkats take turns in guarding. When there was no guard 
then the probability that an individual would start guarding was twice as 
high as when there was a guard, and if two or more individuals happened 
to be guarding at the same time one of them would usually stop guarding 
relatively quickly. Turn taking was not in a consistent order, although 
individuals did not tend to take consecutive bouts of guarding. Like the 
scrub jays, an important factor in whether a meerkat would guard was 
whether it had been fed or not. Clutton-Â�Brock et al. (1999) found that if 
they fed meerkats they would guard more often and forage less.

Clutton-Â�Brock et al.’s (1999) experiments “provide no indication that 
the alternation of raised guarding depends on social processes more 
complex than the independent optimization of activity by individuals, 
subject to nutritional status and the presence (or absence) of an exist-
ing guard.” Bednekoff’s (1997) model provides an elegant mathematical 
demonstration of how this guard alternation can evolve. It also provides 
an extension of the seesaw concept and double pendulum anti-Â�phase syn-
chronization to groups of more than two individuals. Simply by aiming 
to maximize their own survival individuals will move out of nutritional 
phase with each other, so that there is usually a single guard with a high 
nutritional level.



— Chapter 7 —

Structures

In Småland in southern Sweden the ground is full of stones, carried 
down during the ice age. When the people of Småland began to farm the 
land they picked up the stones in an area, lay them in piles at the side 
and planted their crops. As the years went by they ploughed the fields 
and more stones came up and the piles turned into walls. As the walls 
expanded they joined each other, separating the land into a patchwork of 
separate fields. If you go to Småland today, you will find well-Â�ploughed 
fields surrounded by thick walls with occasional piles of stones near the 
middle of the fields. Although some of the walls built in Småland must 
have involved planning, such a plan was not a requirement for their 
construction.

This story illustrates a central idea of this chapter: co-Â�ordinated con-
struction can be achieved by a group of workers without direct commu-
nication among them. The patchwork of fields separated by stone walls 
emerged from local interactions between the farmers and their environ-
ment. In this chapter we look at a number of spatial structures that can 
arise through local interactions between animals and their environment. 
Pillars and chambers in the nest of social insect colonies; rail, road, and 
supply networks in humans; and the pheromone trail systems of ants are 
all constructed in this way. Often the complexity of these patterns gives 
an impression of centralized design or planning. However, positive feed-
back operating in space can produce a rich variety of patterns without 
central organization.

Pillars and Walls

Theraulaz et al. (2003) propose that local interactions between animals 
and their environment, a mechanism they call stigmergy, combined with 
interactions with large scale environmental features, which they call tem-
plates, provide two of the key mechanisms for nest construction by insect 
societies. Examples of templates include light, temperature, and humidity 
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gradients that determine the point at which an individual picks up or 
drops building material. Templates may also be determined by a signal 
from individual insects. For example, the queen of the termite Macro-
termes subhyalinus emits a diffusive pheromone, which decreases in con-
centration with distance from the queen (Bonabeau et al. 1998b).

To illustrate the theory of how stigmergy and templates interact to 
produce collective structures Theraulaz has, together with various co-Â�
workers, investigated the construction of cemeteries by Messor sancta 
ants (Jost et al. 2007; Theraulaz et al. 2002, 2003). In experiments, a 
ring of ant corpses was placed around the edge of a circular arena with 
a hole in the center, through which living ants could access the arena. 
These worker ants tend to pick up corpses when they find them and then 
deposit them again at places where there are other corpses. As a result, 
clusters of dead ants build up through time.

Box 7.A presents a model based on the observation that ants are more 
likely to pick up and less likely to drop corpses where their density is 
low. Further assuming that corpse carrying ants perform a random walk, 
the model predicts that the emerging piles of corpses should be regularly 
spaced (figure 7.1). The pattern is a result of local activation and long 
range inhibition (Gierer & Meinhard 1972; Murray 1993). The local acti-
vation is a tendency of ants to pick up corpses in areas where local corpse 
density is low and move them to areas where corpse density is high. As a 
result, the construction of new piles near to those already established is 
inhibited. The worker ants move quickly resulting in a long range inhibi-
tion, and the distance between the piles eventually far exceeds the local 
range at which the ants can sense corpses. This inhibition decreases with 
distance from the pile. At some particular distance from an established 
pile the inhibition becomes less than the intrinsic probability of dropping 
a corpse, and another pile is established. As a result, there is a regular 
spacing between piles, the length of which depends upon the speed at 
which the ants move and the strength of inhibition. These predictions 
were confirmed in the experiments: the ants built piles of corpses around 
the arena wall at roughly regular intervals and the intervals between the 
piles increased in proportion to arena size (Theraulaz et al. 2002).

The addition of an environmental template can change the shape of 
the corpse piles. Jost et al. (2007) compared the behavior of individual 
ants in the presence and absence of air currents. The presence of wind 
increased the probability of ants picking up and decreased the probabil-
ity of them dropping corpses. The experimenters also showed that when 
an air current is induced across a circular pile of ant corpses the wind 
strength is lowest behind and in front of the pile (the front of a pile being 
the side which faces towards the wind), but highest at the sides of the 
pile. Thus ants are more likely to remove corpses from the sides of the 
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Box 7.A Local Activation, Long-Â�range Inhibition

How systems of interacting units generate robust spatial patterns is a 
central question at all levels of biology. One of the most revolution-
ary ideas in the theoretical study of pattern formation was Turing’s 
recognition that passive diffusion of two or more chemicals com-
bined with reactions between the chemicals to produce spatial pat-
terns, even if the chemical reaction has no pattern forming qualities 
in the absence of diffusion (Turing 1952; reviewed in, for example 
Britton 2005 or Murray 1993). Up until the publication of his 1952 
paper, diffusion was usually thought of as a mechanism for the dis-
persal rather than the generation of patterns. Gierer and Meinhardt 
(1972) went on to show that non-Â�linear reactions involving two 
chemicals, one activating and the other inhibiting, would spontane-
ously produce patterns. The key condition for pattern formation in 
these activator-Â�inhibitor systems is that the activator chemical dif-
fuses slowly and has a positive effect on its own growth as well as 
that of the inhibitor, while the inhibitor diffuses more quickly and 
inhibits both the activator and itself. As a result, small regularly 
spaced spikes of activator chemical accumulate, which through the 
local generation of fast diffusing inhibitor have a long-Â�range inhibi-
tory effect on the production of further spikes nearby.

In the case of ant cemeteries, local activation is mediated through 
the ants’ decision whether to pick up or drop an ant corpse at a 
particular point. Theraulaz et al. (2002) proposed that the rate at 
which corpses would be deposited at a particular point x should be 
proportional to
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is the average number of corpses within a local region of the point 
x. D gives the size of the range over which active ants can detect 

(Box 7.A continued on next page)



c h a p t e r  7

154

corpses. Experimental observations determined that this distance 
was small (0.5 to 1 cm) compared to the perimeter of the experi-
mental arena (25 or 50 cm). The first term in equation 7.A.1 
Â�models an increase in the rate of dropping corpses with increasing 
local corpse density. The second term models a decrease in the rate 
at which non-Â�carrying ants pick up corpses with local density of 
corpses. This second term requires some extra consideration since 
it assumes that the density of non-Â�carrying ants, r, is constant over 
the whole arena. This assumption is made despite the fact that 
whenever a carrying ant picks up a corpse the number of available 
non-Â�carrying ants should be depleted. In the experiment this as-
sumption may be justifiable by the continual flux of ants in and out 
of the arena from a central hole.

Given equation 7.A.1 for corpse dependent activation, the follow-
ing reaction-Â�diffusion model expresses the rate of change of corpse 
and active ant density along the arena’s perimeter

	

∂

∂
=

∂

∂
=− +

∂

∂

c
t

f c a

a
t

f c a D
a

x

( , )

( , )
2

2 .	 (7.A.2 and 7.A.3)

The second term in equation 7.A.3 expresses the assumption that, 
when carrying the corpses, ants perform a random walk with dif-
fusion co-Â�efficient D. These equations fulfill the requirements of an 
activator-Â�inhibitor system. The presence of corpses increases the 
rate at which corpses are deposited by carrying ants. The carrying 
ants diffuse faster than the corpses and inhibit the growth of fur-
ther corpse piles.

Figure 7.1 shows numerical integrations of equations 7.A.2 and 
7.A.3 for different densities of corpses and arena sizes. In these 
simulations, D = 1 cm, implying only local activation. The result-
ing equilibrium distance between the corpse piles is between 15 
and 25 cm, depending on the density of corpses. Corpse piles thus 
inhibit the construction of further piles over a long range, despite 
the local interaction of the ants with the corpses. The model further 
predicts that the number of piles increases with arena size and with 
the density of corpses. It was these predictions that were tested and 
confirmed in the Theraulaz et al. (2002) experiment.
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pile. From these observations of individual ant behavior and of air flow, 
Jost et al. predicted that elongated walls would be built in the direction of 
the air current. This is exactly what happened in experiments with large 
number of ants (figure 7.2). Pillars became regularly spaced walls when 
the ants built in the presence of an air current.

Neither stigmergy nor templates are a requirement for the production 
of collective patterns. Symmetrical structures, such as the domes built by 
wood ants or the craters built by Messor barbarus ants can result from 
the independent actions of the colony’s ants (Chretien 1996; Theraulaz et 
al. 2003). For example, Chretien (1996) showed that when an individual 
M. barbarus ant leaves the nest hole with a sand pellet, she moves in a 
straight line away from the hole in a random direction. Once the ant is, 
on average, 4.8 cm from the hole she drops the pellet. The fact that the 
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Figure 7.1.â•‡S imulation of the model in box 7.A. Plots show how the density of ant corpses 
around the perimeter of the arena changes through time. Initially corpses are distributed 
uniformly at random around the edge of the arena (denoted by light grey). As the active 
ants pick up and move corpses, they gather first into many (dark grey) then a small number 
(black) of clusters. The number of corpse piles depends on the number of corpses and the 
arena size: (a) 100 corpses in an arena of perimeter 25 cm; (b) 200 corpses/25 cm arena; 
(c)Â€200 corpses/50 cm arena; and (d) 400 corpses/50 cm arena. (Simulation and figure cre-
ated by Stam Nicolis; for details of other parameter values see Theraulaz et al. 2002.)
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direction chosen by the ant is independent of the direction taken by the 
other ants in the colony produces a symmetrical crater (figure 7.3). 

The even crater wall can be seen as a consequence of the central limit 
theorem discussed in chapter 4, box 4.B. Each individual ant makes an 
independent decision about which direction to take. As a result, the 
height of the wall at any point around the crater increases in proportion 
to the number of individuals. Furthermore, the standard deviation in the 
wall height increases as its square root. Thus, once the wall is reasonably 
high the variation in its height will be small relative to the average height 
around the top of the crater. Despite, and indeed because of, the ants 
working independently, an even outer wall is constructed.

Leptothorax ants also build circular nest walls (Franks et al. 1992). 
Franks and Deneubourg were the first to successfully provide a combined 
modeling and experimental approach to understanding nest construc-
tion. They showed that the walls originate from a combination of each 
individual’s tendency to drop building grains at a fixed distance from the 
center of the nest with a stigmergic interaction: ants are more likely to 
leave grains where others have already been deposited (Franks & Deneu-
bourg 1997). They further found that doubling, or in some cases, nearly 
tripling the number of workers in an established nest did not usually lead 
to an increase in the size of the nest, despite the fact that a nest built from 
scratch is likely to have an area proportional to the colony’s size (Franks 
& Deneubourg 1997; Franks et al. 1992). Similarly, Aleksiev et al. (2007) 
manipulated the nest area of fixed size colonies and found that substantial 

Figure 7.2.â•‡S patio-Â�temporal dynamics of corpse clustering (a) in the absence of and (b) in 
the presence of air currents. Black dots are ant corpses and black arrows indicate the air 
flow direction. (Reproduced from C. Jost, J. Verret, E. Casellas, J. Gautrais, M. Challet, 
J. Lluc, S. Blanco, M. J. Clifton, & G. Theraulaz, 2007, “The interplay between a self-Â�
organized process and an environmental template: Corpse clustering under the influence of 
air currents in ants,” Journal of the Royal Society Interface 4, 107–116, fig. 4).
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rebuilding only occurred when a nest was reduced to one-Â�quarter but 
not to one-Â�half of its standard size. This historical dependency can be 
accounted for by the reduced propensity to take building material from 
already established walls. It is only when the density of ants crosses a 
threshold that the walls are moved further from the nest’s center.

Tunnels and Tents: Why Co-Â�operate in Building?

Social insects’ nests are in many cases built by sterile workers. These nests 
allow a reproductive queen to produce offspring that in turn provide 
indirect reproductive benefits to the workers. Collective construction is, 
however, not limited to sterile workers of social insects. For example, 
many bark beetles perform a simple form of co-Â�operative tunneling in 
their attack on trees. Individual beetles arriving on a tree release a phero-
mone that attracts other bark beetles. Provided there are sufficient beetles 
in the vicinity of the pheromone release, this point becomes the focus of 
boring into the tree’s bark by large numbers. Further pheromone releases 
induce a positive feedback loop and together the beetles can overcome 

Figure 7.3.â•‡ An example of a symmetrical crater wall built at the nest entrance to a colony 
of Messor barbarus ants (photo: Guy Theraulaz).
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the tree’s defences (Berryman 1999; Costa 2006). In large enough num-
bers, the beetles kill part or all of the tree, allowing them to lay eggs 
within the bark (Wertheim et al. 2005). The hatching larvae are then able 
to feed on inner bark tissue and mature to adulthood.

The fact that trees have extensive defense mechanisms against boring 
can help explain the evolution of co-Â�operative digging. Although it can 
be costly to release pheromone, both in terms of its production and in 
the possibility of its attracting predators, a single beetle is unable to over-
come the tree’s defenses. Thus the costs of pheromone production are 
outweighed by the benefits of attracting others. Raffa (2001) reviewed 
the relationship between density and female brood production in 19 
separate studies of bark beetle colonization. He found that in dead host 
trees per capita brood production decreased with density, while in living 
host trees per capita success initially increased with density and only de-
creased when densities became high (figure 7.4). The synergistic benefits 
of attacking the tree at the same point thus initially outweigh any costs of 
attracting others (Synergism, chapter 10).
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Figure 7.4.â•‡R eproductive success of bark 
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ChemoÂ�ecology, 11:49–65, fig. 3, © Springer-Â�
Verlag). See Raffa (2001) for details of data 
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Increasing reproductive success with group size may account for co-Â�
operative construction in other species of insects. For example, Austra-
lian Dunatothrips create tent-Â�like structures on the surface of leaves. 
Bono & Crespi (2006, 2008) compared survival and reproduction of 
thrips that founded structures alone with those in groups of two or more 
individuals. They found that although per capita brood production fell 
with group size, foundresses were more likely to survive to reproduce 
in groups than when alone. Several studies of other species of insects 
have concluded that foundress associations are beneficial to all parties 
(Bernasconi et al. 2000; Jerome et al. 1998; Tibbetts & Reeve 2003). It is 
likely that the relative success of groups is at least in part accounted for 
by a reduction of energy use in the modification of a shared nest.

Co-Â�operative construction is not limited to adult insects, but is also seen 
in many insect larvae (Costa 2006). Eastern tent caterpillars, Malacosma 
americanum, collectively build tent structures. Butterflies of this species de-
posit 200–400 of eggs near the tip of a cherry twig. In the spring, these eggs 
hatch nearly simultaneously and the larvae move downward to an intersec-
tion on a tree branch. There, together with other caterpillars from nearby 
branches of the tree, they build a stretchy layer of silk between branches. 
Construction work is synchronized so that the caterpillars simultaneously 
produce large quantities of silk to create a new layer (Fitzgerald & Willer 
1983). As the layers accumulate the tent begins to dominate the junction 
between the branches. It is from this central tent that the caterpillars en-
gage in a number of other co-Â�operative activities, including pheromone 
trail foraging (Fitzgerald & Peterson 1983) and group thermoregulation.

The caterpillars’ tent often contains genetically unrelated individuals 
resulting from the merging of groups from batches of eggs laid by differ-
ent butterflies. Costa and Ross (2003) looked at how the size and genetic 
make-Â�up of the colony affected the survivorship and growth rate of in-
dividuals within the groups. They found that genetic variation had very 
little affect on either survivorship or growth rate. However, individuals 
in larger colonies (100 larvae) grew faster than those in small colonies 
(30 larvae), although there was no direct effect on survivorship during 
the study. Again, this would point to a synergism as an explanation of 
the evolution of co-Â�operation in this case. Once co-Â�operative building is 
established by evolution, it is sustained by the extra benefits gained from 
co-Â�operation (see chapter 10).

The relationship between reproductive success and group size brings 
us back to chapter 2. In another silk-Â�producing arthropod, the social spi-
der Anelosimus eximius, Aviles & Tufino (1998) showed that individual 
reproductive success increases with group size (see figure 2.4c). Overall 
these studies provide support for a mutualistic or synergistic explanation 
for co-Â�operation in building by groups of insects and other arthropods.
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Chambers and Catacombs

The study of pillars and walls has shown that a combined modeling and 
experimental approach can increase our understanding of how insects 
produce regular structures. However, obtaining a detailed understanding 
of the full complexity of social insect nests remains a significant chal-
lenge. Figure 7.5 shows nest cavities built by Florida harvester ants. The 
nest is made up of descending shafts, spiraling downwards with a steep-
ness that increases with depth, from which extend horizontal lobe-Â�shaped 
chambers. Near the top portion of the structure, these shafts and cham-
bers merge to form highly connected clusters of cavities (Tschinkel 2004). 
Similar structures are built by fire ants (Halley et al. 2005), Lasius niger 
(Grassé 1959), and other species of ants (Hölldobler & Wilson 1990).

The ant nests in figure 7.5 were dug out by around 5000 ants over 
4 to 5 days, during which time they removed about 20 kg of sand and 
dug to depths of over 3 m (Tschinkel 2004). The question of how such a 
complex depth-Â�varying structure can be built so rapidly without central-
ized control remains largely open. Tschinkel suggests that the change of 
the structure with depth could be due to a combination of a tendency to 
dig more by workers experiencing lower concentrations of carbon di-
oxide, which are lower higher up in the nest, and of a tendency of older 
Â�workers, which prefer lower carbon dioxide concentrations and tend to 
dig more, to be higher up in the nest. Carbon dioxide could thus provide 
a template for digging behavior.

The structure of the nests would also suggest some form of positive 
feedback. In particular, the enhancement of the small notches in the 
shafts into first circular, then lobe-Â�like chambers is indicative of an in-
crease in digging at points where digging has already occurred. Similarly, 
regular spacing of the chambers between vertical shafts could result from 
a form of local activation and long range inhibition similar to that which 
produces regularly spaced corpse piles in ant cemeteries (box 7.A). One 
suggestion is that digging ants release a pheromone that increases the 
other ants’ tendency to build (Grassé 1959). Buhl et al. (2005) showed 
that the amount of sand excavated through time by Messor sancta ants is 
consistent with such a pheromone, although it is less clear whether their 
model explains the spatial structures.

The experimental approach of Buhl et al. (2005, 2004) provides point-
ers to how excavated nest structures might be studied further. By placing 
the ants between glass slides and filming from above they were able to 
watch the time evolution of the excavations. This allowed them to study 
the efficiency and robustness of the resulting structures. The ants built a 
sequence of chambers, connected together by tunnels. Buhl et al. found 
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Figure 7.5.â•‡C asts of a nest of the ant Pogonomyrmex badius (reproduced from W. R. 
Tschinkel, “The nest architecture of the Florida harvester ant, Pogonomyrmex badius,” 
July 2004, Journal of Insect Science, 4:21, 1–19, fig. 6c, © Walter R. Tschinkel; photo by 
Charles F. Badland).

25 cm
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that these networks are robust to disconnections, in the sense that taking 
away a random tunnel does not lead to disconnection of the network, but 
still have a low total tunnel length, in the sense that the total amount of 
tunnel is close to that of a minimal spanning tree. However, while con-
straining the ants to two dimensions allows the structure they build to be 
quantified, it is difficult to assess the biological significance of Buhl et al.’s 
results. In natural conditions the ants build in three dimensions.

Understanding three-Â�dimensional nest structures poses a difficult tech-
nical problem. Firstly, in order to characterize a nest the physical structure 
has to be represented as a graph, with chambers as nodes and tunnels as 
edges. Perna et al. (2008a) used x-Â�ray tomography of nests of termites of 
the group Cubitermes and then defined measures of elongation in order 
to classify which parts of the nest were chambers (nodes) and which were 
tunnels (edges). The second problem in understanding these structures 
is in measuring their efficiency. Here, Perna et al. (2008b) constructed 
alternative theoretical graphs, with the same number of edges as the em-
pirically measured graphs but designed to optimize some aspect of the 
network’s topology. The two theoretical graphs they proposed were the 
random spanning network and maximal betweenness centrality (BC) net-
work. The random spanning network is constructed by first determining 
the minimum spanning tree for all the nodes of the empirical graph, then 
adding random edges until the number of edges is equal for the theoreti-
cal and empirical graphs. The maximal BC network is constructed start-
ing from a graph consisting of all physically possible edges between the 
nodes and then determining the shortest path routes between all pairs of 
these nodes. The edges that occur least often on the shortest path routes 
are systematically removed, the shortest path routes are recalculated and 
this process is continued until the same numbers of edges remain in this 
graph as in the empirically measured network.

Perna et al. (2008b) found that the empirically measured graphs had 
shorter path lengths than random spanning networks. However, the 
maximal BC networks had slightly shorter path lengths on average than 
the empirically measured graphs. These results would suggest that the 
termites do, at least in part, attempt to minimize the time it takes to 
move through the network but, as Perna et al. point out, it is difficult to 
interpret the results without a detailed understanding of the mechanisms 
involved in nest construction.

Nests of the termite subfamily Macrotermitinae are built to optimize 
the growth of fungi, which these termites cultivate within their nest 
mounds. The fungi grow best at temperatures of 30â•›°C and under low 
concentrations of CO2. A large termite colony can maintain an internal 
temperature of close to 30â•›°C, despite ambient temperature variations of 
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up to 25â•›°C within a single day and variations of 35â•›°C throughout the 
course of the year (Korb & Linsenmair 1998a, 1998b). These constant 
temperatures are largely a result of the form of the nest structure, with 
uninhabited nests maintaining a constant temperature of 28â•›°C (Korb & 
Linsenmair 2000). The additional temperature in inhabited nests is gen-
erated by the fungi and termites.

There is a trade-Â�off between maintaining a temperature of 30â•›°C and 
low concentrations of carbon dioxide (Korb 2003). In a series of observa-
tions and experiments, Korb and Linsenmair have compared the mound 
structures built by Macrotermitinae bellicosus living in different sized 
colonies in different environments. In the warm Savannah, large colo-
nies maintain 30â•›°C nest temperature and construct a cathedral-Â�shaped 
mound with ridge-Â�like chimneys. These chimneys efficiently transport 
carbon dioxide out of the nest. In cooler, forested areas the termites build 
more dome-Â�like mounds with reduced surface complexity and less ef-
fective ventilation. These maintain higher temperatures, although lower 
than the optimal 30°C, but are less effective at circulating air. When the 
shade is removed from these mounds the termites surface complexity in-
creases (Korb & Linsenmair 1998a).

It is likely that termites regulate their building behavior in response to 
temperature and carbon dioxide concentration. Leaf-Â�cutter ants, which 
also cultivate a fungi garden that requires constant ambient temperature 
and high humidity, show an increased tendency to build in areas they de-
tect the flow of dry air (Bollazzi & Roces 2007). In general, social insects 
can use naturally occurring features of their environment combined with 
simple behavioral rules to construct nests with highly efficient thermo-
regulatory properties (Jones et al. 2007; Theraulaz et al. 2003).

Foraging Networks

In chapter 3, I discuss one of the best known examples of indirect com-
munication between social insects, namely ant pheromone trails. That 
chapter was mainly concerned with the organization of foraging at only 
one or two food sources. Figures 7.6a, 7.6d and 7.7 give examples of the 
foraging networks of various species of ants under natural conditions. 
These networks are typically dendritic in form (Hölldobler & Möglich 
1980; Hölldobler & Wilson 1990). Each trail starts from the nest as a 
single thick pathway out of the nest. This “trunk” splits first into thinner 
branches, and then peters out as the distance from the nest increases, into 
twigs, often barely distinguishable in the undergrowth. While sharing 
this dendritic form, there are between species differences in the time for 
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Figure 7.6.â•‡T he trail networks constructed between the nest and trees by (a, d) two wood 
ant colonies (Formica rufa aquilonia); compared to (b, e) the star graph connecting each 
tree to the nest; and the approximate Steiner tree that minimizes total exposed trail. (Figure 
drawn by Jerome Buhl.)

(a) (b) (c)

(d) (e) (f )

10m

(a) (b) (c)

Figure 7.7.â•‡ Ant foraging networks (reproduced from N. R. Franks, N. Gomez, S. Goss, & 
J. L. Deneubourg, “The blind leading the blind in army ant raid patterns: Testing a model 
of self-Â�organization (Hymenoptera: Formicidae),” September 1991, Journal of Insect Be-
haviour 4: 5, 583–607, fig. 1, © Springer-Â�Verlag). Short lived raid networks constructed by 
three different species of army ant, Eciton harnatum, E. rapax, and E. Burchelli (from left 
to right), each covering some 50â•›â•›20 m.
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which trails persist and the mechanisms used in their construction. Here 
I separate the types of trails into two categories, long-Â�lasting transport 
networks or short-Â�lasting raid networks.

Transport Networks

Wood ants (Chauvin 1962; Rosengren & Sundström 1987), leaf-Â�cutter 
ants (Shepherd 1982; Vasconcellos 1990; Weber 1972), and harvester 
ants (Azcarate & Peco 2003; Detrain et al. 2000; Hölldobler 1976; Höll-
dobler & Möglich 1980; Lopez et al. 1994) produce physical trails that 
can last from several weeks to months, and in some cases endure the 
winter hibernation period (Fewell 1988; Hölldobler & Möglich 1980; 
Rosengren & Sundström 1987; Weber 1972). Workers clear trails of veg-
etation and debris and sometimes construct walls or tunnels around them 
(Anderson & McShea 2001b; Kenne & Dejean 1999; Shepherd 1982) 
to form highways along which large numbers of ants are able to travel 
quickly to food. Both pheromone trails and the clearing of vegetation 
provide mechanisms for the formation of trail networks.

Buhl et al. (2009) investigated the shape of 11 nests of the wood ant 
Formica aquilonia. The trees at which the ants forage constitute the ver-
tices of the network, while the trails are the network’s edges. The central 
vertex of the network is the ant’s nest. The networks were character-
ized in terms of two components of efficiency, the route factor and total 
edge length (Gastner & Newman 2006). The route factor is the average 
of the distance between each vertex and the central vertex when travel-
ing within the network divided by the direct Euclidean distance (i.e., the 
distance as the crow flies) between the two vertices. A low route factor 
corresponds to a short travel time between nest and food source. The 
total edge length is the sum of all the edges in the measured network. 
Since trails must be kept clear in order that ants flow quickly along them, 
networks with low total edge length are more efficient in terms of the 
“maintenance” required.

Figure 7.6 compares the networks constructed by two wood ant colo-
nies with those that would minimize route factor and those that would 
minimize total edge length. The network that minimizes route factor has 
a star-Â�like shape, with a direct edge between every vertex and the nest 
(figure 7.6b, e). As a result this network has a very high total edge length. 
Conversely, the network that minimizes total edge consists of clusters of 
triangles and long sprawling paths connecting nearby vertices, thus hav-
ing a large route factor (figure 7.6c, f). The ants obtain a compromise 
between the two modes of efficiency. The average route factor was 1.13 
(compared to a theoretical minimum of 1) with the largest colony having 
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a route factor of 1.36. The total edge length for the 11 measured colonies 
was between 1.01 to 1.73 times that of the corresponding networks that 
minimize the total edge length. Thus the ants produce networks that pro-
vide fast travel times from the center of the nest without requiring direct 
paths to every food source.

How are these networks built? Acosta et al. (1993) provide an intui-
tive argument for how branches arise in long term trails. They argue that 
when a forager finds a resource at a point perpendicular to an established 
trail, it returns to the established trail leaving pheromone as it goes. This 
forager, and subsequent foragers that have followed the pheromone to 
the resource, will have a tendency to walk towards the nest thus diverting 
the newly formed trail such that branching angle decreases. Eventually a 
Y-Â�shaped branch emerges with the branching point some distance away 
from the two food sources.

A variation of Acosta et al.’s argument is formalized in a mathematical 
model in box 7.B. In this model, two resources are simultaneously made 
available to the ants at equal distances from the nest. Two assumptions 
are made about the movement of the individuals: that they have a long 
range navigation, which allows them to move roughly in the direction 
of the food source; and that they are locally attracted to paths taken by 
others. The relative importance of these two rules is controlled by model 
parameter a. When a is small the individuals ignore the paths taken by 
others and when a is large they prefer to follow paths even if they do 
not lead directly to the target. Figure 7.8 gives examples of the outcome 
of simulations of this model for various values of a. The resulting path 
system changes from a V-Â� to a Y-Â� and then to a T-Â�shape as the preference 
for path following increases.

Since wood ants are able to navigate over long distances between food 
and their nest without the use of pheromones, the above model is a plau-
sible description of how their network arises. Further work is needed to 
establish whether such a model can account for the patterns observed in 
their real networks.

Raid Networks

Army ant species (Franks 1989; Schneirla 1971; Topoff 1984), as well as 
Leptogenys processionalis (Ganeshaiah & Veena 1991), and Pheidologe-
ton diversus (Moffett 1988) all form swarm raid trails that last for a cou-
ple of days or less. These trails result from strong positive feedback from 
recruitment pheromones. The short-Â�lasting raid patterns by the army ant 
(Deneubourg & Goss 1989; Franks 1991) and the predatory ant L. pro-
cessionalis (Ganeshaiah & Veena 1991) have been measured in detail. 
These networks at first expand as the ants search for food and then tend 
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Box 7.B Active Walker Model

The active walker model of Helbing et al. (1997a, 1997b) makes 
two assumptions about the movement of individuals through a 
shared environment. Firstly individuals move towards a target and 
secondly they are locally attracted to the paths taken recently by 
others. Here I develop a simplified version of the Helbing et al. 
model, based on these assumptions.

Consider an individual traveling to a particular destination at posi-
tion (xs, ys). We assume the individual is confined to a square lattice 
so that, given its current position (xt, yt), it must decide on each 
time step whether to go left (i.e., xt+1 = xt - 1 and yt+1 = yt), right 
(i.e., xt+1 = xt + 1 and yt+1 = yt), up (i.e., yt+1 = yt +1 and xt+1 = xt) 
or down (i.e., yt+1 = yt + 1 and xt+1 = xt). If the destination is to the 
left of the individual (i.e., xt > xs ) then the probability of going left 
is set to be proportional to

l
x x

x x y y
G x y kt s

t s t s
t t t=

−

− + −
+ − +( ( , ))1 1 2α ,

otherwise (i.e., xtâ•›<â•›xs) we set l = k. Similarly, if the destination is 
below the individual (i.e., ytâ•›>â•›ys ) then the probability of going 
down is set to be proportional to

d
y y

x x y y
G x y kt s

t s t s
t t t=

−

− + −
+ − +( ( , ))1 1 2α ,

otherwise (i.e., xtâ•›<â•›xs) we set d = k. Similar calculations can be 
made for going up, u, and right, r. The probability of going, for 
example, left is then normalized, to be equal to P(xt+1 = xtâ•›-â•›1, 
yt+1 = yt |xt, yt) = l/(l + r + u + d).

The variable G(x, y) measures attractiveness of the point (x, y). 
We can think of G(x, y) as being the amount of pheromone at 
that point or the extent to which the ground is trodden down by 
previous walkers. In the absence of pheromone, i.e., G(x, y) = 0, 
or if pheromone is ignored, i.e., a = 0, the individuals perform a 
random walk biased towards the destination. Smaller values of k 
will result in less randomness in the walk. The paths taken by 50 
individuals for this case are shown in figure 7.8a.

(Box 7.B continued on next page)
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to contract once resource items are located and foraging is focused on 
these resources. As such, these exploratory networks provide a trade-Â�off 
between a minimization of the cost of travel and a maximization of the 
area over which the ants search for prey items.

As with nest construction, Deneubourg and Franks provided the first 
combined modeling and experimental approach to the study of raiding 
networks. Using computer simulations, Deneubourg et al. (1989) showed 
that the networks created by army ants during a raid could be repro-
duced by the simple rules for pheromone laying and following estab-
lished in double bridge experiments (chapter 3). Their model made three 
key assumptions: (1) ants lay pheromone both on the way out to and the 
way back from a food source; (2) at a branch in the pheromone trail the 
probability the ants take the left branch is

	 x k

x k y k

+( )

+( ) + +( )

α

α α
,	

where x is the amount of pheromone on the left branch and y the amount 
on the right branch, and k and a are constants (see box 7.B for a simi-
lar model; also chapter 3, equation 3.1); and (3) the ants’ speed is pro-
portional to pheromone concentration. Franks et al. (1991) confirmed 
experimentally that assumptions 2 and 3 held for the army ant Eciton 
burchelli (assumption 1 was already known to hold).

Simulations of the model showed that these three aspects of the ants’ 
behavior were sufficient to generate patterns similar to the raid patterns 
seen in real ant colonies (figure 7.7). This was quite a remarkable result 

If we assume that each individual increases G(x, y) (i.e., tramps 
down the ground or leaves pheromone) at its current position but 
that G(x, y) degrades (e.g., the grass grows back or the pheromone 
evaporates), then we have the following equation for G

G x y G x y I x yt t t+ = + −1 1( , ) ( , ) ( ) ( , )λ κ λ ,

where It(x,â•›y) = 1 if an individual is at point (x, y) at time t, k is 
the amount of “pheromone” deposited by one individual and l is 
the evaporation rate. Figure 7.8b–d shows the paths taken by 50 
individuals simultaneously walking on a shared path system ac-
cording to the above rules for different values of a. As a increases 
it becomes favorable for individuals to use shared paths and the 
movement of individuals becomes more focused along these paths.
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because, while it was known that models could predict foraging patterns 
in double bridge experiments, these simulations showed that the labora-
tory results could be scaled up to large-Â�scale foraging patterns in the 
field. Another prediction of the model was that the differences in the 
raid patterns of different species (seen in figure 7.7) may not result from 
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Figure 7.8.â•‡S imulation of the simplified active walker model (box 7.B). In the simulation 50 
individuals start at the nest, i.e., (x0, y0) = (30, 10); 25 of the individuals have food target 
(xs, ys) = (15, 50) and the other 25 have food target (xs, ys) = (45, 50). The walkers then 
move and the trail is updated according to the rules given in box 7.B. Once walkers arrive 
at the food, i.e., (xt, yt) = (xs, ys), their target is updated to be the nest, (xs, ys) = (30, 10). 
Correspondingly, when walkers arrive at the nest their target is updated to one of the two 
food sources (chosen at random). The simulation was run for 150,000 time steps and the 
positions of individuals during the last 50,000 time steps recorded. The panels show the av-
erage number of visits by walkers to each of the positions over these last 50,000 time steps. 
The simulation parameter values were k = 0.25, l = 0.99, k = 0.8 and (a) a = 0, (b)Â€a = 50, 
(c) a = 400, and (d) a = 4000.
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differences in their behavior, but rather in differences in the distribution 
of their food. By manipulating the food distribution, Franks et al. (1991) 
showed that changes in food distribution did lead to large-Â�scale changes 
in foraging patterns. While these changes were different than those pre-
dicted by the model, this study challenged the perspective that differences 
in the patterns generated by insect societies are a consequence of the evo-
lution of different behavior in different environments. Rather, the same 
simple rules can self-Â�organize into different collective patterns in different 
environments without the “fine tuning” of evolutionary forces.

Man-Â�made Networks

We don’t have to look much further than under our own feet to find trans-
port networks that are self-Â�organized. The model in box 7.B was origi-
nally proposed in the context of human trail systems in green areas, such 
as business parks and between university buildings. Often in these areas 
we can observe “shortcuts” taken across the lawns separating buildings, 
resulting in trails of downtrodden grass. The two assumptions underly-
ing the model in box 7.B, that there is a long range attraction to a target 
and a local attraction to previously used paths, are consistent with how 
people move when crossing grass. Helbing et al. (1997a, 1997b) showed 
that a model based on these assumptions was sufficient to generate the 
observed network of shortcuts. The model reproduced a number of more 
subtle features of these networks, such as “detour systems,” which are a 
compromise between direct routes to all targets and a system that shares 
common routes. As with ant trails, the resulting detour system is a com-
promise between one that minimizes route factor and one that minimizes 
total edge length.

We can think about the detour system in terms of the motives of the 
individuals involved in its construction. From the point of view of each 
“selfish” individual, their payoff is maximized if a direct route emerges 
between their starting point and their destination. However, as a result of 
the simultaneous interaction of large numbers of individuals with differ-
ent starting point/destination combinations a compromise emerges. This 
compromise has lower route factor than the Steiner tree and only slightly 
higher route factor than a square drawn between all four points. This 
is interesting because the route factor is a measure of group “fitness,” 
rather than individual “fitness,” i.e., it is determined by the average travel 
time across all participating individuals. As such, these detour systems 
may provide a guideline for urban planners wishing to avoid “selfish” 
people taking shortcuts across lawns.
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Many human transport systems and supply networks are designed by 
a central planner. These planners have an interest in minimizing the av-
erage travel time of individuals across the whole system, while ensuring 
that the systems are not too expensive in terms of maintenance. Gastner 
and Newman (2006) looked at the route factor and total edge length of 
a sewer system, a rail network, and two gas supply lines. Like the wood 
ant networks, human networks obtained a compromise between the two 
efficiency measures. Comparing the results of Gastner & Newman with 
those of Buhl et al. shows that the transport networks of ants and hu-
mans have similar average route factor and total edge length.

A key difference between construction by ants and by humans is the 
possibility of central planning by the latter species. Gastner and Newman 
(2006) propose a simple algorithm for the growth of transport networks, 
based on a central planner, which reproduces many of the features of 
real networks. However, central planners are by no means a necessity for 
construction by humans. Many of the world’s largest cities arose through 
local, rather than global planning. Makse et al. (1995) proposed that 
cities were constructed according to the following two principles: (1) the 
probability of development decreases exponentially with distance from 
the center of the city; and (2) future development is correlated with past 
development, such that the probability of a particular site being devel-
oped increases with the existence of nearby, already developed sites. The 
resulting model is a spatial variation of preferential attachment models 
discussed in chapter 2, box 2.C.

Makse et al. (1995) compared their model to the structure and de-
velopment of Berlin and London. In particular, they looked at the area 
distribution of the towns surrounding the city center. For both cities, this 
distribution followed a power law with an exponent slightly larger than 
2. This exponent was consistent with a particular parameterization of 
their model, in which new developments were strongly correlated with 
previous ones. These results should be interpreted with the care required 
when dealing with mechanistic interpretations of power laws. A power 
law scaling does not in itself imply a particular mechanism (see chapter 
2 for more discussion of this point). The Makse et al. (1995) study does, 
together with several other similar studies, suggest new ways of under-
standing, analyzing, and predicting the growth of cities using models of 
self-Â�organization (Batty 2008).

A particularly striking study of this type is Kuhnert et al.’s (2006) study 
of urban supply networks. They looked at how the number of restau-
rants, doctors, pharmacies, post offices, gas stations, car dealers, and 
other services per person change with the size of the town or city they 
were found in. Those services provided by the government or deemed 
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essential to modern living, such as power station output, pharmacies, and 
post offices, increased in proportion to the size of towns. The increase 
in the number of gas stations and car dealers with population size was 
sub-Â�linear, suggesting an economy of scale for large cities. Conversely, the 
proportion of restaurants, museums, and theaters per person increased 
super-Â�linearly. Larger towns saw higher concentrations of entities that 
supply entertainment and non-Â�essential social needs. This may be be-
cause of the increase in disposable cash and higher education of indi-
viduals living in large cities. Bettencourt et al. (2007) found that wages, 
gross domestic product (GDP), and employment in “creative” jobs also 
increased with city size, as did the overall pace of life.

Manmade networks have been the focus of intense study in recent 
years. Indeed, the study of networks is not limited to physical entities 
such as transport, supply, or computer networks. One of the most studied 
types of network is social networks, where the connections are created 
by contacts between individuals. There are several excellent reviews and 
books on social networks, and it is this vast literature on the subject that 
constrains me from writing more about it here (Barabasi 2003; New-
man 2003; Strogatz 2001; Watts & Strogatz 1998). One of the major 
challenges that lie ahead of us is linking together characterization of the 
networks within which individuals interact (as is often studied in social 
network theory), with dynamical models about how individuals make 
decisions (which is more often the focus of work on collective behavior).



— Chapter 8 —

Regulation

At any time during the working day, I can get up from my desk, walk 
down to the cafeteria, and find a container full of hot coffee from which 
I can pour myself a cup. The fact that the coffee is there waiting for me is 
not a consequence of careful preparation for my arrival by the cafeteria 
staff. I could go across to the next building, where I have never been be-
fore, walk into the basement café and sitting there waiting for me would 
be a similar container also filled with coffee. Not only coffee, but food, 
clothes, houses, and everything else I need for modern living appears per-
fectly regulated for my needs. When I want something it is there waiting 
for me. When things are not readily available—for example, nice houses 
being difficult to find; the supply of the latest game machine running out 
just before Christmas; or no coffee available in the cafeteria at 11am—
this becomes the subject of intense discussion about how the suppliers 
should act to rectify the situation. These situations are then often quickly 
rectified, as demand increases and supply decreases, or new businesses 
appear to fill the gaps in the market. Consumers expect and receive sup-
ply that is regulated to suit their needs.

Regulation of supply and demand does not require central planning 
by me or anyone else. I do not have to call down to the café in advance 
and ask them to switch on the percolator; the cafeteria owner does not 
have to know when the next boat of coffee beans is coming from South 
America; and the shipping agent does not need to check that new plants 
are already in the ground for the next year’s crop. Through a series of 
local economic interactions I am provided with a regular supply of cof-
fee. It was both an amazement and an understanding of how unmanaged 
and unguided activities of humans produce equilibriums in supply and 
demand that led Adam Smith to describe the economy as if being guided 
by an invisible hand. For me, this amazement and understanding is best 
expressed in the opening sections of Thomas Schelling’s book Micromo-
tives and Macrobehavior (1978). Schelling identifies the importance of 
the fact that “the market works” not just in economics, but in all forms 
of collective behavior.
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This chapter is about when markets work and when they do not work. 
More broadly it is about systems that involve regulatory feedback. Regu-
latory feedback, which is also referred to as negative feedback, is when 
a system responds in an opposite direction to a perturbation. For ex-
ample, if a café has many visitors, the café employees make more coffee. 
If queues become too long customers stay away. The individual agents, 
the employees and the customers, behave in a way that eventually leads 
to an equilibrium queuing time. Regulatory feedback usually, though not 
always, performs a balancing act that stabilizes systems, bringing them 
to equilibrium. When it works effectively, regulatory feedback balances 
supply and demand, not only in our own society but also in the workings 
of other animal societies.

Co-Â�operative Regulation

Workers in insect societies often share a common goal of achieving a stable 
response to their environment, usually in the form of some optimal bal-
ance in their intake of water, sugar, and other resources. For example, hon-
eybees need to construct comb in which to store incoming nectar. Deciding 
when to build this comb poses a challenge for the bees, because construc-
tion is energetically costly and nectar intake is highly variable. To address 
this challenge, the bees only begin construction of new comb when there 
is both a high rate of nectar flow into the colony and the available comb 
drops below a threshold level (Kelley 1991; Pratt 1999). This strategy en-
sures that comb is available over a wide range of foraging conditions, even 
when sudden food ‘bonanzas’ become available (Pratt 1999, 2004).

Simple rules, similar to those of building when nectar flow is high and 
comb availability is low, are used to regulate a whole range of tasks within 
honeybee colonies (Seeley 1995). A major challenge in understanding this 
regulation is pinpointing how individual bees gather information about 
which tasks need to be performed. How do bees, with only a limited 
experience of the overall status of the colony, know when to begin a 
particular task? In comb building these rules remain unknown, although 
experiments on the construction of drone cells (comb for rearing male 
bees) suggest that individual builder bees may monitor the proportion 
of empty cells (Pratt 1998a, 1998b). In general, a number of theoretical 
models have emphasized how efficient division of labor, i.e., allocation 
of worker bees among tasks, can emerge from individuals using local in-
formation about their environment (Anderson & Ratnieks 1999, 2000; 
Bonabeau et al. 1998a; Franks & Sendova-Â�Franks 1997; Gordon 1996; 
Gordon et al. 1992). Individuals change their propensity to perform a 
particular task in response to the information they collect about the state 
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of the environment and as a result the colony as a whole regulates its al-
location of workers to tasks.

The entrance to a honeybee colony, often referred to as the dancefloor, 
is a market place for information about the state of the colony and the 
environment outside the hive. Studying interactions on the dancefloor 
provides us with a number of illustrative examples of how individuals 
changing their own behavior in response to local information allow the 
colony to regulate its workforce (Seeley 1995, 1997). For example, upon 
returning to their hive honeybees that have collected water search out a 
receiver bee to unload their water to within the hive. If this search time 
is short then the returning bee is more likely to perform a waggle dance 
to recruit others to the water source (Lindauer 1954). Conversely, if this 
search time is long then the bee is more likely to give up collecting water 
(Kuhnholz & Seeley 1997). Since receiver bees will only accept water 
if they require it, either for themselves or to pass on to other bees and 
brood, this unloading time is correlated with the colony’s overall need 
of water. Thus the individual water forager’s response to unloading time 
(up or down) regulates water collection in response to the colony’s need.

Similar regulatory interactions also determine how honeybees increase 
the overall level of activity within the colony (Seeley et al. 1998); decide 
when to build drone comb (Pratt 1998b); decide whether to scout for 
new or exploit known food sources (Beekman et al. 2007); decide when 
to collect pollen (Fewell & Winston 1992); and decide whether to nurse 
younger or older developing larvae (Schmickl & Crailsheim 2002). See-
ley (1995) gives an authoritative review of these and many other regula-
tory feedback mechanisms within the honeybee colony. One of the most 
striking examples of regulatory feedback is seen in nectar processing. 
When returning from a successful foraging trip, a forager bee performs 
either a waggle dance or a tremble dance. The choice of dance depends 
on the time it has searched for a bee to which to unload the nectar it has 
found. Waggle dances result in the recruitment of more foragers, reflect-
ing the colony’s need for more nectar, while tremble dances result in the 
recruitment of more nectar receivers reflecting an increased influx of nec-
tar. Combined, these two regulatory feedbacks ensure that nectar flow is 
not delayed by a shortage of either foragers or receivers.

In many ant species, contacts between workers are used to regulate the 
division of labor. Gordon et al. (1993) showed that ants regulate their 
degree of antennal contacts, aggregating more when density was low and 
less when density was high. While these experiments were carried out in 
rather artificial conditions, Gordon hypothesized that contact rates could 
provide a general explanation of how workers regulate their division of 
labor (Gordon et al. 1992). Experimental evidence now supports this 
hypothesis. For example, the safe return of morning patrollers to a red 
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harvester ant nest results in an increase in the number of foragers leaving 
the nest to collect food (Gordon 2002; Greene & Gordon 2007a, 2007b). 
Similarly, ants that encounter nestmates engaged in refuse pile mainte-
nance are more likely to engage themselves in refuse work (Gordon & 
Mehdiabadi 1999). In leaf cutter ants there is an additional regulation 
of refuse work whereby non-Â�refuse workers aggressively force contami-
nated workers to remain and work in the garbage area (Hart & Ratnieks 
2001, 2002).

Regulatory feedback is not necessarily a result of direct contacts be-
tween individuals, but can also be mediated through interactions with 
resources and/or pheromones. Maileux et al. (2000) found that if Lasius 
niger ants find food that allows them to ingest a desired volume they leave 
pheromone trail and recruit nest-Â�mates, but if they cannot obtain this vol-
ume they return to the nest without recruiting. This simple rule of thumb 
prevents recruitment of an excess of foragers to a site with only small 
amounts of food or where food has been depleted. This rule is extended 
such that when food is made up of small sub-Â�units the ants scout locally 
around their first local discovery and then recruit to this site if there exist 
other nearby sub-Â�units (Mailleux et al. 2003b). Other species of ants may 
lay pheromones to prevent other ants going to areas they have already ex-
plored and failed to find food. For example, Robinson et al. (2005) found 
evidence that Pharaoh’s ants mark unrewarding foraging paths.

In all these examples of regulatory feedback, individuals do not have 
global knowledge of the state of the colony or the distribution of food. 
Rather they have made their own samples of the available food or the 
time they had to wait to unload and regulated their own behavior in an 
appropriate way. For example, it may well be that a particular forager 
has by chance a short unloading time for a commodity that is not needed 
within the colony. However, if a large number of bees are simultane-
ously attempting to unload this same commodity, then on average their 
unloading time will be long and the number of individuals collecting this 
commodity will be down-Â�regulated. Local sampling, performed in paral-
lel by large numbers of individuals, allows the colony to accurately tune 
its average response to changes in the environment.

Over-Â�compensation and Chaos

In the above examples we can distinguish two types of regulatory feed-
back: passive and active. Passive regulatory feedback involves individuals 
adjusting their internal probability of performing some action based on 
their own success. For example, the decision to abandon the utilization 
of a food source is a function of an individual’s own success in obtaining 
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food there. Active regulatory feedback involves individuals producing a 
cue or a signal that in turn changes the probability of other individuals 
performing some action. For example, negative and positive pheromones 
are signals that respectively down-Â� or up-Â�regulate the number of ants tak-
ing a particular path to food. Active regulatory feedback may be either 
cue-Â� or signal-Â�based. For example, the decision by a bird to search for 
food in a particular place may be copied from that of other individu-
als (i.e., cue-Â�based), even though the individual making the decision was 
completely unaware of being copied. I classify this as active feedback, 
even though there was no deliberate communicative action on the part of 
the copied individual.

Passive regulatory feedback usually results in a stable equilibrium, 
while active regulatory feedback can result in over-Â�compensation. Box 
8.A describes a model that illustrates this point, showing how active 
regulatory feedback can produce oscillations whereby the population 
never reaches equilibrium and can even become chaotic. In the model 
in box 8.A there are three factors that are required to produce over-Â�
compensation and chaos in regulatory feedback. The first is that feedback 
is active, if individuals simply retire from a food source when it becomes 
overcrowded and return independently from each other to assess whether 
it is exploitable then collectively they will not over-Â� or under-Â�shoot the 
equilibrium. The second factor is that information is local. Individuals 
that have sampled a single food unit cannot determine whether their ex-
perience reflects the overall state of the resource. If individuals were able 
to assess the entire resource then they would have a fuller picture of the 
effects of recruitment. The last factor is that there is a time delay between 
the observation and the regulatory response. The generation of instabil-
ity and chaos depends on discrete time steps. If these are taken away, the 
oscillations are dampened out.

Insect societies do sometimes over-Â�compensate for changes in the en-
vironment. For example, when starved ants are offered food they typi-
cally recruit strongly to it at first, leading to over-Â�crowding at the food 
source (Mailleux et al. 2003b; Pasteels et al. 1987). Once the food source 
is overcrowded recruitment is reduced, but often not until after some 
individuals have arrived to find the food overcrowded (Detrain & De-
neubourg 2006). Given that such over-Â�compensation can lead to chaotic 
oscillations, why is active regulatory feedback so common in the interac-
tions of social insects? A first answer to this question lies in the advan-
tages of active feedback when a system is a long way from equilibrium. In 
chapter 3 we saw that positive feedback is highly effective in transmitting 
new information. In dynamically changing environments, positive feed-
back can communicate changes in the environment without requiring 
every individual to experience the change itself.
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Box 8.A Over-Â�compensation and Chaos

Consider individual agents, each of which aims to exploit a re-
source, such as a flower patch or a Thursday night music bar. 
Assume that the resource is composed of n smaller units, e.g., in-
dividual flowers within a flower patch for foraging honeybees or 
chairs in a bar, and further assume that each of these units may 
only be exploited by one individual at a time. The division of the 
resource into smaller units means the information individuals ob-
tain about the resource is local. Individuals sample one unit and 
have to decide what to do next on the basis of their experience at 
this unit. We assume that within the resource, individuals choose 
units entirely at random. This assumption implies that, provided n 
is reasonably large, the number of workers choosing a particular 
food unit is Poisson distributed, i.e., the probability that k indi-
viduals choose a resource unit is

p
x n

k
ek

t

k

x nt=
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See, for example, Brännström & Sumpter (2005) for a derivation 
of the Poisson distribution in this way.

I now discuss separately two ways in which individuals might re-
spond to their experience in deciding whether or not to go to visit 
the resource. Under passive regulatory feedback, we assume a con-
stant flow a of individuals who spontaneously decide to test the 
resource. We assume that if two or more individuals choose the 
same unit then they both conclude the resource is overcrowded 
and decide not to try to exploit it on the next time step. We can 
then write the equations for the number of individuals visiting the 
resource xt through time t as

	 x p n x e f xt t
x n

t
t

+
−= + = + ≡1 1α α / ( )	 (8.A.1)

Figure 8.1 plots a time series of iterations of equation (8.A.1) along 
with a cobweb diagram showing how these iterations converge on 
a stable equilibrium, x*, which satisfies x*â•›=â•›f(x*). While we cannot 
write down a simple closed form expression for x*, it is relatively 
straightforward (although I do not do it here) to show it exists and 
lies between 0 and n. Differentiating f with respect to x we get
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f¢(x)â•›=â•›(1â•›- xâ•›/â•›n)ef x x n e x nt’( ) ( / ) /= − −1 .

Thus, -1 ≤ f¢(x) ≤ 1 for all 0 ≤x ≤n and thus the slope of f(x) 
near to the equilibrium is less than one. This observation implies 
that the equilibrium is stable (for more details of the methodology 
underlying these conclusions see, for example, Strogatz 1994). In 
words, passive regulatory feedback results in the number of indi-
viduals at the resource stabilizing at the unique value of x*, for all 
possible values of a and n.

Active regulatory feedback includes some form of recruitment to 
the resource, e.g., pheromone trails left by ants, dances by bees, or 
spreading the word to friends by humans. Assume that individuals 
use the following two simple rules: (1) if an individual chooses a 
resource unit that no other individual chooses they conclude that 
the resource has excess capacity and recruit to the resource an aver-
age of b - 1 other individuals who weren’t previously at it; alterna-
tively, (2) individuals choosing a unit chosen by another individual 
conclude that the resource is over exploited and decide not to come 
back on the next time step. For large n these rules give the follow-
ing equation for the number of individuals visiting the resource xt 
through time t as

	 x bp n bx e g xt t
x n

t
t

+
−= = ≡1 1

/ ( ).	 (8.A.2)

Figure 8.2 plots a time series of iterations of equation (8.A.2) along 
with a cobweb diagram of how consecutive populations change for 
different values of b.

For small b, iterations of equation (8.A.2) converge on a stable 
equilibrium, x*â•›=â•›nâ•›ln(b), which satisfies x*â•›=â•›g(x*). However, dif-
ferentiating g and evaluating at x* gives

g¢(x*)â•›=â•›1 - ln(b).

If ln(b) > 2 then the slope at the equilibrium is less than -1, imply-
ing that the equilibrium is not stable when b > e2. Figures 8.2(a) 
and (b) give an example with b = 6. For b slightly larger than e2 
the population will oscillate around the equilibrium x*â•›=â•›nâ•›ln(b) 
but never come to rest there. An example of this is seen in fig-
ure 8.2(c) and (d) for b = 8. When the population at the resource

(Box 8.A continued on next page)
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Even when positive feedback is used to actively up-Â�regulate the number 
of individuals engaging in a particular task, under most natural condi-
tions equilibrium is reached. Indeed, the three factors that are needed for 
over-Â�compensation to occur are unlikely to be present simultaneously. 
In particular, positive feedback is not usually particularly strong within 
many insect societies. Seeley (1995) emphasizes the economy of com-
munication within honeybee colonies. His picture of a honeybee colony 
is one of an ensemble of individuals that rather infrequently exchange 
information with each other. Each individual adjusts its behavior in re-
sponse to changes in their shared environment. Where positive feedback 
is strong, for example in ant foraging, other passive regulatory mecha-
nisms, such as retirement in response to overcrowding, operate to damp 
down initial over-Â�compensation.

Selfish Regulation

Honeybees and other social insects regulate variables in which they share 
a common interest, usually those that aid the successful reproduction 
of the queen. However, regulation is not limited to situations where 

is slightly below the equilibrium, recruitment overcompensates 
and the population becomes larger than the equilibrium. When 
the population is larger than the equilibrium abandonment again 
overcompensates and moves to below the equilibrium. The cycle of 
overcompensation continues indefinitely.

Things become even less stable as b increases further. Figures 8.2(e) 
and (f) give an example with b = 20. Here the population oscil-
lates wildly, with populations sometimes large and at other times 
small. Far from being regulated, the population never settles to 
anything near to an equilibrium. In fact, equation (8.A.2), more 
widely known as the Ricker map, is an example of a chaotic dy-
namical system (May 1976; Strogatz 1994; Sumpter & Broomhead 
2001). If we were to start with two similar but slightly different 
population sizes, then within a few generations these differences 
would become amplified in a way that would make it impossible 
to reliably predict future population sizes. Active regulation with 
strong feedback leads to chaotic population dynamics. See Sumpter 
& Broomhead (2001) for further investigation of this model.
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Figure 8.1.â•‡I llustration of how a population modeled by equation 8.A.1 changes through 
time. The parameters are a = 100 and n = 1000. The time series (a) shows that the popula-
tion of individuals exploiting the resource equilibrates. The cobweb diagram (b) provides a 
plot of equation 8.A.1 (solid line), as well as the line xt = xt+1 (dashed line). The point x*, 
which satisfies x* = f(x*), is the equilibrium population of individuals exploiting the resource. 
The dotted line shows how consecutive iterations of f move towards this equilibrium.
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Figure 8.2.â•‡N umerical solution of how a population modeled by equation 8.A.2 changes 
through time. The parameters are n = 1000 in all plots with (a, b) b = 6, (c, d) b = 8, and (e, 
f) b = 20. The time series (a, c, e) shows how the population of individuals exploiting the 
resource changes through time. The cobweb diagrams (b, d, f) provide a plot of equation 
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8.A.1 (solid line), as well as the line xt = xt+1 (dashed line). The point x*, which satisfies 
x* = f(x*), is the equilibrium population of individuals exploiting the resource. The dotted 
line shows consecutive iterations of f. When b = 6 the population equilibrates, when b = 8 
the population cycles periodically, and when b = 20 it is chaotic.

(d)

(e)

(f)



c h a p t e r  8

184

individuals have a common interest in a particular variable reaching 
equilibrium. In a queue for coffee a particular equilibrium queue length 
is not necessarily regulated by the café’s management or the customers, it 
emerges from their respective and different aims.

Microeconomics is primarily concerned with finding the equilibrium 
price of commodities, where supply equals demand. Given supply and 
demand curves as a function of price, the equilibrium market price is the 
point at which these two curves cross. Schelling (1978) emphasizes that 
the fact that an equilibrium is reached should not be confused with the 
idea that the equilibrium is “good” or in some way optimal for those 
involved. At a café, it may be that regulatory feedback has led to people 
staying away from the café because the queues were too long. These peo-
ple staying away make queues shorter for everyone else, but it is perhaps 
not the optimal solution for the average customer or the café manage-
ment. Much of the theory of economics is about designing markets that 
reach an equilibrium that optimizes some criteria, be it maximizing eco-
nomic growth or minimizing carbon emissions. Microeconomics is thus 
a powerful tool for solving these problems and forms the backbone of 
economic theory and practice (Fama 1970, 1991) and is the subject of a 
large number of textbooks (Krugman & Wells 2004; Perloff 2007).

The theory of microeconomics is grounded in the idea of the rational 
agent, attempting to maximize its own utility, which usually but not al-
ways means financial benefit. The interactions between rational agents 
provide a regulatory feedback that brings the market to equilibrium. If 
an item is over-Â�priced, demand falls and as a result so does price. If the 
item is under-Â�priced then demand exceeds supply and the price increases. 
Regulatory feedback on the price of a commodity brings supply and de-
mand to equilibrium. This mechanism is not only theoretically grounded, 
but is consistent with our everyday experience. That prices in supermar-
kets are stable from week to week is testimony to market equilibrium. A 
store raising or lowering its prices by large amounts relative to those of 
its competitors would not remain in business for very long.

While prices of many everyday commodities may be stable, many eco-
nomic systems are a long way from equilibrium. The growth of western 
economies over the last 100 hundred years has been characterized by 
large fluctuations over the time scale of years, where periods of acceler-
ated growth are proceeded by recession and then a return to growth (Ball 
2004; Ormerod 1998). Furthermore, variations in the price of financial 
markets on shorter time scales of one minute to one week are power law 
distributed (Mantegna & Stanley 1995; Potters et al. 1998; Stanley et al. 
2001). Rather than prices being normally distributed noise around an 
equilibrium, as would be expected in a stable market, large fluctuations 
in prices occur on a daily basis. Financial markets can only be considered 
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in equilibrium if viewed on the time scale of months. Both longer and 
shorter time scales show non-Â�normally distributed fluctuations.

The long time scale fluctuations, often referred to as the business cycle, 
pose a challenge to the rational agent hypothesis for regulation. If there 
exist predictable cycles in economic growth then rational agents would be 
able to exploit these cycles for their own financial gain, thus reducing and 
eventually removing the cycles. There are two main schools of thought 
aimed at resolving this paradox (Vercelli 1991). The first of these, fol-
lowing the microeconomic theory of rational agents, sees the business 
cycle as something that is externally generated by, for example, lags in the 
time between clusters of technological innovations and the capital gener-
ated by these innovations (Kydland & Prescott 1982; Lucas 1975). The 
alternative school of thought sees the business cycle as an intrinsic prop-
erty of economic activity, explaining it either in terms of macroeconomic 
variables (Krugman 2005; Maynard Keynes 1936) or in terms of agents 
with limited information or, what is known by economists as bounded 
rationality (Arthur 1994; Conlisk 1996; Ormerod 1998).

A full discussion of how and why the business cycle arises is well be-
yond the scope of this book. For my purposes, the important observation 
here is the link between models of cycles in economics and mechanistic 
explanations of regulatory feedback. Arthur (1994, 1999) proposed a toy 
economic model, which he called the El-Â�Farol bar problem, for investi-
gating how different mechanisms might or might not lead to equilibrium. 
Consider a bar that has a music night every Thursday. We can define a 
payoff function, f(x), which measures the “satisfaction” of individuals at 
the bar attended by a total of x patrons. One example of such a payoff 
function is f(x) = k - x. So that individuals going to the bar positively 
benefit if attendance is less than or equal to k, but would have done better 
to stay at home (which we assume has payoff 0) if attendance is greater 
than k. The El-Â�Farol bar problem is an example of an n-Â�player social 
parasitism game (Parasitism, chapter 10) and as such we can find the 
evolutionary stable strategy for bar goers. In this case the evolutionary 
stable strategy is to attend the bar with probability k/n. Individuals who 
go to the bar any less than this risk missing a good night out, while those 
going more often will find it too crowded.

While a probability of visiting the bar of k/n may be evolutionarily 
stable, whether this equilibrium is reached depends on the mechanisms 
by which individuals learn whether or not they should attend the bar. We 
can draw a parallel between the El-Â�Farol bar problem and the model in 
box 8.A. In particular, we can see the bar as a resource and tables at the 
bar as resource units and think of the active feedback as individuals in 
the non-Â�attending population as going to the bar if they hear that a friend 
went there and found a vacant table. With this interpretation, if bar goers 
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make their decisions independently of each other then bar populations 
will stabilize. On the other hand, if there is copying and active regulatory 
feedback then bar populations may over-Â�compensate for previous obser-
vations. In particular, if the positive experiences of those attending the 
bar are communicated to large numbers of non-Â�bar goers (i.e., b in the 
model in box 8.A is large) then the population of bar goers can oscillate 
or become chaotic. Individuals who copy others can produce attendance 
levels that fluctuate wildly around the equilibrium (figure 8.2e, f).

The study of the El-Â�Farol bar problem, and that of the related minor-
ity game (Challet & Zhang 1997), has focused on passive regulation. 
The key question is how individuals that are boundedly rational, being 
equipped with a small number of strategies and limited memory of pre-
vious bar visits, can choose the best bar attendance strategy. On each 
round of bar attendance each agent adopts the strategy that would have 
maximized its payoff on previous rounds. When individuals have a small 
number of strategies to choose between and limited memory of past in-
teractions they do not always converge to the evolutionary stable strategy 
of attending the bar k/n of the time. As the memory of agents increases, 
the agents become more efficient and average attendance becomes close 
to k/n, with only small fluctuations away from this equilibrium (Challet 
& Zhang 1998; Savit et al. 1999). Interestingly, agents with intermedi-
ate memory produce smaller fluctuations in attendance than those with 
very long memory. This phenomenon occurs because individuals with a 
long memory can effectively adopt the random, evolutionary stable at-
tendance strategy, while those with an intermediate memory cannot. The 
conclusion is that agents with limited memory in some cases reduce and 
in other cases increase a market’s volatility, relative to that produced by 
all-Â�knowing rational agents.

In the El-Â�Farol bar problem there is an advantage to not following 
the herd, i.e., going to a bar on occasions when others are likely to stay 
at home. In this case, active regulation or copying others is unlikely to 
be a desirable strategy. In general, however, and as we saw in chapters 
3 through 5, copying can be a good strategy for making decisions in 
environments where information is limited. In financial markets, there 
is empirical evidence that financial analysts follow the buy/sell recom-
mendations of their peers (Walter & Weber 2006; Welch 2000), although 
it is not clear whether this is naive herding or due to correlations in the 
information used by the analysts (Bernhardt et al. 2006). Copying or 
herding is the basis of a large number of models of financial markets 
(Avery & Zemsky 1998; Devenow & Welch 1996; Kirman 1993; LeÂ�
Baron 2006; Lux 1995; Sornette 2003a). As such, these models are simi-
lar to those of preferential attachment (box 2.C) and positive feedback 
(box 3.A) discussed earlier in this book. The properties that emerge from 
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these models, such as power law distributions and sudden changes in 
group dynamics in response to small changes in model parameters, also 
correspond to those observed in real markets.

There is still a great deal of debate about the key mechanisms under-
lying market stability and fluctuations. However, the “herding” models 
and other models arising from theoretical physics take us away from the 
view of the self-Â�regulating noisy market, towards a view of a market that 
is sometimes stable, sometimes unstable, but always complex (LeBaron 
2006; Shiller 2000; Shiller 2003; Sornette 2003b). The wealth of data 
available on financial markets makes them an ideal system for studying 
human collective behavior, and they will continue to fascinate scientists 
for many years to come.

Congestion

Many species of ants form well-Â�defined trails between food and the nest 
(see chapters 3 and 7). These trails are used simultaneously both by out-
bound and inbound ants, potentially leading to congestion on the trail 
and reduced traffic flow. In the leaf cutting ant, Atta cephalotes, encoun-
ters between ants moving in opposite directions slow their average walk-
ing speed by 16% for inbound and 21% for outbound ants (Burd & 
Aranwela 2003). Given the importance of rapid delivery of food to the 
colony, we might expect these ant species to evolve mechanisms for effi-
cient flow on trails. Minimization of collisions is also important in human 
pedestrian traffic. The design of walkways and safety exits involves opti-
mally regulating the flow of humans through their environment (Batty et 
al. 2003b; Helbing 2001; Helbing et al. 2000; Helbing et al. 2007).

Theoretical models predict that individual ants or humans do not 
have to adopt particularly sophisticated movement rules in order for 
an efficient trail organization to emerge. Helbing & Molnár (1995) 
modeled lane formation in pedestrians, using a self-Â�propelled particle 
approach (see chapter 5). Each pedestrian particle was equipped with 
only two rules: walk in a particular direction and avoid collisions with 
others. At high densities of pedestrians moving down a corridor in op-
posite directions, collisions are frequent at first. Collisions are reduced 
for an individual pedestrian if it, through a random sequence of collision 
avoidances, finds itself behind another individual moving in the same 
direction. These “traffic lanes” are stable, since leaving the lane will 
result in increased collisions. Eventually the traffic segregates into uni-
directional lanes that provide highly efficient traffic flow (Helbing 2001; 
Helbing & Molnár 1995). An example of the resulting lane structure is 
shown in figure 8.3a.
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Lane formation occurs on the fast moving and densily populated trails 
of the army ant, Eciton burchelli. The traffic separates into three lanes, of 
which the inner lane consists primarily of nestbound ants and the outer 
lanes of outbound ants (Couzin & Franks 2003). This three-Â�lane forma-
tion, as opposed to the multi-Â�lane formation predicted by Helbing & 
Molnár’s model, results from a larger turning angle when avoiding col-
lisions by outbound ants. These ants then move to the edge of the trail 
while inbound ants continue down the center (figure 8.3b).

A related finding of Helbing et al.’s model is that, when constrained 
to move through a narrow door the flow of traffic will oscillate between 
the two directions (figure 8.4). This temporal organization again arises 
because those entering the door behind another individual are less con-
strained than those attempting to enter a door from which individuals 

Figure 8.3.â•‡ (a) Model predictions of pedestrians forming unidirectional lanes of traffic. 
The black and white circles represent pedestrians moving in opposite directions (reprinted 
with permission from D. Helbing & P. Molnár, “Social Force Model for Pedestrian Dynam-
ics,” May 1995, Physical Review E 51, 4282–4286, fig. 2, © the American Physical Soci-
ety, http://link.aps.org/doi/10.1103/PhysRevE.51.4282. (b) Traffic flow on army ant trails 
showing the path taken by a nest-Â�bound ant interacting with five outbound ants. Arrows 
indicate the points at which the ants interacted (reproduced from I. D. Couzin & N. R. 
Franks, “Self-Â�organized lane formation and optimized traffic flow in army ants,” September 
2003, Proceedings of the Royal Society B: Biological Sciences, 02PB0606.1–02PB0606.8, 
fig. 3b, © The Royal Society).
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are leaving. Dussutour et al. (2005b) tested this prediction by restricting 
foraging Lasius niger ants to a bridge with a width sufficient to allow 
only two ants to stand side by side. Alternating clusters of inbound and 
outbound traffic used the bridge. The ants exhibited an additional ele-
ment of co-Â�operation, over and above that defined in the Helbing model. 
Ants at the bottleneck gave way to ants already traveling towards them 
on the bridge, waiting until a gap arose in the flow and the direction 
switched (Dussutour et al. 2005b). This temporal organization meant 
that the flow rate on the narrow bridge was equal to that on a bridge 
more than 3 times as wide.

In ant foraging, the regulatory feedback of avoiding collisions is com-
plemented by positive feedback provided by pheromone recruitment. 
Pheromone recruitment is a form of active regulation, which increases 
the number of ants taking a particular route. Interactions with others 
act as passive regulation that prevents ants taking overcrowded routes. 
Dussutour et al. (2004) took the pheromone recruitment model pre-
sented in box 3.A and extended it by adding a term for overcrowding. 
In the standard model symmetry-Â�breaking bifurcation occurs, where for 
sufficiently high flows of ants one of the bridges was used more often 

Figure 8.4.â•‡T wo snapshots of a simulation of passage through a narrow door show oscilla-
tions in the build up and flow in opposite directions (reproduced from D. Helbing, P.Â€Mol-
nár, I. J. Farkas, & K. Bolay, “Self-Â�organizing pedestrian movement,” Environment and 
Planning B: Planning and Design 28(3) 2001, 361–383, fig. 7, © Pion Limited, London).
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than the other. With the inclusion of a term for overcrowding, however, 
as the width of the bridges decreased a bifurcation occurred whereby at 
high flow rates the bridges were exploited equally again. Dussutour et 
al. (2004) tested these predictions with Lasius niger ants and confirmed 
that as bridge width was narrowed the ants switched from using one to 
two bridges.

Ant trails are good examples of how simple strategies of avoiding col-
lisions can lead to efficient traffic flow at the group level. However, Burd 
(2006) points out we should not overestimate the importance of flow of 
ants as a measure of efficiency of these trails. Encounters between in-Â� and 
outbound ants are important sources for transfer of materials (Anderson 
& Jadin 2001) and, potentially, information (Burd & Aranwela 2003).

Preliminary experiments on human pedestrian traffic and “field” ob-
servations appear to confirm many of the predictions of Helbing’s models 
(Helbing et al. 2005; Kretz et al. 2006a, 2006b, 2006c). One of the most 
interesting outcomes of these experimental studies is that the sum of the 
flows in both directions of bidirectional traffic is higher than the flow 
of similar densities of pedestrians moving in a single direction (Helbing 
et al. 2005; Kretz et al. 2006a). The challenge now is to disentangle so-
ciological explanations for phenomena, e.g., people walk more rapidly 
when approaching individuals moving in the opposite direction, from 
explanations based on collision avoidance and interaction radii (Mous-
saïd et al. 2009). An area where this work has had high impact and useful 
consequences is control at events such as football matches or religious 
gatherings that attract large crowds (Batty et al. 2003a, 2003b; Helbing 
et al. 2007).

Segregation and Self-Â�sorting

Humans and other animals often regulate who they interact with. 
Schelling proposed a series of models aimed at disentangling the mecha-
nisms by which individuals become segregated (Schelling 1969, 1971, 
1978). He uses the rather provocative example of racial segregation to 
illustrate his model, but his approach illuminates how individuals be-
come sorted in everything from age and income to their hobbies and 
consumer preferences. One version of this model is described in box 8.B. 
The model assumes a city neighborhood made up of populations of both 
blacks and whites. Each individual has their own tolerance level for the 
ratio of whites to blacks. The tolerance level across individuals can be 
thought of as a distribution, with some individuals more tolerant than 
others. Schelling assumed that individuals would leave the neighborhood 
if the race ratio were out of the limits of their tolerance and move in if the 
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Box 8.B Segregation Model

Schelling (1969) proposed a model of racial dynamics within a city 
neighborhood inhabited by people who are either black or white. 
He assumed that white people are willing to live with a particular 
ratio of blacks to whites, and this ratio is different among differ-
ent individuals. An example of a cumulative distribution for the 
white’s “tolerable” race ratio is given in figure 8.5a. Under this dis-
tribution all whites tolerate being in a neighborhood that contains 
only whites, half of them would happily be in a neighborhood with 
a 1:1 equal ratio, and a small number of them would tolerate an 
almost 1:2 whites to blacks, leaving them in a minority. This toler-
ance distribution thus reflects differences within the population of 
whites for tolerating blacks in their neighborhood.

We write W, respectively B, as the number of whites, resp. blacks, 
living in the neighborhood out of a potential population of NW, 
resp. NB, whites, resp. blacks, who could choose to live in the 
neighborhood. Thus W/NW is the proportion of whites and B/NB is 
the corresponding proportion of blacks living in the neighborhood 
(note that the proportions are calculated relative to the potential 
inhabitants of each race rather than the proportions of blacks vs. 
whites living in the neighborhood). We can now write an expres-
sion, which is shown in figure 8.5a, for the proportion of whites 
tolerating a neighborhood: PW = 1 - B/rW, where 1:r is the ratio 
above which no white will move into a neighborhood.

There are various ways in which the tolerance distribution can in-
fluence the behavior of individuals and thus the dynamics of the 
racial mix of a neighborhood. Schelling (1969) assumed that if the 
actual proportion of whites living in the neighborhood is greater 
than the proportion that would tolerate the current ratio, i.e., 
W/NW > PWâ†œ, then whites would start to leave the neighborhood, 
starting with the least tolerant. Similarly, if the actual proportion 
of whites living in the neighborhood is less than the proportion 
that would tolerate the current ratio, i.e., W/NW < PW then whites 
would move into the neighborhood. Rearranging terms in these 
equations we see that whites will move out of a neighborhood 
if B > rW(1 - W/NW) and into a neighborhood if B < rW(1 - W/
NW). The curve B = rW(1 - W/NW), plotted in figure 8.5b, gives

(Box 8.B continued on next page)
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ratio were within their tolerance limit. Through this process a pattern of 
segregation emerges for the racial make-Â�up of the neighborhood.

The striking aspect of Schelling’s model is that even a tolerance distribu-
tion that might initially appear relatively tolerant (in the wider meaning 
of the word) can lead to segregation. In the example in figure 8.5a, 50% 
of white individuals would accept living in a neighborhood consisting of 
half whites and half blacks. The model predicts, however, that the only 
stable ratios of blacks to whites are single race neighborhoods (figure 
8.5c). Figure 8.5d shows that when 75% of individuals accept a 1:1 ratio 
then this ratio is stable, but the all white and all black neighborhoods 
still remain stable if the initial populations lie nearby. The message of this 
model is clear: the fact that people tolerate a degree of racial mixing does 

the equilibrium at which whites will no longer move in or out of a 
neighborhood.

If only whites make movement decisions on the basis of the ra-
cial makeup of a neighborhood then the neighborhood’s composi-
tion will eventually reflect the tolerance of the white population 
for mixed race neighborhoods. However, if blacks simultaneously 
make movement decisions based on race ratio then this outcome 
changes. Figure 8.5c shows the effect of whites and blacks simul-
taneously making movement decisions when both races have iden-
tical tolerance distributions for each other and r = 2. When the 
neighborhood at first contains a small number of whites and blacks 
with a near 1:1 ratio then both blacks and whites will move into the 
neighborhood. However, if the ratio is biased slightly in one direc-
tion, say with a small majority of blacks, then as the population of 
the neighborhood increases whites will start to move out and more 
blacks will move in. As this process continues, the ratio will change 
to a larger majority of blacks and even more whites will move out 
and blacks move in, distorting the ratio still further. The stable 
ratio of blacks to whites is then 1:0. A similar argument applies if 
the initial majority are whites, with a stable ratio of 0:1. Neighbor-
hoods with a small black majority become all black, and those with 
a small white majority become all white. This situation changes 
when both races show a higher tolerance. Figure 8.5d shows that 
when r = 4 the 1:1 ratio is locally stable, although the 1:0 and 0:1 
ratios also remain locally stable. Which of these equilibrium ratios 
occurs depends upon the initial ratio of blacks to whites.
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not imply that segregation is avoided. Likewise, the existence of complete 
segregation does not imply complete intolerance on the part of the people 
living in the segregated neighborhoods. Although individuals may think 
they are regulating their relocation decisions in a way that will generate 
an integrated society, the outcome can be highly segregated.

Real tolerance distributions are not as simple as those assumed in 
Schelling’s model and they are known to differ between whites and 
blacks. Numerous studies based on both questionnaires and measure-
ments of peoples’ behavior show that in the USA during the second half 
of the 20th century very few whites would tolerate living in an all black 
neighborhood and a minority would tolerate living with more than 50% 

Figure 8.5.â•‡S chelling’s neighborhood segregation model. (a) Cumulative distribution for 
white’s “tolerable” race ratio. In this case PW = 1 - B/rW, with r = 2. (b) Equilibrium level 
at which whites neither move into nor out of a neighborhood. The arrows indicate for a 
particular population size of whites, whether the white population will increase (i.e., in-
dividuals move in) or decrease (i.e., individuals move out). (c) Equilibrium level at which 
whites neither move into nor out of a neighborhood, plotted together with the equilibrium 
level at which blacks neither move into nor out of a neighborhood. The arrows show the 
direction in which the population changes. The population stabilizes at either a 1:0 or 0:1 
race ratio; r = 2 for both whites and blacks. (d) The same as (c), but for r = 4. In this case, 
the ratio 1:1 becomes stable.
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blacks. A sizeable minority of blacks would tolerate living in an all white 
neighborhood and nearly all would tolerate a 50% white neighborhood 
(Bruch & Mare 2006). Furthermore, in a study by Farley (1978), 79% of 
whites in Detroit said they would be very comfortable in neighborhoods 
that were not more than 20% black.

Clark (1991) used the then available survey data to make empiri-
cal preference distributions to test Schelling’s model. Analysis of four 
American cities showed results qualitatively similar to that of Schelling’s 
original model: mixed race equilibriums are unstable, while all black and 
(nearly) all white equilibriums are stable. One difference between the 
empirical data and the original model is that a small number of blacks 
can stably inhabit a predominately white neighborhood. Another differ-
ence is that the region where both races move into an area is smaller than 
that predicted in figure 8.5c. The conditions under which both whites 
and blacks will move into an area are very limited, and ultimately Clark 
(1991) predicts racial segregation.

The question that individuals were asked in Clark’s study was which 
ratio of blacks to whites they preferred. In his original formulation, how-
ever, Schelling uses the term tolerance to denote a cut off point between 
wanting to leave and wanting to move into a particular neighborhood. 
For example, a white individual who would ideally live in and actively 
seek out a neighborhood with 50% blacks, and is neutral to living with 
up to 75% blacks but prefers not to live with a higher ratio than this is 
said to have a tolerance of 75%. Clark’s notion of preference does not 
account for such neutral tolerance. Studies by Farley (1978) and Farley 
etÂ€ al. (1994) presented interview subjects with a sequence of cards on 
each of which was drawn a simple representation of neighborhoods con-
sisting of 15 houses, a proportion of which were coloured black, to rep-
resent black occupants, while the others were white. They asked whether 
the subjects would move into the area represented by each card, increas-
ing the number of non-Â�like neighborhoods on each of the cards shown. 
Figure 8.6 shows the outcome of Schelling’s model given the “moving in” 
distributions established in these studies. In this case, the mixed equilib-
rium would be stable, although only marginally so, under the results of 
the questionnaire in 1992 (figure 8.6a) but not in 1978 (figure 8.6b). In 
reality, the current racial makeup of the city of Detroit, whose residents 
were the subject of Farley’s study, is not consistent with a mixed equilib-
rium. The 2001 census showed that central Detroit has over 80% black 
and less than 13% white inhabitants, with many whites having moved 
to the suburbs.

When moving away from illustrative models of segregation and to-
ward applications to real world data, it is important to remember the 
difference between correlation and causation. There is little doubt that 
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when asked about a neighborhood with a particular racial makeup, inter-
view subjects base their opinion not simply on their like or dislike for a 
particular race but on their idea of: the quality and prices of housing and 
schools; crime levels; and social problems in areas that have that racial 
structure at the time of the interview. Disentangling whether it is race per 
se, or correlated variables, or even perception of correlated variables that 
determines people’s relocation decisions is a challenging and important 
problem, and one about which Schelling’s model says very little (Charles 
2003). It is also important to bear in mind the mathematical limitations 
of Schelling’s model. Most importantly, the model assumes a fixed popu-
lation of blacks and whites that choose whether or not to live in a par-
ticular area. It does not say what happens to individuals who choose to 
live elsewhere or, due to high house prices in certain neighborhoods, have 
no choice about where to live. These limitations aside, Shelling’s model 
powerfully illustrates that weak preferences can generate strong segrega-
tion, making it all the more difficult to counteract.

The relationship between preference at the level of the individual and 
aggregation or segregation at the level of the group is complex. For ex-
ample, Rivault et al. (1998) found that different strains of cockroaches 
preferred the odor of their own strain. However, in experiments in which 
cockroaches of the two strains were put together in an arena with two 
shelters, they aggregated all under the same shelter (Amé et al. 2004). In 
this case, aggregation instead of segregation occurred because, although 

Figure 8.6.â•‡T olerance curves from questionnaires collected from Detroit residents from (a) 
1978 and (b) 1992 (Farley 1978; Farley & Frey 1994). Equilibrium level at which whites 
neither move into nor out of a neighborhood, plotted together with the equilibrium level at 
which blacks neither move into nor out of a neighborhood. The arrows show the direction 
in which the population changes.
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each strain preferred its own odor, it was weakly attracted to the odor 
of the other strain. This weak attraction was amplified when the strains 
were put together. Millor et al. (2006) showed (using a model that is a 
two strain extension of that in box 3.A) that whether segregation or ag-
gregation occurs between two strains that are weakly attracted to each 
other depends upon the size of the groups and the relative between-Â� and 
within-Â�strain attraction. Large groups of individuals with weak between-Â�
strain attraction will segregate, while smaller groups of individuals with 
strains that are more strongly attracted to each other will aggregate.

The theoretical results are partially supported by experiments that 
placed in the same arena equal numbers of two different species of cock-
roach: Periplaneta fuliginosa, which is strongly attracted only to the odor 
of conspecifics; and Periplaneta Americana, which is weakly attracted 
to the odor of conspecifics as well as to that of P. fuliginosa (Leoncini 
& Rivault 2005). In these experiments segregation was a more common 
outcome than aggregation. However, smaller groups of ten cockroaches 
aggregated more often (in 38% of trials) than larger groups of twenty 
cockroaches, (which aggregated in 19% of trials). The most interesting 
conclusion of these theoretical and empirical studies is that aggregation 
and segregation both arise from the same set of individual rules, with 
initial distribution, group size, and between-Â�group preference playing an 
important role in outcome. As with segregation in human societies, we 
should not conclude that just because two groups segregate that they are 
necessarily intolerant of one another.

Active regulation on the basis of particular characteristics is seen 
within fish shoals. Croft et al. (2003) showed that when shoals of gup-
pies split, they actively segregated in terms of body length. They were, 
however, also sorted on the basis of their response to their environment. 
Larger fish were more often found further from the surface of the water. 
These observations have interesting consequences for the social struc-
tures of shoals (Croft et al. 2006, 2005). Segregation leads to particu-
lar forms of social networks, which in turn determines how information 
flows through a population (Newman 2003; Watts & Strogatz 1998).

An Invisible Hand?

Adam Smith’s invisible hand, which guides the economy to equilibrium, 
remains a powerful metaphor for thinking about regulation. Many eco-
nomical systems are close to equilibrium and function very efficiently 
without centralized control. One of the most remarkable examples of an 
invisible hand we have seen in this chapter is the lane formation in ants 
and humans. Simply by avoiding collisions, individuals self-Â�organize in 
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lanes that allow for efficient flow. Unfortunately, the invisible hand is not 
always as steady as we might hope. We have seen how active regulation 
can lead to over-Â�compensation and chaos and how even a small tendency 
to prefer associations with like individuals can lead to strong forms of 
segregation. It is amazing how stable the social world is to perturbations, 
but it is also worth remembering how easily it can spiral out of control.



— Chapter 9 —

Complicated Interactions

Throughout this book I have emphasized how simple rules followed 
by individual animals and humans can produce surprisingly complex 
patterns. It is this observation, combined with the idea that we can use 
mathematical models to predict these patterns, upon which the idea of 
self-Â�organization is founded (Camazine et al. 2001; Nicolis & Prigogine 
1977). Indeed, it is common to hear these “complex systems” contrasted 
with “complicated systems.” The former term is associated with systems 
in which complexity emerges from simple interactions, while the latter is 
associated with systems where large numbers of different components, 
each with its own particular role, interact to produce an output. The con-
trast is best illustrated by examples from physics. An example of a physi-
cist’s complex system is a sandpile. When grains of sand are dropped 
from above onto a particular position, a pile builds up and sand moves 
down the outside of the pile. The movement of sand on the outside of the 
pile is difficult to predict and occurs on scales ranging from small local 
toppling to large avalanches. Removing one or two grains of sand will 
not change this overall pattern. A car or an airplane, on the other hand, 
can be thought of as complicated. It consists of lots of parts that are care-
fully put together to drive from A to B. Removing certain components 
can completely change the car’s capability of completing its journey.

Are animal groups sandpiles or cars? Up until now, I have emphasized 
the former analogy. However it is often the second analogy that is more 
appropriate when studying animal interactions. For example, individual 
honeybees are known to use at least 17 different communication signals, 
the most famous of which is the waggle dance, and adjust their behavior 
in response to at least 34 different cues (Seeley 1998). The bees take dif-
ferent behavioral roles at different times during their life. Furthermore, 
there are certain components, such as the queen, which are essential to 
the smooth functioning of the colony.

In general, when building mathematical models the question of whether 
a system is complex or complicated is not a particularly useful one to ask. 
Rather, the question is whether there is a level of description at which 
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we can formulate a model that answers our questions about a system’s 
behavior (Goldenfeld & Kadanoff 1999). As the preceding chapters have 
demonstrated there often exists such a level and mathematical models 
do help our understanding of collective animal behavior. There is how-
ever no reason to believe that this level of description can be identified 
in all cases. For example, although in chapter 3 I showed how a model 
predicts how honeybees and ants balance their foraging across feeders 
of different quality, this does not answer the larger question of how the 
colony regulates its overall growth. A successful colony must balance its 
requirements for foraging with other tasks such as building and nursing 
brood (Gordon 1996). Even if we concentrate only on nectar foraging we 
see that honeybees exhibit at least seven different behavioral states, e.g., 
scout, recruit, inspector, etc. (Biesmeijer & de Vries 2001), and exhibit a 
range of signals about the location and availability of food (Seeley 1995). 
We can use simple models to focus on understanding particular parts of 
this organization, but these do not necessarily provide a level of descrip-
tion that explains how the colony functions as a whole.

In this chapter I look at models that attempt to capture more fully the 
detailed interactions within insect societies, in particular. As hinted at in 
the preceding paragraphs, one of the best studied systems in this context 
is the foraging of honeybees. Another well studied system is the emigra-
tion of Temnothorax ants, and it is this system on which much of this 
chapter will focus. Here, I introduce the use of state-Â� and agent-Â�based 
models, using foraging and emigration of social insects as case studies 
around which the various techniques are discussed.

Social Insect Foraging

Behavioral State Modeling

Seeley (1995) builds an understanding of honeybee organization by iden-
tifying how individuals moved between behavioral states in response to 
signals they received from other bees and cues they received from local ob-
servations of the state of the colony. This approach lends itself naturally to 
some form of agent-Â�, individual-Â�, or state-Â�based modeling. If we can write 
down the behavioral states that an individual or agent can exhibit, and 
determine the rate at which they make transitions between these states, 
then we can write down a model of each honeybee’s behavior. The agents 
interact with each other by making these transition rates change as a func-
tion of the number of individuals in other behavioral states.

One of the first examples of this approach, and one that we came 
across in chapter 3, is Camazine and Sneyd’s model of honeybee foraging 
(Camazine & Sneyd 1991). The behavioral states in this model included 
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searching for a food source, performing dances, and following dances 
in the hive. The transitions between behavioral states depended on the 
states of other individuals. For example, the transition from following 
dances to searching for a particular source depended on the number of 
individuals dancing for that source.

Following from the Camazine and Sneyd model, Sumpter and Pratt 
(2003) proposed a general framework for modeling social insect foraging 
in terms of differential equations, based on transitions between behavioral 
states. This framework is described in box 9.A. The five basic behavioral 
states are waiting, searching, following, exploiting, and recruiting (figure 
9.1). For nectar foraging of honeybees: waiting corresponds to waiting 
on the dance floor in order to follow a dance; following corresponds to 
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stop searching (b) 
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get
lost
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Figure 9.1.â•‡ Flow diagram for behavioral state variables for Sumpter & Pratt’s framework 
(box 9.A). Boxes represent behavioral states, while lines connecting states indicate rate 
of flow of workers between states. Arrows indicate direction in which individuals change 
states.
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Box 9.A State-Â�based Models of Foraging

Sumpter & Pratt’s (2003) framework defines five different behav-
ioral states associated with foraging. Colonies are assumed to have 
access to n food sources (e.g., patches of flowers or sugar feeders). 
Each state has an associated variable, indexed by source where ap-
propriate, representing the number of individuals in that state. The 
states (and corresponding variables) are:

1.	� Waiting (W) Waiting at the nest and available to start for-
aging. Examples include honeybees waiting on the dance 
floor to follow recruitment dances, or ants waiting near 
the nest entrance to be led to a food source.

2.	�S earching (S) Searching for food sources.
3.	�E xploiting (Ei) Exploiting food source i. Workers in this 

state do not directly recruit nest mates, although they 
may leave signals, such as pheromone trails, that increase 
the likelihood of other foragers finding the source.

4.	�R ecruiting (Ri) Attempting to recruit nest mates to food 
source i. Recruitment in this sense involves actively lead-
ing one or more workers, or directly communicating to 
nest mates the location of a food source, rather than leav-
ing chemical signals in the environment.

5.	� Following (Fi) Attempting to follow recruiters to food 
source i. This encompasses not only literal following of 
recruiters, but also independent search for a source adver-
tised by a dance or other signal.

Figure 9.1 shows how individuals change between states. For ex-
ample, an individual becomes a follower from the state of waiting 
at the nest, and from following it can either get lost or arrive at its 
target.

In order to model these states in terms of differential equations we 
must specify the rates at which an individual changes from one 
state to another. For example, assume that l is the probability that 
in a small time interval (dt) a waiting individual starts to follow 
dances. W is the number of waiting individuals. We then make the 
mean-Â�field approximation that the rate at which a population of 

(Box 9.A continued on next page)
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waiting individuals is converted into dance-Â�following individuals 
is equal to lW, i.e.,

dW
dt

W=−λ .

This approximation ignores any random variation or differences 
between individuals, and since lW is not an integer, it also ignores 
the fact that bees come in distinct entities. Despite these limitations 
such approximations work well provided the number of individu-
als in each behavioral state is relatively large (in practice this is 
more than 5 to 10 individuals). Thus, although differential equa-
tion models are ultimately written in terms of populations, the 
equations are initially derived from individual behavior.

Behavioral transition rates usually depend on the number of indi-
viduals in another state. For example, the probability that dance-Â�
following honeybees start looking for feeder 1 is proportional to 
the number of bees dancing for that feeder, i.e.,

R

R R K
1

1 2 0+ +
,

where K0 is constant and R1 and R2 are the number of bees dancing 
for feeders 1 and 2, respectively. We can express the rate of change 
of the number of following bees as

dF
dt

R
R R K

W F1 1

1 2 0
1 1=

+ +
−λ θ ,

where l and 1 are constants determining the rate per individual bee 
of starting to follow dances and getting lost, respectively. Similar 
equations can be written down for each behavioral state giving a 
system of differential equations modeling how individuals change 
between behaviors. Based on the earlier model of Camazine & 
Sneyd (1991), Sumpter & Pratt proposed the following differential 
equation model for honeybee foraging
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searching for nectar source advertized by a dance; searching corresponds 
to scouting for food without first following a dance; exploiting involves 
flying backwards and forwards to a known food source; and recruiting 
involves performing recruitment dances. Similar interpretations can be 
made of the foraging states of ants, but with pheromone trails provid-
ing direct recruitment from waiting to exploiting instead of the indirect 
recruitment provided by the dance language.

In the framework in box 9.A, the behavioral states, the transitions be-
tween the states and associated rate parameters can be determined by ob-
servations of individuals. The differential equation model is then written 
in terms of the number of individuals in each of the states. The assump-
tion underlying the change from individual to population description is 
known as the law of mass action or mean-Â�field approximation. The basic 
idea of this assumption is that when considering large numbers of indi-
viduals in the same state we do not need to consider every individual, 
but instead consider simply the rate at which populations of individuals 
switch between states (see box 9.A).

Despite the differential equation model being an approximation of in-
dividual behavior, it often works reasonably well in predicting colony 
level behavior. Figure 9.2 shows a numerical solution of the differential 
equation model for honeybee foraging presented in box 9.A for an exper-
iment performed by Seeley et al. (1991). Figure 9.3a shows the outcome 
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The various parameters in this model have been measured directly 
from experimental data and a simulation of this model for the ex-
perimental setup of Seeley et al. (1991) is given in figure 9.2.
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of Seeley et al.’s experiment. The model reproduces these experimen-
tal results reasonably accurately, although it underestimates the rate at 
which the bees switch feeders when the quality of the feeders is switched.

Complicated Individuals

Seeley describes the foraging of a honeybee colony as “an ensemble of 
largely independent individuals that rather infrequently exchange informa-
tion with one another” (Seeley 1995). Seeley’s emphasis is on conservation 
of communication. Rather than simple units using mass communication 
to form a collective solution, complicated individuals use the minimum 
of communication necessary to co-Â�ordinate their work (Seeley 2002). An 
individual honeybee or other foraging social insect is more complicated 
than implied by the framework in box 9.A. Biesmeijer & de Vries (2001) 
propose that the behavioral states of honeybees should include different 
categories for novice forager, scout, recruit, employed forager, unemployed 
experienced forager, inspector, and reactivated forager. Their proposal is 

Figure 9.2.â•‡N umerical simulation of equations 9.A.1 showing total number of recruiting 
and dancing bees for the two sites. Solid line gives number at south feeder (E1â•›+â•›R1) while 
dotted line is the north feeder (E2â•›+â•›R2). As in fig. 9.3, the simulation begins with E1(0) = 15, 
E2(0) = 12, and W(0) = 125â•›-â•›15â•›-â•›12 = 98, and at time 12 the quality of the feeders is 
swapped. Simulation parameter values can be found in Sumpter & Pratt (2003).
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based on the studies of von Frisch (1967), Lindauer (1952), through to 
Seeley (1983, 1995) where honeybees are shown to use a combination 
of personal information of where food is located and social information 
gained through following dances.

A similar individual complexity underlies ant foraging (Detrain & De-
neubourg 2006; Gordon 2007). For example, harvester ants do not usu-
ally rely on pheromone trails to co-Â�ordinate foraging, but foragers resting 
within the nest are activated by other foragers and by patrolling ants 
(Gordon 2002; Gordon et al. 2008; Greene & Gordon 2007b). Individ-
ual foragers have a memory of their own foraging patch and activation 

A: Data Seeley et al. 1991

B: Simulation model: standard run
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Figure 9.3.â•‡ (a) Number of honeybee foragers visiting each of two feeders (north and south) 
recorded during 30-Â�min intervals in the experiment of Seeley et al. (1991). In the experi-
ment both feeders were 400 m from the hive and their quality, determined by the molarity 
(M) of the sugar solution, was changed at the beginning of each day and at noon. (b) Simu-
lation outcome of de Vries and Biesmeijer’s individual-Â�based model of these experiments. 
(Reproduced from H. de Vries & J. C. Biesmeijer, “Modelling collective foraging by means 
of individual behaviour rules in honey-Â�bees, 1998, Behavioral Ecology and Sociobiology 
44:2, 109–124, fig. 3, © Springer-Â�Verlag.)
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by other ants causes them to visit their own patch rather than to blindly 
follow the activating ants. The role of communication in this case is for 
ants outside the nest to indicate to ants within the nest that foraging con-
ditions are generally good (Gordon 2007).

The advantage of state-Â�based models is that there is no limit to the 
complexity that can be incorporated into them. However, increasing the 
number of behavioral states means decreasing the number of individuals 
in any particular state at any particular time. As such, the mean-Â�field as-
sumption underlying differential equation models can no longer hold. If 
only a few individuals are in a particular state, then we cannot assume 
that the transition between the states can be approximated as a transition 
rate of populations. Furthermore, if only one or sometimes no individu-
als are in a particular state, then our differential equation model will rep-
resent fractional individuals.

Added complications on the level of individual behavior can be incorpo-
rated into agent-Â�based or individual-Â�based models that preserve individ-
ual units and the stochastic nature of interactions. De Vries & Biesmeijer 
(1998, 2002) developed an individual-Â�based model of honeybee foraging 
where each bee was characterized by its position, speed, direction, vi-
sual perceptions, its memory of the position and profitability of food, as 
well as internal motivation for homing, foraging, and abandoning a food 
source. By fitting their model to Seeley et al.’s (1991) experiments they 
showed that previous foraging experience, and not only recently acquired 
dance information, were required to reproduce the experimental results 
(de Vries & Biesmeijer 1998). In doing so they identified a model that 
was sufficient to explain current experimental observations. An example 
simulation outcome compared to data from the experiment is given in 
figure 9.3b. Here the match between experiment and data is better than 
in the original differential equation model (figure 9.2).

De Vries & Biesmeijer’s model is a useful tool for investigating hypoth-
eses about individual honeybee behavior. Several other authors have pro-
vided their own individual-Â�based models of honeybee foraging (Beekman 
& Bin Lew 2008; Dornhaus et al. 2006) and other aspects of honeybee 
organization (Schmickl & Crailsheim 2008a, 2008b). This approach is, 
however, limited in several respects. Firstly, these models have a large 
number of parameters, many of which could not be estimated from inde-
pendent datasets. Secondly, while models are usually sufficient to explain 
the data, it is difficult to argue that a particular model is necessary. In 
other words, there may exist other models that fit the data equally well. 
Both these limitations of individual-Â�based models are a consequence of 
insufficient data and could be resolved by more experiments. I will return 
to this question in more detail in later sections of this chapter in relation 
to ant and honeybee migration.
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Complicated Signals

Not only do individuals have large numbers of behavioral states, but 
their behavior also is influenced by a diversity of cues and signals. For 
example, foraging bees are influenced in their decision whether to dance 
by both their own assessment of the quality of food they carry as well 
as the time it takes them to unload the nectar they bring into the hive 
(Seeley 1992, 1995). Ant foraging is also more complicated than implied 
in chapter 3. Individual ants use their own information, as well as that 
gained through interactions with others, both to locate food and to de-
cide whether to recruit to it. For example, a Lasius niger ant’s decision to 
leave a pheromone trail to a food source depends on how easily it reaches 
its desired volume of food (Mailleux et al. 2000, 2003b), its level of 
starvation (Mailleux et al. 2006) and the nutritional needs of the colony 
(Portha et al. 2004).

Ants use a variety of pheromones to mark the path to food discoveries 
(Wyatt 2003). For example, some Myrmica species use pheromone from 
different glands depending upon the type of food they locate (Cammaerts 
& Cammaerts 1980). Pheromone with stronger recruiting properties is 
laid to prey that are hard to move, thus recruiting other workers to help 
with transportation.

Combination of different types of pheromones with different lifetimes 
may allow ants to “remember” routes to sites that were previously re-
warding and may become rewarding again in the near future. Pharaoh’s 
ants provide a good example of an ant that leaves multiple pheromone 
signals. Jackson et al. (2006) showed that these ants leave a pheromone 
trail that can be detected up to 2 days after it is laid. The ants deposit 
pheromone even in the absence of food (Fourcassie & Deneubourg 1994). 
However, Jeanson et al. (2003) established that the pheromone deposited 
directly after a food discovery evaporates in less than 25 minutes. Jack-
son and Chaline (2007) report that the intensity of trail laying, in terms 
of the degree of continuity of the markings made, changes only slightly 
between ants returning from a rewarding food source and those explor-
ing. These experiments did not investigate the chemical composition of 
the trails. Although Jackson and Chaline are cautious about concluding 
that different chemicals are used for marking during exploration and ex-
ploitation, the existence of distinct “explore” and “exploit” pheromones 
remains the most plausible explanation of the rapid exploitation of newly 
discovered food (Beekman et al., 2001; Sumpter & Beekman, 2003) and 
the rapid abandonment of trails that no longer lead to food (Jeanson et 
al. 2003). These pheromones are possibly complemented by a volatile 
negative pheromone that serves as a “no entry” signal when food is not 
found at the extremity of a path (Robinson et al. 2005).
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Much of the work on understanding foraging trails is based on behav-
ioral analysis, and less is known about how specific chemical components 
within these trails act in different circumstances. Chemical communica-
tion is also seen in, for example, dance communication in honeybees 
(Thom et al. 2007). An interesting research challenge is to link together 
specific chemicals found in communication with observed behaviors.

Combining Complex and Complicated Behavior

By their nature, the complex, self-Â�organized patterns seen in ant trails, 
nest structures, and bird flocks require large numbers of individuals in 
order to generate them. Indeed, there is evidence that ant species that 
typically live in large colonies are more likely to use pheromone trails 
for communicating the presence of food (Beckers et al. 1989). However, 
there is little evidence from between species comparison that individual 
complexity decreases with increased colony size (Anderson & McShea 
2001a). Honeybees are just one example of a species with both large 
colony sizes and individuals that exhibit a complicated array of commu-
nication signals and behavioral states.

Some of the most interesting questions in understanding the organi-
zation of insect societies involve the interaction of self-Â�organizing pat-
terns with the behavior of individual workers (Detrain & Deneubourg 
2006). For example, Beekman et al. (2001) showed that pheromone trails 
emerge only when the ants in a foraging arena reach a critical density 
(see chapter 3). Other studies have shown that the foraging behavior of 
individuals changes with the number of ants in the colony (Mailleux et 
al. 2003a). We can speculate then that the ants may decide whether to 
leave pheromone or not based on whether they are sufficient in number 
to utilize trails. The collective pattern changes individual behavior and 
individual behavior generates the collective pattern.

While complicated behavioral states, multiple signals, and between-Â�
individual variation are all important issues when building models of 
social insect foraging, these have not been the focus of a great deal of 
theoretical work. Indeed, the only current solution to modeling these 
phenomena is to incorporate all the relevant variables and parameters 
into a simulation model and compare the simulation model to data. It is 
this approach I now investigate further with regard to another aspect of 
social insect organization, namely emigration.

Emigration of Temnothorax Ants

A large number of studies of social insect foraging in the 1990s were fol-
lowed at the turn of the century by an increased interest in how social 
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insects migrate to a new nest. In part, this switch of interest from foraging 
to emigration was due to greater experimental tractability of the latter. 
Emigrations have a clear beginning and an end. The start can be induced 
by the destruction of a colony’s old nest and the end is marked by a move 
into their new nest. This has increased the amount of data with which to 
parameterize individual-Â�based models, allowing these models to be bet-
ter verified. The following sections describe Temnothorax emigration as 
a model system in the study of complicated state-Â�based behavior. This is 
a system for which we have been able to clearly identify behavioral states 
and measure parameter values.

Most studied are the ant emigrations of genus Temnothorax (Mallon 
et al. 2001; Möglich 1978; Pratt et al. 2002). The basic steps of this emi-
gration are given in chapter 4, but I summarize them again here. Each ant 
begins in an exploration phase during which she searches for nest sites. 
Once she finds a site she enters an assessment phase, carrying out an inde-
pendent evaluation of the site, the length of the evaluation being inversely 
proportional to the quality of the site (Mallon et al. 2001). Once she has 
accepted the site she enters a canvassing phase, whereby she leads tandem 
runs, in which a single follower is slowly led from the old nest to the 
new site. These recruited ants then in turn make their own independent 
assessments of the nest. Once the nest population has reached a quorum 
threshold the ant enters a committed phase, rapidly transporting passive 
adults and brood items (Pratt et al. 2002).

Tandem run recruitment has elements of the simple positive feedback 
seen in the pheromone trails of Lasius ants and the aggregation of cock-
roaches. Temnothorax emigration is however more than just positive 
feedback. The four phase decision-Â�making process, the use of a quorum 
threshold to decide whether to perform a tandem run or a transport (Pratt 
2005b; Pratt et al. 2002), and the fact that some ants find both nests and 
choose the superior one (Mallon et al. 2001), all point toward a more 
complex migration than seen in cockroach aggregation, for example. We 
could say that Temnothorax ants combine elements of self-Â�organization, 
whereby a global solution to the problem of finding a new nest emerges 
from the interactions of multiple ants, with a sophisticated behavioral 
algorithm, and a process whereby individual ants continually monitor 
the progress of the emigration and change their behavior accordingly.

The detailed experimental understanding of Temnothorax migration 
has made it possible to determine the ants’ behavioral states and the fac-
tors influencing transitions between these states. Pratt & Sumpter have 
systematically refined this behavioral algorithm as new experimental 
data has become available (Pratt 2005a; Pratt et al. 2002, 2005; Pratt & 
Sumpter 2006). Figure 9.4 gives a flow diagram for the behavioral states 
and how the ants transition between them, based on the emigration of 
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Figure 9.4.â•‡ Model of the behavior of active ants responsible for organizing emigrations of 
Temnothorax albipennis. Boxes represent behavioral states and arrows represent transi-
tions between them. The four major groups of behavioral states are organized into four 
groups of boxes. From top to bottom the boxes correspond to exploration, assessment, 
canvassing, and commitment. The first subscript i in each state identifies the nest that the 
ant is currently assessing or recruiting to. The second subscript f identifies the nest from 
which the ant recruits (either the old nest or a rejected new site to which nest mates have 
been brought by other ants). Figure reproduced from Pratt et al. (2005).
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Temnothorax albipennis (Pratt & Sumpter 2006; Pratt et al. 2005). This 
flow diagram gives a more precise description of the emigration stages 
described in the previous paragraphs. By individually marking all the 
ants in the colony and establishing how long and under what conditions 
they transitioned between states we were able to measure the model pa-
rameters (Pratt 2005a; Pratt et al. 2005).

A key purpose of this model is to establish whether our understanding 
of how the emigration proceeds is correct. If the behavioral algorithm is 
specified correctly then the output of simulations of the model should be 
similar to the outcome of experiments. There are a number of ways of 
making this comparison. Firstly, we can visually compare the sequence 
of actions performed by the real ants and those in the simulation. An 
example of such a comparison is given in figure 9.5. Such comparisons 
are qualitative since both are a single instantiation of the model and the 
experiment. We can make a series of these comparisons in order to gain 
insight into differences between model and reality. This approach is often 
very useful since it quickly reveals differences in the behavior of the real 
and simulated ants.

A second way to validate the model is to compare distributions of 
colony level measurements in the model and in the experiment. Using 
such measurements, the data was shown to not statistically differ from 
the prediction of the model, i.e., the experimental outcome lay within 
a confidence interval generated by repeated runs of the model (Pratt et 
al. 2005). The final way in which the model was validated was to test 
it against an independent data set. The model was fitted using param-
eters for single nest emigrations and then tested against the outcome of 
emigrations to two nests. Again a confidence interval of outcomes was 
constructed and compared to the actual emigrations.

What can be hidden in the final presentation of a detailed model are 
all the alternative models that could be rejected by comparison to data. 
For example, early versions of the Temnothorax model assumed that the 
time taken for each individual to perform a transport and tandem run 
was constant, but when this model failed to match the data we realized 
that individual ants improved their route with repeated journeys between 
old and new nest sites. As a result we incorporated a travel time that 
decreases with number of completed journeys and the model provided 
a better match. The model also revealed that we were not required to 
assume different parameter values for different individuals within the 
colony to match the experimental data. This was a particularly striking 
result since the division of labor through the emigration is suggestive of 
some ants being more active than others. In particular, the distribution 
of the number of transports and tandem runs performed by colony mem-
bers is highly skewed, with some individuals much more involved in the 
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emigration than others. Our model showed that this division of labor 
could arise simply as a result of some ants finding and learning the route 
to the new nest before the others.

The model in figure 9.4 is based on observations of an “old world” 
Temnothorax species collected in the United Kingdom, Temnothorax al-
bipennis. Pratt (2005a) investigated how a “new world” species collected 
in the United States, Temnothorax curvispinosis, performed emigra-
tions under similar conditions. He found that the behavioral algorithm 
followed by these two species is very similar, with the same stages of 
searching, assessing, canvassing, and accepting; similar division of labour 

Figure 9.5.â•‡ Behavioral sequences of active ants, predicted by the model and observed in 
single-Â�nest emigrations by colonies 1 and 4. Within each panel, each row shows the acts of a 
single ant. Symbol key— : initial entry into the new nest; : leading a tandem run towards 
the new nest; : following a tandem run towards the new nest; : leading a reverse tandem 
run; : following a reverse tandem run; : transporting a nest mate or brood item to the 
new site; X: being transported into the new site. Figure reproduced from Pratt et al. (2005).
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between workers; and the use of a quorum threshold to mark the switch 
between tandem running and transport. What differed between the two 
species were the parameter values that determine the rates at which in-
dividuals switch between behavioral states. The most striking difference 
was in the quorum rule. T. curvispinosis required a higher threshold nest 
population before it switched from tandem running to transportation. 
Furthermore, on their first recruitment from the old nest to the new, in-
dividual T. curvispinosis have a larger quorum threshold than on later 
recruitments. As a result, more tandem runs were seen in the emigrations 
of T. curvispinosis than those of T. albipennis.

Honeybee House-Â�hunting

Similarities in the behavioral algorithm employed during emigration are 
not limited to species of the same genus. As discussed in chapter 4, the 
movement decisions of cockroaches, fish, spiders, and other animals in-
volve quorum-Â�like responses to others (Sumpter & Pratt 2008). HoneyÂ�
bees are also thought to exhibit a form of quorum response during their 
emigration (Seeley & Visscher 2004b). Like Temnothorax ants, this quo-
rum response is just one aspect of the algorithm the bees follow in choos-
ing a new nest.

Seeley and Visscher have together with various colleagues studied the 
stages of the emigration of honeybee swarms. The emigration is initiated 
with the decision of a swarm of bees, including the queen, to leave the 
hive. This departure is remarkable in that it is preceded by relative calm, as 
the colony continues to function as usual. Then, during a period of about 
10 minutes before a swarm of thousands or tens of thousands of bees de-
parts the nest, there is a sudden and rapid increase in “piping,” where an 
excited bee presses its thorax against a resting bee to produce a vibration 
in the passive bee’s flight muscles, and “buzz-Â�runs,” where an excited bee 
runs around, pushing against other bees (Rangel & Seeley 2008). The bees 
lift off together and land in a nearby tree to form a bivouac-Â�shaped swarm 
(Cully & Seeley 2004; Seeley 1995; Winston 1987).

From this swarm the bees collectively decide where to move. The pro-
cess starts with scout bees searching for potential nest sites. Only a small 
proportion of the swarm members, probably around 5%, act as scouts or 
participate in the decision-Â�making process (Seeley & Buhrman 1999; See-
ley et al. 1979). When one of these scouts finds a nest site, she assesses its 
quality by walking and flying around the nest’s interior (Seeley 1977). In 
contrast to Temnothorax, the time a scout takes to assess a nest is inde-
pendent of the quality of the nest site and does not appear to involve the 
reconnaissance of other nearby sites (Seeley & Buhrman 1999; Seeley & 
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Visscher 2008). Instead, the scout will return to the swarm and perform 
a waggle dance to indicate the site’s location to its nest-Â�mates (Camazine 
et al. 1999; Seeley & Buhrman 1999). After the dance the scout will fly 
back and forth between the new nest site and the swarm, performing 
waggle dances at the swarm.

The swarm remains in its bivouac form for around two or three days 
before flying to a new nest site. During this time dances occur for a large 
number of potential sites, but directly before liftoff most, although usu-
ally not all, of the dances are for one of the available sites and it is to this 
site that the swarm flies (Camazine et al. 1999; Seeley & Buhrman 1999). 
Seeley & Burhman (2001) offered a colony a choice between four medio-
cre and one superior nest. In four out of five trials the bees moved into the 
superior nest. The scouts are thus usually able to reach consensus for the 
best available site. However, in a small number of cases substantial danc-
ing for other sites is seen directly before swarm liftoff (Lindauer 1955; 
Seeley & Visscher 2003). Such swarms have been seen to take off, but 
then hesitate as bees try to fly in different directions before finally return-
ing to the original resting place of the swarm bivouac. Seeley & Visscher 
(2003) observed that after one such failed takeoff the bees regrouped and 
half an hour later lifted off again and flew in unison to one of the two 
dance-Â�advertized sites.

Setting these occasional failures aside, the question is how the bees 
manage to reach consensus in the majority of cases. Visscher (2007) 
discusses four possible mechanisms that could promote consensus: in-
dividual comparison, dropout, competition, and inhibition. Visscher & 
Camazine (1999) performed an experiment in which scout bees that vis-
ited both of two available nest boxes were captured and removed from 
the decision-Â�making process. The removal had no effect on the time it 
took the bees to reach consensus and move to one of the available sites, 
suggesting that individual comparison plays a relatively minor role in 
consensus building.

The most important mechanisms in reaching consensus appear to be a 
combination of dropout and competition. Although most potential sites 
elicit a dance response from the scout that first locates them (Seeley & 
Visscher 2008), over repeated visits dance intensity is higher for better 
quality sites (Seeley & Buhrman 2001). Furthermore, the intensity of 
dances for a site fades over repeated journeys between the nest and the 
swarm (Seeley 2003). The less rapid dropout for higher quality sites, cou-
pled with competition for the limited number of available scouts that can 
follow dances, leads to a process of competitive exclusion (Britton et al. 
2002; Myerscough 2003). Mathematical models of this process predict 
that the site at which the bees give up dancing for most slowly is eventu-
ally the focus of all dancing.
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To decide whether there is sufficient support for the site for which they 
are dancing the scouts appear to use a quorum rule, similar to that em-
ployed by the ants (Seeley & Visscher 2003, 2004b). Once a particular 
potential nest site contains around 20 or so bees then waggle dancing is 
replaced by the same piping behavior seen prior to the swarm’s initial 
departure from the old nest site. Piping is produced exclusively by scouts, 
and acts to warm up the other bees in the swarm in preparation for liftoff 
(Seeley & Tautz 2001; Visscher & Seeley 2007). As in the initial liftoff 
from old nest to bivouac, piping is accompanied by buzz runs, which 
also serve to activate bees resting within the swarm (Rittschof & Seeley 
2008). Once activated, the swarm takes off and the scouts lead the entire 
swarm to the new nest site (see chapter 5 for details of how the small 
number of scout bees is able to lead the swarm).

Several models have converted the above description into a behavioral 
algorithm. Britton et al. (2002) and Myerscough (2003) both looked spe-
cifically at the dance dropout stage, showing how this dropout contrib-
uted to consensus. Janson et al. (2007) developed an individual-Â�based 
model of the process of searching, dancing, and traveling back and forth 
between nest sites, investigating the role of scouting and how the colonies 
could cope with assessing nests at differing distances from the swarm biv-
ouac. As well as dancing and dropout, Passino & Seeley (2006) include 
and investigate the quorum rule for the commencement of piping. As 
such, this is the most comprehensive individual-Â�based model of honeybee 
house hunting.

Algorithm Analysis and Robustness

Once a behavioral algorithm is developed, the role of its various compo-
nents can be tested. The algorithm can be analyzed and compared across 
systems. Indeed, rather than simply simulating algorithms in order to re-
produce experiments, the algorithms can be studied to find out the prin-
ciples that underlie them (Fewell 2003; Sumpter 2006).

An important way of gaining understanding of algorithms is between 
species comparison. Honeybees and Temnothorax ants both exhibit four 
main stages of the decision-Â�making process: search (look for new nest 
sites both independently and through following dances/tandem runs), 
assess (evaluate discovered sites), canvass (dance/tandem run for an ac-
cepted site), and commit (bees pipe and perform buzz runs before lead-
ing the swarm to the new site, while ants transport to the new site). In 
both cases the switch from canvass to commit occurs when a quorum 
is reached at the perspective nest site. Pratt et al. (2002) showed that in 
Temnothorax ants quorum leads to a reduction in incidence of colony 
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splitting. Similarly, Passino & Seeley (2006) used their model to demon-
strate that the quorum improved decision-Â�making accuracy. Passino et 
al. (2008) also note strong similarities between the mechanisms through 
which the bees reach a decision about which nest to move to and how 
populations of neurons reach decisions between different options.

Honeybees and ants differ in their respective requirements for speed 
and accuracy in decision-Â�making. If a honeybee swarm takes off before a 
high level of consensus is reached then the swarm may split, an outcome 
that can prove fatal to those bees that do not move into the new nest site 
(Lindauer 1955). Splitting during emigration occurs in ants too, but colo-
nies are later able to re-Â�coalesce in the best of the available nests. Thus ac-
curacy is more important than speed in the decision-Â�making of honeybees. 
These differences may be reflected in differences in the way that quality is 
encoded in the recruitment by the two species. For the ants the assessment 
period is longer for lower quality nests, but once an ant has accepted a 
site her rate of recruitment is independent of site quality. Commitment by 
different ants to different nests can result in the quorum being reached for 
more than one site, and a higher degree of colony splitting.

For the honeybees, the assessment period is independent of quality but 
dancing is more vigorous for better quality sites. This quality-Â�based re-
cruitment, combined with more rapid dropout of dancers for inferior 
sites allows the scouts to reach near consensus before liftoff (Myer-
scough, 2003). Thus, while dropout might lead to slower decision times, 
it provides an improvement in decision accuracy.

How behavioral algorithms are employed in different situations can 
give further insight into the trade-Â�off between speed and accuracy. Pratt 
& Sumpter (2006) looked at how ants tune their behavioral algorithm 
to different challenges. As well as moving nest when their current nest is 
destroyed, Temnothorax ants are known to move up the “housing lad-
der” as better nest sites are made available to them (Dornhaus et al. 
2004). Pratt & Sumpter compared how the ants migrated under these 
“unforced” conditions, when the ants live in a poor quality nest and one 
or more better quality nests becomes available, with “forced” conditions, 
where their current nest is destroyed. When choosing between a good 
and a mediocre nest, colonies showed different behavior depending on 
the urgency of their need to move. In the unforced situation colonies took 
a long time to emigrate, but they more often chose the better of the two 
available nests. In forced emigrations, colonies moved much faster but 
often made poor choices, splitting their population between the good and 
mediocre nests or even moving entirely into the inferior one.

Pratt & Sumpter showed that while the speed and accuracy of decision-Â�
making was tuned to the circumstances of forced and unforced emigra-
tions, the behavioral algorithm employed by the ants was the same in 
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both cases. The four stages of searching, assessing, canvassing, and fi-
nally accepting and transporting after a quorum is met were seen in both 
forced and unforced emigrations. The difference in speed and accuracy 
in the two different circumstances resulted from an increased urgency on 
the part of individual ants in forced emigrations. The rates of leaving the 
old nest to search and of accepting a newly found nest were larger and 
the quorum threshold was lower in forced emigrations. The ants changed 
the parameters of the algorithm, but the algorithm itself remained un-
changed. The ants appear to have evolved a single algorithm, which can 
be tuned to differing requirements of speed and accuracy. Franks et al. 
(2003a) further showed that the ants may well employ the same algo-
rithm in even more desperate situations. By adding formic acid to the 
colony they induced an emergency move with an even lower quorum 
threshold than a normal forced emigration.

The behavioral algorithm adopted by the ants appears remarkably ro-
bust to differences in the number of and distance to the available nests. 
Pratt (2008) compared emigrations to nearby and distant nests. He found 
that emigrations to distant nests involve more tandem runs, with the fol-
lowers of these tandem runs responsible for more transportation, than 
in emigrations to nearby nests. In terms of the behavioral algorithm, the 
quorum is reached slower for distant nests, leading to a later switch to 
transportation and a greater effort in tandem runs that inform other ants 
where the new nest site is. The quorum rule thus tunes the amount of 
tandem running to the level of difficulty in finding a new nest. Model 
simulations confirm this interpretation of the data (Sumpter and Pratt, 
unpublished results).

Franks et al. (2008) examined how the ants cope when offered one 
nearby nest of poor quality and a distant nest of better quality. Even 
when the better nest was nine times farther away than a poor quality nest 
the colony successfully moved into the better nest. Individual comparison 
and the assessment delay, which allowed ants that had found the nearby 
poor quality nest to find the far away good quality nest before they com-
menced transportation, played important roles in decision-Â�making. In 
cases where transportation did commence to the poor quality nest, it was 
quickly superseded by recruitment to the better nest. Similar results have 
been found when a better quality nest is introduced once an emigration 
has already commenced to a mediocre nest. The ants are often able to 
swap mid-Â�emigration to the better nest (Franks et al. 2007).

While the algorithm is robust to different environmental conditions, 
how robust is it to changes in parameter values? One interpretation of 
the similarities in the algorithm but differences in parameter values be-
tween T. albipennis and T. curvispinosis is that the algorithm offers a 
degree of robustness that is independent of particular parameter values 
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(Pratt 2005a). Natural selection acts to shape the algorithm, but param-
eter values are not strongly constrained. A similar argument could also 
explain why no consistent relationship has been found between the size 
of the quorum and the size of emigrating colonies (Dornhaus & Franks 
2006; Franks et al. 2006; Pratt 2005a). Such robustness has also been 
hypothesized as a design property of the gene networks that regulate 
development (von Dassow et al. 2000).

Formalizing Individual-Â�based Models

Often the presentation of individual-Â�based models in the scientific lit-
erature consists of a flow chart or written description without a precise 
mathematical specification of the model. The lack of mathematical speci-
fication can be contrasted with differential equation or simpler stochastic 
models where papers clearly specify the equations underlying the model, 
allowing other researchers to reproduce the results.

One of the ambitions of building the individual-Â�based model of Tem-
nothorax migration was to provide a reliable tool against which to pre-
dict and understand future experimental results. To fulfill this aim Pratt 
et al. (2005) provided an unambiguous specification of the model in 
terms of a specification language WSCCS. Box 9.B introduces some of 
the basic aspects of WSCCS. This specification language was proposed 
by Tofts for modeling various aspects of social insect organization (Tofts 
1991, 1993, 1994).

There is a strong advantage to using a specification language if all re-
searchers adopt the same language. Unfortunately, there are also several 
disadvantages to using formal specification languages in model build-
ing. First, keeping a clear specification can become burdensome when at-
tempting to develop in parallel a number of different models of the same 
system. For example, previous to the Pratt et al. (2005) individual-Â�based 
model of Temnothorax emigration, Pratt et al. (2002) had written a dif-
ferential equation model of the quorum mechanism. This latter model 
proved extremely powerful in understanding why the ants employed a 
quorum threshold. While it was possible to see the quorum model as a 
simplification of the full individual-Â�based model under a certain set of 
assumptions, the formal steps required to make this simplification were 
cumbersome and revealed nothing new.

A second disadvantage of formal specification is that particular speci-
fication languages are not always designed to address all modeling prob-
lems. WSCCS is not good for representing processes that occur on very 
different time scales, or problems that are spatially explicit. For Temno-
thorax emigration, several researchers have developed their models in 
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Box 9.B Process Algebra Models

Process algebras were first proposed to aid the analysis of the 
performance of distributed computer systems (Bruns 1997; Mil-
ner 1989). They allow formal specification of the individual com-
ponents, which make up a system, and then provide means for 
proving properties of component interactions. Standard process 
algebras are designed to examine conditions under which a sys-
tem will fail or attempt to prove that a system will never fail. As 
such they look at properties of a system that are time-Â�independent 
and are unaffected by stochastic variations. In modeling insect so-
cieties it is usually the timing and probability of events that are 
of greatest interest to us. To this end, Tofts (1991, 1993) devel-
oped a probabilistic and time-Â�dependent version of one of the most 
widely-Â�used process algebras, Calculus of Communicating Systems 
(CCS). Toft’s Weighted Synchronous Calculus of Communicating 
Systems (WSCCS) allowed him to specify models where ants were 
the components, and then answer questions about properties of the 
colony they composed.

A simple example is as follows. We can define an ant waiting at a 
nest as follows:

ATNESTâ•…â•…  = s: .SEARCH+(1â•›-â•›s): .LOOKCALL

LOOKCALLâ•…â•…â•…   = w:call.FOLLOW+1: .ATNEST

This definition can be interpreted as follows. An agent in state AT-
NEST will with probability s enter the state SEARCH and with prob-
ability (1â•›-â•›s) enter the state LOOKCALL. The symbol  denotes that 
one time step of the simulation will pass when the state is updated. 
The agent LOOKCALL also has two possible actions, call or . w 
denotes that the action call is prioritized over . These actions can 
only be understood in the context of the interaction of two or more 
agents. In particular, in order for the action call to be performed it is 
required that there is another agent performing the complementary 
action call. For example, if we define two further agents:

GIVECALL = w:call.LEAD + 1: .GIVECALL

WALK = 1: .WALK
(Box 9.B continued on next page)
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order to investigate different aspects of the emigration. These range from 
differential equation to various individual-Â�based models. Thus, although 
the ideal would be for everyone to use a consistent language for speci-
fying their models, in practice this is a very difficult aim to fulfill. The 
burden of making every model consistent outweighs the advantage of 
rigorous comparison between models.

The lack of agreed-Â�upon framework for developing individual-Â�based 
models and the difficulty in measuring the large number of parameter 
values discussed at the end of the Social Insect Foraging section in this 
chapter, are the two major reasons for a limited acceptance of this type of 
modeling approach (Grimm & Railsback 2005). Individual-Â�based models 

when these three agents are defined in parallel, written as:

LOOKCALL  GIVECALL  WALK

then on one time step these agents will become

FOLLOW  LEAD  WALK.

On the other hand, the parallel definition

LOOKCALL  WALK  WALK

will become

ATNEST  WALK  WALK.

Thus if two parallel agents wish to perform the complementary ac-
tions, call and call, then this takes priority.

Since the idea of WSCSS is to give a formal definition of agents, 
the above informal discussion does not give an unambiguous ex-
planation of how process algebras are defined. A more complete 
description can be found in Tofts (1991, 1993) and Sumpter et al. 
(2001). WSCCS can, however, be used to provide formal defini-
tions of complicated state-Â�based models of animal interactions. It 
can also be used to develop Markov chain and differential equa-
tion representations of these models (Sumpter et al. 2001). In the 
supplementary material of Pratt et al. (2005) a full description is 
given of the Temnothorax nest choice model in WSCCS.
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are often viewed as ill-Â�defined and unreliable by researchers versed in the 
use of differential equations or other mathematical approaches. This is 
unfortunate, because in some sense they are the only tool available in the 
study of truly complicated systems. Exactly how the lack of standards 
and reproducibility in individual-Â�based modeling can be overcome in the 
future is unclear, but it remains an important problem.

In this chapter I have focused on individual-Â� and state-Â�based models 
in the context of social insect foraging and migration. These examples 
should serve primarily as case studies of the successes and limitations 
of this type of approach. Indeed, individual-Â�based models are by no 
means limited to these applications. Agent-Â�based modeling is a powerful 
tool for understanding the social sciences (Edmonds et al. 2008; Miller 
& Page 2007), ecology (Grimm & Railsback 2005) and microbiology 
(Â�Ferrer etâ•¯al. 2008).

Dimension Reduction

If real world systems consist of large numbers of variables and param-
eters, and models with large number of variables and parameters are 
unwieldy, then how can we hope to model complicated systems? One 
answer to this question lies in the very art of modeling: to find a way of 
expressing the key elements of a system in only a few well-Â�defined vari-
ables. It is the art of modeling to try to produce a model that is as “simple 
as possible but no simpler,” as the quote attributed to Einstein goes.

The number of variables in a model is often referred to as the model’s 
dimension. With the exception of the models discussed in this chapter, 
most of the models in this book have a small dimension, e.g., a small 
number of variables describing the number of ants visiting a particular 
feeder or the proportion of individuals that scrounge or produce food op-
portunities. In cases where the model’s dimension is higher, for example, 
when we have a pair of variables for the position and speed of each par-
ticle in the SPP models of chapter 5, we try to derive a smaller number 
of variables, such as the instantaneous alignment or average neighbor 
distance, that somehow characterize the group. The aim here is to char-
acterize large-Â� or infinite-Â�dimensional models by a much smaller number 
of variables. If we can characterize a system by a model that has only a 
small number of dimensions, then it becomes easier to make mathemati-
cal predictions about its behavior.

Complications should never be overestimated. When viewed at cer-
tain spatial and temporal scales very complex individuals can produce 
very simple group level dynamics. For example, though a highly com-
plex algorithm may have brought shoppers to town in the first place, the 
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number of people passing by a point on a quiet shopping street during a 
five-Â�minute interval is likely to be randomly distributed. This prediction 
is based on the “law of small numbers,” that independent low frequency 
events in a large population follow a Poisson distribution (Bortkiewicz 
1898). While on very small time scales there are socially enforced gaps 
between people and on very large time scales there are patterns deter-
mined by shops opening and closing, on the time scale of an hour on a 
Monday morning pedestrians pass by more or less at random. Once a 
large number of factors begin to influence behavior, the complex begins 
to seem simple again.

Another example of a single distribution characterizing large numbers 
of independent individuals is the central limit theorem. In box 4.B in 
chapter 4, I show how the normal distribution, which is defined by its 
mean and variance, characterizes the sum of the actions of n independent 
individuals. The “law of small numbers” and the central limit theorem 
are just two examples of mathematical results that allow a system of high 
dimension to be simplified to one of low dimension. The mean-Â�field ap-
proximations used to derive differential equation models in box 9.A are 
another. Mathematical techniques such as moment closure (Keeling & 
Ross 2008), equation free methods (Kevrekidis et al. 2004) and others all 
act to reduce the dimension of complex models and bring clearer analyti-
cal understanding of systems (Sethna 2006; Sornette 2004).

Complications should not be underestimated either. The fact that I 
have written seven chapters on models with a small number of dimen-
sions and one chapter on those with high dimension should not suggest 
that most problems in collective animal behavior can be modeled using 
a small number of variables. The decision to study a particular scien-
tific problem is based not only on its intrinsic importance, but also upon 
whether we believe we can make progress solving it. Low-Â�dimensional 
models are mathematically tractable. If such a model can be applied in 
understanding a system, it becomes more likely to be the subject of ex-
perimental research. While a large number of mathematical techniques 
have been discovered to reduce biological systems to lower dimensions, 
there is no a priori reason that the majority of these systems should be 
low dimensional. Indeed, while we can accept the idea that the complex 
is sometimes simple, our everyday experience tells us that the biological 
world is truly complicated.



— Chapter 10 —

The Evolution of Co-Â�operation

A fundamental question about all forms of collective animal behav-
ior is how they evolved through natural selection. At various points in 
this book I have turned to arguments based on individuals adopting or 
evolving behaviors that increase their own fitness to explain or make 
predictions about group behavior. For example, group size distribution 
was described in terms of individuals attempting to join a group of a size 
that maximizes their fitness (chapter 2); foraging birds were described as 
balancing searching for food themselves with copying others (chapter 3); 
consensus decision-Â�making and synchronization were described in terms 
of individuals co-Â�ordinating so they can benefit from acting together 
(chapters 4 and 7). While such functional arguments are not the only way 
to understand the behavior of groups (and indeed have played a second-
ary role to mechanistic explanations in the other chapters of this book), 
they are an essential part of biology. This chapter gives an overview of 
how functional reasoning can be applied to collective animal behavior.

The theory of natural selection is grounded in the idea that those in-
dividuals exhibiting a behavior that provides them with higher than av-
erage fitness pass their genes, and thus their particular behavior, on to 
future generations. It is this idea that provides the basic assumption of 
evolutionary game theory models: those individuals adopting a strategy 
that provides them with higher than average fitness will increase in the 
population, while those with lower than average fitness will decrease. 
Despite the simplicity of this underlying assumption, these models have 
proved extremely powerful in predicting when co-Â�operation between 
animals will evolve (Dugatkin & Reeve 1998; Maynard Smith 1982). 
As a result of this success, a vast literature has arisen on the evolution of 
co-Â�operation, both theoretical and experimental. The size of this litera-
ture makes it difficult to give a concise account of how different models 
and experiments relate to one another. There is, however, an increasing 
consensus of how co-Â�operation should be discussed in evolutionary biol-
ogy (Clutton-Â�Brock 2002; Foster et al. 2006; Lehmann & Keller 2006a, 
2006b; West et al. 2007). In this chapter, I follow this consensus, and 
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categorize how collective and co-Â�operative behavior can evolve between 
non-Â�relatives in four different ways: through parasitism, mutualism, 
synergism, and repeated interactions. In doing so I discuss evolutionary 
game theory, which has become a central modeling tool in understanding 
co-Â�operation between non-Â�relatives.

A complication arises when we consider the evolution of altruism. Al-
truism is defined as individuals paying a cost greater than any resulting 
benefit to their average lifetime reproductive success while providing a 
benefit to the lifetime reproductive success of others. Under natural selec-
tion, an individual adopting an altruistic strategy will suffer a drop in 
fitness and will be less likely to directly contribute offspring to the next 
generation. By introducing genetic relatedness into evolutionary game 
theory models, however, we see that the inclusive fitness equation or 
Hamilton’s rule provides a good predictor of when altruism can evolve. 
Altruism can evolve when individuals help their relatives, thus indirectly 
passing their genes to future generations. This chapter should thus pro-
vide a broad classification of many of the collective behaviors discussed 
in this book as arising from a combination of four distinct forms of co-Â�
operation (parasitism, mutualism, synergy, and repeated interactions) 
and altruism arising from inclusive fitness.

Evolutionary Game Theory

Evolutionary game theory models describe how selection acts on behav-
ioral strategies. Over repeated generations a strategy will increase in the 
population if it receives a higher than average payoff or fecundity, but 
decrease if it receives a lower than average payoff or fecundity. The bio-
logical interpretation of these arguments is different when considering 
evolution through natural selection or individual decision-Â�making (Du-
gatkin & Reeve 1998). Under Darwinian natural selection, we assume 
that a genotype encodes for a particular strategy throughout an indi-
vidual’s lifetime and ask whether this genotype will increase or decrease 
in the population over generations. Those genotypes that provide lower 
fecundity die without reproducing and those providing higher fecundity 
produce offspring that fill their places. Under individual decision-Â�making, 
we consider an individual that can change its strategy during its lifetime in 
response to its mistakes. This individual plays its strategy. If it then gets a 
payoff higher than average it keeps the strategy; otherwise, if its payoff is 
lower than average, it changes strategy to one that will improve its payoff.

Evolutionary game theory assumes the following lifecycle for individu-
als. An infinitely large population of individuals undergo the following 
stages:
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1.â•‡�I ndividuals form groups of size N. Individuals are distributed 
entirely at random between groups, i.e., dispersal is global.

2.â•‡�E ach individual has a behavioral strategy, si. The payoff or 
fecundity of each individual i is determined by its own strategy 
and that of all other individuals in the group, i.e., f(si, s1â•¯.â•¯.â•¯.â•¯sN). 
No reproduction occurs while individuals are within the group.

3.â•‡�I ndividuals then leave the group and a law of selection is applied 
to them: each strategy’s contribution to the next generation is 
proportional to its fecundity relative to the average fecundity of 
the entire population (i.e., not just those in the group of size N). 
This contribution to the next generation is also known as the 
individual’s fitness.

In many evolutionary game theory models it is often further assumed 
that N = 2 (Maynard Smith 1982). For N > 2 these assumptions are the 
same as “group selection” models (Nunney 1985; Wilson 1983). Pro-
vided Nâ•›<â•›∞, the probability of repeatedly interacting with the same indi-
vidual on consecutive generations is zero, as is the interaction probability 
for two related individuals, e.g., individuals with the same parents.

Some of these assumptions can be relaxed and the results of these mod-
els remain the same. For example, Nunney (1985) shows that a popula-
tion interacting with local neighbors in a continuous space, rather than 
discrete groups, but dispersing globally before reproduction gives similar 
predictions as those from the lifecycle above. What cannot be relaxed, 
however, is the assumption that there is a zero probability of interacting 
with the same individual twice or of interacting with relatives. These 
two cases are dealt with separately below in the sections on repeated 
interactions and inclusive fitness, respectively. For a good discussion and 
justification of the other assumptions underlying these models see Grafen 
(1984), Nunney (1985), and Dugatkin & Reeve (1994).

Evolutionary games where N = 2 and individuals choose between two 
distinct strategies can be expressed in terms of a payoff table. Table 10.1 
gives such a payoff table for interactions between “co-Â�operators” and 

Table 10.1
Payoff table for two player evolutionary game

Focal/Partner	C o-Â�operate	 Defect

Co-Â�operate	 Bâ•›-â•›Câ•›+â•›E	 Dâ•›-â•›C
Defect	 B	 0

The values in the table determine the fitness gained by the focal individual as a function 
of its own strategy and that of its partner.
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Box 10.A Two-Â�player Discrete Strategy Evolutionary Games

In addition to the assumptions in section 10.1, I further assume 
that N = 2 and there are only two discrete behavioral strategies, 
called co-Â�operate and defect. Interactions in these pairs give a pay-
off, i.e., fecundity or number of offspring produced, which can be 
expressed in a two-Â�by-Â�two payoff table (table 10.1). A focal indi-
vidual adopting the co-Â�operative strategy always pays a cost C and 
always confers a benefit B to its partner. Depending on the strategy 
of the partner the focal individual receives a direct benefit D, if the 
partner defects, or an extra benefit E, if the partner co-Â�operates. A 
focal defector pays no cost but receives the benefit B if its partner is 
a co-Â�operator. Note that B, C, D, and E are assumed to be positive 
constants that do not depend upon the frequency of co-Â�operators 
or defectors in the population as a whole.

The payoff to an individual depends on the strategy of their part-
ner. Since pairs are selected entirely at random from an infinite 
population, the probability that a focal individual interacts with a 
co-Â�operative individual is equal to the proportion of co-Â�operators 
in the population as a whole, denoted x. Thus the expected payoff 
of a co-Â�operator is

x(Bâ•›+â•›Eâ•›-â•›C)â•›-â•›(1â•›-â•›x)(Dâ•›-â•›C),

and the expected payoff of a defector is xB.

These are the frequency-Â�dependent payoff functions, which deter-
mine how many offspring individuals produce. The average payoff 
of the population is

x(x(Bâ•›+â•›Eâ•›-â•›C)â•›-â•›(1â•›-â•›x)(Dâ•›-â•›C))â•›-â•›(1â•›-â•›x)xB.

Natural selection implies that the proportion of individuals with 
higher than average payoff will increase and the proportion of indi-
viduals with lower than average payoff will decrease in the popula-
tion. Thus the fitness of an individual can be defined as being equal 
to its payoff divided by the average payoff of population, i.e.

f x
x x B E C x D C x xB

( )
( ( ) ( )( )) ( )

=
+ +

+ − + − − + −

x(B E-C) (1-x)(D-C)
1 1

.
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“defectors.” In this game we assume that a focal co-Â�operator pays a cost 
C and confers a benefit B to its partner. If the partner defects the focal co-Â�
operator still receives a direct benefit D, while if the partner co-Â�operates it 
receives the benefit B plus an extra benefit E. A focal defector pays no cost 
but receives the benefit B if its partner is a co-Â�operator. The model resulting 
from the above assumptions and this payoff table is analyzed in box 10.A.

The distinction between the different types of benefits B, D, and E lies 
at the heart of understanding the evolution of co-Â�operation. Figure 10.1 
shows how the relationship between the parameters D and E and the cost 
C determines the evolutionarily stable proportion of co-Â�operators and 
defectors in the population. The figure gives four qualitatively distinct 
evolutionary outcomes, which I call parasitism, mutualism, synergy, and 
“failed” altruism. I now examine each of these scenarios separately, also 

We can then write the following expression for the rate of change 
of the proportion of co-Â�operators in the population:

dx
dt

x= (x(payoff of a co-Â�operatorâ•›-â•›average payoff of population),

which in this case is equal to

dx
dt

g x x x x E C x D C= = − − + − −( )( ) ( ) ( ) ( )( )1 1 .

Solving this equation as tâ•›râ•›∞, i.e., dx/dt = 0, gives us the condi-
tions under which co-Â�operation is selected for.

Solving dx/dt = 0 gives steady states at x* = 0, x* = 1, and x* = 
(Câ•›-â•›D)/(Eâ•›-â•›D). These correspond respectively to a population of 
all defectors, all co-Â�operators, and a mixture between co-Â�operators 
and defectors. By differentiating g(x) with respect to x and evaluat-
ing at x* we find the conditions under which the addition of a small 
number of co-Â�operators or defectors will lead to the growth of that 
strategy in the population away from the steady state. These steady 
states are said to be evolutionarily stable to such small perturba-
tions whenever gï‡¢(x*)â•›<â•›0. For example, gï‡¢(0) = Dâ•›-â•›C so all defect 
is stable if C > D. Similarly, all co-Â�operate is stable if E > C. The 
mixed strategy steady state, x* = (Câ•›-â•›D)/(Eâ•›-â•›D), exists (i.e., lies 
between 0 and 1) and is evolutionarily stable if D > C > E. The 
mixed strategy steady state exists but is unstable if E > C > D. 
These results are summarized and categorized in figure 10.1.
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discussing how the results for these two-Â�player, two-Â�strategy games relate 
to N-Â�player and continuous strategy games. It turns out that two-Â�player 
games provide quite a general classification of the possible forms of co-Â�
operation, even when we add these further complications.

Parasitism

It’s Sunday morning, the living room is a mess, but the newspaper has 
just arrived. You and your partner have the option of either tidying the 
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Figure 10.1.â•‡O utcome of two-Â�player evolutionary game. Shows how the cost-Â�benefit param-
eters, C, D, and E determine the evolutionarily stable strategies in two-Â�player, two-Â�strategy 
games. The axes of the main figure are the benefits E and D. Each of the four panels within 
the figure shows one of four qualitatively different forms of the fitness function g(x), given 
in box 10.A. The arrows show how the amount of co-Â�operation in a population will change, 
given a particular proportion of co-Â�operators in the population. If D > C but Eâ•›<â•›C then the 
outcome is parasitism, a single evolutionarily stable state where the population consists of a 
mixture of co-Â�operators and defectors; if D > C and E > C then the outcome is mutualism, the 
evolutionarily stable state is to all co-Â�operate; if Dâ•›<â•›C and E > C then the outcome is syner-
gism, where there are two evolutionarily stable states one corresponding to all defect and one 
to all co-Â�operate; finally, if Dâ•›<â•›C and Eâ•›<â•›C then the evolutionarily stable state is to all defect. 
This last case is classified as failed altruism, because were individuals to co-Â�operate in such a 
situation their actions would be altruistic and result in negative direct fitness for an individual.
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living room or sitting down and enjoying the lifestyle supplement. The 
decision can be interpreted in terms of the costs and benefits in table 
10.1. Assume that D is the direct benefit you gain from having a tidy 
living room, but you pay cost C in the time you spend tidying. Further 
assume that the benefit of having a tidy room is greater than the cost of 
cleaning, so D > C. On the other hand, if your partner tidies up then you 
can defect and get the benefit B of reading and having a tidy room. If 
you tidy up together then you save some time E, but because tidying up 
always takes some positive amount of time, C > E.

Identifying D > C > E in figure 10.1 shows that a unique evolutionarily 
stable state exists for individuals that wake up in a different house with 
a different partner every Sunday. A single defector in a population of 
co-Â�operators benefits from the work of the others, leading to an increase 
in defection. However, when everyone defects then they all receive the 
lowest possible payoff and it pays for an individual to co-Â�operate in-
stead. The proportion of individuals who co-Â�operate evolves to (Câ•›-â•›D)/
(Eâ•›-â•›D). At this point no one individual can do better on average by 
changing strategy. The lack of stability of both pure co-Â�operation and 
pure defection leads to a “compromise” of some individuals that work 
and some that “free ride” or parasitize the work of others.

Social Parasitism in Groups

Social parasitism is of relevance to a large number of social and bio-
logical situations. The producer-Â�scrounger game discussed in chapter 3 
in box 3.B describes a situation where a focal foraging bird can either 
search for food itself (produce) or watch others search and share their 
finds (scrounge). The strategy an individual chooses depends on the strat-
egies of others: it pays to scrounge in a population of pure producers and 
it pays to produce in a population of pure scroungers. The evolutionarily 
stable strategy, of a mixture between some scroungers and some produc-
ers, is widely observed in the behavior of foraging birds (Producers and 
Scoungers, chapter 3).

A term that often arises in describing N-Â�player social parasitism is the 
“Tragedy of the Commons” (Hardin 1968). Imagine a commons pasture 
on which any individual can place their cattle. This pasture has a limited 
capacity and having cattle above this capacity causes the pasture to de-
teriorate in quality. A tragedy arises because the benefit of adding a cow 
goes directly to the owner, while the cost in deterioration is shared among 
everyone. Thus even when the pasture is over capacity, it can pay for an 
individual to add a cow. Ultimately, the pasture will yield an average 
payoff below that yielded at capacity. The same is true in the producer-Â�
scrounger game: at the evolutionarily stable state the average intake of 
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each forager is lower than it would be if they all searched independently. 
And again for vigilance: flocks are less vigilant than would optimize their 
energy intake (Fernandez-Â�Juricic et al. 2004b). And again in the group 
size paradox in chapter 2: it pays solitary individuals to join a group even 
if this group size will become suboptimal for those already in it.

Hardin uses the “Tragedy of the Commons” to argue for regulation 
of individual freedom, since individual freedom will lead to disadvan-
tage for all. While this argument has some validity, the outcome of social 
parasitism is not as bleak as it might at first seem. Provided there remain 
direct benefits for co-Â�operating, i.e., D > C, then the tragedy does not 
lead to everyone receiving the lowest possible payoff of zero. When no 
one else is producing or being vigilant, it always pays to co-Â�operate. The 
fact that in a fully co-Â�operative society it pays for some individuals to de-
fect does not imply that everyone will defect. We should not be surprised 
when we see animals or humans co-Â�operating despite parasitism of their 
efforts by others, but should first consider what direct benefits are gained 
by the co-Â�operators (Clutton-Â�Brock 2002; Griffin & West 2002).

Continuous Strategies

In the model in box 10.A we assume that there are two distinct strate-
gies, one corresponding to co-Â�operate and the other to defect and study 
how the proportion of the population adopting each strategy evolves. 
Another approach is to have a continuous strategy, expressing the level of 
investment made in co-Â�operation. For example, we can think of each in-
dividual in our population of living room occupants as investing a level, 
p, in tidying up.

It is tempting to think of the proportion of the population and the 
level of investment as being the same thing, and conclude that individuals 
with continuous strategies will adopt a level of co-Â�operation equal to the 
evolutionarily stable strategy in the discrete strategy game. The problem 
with this interpretation is that a population where all individuals have 
strategy p* can be, although not always is, invaded by two strategies that 
lie on either side of p* (Vincent & Brown 1984). Ultimately, a sequence of 
invasions may lead to the population again dividing into having two dis-
tinct strategies, one that always co-Â�operates and one that always defects.

The above observation is important because animals are often faced 
with decisions not simply whether to co-Â�operate or not, but how much 
they want to invest in a co-Â�operative behavior, such as guarding or 
searching for commonly exploitable food. The importance of continu-
ous strategies has been widely acknowledged since evolutionary game 
theory was first developed (Zeeman 1981). Geritz et al. (1998) provided 
an elegant framework for determining when evolution will converge on a 
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particular strategy. Box 10.B shows how this framework, often referred 
to as adaptive dynamics, can be used to classify an evolutionary game 
with continuous strategies in which a focal individual who invests p in a 
co-Â�operative behavior receives payoff

P p q B p q C p( , ) ( , ) ( )= − ,

where q is the level of investment by its partner (Doebeli et al. 2004). 
Figure 10.2 shows that the population will first move toward adopting 
a single strategy. If this strategy is not pure defect or pure co-Â�operate 
then, depending on the exact form of B(p,q) and C(p), the population 
will branch into two distinct types, one type that invests more (co-Â�
operators) and one that invests less (defectors) in co-Â�operation than 
those at the mixed singular strategy (figure 2a). Alternatively, the popu-
lation will remain at this mixed strategy where all individuals invest the 
same amount in co-Â�operation (figure 10.2b). For continuous strategy 
games it is this final outcome that is the evolutionarily stable strategy, 
which cannot be invaded by mutant individuals adopting small changes 
to their strategy.

The main biological message of the continuous strategy game is that 
even when individuals have an opportunity to tune a level of invest-
ment in a co-Â�operative activity, we can expect discrete strategies. The 
co-Â�operators produce most of the benefit and pay most of the cost and 
the defectors parasitize their efforts (Doebeli & Hauert 2005; Doebeli 
et al. 2004). This could explain why some individuals seem to special-
ize in apparently costly behaviors such as searching for food (Barnard 
& Sibly 1981), while others apparently reap only the benefits of these 
behaviors. It is important to note, however, that the co-Â�operators in such 
scenarios still derive a direct benefit from co-Â�operation. By definition, the 
co-Â�operating individuals cannot increase their payoff by defecting and 
are thus acting in their own selfish interests.

Mutualism

If there are positive benefits to performing a co-Â�operative behavior inde-
pendent of the actions of a partner, then co-Â�operation can evolve despite 
the existence of associated costs. If in table 10.1 there is an extra benefit 
that cancels out the cost, i.e., E = C, the payoff for both co-Â�operating 
is B + Eâ•›-â•›C = B. Now there is no longer a positive incentive to defect. 
If E continues to increase, then the total benefit becomes more than the 
sum of the separate actions and there are now mutual benefits to both 
co-Â�operating, i.e., B + Eâ•›-â•›C > B. The extra benefit of working together 
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Box 10.B Two-Â�player Continuous Strategy Games 

Doebli et al. (2004) describe an evolutionary game theory model 
where N = 2 and players meet in pairs. Each player invests a level 
between 0 and 1 in co-Â�operative behavior. They assume p is the 
level investment of the focal individual, q is the level of investment 
by its partner and the focal individual receives payoff

P p q B p q C p( , ) ( , ) ( )= − .

Consider a population in which every individual adopts the same 
strategy q, apart from a rare mutant that adopts strategy p that is 
slightly different than q. Whether a mutant invades and the resident 
strategy changes through time is determined by the selection gradient

D q
p

P p q P q q

B q q C q

p q
( ) ( , ) ( , )

’( , ) ’( )

=
∂

∂
−( )

= −

=

( , ) ( ).B q q C q= −l l

Steady states q* of D(q*) = 0 are said to be convergent stable when 
Dï‡¢(q*) < 0, where the derivative here is taken with respect to q. The 
convergent stable states are the points toward which the popula-
tion first evolves in figure 10.2.

The fact that q* is convergent stable does not imply that it is the 
final resting point of evolution. It is possible that two mutants, one 
with a slightly larger investment than q* and one with a slightly 
smaller investment than q* can simultaneously invade the resident 
q*. Doebli et al. (2004) show that the convergent stable state q* is 
the final stopping point of evolution if B(q*,q*) - C(q*) < 0, where 
the partial derivative here is taken twice with respect to p and 
then evaluated at p = q = q*. In this case, every individual makes 
the same investment q* in co-Â�operation (e.g., figure 10.2b). If 
B(q*,q*) - C(q*) > 0 then q* is said to be an evolutionary branch-
ing point and the population separates into individuals that adopt 
more co-Â�operative and less co-Â�operative strategies (e.g., figure 
10.2a). Details of the above classification of steady states is given 
by Geritz et al. (1998).

Doebli et al. (2004) looked at non-Â�linear benefit and cost functions 
of the form
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outweighs any cost. In figure 10.1, I label this scenario mutualism. Both E 
and D are greater than C and under all circumstances it pays to co-Â�operate.

Mutualism provides an explanation of many different behaviors by 
animal groups: animals aggregate in the hope that another individual in 
a group will be eaten by a predator (chapter 2), pigeons flying together 
benefit from each other’s directional information (chapter 5), and so on. 
In many ways, mutualisms provide a null hypothesis for co-Â�operative 
behavior. If we see an animal performing a costly behavior that benefits 
another individual, the first question we can ask is what benefits it gains 
itself from the action. If it gains irrespective of the actions of its partner 
then the interaction is mutualistic.

Despite providing a somewhat obvious reason for individuals to co-Â�
operate, mutualisms are sometimes overlooked. This can be because 
the benefits are not immediately clear or the costs are overestimated. 
Clutton-Â�Brock (2002) emphasizes that, when estimating these costs and 
benefits, the physiological state of the individual performing them must 
be taken into account. This state can differ between individuals. Thus 

B p q b p q b p q

C p c p c p

( , ) ( ) ( )

( )

= + + +

= +
2

2
1

2
2

1

and found a steady state at q* = (c1 - b1)/(4b2 - 2c2), which exists 
and is convergent stable when 4b2 - 2c2 < c1 - b1 < 0, and which 
exists and is evolutionarily stable when c2 > b2. By insisting that 
investment in co-Â�operation must be between 0 and 1, two further 
steady states are created at these points.

There are five different evolutionary outcomes of this model, exam-
ples of which are shown in figure 10.2. Four of the five outcomes 
are identical to the outcomes of the discrete strategy model shown 
in figure 10.1—some individuals defect, some co-Â�operate (figure 
10.2a, parasitism); depending on initial population all defect or all 
co-Â�operate (figure 10.2c, synergy); all defect (figure 10.2d, failed 
altruism); or all co-Â�operate (figure 10.2e, mutualism). The addi-
tional outcome (figure 10.2b) arises when the mixed strategy q* is 
evolutionarily stable. In this case individuals balance their own in-
vestment in co-Â�operation so as not to be exploited. The continuous 
model thus distinguishes the cases where the population all adopts 
the same strategy or splits between two strategies, but in both these 
cases the interactions are social parasitic.
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Figure 10.2.â•‡O utcomes of a simulation of a continuous investment two-Â�player game (re-
produced from M. Doebeli, C. Hauert, & T. Killingback, “The Evolutionary Origin of 
Cooperators and Defectors,” October 2004, Science 306, 859–862, fig. 1 reprinted with 
permission from AAAS). Top row shows the evolutionary dynamics of the strategy distri-
bution; darker shades indicate higher frequencies of a strategy. Singular strategies (dashed 
vertical lines) are indicated where appropriate. Bottom row shows the cost C(x) (dotted 
line), benefit B(2x) (dashed line), and the mean payoff B(2x) – C(x) (solid line). The dash-Â�
dotted vertical line indicates maximal mean payoffs. (A) Social parasitism with evolu-
tionary branching; (B) Social parasitism with an evolutionarily stable singular strategy; 
(C)â•¯Synergy with two evolutionarily stable strategies; (depending on the initial conditions, 
the population either evolves to full defection or to full cooperation, two distinct simula-
tions shown); (D) Failed altruism; (E) Mutualism. See Doebli et al. (2004) for details and 
parameter values.
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while co-Â�operative actions may have substantial energetic costs, they may 
be performed by individuals with high energy reserves. For example, as 
discussed in chapter 6, meerkats spend more time guarding their col-
lective nest when they are well fed. While guarding may be costly to a 
hungry meerkat, it is beneficial to one with a full stomach (Clutton-Â�Brock 
et al. 2001, 1999). It thus becomes mutually beneficial for meerkats to 
guard their nest and take turns (Bednekoff 1997; Foster 2004).

In mutualisms, the balance of power is often tilted toward one individ-
ual (Beekman et al. 2003). For example, carpenter bee queens usually find 
nests on their own, but are sometimes usurped through a violent struggle 
by another queen (Hogendoorn & Velthuis 1999). The usurper then lays 
all subsequent eggs. Ironically, the stage is now set for mutualism be-
tween these one time opponents. The usurper can benefit if the original 
foundress stays to guard the nest, but must provide an incentive for the 
foundress to stay. She can do this by not destroying all of the eggs laid by 
the foundress. While this small concession may provide only a small ben-
efit to the foundress, it is greater than the probable benefit arising from 
an attempt to establish a new nest (Dunn & Richards 2003). Carpenter 
bee nest founding provides just one example of a “transactional conces-
sion” offered by a dominant individual to one or more sub-Â�dominants. 
These concessions make it mutually beneficial for the sub-Â�dominants to 
co-Â�operate (Reeve & Keller 2001). Unlike in table 10.1, the dominant 
and sub-Â�dominants have different payoff tables and the dominant uses 
concessions to manipulate the payoff table of the sub-Â�dominants. This 
manipulation ensures that both have a benefit in co-Â�operating, indepen-
dent of the future actions of the other. Thus, while power and mutualism 
might appear unlikely partners in animal conflicts, as in human affairs, 
they lie at the heart of many co-Â�operative group behaviors.

It is particularly important when considering mutualisms to observe 
that the benefit B has absolutely no role in the evolutionary dynamics 
(box 10.A). This is somewhat counter-Â�intuitive since it means that we 
can expect individuals to evolve to confer arbitrarily large benefits on 
others, giving a strong appearance of altruism. What should be borne in 
mind here is that for a particular act to benefit a partner, it usually incurs 
a cost to the actor. For example, giving your food to another individual 
might benefit them to degree B but will cost you to degree C. If the act 
of giving food provides no direct or extra benefit (i.e., D = E = 0), then 
however small the cost is of giving food and however large the benefit is 
to another, it should not evolve.

Despite the above limitation, we can expect to see acts where individu-
als confer huge benefits to others. In particular, acts, which incur costs 
that are slightly smaller than the direct benefits they provide, i.e., C is 
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slightly smaller than D, may provide extremely large benefits to others. 
A human example of such a mutualism would be a confident swimmer 
jumping in a river to save a stranger’s life. The confident swimmer is 
unlikely to drown (small C) and will reap a benefit in terms of reputa-
tion or simply from the vigorous exercise (D slightly bigger than C), but 
in doing so will provide an extremely large benefit B to the drowning 
stranger. However happy the drowning stranger is after the rescue, by the 
evolutionary game theory definition, this is no more altruistic than if the 
lifesaver had trained for, entered, and won a swimming contest.

Synergism

Much of this book is about how non-Â�linear interactions between indi-
viduals can produce patterns that a single individual could not achieve 
alone. The chemical trails of rats and ants, cliff swallow food calling 
(chapter 3), bark beetles attacking trees and caterpillars building tents 
(chapter 7), all involve the mass co-Â�operation of many individuals that 
ultimately improves individual efficiency. In this sense their co-Â�operation 
could be described simply as mutualistic. However, there is an aspect of 
these co-Â�operative behaviors that is not true of mutualisms as defined 
above: if we consider a single individual performing the behavior in a 
group consisting solely of defectors, it would pay a cost without receiv-
ing any benefit. For example, if a single tent caterpillar starts to build a 
tent and the others save the energy they would have expended producing 
silk, then this focal individual pays all the cost and reaps only its small 
share of the benefit. If this cost outweighs the benefit, how then can such 
co-Â�operation evolve?

For two-Â�player interactions, this type of social dilemma can be formal-
ized by setting the direct benefits of a co-Â�operative behavior to be less 
than the costs, i.e., Dâ•›<â•›C. If the focal individual knows its partner will 
co-Â�operate, then it is always better to co-Â�operate, since as in mutualism, 
B + Eâ•›-â•›C > B. However, if the focal knows its partner will defect, then 
because Dâ•›<â•›C, it is better to also defect and avoid a negative payoff. In 
figure 10.1 this scenario is called synergism and has two possible evolu-
tionarily stable states: one corresponding to everyone co-Â�operating and 
another corresponding to everyone defecting. To which evolutionarily 
stable state the population evolves depends on the initial conditions. If 
the population initially contains more than (Câ•›-â•›D)/(Eâ•›-â•›D) co-Â�operators, 
then evolution will lead to full co-Â�operation, otherwise evolution will 
lead to full defection.

A prediction of the synergism model is that costly behavior can evolve 
even if, when interacting with other individuals that defect, the focal 
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individual gets no benefit from co-Â�operating. This point is not always 
given full consideration when discussing the evolution of costly signals. 
For example, cliff swallows call to signal the location of insect swarms 
thus paying a probably small cost in lost food, but providing nearby 
foraging partners a positive benefit in finding food. Brown et al. (1991) 
suggest, quite correctly, that swallows may have evolved call signaling 
because, “even if other birds do not also call, the caller could benefit 
through local enhancement simply by watching the nearby group mem-
bers as some of them track the subsequent movement of the prey.” If 
this is the case, then there may be no cost to interacting with a defec-
tor, i.e., D > C and E > C, and full co-Â�operation always evolves through 
mutualism. However, a benefit of local enhancement to signaling is not 
a requirement for the evolution of food calling. Rather, the game theory 
model predicts that provided there is an extra benefit when both birds 
call that is greater than the cost of calling, then co-Â�operation can evolve 
independent of any direct benefits in the absence of calling, i.e., Dâ•›<â•›C. It 
is plausible that such extra benefits exist for cliff swallows. Groups that 
contain individuals that always signal can continuously track the move-
ment of insect swarms. When interacting with a co-Â�operator, the focal 
individual gets the additional benefit, E > C, of being able to re-Â�find its 
own discovery. Defection would reduce both the focal and the partner 
bird’s ability to find food.

More than the Sum of Its Parts

The last paragraph takes a two-Â�player game and suggests it may apply to 
multi-Â�player interactions. Swallows do not forage in pairs but rather in 
large groups. Under what circumstances can synergistic co-Â�operation per-
sist in larger groups? Box 10.C describes a continuous strategy game with 
group size N in which each individual can make an investment in co-Â�
operation. This investment incurs a constant cost, but group productivity 
increases as a function of the co-Â�operative investment. This productivity 
is shared equally among individuals, so benefit to an individual increases 
as productivity divided by number of group members. Co-Â�operation is 
evolutionarily stable for large groups in this model provided that group 
productivity increases with at least the square of the group size, or equiv-
alently provided that the benefit per individual increases at least linearly 
with group size.

Figures 10.3 and 10.4 show how the evolutionarily stable states change 
with group size for two different productivity functions. When productiv-
ity grows superlinearly with group size then maximum co-Â�operation is al-
ways a potential evolutionary outcome (figure 10.3). When productivity 
grows first superlinearly but then saturates, then maximum co-Â�operation 
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Box 10.C Synergy in Groups of Size N 

Consider a population that on each generation randomly aggre-
gates in isolated groups of size N. Each individual can choose to 
invest an amount piâ•›â•›[0,1] in a co-Â�operative behavior. The benefit 
to each individual, g(N

j=1â•›pj)/N, is assumed to be a function of the 
overall productivity of the group members, g, divided by the total 
number of group members. Assume that this function is the same 
for all group members. Thus the payoff for an individual i is

,
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where c is the cost of the co-Â�operative behavior. This model is an 
example of a structured-Â�deme model (Nunney 1985; Wilson 1983).

Let us start by assuming that productivity increases as some power 
a of the level of co-Â�operation of, i.e., g(P) = bPâ†œa. We now follow 
the method outlined by Doebeli et al. (2004). Assume that all indi-
viduals have the same strategy q apart from a mutant with strategy 
p. The selection gradient is then
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Since we insist that investment is between 0 and 1, we can evaluate 
the selection gradient at these two extremes in order to see whether 
they are stable strategies. Evaluating D(0) = -c tells us that the all 
defect is an evolutionarily stable state. Similarly, D(1) = baNa-2 - c 
tells us that the all co-Â�operate is also evolutionarily stable, provided 
baNa-2 > c. When all co-Â�operate is stable there exists, although we 
do not determine it explicitly here, a single steady state q* between 
these two extremes that is not convergent stable. This steady state 
acts as a repellant: when initially q > q* then qâ•›râ•›1 and when ini-
tially qâ•›< q* then qâ•›râ•›0. Qualitatively, the situation is the same as 
in the two-Â�player discrete game discussed in the text: both all co-Â�
operate and all defect are evolutionarily stable.

The condition for synergistic co-Â�operation in this model is baNa-2

> c. If aâ•›<â•›2 then as group size increases the cost an individual is 
willing to pay in co-Â�operating decreases. For example, when a = 1 
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is stable for an intermediate range of group sizes (figure 10.4). This last 
observation is important, since realistic productivity functions must 
saturate at some point. Group productivity cannot continue to increase 
indefinitely with group size since at some point members of the large 
group must compete for resources (Foster 2004). Despite these diminish-
ing returns for very large groups, co-Â�operation is stable in intermediate-Â�
sized groups. This observation is true generally for productivity functions 
that increase superlinearly with group size at first and then saturate later 
(Sumpter & Brännström 2008).

Examples discussed in earlier chapters such as cliff swallow foraging, 
tent building by caterpillars and ant foraging involve either a group pro-
ductivity that increases superlinearly with group size or, equivalently, a 
benefit per individual increasing linearly with group size. A key property 
of many synergistic interactions is the use of signals to spread informa-
tion. Cliff sparrows use vocal signals (Brown et al. 1991); Norway rats 
(Galef & Buckley 1996), naked mole rats (Judd & Sherman 1996), and 
ants deposit residual trails; social insects use an array of different types 
of dances and other signals. The evolution of these signals is intimately 
linked with positive feedback. Signaling by a focal individual improves 
other group members’ chances of discovering food; and since these group 
members are also signalers, then this improves the chance of rediscover-
ing the same food or finding other nearby sources. The positive feedback 
continues and group productivity increases as more than the sum of the 

we recover b/N > c. If aâ•›≥â•›2, however, then as group size increases 
the cost an individual is willing to pay tends toward a positive but 
finite limit. In particular, when a = 2, co-Â�operation is stable if 2b 
> c independent of N. Figure 10.3 shows how the steady states 
change with group size for a = 3.

Figure 10.4 shows similar analysis for g(P) = T2P3/(â•›T2 + P2). This 
productivity function initially grows cubically, but when group size 
exceeds T the growth becomes more linear. For large P growth 
is purely linear. Here there are three different parameter regimes. 
For very small group sizes all individuals evolve to invest nothing 
(p = 0) in co-Â�operation, but as group size increases the strategy of 
full investment (p = 1) becomes stable. At intermediate group sizes 
the full investment becomes unstable and a compromise of partial 
investment becomes stable. As group size increases still further all 
communication becomes evolutionarily unstable and p = 0 is the 
only evolutionarily stable state.
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group’s parts (see chapter 3). Such group productivity is precisely that 
needed for co-Â�operation to evolve in the model in box 10.C.

Positive feedback and self-Â�organization are sometimes proposed 
as alternatives to natural selection in explaining the evolution of co-Â�
operation. The argument is that because self-Â�organized systems are more 
than the sum of their parts they cannot be understood simply in terms of 
the selfish individual units of which they are composed. By implication, 
the group becomes the unit upon which selection acts, and we need to 
consider how evolution functions on multiple levels (Fletcher & Doebeli 
2006; Fletcher et al. 2006). The synergistic model I propose here shows 
that self-Â�organization is consistent with selection on the level of the self-
ish individuals. Positive feedback can generate synergistic effects, and 
synergisms benefit the individual who is part of the group. The selection 
pressure on the individual is to co-Â�operate, since it benefits from group 
membership. While the mechanisms whereby synergism is generated are 
often complex and need disentangling, this does not imply that their evo-
lution cannot be understood at the level of the individual parts.

Synergism depends crucially on frequency dependence: co-Â�operation 
can persist in an established population of co-Â�operators, but cannot 

Figure 10.3.â•‡ Model of synergy described in box 10.B with productivity that increases with 
the cube of group size, i.e., g(P) = bP3. Bifurcation plots showing the location and stability 
of interior singular strategies and boundary points as a function of group size N. We choose 
c/b = 100 so that for very small groups there is no benefit to co-Â�operation, i.e., p = 0 is the 
only stable strategy. With increasing group size a repelling interior singular strategy emerges 
and both no investment (p = 0) and maximal investment (p = 1) are locally stable strategies. 
Arrows indicate for which initial investment in co-Â�operation these strategies will evolve (see 
(Sumpter & Brännström 2008) for details).
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establish itself in an already established group of defectors. This is not al-
ways explicitly spelled out when co-Â�operation is discussed. For example, 
West et al. (2006, 2007) classify social behaviors in a table with effect on 
actor in rows and effect on recipient in the columns. West et al. (2007) 
go on to try to clear up confusion about co-Â�operation and altruism aris-
ing from inclusive fitness (see Inclusive Fitness in this chapter). However, 
in their classification they do not differentiate between direct and extra 
benefits and implicitly assume that E = D. Instead, they extend the model 
in box 10.A by allowing B to be negative (West et al. 2007, table 2, and 
for the more general case N > 2, table 3). Figure 10.5 interprets this clas-
sification in terms of the evolutionary game theory model in box 10.A. In 
contrast to figure 10.1, B is now on the x-Â�axis instead of D, but B has no 
effect on evolutionary outcome. Equating E and D means that parasitism 
and synergism cannot occur, and the only possible evolutionarily stable 
states are those where either all individuals co-Â�operate or all defect. Con-
versely, in the model in figure 10.1, when E > C co-Â�operation can evolve 
without altruism, even when C > D (negative effect of co-Â�operation on 

Figure 10.4.â•‡ Model of synergy described in box 10.B with group productivity that first 
increases with the cube of group size but later saturates to linear increase, i.e., g(P) = bT2

P3 /(T2 + P2). Parameters are c = 5 and T = 40. Bifurcation plot showing the location and sta-
bility of interior singular strategies and boundary points as a function of group size N. As in 
fig. 10.3, with increasing group size a repelling interior singular strategy emerges and both 
no investment (p = 0) and maximal investment (p = 1) are locally stable strategies. In this 
case, however, as group sizes increases further p = 1 becomes unstable and a strategy cor-
responding to an intermediate investment in communication becomes stable. As group size 
increases still further the intermediate investment strategy disappears and p = 0 is the only 
stable state. The arrows from points indicate for which initial investment in co-Â�operation 
the various stable strategies will evolve (see Sumpter & Brännström 2008 for details).
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actor at low, but not high, frequencies of co-Â�operators) and B > 0 (posi-
tive effect on recipient at all frequencies).

To be fair to West et al., their classification is entirely valid and was 
designed to make the distinction between direct benefits and altruism. 
However, it is usually confusion between extra and direct benefits, and 
not misunderstanding of inclusive fitness, that leads to erroneous claims 
that “altruism” can arise from group selection or self-Â�organization 
(Queller 1985; Queller & Strassmann 2006). Altruism is never predicted 
to occur in models with the assumptions I gave at the start of this chap-
ter, while synergism can occur given a high enough initial proportion of 
co-Â�operators.

Figure 10.5.â•‡C lassification of social behaviors for the two-Â�player game proposed by West 
et al. (2006, 2007). Their model assumes that there is a cost to co-Â�operating, C > 0, there 
is a direct benefit to self of co-Â�operating independent of whether the other player defects, 
D = E > 0, and that a co-Â�operator provides a benefit B to another individual. In the model 
given in table 2 of West et al. (2007) they further assume that B = D, but in the general 
model for types of co-Â�operation given implicitly in table 1 of West et al. (2007) they allow 
B to have any value, positive or negative. Given these assumptions we can substitute these 
parameters into equation 10.A.1 in box 10.A. The figure shows how the cost benefit pa-
rameters, C, B, and D, determine the evolutionarily stable strategies. As before, B plays no 
role in determining the evolutionarily stable strategy.
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One last point should be made about synergism. The model in box 
10.C depends on a “fair” division of the payoffs. The fact that per capita 
productivity increases linearly with the number of individuals does not 
necessarily mean that the evolution of a particular form of co-Â�operation 
is due to synergism. A central assumption that must also be tested is 
whether the benefits are on average shared equally among group mem-
bers. If one individual has an opportunity to take consistently more than 
its share at the expense of the others then co-Â�operation can fail. Unequal 
shares clearly occur in social insect colonies, where it is the small number 
of queens who produce the majority of offspring. In this case we need the 
additional explanation, in the form of increased inclusive fitness or some 
form of transactional concession to maintain co-Â�operation.

Repeated Interactions

When there is a positive probability of interacting with the same indi-
vidual again it can be beneficial to an individual to adopt a strategy that 
allows for co-Â�operation. This observation is formalized in what is known 
as the iterated prisoner’s dilemma (Axelrod & Hamilton 1981; Trivers 
1971). In the iterated prisoner’s dilemma, each individual plays a game a 
fixed number of times with payoffs as in table 10.1 with D = E = 0 and C 
and B positive. Over a wide range of conditions, a strategy known as Tit-Â�
for-Â�Tat is evolutionarily stable for this game. A focal Tit-Â�for-Â�Tat individ-
ual co-Â�operates on the first interaction and then on the next interaction 
adopts the same strategy as its partner did on the previous interaction. So 
if the partner defects, so too does the focal Tit-Â�For-Â�Tat individual. If two 
Tit-Â�for-Â�Tat individuals meet each other then they always co-Â�operate. This 
interaction allows co-Â�operation to evolve under the “threat” that defec-
tion by one individual will result in a break-Â�off of co-Â�operation and both 
individuals losing out.

There are many extensions to the iterated prisoner’s dilemma, but in 
order for individuals to co-Â�operate in these there must exist either a posi-
tive probability of interacting with the same individual (e.g., Killingback 
& Doebeli 2002; Schuessler 1989; Wahl & Nowak 1999) or indirect 
knowledge of a partner’s previous strategic choices (Nowak & Sigmund 
1998). Lehmann & Keller (2006a) provide a strong argument that, for all 
such models, a Tit-Â�for-Â�Tat strategy is evolutionarily stable provided that

mB > C,

where m is the probability that a further interaction will occur with the 
same individual multiplied by the probability that the focal individual 
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knows the result of the partner’s last interaction. For this case, the payoff 
table for Tit-Â�for-Â�Tat playing against an Always Defect strategy is given 
in table 10.2. These payoffs are the same as those for synergistic inter-
actions as in table10.1, with E =  mâ†œ(Bâ•›- C)/(1â•›- m) and D = 0. The iter-
ated prisoner’s dilemma thus leads to either everyone being Tit-Â�for-Â�Tat 
or everyone being Always Defect, depending on the initial proportion of 
each in the population. A more complete description of strategies in the 
repeated prisoner’s dilemma, including analysis of other potential alter-
native strategies, can be found in Hofbauer & Sigmund (1998).

There is some evidence that previous interactions and reputations are 
important in human interactions (Fehr & Fischbacher 2003, 2004; Skryms 
2004) and in low cost activities by animals such as grooming and feed-
ing. However, these have not been convincingly demonstrated in high cost 
co-Â�operative breeding (Clutton-Â�Brock 2002). Furthermore, unless there 
are strong preferential interactions within groups, we would expect that 
m  1/N and as group size increases the chance of repeated interactions 
will decrease. Unlike synergy, co-Â�operation through repeated interactions 
relies on either small group sizes or a large capacity for remembering pre-
vious interactions. These observations have led several authors to ques-
tion the general significance of repeated interactions alone in explaining 
the evolution of co-Â�operation in many of the mass collective behavior’s of 
animals (Clutton-Â�Brock 2002; Richner & Heeb 1996). Indeed, repeated 
interactions do not play a significant role in explaining most of the col-
lective behaviors I have discussed in this book. This is simply because the 
most interesting collective behaviors involve large numbers of individuals.

There are however various ways in which repeated interactions can en-
hance synergism or mutualism. For example, individuals with a choice of 

Table 10.2
Payoff table for iterated prisoners dilemma: Tit-Â�for-Â�Tat vs. All Defect

Focal / Partner	T it-Â�for-Â�Tat	 Always Defect

Tit-Â�for-Â�Tat	 (Bâ•›-â•›C)/(1â•›-â•›m)â•›	 -C
Always Defect	 B	 0

The Tit-Â�for-Â�Tat strategy co-Â�operates on the first interaction and then copies its opponent’s 
previous strategy (co-Â�operate or defect) on further interactions. Always Defect strategy al-
ways defects. If a Tit-Â�for-Â�Tat meets an Always Defect individual it pays cost -C on the first 
interaction, but then will itself always defect. The Always Defect individual gets benefit 
B on that first interaction, but then receives no further payoff. When Tit-Â�for-Â�Tats meet 
they continuously co-Â�operate, both receiving payoff Bâ•›-â•›C until their interaction breaks off. 
Since m is the probability that the interaction breaks off or a mistake in memory is made, 
the average number of co-Â�operative interactions is 

i=1im
i-1(1â•›-â•›m)= 1/(1â•›-â•›m). Hence the 

average payoff is (Bâ•›-â•›C)/(1â•›-â•›m).
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which group to join could first interact with group members to ascertain 
their behavioral strategy and then choose to join groups of co-Â�operators 
rather than defectors. If payoff increases with group size then attracting 
other group members would provide an extra incentive for group mem-
bers to co-Â�operate with potential joiners (Kokko et al. 2002; Wilson & 
Dugatkin 1997). It is, however, difficult to envisage how such assortative 
interactions can lead to co-Â�operation without the possibility of further 
repeated interactions or some form of synergism, mutualism, or parasit-
ism. For example, let us assume co-Â�operators can evolve a mechanism 
for identifying other co-Â�operators and preferentially interact with them. 
But then what is to stop defectors evolving the same mechanism and 
exploiting co-Â�operators? The only answer is to insist that the mechanism 
for identifying the co-Â�operative feature is only found in those individuals 
that carry the feature (Dawkins 1976). While this remains a possibility, 
it is not a particularly general explanation of co-Â�operation (Lehmann & 
Keller 2006a; West et al. 2006).

Inclusive Fitness

Altruism is a behavior that increases the direct fitness, or average lifetime 
reproductive success, of another individual while decreasing the direct fit-
ness of the actor (West et al. 2006). In the models discussed so far, direct 
fitness is proportional to the payoff or fecundity of an individual minus 
the average payoff of the population (box 10.A). This definition auto-
matically excludes evolutionarily stable strategies from being altruistic. 
If an individual can increase its direct fitness by changing strategy then a 
state is not evolutionarily stable. Altruism cannot evolve in such a setting 
(figure 10.1).

Hamilton’s Rule

Hamilton proposed a simple yet far-Â�reaching rule for the evolution of al-
truism. Assume that p and q are the respective behavioral strategies of a 
focal individual and its partner. Larger values of p and q can be thought of 
as corresponding to more investment in a co-Â�operative behavior. Hamilton 
argued that if r is the co-Â�efficient for relatedness between the focal indi-
vidual and its partner, b(p,q) is the total increase in direct fitness conferred 
on the partner by the focal individual and c(p,q) is the cost of the behavior 
to the actor in terms of direct fitness, then the focal individual’s investment 
in helping will increase if the inclusive fitness of the focal individual,

rb(p,q) - c(p,q),
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is greater than zero. Inclusive fitness includes both the benefits of interac-
tion that an individual gains directly in its own fitness plus those it gains 
indirectly through increased fitness of its relatives. The key idea under-
lying inclusive fitness is that, because related individuals have a higher 
probability of sharing the same genotype, genotypes with higher inclusive 
fitness are more likely to be transmitted to the next generation.

By interpreting p and q as the focal individual’s and its partner’s invest-
ment in co-Â�operation, we can calculate the benefits and costs for interac-
tions according to the payoffs in table 10.1. Using a method proposed by 
Taylor and Frank (1996) we find

b(p,q) = pEâ•›- pDâ•›+ B and c(p,q) = Câ•›- qEâ•›- (1â•›- q)D

for evolutionary game theory models. Assuming that D = E = 0, then 
Hamilton’s rule for an increase in helping is simply

	 rB > C.	 (10.1)

If this inequality holds, a focal individual’s probability of helping p 
will tend to 1, independent of the strategy of its partner. From the view-
point of direct fitness this is altruism. When everyone co-Â�operates, q = 1, 
a focal individual could increase its direct fitness by defecting. In doing 
so, however, it would reduce its inclusive fitness. Hamilton’s insight was 
that in Darwinian natural selection, where the gene is the unit on which 
selection acts, it is inclusive fitness and not payoff, fecundity, or direct 
fitness that is maximized.

The relationship in equation 10.1 is a very specific version of Ham-
ilton’s rule. In the rule’s more general form, the benefit b(p,q) and cost 
c(p,q) are functions of the strategies of the focal individual and the aver-
age strategy in the population. For example, if we relax the assumption 
that D = E = 0 then Hamilton’s rule is

r(pEâ•›- pDâ•›+ B) > Câ•›- qEâ•›- (1â•›- q)D,

and a whole range of evolutionarily stable states for interactions between 
relatives arises. The rule now depends on the frequency of co-Â�operators 
in the population. In general, we see that relatedness among individuals 
leads to an increase in co-Â�operation: parameter combinations that would 
not have led to co-Â�operation now move towards parasitism and synergy; 
and instances of parasitism and synergy become mutualisms (see table 
10.3 for a summary of the effect of inclusive fitness).

Hamilton’s rule has proven extremely successful in making predic-
tions about co-Â�operation and conflict in animal societies where between-Â�
individual relatedness is positive (Griffin & West 2003). Helping relatives 
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at a direct cost to oneself is a feature of all levels of biological organiza-
tion: from bacteria to humans (Keller 1999). One of its most successful 
and intellectually interesting applications has been in understanding the 
evolution of insect societies (Bourke & Franks 1995; Queller & Stras-
smann 1998; Ratnieks et al. 2006). At the most basic level, the division 
of the colony into queens and workers is evidence of altruism. Non-Â�
reproducing workers help their mothers raise sisters who become queens 
and brothers who mate with queens from other colonies, thus passing 
their genes on to the next generation. A consistent failure to reproduce 
by a class of individuals is something that simply cannot evolve through 
natural selection in the absence of the gains in inclusive fitness implied 
by Hamilton’s rule. Once the worker class is established, natural selec-
tion acts to increase the efficiency of the workers’ interactions as colonies 
compete to produce the most queens and drones. It is here that the so-
phisticated forms of co-Â�operation seen in honeybees, ants, and termites 
are seen to evolve (chapter 9).

Although the members of insect societies are usually related, the re-
latedness within these groups is often lower than predicted by their sup-
posed family structure (Heinze et al. 2001; Korb & Heinze 2004). These 
observations have even led some to question whether relatedness has 
any importance at all in explaining co-Â�operation (Costa 2006; Wilson 
& HollÂ�dobler 2005). At an extreme, colonies of unicolonial ant species, 
such as the Argentine ant, contain many unrelated queens (Pedersen et al. 
2006). The question is how co-Â�operation persists with such low levels or 
zero relatedness between group members? One explanation is a combina-
tion of synergism and altruism through indirect fitness benefits. Workers 
in insect societies gain inclusive fitness from their mother queens who 

Table 10.3
Summary of results of model in box 10.B

		  Game Theory		R  epeated 
	 Parameters	 (figure 10.1)	 Altruism	I nteractions

Parasitism	 D > C > E	 x* = (Câ•›-â•›D)/	 x* increases	 x* increases
		  (Eâ•›-â•›D)	 with r	 with m

Mutualism	 D > C, E > C	 x* = 1	 x* = 1	 x* = 1

Synergism	 E > C > D	 x* = 0 or x* = 1	 increased region 	 increased region
			   of attraction to x*	 of attraction to x*

Altruism	 C > D, C > E	 x* = 0	 x* = 1 if rB > C 	 x* = 0, and x* = 1
			   (assuming 	 if mB > C
			   D = E = 0)
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in turn, even if unrelated to other queens, have an incentive to produce 
more workers and increase group efficiency. Greater insight into these 
questions could be gained by determining how colony performance in-
creases with group size. Most importantly, synergistic interactions and 
helping of relatives should not be viewed as distinct explanations of co-Â�
operation, but different parts of a common explanation (Foster et al. 
2006; West et al. 2007).

Family Groups and Spatially Structured Populations

The correlation between relatedness and co-Â�operation is far from the 
complete story of Hamilton’s rule or the application of inclusive fitness 
theory. Depending on the assumed lifecycle of individuals the predictions 
of inclusive fitness theory change. The derivation of equation 10.1 is based 
on the assumptions I made at the start of the chapter about the lifecycle 
of individuals. A question then arises as to where the between-Â�individual 
relatedness originates from in such a model? At the start of this chapter, I 
assumed that individuals disperse widely and interact with others chosen 
randomly from the whole population. In the previous section I assumed 
that they interact more often than not with relatives. If these assumptions 
are not to contradict each other they need some clarification.

One way in which interactions can take place between relatives while 
simultaneously allowing global dispersal is to assume that groups ini-
tially consist of a single foundress, which then reproduces to found a 
“family” group of size N. We can then consider the interactions between 
the offspring of the foundress, who are positively related, and determine 
how much they should invest in co-Â�operation. This approach can be fur-
ther generalized by having n foundresses, or foundresses who have mated 
with n different males, where n is a lot smaller than the group size of off-
spring N. Multiple foundresses will reduce average relatedness in propor-
tion to 1/n but relatedness will still have a positive effect on co-Â�operation. 
One or a small number of foundresses building a larger nest of related 
offspring is common to the lifecycle of highly co-Â�operative insect societies 
(Bourke & Franks 1995) and of bird species (Emlen 1997; Komdeur & 
Hatchwell 1999). Social insects (Downs & Ratnieks 1999; Wilson 1971) 
and birds (Sharp et al. 2005) have evolved mechanisms that ensure that 
they interact primarily with relatives. It is often this family structure that 
leads to altruistic interactions in these groups.

Without the introduction of family-Â�based population structure, global 
dispersal means that within-Â�group relatedness decreases to zero. On the 
other hand, local dispersal of individuals will always lead to some level 
of positive relatedness between neighbors. For example, assume that 
each group is formed on an island. At the end of each generation all the 
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adults die and produce offspring, some of which remain on the island and 
Â�others of which disperse to a randomly chosen island. There is a positive 
probability the individuals remaining on the same island share the same 
mother. This assumption is the basis of a mathematical model of local 
dispersal known as the continuous island model (Rousset 2004). Another 
way to introduce local dispersal or spatial population structure is to con-
sider a ring of islands, each linked to one nearest neighbor. Dispersal 
then occurs between neighboring islands, and nearby individuals become 
more related than those living at far away islands. This spatial structure 
is an example of a stepping stone model (Kimura & Weiss 1964; Rousset 
2004; Wright 1943).

Although local dispersal increases relatedness, it does not necessar-
ily increase co-Â�operation. Taylor (1992a, 1992b) showed that in both 
the island model and the stepping stone models the predicted level of 
co-Â�operation is entirely independent of migration. This is because as 
migration decreases, not only does relatedness increase but so too does 
competition between relatives. In terms of Hamilton’s rule, migration 
effects not only r but also c(p,q) and b(p,q), and it effects them in such 
a way that the inclusive fitness r b(p,q)â•›-â•›c(p,q) remains constant (Rous-
set 2004). These theoretical ideas have been tested experimentally in fig 
wasps, where fighting between males was uncorrelated with their relat-
edness, but was negatively correlated with the level of competition they 
faced for future mating opportunities (West et al. 2001). In general, Tay-
lor’s result has deep implications for how relatedness is used to predict 
altruism. It shows that Hamilton’s rule does not immediately imply that 
co-Â�operation increases with relatedness.

While local migration alone does not necessarily promote co-Â�operation, 
other details of the population’s lifecycle do. Inclusive fitness theory pre-
dicts the conditions for co-Â�operation over a wide range of assumptions 
about the lifecycle, including details of overlapping generations, and dif-
ferent forms of migration and niche construction (Irwin & Taylor 2000, 
2001; Lehmann 2007; Taylor & Irwin 2000). In these models the inclu-
sive fitness provides the condition under which co-Â�operation can evolve 
(Grafen 1985; Lehmann & Keller 2006a; Rousset 2004). This breadth of 
application of inclusive fitness is sometimes underappreciated, probably 
because the simplicity of the inclusive fitness equation is deceiving. For 
any lifecycle the components r, b(p,q), and c(p,q) must all be calculated, 
and although there are extensive tools from population genetics that 
allow this to be done (Rousset 2004), it is not always straightforward to 
apply them.

A failure to see the proper connection to inclusive fitness has led to 
a confusing literature on how spatially local interactions can promote 
altruism (Lehmann & Keller 2006a, 2006b). Various simulation models, 
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collectively known as evolutionary graph theory, have been proposed 
that show how local interactions can lead to altruism (Hauert 2002; LieÂ�
berman et al. 2005; Nowak & May 1992; Ohtsuki et al. 2006; Santos & 
Pacheco 2006). In these models, individuals play a prisoner’s dilemma-Â�
like (i.e., D and E both less than C) game with local neighbors on a 
graph or social network. Depending on the form of the network and the 
details of the interaction rules, individuals evolve to have a greater or 
lesser tendency to “co-Â�operate.” These models do not usually follow the 
inclusive fitness approach of calculating relatedness between individuals. 
This proves problematic, since local migration always implies a positive 
relatedness. For example, Lehmann et al. (2007) showed that some basic 
results from evolutionary graph theory are special cases of the applica-
tion of inclusive fitness theory. Altruism in many of these models arises 
simply from increased interactions with relatives, and not because spa-
tially local interactions are a novel route to co-Â�operation.

Although inclusive fitness theory provides some powerful tools for dis-
entangling the evolution of co-Â�operation in spatially structured popula-
tions, it is important to recognize that conditions promoting co-Â�operation 
in particular biological and social systems cannot be derived without a 
good understanding of the details of the systems’ life cycle (Ratnieks 
2006). Models of the evolution of co-Â�operation are often based on as-
sumptions that adults produce large numbers of offspring, juveniles dis-
perse independently of each other, and that there are the same number of 
individuals in all groups. Changes to these assumptions lead to changes 
in the underlying population structure and changes in predictions about 
the direction of selection. A multitude of different theoretical studies 
have investigated how co-Â�operation evolves under different assumptions 
about population structure (e.g., Taylor 1992a, 1992b; Taylor and Frank 
1996; Frank 1998; Taylor and Irwin 2000; Irwin and Taylor 2001; van 
Ballen & Rand 1998; Lehmann et al. 2006). This rich variety of theoreti-
cal studies reveals that there is no simple mathematical formula for the 
evolution of altruism, but that the inclusive fitness framework provides 
a powerful tool set to disentangle the factors that promote co-Â�operation.

Unifying Explanations?

In the literature on social or group behavior there is no clear agreement 
on the exact definition of terms such as co-Â�operation, social behavior, 
helping, mutual benefit, direct benefit, group selection, or even altruism. 
Different words have been defined by different authors to mean the same 
thing, and the same words have been defined to mean different things 
(West et al. 2006, 2007). An advantage of classifying co-Â�operation as 



T h e  E v o l u t i o n  o f  C o - Â�o p e r a t i o n

251

the outcome of different parameter values in a single model, as I have 
done here, is that the assumptions are clearly stated and the predictions 
are seen to be logical consequences of the model. I have of course chosen 
words to label different sets of assumptions and predictions and in doing 
so I chose mostly to follow (Clutton-Â�Brock 2002), although instead of 
using his label of “group augmentation” (Kokko et al. 2001) I use May-
nard Smith & Szathmáry’s (1995) label synergism. However, labeling is 
not important. While these labels can change, the outcome of these two-Â�
player, two-Â�strategy games will not. Given the same set of assumptions 
these models will make the same predictions.

In addition to analyzing two-Â�player, two-Â�strategy games, I have argued 
that many more complex game theory and inclusive fitness models can be 
classified under the same broad headings—parasitism, mutualism, syner-
gism, repeated interactions, and altruism—that I have given the simpler 
models. There remain a large number of detailed models of animal co-Â�
operation that I have not covered here. These introduce a wide variety of 
concepts such as rent, punishment, partner choice, diminishing returns, 
etc. Each of these models is useful in describing particular situations and 
reveals how details of lifecycle produce changes in co-Â�operation. I would, 
however, argue that in a broad sense they can be usefully classified as 
belonging to one or, depending on parameter values, a combination of 
the five headings I use above. Such a classification allows comparison 
among different systems. For example, we can say things like, “starling 
foraging and vigilance are both examples of social parasitism, while cliff 
swallow foraging appears to be synergistic.” We may have built game 
theory models that capture the details of each of these systems but the 
classification allows us to quickly summarize what we have found out 
about these systems.

There is one last distinction that is worth drawing in the study of col-
lective animal behavior: that is between behaviors that are strictly co-Â�
operative and those that are co-Â�ordinating. The distinction is based on 
whether the cost to the focal individual has evolved or is simply a by-Â�
product of the individual undertaking an activity that is otherwise ben-
eficial to itself (Clutton-Â�Brock 2002). This is the same distinction that is 
made between cues and signals (Maynard Smith & Harper 2005). Cues 
can co-Â�ordinate activities, but they have not evolved as a result of a ben-
efit to the individuals that make them (chapter 3). Signals will only evolve 
when animals co-Â�operate, and co-Â�ordination always relies on cues. The 
distinction makes it straightforward to, for example, rule out social para-
sitism as an explanation of group foraging involving signals. The distinc-
tion is, however, less straightforward for mutualisms, where it is often 
difficult to distinguish whether a behavior has evolved to provide mutual 
benefit or whether the benefit was simply serendipitous.
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There is richness in biological interactions that can never be captured 
by broad classifications. Indeed, simply answering questions such as how 
do birds flock, how do fish avoid predators, how do ants build their 
foraging networks, and how do cockroaches choose where to live with 
respect to their position on figure 10.1 does not tell us much about these 
fascinating problems. What makes these problems interesting usually has 
little to do with a broad notion of why they evolved. So while I have 
ended this book with an explanation of the functional or “why” ques-
tions in relation to collective animal behavior, the intention is not to fi-
nally unify the earlier chapters. Rather the aim of this chapter has been 
to clarify how functional reasoning is applied to these systems. The hope 
is that, together with the mechanistic description earlier in the book, we 
can use the combination of these approaches to build a full understand-
ing of collective animal behavior.



— Chapter 11 —

Conclusions

This book has progressed from coming together through information 
transfer, decision-Â�making, moving together, synchronization, structures, 
and regulation to finally arrive at complicated interactions. This progres-
sion has taken on increasingly complex aspects of collective animal be-
havior. Each chapter has attempted to unify group behavior of different 
species in these different situations and explain similarities in the under-
lying function and mechanisms. I will close this book with a brief discus-
sion of how I believe we should think of the science of collective animal 
behavior and suggest some future directions for research.

From Toys to Tools

This book grew from a review article I wrote three years ago on “prin-
ciples of collective animal behaviour” (Sumpter 2006). There I outlined 
several guiding principles such as “positive feedback,” “individual varia-
tion,” etc., which underlie many aspects of collective animal behavior. 
These principles have again appeared at many points within this book.

Having a set of such principles is useful for grouping and categorizing 
ideas and more quickly understanding new systems. Here, I have chosen 
a slightly different grouping of ideas under the different chapter head-
ings, concentrating more on similarities between systems in spatial or 
temporal organization. Again, these chapters provide a way of unifying 
our understanding of different systems.

Another way of unifying different systems is through mathematical 
modeling. One of the most remarkable features of the study of collec-
tive animal behavior is the applicability of mathematical models. This 
is made all the more remarkable when we consider that animals are not 
as simple as physical particles. Individuals vary and experiments always 
involve intrinsic variation and noise. Despite, and sometimes because of 
this variation, it is possible to use one model to make predictions about 
very different types of groups.
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Unifying principles are not, however, the be all and end all of science. 
In the 2006 article and here, I advocate a pragmatic view to unifying 
theories of collective behavior. The study of collective animal behavior 
should proceed on a case-Â�by-Â�case basis. For each particular system, we 
should classify how individuals interact with each other and build math-
ematical models based on observations. In many cases, models of one 
system may be applicable to other systems and this can help us under-
stand the underlying mechanisms. This similarity between models should 
not in itself become the driving force in our research.

Instead, I see mathematical models and different theoretical approaches as 
a tool set for understanding a wide variety of systems. No single mathemati-
cal model provides a unique correct way of describing all aspects of a par-
ticular system. Neither can we expect to apply the same model to all systems. 
The art of understanding the world is not in mastery of particular models 
but in the ability to recognize and exploit connections where they exist.

It is for this reason that neither mechanistic nor functional approaches 
to group behavior can claim precedence over the other. Both of these ap-
proaches have produced elegant models, which have been tested against 
experiments and suggest new ways in which systems can be viewed. In this 
book, I have emphasized the combination of functional and mechanistic 
approaches. Even if particular studies are likely to be more or less biased 
to either the functional or the mechanistic, it is important to bear in mind 
how the other approach can play a role in increasing understanding.

The idea that mathematical modeling has a role to play in understand-
ing complex systems is not new. The last 30 years has seen the rapid 
growth of complexity science, the application of non-Â�linear mathemat-
ics, statistical physics, and the theory of networks to understanding bio-
chemistry, biology, and sociology. In many cases these models are “toy 
models” of systems. The Kuramoto model, self-Â�propelled particles, the 
logistic equation, self-Â�organized criticality, small world networks, voter 
models, preferential attachment, to name just a few, are ideas that are less 
inspired by details of particular systems and more an attempt to abstract 
from details and make general predictions about a wide range of systems.

In my opinion, the aim of complexity science today should be to move 
from these toy models toward a set of tools that can be applied to specific 
complex systems. Without a clear relationship to biological or sociologi-
cal systems the role of toy models is limited. Or to put it more bluntly, 
as a biologist colleague once told me as I was trying to explain one such 
model to him, “Leave your toys at home, we’re trying to work here.”

The models applied in this book are not just toys used to train our 
intuition before we get to work on the real thing. They are the tools of 
a serious approach to understanding specific systems. From models of 
animal group size distributions; through cockroach, honeybee, and ant 
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emigration; to the collective motion of insects, birds, and fish; to the 
structure of ant trails and termite nests, the interplay between experiment 
and model is clear. The models bring rigor to our assumptions about a 
system, make testable predictions, and in many cases provide a quantita-
tive as well as a qualitative match to the available data.

It is the combination of the relative sophistication of the individuals of 
which animal groups are composed, and the empirical success in using 
mathematical models to predict and understand their behavior that makes 
the study of collective animal behavior important. Despite the seeming 
complexity of the task of understanding social interactions, we do have 
tools that allow us to predict experimental outcomes. This should give 
hope to applications of similar methods in understanding ecosystems, 
brain function, and other complex systems.

Unfortunately, for my biologist friend, there is no clear cut distinction 
between toys and tools. Often a toy model based on very little experi-
mental insight can serve as a basis for a more rigorous and detailed argu-
ment when fleshed out. Indeed, models of animal aggregations started 
as toy models of particle cohesion, and self-Â�propelled particle models of 
animal motion started as animations for computer games!

The important question is how to get the balance right between simplify-
ing assumptions and biological detail. I believe the key to getting this balance 
right is as follows: one should concentrate on models that make predictions 
about a system that are both non-Â�trivial and testable. Non-Â�trivial means that 
the model is needed to make the prediction. We cannot simply arrive at the 
same conclusion by verbal argument alone. Here the rigor brought by math-
ematical modeling is important. Often the problem with verbal arguments 
is not that they cannot be used to make a particular prediction, but rather 
that verbal arguments can be made for all sorts of different predictions. It is 
determining which prediction follows from a set of well stated assumptions 
that is non-Â�trivial and is the tool provided by mathematical modeling.

The work described in this book is testimony to the fact that ideas like 
self-Â�organization, emergence, and complexity theory are not just fancy 
sounding names, but can be applied to make non-Â�trivial and testable pre-
dictions about biological and sociological systems. For this reason, sci-
entists in all fields should be interested in collective animal behavior and 
mathematical modeling of complex systems in general.

Some Open Questions

There are many open and interesting questions in collective animal be-
havior. I have mentioned many of these during the course of the book, 
but it is worth listing some of them here for further consideration.
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Linking mechanisms and function in group size distribution (chap-
terâ•¯2). While Niwa’s model appears to provide a good empirical fit to 
data on fish schools and may be extendable to other animal groups, it 
does not include functional considerations. An interesting question is 
how individuals manipulate the average group size they experience, the 
key parameter in Niwa’s model.

How humans integrate many wrongs (chapters 3 & 4). The Milgram 
and Asch observations and experiments on humans reveal that humans 
use quorum-Â�like rules to decide whether to copy the choices of others. It 
would be interesting to investigate these ideas in a context where there is 
a reward to be gained by making correct choices. Here, laboratory exper-
iments, similar to those performed to investigate the prisoner’s dilemma 
and other co-Â�operative games in humans, could be used.

Modeling realistic motion of bird flocks and fish schools (chapter 5). 
Many of the “mesoscopic” features of moving animal groups are not re-
produced by current self-Â�propelled particle models. The main restriction 
here is the availability of empirical data on the structure and dynamics of 
moving animal groups. It is currently difficult to quantify why the models 
are not quite right. Recent empirical work on starlings is beginning to 
provide this data, but it remains an important challenge in an area where 
so much theoretical modeling has already been done.

Evolving self-Â�propelled particles (chapter 5). The Wood et al. model 
of how predation avoidance evolves is just one example of how natural 
selection might influence collective motion. One possibility is that natu-
ral selection acts to increase the complexity of group motion, so that the 
group is highly sensitive to changes in the environment (Sumpter et al. 
2008a).

Individual variation (chapters 4 & 6). Many of the models of collec-
tive behavior assume that individuals are identical units, but the many 
wrongs idea and Kuramoto’s model of synchronization instead make 
predictions on the basis of differences among individuals. There are con-
sistent differences among animals in their behavior and a research chal-
lenge is to understand how these differences are integrated at the level of 
the group. Instead of seeing individual differences as simply “noise” we 
should investigate their role in producing collective patterns.

Modeling complex nest structures (chapter 7). Although several mod-
els have explained formation of pillars and chambers via templates and 
stigmergy, how the complex structures such as harvester ant nests (figure 
7.5) are constructed remains an open problem.

Providing a useable formal framework for individual-Â�based modeling 
(chapter 9). One of the weaknesses of the individual-Â�based approach to 
modeling is that individual-Â�based model results can be difficult to reli-
ably replicate because they are not expressed in a formal framework. The 
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problem is agreeing on a tool for individual-Â�based modeling and design-
ing one that is flexible enough to encompass different types of models.

Collective human behavior (chapters 3, 6, 7, & 8). While there is a 
growing application of mathematical models to understand the social 
behavior of humans, I would continue to classify many of the models as 
toys rather than tools. The studies discussed throughout this book are 
notable exceptions and other recent studies using network analysis to 
look at social interaction, for example, on the internet are also beginning 
to use data to inform models. The possibility for rigorous application to 
data on human social interactions is clear. It will be interesting to see how 
the types of techniques used in studying collective animal behavior can be 
applied in studying humans.
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254–55; emergence of, 197; of foraging 
behavior, 208; individual-level, 204–6, 
208; of information transfer, 207–8; 
regulatory feedback and complex struc-
tures, 151; state-based models and, 206

Condorcet’s theorem, 89, 90, 91–92, 94, 
100

congestion, 13, 187–90; lane formation 
and collision avoidance, 187–88, 188, 
196–97

consensus decision making, 4–5; 
cockroaches and, 78–80, 80, 83–84; 
evolutionary game theory model, 147; 
migration and, 12; symmetry breaking 

and bifurcation during, 78–79; syn-
chronization and, 145, 147

construction: active walker model of path, 
166, 167–68, 169; of ant cemeteries, 
152–55; of ant nests, 155–57, 160, 161, 
162–63; building behavior and envi-
ronmental factors, 163; of combs by 
bees, 174; human cities and networks 
as, 170–72; local activation and long-
range inhibition, 153–54, 155, 156; 
nest size linked to colony size, 156–57; 
pheromones and collective, 157–58; 
regulation of, 174; reproductive advan-
tages of collective, 157–59, 158–59; 
stigmergy and, 151–52, 156; templates 
and, 151–53

continuous strategy game, 230–31, 
232–33

co-ordination game, 144–45
co-ordination vs. co-operation, 251
copying behavior: decision-making and, 

64, 78; human culture and, 74–75; 
quorum responses and, 69, 74; repeated 
interactions and, 145, 243–44

cost-benefit trade-off, 9; of co-operation, 
242; of group membership, 14–15, 
43, 125–26; of information transfer, 
61–62; of mutualisms, 231, 233–36; 
and network efficiency, 166, 168; of 
pheromone production, 158; two-player 
games and, 226, 228, 231, 242

critical mass, 76
cues, 62; cockroach aggregation and odor 

as, 78–79, 79, 82; foraging and joining 
behavior based on, 64; passive, 44; 
recruitment strategies as cue-based, 
58–59; vs. signals, 58–59, 251; social 
parasitism and, 63

decision making: accuracy of, 93–94, 
95–96, 98, 100; Condorcet’s theorem 
and, 94; consensus decisions, 4–5, 12, 
78–80; copying behavior and, 64, 78; 
evolutionarily stable decisions, 82–85; 
group size and, 94, 96–98, 100; human, 
90, 93–94; independent individuals 
and contributions to collective, 90, 92; 
“many wrongs” hypothesis of collective, 
87, 89–94, 96–100; in moving groups, 
120–25; paired-navigational decision-
making, 122–23; quorums in (see 
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quorum responses); speed and accuracy 
of, 96, 98, 216–17; U-shaped choice 
distributions, 46, 53, 79, 83, 85

defectors, 225, 225–26, 229, 234, 
236–37, 243

density: and alignment within dynamic 
spatial structures, 109–10; of natural 
groups, 120

directional information: and alignment 
within moving groups, 109–11, 126–27; 
honeybee dances as transfer of, 55, 
89–90; “many wrongs” hypothesis and, 
89–90; in navigation, 120–21

dispersion economy, 42
double bridge experiment, 45–46, 46, 

47–49, 51–53, 52, 168–69, 189–90

economic systems: equilibrium in, 184–86, 
196; microeconomics, 184–85; regula-
tory feedback in, 184–85; selfish regula-
tion and, 184–87; self-regulation in, 13, 
196; supply and demand as regulation, 
173–74, 184–87

edges: attraction to edges in physical 
environment, 49, 102, 104; group edges 
and vulnerability, 84, 125–26

efficiency: collective behavior and forag-
ing, 59; dynamic patterns as energy ef-
ficient, 126; movement rules and traffic, 
187–90; of structures created through 
collective construction, 160–63, 
165–66, 171

El-Farol bar problem, 185–86
emergence, 8; of alignment and ordered 

motion, 109–11; regulation as emergent 
property, 174; of synchronization, 
130–36, 131. See also self-organization

emigration. See migration or emigration
energy budgets, 15–16
environment: aggregation or group 

formation as environment dependent, 
108; collective construction and physi-
cal, 151–52, 154–55, 156, 162–63, 
174; construction and environmental 
templates, 151–53; grouping and envi-
ronmental homogeneity, 41–42; group 
size and, 14; over-compensation and 
changes in, 177, 180

environmental homogeneity, 41
evolutionary games: consensus decision 

making, 147; co-ordination game, 

144–45; producer-scrounger game, 65, 
66–67, 67–69, 68, 72, 229; two-player, 
228, 234, 242; two-player continuous 
strategy, 230–31, 232–33; two-player 
discrete strategy, 226–27

evolutionary graph theory, 249–50
evolution of co-operation, 6; altruism and, 

224, 228, 234, 247; artificial selection 
and behavior, 72; collective construc-
tion and reproductive success, 157–59; 
collective motion and, 126–29, 256; 
decisions regarding joining groups 
and group size, 82–85; family groups 
and the, 248–50; flocking and natural 
selection, 125–29; group size fitness 
function, 15–16, 16, 18–19, 20, 23, 24, 
41–42, 223; inclusive fitness and, 245–
50; mutualism and, 224, 228, 231, 233, 
234, 235–36, 247; natural selection and, 
9; parasitism and, 224, 228, 228–31, 
234, 247 (see also evolutionary games); 
positive feedback and, 240; repeated 
interactions and, 224, 243–45, 247; self-
organization and, 240; synergism and, 
224, 228, 234, 236–43, 240, 241, 247

exploiting, as foraging state, 201

feedback. See positive feedback; regulatory 
feedback

fireflies, sychronized flashing by, 132–33, 
136

fish: body size as factor in group size, 
41, 100; decision making and group 
size, 94, 96–98, 100; foraging benefits 
of group membership, 65; fountain 
response to predator threat, 119–20; 
group size distributions, 25, 26–27, 
28–33, 30–31; information transfer and 
directional change in schools, 109, 109, 
110; lateral line and alignment during 
schooling, 117; quorum-like decisions 
and, 94, 96–98, 99, 100; schools as dy-
namic spatial patterns (see self-Â�propelled 
particle (SPP) models); self-propelled 
particle model and motion of (see self-
propelled particle (SPP) models)

fission and fusion. See merge and split 
models; merging

fitness: defined, 15, 222–24; inclusive, 
224, 241–42, 245–50; optimal group 
size and, 18, 19
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flocking: dynamics of (see self-propelled 
particle (SPP) models); evolution of, 
125–29; models of motion in (see 
spatial patterns); “selfish herd” model 
and, 125–26

following, 58, 64, 98–100, 201
foraging behavior: behavioral state model-

ing, 199–204, 200, 201–3; complex-
ity of, 208; feeding as sychronized 
behavior, 136–39; foraging networks 
as structures, 163, 164, 165, 169–70; 
group membership and foraging suc-
cess, 64–65; group size and foraging 
success, 60; hoarding or hiding, 63; 
individual-based models for, 206; in-
formation transfer and, 44, 54–57, 61, 
126; pheromone ant trails and, 45–54; 
producer-scrounger game, 65, 66–67, 
67–69, 68, 72, 229; quorum responses 
and, 69–74, 70, 71; regulatory feedback 
and, 176; resource distribution and, 
41–42, 64–65, 66–67, 67, 69; sentinel 
behavior during, 149; synchronization 
of, 143–44

formation of groups: cluster formation in 
SPP model, 102; environment as driver 
for, 41; by genetically unrelated indi-
viduals, 42–43. See also aggregation

fountain response to predator threat, 
119–20

free entry, joining under, 17, 19, 21, 24
functional approach, 6, 9–11, 15, 53, 143, 

147, 149, 154, 223–25; linking mecha-
nistic and, 9–11, 42–43, 53, 62, 63, 85, 
125–26, 127–29, 147–48, 157–59, 223, 
250–52; producer-scrounger model, 
66–67, 72

game theory. See evolutionary games
genetic relatives, 9–10; altruism and, 224; 

collective construction and reproduc-
tive success, 157–59; family groups and 
the evolution of co-operation, 248–50; 
Hamilton’s law, 9, 125, 224, 245–48, 
249; individual variation and indepen-
dence among, 90, 91; local migration, 
249–50; and signal information trans-
fer, 62; synergism and, 62–63

Gregoire et al.’s SPP model, 111, 114–15
group augmentation. See synergism

group membership: cost-benefit trade-
off and, 14–15, 43, 125–26; foraging 
benefits linked to, 64–65

group size: body size and, 41; decision 
making and, 94, 96–98, 100; 
environmental factors and, 14; and 
foraging success, 60; large groups and 
reduced benefits of group membership, 
15; long-tailed group size distributions, 
25; natural vs. optimal group size 
distributions, 24–25; Niwa’s scaling 
of group size distributions, 29–33, 30; 
optimal, 14–17; population density 
and, 40–41; preferential attachment 
and, 33–37; reproductive success 
and,â•¯159

group size fitness function, 15–16, 16, 
18–19, 20, 23, 24, 223; genetic rela-
tionship as factor, 41; resource attrac-
tion and, 41–42

Hamilton’s rule or inclusive fitness equa-
tion, 9, 125, 224, 245–48, 249

honeybees: behavioral roles of, 197; 
bivouac structures, 5, 123, 213–15; 
comb construction by, 174; emigration 
of, 81–82, 213–15; foraging by, 54–57; 
information transfer and interactions 
among, 54–57, 197; “many wrongs” 
hypothesis and, 90; piping by, 82, 213, 
215; quorum decision making and, 
81–82, 213–15; recruitment strategies 
used by, 54–55, 82, 175, 213–15; regu-
latory feedback and, 174–75; symmetry 
breaking and, 55–57; tremble dance of, 
175; waggle dance of, 54–57, 82, 175, 
197, 213–15

human behavior: central-planning vs. 
self-organization in, 171–72; clapping 
and synchronization, 13, 130–32; 
copying and culture, 74–76; decision 
making, 90, 93–94; “groupthink” and 
collective decision making, 93–94; 
human society as collective behavior, 
12; “many wrongs” hypothesis and, 
90, 156; power law distributions, 37; 
quorum responses and, 74–76; racial 
segregation, 190, 191–92, 192–96, 193, 
195; transport networks as collective 
constructions, 170–72
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inclusive fitness, 224, 241–42, 245–50
individual-based models: for aggrega-

tion, 105, 256–57; of emigration, 215; 
for foraging behavior, 57, 205, 206; 
formalizing, 218–21, 256–57; group 
size distribution and, 40–41; for migra-
tion or emigration, 218–19; verification 
of, 209

individual behavior, 3, 8–9; aggregation 
and, 125–26, 195; collective behaviors 
and, 8–9; individual behavioral states 
and emigration, 206, 209; joining as, 
42–43

individuals: complexity at level of, 13, 
204–6, 208; intrinsic complexity of, 13; 
role in collective decision making, 90, 
92, 121; spatial patterns and individual 
actions, 117–18, 155–57; sychroniza-
tion of group activity, 145; variation 
among, 10, 90–92, 91, 92, 256. See 
also individual-based models; indi-
vidual behavior

information transfer: antennal contacts 
between ants, 175–76; communal living 
as opportunity for, 44; as complicated 
interaction, 207–8; cost-benefit trade-
off and, 61–62; cue-based, 58–59, 62, 
197; disguising or hiding of informa-
tion, 63; feedback as foundation of, 44; 
flight displays, 59, 63; honeybee dances 
and, 54–57, 89–90, 197; local interÂ�
actions and directional information, 
109–10; mechanistic and functional 
approaches to, 85; passive cues as, 
44; pheromone ant trails as, 45–54; 
quorum mechanisms for, 69–74; signal-
based, 44, 59, 61–62, 197; social para-
sitism and, 12, 62, 63; stigmergy and 
coordinated effort without, 151–52, 
156; synergism and, 59, 61–63, 239; 
synergistic interactions and, 239; vocal 
signals, 59

insects, social. See ants; bark beetles; 
bees; honeybees; termites

interactions: antennal contacts between 
ants, 175–76; emergence of complexity 
from simple, 197; signals and repeated, 
62; social networks, 172

Internet, 37, 38
Internet links, 37, 39

joining: free entry, 17, 19, 21, 24; as indi-
vidual rather than group action, 42–43; 
preferential attachment, 33–40; quorum 
responses and, 71, 72, 73; resource dis-
tribution and joining rates, 65, 69, 70, 
72, 73, 138–39; synchronized feeding 
behavior and, 136–37, 139

law of mass action, 203
“law of small numbers,” 222
leadership: body size and leader-following 

behavior, 100; Couzin et al. model and, 
121, 123; vs. “many wrongs” hypoth-
esis, 120–21; quorum thresholds and 
leader-following behavior, 96, 98–99, 
100; “subtle guide” and “streaker bee” 
hypotheses, 123–24; synchronization 
and, 130, 143–44

Leptothorax ants, 141, 156
lifetime reproductive success, 16–17, 224, 

245
linking functional and mechanistic expla-

nations, 9–11, 42–43, 53, 62, 63, 85, 
125–26, 127–29, 147–48, 157–59, 223, 
250–52

local activation and long-range inhibition, 
153–54

locusts, 4–5, 120; alignment in groups, 
110–11, 114, 115, 126–27; resource 
distribution and locust outbreaks, 14

log-log plots, 25–28, 26–27, 31–32, 35

mammals, mammalian groups, 33; bats, 
58, 63; meerkats, 149–50, 235; naked 
mole rats, 58, 62–63, 239; Norway rats, 
57–58, 239; oestrus cycle synchroniza-
tion among, 9–11, 132; social parasitism 
among, 149–50; synchronized behavior 
of, 139. See also human behavior

“many wrongs” hypothesis, 87–93, 93, 
120, 121, 145–47, 155, 157; central 
limit theorem and, 89–90; defined and 
described, 89; human behavior, 90, 
156; individual variation and, 90, 92

Markov chain model, 139
mathematical modeling, 6–8, 250–51, 

253–55; algorithms, analysis and 
robustness, 215–18; data fitting meth-
ods, 31–32; dimension reduction for, 
221–22; and group movement, 
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mathematical modeling (continued)
12–13; individual- and population-level 
applications of, 203; and link between 
functional and mechanistic approaches, 
8–11; prediction and, 169–70, 255; 
universality of models, 8–11; validation 
of, 211–12

maximal betweenness centrality (BC) 
networks, 162

mean-field approximation, 203
mechanistic approach, 6, 9–11; functional 

and 9-11, 9–11, 154; linking functional 
and, 9–11, 42–43, 53, 62, 63, 85, 
125–26, 127–29, 147–48, 157–59, 223, 
250–52; quorum response as mecha-
nism, 72

meerkats, 149–50, 235
merge and split models: Bonabeau & 

Dagorn merge model, 28–29; fission 
and fusion models and optimization, 
42–42; leaving and joining rules, 
42–43; Niwa’s merge and split model, 
29–33, 30–31, 32, 34, 40–41, 43, 102, 
103, 256; Niwa’s spatial merge and split 
model, 103, 104, 104–5

merging: attraction and, 102; population 
density and, 40–41; preferential attach-
ment and, 33–40. See also merge and 
split models

mesoscopic features, 115, 256
migration or emigration: of ants, 81, 

208–13, 210, 212, 217; consensus 
decision making and, 12; decision 
making and, 12, 81–83, 209; forced vs. 
unforced, 216–17; genetic relationship 
and, 249–50; of honeybees, 81–82, 
213–15; individual-based models for, 
218–19; individual behavioral states 
and, 206, 209; information transfer 
and, 12; local dispersion and genetic 
relatedness, 249–50; quorum responses 
and, 78–80, 80; resources distribution 
as driver for, 14; of schooling fish, 118; 
social insects and, 81–82; state-based 
models and, 200–204, 209

modeling cycles, 6–8
moving animal groups, 12–13; evolution 

of collective motion, 126–29, 256; 
movement rules and collision avoid-
ance, 187–90. See also migration or 
emigration; spatial patterns

mutualisms, 224, 227–28, 228, 231–36, 
244–45, 246, 247, 251

naked mole rats, 58, 62–63, 239
navigational decisions: directional change 

in moving groups, 109–11; directional 
information transfer and, 109; “many 
wrongs” vs. “leadership” hypotheses 
and, 120–21

negative feedback. See regulatory 
feedback

Niwa’s merge and split model, 29–33, 
30–31, 32, 34, 43, 103, 256; attrac-
tion and, 102; population density and, 
40–41

Niwa’s spatial merge and split model, 103, 
104, 104–5

Norway rats, 57–58, 239

oestrus cycles, 9–11, 132
optimal group size, 14–17; decision mak-

ing and, 84–85, 86–87; defined and 
described, 15; fitness and, 18, 19, 20; 
fitness function and, 84; leaving and 
joining rules and, 42–43; vs. natural 
group size distributions, 24–25; power 
law distribution of group sizes and, 40; 
vs. Sibly group size, 17, 18, 19, 21, 24; 
stable group size and, 19, 24

parasitism. See social parasitism
per capita success, 59, 62, 158–59, 243
periodicity: and Kuramoto model of 

synchronization, 141; synchronization 
without, 138–39

pheromones: ant trails and, 45–54, 61, 83, 
94, 163, 165–66, 168–70, 207–8; army 
ant raiding networks and, 166–70; bark 
beetles and, 158; and collective con-
struction, 157–58; as construction tem-
plates, 152, 157–58, 160; cost-Â�benefit 
trade-off of producing, 158; negative 
“no entry” signals via, 207; recruitment 
strategies and, 45, 57, 166, 176, 189, 
203; regulatory feedback and, 176; and 
synchronization of oestrus cycles, 10; 
and “vapor trail” hypothesis, 124–25

pigeons, 15; decision making, 5, 121, 
122–23, 124; navigation by, 121–24

piping by bees, 82, 213, 215
population density: group size and, 40–41
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positive feedback: amplification of initial 
bias, 46–47, 49, 51, 51–52; decision 
making and, 92–93; differential equa-
tion model for, 47–49; homeostasis and 
feedback loops, 1–2; pheromone trails 
as communication transfer, 45–46; 
quorum responses and, 72, 82, 93; 
regulation and, 180; symmetry break-
ing (asymmetrical distribution) and, 53; 
synergism and, 240; tandem-running, 
ant recruitment strategy, 209. See also 
regulatory feedback

power law distributions, 25–28, 37–40, 
171; Bonabeau and Dagorn’s model 
of truncated, 28–30; defined and 
described, 25; human behaviors and, 
37, 171–72; mechanism prediction and, 
39–40; preferential attachment mecha-
nisms and, 37–39; “rank/frequency 
plots,” 38; truncated, 28

predation: collective decision making as 
anti-predation strategy, 77; co-Â�operative 
hunting, 126; fountain response to 
threat of, 119–20; group foraging as 
benefit, 14–15; group formation as 
anti-predation strategy, 85, 126; selfish 
herd models and, 125–26; sentinel 
behavior as anti-predation strategy, 
149; SPP models and predator avoid-
ance, 127–29; vulnerability and spatial 
location within group, 126

prediction: mathematical modeling and, 
3, 6, 7, 197, 203–4

preferential attachment, 33–40, 34, 35; 
defined and described, 33; power laws 
and, 37–39; Price model for, 36; scien-
tific citations as example of, 37–39

Process Algebra Models, 219–20
producer-scrounger game, 65, 66–67, 

67–69, 68, 72, 229
proximate and ultimate explanations, 11. 

See also functional approach; mecha-
nistic approach

quorum responses, 69–74, 97, 210; ac-
curacy of decision making and, 94–100, 
98, 216, 217; ant migration and, 78–80, 
80, 209–13, 215–16; copying as, 69, 
74; and culture, 74–76; decision mak-
ing accuracy and, 95–96; differential 
equation model of quantum mechanism, 

218; feedback and, 72, 82; feeding 
behavior and, 71, 73, 137, 139; foraging 
behavior and, 69–74, 70, 71; honeybees 
and, 81–82, 213–15; human behavior 
and, 74–76, 256; information transfer 
and, 69–74; joining and, 71, 72, 73; 
mechanistic approach and, 72; in speed 
and accuracy tradeoffs, 98, 99, 215–17; 
splitting and, 215–16; symmetry break-
ing and, 69; synchronization and, 137, 
139; thresholds for, 81, 209–13

racial segregation, 190, 191–92, 192–96, 
193, 195

raiding networks of army ants, 166, 
169–70

Rand et al.’s state-based synchronization 
model, 144–45

random spanning networks, 162
ravens: information transfer, 59, 63
recruitment strategies: cue-based, 58–59; 

pheromones and, 45, 57, 166, 176, 189, 
203; recruiting as foraging state, 201; 
signal-based, 57–58; tandem running, 
57, 81, 209–13; tremble dance of bees, 
175; waggle dance of bees, 54–55, 82, 
175, 213–15

regulatory feedback, 176–77; co-op-
erative, 174–76; direct contact and, 
175–76; equilibrium as emergent, 
173–74; information transfer via cue or 
signal and, 177; local information and, 
175–76; over-compensation and chaos, 
176–77, 178–79, 180; passive vs. active, 
176–77, 179; population equilibrium 
and, 181–83; positive feedback as 
regulation, 180; selfish regulation, 180, 
184–87; supply and demand as, 184–87

reproductive success: advantages of col-
lective construction, 157–59; of bark 
beetles, 157–58, 158; group size and, 
159; groups of genetic relatives and, 
157–59; lifetime reproductive success, 
16–17, 224, 245; of social spiders, 20, 
159. See also Hamilton’s rule or inclu-
sive fitness equation

repulsion, SPP models and, 107–8, 117
resource distribution: foraging behavior 

and, 41–42, 64–65, 66–67, 67, 69; 
foraging patterns and, 169–70; foraging 
strategy and, 66–67; and joining rates, 



300

I n d e x

resource distribution (continued)
65, 69, 70, 72, 73, 138–39; migration 
and, 14

schools of fish: body size and segregation 
with shoals, 196; Bonabeau & Dagorn 
merge model, 28–29; group size distri-
bution for, 22–33, 25, 28–33, 30, 40; 
information transfer within, 109; models 
of motion in (see self-propelled particle 
(SPP) models); Niwa’s merge and split 
model, 29–33, 32, 102, 256; population 
density and, 40; predation threat and, 
14–15; shapes and sizes of, 101, 118

scientific citations: preferential attach-
ment model and, 36, 37–39

searching, as foraging state, 201
segregation: by body size within fish 

shoals, 196; cockroaches and, 195–96; 
human behavior and racial, 190, 
191–92, 192–96, 193, 195; individual 
vs. group level, 195–96; information 
transfer and, 196; preference of associa-
tion and, 197; regulation and, 196–97; 
Schelling model, 190–94, 191–92, 193; 
self-sorting and, 190, 192–96; sexual, 
147–48; spatial, 148

“selfish herd” models, 125–26
self-organization, 8; alignment or transi-

tion from disorder to order, 109–14, 
126; altruism and, 242; complexity 
and, 197, 208; complex moving pat-
terns in flocks/school/swarms, 118–20; 
individual as optimizing agent in, 72; 
lane formation and collision avoidance, 
187–88, 188, 196–97; rules of attrac-
tion and alignment and, 118–20

self-propelled particle (SPP) models, 
101–2, 106–8, 108, 112, 115, 116, 120; 
alignment in, 107, 109–11, 112–14, 
114–15; attraction in, 106–7; bal-
listic flight, 114–15; between-member 
minimum distance in, 117–18; blind 
angles in, 107–8, 118–20, 119, 128; 
cluster formation in response to at-
traction, 102; collision avoidance 
and, 108, 127; contrasted with Niwa’s 
model, 102; Couzin et al.’s, 107–8, 118, 
121–22; density as factor in align-
ment, 109–10; dynamic instability and, 
126–27; dynamic spatial patterns and, 

101; evolution and collective motion, 
126–29, 256; Gregoire et al.’s, 111, 
114–15; Janson et al.’s, 123–24; phase 
transitions from disorder to order, 
109–11; real animal group motion 
vs. predictions of, 120; repulsion in, 
107–8; Vicsek et al.’s, 106–7, 111

Sibly group size, 16, 18–19, 23; defined, 
24; populations density and, 40

Sibly’s Stable Group Size Model, 21, 22, 40
signals, 198; cost-benefit trade-off and, 

61–62; evolution of, 61–62; genetic 
relatives and information transfer, 62; 
information transfer as signal-based, 
44, 59, 61–62, 197; pheromones as, 
207; regulatory feedback and, 177; 
repeated interactions and, 62; vocal, 59

simulations, Web site links to, 13
social networks and social network 

theory, 172
social parasitism, 62, 228; evolution of 

co-operation and, 224, 228, 228–31; 
foraging and, 149–50; in groups, 
229–30; information transfer and, 12, 
62, 63; producer-scrounger game, 65, 
66–67, 67–69, 68, 72, 229; sentinel be-
havior and, 149–50; two-player games 
and, 228–29

spatial patterns: from active walker 
model, 167–69; diffusion and, 153–54; 
directional change in moving groups, 
109–11; evolution of flocking, 125–29; 
individual actions and emergence of, 
155–57; in lane formation, 187–89; 
local spatial structure and orientation 
of individuals within, 117–18; meso-
scopic features of, 115, 256; naviga-
tional decisions in moving groups, 
109–11, 120–25; synchronization and, 
148; three-dimensional nest structures, 
graphing techniques for, 162; torus for-
mation, 104, 108, 118, 119, 126, 128

spiders, social: collective construction by, 
3, 159; decision making among, 83, 
213; group size distributions, 24–25, 
26; optimal group size vs. natural 
group size distribution among, 24–25; 
reproductive success linked to group 
size for, 20, 159

splitting: group size and spontaneous, 33, 
37, 42–43; individual decision making 
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and, 121; quorum decision making and, 
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