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Preface

Modern biology is awash in data. This situation, the result of a technical revolu-
tion in high-throughput genomics, promises rapid scientific advances. However,
analyzing the data poses unique challenges. Unlike in physics, there is usually no
quantitative biological model that can guide investigation and generate precise pre-
dictions; often, we do not even know what the relevant quantities are that could
capture the essential behavior of the biological system.

In response to the flood of data, the use of clustering algorithms and dimension-
ality reduction procedures is now ubiquitous. These families of techniques can be
regarded as efforts to describe the shape of the data set. Although there have been
noted successes, such methods provide only crude descriptions of this shape. The
power of these tools, as well as their evident limitations, makes it clear that there
would be substantial scientific benefit from richer and more robust methods for
understanding geometric structure in data.

Algebraic topology is a well-established branch of pure mathematics that stud-
ies qualitative descriptors of the shape of geometric objects. Roughly speaking,
the goal of algebraic topology is to reduce questions about comparing shapes to
questions about comparing algebraic invariants (e.g., numbers), which are typically
easier to solve. Moreover, algebraic topology has had a long tradition of employ-
ing combinatorial models of geometric objects, simplicial complexes, that are well
suited to algorithmic computation.

Topological data analysis is a rapidly developing subfield that leverages the
tools and outlook of algebraic topology to provide a methodology for analyzing
the shape of data sets. The basic strategy is to assign a family of simplicial com-
plexes to a data set; invariants of the complexes integrate information about the
shape of the data across different feature scales.

Our aim in this book is to provide a concise introduction to the central ideas and
techniques of topological data analysis and to explain in detail a number of specific

xv



xvi Preface

applications to biology. We imagine as our idealized readers a modern quantitative
biologist or a graduate student in mathematics with a background in topology or
geometry and an interest in applied problems. We have three central goals:

1. to equip the modern quantitative biologist with techniques from topological
data analysis,

2. to direct mathematicians with training in geometry and topology towards
problems of interest to biologists, and

3. to make it easier for mathematicians and biologists to communicate and
collaborate.

These goals pose an expositional challenge, as we expect two quite different
audiences with different backgrounds. To address this, we have attempted as much
as possible to provide a self-contained introduction to the relevant topics along with
abundant and detailed references. We assume that the reader has some familiarity
with calculus, linear algebra, elementary probability, and basic statistics.

The first part of this book presents the mathematical background necessary to
understand topological data analysis and then provides an overview of techniques
in the area. These chapters are intended to be read in order, as each one builds
on the previous chapters. The second part of this book consists of a collection of
distinct biological applications; each chapter can be read independently.
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Introduction

In the long history of humankind (and animal kind, too) those who
learned to collaborate and improvise most effectively have prevailed.

Charles Darwin

Knowing is not enough; we must apply. Willing is not enough; we
must do.

Johann Wolfgang von Goethe

This book is about the application of algebraic topology to the problem of organiz-
ing and describing biological data. The problems this book studies are of recent
origin. For much of its history biology was a predominantly descriptive science
with comparatively little interaction with mathematics. Explanations of mechanism
took place at the level of entire organisms or cells. But over the last century, the
development of molecular biology has transformed the field so that it is now data
intensive and marked by increasing reliance on mathematics.

This shift began with the discovery of the elemental constituents and rules that
govern biological systems at the molecular level. Early highlights included the
determination of the structure of DNA, RNA, and proteins, the deduction of some
of the processes of information transmission within the cell, and the identification
of specific molecular mechanisms underlying particular biological processes.

For a long time, small amounts of data were hard-won in the laboratory; for
example, many researchers were focused on elucidating the biological mecha-
nisms of individual genes, the sequences of DNA that are translated into RNA
and produce a functional product such as a protein. However, towards the end of
the twentieth century, the rate of data production accelerated very rapidly and it
became possible to study all the genes of a cell (the entire genome) at once. The
publication of the first draft of the human genome [513] in 2001 was a milestone
in this revolution, heralding transformation in almost every realm of biology.

1



2 Introduction

An incomplete sampling of the subsequent progress on fundamental problems
includes the enumeration of genomic variations in thousands of individuals [122],
detailed molecular characterization of thousands of cancers [343], single cell char-
acterization of tumors [401], study of developmental processes [504], and the
elucidation of the three dimensional structure of DNA in the nucleus of cells
[138, 330].

Mathematics has played a key role in the development of modern molecular biol-
ogy. The amazing progress in data collection depended in part on the development
of mathematical algorithms that supported the assembly of raw DNA sequencing
information and enabled the search for genes in the sequences. The development
of and continued research on these algorithms is a fascinating and deep story, but
it is not the focus of our inquiry here. Rather, we will study mathematical tools for
determining the structure of biological processes and mechanisms from the data.

Analyzing biological data is a difficult problem. There is a large amount of data,
and it is particularly challenging to work with: high-throughput genomic and tran-
scriptomic data typically resides in very high-dimensional spaces (e.g., on the order
of the number of genes in the organism, which can be in the tens of thousands), is
frequently extremely noisy, and often reflects poorly understood systematic errors.
For example, genetically similar organisms or cells can display different molecular
profiles (e.g., present different epigenetic states, express different genes) leading to
markedly different experimental measurements.

In short, modern biology has become a data rich discipline, dependent on sophis-
ticated mathematical techniques for both the production of experimental data and
its interpretation. In this way, it exhibits kinship with modern physics. But in con-
trast to the situation in physics, the mathematical models we have to understand
genomic processes are in general less descriptive and provide fewer conceptual
benefits than the models of physics. One problem is that the immense complex-
ity of fundamental biological systems means that we simply lack good theoretical
frameworks to describe them. For example, the enormously complicated cycle con-
trolling gene expression is still not completely understood. Even our knowledge
of the basic objects of study is incomplete; we hear almost daily that a new non-
coding gene has been identified or that a novel viral species has been associated to
a newly reported disease.

The point of departure for this book is a concrete manifestation of this lack of
models: to date there has been no real analogue in biology for the role of geom-
etry in physics. Geometry is at the heart of modern physics. This is no surprise;
in a sense, modern geometry was invented to describe physical systems. Calculus
was developed in order to describe the acceleration of moving bodies. Einstein’s
theory of general relativity can be succinctly summarized as the contention that
gravity curves spacetime, which can be precisely and concisely expressed in the
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language of differential geometry. In stark contrast, biological data does not natu-
rally appear to have the same kind of rich geometric structure. Typically, all one
has is a collection of data points and various choices of a way of measuring the
distance between them. Even if there was geometry present, it might be hard to see
through the noise.

Our central dogma in this book is that although biological data might not possess
the rigid geometric structure that arises in physics, it nonetheless has meaning-
ful coarser geometry; we will broadly refer to this as shape. In some sense, this
hypothesis is implicit in the standard approach for analyzing genomic data, namely
dimensionality reduction and clustering. We can access the geometry of the situa-
tion through a distance function that takes as input a pair of data points and outputs
a number (larger than 0) that reflects the distance between them. (Here distance is
an abstract notion, not a measure of physical distance.) Dimensionality reduction
refers to the process of using the distances to embed the data points (which might
lie in a 10000-dimensional space) into a low-dimensional space (like the standard
two dimensional Euclidean space R2) in such a way that distances are preserved
as much as possible. Clustering refers to the process of grouping the data points
into “clusters” such that points within a cluster are much closer to each other than
to points in distinct clusters. Often these techniques are combined; clustering algo-
rithms are applied to the results of dimensionality reduction, and we will sometimes
refer to the combination as “clustering analysis.”

Clustering genomic data has been a very successful way to detect genomic
relationships with clinical consequences. In Figure 0.1, there is a representative
example of a clustering analysis of mRNA expression data from pancreatic tumors.
The data, obtained from samples from 147 patients, consists of vectors of num-
bers representing the expression levels for various genes. The distance between
these expression vectors is roughly speaking a measure of similarity; tumor sam-
ples with similar expression profiles are close together. Then the data naturally
breaks up into three clusters of points, as indicated in the plot on the left side of
Figure 0.1. Each column represents the expression vector of a particular tumor
sample; each row represents a particular gene. A point in the square thus encodes
the level of expression of a gene in a sample – red means highly expressed, blue
suppressed.

It is clear from the picture that points within a cluster have similar expression
profiles, but more importantly, these clusters are clinically significant – which clus-
ter a tumor sample is in predicts survival rates. Figure 0.2 graphs the survival
curves for the different clusters; squamous pancreatic adenocarnicomas (cluster 2)
have noticeably worse survival trajectories. That is, understanding the shape of the
expression data as captured by clustering allows us to predict the likely progression
of the cancer.
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Figure 0.1 Using mRNA expression from long non-coding RNA from 147
patients with pancreatic adenocarcinomas, one can observe three different clus-
ters. Cluster 2 is associated to squamous pancreatic adenocarcinomas. Different
clusters reveal molecular mechanisms common to a set of patients. Source: [17].
Reproduced from Gut, Luis Arnes, Zhaoqi Liu, Jiguang Wang et al., Published
Online First: 10 February 2018. c© 2018. With permission from BMJ Publishing
Group Ltd.

Figure 0.2 Different clusters of pancreatic adenocarcinomas have very different
survival profiles. The y-axis represents the fraction of patients as a function of
time. The colors represent the different clusters. Ideally, we would like to assess
the prognosis of a patient based on molecular characteristics, and clustering
patients constitutes a simple way of doing that. In addition to the clinical corre-
lates, different clusters could reflect different molecular mechanisms that lead to
the disease. Source: [17]. Reproduced from Gut, Luis Arnes, Zhaoqi Liu, Jiguang
Wang et al., Published Online First: 10 February 2018. c© 2018. With permission
from BMJ Publishing Group Ltd.
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More generally, dimensionality reduction and clustering methods such as PCA,
MDS, spectral clustering, non-negative matrix factorization, and so forth are
ubiquitous tools for analysis of genomic data. However, despite their successes,
clustering algorithms capture only a very limited amount of information about
shape – they are sensitive only to how many disconnected pieces a data set should
be separated into. And this is often not enough – for example, there are many data
sets of tumor samples where the points do not naturally separate into clusters which
correlate with clinical outcomes.

Moreover, there are many other questions one can pose about the shape of a
data set. For example, a natural question that arises when studying evolutionary
phenomena is whether or not genomic data (for example, sequencing informa-
tion from different flu viruses) can be represented by a tree structure, where the
lengths of the branches correspond to distances between data points. To answer
this question, an obvious approach is to attempt to determine if the points are better
represented not by a tree but by a graph with loops. Such shape information cannot
be extracted from clustering, and traditional dimensionality reduction algorithms
tend to introduce distortions that obliterate this kind of shape.

Our aim in this book is to make the case that robust algorithms for capturing
high-dimensional shape can be effective in situations where clustering fails. Specif-
ically, we want to explain particular mathematical tools from algebraic topology
that generalize clustering algorithms, giving rise to a methodology for extract-
ing scientifically meaningful high-dimensional shape information from genomic
data.

0.1 Why Algebraic Topology?

Modern algebraic topology was invented by Poincaré to provide tools for describ-
ing global properties of differential equations on surfaces. His basic insight was
that the qualitative behavior of differential equations depended on the shape of
the underlying surface. Algebraic topology studies qualitative and often global
properties of geometric objects by constructing algebraic invariants of such
objects.

By geometric object, we mean what we will refer to as a “space”; for the pur-
poses of current discussion this means a subset of Euclidean space (e.g., the surface
of a rubber band, or a sheet of paper, or a soda can). By algebraic, we mean some-
thing like a number or a vector space. By invariant, we mean something which is
not changed by smooth deformation; stretching is allowed, but not tearing, as if
we were studying things made out of soft clay. By global, we mean something that
cannot be figured out by looking at a little piece of the object – one has to inspect
the entire thing.
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Let us begin with a very simple example. Suppose we want to answer the geo-
metric question of distinguishing between two collections of non-overlapping solid
blobs; given a collection of n solid blobs (referred to as the “disjoint union”) and
the disjoint union of k solid blobs in the plane R2, we want to decide if these pic-
tures are the same or different. (See Figure 0.3 for a representative example.) An
easy way to do this is to count the number of path components – the number of dis-
tinct pieces that cannot be connected by a path, i.e., a line drawn without removing
the pencil from the page. For example, in Figure 0.3, the left hand shape has three
path components and the right hand shape has five.

This count is a simple example of an algebraic invariant; it is a number, and it
is not affected by smoothly deforming the blobs. Moreover, it is clearly a global
quantity – just looking at a little piece of one of the blobs or even any finite sub-
set of the blobs will not suffice to compute it. And using this count allows us to
distinguish between geometric objects simply by the algebraic operation of com-
paring two numbers. Notice that counting path components feels very reminiscent
of clustering! And as we will explain, there is a precise relationship between these
procedures.

The count of path components is a fairly crude invariant of a space. But there are
many more sophisticated invariants which can detect more interesting properties
of the shape of a geometric object. Figure 0.4 shows a more difficult version of the
question about blobs: how can we distinguish between a circle and a figure-eight?

Figure 0.3 On the left, there are three path components, on the right, five path
components.

Figure 0.4 A circle (or annulus) has a single hole; a figure-eight (or union of two
annuli) has two holes.
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Counting path components cannot distinguish these spaces; there is a single path
component in each case. However, if we count the number of “holes” or closed
loops, we see that the figure-eight has two holes whereas the circle has one hole.
This is another global invariant, the first Betti number, which counts the number of
“holes” enclosed by circles in a geometric object. Once again, notice that smoothly
stretching the circle and the figure-eight will not change the Betti number.

These examples suggest that algebraic topology provides a powerful methodol-
ogy for capturing robust global properties of the shape of geometric objects and
turning them into algebra. But it is a priori not clear how to use these tools to study
real data! The questions we have been discussing above have used spaces that are
defined as infinite sets of points, most concisely specified by equations. This obser-
vation raises two important issues. First, one might worry that describing spaces
in this way does not seem to be algorithmically tractable. Second, the data sets
of biology are likely to be finite sets of isolated points – how can we associate a
continuous space to a finite set?

0.2 Combinatorial Algebraic Topology

Conveniently, there is a long tradition in algebraic topology of studying combi-
natorial models of geometric objects. By combinatorial, we mean a description
of a space using only discrete data. Such models are well suited to algorithmic
computation. The most important kind of combinatorial model for the approach
discussed in this book is the simplicial complex. We will give a precise definition
of a simplicial complex in Section 1.8, but roughly speaking a simplicial complex
should be thought of as a geometric object specified by gluing together a collection
of points, line segments, triangles, and higher dimensional analogues called sim-
plices. Simplicial complexes represent spaces up to continuous deformation; they
are a satisfactory representation for computing topological invariants.

Figure 0.5 presents examples of the standard pieces (called simplices) that
are glued together to form the space represented by a simplicial complex. A k-
dimensional simplex has faces which are (k−1)-dimensional simplices; a simplicial

Figure 0.5 Simplicial complexes model spaces made by gluing together stan-
dard triangular pieces, called simplices; here we illustrate the 0-, 1-, 2-, and
3-dimensional simplices.
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{v2,v0} {v0,v1}

{v1,v2}

V0

V2 V1

Figure 0.6 A simplicial model of the circle is given by gluing three 1-simplices
together at their endpoints.

complex is made by gluing together standard simplices along their faces. For
example, the faces of a 1-simplex are the two endpoints. The faces of a 2-simplex
are the three edges of the triangle.

To describe a simplicial complex, one simply specifies the number of 0-
simplices, 1-simplices, etc. as well as instructions for gluing them together. For
example, a simplicial complex consisting only of 0-simplices and 1-simplices is
specified by a collection of edges and instructions for attaching them at their end-
points – this is precisely the data of a graph, with 0-simplices the vertices and
1-simplices the edges. That is, a simplicial complex is precisely a higher dimen-
sional generalization of a graph.

For example, consider the complex in Figure 0.6. We have 0-simplices {v0, v1, v2}
and the 1-simplices {{v0, v1}, {v1, v2}, {v2, v0}} where, for example, the 1-simplex
{v0, v1} has faces v0 and v1, and is thought of as a line segment connecting the ver-
tices. We think of this complex as representing a circle; we are working with spaces
up to continuous deformation, and a triangle can be stretched out into a circle.

Notice that there are other natural ways to represent a circle: one could
use the “square” specified by the 0-simplices {v0, v1, v2, v3} and the 1-simplices
{{v0, v1}, {v1, v2}, {v2, v3}, {v3, v0}}.

Figure 0.7 shows how to produce a simplicial model of a solid disk (the circle
plus its interior): we could take our first model of the circle above and add the
2-simplex with faces the 1-simplices; we can uniquely specify this 2-simplex as
{v0, v1, v2}. Here the 0-simplices and 1-simplices of the circle specify the boundary
of the disk; the 2-simplex describes how the interior is glued to the boundary. An
example of a more complicated simplicial complex is shown below in Figure 0.8;
this represents a hollow ball with a circle attached to it (at the vertex v4) and a line
attached to the circle (at the vertex v2).

The real payoff from working with simplicial complexes is that algebraic invari-
ants of the spaces they represent can be algorithmically computed directly from
the combinatorial description. The prototypical example of an algebraic invariant
associated to a simplicial complex is the Euler characteristic. Suppose that we
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V0

V2 V1

{v2,v0} {v0,v1}

{v1,v2}

{v0,v1,v2}

Figure 0.7 A simplicial model of the solid disk is given by gluing three 1-
simplices together at their endpoints and gluing a 2-simplex to them at its
faces.

v1

v2

v3

v4

v5

v7

v6

Figure 0.8 The simplicial complex on the left is made by gluing together
the standard simplices. Combinatorially, we would write this as having
0-simplices {v1, v2, v3, v4, v5, v6, v7}, 1-simplices {{v1, v2}, {v2, v3}, {v2, v4},
{v3, v4}, {v4, v5}, {v4, v6}, {v4, v7}, {v5, v6}, {v5, v7}, {v6, v7}}, and 2-simplices
{{v4, v5, v6}, {v5, v6, v7}, {v4, v6, v7}, {v4, v5, v7}}. On the right is a space represented
by this complex.

have a simplicial complex with V vertices, E 1-simplices, and F 2-simplices and
no higher simplices. Then the Euler characteristic is V − E + F. In general, the
Euler characteristic of a simplicial complex is the alternating sum of the numbers
of k-simplices.

For example, the Euler characteristic of a point is clearly 1. The Euler character-
istic of a simplicial complex consisting of a single 1-simplex and its two endpoints
is 2−1 = 1. Next, consider the simplicial complex modeling the circle from the dis-
cussion above – this is a loop formed by the three vertices and three line segments.
This complex has Euler characteristic 3 − 3 = 0. If we take the model of the circle
given by the “square,” this also has Euler characteristic 4 − 4 = 0, and in general
any such model of a circle will have n vertices and n 1-simplices and hence Euler
characteristic 0.

On the other hand, the Euler characteristic of the disk given by filling in the
triangle with a 2-simplex is 3 − 3 + 1 = 1. Notice that the Euler characteristic
of the filled triangle is the same as the Euler characteristic of a point; the Euler
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characteristic is a topological invariant, as it is insensitive to smoothly crushing the
triangle to the central point. Comparing the results for the triangle and the filled
triangle, we observe that the Euler characteristic is detecting a topological property,
namely that the loop has a hole in the middle.

We can also compute the path components of a space represented by a simplicial
complex directly from the complex; this turns out to reduce to a standard prob-
lem in graph theory. More generally, one can compute many algebraic invariants
directly from simplicial complexes – for instance, the problem of counting holes
(i.e., the Betti numbers) can be transformed into an elementary problem in linear
algebra, as we shall see in Section 1.10. In summary, provided that we can represent
our data using an appropriate simplicial complex, we can apply the computational
tools of algebraic topology.

0.3 Topological Data Analysis (TDA)

The kind of biological data we will work with is typically presented as a finite set
of points equipped with some kind of distance or dissimilarity measure between
the points; a mathematical model of this situation is a finite metric space, which
is a set X of points equipped with a distance function ∂X satisfying a few simple
axioms. The central question is: given data presented as a finite metric space, how
can we robustly produce a simplicial complex such that the algebraic invariants of
the simplicial complex reflect the shape of the data? Often, we hypothesize that
these points are samples from a probability distribution on some geometric object;
Figure 0.9 gives an idealized picture of this situation.

Consideration of clustering guides us to an answer. To explain, we need to make
the connection between clustering and components precise, via single-linkage
clustering, which works as follows.

1. Fix a scale parameter ε.
1. Assign two points x and y to the same cluster if they are connected by a path of

points (for some k)

x = x0, x1, x2, . . . xk−1, xk = y

such that each point xi is within a distance ε of xi+1.

Figure 0.9 On the left, the underlying geometric “ground truth.” On the right,
finite samples from which we seek to recover the invariants of the circle, figure-
eight, and nested circles.
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Figure 0.10 The clusters are the path components of the simplicial complexes.

We can interpret single-linkage clustering in terms of simplicial complexes: form
the simplicial complex whose vertices are the data points and whose 1-simplices
connect points x and y if they are less than a distance ε apart. Now the single-
linkage clusters are precisely the path components of this simplicial complex; see
Figure 0.10 for an illustration. But we can go even further – namely, we can add
higher dimensional simplices when groups of points are close in some way. For
instance, we could add a 2-simplex for every triple of points {x, y, z} such that
each pair {x, y}, {x, z}, and {y, z} has distance less than ε. We then hope that the
topological invariants of the resulting simplicial complex are capturing qualitative
information about the shape of the data set.

This procedure has some attractive properties. Sufficiently small perturbations
of the data typically result in small perturbations of the resulting simplicial com-
plex that do not change algebraic invariants. Moreover, the simplicial complex
constructed in this fashion reflects the sensible hypothesis that small measured
distances between data points are likely to be accurate, but large distances are
probably not accurate and should instead be estimated in terms of small distances.
So intuitively speaking, it seems plausible that such topological invariants will be
robust against certain kinds of noise and corruption, and will reflect real geometric
structure of the data.

However, choosing ε correctly is difficult; this requires some knowledge of
the feature scale of the data. It is illuminating to reflect on what happens to
these simplicial complexes as ε increases; see Figure 0.11. When ε is very small,
there are just discrete points (panel A). When ε is larger, the resulting simpli-
cial complex has interesting geometric structure (panels C and D). And when ε

is very large, everything is connected and there is no information recovered at all
(panel E).

In the example above, it is not clear what the “correct” value of ε is, as the
underlying topology is not evident. The best we can say is that there is a wide range
of values for ε in which there is non-trivial topology. In simple cases, however, we
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A B C D E

Figure 0.11 As ε grows, more and more simplices are added to the simplicial
complex.

A B C D E

Figure 0.12 As ε grows, topological features appear. In panels C and D, the circle
can be detected.

might hope to extract more precise topological hypotheses; we illustrate how this
might work in Figure 0.12.

When ε is small, again the result is just discrete points (panel A). As ε grows,
adjacent points begin to link up (panel B). But there is a wide range in which
ε results in adjacent points along the circle being connected without connecting
points across the circle (panels C and D); this is an illustration of the importance
of privileging “short” distances over “long” ones. One way of looking at the sit-
uation is to observe that for these ε, distances between points that are less than ε
accurately reflect distances along the circle. When ε is large enough, connections
across the circle “short-circuit” the complex (panel E), and we eventually again
obtain a completely connected complex.

As both of the preceding examples make clear, it is a priori very difficult to guess
what the correct feature scale should be. There might be multiple scales at which we
expect to see meaningful topological features, or it might even be the case that no
single scale correctly encodes the salient features. A basic philosophy underlying
topological data analysis is that scale issues should be handled simply by encoding
the complexes for all ε simultaneously and keeping track of how they change as ε
changes. This leads to a series of new algebraic invariants, which reflect the persis-
tence of topological features across scales. By using these invariants, topological
data analysis provides tools for robustly describing multiscale shape information
of data.

In recent years, there has been an explosion of work in this area; however,
many interesting problems remain to be solved. For instance, there are still many
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questions about the relationship between statistical practice and the invariants of
topological data analysis. Nonetheless, part of our motivation for writing this book
is that already the field is sufficiently mature for there to be many interesting appli-
cations to biological data. With this in mind, we now explain why topological data
analysis is a potentially very useful tool to analyze biological data. We begin by
explaining the kinds of biological problems that we will focus on in this book.

0.4 Genetics and Genomics

We will focus on biological questions arising from the perspectives of modern
genetics (the study of genes, the fundamental units of heredity) and genomics
(the study of genomes, the collections of all genes in an organism). These ques-
tions have been chosen to illustrate how topological data analysis can be used
to address biological problems. Genetics and genomics are particularly amenable
to the application of topological methods: there is a great need for mathematical
tools to study the shape of large amounts of large scale experimental data, and the
standard methods in use are comparatively crude.

At a high level, most of the problems in genetics can be posed in a simple fash-
ion. There are two “spaces” of interest, the space of genotypes (the set of possible
genomes) and the space of phenotypes (the set of observable characteristics of an
organism that could occur in a particular environment); scientific questions are
typically about describing and understanding a function that maps genotype into
phenotype (e.g., see Figure 0.13). Such a function specifies which genetic alter-
ations lead to a particular phenotype. Conversely, the function also determines the

Figure 0.13 Many problems in genetics can be posed as the study of functions
from the space of genes and genomes (the genotype) and the environment to
the observable characteristics (the phenotype). Variation in genes and genomes
between different organisms causes changes in observable characteristics, such
as protein structure, protein function, disease survival, and many other potential
phenotypes.
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most interesting phenotypes to look at when studying variations in a particular gene.
For example, cancer genetics studies the impact of mutations in cancer cells (geno-
types) on clinical manifestations of cancer, notably on tumor growth, tissue inva-
sion, and metastasis (phenotypes). To understand this relationship, one studies the
molecular mechanisms of this association: how a mutation changes a protein, how
this change affects the cell, and how such changes lead to the observed phenotypes.

At a very high level, the genome can be understood as a long word whose let-
ters are the four nucleotide bases, denoted (A, C, G, and T or U, in the case of
RNA). The length of this word varies dramatically across different organisms. The
shortest, called viroids, are a few hundred bases. Humans have roughly three bil-
lion bases. And plant genomes can be two orders of magnitude larger (e.g., the
genome of Paris japonica, a rare and beautiful plant from alpine regions in Japan,
has a genome of 150 billion bases). The situation is further complicated by the fact
that in multicellular organisms, such as humans, different cells will have similar
but not necessarily identical genomes. Mathematically, different organisms can be
regarded as producing distinct points in the genotype space, and so can different
cells from a single organism.

However, the most interesting sources of variation come from the fact that
genomes are not stable objects; they change over time. Specifically, errors occur
when the genome of an organism is copied to produce offspring. The simplest types
of mistakes are point mutations, where at a particular place in the genome one base
is replaced with another one. However, more drastic changes can occur; sections
of the genome can be lost or duplicated, or there can be more wholesale scram-
bling. In Figure 0.14 we show the typical order of magnitude of the size of the
genome of different organisms along with the mutation rates (i.e., the probability
of a point mutation at a particular spot per replication). Genome sizes and muta-
tion rates vary by orders of magnitude; organisms with shorter genomes tend to be
prone to mutations. A pervasive and more complicated phenomenon is that differ-
ent organisms can exchange genomic information, resulting in new genomes which
shuffle together the original genetic information. These processes produce clouds
of points in the genome space; the problem is then to understand the relationship
between these point clouds and resulting phenotypic changes.

However, the phenotype space is harder to specify and often more complex than
the genotype space. Examples of phenotypic characteristics include the expression
of different mRNAs, the expression of proteins, the shapes of these proteins, the
shape of the cell, the ability to grow and replicate, the susceptibility to differ-
ent stimuli, the ability to respond to an infection, and the size and weight of a
multicellular organism. Obviously we do not expect an exhaustive enumeration
of scientifically important observable characteristics. Instead, different areas of
biology focus on specific choices of salient phenotype; for example, in evolutionary
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Figure 0.14 The size of genomes varies by many orders of magnitude. Viroids
are small (a few hundred bases) sequences of free RNA that can infect plants. The
genomes of RNA viruses (like influenza) are usually around 10,000 bases, the
genomes of DNA viruses are typically 100,000 bases, and the genomes of bacteria
can be millions of bases. Some plant genomes can reach 100 billion bases (Paris
japonica). There is a fascinating relationship between the size of the genome and
the number of mistakes per replication (mutation rate), represented here in the
y-axis.

biology we might be interested in fitness or the ability to proliferate in some partic-
ular environment. In the context of tumors, proliferation, invasion of new tissues,
and survival rate are all interesting phenotypes to study.

Finally, the environment is also an important factor determining when genetic
variation will cause changes in the phenotype. Many genes are only expressed in
certain circumstances, and beneficial alterations in one environment could be detri-
mental in another one. As a first approximation to reduce the complexity of the
problem, it is common to fix or reduce the number of environmental factors to a
few conditions that are suspected to be germane to the phenotype under study.

0.5 Why Is Topological Data Analysis Useful in Genomics?

Our contention is that topological data analysis provides novel and effective tools
to attack the problem of inferring the relationship between genotypic events and
changes in phenotype. For example, understanding the shape of the data in genome
space reveals the way that certain phenotypical changes arise. To support our claim,
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in this book we describe a number of biological problems where the methods of
topological data analysis reveal new and interesting phenomena. In each case, bio-
logical data is presented as a finite collection of points equipped with a distance,
i.e., a finite metric space. Topological invariants of associated simplicial complexes
then turn out to encode biologically relevant quantities. Here, we describe three
illustrative examples (see Figure 0.15).

tim
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ancestor 

A

Single cell RNA of
differentiation process

B

Cross-sectional data in 
cancer

C

Evolutionary
genomic data

Figure 0.15 Examples of biological point cloud data: (A) Starting from stem
cells, different cell types arise from a process of differentiation over time. Single
cell approaches provide information about differentiation, where each point cor-
responds to a particular cell. Important questions include characterizing distinct
subpopulations/expression programs/specific surface markers, and determining
how cells decide their fate. (B) Each point represents the tumor of a patient.
Questions in this space concern the classification of patients according to their
molecular profile, association of location in this space with survival, determina-
tion of mechanisms of drug resistance, and the identification of specific pathways
implicated in tumor progression. (C) Each dot (tree leaf) represents a genome.
Traditionally, we expect evolutionary processes to be described as trees. But there
are many examples of phenomena (e.g., recombinations) that do not fit into this
framework. This raises the question of how to describe the relationship between
genomes.
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Our first example concerns the process of differentiation (panel A). A baby
animal begins from a single cell that divides and differentiates to generate an
incredibly complicated collection of organs, tissues, and cell types. Differentiation
is usually represented as a branching process, with a root, the stem cell, giving
rise to descendant cells of many different types. All of our cells share a com-
mon genome: a particular cell type is characterized by the expression of specific
genes, i.e., by the amounts of messenger RNA (mRNA) or protein generated from
each gene. Transcription, the generation of RNA copies from DNA, follows a care-
fully orchestrated program in which certain genes are turned on in consonance
with other genes. This transcription program is regulated by proteins that control
the expression of multiple genes; the regulation ensures that the right amounts
of RNA are produced at the right times. Cells of similar type have related tran-
scriptional programs and thus similar gene expression profiles – comparing the
expression of genes of individual cells sampled along the process of differenti-
ation can reveal the specific mechanisms that determine what type of cell will
arise.

Until recently, studying the process of differentiation was complicated by the fact
that experimental techniques commingled genomic information from many cells,
each potentially in a different stage of differentiation. However, single cell expres-
sion technologies now allow the measurement of the transcriptional state of single
cells throughout the differentiation process. The transcriptional state of a cell can be
described by a vector (e1, e2, . . . , eG), where ei is a measure of the amount of mRNA
produced from gene i and G is the total number of genes measured. Given this data,
we wish to characterize different cell states and types and infer the trajectory of
the differentiation process. This problem can be formulated as reconstructing low-
dimensional geometric structure from a sample of points (cells sequenced) in a
high-dimensional ambient space (with dimension given by the number of genes).
Both the Euclidean distance and the correlation between expression vectors can be
used to provide metrics on transcription vectors, and clustering using these metrics
has been applied to great effect. Framed in this fashion, the problem of analyzing
differentiation using single cell data is clearly a potential application area for the
tools of topological data analysis.

Our second example focuses on cancer (panel B). A cancerous tumor is the result
of the accumulation of mutations that lead to uncontrolled cell growth; for exam-
ple, mutations that alter the cell division cycle by reducing apoptosis (cell death),
enhancing blood supply, and increasing generation or responsiveness to growth-
promoting signals. Tissue samples from tumors in patients can be sequenced to
identify these mutations and to try to determine how expression differs between
tumors and normal tissue. While each individual tumor is the result of specific
genomic alterations, almost all currently available therapies are generic. Moreover,
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it is often unclear why some tumors are cured by treatment whereas others progress.
The goal of precision medicine is to provide doctors with guidance enabling the
deployment of therapies tailored to a particular patient’s tumors.

Given sequencing data from a variety of tumors, one can study the relation-
ships between these tumors in the hope of finding improved tumor classifications,
discovering specific molecular mechanisms of progression and drug resistance,
and eventually providing specific therapeutic options based on the tumor’s molec-
ular profile. Sequencing data taken from the same tumor at different times
gives insight into tumor progression and development. Traditional computational
approaches cluster the data and use the clusters to try to characterize the spec-
trum of alterations, pathways, and the clinical characteristics (e.g., survival).
However, often the structure of the data does not support unambiguous divi-
sion into clusters; in this case, the task of grouping patients is very difficult, as
the number of clusters becomes a matter of opinion and many of the samples
remain unclassified. Better tools for understanding and characterizing the shape
of the tumor data have the potential to provide valuable information about clin-
ical relationships. As we explain, sophisticated geometric models of the space
of tumors as well as simplicial complexes associated to the metric space of
sequencing data reveal biologically meaningful structure invisible to clustering
algorithms.

Our final example has to do with evolution (panel C). Darwin first proposed the
phylogenetic tree as a means to represent the evolution of phenotypic attributes.
Since then, methods in molecular phylogenetics have been developed to character-
ize evolutionary relationships between species. These approaches generally assume
that genomic information is solely passed from parents to children.

However, it has long been known that more complex modes of genetic exchange
can occur, including lateral gene transfer in bacteria, recombination and reassort-
ment in viruses, viral integration in eukaryotes, and fusion of genomes of symbiotic
species. These “horizontal inheritance” phenomena can cause serious concerns
about the reliability of inference of evolutionary relationships.

For example, traditional phylogenetic classifications of microorganisms have
relied on evolutionary relationships inferred from 16S ribosomal RNA, a highly
conserved genomic region between bacteria and archea species. However, as this
region accounts for under 1% of the complete genome in most species, the vast
majority of genetic information is ignored. Since horizontal inheritance is perva-
sive, the remaining 99% of genes might tell a very different evolutionary story. This
problem becomes acute in viruses that lack 16S or other universal genes. Such chal-
lenges underscore the need for approaches to describe the shape of evolutionary
processes in a more general way, free from the constraints of the tree representa-
tion. As a first step, it would be very useful to have criteria to determine when tree
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representations are inadequate. The rapidly growing number of sequenced micro-
bial genomes provides fertile ground for developing and testing new approaches to
quantifying both vertical and horizontal evolutionary processes.

While recent developments in phylogenetic networks provide ways to identify
instances of non-tree-like events, the field does not have a widely accepted frame-
work to visualize and quantify the frequency, scale, and significance of horizontal
evolution. Although phylogenetic trees can be visually complex, from a topological
standpoint they are very simple mathematical objects: a tree is a simplicial complex
with only 0-simplices and 1-simplices that contains no loops. In contrast, simple
kinds of horizontal evolution can be represented by the presence of loops. Thus,
computing Betti numbers of the simplicial complexes produced from sequencing
data can detect horizontal evolution.

0.6 What Is in This Book?

This book is aimed at two distinct audiences: quantitative biologists interested in
applying new mathematical tools to the study of genomics, and mathematicians
and computer scientists interested in understanding geometric problems that arise
in modern genetics and genomics. As a consequence, we have written neither a
traditional mathematics textbook nor a standard biology textbook.

In the first part of the book, we begin by giving a rapid but comprehensive
review of the mathematical background for topological data analysis (TDA). We
state definitions and theorems, and provide many examples, but do not give proofs;
our goal is to provide context for understanding the TDA framework and also to
provide detailed references for the reader interested in achieving a deeper under-
standing. We assume that the reader has some familiarity with calculus, linear
algebra, elementary probability, and basic statistics.

In Chapter 1, we give a brief introduction to the basic ideas of algebraic topol-
ogy, including discussion of algebraic background (linear algebra and abstract
algebra), basic point-set topology, simplicial complexes, and the construction of
homology groups. In Chapter 2, we give an overview of topological data analysis,
focused on the theory surrounding persistent homology. We review the machinery
for understanding topological invariants of data sets in terms of associated simpli-
cial complexes, explain persistent homology and the basic structural theorems, and
describe the Mapper algorithm. In Chapter 3, we describe the emerging and active
area of research integrating topological data analysis with the methods of statistics;
this is a necessity for the use of these tools to analyze scientific data and perform
inference. In Chapter 4, we give a brief overview of the area of manifold learn-
ing, which is closely related to topological data analysis, and review mathematical
models of spaces of phylogenetic trees.
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In the second part of the book, we explore some biological applications. In Chap-
ter 5, we study the topology of point clouds in genomic space using persistent
homology and the geometry of phylogenetic spaces. Specific examples include
viruses (influenza and HIV), bacteria, and humans. Chapter 6 provides a concise
introduction to cancer genomics; among the applications, we use topological data
analysis to study the evolution of tumors in collections of patients, to describe
the stratification of patients, and to capture the association between genomic data
and sensitivity to diverse therapeutic agents. Next, in Chapter 7, we turn to a new
type of data that is particularly well suited to TDA tools: expression profiles of
large collections of single cells. In Chapter 8 we study the three dimensional struc-
ture of DNA using persistent homology, with examples from bacteria and human
cells. Finally in Chapter 9 we use a mapping of time-series data into finite met-
ric spaces to extract periodic features. Each of these chapters contains background
information on the relevant biological problem and can be read independently.
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Basic Notions of Algebraic Topology

. . . geometry is the art of reasoning well from badly drawn figures;
however, these figures, if they are not to deceive us, must satisfy cer-
tain conditions; the proportions may be grossly altered, but the relative
positions of the different parts must not be upset . . .

Henri Poincaré

Modern algebraic topology arose in order to provide quantitative tools for study-
ing the “shape” of geometric objects without using distances. It assigns algebraic
invariants (e.g., numbers) to geometric objects in a way that depends only on the
relative, not absolute, positions of points. In this chapter, we motivate and introduce
the basic ideas of algebraic topology. This material provides a conceptual frame-
work for understanding the tools of topological data analysis and their application
to real data. We do not provide a complete treatment, and in particular we omit
proofs of the theorems. At the beginning of each section, we provide a reference to
a comprehensive source for the material.

Although algebraic topology is not yet a standard tool in genomics, the study of
shape is already ubiquitous – clustering techniques are widely used to analyze data
in all domains of molecular biology. For example, we can represent the expression
profile of genes in cancer patients as points in a high-dimensional Euclidean space.
Patients that have similar expression profiles will have points that are close together.
A clustering algorithm can then be employed to classify expression profiles of can-
cer patients and thereby illuminate some of the distinct molecular mechanisms
underlying the disease.

Recall that a clustering algorithm assigns to a finite collection of points X
equipped with a distance function ∂X a partition of the points of X, i.e., a collection
of subsets Ci ⊆ X such that

1. the {Ci} do not overlap, so Ci ∩C j = ∅ for all i � j, and
2. together the {Ci} cover all of X, so that

⋃
i Ci = X.

23
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These subsets Ci are the clusters. Typically, clustering algorithms seek to gener-
ate partitions so that points within a given cluster are closer together than points in
distinct clusters.

A representative clustering algorithm, single-linkage clustering in Euclidean
space, takes as input a set of points X ⊆ Rn and a fixed ε > 0, and assigns points x
and y to the same cluster if there is a path of points

x = x0, x1, x2, . . . xk−1, xk = y

such that ||xi − xi−1|| < ε for 1 ≤ i ≤ k. (Here for x, y ∈ Rn, ||x − y|| denotes the
Euclidean distance between the points x and y, see Example 1.3.6.) In other words,
we connect points if they are closer than ε; clusters are groups of connected points.

The methodology of clustering is motivated by the same focus on relative infor-
mation as in algebraic topology. Specifically, clustering is a useful technique for
analyzing data in circumstances in which the data is very noisy, so relative infor-
mation is more reliable than absolute information. In fact, the connection between
clustering and algebraic topology is very close: as we shall see in Section 1.3.2,
single-linkage clustering has an interpretation in terms of a standard topological
invariant.

In contrast to clustering techniques, which typically work on a collection of sep-
arated points (referred to as a “point cloud”), algebraic topology has traditionally
concerned itself with continuous objects with infinitely many points which can be
arbitrarily close together, e.g., a sphere. A first question we might ask is “what is
the continuous analogue of the clustering algorithm described above?” Roughly
speaking, the answer to this question will be as follows: a “cluster” should consist
of all points which can be connected by a smooth path.

In order to make sense of this, we need a precise definition of a geometric
object and of a smooth path through a geometric object. In the continuous set-
ting, this is done using the notion of a topological space. The study of basic
properties of topological spaces is typically referred to as point-set topology.
We begin by giving a little background about sets and then reviewing the con-
cept of a metric space, which provides a rich source of examples of topological
spaces.

Guide for the Reader

Our expositional choices in this chapter (and in this part of the book more
broadly) are motivated by our belief that in order to safely use mathematical
tools, it is important to understand where they come from and how they fit into
a broader ideological context. As a consequence, we have not adopted the maxi-
mally streamlined approach (which might start directly with simplicial complexes)
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to mathematical background. Instead, we have endeavored to “start from the
beginning,” and give a rapid but thorough introduction to the ideas of algebraic
topology.

On the other hand, we are aware that the volume of material below might pose
challenges to the energy of readers who have less math background. For someone
interested in a minimal path through this section, we might recommend skipping
to Section 1.8 and reading prior material as necessary to proceed. Strictly speaking,
only Sections 1.8 through 1.12 are required for the rest of the book. Nonetheless,
we hope that there are some readers from biology who find the broader introductory
material useful.

1.1 Sets

All of the mathematical objects we will study herein are built on top of sets.
Although the construction of rigorous axiomatizations of set theory is subtle and
complicated, we can get by with a fairly naive view of the foundations. An excel-
lent textbook that covers the material we use (and more) is Halmos’ Naive Set
Theory [224].

We will regard a set as simply an unordered collection of objects, referred to as
members or elements. We require that the elements of a set be unique. A finite set
has finitely many elements; otherwise, the set is infinite.

Example 1.1.1.

1. The empty set, denoted ∅, is the set with no elements.
2. The integers Z is the set {. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .}; an element of
Z is a number. Similarly, the natural numbers N = {0, 1, 2, . . .}, the rational
numbers Q consisting of the fractions { p

q } where p and q are relatively prime,
and the real numbers R are sets. Note that rigorously constructing the real num-
bers as a set is complicated; although informally we are used to working with
them as decimals, the construction requires some machinery we will discuss
below.

3. The Euclidean vector spaces Rn are sets; the elements are the vectors (x1, x2, . . . , xn),
where each xi ∈ R.

4. The collection of possible bases in a DNA strand, {A,G,C,T }, is a set.
5. The expression vectors from a collection of samples from a cancerous tumor form a

set, e.g., a set of vectors {(30, 50, 10, . . .), (10, 16, 29, . . .), . . .}, where each element is
a vector and each entry in an element of the set is an expression value at a particular
position on a gene.

6. In general, a finite set can be specified as a list of elements, e.g., {a, b, 4}, which has
elements a, b, and 4. These elements could be specified by a condition, e.g., the set of
people named “Harold” in New York.
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7. In contrast, “tall people in Boston” does not describe a set; the term “tall” is not an
adequately specific description by itself. On the other hand “living people over six feet
tall in Boston” is a well-defined characterization of a set.

There are several familiar constructions of new sets from old that will be of
particular relevance for our work. First, given a set X, we can form new sets by
taking only certain elements from X; we have seen examples of this above.

Definition 1.1.2. A subset Y of a set X is a set Y such that every element y ∈ Y is
an element of X. We write Y ⊆ X to denote a subset of X.

Second, given a finite set of sets {Xi} = {X1, X2, . . . , Xk}, we can form the set of
tuples.

Definition 1.1.3. Let {Xi} be a finite set of sets. The Cartesian product is the set
specified as ∏

i

Xi = {(x1, x2, . . . , xk) | xi ∈ Xi}.

Example 1.1.4.

1. Almost by definition, the standard xy-plane R2 can be identified with the product R×R,
2. and more generally

Rn �
n∏

i=1

R.

Given two sets X and Y , we can form the union

X ∪ Y = {z | z ∈ X or z ∈ Y}
and intersection

X ∩ Y = {z | z ∈ X and z ∈ Y}.
More generally, for a collection {Xi} of sets we can form the union ∪iXi or
intersection ∩iXi of all of them.

If S 1 and S 2 are sets, a function f : S 1 → S 2 is a rule that produces an element
of S 2 for each element of S 1. We often refer to functions between sets as maps or
maps of sets. Given two maps f : X → Y and g : Y → Z, the composite g ◦ f takes
x ∈ X to g( f (x)) ∈ Z.

Definition 1.1.5. A map of sets f : X → Y is defined as follows.
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surjection injection bijection

Figure 1.1 A surjective map hits everything. Injective maps take distinct elements
to distinct places. Bijective maps are both injective and surjective.

● Surjective or onto if for every point y ∈ Y , there is at least one x ∈ X such that
f (x) = y; that is, f hits all the points of Y .

● Injective or one-to-one if for any two points x, y ∈ X that are not the same,
f (x) � f (y); that is, no point of Y is hit more than once.

● Bijective if it is injective and surjective.

See Figure 1.1 for an illustration of these three properties of a map of sets.

Example 1.1.6.

1. The map f : R→ R specified by f (x) = x2 is not injective, since −2 and 2 both go to 4,
and it is not surjective, since no negative numbers are hit.

2. The map {a, b, c} → {d} that takes every element to d is not injective since a and b both
go to d, but it is surjective.

It is extremely useful to develop a criterion for considering sets “the same” that
is weaker than requiring that they be identical. For this, we introduce the notion of
the inverse of a function. Recall that the identity map idX : X → X is simply the
function defined to be f (x) = x.

Definition 1.1.7. The function f : X → Y has inverse g : Y → X if the composite
g ◦ f : X → Y → X is idX , the identity on X, and the composite f ◦ g : Y → X → Y
is idY , the identity on Y .

Notice that any bijective map f : X → Y has an inverse f −1 : Y → X where
f −1(y) is defined to be the unique element of X that has image y.

Definition 1.1.8. Two sets X and Y are isomorphic if there exists a bijection
f : X → Y . We often write X � Y and leave the functions f and g implicit.

We will refer to f as an isomorphism.
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Figure 1.2 An isomorphism between two finite sets can be described in terms of
a permutation.

Example 1.1.9.

1. Two finite sets X and Y are isomorphic if and only if they have the same number
of elements. See Figure 1.2 for an example of an isomorphism between two finite
sets.

2. The map R2 → R2 that takes (x, y) to (−x,−y) is an isomorphism; its inverse is itself.
3. The map N → Z that takes 0 to 0, 1 to 1, 2 to −1, and in general is specified by the

formula

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x = 0
x+1

2 , x odd

− x
2 , x even

is an isomorphism.

Elaborating on the observation that finite sets are isomorphic if and only if they
have the same number of elements, we can use isomorphisms to talk about the size
of infinite sets.

Definition 1.1.10. A set S is countable if there exists a bijection f : N → S ,
where N denotes the natural numbers {0, 1, 2, . . .}.

Countable sets are the smallest kind of infinite sets.

Example 1.1.11.

1. Clearly the set of natural numbersN is countable. The set of integers Z is also countable,
by the bijection given above in Example 1.1.9.

2. A little bit of work shows that the set of rational numbers Q is countable.
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3. Famously, Cantor showed that R is uncountable, which means that it is bigger in
a precise sense than any countable set. More generally, Rn is uncountable for any
n > 0.

Two sets can be isomorphic in many different ways; for example, there are many
isomorphisms between any two finite sets of the same size. In general, composing
an isomorphism between two different sets X and Y with an isomorphism from Y
to itself will produce a new isomorphism from X to Y .

We will often want to work with sets “up to isomorphism.” Formally, we do this
using the fact that isomorphism of sets is an equivalence relation.

Definition 1.1.12. Let S be a set and let ∼ be a relation on S , i.e., a collection of
tuples (x, y) with x, y ∈ S . Given such a tuple (x, y), we write x ∼ y. Then ∼ is an
equivalence relation when the following holds.

1. For all x, y ∈ S , if x ∼ y then y ∼ x.
2. For all x ∈ S we have x ∼ x.
3. For all x, y, z ∈ S , if x ∼ y and y ∼ z, then x ∼ z.

Isomorphism of sets clearly satisfies these properties. The collection of all sets
isomorphic to X is called the isomorphism class of X; often we will be interested
in a set only up to its isomorphism class. However, we have to be a little bit careful
when formalizing the idea of an isomorphism class; the isomorphism class of a set
is usually not itself a set! Instead, it is a larger object, referred to as a class. The
issue is that Russell’s paradox shows that the “set of all sets” cannot exist: the set
of all sets would have to contain in particular the set that does not contain itself as
an element, and this is a contradiction. The paradox rules out certain appealing but
naive axioms about which sets can exist: in particular, certain constructions that
intuitively seem like they should produce sets in fact do not, but rather produce
larger objects.

1.2 Metric Spaces

It is very common to represent experimental data as a set of measurements, together
with a distance between every pair of measurements. For example, genomic expres-
sion data is often presented as a collection of arrays of the form {x1, x2, . . . , xk},
where xi ∈ R is a number representing the expression of the ith measured gene. The
distance between two expression vectors could be the standard Euclidean distance
or it could be a correlation function, depending on the specific situation. Mathemat-
ically, this kind of setup is captured by the notion of a metric space. There are many
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good treatments of metric spaces; Kaplansky’s Set Theory and Metric Spaces is a
particularly accessible elementary treatment [284].

A metric space is a set X equipped with a distance function, referred to as the
metric, that satisfies a few simple axioms encapsulating the salient features of the
usual Euclidean distance in Rn. Specifically, we have the following definition.

Definition 1.2.1. A metric space is specified by a pair (X, ∂X) where X is a set
and ∂X is a function

∂X : X × X → R
that assigns a non-negative real number to each pair of points of X such that the
following holds.

1. The metric ∂X detects whether two points are the same, in the sense that

∂X(x1, x2) = 0 ⇐⇒ x1 = x2.

2. The metric ∂X is symmetric in that

∀x, y ∈ X, ∂X(x, y) = ∂X(y, x).

3. The metric ∂X satisfies the triangle inequality:

∀x, y, z ∈ X, ∂X(x, z) ≤ ∂X(x, y) + ∂X(y, z).

The most interesting of these axioms is the triangle inequality. See Figure 1.3 for
pictures of triangles on the surface of a cylinder and a sphere; the triangle inequality
is evident. (Here the metric on these surfaces is computed by the length of shortest
path.)

Remark 1.2.2. Particularly in biological applications, we sometimes encounter
dissimilarity measures which are not quite metrics. For example, the Kullback-
Leibler divergence (see Remark 3.2.32) is not symmetric, the Gromov-Hausdorff
distance (see Definition 2.4.4) on the set of metric spaces can be zero for metric

a

a

b
b

c
c ≥ a + b

c

Figure 1.3 No matter how curved or distorted triangles in a metric space are, the
length of any side must always be shorter than the sum of the other two sides.
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spaces that are not identical, and many common dissimilarity measures (e.g., the
Bray-Curtis dissimilarity measure [70]) do not satisfy the triangle inequality. In the
first two kinds of examples, it is easy to construct a metric that captures the salient
properties of the dissimilarity function – for instance, by symmetrizing (making a
new metric ∂′X = min(∂X(x, y), ∂X(y, x))) or identifying points such that ∂X(x, y) = 0
when x � y. Fixing triangle inequality violations is more subtle (e.g., see [196] for
interesting recent progress).

Example 1.2.3. The most familiar and important examples of metric spaces are the
Euclidean spaces Rn; these are defined as the n-tuples {(x1, x2, . . . , xn) | xi ∈ R} equipped
with the standard distance metric

∂Rn ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2.

A natural family of examples of metric spaces come from metrics induced by
weighted graphs. Particularly interesting examples of graph metrics come from
trees with weighted edges; this kind of metric space will be important in work
on modeling evolutionary phenomena using phylogenetic trees, as we will see in
Section 5.2.

Example 1.2.4. A graph is specified by a set of vertices and a set of edges connecting
the vertices. A weighted graph has weights (nonnegative numbers) attached to the edges.
More precisely, a weighted graph is a tuple G = (V, E,W) with vertex set V , edge set
E ⊂ V × V , and weights W : E → R≥0.

Regarding this graph as undirected and stipulating that there are no edges with non-zero
weight from any vertex v to itself, the graph metric on a weighted graph is a metric on the
set of vertices of the graph. The metric is defined so that the distance between vertices v
and w is the minimal length of a path connecting v and w:

∂G(v,w) = min
v,z0,z1,...,zk ,w|zi∈V

⎛⎜⎜⎜⎜⎜⎜⎝W(v, z0) +
k−1∑
i=0

W(zi, zi+1) +W(zk,w)

⎞⎟⎟⎟⎟⎟⎟⎠ .
(See Figure 1.4.)

The metrics we have described so far are continuous, in the sense that distances
can in principle be any real number. But many interesting metrics are discrete. For
example, the Hamming distance, which is a metric on strings that counts the num-
ber of differences, takes values in the natural numbers. The Hamming distance is a
basic concept in information and coding theory.

Example 1.2.5. Fix an alphabet Σ, i.e., a set of symbols we will call letters. Let x and
y be words of length n with letters in Σ. Then the Hamming distance between x and y is
defined to be the number of positions at which the letters of x and y differ:
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B

Figure 1.4 The length of the shortest path between A and B in the weighted graph
gives the distance between them.

∂H(x, y) = #{i | xi � yi}.
For example, if Σ = {A,C,G,T }, then

∂H(ACGT, ACAA) = 2.

An important point to emphasize is that there can be many distinct metrics on
the same underlying set. For instance, in genomic data considered as words in
{A,G,C, T } there are, in addition to the Hamming distance, other well-motivated
biologically relevant distances (see Section 5.2). As another example, a common
distance metric used for gene expression data represented as points in Rn is the
Pearson correlation distance.

Example 1.2.6. For x, y ∈ Rn, define the Pearson correlation distance between x and y
to be

∂cor(x, y) = 1 −
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

,

where x̄ = 1
n
∑n

i=1 xi and ȳ = 1
n
∑n

i=1 yi.

The existence of a distance function allows us to define many familiar notions
from calculus; we review these now, as this is the prototype for the definitions of
elementary topology. For instance, for each point x in a metric space and ε > 0,
we can specify the ε-neighborhoods of x to describe points that are close to x.
Specifically, we have the open balls and closed balls

Bε(x) = {z ∈ X | ∂X(z, x) < ε} and B̄ε(x) = {z ∈ X | ∂X(z, x) ≤ ε}.
We can always separate two distinct points x and y by taking a ball B1 around x

and a ball B2 around y such that B1∩B2 = ∅; if ∂X(x, y) = ε, we can set B1 = B ε
4
(x)

and B2 = B ε
4
(y), for example. (See Figure 1.5.)
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X

Y

Figure 1.5 Any pair of distinct points in a metric space can be separated by open
balls around them.

Elaborating on this, the existence of a metric allows us to talk about convergence
of sequences. A sequence of points in X will be a function N→ X, i.e., a sequence

{xi} = x0, x1, x2, x3, . . .

for xi ∈ X.

Definition 1.2.7. For a metric space (X, ∂X), an infinite sequence of points {xi}
converges to a point x ∈ X if for any ε > 0, there exists a positive integer N such
that ∂X(xk, x) < ε for all k > N.

Informally speaking, the definition of convergence simply means that if we
go out far enough in the sequence, all the points are arbitrarily close to x. (See
Figure 1.6 for a picture of what this means.)

Example 1.2.8. Consider the sequence{
1
n

}
= 1,

1
2
,

1
3
, . . . ,

1
100

, . . . .

This sequence converges to 0; for any ε, it is clear that we can find an N such that for
n > N, ∣∣∣∣∣∣1n − 0

∣∣∣∣∣∣ = 1
n
< ε.

Specifically, take N to be the smallest integer larger than 1
ε .

A more subtle notion is that of a Cauchy sequence; this is a sequence of points
that ought to converge somewhere, in the following sense.
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Figure 1.6 For any ball around the point of convergence, all but finitely many
points of the convergent sequence are within that ball. (Note that in the picture
there are only finitely many points, due to limits of resolution.)

ε

Figure 1.7 The points in a Cauchy sequence get closer and closer together but
need not converge.

Definition 1.2.9. For a metric space (X, ∂X), a Cauchy sequence is a sequence of
points {xi} such that for all ε > 0, there exists an N such that ∂X(x j, xk) < ε for
j, k > N.

Although the points in a Cauchy sequence get closer and closer together (see
Figure 1.7), it is not necessarily the case that all Cauchy sequences converge to a
point x ∈ X.

Example 1.2.10. Consider the set of rational numbers Q equipped with the standard
metric, i.e., the distance between x and y is ∂(x, y) = |x − y|. Then the sequence
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{3, 3.1, 3.14, 3.141, 3.1415 . . .}

(where each new number in the sequence has an additional digit of π) is a Cauchy sequence
and “wants” to converge to π, but π is not in Q!

This possible failure of Cauchy sequences to coincide with convergent sequences
motivates the following definition.

Definition 1.2.11. A metric space (X, ∂X) is complete if every Cauchy sequence
converges to a point x ∈ X.

Example 1.2.12. The Euclidean spaces Rn are all complete; R can in fact
be constructed by formally adding to Q points for each Cauchy sequence to
converge to.

As Example 1.2.12 indicates, there is a tension between the size of a metric
space and whether it is complete; Q is countable but not complete. Adding points
to Q to make it complete yields R, which is uncountable. Although metric spaces
of interest are often not countable, there is frequently a countable subset X′ ⊂ X
that is dense, in the following sense.

Definition 1.2.13. A subset X′ ⊂ X is dense if for all x ∈ X and ε > 0 there
exists a point z ∈ X′ such that ∂X(x, z) < ε. That is, for any point X, there exists an
arbitrarily close approximation in X′.

For example, Q is dense in R; any real number can be approximated to any
precision by a finite-length decimal.

Definition 1.2.14. A metric space (X, ∂X) is separable if there exists a countable
subset X′ ⊂ X that is dense in X.

Example 1.2.15. All of the Euclidean spaces Rn are separable; any point can be
approximated by a point with rational coordinates.

A closely related notion is the idea of an ε-net (Figure 1.8).

Definition 1.2.16. Let (X, ∂X) be a metric space. A subset X′ ⊂ X is ε-dense if for
every x ∈ X there exists z ∈ X′ such that ∂X(x, z′) < ε. (So a dense set is ε-dense
for every ε.) An ε-net is a subset X′ ⊂ X that is ε-dense.
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Figure 1.8 Any point in the square is within ε of the blue points at the centers of
the circles.

In order to understand when ε-nets exist, we need to have ways to talk about the
size of a metric space. In order to define the size, we first need to review the notion
of inf and sup.

Definition 1.2.17. Given a subset A ⊂ R, a lower bound for A is an element
x ∈ R such that for all a ∈ A, x ≤ a. Then the infimum inf(A) is the greatest lower
bound, if one exists. Similarly, an upper bound for A is an element y ∈ R such that
for all a ∈ A, a ≤ y. Then the supremum sup(A) is the least upper bound, if one
exists.

The sup and inf are distinct from the max and min, respectively, because they
might not lie in A itself.

Definition 1.2.18. Let (X, ∂X) be a metric space. The diameter of a subset A ⊂ X
is the supremum

sup
x,y∈X

∂X(x, y).

We must write sup rather than max because there might not be any pair of points
which realizes the bound. (Note also that the diameter can be ∞, when there is no
upper bound!)

Another way to talk about this is to observe that a subset A ⊂ X has finite
diameter when there exists a ∈ A such that A ⊂ Bκ(a) for some κ; more gener-
ally, such a set will be referred to as bounded. (See Figure 1.9 for an example of
this.)

An even stronger notion is that of being totally bounded.
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D

Figure 1.9 The diameter of a subset of a metric space can be approximated by
taking a ball that completely encloses the subset.

Definition 1.2.19. Let (X, ∂X) be a metric space. Then X is totally bounded if for
every ε > 0, there exists a finite cover of X by balls of radius ε, i.e., a collection of
balls {Bε(xi)} whose union is X.

In Rn a subset is bounded if and only if it is totally bounded, but in general,
a bounded space need not be totally bounded. For example, a metric space with
infinitely many points such that all interpoint distances are 1 is bounded but not
totally bounded.

Lemma 1.2.20. Let (X, ∂X) be a totally bounded metric space. Then for any ε we
can find a finite ε-net in X.

An important theme in modern mathematics is that the structure of mathematical
objects (e.g., sets or metric spaces) can be completely understood in terms of func-
tions between them. We describe a framework that allows us to be precise about
this in Section 1.7 below (where we introduce basic concepts of category theory).
From this perspective, an essential next step is to define a function between metric
spaces.

At a minimum, a map between metric spaces (X, ∂X) and (Y, ∂Y) should involve
a function of sets f : X → Y . But we would like to require that the function also
respect the metric structures on X and Y , in some sense. There are different ways
to do this; we now discuss the familiar notion of a continuous map.

Definition 1.2.21. Let (X, ∂X) and (Y, ∂Y) be metric spaces. A map f : X → Y
is continuous if for every sequence {xi} in X converging to x the sequence { f (xi)}
converges in Y to f (x).
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An important property of continuous maps is that they compose.

Lemma 1.2.22. Let (X, ∂X), (Y, ∂Y), and (Z, ∂Z) be metric spaces. If f : X → Y
and g : Y → Z are continuous, then so is the composition g ◦ f : X → Z.

Continuity can also be defined in terms of a traditional ε-δ definition; this is easy
to show directly. We explain this below in Example 1.3.20, where we generalize
the notion of continuity to topological spaces.

For metric spaces, it is also sometimes useful to consider a stronger notion of
continuous where the “expansion” of the map is bounded.

Definition 1.2.23. A map f : X → Y between metric spaces (X, ∂X) and (Y, ∂Y) is
Lipschitz with constant κ if for all x1, x2 ∈ X the inequality

∂Y( f (x1), f (x2)) ≤ κ∂X(x1, x2)

holds.

Any Lipschitz map is continuous, but the converse does not hold in general.

1.3 Topological Spaces

The motivating idea of point-set topology is to relax the requirement of a distance
and define a weaker and more flexible notion of closeness that still allows us to
formalize the notions that lead to calculus (i.e., continuity and convergence). This
is the basis for elementary analysis, which studies the foundations of calculus. A
classic textbook for point-set topology is Munkres [369]; there are many excellent
analysis books, of which Rudin [440] is a canonical example.

The basic observation that leads to the development of point-set topology is that
most of the concepts we defined for metric spaces in Section 1.2 were or could be
phrased in terms of the metric balls Bε(x). A topological space can be thought of
as simply a set with a well-behaved collection of subsets that act like metric balls.
This abstraction is extremely useful, for a number of reasons: many metrics can
lead to the same topology, some important topological spaces (notably those arising
in algebraic geometry) do not come from a metric, and many basic constructions
(e.g., gluing) are much more complicated to express in the context of a metric.

Definition 1.3.1. A topological space is a pair (X,U), where X is a set and U is a
collection of subsets of X, which we refer to as open sets. The open sets satisfy the
following conditions.
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1. Both the empty subset ∅ and X are elements of U .
2. Any union of elements of U is an element of U .
3. The intersection of a finite collection of elements of U is an element of U .

A subset Z ⊆ X is closed if the complement of Z in X is open.

Any metric space gives rise to a topological space.

Example 1.3.2. Let (X, ∂X) be a metric space. Then we say that a subset A ⊂ X is
open if for every z ∈ A, there exists ε such that Bε(z) ⊆ A. The open sets make X into a
topological space.

But the definition of a topological space is sufficiently flexible so as to allow a
variety of strange examples. For instance, any set has two trivial topologies.

Example 1.3.3. Any set X can be given the following two topologies.

1. The discrete topology, in which any subset Y ⊂ X is an open set. In particular, the points
themselves are open sets. As the name suggests, in this topology the points should be
thought of as maximally separated from one another.

2. The indiscrete topology, in which the only open sets are the entire set X and ∅. In this
topology, the points should be thought of as being arbitrarily close to each other.

However, the most frequently occurring examples are very familiar. In order to
specify a topological space, one typically gives a base for the topology.

Definition 1.3.4. A base for a topological space (X,U) is a collection of open
sets {Uα} such that any open set is a union of elements of the base. Given simply
a set X, a collection of sets {Bα} is a base if every x ∈ X is in some Bα and given
x ∈ Bα ∩ Bβ, there exists Bγ ⊆ Bα ∩ Bβ such that x ∈ Bγ.

The importance of the intrinsic definition is that we can define a topology on X
given a base.

Lemma 1.3.5. Given a set X and a base {Bα}, we can define a topology on X
where a set U is open if for each x ∈ U there exists Bα such that x ∈ Bα ⊆ X. (And
we will often refer to this as the topology generated by a base.)

As Lemma 1.3.5 makes clear, the base of a topological space is modeled on the
open balls of a metric space.
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Figure 1.10 Basic open and closed sets in Euclidean space are balls; more general
open and closed sets are generated by union and intersection.

Example 1.3.6. Euclidean space with the topology generated by the open balls Bε(x) =
{y ∈ Rn | ||x − y|| < ε}, for x ∈ Rn and ε > 0. See Figure 1.10 for some examples of open
and closed sets in this topology.

Example 1.3.7. In fact, we can conveniently describe the topology of Example 1.3.2 on
a metric space (X, ∂X) as generated by the base of the open balls Bε(x) = {y ∈ X | ∂X(y, x) <
ε}, for x ∈ X and ε > 0.

An important class of topological spaces are those with a countable base; these
are called second countable. Example 1.3.6 is a second countable topological
space; we can take the base using only the balls with rational radii.

The example of the topology induced by a metric has a particularly important
property that we now highlight. Specifically, recall that in a metric space we can
separate points in the sense that given two distinct points x, y ∈ X, we can choose
balls Bε1 (x) and Bε2 (y) such that Bε1 (x) ∩ Bε2 (y) = ∅; we simply take ε1, ε2 <

∂X (x,y)
2 .

It turns out to be very useful to consider topological spaces that have this property,
even if the topology is not generated by a metric.

Definition 1.3.8. A topological space (X,U) is Hausdorff if for any pair of dis-
tinct points x, y ∈ X there exist open sets Ux and Uy such that x ∈ Ux, y ∈ Uy, and
Ux ∩ Uy = ∅.

If (X,U) is a topological space, any subset Y ⊂ X can be given the structure
of a topological space in a natural fashion induced from the topology on X. This
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basic closed

basic open
basic open

Figure 1.11 Left: Basic open sets in the subspace topology on the unit square.
Right: Basic open sets in the subspace topology on the unit circle.

is referred to as the subspace topology on Y , and is a very important source of
examples of topological spaces.

Definition 1.3.9. Let (X,U) be a topological space and Y ⊂ X a subset. Then the
subspace topology on Y is defined by taking the open sets to be {Y ∩ U |U ∈ U }.

Example 1.3.10. The subspace topology on the unit square [0, 1]×[0, 1] ⊂ R2 has basic
open sets that are either balls (when the ball is completely contained within the square) or
the intersection of balls with the square; see Figure 1.11 for examples.

Example 1.3.11. Let S 1 denote the standard unit circle in R2; that is, S 1 = {(x, y) ⊂
R2 | x2 + y2 = 1}. We topologize S 1 using the subspace topology as a subset of R2; see
Figure 1.11 for examples.

Just as with sets, another standard way to produce new topological spaces from
old is via the Cartesian product (recall Definition 1.1.3).

Definition 1.3.12. Let X and Y be topological spaces, with the topologies
specified by open sets {Uα} and {Vβ} respectively. Then the product

X × Y = {(x, y) | x ∈ X, y ∈ Y}

is a topological space with a base for the topology given by the open sets {Uα×Vβ};
we refer to this as the product topology.

A topological space is designed to be a minimal structure in which we can talk
about “closeness,” in a precise sense.
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U

p

V

Figure 1.12 V is a neighborhood of p.

Figure 1.13 Smaller and smaller open sets around the point of convergence still
contain all but finitely many points in the approaching sequence.

Definition 1.3.13. Given a point x ∈ X, we define a neighborhood of x to be a set
V ⊆ X such that there is an open set U ⊆ V and x ∈ U. (See Figure 1.12.)

Immediately, we can use this definition to specify the notion of convergence of
a sequence (Figure 1.13).

Definition 1.3.14. A sequence of points {xi} converges to p if for any neighbor-
hood V of p there exists an N such that xn ∈ V for n ≥ N.

Considering Example 1.3.6, we see that in Euclidean space this means that for
any ε, there exists an n such that xn ∈ Bε(x), i.e., ||xn − x|| < ε. In particular, when
restricted to R, the definition recovers the usual notion from elementary calculus
of convergence of a sequence. More generally, Definition 1.3.14 coincides with
Definition 1.2.7 in a metric space given the metric topology.

Topological spaces also admit an extremely useful notion of size. This takes a
little bit more work to specify without explicit reference to a distance function. In
order to define this, we need the notion of a cover.
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Figure 1.14 An open cover of U is a collection of open sets whose union
contains U.

Definition 1.3.15. An open cover of a set U in a topological space X is a
collection of open sets {Uα}, with each Uα ⊂ X, such that U ⊆ ⋃

Uα.

For example, the collection of all balls Bε(x) as x varies over the points of Rn is
an open cover of Rn. (See Figure 1.14.) A subcover of a cover is a subset whose
union still contains U.

Definition 1.3.16. A topological space X is compact if any open cover of X has a
finite subcover.

Example 1.3.17.

1. Every finite set is compact.
2. The sphere {x, y, z | x2 + y2 + z2 = 1} with the subspace topology is compact.
3. No Euclidean space Rn is compact for n > 0.

Compact sets are “small” in a basic sense. The notion of compactness is a way
of formalizing the properties of the closed and bounded subsets of Rn.

Theorem 1.3.18. A subset X ⊆ Rn regarded as a metric space is compact if and
only if it is closed and bounded.

1.3.1 Maps between Topological Spaces

We now turn to consider the correct notion of a map between topological spaces.
We want to restrict ourselves to maps f : X → Y which satisfy certain properties
expressing compatibility with the topologies on X and Y . Roughly speaking, we
want continuous maps to have the property that “nearby” points in X are taken to
“nearby” points in Y .
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Figure 1.15 A function is continuous if for every neighborhood V around f (x),
we can find a neighborhood U of x whose image f (U) sits inside it.

Definition 1.3.19. Let (X,UX) and (Y,UY) be topological spaces. A map f : X →
Y is continuous at a point x if for every neighborhood V of f (x), there exists a
neighborhood U of x such that f (U) ⊆ V (Figure 1.15). The map f is continuous
if it is continuous at every point x ∈ X.

It is instructive to work out exactly what this means in the case of the standard
metric topology on R.

Example 1.3.20. A map f : R→ R is continuous at a point x ∈ R if for every open ball
Bε( f (x)), there exists an open ball Bδ(x) such that f (Bδ(x)) ⊆ Bε( f (x)). Put another way,
for every ε > 0, there exists δ > 0 such that |x − y| < δ implies that | f (x) − f (y)| < ε. That
is, we have recovered precisely the usual ε-δ notion of continuity.

More generally, in any metric space, maps are continuous in the sense of
Definition 1.2.21 if and only if they are continuous in the sense of Definition 1.3.19.

Generalizing Lemma 1.2.22, the composition of continuous maps is continuous.

Lemma 1.3.21. Let (X,UX), (Y,UY), and (Z,UZ) be topological spaces and sup-
pose we have continuous maps f : X → Y and g : Y → Z. Then the composite
g ◦ f : X → Z is continuous.

Continuous maps out of simple “test spaces” that are well understood play an
important role in algebraic topology; for example, we can now define a path in
terms of maps out of the unit interval.
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Definition 1.3.22. A path from x to y in a topological space (X,UX) is a continu-
ous function γ : [0, 1]→ X such that γ(0) = x and γ(1) = y. Here [0, 1] is given the
subspace topology it inherits as a subset of R.

The notion of a path captures many familiar examples, but the price of the
generality is that strange examples are also permitted.

Example 1.3.23.

1. A path γ in Rn is just a curve that could be drawn without lifting up the pen (see Fig-
ure 1.16). Note that these can be surprisingly complicated: there are famous examples
of “space-filling” curves, which are precisely paths that touch every point of R2.

2. A path γ in S 2 is a smooth curve on the surface of the sphere.
3. A path in a space given the discrete topology must be a constant map.

We now return to considering the continuous analogue of clustering; in light
of Definition 1.3.22, this is straightforward – we replace the discrete paths by
continuous ones.

Definition 1.3.24. Let (X,UX) be a topological space. Two points p, q ∈ X are
path-connected if there exists a continuous path γ : [0, 1] → X such that γ(0) = p
and γ(1) = q.

It is clear that the relation of being path-connected is an equivalence relation
(reparametrizing paths to obtain transitivity), and so the following definition makes
sense.

0 1

γ

γ(1)

γ(0)

Figure 1.16 A path γ is a continuous map γ : [0, 1]→ X.
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Definition 1.3.25. We define the path components of a topological space (X,UX)
to be the collection of subsets of X such that x, y are in the same subset if and only
if there is a path joining them.

We can think of the path components of X as giving a continuous clustering
of the points of X; roughly speaking, two points are in distinct path compo-
nents when they are separated by a “gap” in space. An important property of
path components is that continuous maps of spaces give rise to maps of path
components; this fact, referred to as functoriality, is essential for calculations
(see Figure 1.17).

Lemma 1.3.26. Let X and Y be topological spaces. Given a continuous map
f : X → Y, there is an induced map of sets between the path components of X and
the path components of Y.

1.3.2 Homeomorphisms

The construction of the set of path components is an example of a topologi-
cal invariant; for two topological spaces that are “the same” in a suitable sense,
the sets of path components should be isomorphic. To be precise about this,
we need to describe when we will consider two topological spaces to be the
same.

Definition 1.3.27. Topological spaces (X,UX) and (Y,UY) are homeomorphic if
there exists a bijection f : X → Y such that both f and f −1 are continuous
maps.

continuous map of spaces continuous map of sets

Figure 1.17 A continuous map of spaces induces a map of sets of path compo-
nents. Here, the black space is the union of three components and the blue space
the union of two.
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Figure 1.18 Two spaces are homeomorphic if there is a continuous bijection
between them with continuous inverse. On the top, the circle is deformed into
a pentagon. On the bottom, a sphere with the bottom cut off can be stretched onto
a plane.

In this situation, we refer to f as a homeomorphism. Intuitively, two spaces are
homeomorphic when they are related by a continuous deformation; roughly speak-
ing, this means they are related by stretching and bending without introducing tears
or gluing things together. See Figure 1.18 for a few examples of homeomorphic
spaces.

Example 1.3.28.

1. The xy-plane R2 and a punctured two-dimensional sphere (i.e., a sphere where we have
removed a point at one of the poles) are homeomorphic; there is a homeomorphism that
“unwraps” the sphere. This homeomorphism is very familiar; this is a stereographic
projection, used for example to make maps.

2. A square, a circle, and an octagon are all homeomorphic – we can define a homeomor-
phism by smoothing out the corners of the square and octagon, or alternatively adding
kinks to the circle.

3. Famously, a coffee cup and a solid torus (a doughnut) are homeomorphic.

We can write X � Y when two spaces X and Y are homeomorphic. The relation
of homeomorphism is an equivalence relation on spaces:

1. it is reflexive (clearly X � X via the identity map),
2. symmetric (X � Y implies that Y � X), and
3. transitive (if X � Y and Y � Z, composing the homeomorphisms shows that

X � Z).
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Recall from Lemma 1.3.26 that continuous maps of spaces induce maps of path
components. When the continuous map in question is a homeomorphism, we can
say something stronger.

Lemma 1.3.29. Let f : X → Y be a homeomorphism. Then f induces a bijection
between the set of path components of X and the set of path components of Y.

We can interpret Lemma 1.3.29 to say that the number of path components is a
topological invariant of a topological space. This numerical invariant is interesting,
insofar as it allows us to distinguish spaces very easily.

Corollary 1.3.30. Let X and Y be topological spaces. If X and Y have different
numbers of path components, then X and Y are not homeomorphic. (Of course, two
spaces with the same number of path components need not be homeomorphic!)

We can directly relate the notion of path components to the problem of clustering
discrete data, in a precise sense. First consider the case in which (M, ∂M) is a finite
metric subspace of Rn. Fix a scale parameter ε ≥ 0. Then the topological space
formed as the union

N =
⋃
x∈M

B̄ ε
2
(x)

has the property that the path components of N recover the clusters obtained via
single-linkage clustering with parameter ε. However, a general finite metric space
will not come with an embedding into Rn; for this reason, it is useful to recast the
clustering problem using a discretized topological model that encodes the same
basic data.

To this end, we consider a construction which associates a graph to (M, ∂M).

Definition 1.3.31. Let (M, ∂M) be a finite metric space and fix ε ≥ 0. Define the
associated neighborhood graph Gε(M) to have vertices given by the points of M,
and an edge (vi, v j) connecting vi and v j if and only if ∂M(vi, v j) ≤ ε.

Regarding the graph as a topological space, we can give a graph-theoretic
description of the path components.

Lemma 1.3.32. Two vertices vi and v j in a graph G are in the same path compo-
nent if there exists a collection of edges (vi, vk1 ), (vk1 , vk2), . . . , (vkm , v j) where each
pair of adjacent edges shares a vertex.
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It is now evident that the components of the graph associated to (M, ∂M)
correspond to the clusters given by single-linkage clustering with parameter ε.

1.4 Continuous Deformations and Homotopy Invariants

We have now arrived at the beginnings of homotopy theory; two excellent modern
textbooks are by May [342] and Hatcher [235]. We observed in Lemma 1.3.29 in
the previous section that the set of path components of a space X is a topological
invariant, in the sense that if f : X → Y is a homeomorphism then the induced
map on path components is an isomorphism. However, counting path components
is much weaker than deciding whether two spaces are homeomorphic.

1. A circle and a point {x} are not homeomorphic but have the same number of
path components.

2. As an even simpler example, a disk {x | x ∈ R2, ||x|| ≤ 1} and a point {x} have the
same number of path components. However, they are clearly not homeomorphic
(there is no map from Dn → {x} that is a bijection).

These examples motivate a search for a notion of equivalence that is weaker than
homeomorphism and closer to comparing counts of path components. In particular,
it seems reasonable to want a weaker kind of equivalence for which a point and a
disk look the same but a point and a circle look different.

In order to introduce such a notion of equivalence, we will introduce the idea
of a homotopy. A homotopy specifies a relationship between continuous maps
from X → Y; we will subsequently use this to define a kind of “approximate”
homeomorphism.

Definition 1.4.1. Let X and Y be topological spaces. Then two continuous maps
f , g : X → Y are homotopic if there exists a continuous map (called a homotopy)
h : X × [0, 1]→ Y such that ⎧⎪⎪⎨⎪⎪⎩h(x, 0) = f (x)

h(x, 1) = g(x).

We write f � g when f and g are homotopic.

We think of t ∈ [0, 1] as parametrizing a family of maps interpolating between
f and g; for each t, h induces a continuous map h(−, t) : X → Y . The continuity
condition on h means that these maps vary “smoothly” as the parameter changes. In
fact, for maps to Euclidean space, this description can be made precise as follows.
(See also Figure 1.19.)
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g

f

h(x,1/2)

Figure 1.19 Two maps R → R are homotopic via linear interpolation. We can
think of this as if we represented the graphs of f and g as rubber bands and
dragged one to the other.

Example 1.4.2. Any two continuous maps f , g : Rm → Rn are homotopic; the
homotopy is specified by interpolation as

h(x, t) = (1 − t) f (x) + t(g(x)).

The relation of being homotopic is an equivalence relation on the set Map(X, Y)
of continuous maps between topological spaces X and Y . As in the previous exam-
ples, only transitivity is non-trivial to check. Assume that for f , g, h : X → Y , we
have f � g via the homotopy H1 and g � h via the homotopy H2. Then a homotopy
H3 defined as ⎧⎪⎪⎨⎪⎪⎩H3(t, x) = H1(2t, x) 0 ≤ t ≤ 1

2

H3(t, x) = H2(2t − 1, x) 1
2 < t ≤ 1

shows that f ◦ h.
The notion of a homotopy now allows us to weaken the definition of homeomor-

phism; we will consider continuous maps f : X → Y that admit continuous inverses
up to homotopy. Specifically, we have the following definition.

Definition 1.4.3. Let X and Y be topological spaces. Then X and Y are homotopy
equivalent if there exist continuous maps

f : X → Y and g : Y → X
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such that

f ◦ g � idY and g ◦ f � idX .

(Here idX and idY denote the identity maps on X and Y .) In this case, we write
X � Y and we refer to f and g as homotopy equivalences.

Example 1.4.4.

1. Any spaces X and Y which are homeomorphic (via maps f and g) are also homotopy
equivalent; the required homotopies are

h1 : X → X h1(x, t) = x

h2 : Y → Y h2(y, t) = y

since f ◦ g = idX and g ◦ f = idY .
2. For a disk Bε(x) ⊂ R2, the inclusion i : {x} → Bε(x) and the constant map p : Bε(x) →
{x} induces a homotopy equivalence. The composite p ◦ i is equal to the identity, and
for the composite i ◦ p, we use the “radial contraction”

h((r, θ), t) = (tr, θ),

where here we are representing the disk using polar coordinates. See the left panel of
Figure 1.20 below for a picture of this process.

3. Recall (from Example 1.3.11) that S 1 denotes the standard unit circle. A cylinder [0, 1]×
S 1 is homotopy equivalent to the circle; the maps are the inclusion S 1 → [0, 1] × S 1

that takes (x, y) �→ (0, (x, y)) and the collapse that takes (t, (x, y)) �→ (x, y). Once again,
the composite of the inclusion and the collapse is the identity and the other composite
is homotopic to the identity via the homotopy

h(t, (s, x, y)) = (ts, x, y).

See the right panel of Figure 1.20 for a picture of this process.

Homotopy equivalence is an equivalence relation on spaces:

1. it is reflexive (clearly X � X via the identity homotopy),
2. symmetric (X � Y implies that Y � X, using the same homotopy in the opposite

direction), and
3. transitive; this is the only property that is not immediate. The key idea is that

given homotopy equivalences f1 : X → Y and f2 : Y → Z (with inverses g1 and
g2), we can build a homotopy from ( f2 ◦ f1) ◦ (g1 ◦ g2) to the identity of Z by
using the homotopy from f1 ◦ g1 to the identity of Y on the interval [0, 1

2 ] and
the homotopy from f2 ◦ g2 to the identity of Z on the interval [ 1

2 , 1].
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Figure 1.20 Radially shrinking a disk realizes the homotopy equivalence between
a point and a disk. A cylinder shrinks along its length to a circle.

Definition 1.4.5. We will refer to the equivalence class of a space under the
relation of homotopy equivalence as its homotopy type.

To understand homotopy equivalence, it is useful to consider the notion of a
deformation retraction.

Definition 1.4.6. Let A ⊂ X be a subspace. Then A is a deformation retraction of
X if there exists a homotopy H : X × I → X such that H(x, 0) = x, H(x, 1) ∈ A, and
H(a, 1) = a.

A deformation retraction specifies a homotopy equivalence between A and X.
Not all homotopy equivalences are deformation retractions, but one can show that
two spaces X and Y are homotopy equivalent if and only if there is a space Z such
that X and Y are each deformation retractions of Z.

Lemma 1.3.29 showed that counting path components of a space was a
homeomorphism invariant. In fact, it is an invariant of homotopy equivalence.

Lemma 1.4.7. Let X and Y be topological spaces such that there is a homo-
topy equivalence f : X → Y. Then f induces a bijection between the set of path
components of X and the set of path components of Y.

In order to study homotopy equivalences, it turns out to be useful to consider the
set obtained by taking homotopy classes of maps; two continuous maps are in the
same homotopy class if they are homotopic.

Definition 1.4.8. Let X and Y be topological spaces. The set of homotopy classes
of maps from X to Y , denoted {X, Y}, is the set of equivalence classes in Map(X, Y)
under the equivalence relation given by homotopy.
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1.4.1 Homotopy Groups

An essential insight from early in the development of algebraic topology is the idea
that homotopy classes of maps from certain “test spaces” capture the homotopy
type of a topological space. The test spaces we need are the standard spheres.

Definition 1.4.9. Let Dn denote the n-dimensional unit disk in Rn defined as

Dn =

⎧⎪⎪⎨⎪⎪⎩(x1, . . . , xn) ∈ Rn |
n∑

i=1

x2
i ≤ 1

⎫⎪⎪⎬⎪⎪⎭
and let S n−1 denote the (n − 1)-dimensional unit sphere in Rn defined as

S n−1 =

⎧⎪⎪⎨⎪⎪⎩(x1, . . . , xn) ∈ Rn |
n∑

i=1

x2
i = 1

⎫⎪⎪⎬⎪⎪⎭ .
Observe that there is a natural inclusion S n−1 → Dn as the boundary.

Notice that D1 = [−1, 1] ⊆ R1, S 0 = {−1, 1} ⊆ R1, and so forth. We regard Dn

and S n−1 as topologized using the subspace topology, with regard to the standard
topology on Rn.

Now we define the homotopy groups. These will be sets with some additional
algebraic structure, which we will describe informally below and then more pre-
cisely in Section 1.6.4. For this definition, we use the notion of a based homotopy,
which is simply a homotopy H : X × I → Y that has the property that for specified
basepoints x ∈ X and y ∈ Y , H(x, t) = y for all t.

Definition 1.4.10. Let X be a topological space and x ∈ X a point. Choose a point
p ∈ S n. Then for n ≥ 0, as a set, the nth homotopy group πn(X, x) is the set of based
homotopy classes {S n, X} where the point p is sent to x.

Up to isomorphism, the homotopy groups are independent of the choice of base-
point in the spheres S n, but might change depending on the chosen basepoint in
the target space X. For example, if X has many path components, then πn(X, x) will
depend on which path component x lies in.

Example 1.4.11.

1. When n = 0, π0(X, x) is the set of path components of X.
2. When n = 1, π1(X, x) is called the fundamental group, the set of homotopy classes of

loops in X that start and end at x. (See Figure 1.21.)
3. The fundamental group π1(S 1, x), where x is any point of the circle, has ele-

ments in bijection with Z; each homotopy class of maps from S 1 → S 1 can
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Figure 1.21 The fundamental group of a space X is the set of homotopy classes
of loops.
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Figure 1.22 A loop S 1 → X is represented by a map [0, 1] → X with the same
value on 0 and 1. Two loops γ0 and γ1 are added by reparameterizing, doing γ0

on [0, 1
2 ] and γ1 on ( 1

2 , 1].

be characterized by how many times it wraps around, and in which direction it
goes.

The fundamental group of X records information about “holes” in X; a loop
is homotopic to the constant map at a point unless it goes around a hole in X.
(Of course, the loop might go around many times or it might wind around multi-
ple holes; the intricacies of the geometry are reflected in the additional algebraic
structure.)

When n ≥ 1, πn has additional algebraic structure; given two basepoint preserv-
ing maps from S 1 → X, we can “add” them to get a new loop by doing first one,
then the other. (See Figure 1.22.)

More generally, given two pointed maps f1, f2 : S n → X, we can make a new
one by “pinching” a radial belt of the sphere to a point, forming two copies of the
sphere, and then considering the new map that does f1 on one bulb and f2 on the
other. (See Figure 1.23.)
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Figure 1.23 Two maps f1, f2 : S n → X are added by taking a sphere, pinching it
around the radius to produce two spheres joined at a point, and then doing f1 on
one “bulb” and f2 on the other.

In fact, not only can we add, we can subtract as well. In Section 1.6, we quickly
review the abstract framework for this kind of algebraic structure; in Section 1.6.4,
we return to discuss the homotopy groups in more detail.

Another important property of the homotopy groups is that they behave nicely
in the presence of continuous maps. Specifically, restating Lemma 1.4.7 in this
language, we have the following result.

Lemma 1.4.12. Let X and Y be topological spaces and f : X → Y a homo-
topy equivalence. Then for any x ∈ X there is an isomorphism of sets π0(X, x) �
π0(Y, f (x)).

More generally, we have the following result.

Proposition 1.4.13. Let X and Y be topological spaces and f : X → Y a
homotopy equivalence. Then for any x ∈ X, there is an isomorphism of sets
πn(X, x) � πn(Y, f (x)).

The most pressing question about the homotopy groups is now to what degree
there is a converse to Proposition 1.4.13. An answer to this question and a jus-
tification of the use of spheres as test objects is provided by the theory of CW
complexes.
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1.5 Gluing and CW Complexes

When contemplating practical work with topological spaces, a very natural ques-
tion arises: how do we concretely specify the data of a topological space?
Definition 1.3.1 is very well suited for abstract reasoning, but is not usually con-
venient as a way to present a generic space. In particular, since our eventual goals
involve devising algorithms for computing topological invariants that are tractable
on computers, we want to develop means of encoding topological spaces that are
discrete.

If we restrict attention to the question of working with spaces up to homotopy
equivalence, then we obtain additional flexibility. The idea is now to model a given
homotopy type by particularly nice spaces; in a precise sense, it turns out that we
can always replace an arbitrary topological space by one which has a very regular
topological structure. This approach is based on an inductive description of a topo-
logical space in terms of building blocks that are easily understood, namely disks
and spheres.

In order to describe the topology on spaces built up in this way, we begin by
describing the quotient topology. To motivate this construction, consider the inter-
val [0, 1], topologized with the subspace topology from R. Gluing together the
two endpoints {0} ⊂ [0, 1] and {1} ⊂ [0, 1] should produce a circle. The quotient
topology is a way to make this precise.

Proposition 1.5.1. Let X be a topological space and Y a set. Let p : X → Y be
a surjective map. Then we can make Y a topological space by specifying that a
subset U ⊂ Y is open when p−1(U) is an open set in X. We call the topology on Y
the quotient topology.

Equivalently, given a continuous surjection of topological spaces p : X → Y , we
can identify a criterion for when the topology on Y is the quotient topology.

Proposition 1.5.2. Given a surjective map of topological spaces p : X → Y, we
say that p is a quotient map provided that U ⊆ Y is an open set in Y if and only
if p−1(U) ⊆ X is an open set in X. In this case, the topology on Y is the quotient
topology.

We can now identify the usual topology on the unit circle S 1 as the quotient
topology.

Example 1.5.3. Let p : [0, 1] → S 1 be the map specified by x �→ (cos(2πx), sin(2πx)).
Then p is a quotient map. (See figure 1.24.)
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Figure 1.24 The unit interval wraps around the circle, joined at the endpoints.

Given a topological space, it is often useful to have a more intrinsic way of
producing a surjective map f : X → Y , where Y is a set; by intrinsic, we mean
defined in terms of some sort of “gluing” data on X. For this, we need the notion
of a partition.

Definition 1.5.4. Given a topological space X, we let a partition of X be a
decomposition

X =
⋃

Xi, where Xi ∩ Xj = ∅, i � j.

A partition specifies an equivalence relation on the points of X, where x and y are
equivalent when x, y ∈ Xi.

The basic idea is that all of the points in each Xi are going to be glued together.

Definition 1.5.5. Given a partition {Xi} of X, the quotient space of the partition is
a topological space with points the set of partitions. The topology is induced by the
surjective map X → {Xi} which takes x ∈ X such that x ∈ Xi to Xi. Put another way,
we are topologizing the set of equivalence classes determined by the partition.

For instance, if we take the partition of [0, 1] specified by {0, 1} and the points
{x} in the open interval (0, 1), we generate the usual topology on S 1 as in Exam-
ple 1.5.3. A rich source of partitions comes from circumstances in which we want
to glue a space X to a space Y along a map from Z ⊂ X to Y .

Definition 1.5.6. Let X and Y be topological spaces, Z ⊆ X a subspace of X, and
f : Z → Y a continuous map. Define a partition on the disjoint union X

∐
Y with

sets ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{x} ∀x ∈ X − Z,

{y} ∀y ∈ Y − f (Z),

{z, f (z)} ∀z ∈ Z.

The gluing X ∪ f Y is the quotient space associated to this partition.
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Figure 1.25 Cell attachment involves gluing on a disk along its boundary; here,
the boundary circle of the blue disk is glued to the red loop on the surface.

For example, Definition 1.5.6 allows us to regard S 1 as obtained by gluing two
copies of [0, 1] along the map that identifies the endpoints. More generally, Defi-
nition 1.5.6 allows us to regard S n as built by gluing two copies of Dn along the
boundary S n−1 = ∂Dn ⊂ Dn.

Now, we will describe an inductive process for constructing a topological space
by repeatedly gluing on disks along their boundaries, as follows (see Figure 1.25).

1. Let X0 be a set of points, given the discrete topology. These are the zero cells.
2. Form X1 by attaching copies of D1 to X0 by gluing them along their boundaries

– that is, we are given the data of continuous maps

fα : ∂D1 = S 0 → X0

(referred to as attaching maps), and for each one we look at the quotient D1∪ fα
X0 of the disjoint union X0

∐
D1 where we identify the points z ∈ S 0 ⊆ D1 and

fα(z) ∈ X0. The intervals glued in during this stage are referred to as 1-cells.
3. Then we repeat, attaching copies of D2 to X1 by gluing them along their bound-

aries – in this case, the data of the attaching maps is given by continuous maps
fβ : S 1 → X1, and we form the corresponding union D2 ∐

f X0. The disks glued
in during this stage are referred to as 2-cells.

4. And so on . . .

Formalizing this, we have the following definition.

Definition 1.5.7. A finite CW complex is a topological space obtained as a finite
union

⋃
i Xi in which each stage Xi is obtained from Xi−1 by gluing on copies of

Di as above. (The topology is the natural quotient topology induced by the gluing,
and is independent of the order in which cells are attached.)

The subspace Xn ⊂ X is referred to as the n-skeleton, and consists of k-cells for
k ≤ n; if there are no cells of dimension larger than m, then the CW complex A is
referred to as m-dimensional. Notice that the essential data of the CW complex is
contained in the number of cells and the attaching maps, and the n-skeleton encodes
all of the attaching data for objects of dimension less than n.
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Figure 1.26 The circle S 1 can be formed by gluing two intervals along their
boundaries.

Remark 1.5.8. It is also possible to consider an infinite attachment process of
this kind, but the construction of the topology on the infinite union requires some
care.

Example 1.5.9.

1. Any graph can be realized as a CW complex with one 0-cell for each vertex and a 1-cell
for each edge (glued to the relevant vertices).

2. The circle S 1 can be given the structure of a CW complex in which X0 = {0} and X1 is
obtained by the map that attaches [−1, 1] to 0 via the map from {−1, 1} that takes both
points to 0.

3. The circle can also be given many CW structures, as follows: take n 0-cells (points),
where n ≥ 2. Label these points as {x1, . . . , xn}. Then take n 1-cells (intervals) and
attach them sequentially to connect x1, x2, then x2, x3, then xi, xi+1, and finally xn, x1.
(See Figure 1.26.)

4. In general, a sphere can be given a CW structure by taking a single 0-cell and a single
n-cell and gluing the n-cell to the 0-cell along the map that sends the entire boundary to
the point.

5. A torus (the surface of a doughnut) can be given the structure of a CW complex by
taking a single 0-cell, two 1-cells, and a 2-cell. The two 1-cells are glued to the 0-cell
to form a figure-eight, and then the 2-cell is glued to the figure-eight to make the torus.
(See Figure 1.27.)

We now describe two ways to construct new CW complexes out of old that cover
many interesting examples.

Definition 1.5.10. Let X and Y be CW complexes. Then X × Y has the structure
of a CW complex where the cells are the products of the cells of X and Y .
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X1

X2

Figure 1.27 The torus can be built up by gluing together two intervals and then a
two-cell to the resulting figure-eight.
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Figure 1.28 The cylinder is the product of a circle and an interval.

To be more explicit, given a cell Dn attached to X along f : S n−1 → X and Dm

attached to Y along g : S m−1 → Y , we can attach a cell Dn+m � Dn × Dm to X × Y
along the map S n+m−1 → X × Y determined by the homeomorphism

S n+m+1 � (Dn × S m−1) ∪ (S n−1 × Dm),

the maps f and g, and the inclusions Dn → X and Dm → Y .

Example 1.5.11.

1. The standard cylinder S 1 × [0, 1] can be given a CW complex structure as the product
of the CW complex S 1 and the CW complex [0, 1]. (See Figure 1.28.)

2. The torus can be given a CW complex structure as the product of the CW complexes
S 1 × S 1.

A subcomplex of a CW complex is just a closed subspace determined by taking
only some of the cells.



1 Basic Notions of Algebraic Topology 61

Figure 1.29 Collapsing one of the copies of S 1 inside the cylinder S 1 × [0, 1] to
a point results in a cone.

Definition 1.5.12. Let X be a CW complex and A a subcomplex; then the quotient
X/A has a CW complex structure consisting of the cells of X that are not contained
in A, along with a new 0-cell representing A. (An attaching map γ : S n → X gives
rise to an attaching map γ′ : S n → X → X/A.)

Taking the cylinder from Example 1.5.11 and taking the quotient S 1×[0, 1]/S 1×
{0} gives rise to a model for the CW complex structure on a cone; see Figure 1.29.

There are three essential results about CW complexes that justify focus on these
combinatorial models of spaces.

1. Replacing an attaching map in a CW complex by a homotopic map does not
change the homotopy type.

2. A homotopy equivalence X → Y of CW complexes can be detected alge-
braically in terms of the homotopy groups πn.

3. Any reasonable topological space can be approximated up to homotopy equiv-
alence by a CW complex, and for an arbitrary topological space there is an
approximation up to a weak kind of equivalence. (See Definition 1.6.32 below.)

The first observation tells us that the data of a CW complex is entirely contained
in the homotopy classes of the attaching maps. The second and third observations
imply that if we are working up to homotopy equivalence, CW complexes are
a good model for general spaces and that homotopy equivalence classes can be
studied algebraically. That is, CW complexes provide a class of spaces which are
constructed according to a recipe from basic building blocks and are well suited
to work up to homotopy equivalence. To make the last two observations precise
(notably in Theorem 1.6.31), we need to develop some algebraic background.

The next section, which briefly reviews abstract algebra (notably group the-
ory and ring theory), may be particularly difficult for readers new to the subject.
On a first reading, a quick perusal of Section 1.6.6 for a refresher on linear alge-
bra might suffice; such readers could then skip to Section 1.7, which introduces
ideas from category theory.
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1.6 Algebra

A central goal of algebraic topology is to produce suitable algebraic invariants of
topological spaces to allow us to determine whether two spaces are homeomor-
phic or homotopy equivalent. For example, the function which takes a topological
space to the number of path components is an example of such an invariant; by
Lemma 1.4.12, this invariant can serve to distinguish certain spaces with different
homotopy types.

Early on in the development of the subject, it was recognized that more discrim-
inatory power could be obtained by considering more structured algebraic objects
than numbers as repositories for topological invariants. For example, the set of
path components is a richer invariant than simply its size. The point is that there
are no maps between numbers, but there are maps of sets – and we have seen
in Lemma 1.3.26 that a continuous map of spaces induces a map of sets of path
components.

It turns out that keeping even more algebraic structure leads to invariants that
are computable and very informative. For example, consider the problem of dis-
tinguishing the circle from the figure-eight. Looking at homotopy classes of maps
from S 1, both of these have an infinite number. But in the circle, the homotopy
classes are all “multiples” of the basic one which wraps around once, and in the
figure-eight all of the homotopy classes are built from combinations of the classes
which wrap around one circle or the other. Algebraic invariants provide a way to
make precise the intuitive notion of being “built from” or “generated by” these
basic loops, and therefore let us tell these spaces apart.

In order to describe these algebraic invariants, we now turn to a quick review of
the background from abstract algebra that we need. Again, our treatment is very
terse and selective; we refer the reader to one of the many excellent treatments
of abstract algebra, for example Artin’s Algebra [22] or Lang’s Undergraduate
Algebra [314]. We begin by reviewing the theory of groups.

1.6.1 Groups

A group is a set with the additional structure of an “addition” operation.

Definition 1.6.1. A set G is equipped with the structure of a group if there is a
distinguished element e ∈ G and functions

G ×G → G (g1, g2) �→ g1 +G g2

and

G → G g �→ −g
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such that

1.

∀x ∈ G, e +G x = x = x +G e,

2.

∀x ∈ G, x +G (−x) = e = (−x) +G x,

3. and

∀x, y, z ∈ G, x +G (y +G z) = (x +G y) +G z.

We will often write g1+g2 rather than g1+G g2 and usually write 0 for e, in analogy
with the notation. We sometimes use “multiplicative” notation and write g1g2 rather
than g1 +G g2, 1 for e, and g−1 for the inverse of g.

Put another way, a group is a set equipped with an “addition” operation that
is associative, has a unit element, and such that every element x ∈ G has an
inverse. The definition of a group is an abstraction of familiar objects from
arithmetic.

Example 1.6.2.

1. The integers Z under the standard addition operation form a group; x +Z y = x + y for
x, y ∈ Z. The unit is 0 ∈ Z, and the inverse of x is −x.

2. The real numbers R under the standard addition operation form a group; x+R y = x+y ∈
R. The unit is 0 ∈ R and the inverse of x is −x.

3. The non-zero real numbers R − {0} under multiplication form a group; the operation is
(x, y) �→ xy for x, y ∈ R − {0}. The unit is 1 ∈ R and the inverse of x is 1

x . (It is the
existence of inverses that requires us to restrict to non-zero reals!)

4. The set of all polynomials in R of degree k in a single variable t,

Pk = {a0 + a1t + . . . + aktk | a0, a1, . . . , ak ∈ R},
is a group under addition of polynomials, i.e.,

(a0 + a1t+ . . .+ aktk)+ (b0 + b1t+ . . .+ bktk) = (a0 + b0)+ (a1 + b1)t+ . . .+ (ak + bk)tk.

The identity element is 0 and the inverse of p(x) is −p(x).
5. The set C(R) of all continuous functions f : R→ R is a group under pointwise addition,

i.e.,

f +C(R) g = ( f + g)(x) = f (x) + g(x).

The identity element is the zero function f (x) = 0 and the inverse of a function f is − f .
6. The set of n × n matrices with real elements Mn(R) is a group under matrix addition.

The unit element is the zero matrix and the inverse of A is the matrix −A.
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7. The set of invertible n × n matrices GLn(R) is a group under matrix multiplication
where the unit element is the identity matrix and the inverse of A is the inverse
matrix A−1.

The example of GLn(R) is particularly interesting, since this group has the
property that the operation is not commutative, i.e., AB � BA in general.

Definition 1.6.3. A group G is abelian if for all x, y ∈ G, we have x+G y = y+G x.

Example 1.6.4. All of the examples above in Example 1.6.2 are abelian except for
GLn(R).

The examples of groups we have discussed above are “numerical.” But histori-
cally, groups arose from symmetries and rigid transformations of physical objects;
for example, the set of rotations of an object in space forms a group. More
abstractly, the symmetries of a finite set form a group.

Example 1.6.5.

1. The set of symmetries of a square is the group generated by two elements r and f ; r is
the counterclockwise rotation and f is the flip across a diagonal. These are subject to
certain relations, as indicated in Figure 1.30; the group has 8 elements. In general, the
dihedral groups Dn describe the symmetries of a regular n-gon in the plane, and have
2n elements.

2. The set of rotations of the unit cube [−1, 1] × [−1, 1] × [−1, 1] ⊂ R3 about the z-axis
is the circle group S 1; we can parametrize the elements as eiθ, with group operation
eiθ1 eiθ2 = ei(θ1+θ2). (See Figure 1.31.)
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Figure 1.30 The rotation and the flip across a diagonal specify two basic sym-
metries of a square. Together these generate a group of order 8, the dihedral
group D4.
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Figure 1.31 There is a natural action of the circle on a cube that rotates the cube
around the z-axis. On the top row, we see some snapshots of this rotation. There
is a natural subgroup isomorphic to Z/4 inside of S 1 determined by rotations by
90◦; the action of this group on the cube is shown on the bottom row.

3. The set of rotations of R3 about the origin forms a group, the special orthogonal group
S O(3). This can be described as the set of orthogonal 3 × 3 matrices (i.e., matrices A
such that A−1 = AT ) with determinant 1. The group operation is matrix multiplication.
The identity is the identity map (i.e., the rotation that leaves everything fixed) and the
inverse of a rotation is the “opposite” rotation.

4. Let S be an ordered set with n elements. The set of permutations of S (i.e., bijective
maps S → S ) forms a group. The identity is the permutation that leaves every element
of S in place, the group operation is given by composition of permutations, and the
inverse of a permutation is the permutation that “undoes” it.

Another important arithmetic example comes from modular arithmetic.

Definition 1.6.6. For x and y in Z, define x = y mod n if x − y = kn, for some
k ∈ Z. The congruence class of x modulo n is a subset of the form

{x + kn | k ∈ Z}.

The classical long division algorithm implies that a congruence class has a
unique smallest nonnegative representative, the remainder r when we write x =
qn + r via long division.

Example 1.6.7. The set of congruence classes modulo n, which we can represent as
{0, 1, 2, . . . , n−1}, forms a group that we denote by Z/n. The identity element is 0, addition
is given by letting the sum of x and y be x+ y mod n, and the inverse of x is n− x mod n.

The preceding example has a special structure; it is a cyclic group, in the sense
that every element other than the identity is generated by sums of a distinguished
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generator, for example 1. The integers Z are an infinite cyclic group, with generator
1. But not all groups are cyclic; for example, SO(3) is very far from being cyclic.

1.6.2 Homomorphisms

A fundamental tenet of modern mathematics is that to understand a collection
of mathematical objects it is essential to understand the maps between them. An
important aspect of this principle is that invariants should “take maps to maps.” We
have already seen this at work in the context of topological spaces and continuous
maps: a continuous map of spaces induces a map between sets of path components.
In Section 1.7, we will describe an abstract framework for formalizing this insight.

In the meantime, we want to describe the correct notion of a map between groups.
Recall that we singled out the class of continuous maps when describing functions
between topological spaces; these were the functions that were suitably compatible
with the topologies of the domain and range. Correspondingly, we are primarily
interested in functions between groups which respect the group structure, in the
sense of the following definition.

Definition 1.6.8. A map f : G1 → G2 is a group homomorphism if

f (0) = 0 and f (x +G1 y) = f (x) +G2 f (y) ∀x, y ∈ G1.

Example 1.6.9.

1. The natural inclusion Z→ R is a group homomorphism.
2. The projection Z→ Z/m specified by the formula

x �→ x mod m

is a group homomorphism.
3. The derivative

d
dt

: Pk → Pk−1

a0 + a1t + a2t2 + . . . + aktk �→ a1 + 2a2t + . . . + kaktk−1

is a group homomorphism.
4. The trace of a square matrix with real entries (the sum of the diagonal elements)

specifies a group homomorphism

Tr : Mn(R)→ R.

Associated to a homomorphism f : G1 → G2 are certain distinguished subsets
of G1 and G2.

Definition 1.6.10. Let f : G1 → G2 be a group homomorphism (Figure 1.32).
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Figure 1.32 The kernel of a homomorphism f is the set of points that go to 0; the
image is the set of points that f hits.

● The kernel of f , ker f ⊆ G1, is the set of elements x such that f (x) = 0.
● The image of f , im f ⊆ G2, is the set of elements y such that y = f (x) for some x.

Generalizing the notion of an isomorphism of sets from Definition 1.1.8, we
have the following version in the context of groups and group homomorphisms.

Definition 1.6.11. A group homomorphism f : G1 → G2 is an isomorphism
if there exists an inverse group homomorphism g : G2 → G1 such that f and g
demonstrate an isomorphism of sets between G1 and G2.

Equivalently, we have the following characterization.

Lemma 1.6.12. Let G1 and G2 be groups. A group homomorphism f : G1 →
G2 is an isomorphism if and only if it is a bijection. As a consequence, f is an
isomorphism if and only if ker f = {0} and im f = G2.

Both ker f and im f are themselves groups, with operations inherited from G1

and G2 respectively. These are subgroups of G1 and G2, as we now explain.

1.6.3 New Groups from Old

Many groups of interest arise via constructions that start from an existing group.
The simplest is to consider subsets of a group that inherit the structure of a group
themselves.

Definition 1.6.13. A subgroup of a group G is a subset H ⊆ G such that H is a
group in its own right with the operation and unit inherited from G. That is,

1. the identity element 0 ∈ G is an element of H,
2. for any h ∈ H, −h is in H, and
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3. for all h1, h2 ∈ H, the sum h1 + h2 is in H.

We have already seen some examples of subgroups.

Example 1.6.14.

1. The special orthogonal group SO(3) is a subgroup of GL3(R).
2. The set {x ∈ Z | x even} is a subgroup of Z under addition.
3. The set Pk of degree at most k polynomials is a subgroup of Pk+1.
4. The set Pk of degree at most k polynomials is a subgroup of C(R).

The following lemma provides many other examples of subgroups.

Lemma 1.6.15. Let f : G1 → G2 be a group homomorphism. Then ker f ⊆ G1 is
a subgroup of G1 and im f ⊆ G2 is a subgroup of G2.

The preceding lemma is a simple exercise in the properties of group homomor-
phisms; for the first part, if f (g1) = 0 and f (g2) = 0, then

f (g1 + g2) = f (g1) + f (g2) = 0 + 0 = 0.

Given a suitable subgroup H ⊂ G, we can “collapse it out” by forming the
quotient group G/H of G by a subgroup H, which is akin to the quotient topology
discussed above in Proposition 1.5.1. The idea is to specify that in G/H all elements
of H are identified. We will define the quotient in the setting of an abelian group
G; when G is not abelian, only certain subgroups permit the construction of the
quotient group.

Definition 1.6.16. Let G be an abelian group and H ⊂ G a subgroup. Then the
quotient group G/H is given by the set of cosets gH = {gh | h ∈ H} as g varies, with
group operation (g1H)(g2H) = (g1g2)H.

(Note that a small check is required to verify that the definition of the quotient
group is independent of choice of coset representative.)

Example 1.6.17. For Z and the subgroup 3Z = {3k | k ∈ Z}, the quotient Z/3Z is
isomorphic to the construction of Z/3 described in Example 1.6.7.

A basic structural property of group homomorphisms can be usefully described
in terms of the quotient group.
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Theorem 1.6.18. Let G1 and G2 be groups and f : G1 → G2 be a group
homomorphism. Then there is an isomorphism

im f � G1/ ker f .

(This is true even if G1 is not abelian; the kernel of a homomorphism allows the
construction of the quotient.)

As an elaboration of this result, we can describe a large class of groups in terms
of generators and relations.

Definition 1.6.19. A group G is finitely generated if there exists a finite set S ⊆ G
such that any g ∈ G can be written as a (finite) sum of elements in S .

For example, any finite group is of course finitely generated. The integers Z
are finitely generated with generator 1. On the other hand, the rationals Q are not
finitely generated. Clearly, a finitely generated group must be countable; therefore,
R is not finitely generated.

Definition 1.6.20. A group is free if there exists a collection of elements {gα}
(called the generators) such that every element g ∈ G can be uniquely written as a
finite sum ∑

i

nigαi

for ni ∈ Z.

Free groups are easy to work with because group homomorphisms F → G,
where F is free, can be described simply as set maps from the generators of F to
G. That is, to specify such a group homomorphism f , it suffices to give the data of
where each generator lands in G,

f

⎛⎜⎜⎜⎜⎜⎝∑
i

nigαi

⎞⎟⎟⎟⎟⎟⎠ =∑
i

ni f (gαi).

Theorem 1.6.21. Any finitely generated group G is isomorphic to the quotient of
a free group by a subgroup described by specifying products of generators that are
equal to 1.

We refer to the generators of the free group as the generators of G and the prod-
ucts describing the subgroup as the relations of G. From an algorithmic perspective,
a presentation of a group in terms of generators and relations is essential.
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Example 1.6.22.

1. The integers Z can be represented as having the identity element 0, a single generator 1,
and no relations. Here the element −1 must exist and is distinct from 1, and in general
we have a description as

Z � {. . . ,−1 + (−1) + (−1),−1 + (−1),−1, 0, 1, 1 + 1, 1 + 1 + 1, . . .}.
2. The cyclic group Z/3 is the quotient of the free group Z by the subgroup of relations
{3k | k ∈ Z}. Another way to express this is that Z/3 can be described as having an
identity element, a single generator g, and the single relation g3 = 1. Then explicitly
this representation describes Z/3 as the set {1, g, g2} with the usual multiplication of
polynomials as the group operation; g−1 = g2, since (g)(g2) = g3 = 1.

Remark 1.6.23. Note that an interesting problem arises in this context, namely,
the problem of deciding when two “words” representing group elements are equal.
For instance, in the group with generator {x} and relation x4 = 1, one might ask
whether x8 and x16 are the same. This is known as the word problem for a group,
and it is an important classical result that this is undecidable. That is, there does not
exist any algorithm (computer program) to solve this problem in general! This hard-
ness result is the core of many demonstrations that certain mathematical questions
are undecidable.

However, for our purposes it will suffice to consider free abelian groups. A free
abelian group with one generator is an infinite cyclic group and is isomorphic to
Z. In order to describe free groups with more generators, we need the notion of a
product.

Definition 1.6.24. Let G1 and G2 be groups (not necessarily abelian). Then the
Cartesian product G1 ×G2 denotes the group structure on the Cartesian product of
sets with identity element (0G1 , 0G2 ), operation

(g1, g2) + (g′1, g
′
2) = (g1 + g′1, g2 + g′2),

and the inverse of (g1, g2) is (−g1,−g2).

Lemma 1.6.25. A free abelian group with k generators is isomorphic to a product
of k copies of Z: one copy of Z for each generator.

In this case, any finitely generated abelian group G is isomorphic to a quotient
Zn/H, for a subgroup H ∈ Zn; here n is the size of a set S of generators. More pre-
cisely, we have the following fundamental characterization, the structure theorem
for finitely generated abelian groups.
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Theorem 1.6.26. Let G be a finitely generated abelian group. Then there is an
isomorphism

G � Z × Z × . . .Z︸����������︷︷����������︸
k

×Z/pn1
1 × Z/pn2

2 × . . . × Z/pnm
m .

Here the pi are prime and not necessarily distinct.

The number k of factors of Z is known as the rank of G. The part of G that does
not consist of copies of Z is often referred to as the torsion. The rank is unique and
the torsion is unique up to rearrangement.

1.6.4 The Group Structure on πn(X, x)

We now return to justify referring to the homotopy groups πn(X, x) (from Defini-
tion 1.4.10) as groups. Specifically, we explain the following theorem.

Theorem 1.6.27. When n > 0, the set of homotopy classes of maps

πn(X, x) = {(S n, ∗), (X, x)}
can be given the structure of a group, where the identity element is the constant
map and the composition is given by “composing” maps.

We begin by considering the case of π1(X, x). Given two loops γ1, γ2 : S 1 → X,
we can produce a new loop as follows. Regard the maps γ1 and γ2 as paths (maps
from [0, 1] to X) such that

γ1(0) = γ2(0) = γ1(1) = γ2(1) = x.

Then define γ1γ2 : [0, 1]→ X to be the loop specified by the formula

(γ1γ2)(t) =

⎧⎪⎪⎨⎪⎪⎩γ1(2t) 0 ≤ t < 1
2 ,

γ2(2t − 1) 1
2 ≤ t ≤ 1.

That is, we reparameterize and do γ1 on the first half of the interval and γ2 on the
second half of the interval (see Figure 1.33). Since γ1(0) = γ2(1) = x, this defines
a map S 1 → X.

Note that the composition we have just defined is not associative prior to passing
to homotopy classes of maps; that is, (γ1γ2)γ3 is not the same map as γ1(γ2γ3).
Specifically, given γ1, γ2, γ3 : S 1 → X, (γ1γ2)γ3 does γ1 on [0, 1

4 ), γ2 on [ 1
4 ,

1
2 )

and γ3 on [ 1
2 , 1] whereas γ1(γ2γ3) does γ1 on [0, 1

2 ), γ2 on [ 1
2 ,

3
4 ), and γ3 on [ 3

4 , 1].
However, there is a natural straight-line homotopy connecting (γ1γ2)γ3 to γ1(γ2γ3);
see Figure 1.34.
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γ0

γ1

γ0

γ1

γ0+ γ1

γ1

γ0

γ1

γ0

Figure 1.33 Two loops γ0 and γ1 are added by reparameterizing, doing γ0 on
[0, 1

2 ) and γ1 on [ 1
2 , 1].

Figure 1.34 A linear homotopy connects the two associativity parameterizations.

Analogously, we define the inverse of γ : S 1 → X to be the loop traversed in the
opposite direction:

γ−1(t) = γ(1 − t).

Once again, note that γγ−1 is not equal to the constant map until we pass to homo-
topy classes of maps; there is a homotopy connecting γγ−1 to the constant map that
takes all of S 1 to x.

Generalizing this, we can put a group structure on πn(X, x) for n > 1 as follows.
We regard maps from S n → X as maps from [0, 1]n → X which take the boundary
of [0, 1]n to x and again compose by reparametrizing. We have choices about how
to reparameterize; fixing an index 1 ≤ i ≤ n, we define

γ1γ2(x1, x2, . . . , xn) =

⎧⎪⎪⎨⎪⎪⎩γ1(x1, x2, . . . , 2xi, . . . , xn) xi ∈ [0, 1
2 )

γ1(x1, x2, . . . , 2xi − 1, . . . , xn) xi ∈ [ 1
2 , 1].

(See Figure 1.35.)
Once again, there is a homotopy that makes this associative. In fact, for n > 1,

we have the following improvement of Theorem 1.6.27.

Theorem 1.6.28. For n > 1, the homotopy group πn(X, x) is abelian.
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X X

Y1

Y0

Y0+Y1

Figure 1.35 Two maps from spheres γ0 and γ1 are added by reparameterizing,
doing γ0 on the upper square and γ1 on the lower square.

1 2

γ2 γ2

γ1 γ1γ2

γ1

γ2

γ1

3 4

Figure 1.36 The commutativity homotopy involves moving two squares past each
other. Here the unlabeled squares are sent to the basepoint.

A picture of the commutativity homotopy that proves Theorem 1.6.28 is shown
in Figure 1.36.

Given a continuous map f : X → Y , composition defines a map

πn(X, x)→ πn(Y, f (x))

via

γ : S 1 → X �→ ( f ◦ γ) : S 1 → X → Y.

In fact, this map specifies a group homomorphism when n > 0.

Lemma 1.6.29. Let f : X → Y be a continuous map of spaces. There are induced
group homomorphisms for n > 0

πn(X, x)→ πn(Y, f (x)).

The importance of the homotopy groups as algebraic invariants is provided by
the following two theorems. First, homotopy groups are invariants of the homotopy
type.

Proposition 1.6.30. Let f : X → Y be a homotopy equivalence. Then the induced
group homomorphism

πn(X, x)→ πn(Y, f (x))

is an isomorphism.
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Although the converse to this is not in general true, we have the following basic
result.

Theorem 1.6.31 (Whitehead). Let f : X → Y be a continuous map of CW com-
plexes such that the induced maps πn(X, x) → πn(Y, f (x)) are isomorphisms for
every n ≥ 0 and x ∈ X. Then f is a homotopy equivalence between X and Y.

We say that a map f that induces isomorphisms of homotopy groups as in
Theorem 1.6.31 is a weak homotopy equivalence.

Definition 1.6.32. Let f : X → Y be a continuous map of topological spaces.
Then f is a weak homotopy equivalence (or weak equivalence) if the induced group
homomorphisms

πn(X, x)→ πn(Y, f (x))

are isomorphisms for every n ≥ 0 and x ∈ X.

This is a central definition in modern algebraic topology. Moreover, it turns out
that any topological space X is weakly homotopy equivalent to a CW complex.
(Warning: note that not every space is homotopy equivalent to a CW complex. For
example, the sequence { 1n } along with its limit point 0 is not homotopy equivalent
to a CW complex. See also discussion of the “long line”, e.g., in [369, §10].)

Weak homotopy equivalence is not an equivalence relation on spaces, but we
work with the transitive closure, which is the smallest equivalence relation it
generates.

Definition 1.6.33. We will refer to the equivalence class of a space under the
relation of weak homotopy equivalence as its weak homotopy type.

We now have a number of different equivalence relations on topological spaces.
These relations are progressively weaker – the relationship between them can be
summarized as follows.

1. If two spaces X and Y are homeomorphic, then they are homotopy equivalent.
2. If two spaces X and Y are homotopy equivalent, then they are weakly homotopy

equivalent.

Theorem 1.6.31 shows that for CW complexes, the latter two equivalence rela-
tions coincide. In contrast, determining when a homotopy equivalence is even
homotopic to a homeomorphism is quite difficult; a restricted version of this
problem is the subject of surgery theory.
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Although homotopy groups are easy to define and the Whitehead theorem
implies that they are complete invariants of the homotopy type of a CW complex
(in the presence of a continuous map), the best known algorithms for computing
them in general are intractable. As a consequence, we are led to search for alge-
braic invariants which are rich enough to distinguish a wide class of spaces but can
be easily computed.

1.6.5 Rings and Fields

We return to the basic examples of the abelian groups (Z,+, 0) and (R,+, 0), the
integers and the real numbers with group operation given by addition. These groups
have additional structure, namely a second operation – multiplication. Moreover,
multiplication interacts nicely with addition, for example, the distributive property
tells us that x(y + z) = xy + xz.

Definition 1.6.34. A ring is a set R that has an abelian group structure (with
operation denoted by + and identity by 0) along with a distinguished element 1 ∈ R
and an additional operation

R × R→ R (x, y) �→ xy

such that

∀x ∈ G, 1x = x = x1,

and

x(yz) = x(yz).

In addition, we require that the new operation satisfy the distributive law with
respect to the abelian group structure:

x(y + z) = xy + xz.

(x + y)z = xz + yz.

A ring has both an additive identity element (typically written 0) and a multiplica-
tive identity element (typically written 1). A multiplicative inverse for an element
x ∈ R is an element y such that xy = 1; typically we write x−1 for the multiplicative
inverse. An element x ∈ R that has a multiplicative inverse is called a unit. Not all
elements of a ring have multiplicative inverses.

Definition 1.6.35. A field F is a ring such that for all x ∈ R such that x � 0
(where 0 denotes the additive identity), x has a multiplicative inverse x−1 such that
xx−1 = x−1x = 1.
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Example 1.6.36.

1. The integers Z with addition and multiplication form a ring, but not a field as there is
no multiplicative inverse for any x � ±1.

2. The rational numbers Q with addition and multiplication form a ring and in fact a field;
the inverse of p

q is q
p , which is well defined as long as p � 0.

3. The set of congruence classes Z/m forms a ring, where multiplication is also computed
by taking the remainder of xy when divided by m. When m is prime, this is in fact a
field; the inverse can be computed using the long division algorithm. The fields Z/p are
referred to as finite fields of order p.

In addition to R, the most important fields for our purposes are the rational num-
bers Q and the finite fields Z/p (which are often denoted Fp). For any field F, we
can consider a vector space with F as the scalars. Although we assume that the
reader has some familiarity with linear algebra in the context of the fields R and C,
we quickly review linear algebra from a more abstract perspective.

1.6.6 Vector Spaces and Linear Algebra

Linear algebra studies the geometric structure of solutions to systems of linear
equations; these turn out to form lines and (hyper)planes. It is a central example
of the power of using algebraic structures to encode geometry. There are an enor-
mous number of textbooks on linear algebra. For an abstract treatment, Axler’s
book [24] is very clearly written. For applications, Meyer’s book is an excellent
introduction [349].

The basic object in linear algebra is the vector space, which is an abstraction of
some parts of the structure of Euclidean space.

Definition 1.6.37. Let F be a field. An F-vector space is an abelian group V with
an additional operation called scalar multiplication

F × V → V (x, v) �→ xv

that is

1. associative, x1(x2v) = (x1x2)v,
2. distributive with respect to addition in F, (x1 + x2)v = x1v + x2v,
3. distributive with respect to the group operation in V , x(v1 + v2) = xv1 + xv2,

and
4. compatible with the multiplicative unit in F, 1v = v.

We call the elements of V vectors.
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Example 1.6.38.

1. The field F itself gives a first example of a vector space.
2. The set {0} is a vector space.
3. When F = R, familiar examples of vector spaces are given by Rn, where R acts by

multiplication in each component.
4. More generally, for any field F, the product Fn =

∏n
i=1 F of n copies of F is a vector

space where F acts by componentwise multiplication.

Other basic examples of vector spaces are given by subspaces.

Definition 1.6.39. A subspace W of a vector space V is a subgroup such that
kw ∈ W for all k ∈ F,w ∈ W. (That is, W is closed under addition in V and scalar
multiplication.)

Vector spaces can sometimes be decomposed into pieces by subspaces.

Definition 1.6.40. Let U and W be subspaces of the vector space V . If U ∩W =
{0}, the direct sum U ⊕W is defined to be the collection

U ⊕W = {u + w | u ∈ U,w ∈ W}.

More generally, given two vector spaces V1 and V2 we can define the external
direct sum V1 ⊕ V2 to consist of pairs (v1, v2) for v1 ∈ V1 and v2 ∈ V2, with the
operations defined coordinatewise. Then regarding V1 and V2 as subspaces of V1 ⊕
V2 (via {(v1, 0)} and {(0, v2)}, respectively), V1 ⊕ V2 arises as their direct sum as in
Definition 1.6.40.

Although a priori it appears that subspaces could take on many forms, in fact, it
turns out that all examples of finite-dimensional vector spaces look like the exam-
ples in 1.6.38. For example, the subspaces ofR2 are {0},R2 itself, and lines that pass
through the origin. Each such line looks like a copy of R. Similarly, the subspaces
of R3 are {0}, lines through the origin (which look like R), planes through the origin
(which look like R2), and R3 itself. To be precise about this fact, we need the notion
of a basis, which generalizes the idea of the coordinate axes in Euclidean space.

Definition 1.6.41. Let V be a vector space. For a subset B = {b1, b2, . . . , bn} ⊆ V ,

1. B spans V if any vector z ∈ V can be written as a sum

z =
n∑

i=1

aibi, ai ∈ F,

i.e., any vector admits a representation as a weighted sum of basis elements,
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2. the set B is linearly independent if the only solution to the equation

n∑
i=1

aibi = 0

is ai = 0 for all i, and
3. B is a basis for a vector space V if it spans and is linearly independent.

Linear independence is a way of saying that a set of vectors has no redundancy,
in the following sense.

Lemma 1.6.42. The set B is linearly independent if and only if when z ∈ V can
be written as a sum

z =
n∑

i=1

aibi,

then this representation is unique, i.e., the values {ai} are unique.

Example 1.6.43.

1. In R2, the standard unit vectors along the axes (1, 0) and (0, 1) form a basis.
2. In R2, the vectors (3, 4) and (−1, 1) form a basis. In fact, any two non-collinear vectors

form a basis. (See Figure 1.37 and Figure 1.38 for an example.)
3. In R3, any three vectors that do not all lie in the same plane form a basis.
4. More generally, in Rn, any n vectors that do not all lie in the same hyperplane (i.e.,

subspace of strictly smaller dimension) form a basis.

b1 b1

b2

b2

(1,0)

(0,1)

b1 + 3/2 b2

(2, 3/2) (2, 3/2)

(1,0)

(1,1)

1/2

Figure 1.37 Any vector in R2 can be written uniquely as a linear combination
a1v1 + a2v2 as long as v1 and v2 do not lie on the same line. We illustrate this for
the vector (2,3/2).
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Figure 1.38 Any two-dimensional subspace of R3 is a plane; two vectors that
specify the plane provide a basis.

By providing coordinates for describing points in vector spaces, bases are essen-
tial for calculation. They also give rise to the notion of dimension of a vector
space.

Proposition 1.6.44. Any basis for a vector space V has the same size.

In light of the preceding proposition, the following definition makes sense.

Definition 1.6.45. The dimension of a vector space V is the size of a basis.

In fact, the dimension is a complete invariant of finite-dimensional vector spaces.
To be precise, we need to define the notion of a map between vector spaces.

Definition 1.6.46. Let V and W be vector spaces. A linear transformation
f : V → W is a map of sets such that

f (ax + by) = a f (x) + b f (y).

That is, a linear transformation is a group homomorphism that preserves scalar
multiplication.

The kernel and image of a linear transformation f : V1 → V2 are subgroups of
V1 and V2 respectively. In fact, they are vector spaces themselves.

Lemma 1.6.47. Let f : V1 → V2 be a linear transformation. Then ker f is a
subspace of V1 and im f is a subspace of V2.

One of the appealing things about linear transformations is that they can be
expressed in a concise and algorithmically tractable way. Since a vector space is
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the set of linear combinations of basis elements, a linear transformation can be
specified simply in terms of its action on the basis. Put another way, linear trans-
formations can be specified by matrices; the ith column of the matrix describes the
effect of the linear transformation applied to the basis vector bi.

Definition 1.6.48. A linear transformation f : V → W is an isomorphism if it
is injective and surjective, or equivalently if there is an inverse transformation
g : W → V such that g ◦ f = idV and f ◦ g = idW .

Theorem 1.6.49. Any vector space of dimension n is isomorphic to Fn.

The homotopy groups πn(X, x) are groups that are very hard to compute. The
basic topological invariants that will be our algorithmic focus take values in vector
spaces; the fact that a linear transformation can be specified by a matrix will ensure
that computation is tractable. Before we introduce these invariants, we will have a
brief interlude about category theory, which provides a formal context to describe
the invariants.

1.7 Category Theory

The basic topological invariants we study are functions that take as input topolog-
ical spaces (represented by CW complexes or simplicial complexes) and output
finitely generated abelian groups or vector spaces:{

finite
simplicial complexes

}
→

{
abelian
groups

}
.

However, these invariants are better than functions, as they turn out to have an
additional essential property: they take continuous maps between spaces to group
homomorphisms. We have already seen an example of this in Lemma 1.6.29, which
states that a continuous map f : X → Y induces a group homomorphism πk(X, x)→
πk(Y, f (x)). Formalizing this property of algebraic invariants was one of the original
motivations for the invention of category theory.

Category theory provides a language for capturing common phenomena in differ-
ent domains. For example, the notion of an isomorphism has appeared in a variety
of different contexts in this chapter. A motivating idea at the core of the develop-
ment of category theory is the notion that properties of mathematical objects (e.g.,
topological spaces) can often be characterized entirely in terms of maps from other
objects. We have seen this philosophy at work already in our discussion of homo-
topy groups. Properties that can be expressed purely in terms of such data are often
referred to as formal; a common slogan is that category theory is a way to make
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formal things formal. We give a very brief overview of category theory; the clas-
sic text is Mac Lane [337]. Riehl has written two excellent recent books, [428]
which is a more elementary introduction and [427] which is an in-depth discussion
from the perspective of algebraic topology. Spivak’s book [480] strives to provide
context for categorical notions in applications.

Definition 1.7.1. A category C is a collection of objects ob(C) and for each pair of
objects x, y ∈ ob(C) a set of morphisms or maps HomC(x, y) satisfying the following
conditions.

1. For all objects w, x, y ∈ C, there is a composition map

HomC(x, y) × HomC(w, x)→ HomC(w, y)

that takes the morphisms f : w → x and g : x → y to the composite morphism
g ◦ f : w→ y.

2. There is a distinguished element idx ∈ HomC(x, x), the identity map.
3. Composition is associative and unital. Associativity means that given f ∈

Hom(w, x), g ∈ Hom(x, y), and h ∈ Hom(y, z), we have the equality of
composites

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Unitality means that

idx ◦ f = f = f ◦ idw.

The composition map is written in the “backwards” order above in order to align
with the standard notation for composition, i.e. (g ◦ f )(−) = g( f (−)).

Remark 1.7.2. The sophisticated reader will notice that we are being incautious
about set theory and using the somewhat vague term “collection”; as we discussed
in Section 1.1, Russell’s paradox tells us that there is no “set of all sets,” and so
there cannot be a set of objects for the category of sets. We refer the reader to the
category theory references for more discussion of this point.

We have many familiar examples of categories underlying the notions we have
already seen.

Example 1.7.3.

1. The category Set with objects sets and morphisms maps of sets.
2. The category Grp with objects groups and morphisms homomorphisms.
3. The category Vect with objects vector spaces and morphisms linear transformations.
4. The category Top with objects topological spaces and morphisms continuous maps.
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5. The category Met of metric spaces and metric maps (i.e., maps f : X → Y such that
∂Y ( f (x1), f (x2)) ≤ ∂X(x1, x2)).

6. The category Ho(Top) with objects topological spaces and morphisms homotopy classes
of continuous maps.

7. A partially ordered set forms a category. For example, N is a category with objects the
elements of N and a morphism between x and y if x ≤ y.

Moreover, for any category we can obtain new categories by taking subsets of
the collection of objects and morphisms.

Definition 1.7.4. A category D is a subcategory of a category C if each object of
D is an object of C and for every x, y ∈ ob(D), we have

HomD(x, y) ⊆ HomC(x, y).

When we have equality in the previous inclusion, D is called a full subcategory
of C.

Example 1.7.5.

1. The category Ab with objects abelian groups and morphisms homomorphisms is a full
subcategory of Grp.

2. The category of finite dimensional vector spaces and linear transformations is a full
subcategory of Vect.

3. The category of topological spaces and morphisms the homeomorphisms is a subcate-
gory of Top, although it is not full.

In any category, there is an intrinsic notion of two things being “the same” that
comes directly from the data of the category.

Definition 1.7.6. Let C be a category. A map f ∈ HomC(x, y) is an isomorphism
if there exists g ∈ HomC(y, x) such that

f ◦ g = idy ∈ HomC(y, y) and g ◦ f = idx ∈ HomC(x, x).

The notion of a categorical isomorphism encompasses all of the definitions we
have seen so far.

Example 1.7.7.

1. In Set, an isomorphism is an isomorphism of sets (as defined in Definition 1.1.8).
2. In Grp, an isomorphism is an isomorphism of groups (as defined in Definition 1.6.11).
3. In Vect, an isomorphism is an isomorphism of vector spaces (as defined in Defini-

tion 1.6.48).
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4. In Top, an isomorphism is a homeomorphism (as defined in Definition 1.3.27).
5. In Ho(Top), an isomorphism is the equivalence class of a homotopy equivalence (as

defined in Definition 1.4.3).

Since the only properties we can express in a category are described in terms of
morphisms and the result of composing morphisms, the notion of a commutative
diagram is of basic importance. A commutative diagram refers to a collection of
objects and morphisms such that any morphisms between two objects coincide. For
example, in the commutative square

A
f

h

B

g

C
i

D

we are expressing the compatibility requirement that g ◦ f = i ◦ h as a morphism
in HomC(A,D).

The structure of the category itself can encode many interesting properties of
objects; we now give some examples.

Definition 1.7.8. An initial object in a category is an object c such that HomC(c, z)
consists of a single point for any z. That is, there is a unique morphism from c to
any other object.

Dually, a terminal object is an object d such that HomC(z, d) consists of a single
point for any z.

These notions are not necessarily unique, although they are unique up to
isomorphism, i.e., any two initial or terminal objects are isomorphic.

Example 1.7.9.

1. In Set, the initial object is the empty set ∅ and any one-point set is a terminal object. We
will denote a choice of terminal object by ∗.

2. In Grp the initial object is the trivial group and the terminal object is also the trivial
group.

3. In Top the initial object is ∅ and the one-point space is a terminal object. We will again
denote a choice of terminal object by ∗.

The point here (no pun intended) is that the special properties of the one-point
set or the one-point space can be expressed in a way which generalizes to any
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category; the properties can be expressed solely in terms of data about maps to and
from other objects.

Moreover, commutative diagrams allow us to succinctly express algebraic prop-
erties. For instance, a group is an object G in the category Set along with a
morphism m : G × G → G, a morphism u : ∗ → G, and a morphism i : G → G
such that the following holds.

1. The diagram

G×G×G
m×id

id×m

G×G

m

G×G m G.

commutes; this expresses associativity.
2. The diagrams

G
id×u

id

G×G

m

G

and

G
u×id

id

G×G

m

G

commute; this expresses the property of the identity element.
3. The diagrams

G
Δ

u

G×G

id×i

G G×G
m
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and

G
Δ

u

G×G

i×id

G G×G
m

commute, where Δ : G → G×G is the diagonal map specified by the assignment
x �→ (x, x) and u : G → G is the composite G → ∗ → G specified by the unique
map G → ∗ and the unit map u : ∗ → G. These diagrams express the property
of the inverse.

We can also describe gluing constructions (e.g., the attaching of cells in
Definition 1.5.6) purely in terms of categorical data. Suppose that we have a
diagram

A
f

g

B

C

in some category C. Explicitly, this means that

1. A, B, and C are objects in the category C,
2. f is an element of HomC(A, B) and g is an element of HomC(A,C).

We will refer to the data of this diagram as D. We now want to explain how to give
a general construction of an object that is produced by “gluing” B to C along A.

To motivate the abstract definition, it is instructive to consider how to describe
such a construction. Within category theory, the only way we can express the prop-
erties of such a gluing is to talk about morphisms either into or out of it, i.e., to talk
about the gluing in terms of its relationship to other objects. Let us consider how to
specify a map out of the gluing of B and C along A, to some other object X. Such
a map should be determined by maps

B→ X and C → X

that agree on the image of A → B and A → C. Moreover, we would like
the gluing to be the “smallest” such object. We can make all of this precise as
follows.
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Definition 1.7.10. The pushout of D is an object P equipped with morphisms
p1 : B→ P and p2 : C → P such that the square

A
f

g

B

p1

C
p2

P

commutes, and for any pair of morphisms a : B → X and b : C → X such that
a ◦ f = b ◦ f there is a unique morphism h : P→ X such that the diagram

A
f

g

B

p1

a
C

p2

b

P

h

X

commutes.

The requirement that for any maps a and b there is a map h : P → X enforces
the condition that P be the smallest candidate, up to isomorphism; if there were
another object P′ that satisfied the same property as P, then P would map to P′ and
P′ would map to P and by the uniqueness of the induced mappings P and P′ would
be isomorphic.

Example 1.7.11.

1. In Set, the pushout of the maps ∅ → {0, 1, 2} and ∅ → {7, 8, 9} is the set {0, 1, 2, 7, 8, 9}.
2. More generally, the pushout in Set of the maps ∅ → B and ∅ → C is the disjoint union

of B and C, i.e., the set consisting of all the elements of B and C.
3. In Set, the pushout of the maps

f : {0, 1} → {3, 4, 5} f (0) = 3, f (1) = 4

and

g : {0, 1} → {a, b, c} g(0) = g(1) = a

is the union of {3, 4, 5} and {a, b, c} with a identified with 3 and 4.
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4. More generally, the pushout in Set of maps A → B and A → C is the set specified by
taking the disjoint union of B and C and identifying f (a) and g(a).

As a set, the pushout in the category of topological spaces is described by the
pushout in sets. However, we need to specify the topology on this identification.
We have already seen how to perform this kind of construction in our discussion of
the quotient topology.

Example 1.7.12. Let f : A → B be a continuous map of topological spaces. The
pushout of the diagram

A
f

B

∗

where A → ∗ is the unique map taking all of A to ∗, is the quotient space generated by the
partition of B given by {b} for b ∈ B− f (A) and f (A). That is, the pushout is isomorphic to
the quotient B/ f (A).

Example 1.7.13. Let B be a cylinder S 1 × [0, 1], C a point ∗, and A be the circle
S 1. Take f : A → B to be the inclusion S 1 → S 1 × [0, 1] specified by x �→ (x, 0)
and g : A → ∗ to be the unique map taking all x ∈ S 1 to the point ∗. Then the
pushout

S1

g

f
S1×[0,1]

∗ (S1×[0,1])/S1

is a cone (see Figure 1.39).

The description of the quotient topology in terms of the pushout gives rise to the
following interesting characterization.

Corollary 1.7.14. Let f : A → B be a continuous map of topological spaces. A
map from the quotient space B/ f (A) → X is determined by a map B → X which
takes all of A to a point.

More generally, we use the quotient topology to describe the pushout in
topological spaces.
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Figure 1.39 The cone can be formed by collapsing one end of a cylinder to a
point.

Figure 1.40 Gluing along a common subspace.

Example 1.7.15. The pushout of f : A→ B and g : A→ C is the quotient of the disjoint
union B

∐
C given by identifying the points f (a) and g(a) for each a ∈ A. For example, if

f and g are injective, we look at the partition of B
∐

C given by the points in B \ f (A), the
points in C \ g(A), and all subsets of the form { f (a), g(a)} for a ∈ A.

As this last example suggests, the gluing in CW complexes can also be described
in terms of pushouts (Figure 1.40). Specifically, the constructions Dn ∐

f Xi arising
in the description of CW complexes (in Definition 1.5.7) are precisely pushouts.
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Example 1.7.16.

1. Let B and C be the subspaces of R3 defined as

B = {(x, y, z) | x2 + y2 + z2 = 1, z ≥ 0}

and

C = {(x, y, z) | x2 + y2 + z2 = 1, z ≤ 0},

and let A be the circle

{(x, y, 0) | x2 + y2 = 1}.

Take f : A → B and g : A → C to be the evident inclusions. Then the pushout is
precisely the unit sphere

S 2 = {(x, y, z) | x2 + y2 + z2 = 1}.

2. More generally, we have the following pushout diagram

Sn−1 Dn

Dn Sn

3. We can do the same kind of construction with solid disks and hemispheres; see
Figure 1.41.

Figure 1.41 The solid sphere can be represented as the pushout of two hemi-
spheres along a shared bounding disk.
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1.7.1 Functors

For our purposes, perhaps the most important definition from category theory is the
notion of a function between categories, called a functor. The topological invari-
ants we study will all be functors from geometric categories to algebraic ones,
for example, the function that assigns the set of path components to a topological
space X.

Definition 1.7.17. Let C and D be categories. A functor F : C → D is specified
by

1. a function

F : ob(C)→ ob(D),

2. for all x, y ∈ ob(C) a function

F : HomC(x, y)→ HomD(Fx, Fy)

such that F(idx) = idFx (the maps preserve the identity) and Fg◦F f = F(g◦ f )
(the maps are compatible with the composition).

We can reinterpret and strengthen Lemma 1.3.26 in this language.

Lemma 1.7.18. The assignment of path components is a functor from the
category Top to the category Set.

Functorial constructions are ubiquitous in mathematics.

1. The functor Grp → Set that forgets the group structure is an example of a
forgetful functor.

2. The functor Set → Grp that takes a set to the free group on generators the
elements of the set is a functor.

3. The functor Top→ Ho(Top) that takes each space to itself and each continuous
map to its homotopy class is a functor.

4. The assignment of a vector space to its double dual and each linear transfor-
mation to its double dual transformation is a functor from Vect to itself. (The
assignment of a vector space to its dual reverses the direction of the arrows, and
specifies what is known as a contravariant functor.)

In the language of this section, we can now describe algebraic topology as the
study of functors from Top to an algebraic category (e.g., Grp or Vect). For exam-
ple, let Top∗ be the category of based spaces, i.e., the objects are pairs (X, x) of a
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topological space and a “basepoint” x ∈ X and a morphism (X, x)→ (Y, y) is a con-
tinuous map f : X → Y such that f (x) = y. Then Lemma 1.6.29 can be interpreted
and strengthened as the following assertion.

Lemma 1.7.19. For n > 0, the construction πn(X, x) specifies a functor from Top∗
to Grp.

All of the invariants we study will be functorial, and in fact we will see that the
functoriality of our invariants is one of the essential facts that ensures their good
properties in algorithmic contexts.

Remark 1.7.20. Correspondingly, one might hope to cast a certain amount of
molecular biology as the study of suitable functors from genotype to phenotype.
Here the initial problem of setting up categories of genotype and phenotype, where
for instance morphisms might represent mutation and certain physical changes, is
of basic interest.

The final notion we need from category theory is the idea of a natural
transformation; this is a map between functors.

Definition 1.7.21. Let F and G be functors from C to D. A natural transformation
τ : F → G is specified by:

1. a map τx : F(x)→ G(x) for every object x ∈ ob(C), and
2. commuting squares

F(x)

τx

F(y)

τy

G(x) G(y)

for every morphism x→ y in HomC(x, y).

Example 1.7.22.

1. The most important example for us comes in the context of functors N → C, for a
category C. A functor F : N→ C is specified by a sequence

F(0)→ F(1)→ F(2)→ . . . ,
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and so a natural transformation τ : F → G is determined by the commuting diagrams

F(0)

τ0

F(1)

τ1

F(2)

τ2

. . .

G(0) G(1) G(2) . . .

2. For any category C and object x ∈ ob(C), there is a functor

hom(x,−) : C → Set

that takes an object y to the set of maps Hom(x, y) and a map f : y1 → y2 to the map
Hom(x, y1) → Hom(x, y2) induced by composition with f . Now, for any pair of func-
tors hom(x1,−) and hom(x2,−), any map x2 → x1 induces a natural transformation
hom(x1,−)→ hom(x2,−). (This is a version of the Yoneda lemma.)

1.8 Simplicial Complexes

Our most basic model of a geometric object is a topological space, which we
introduced in Section 1.3. Topological spaces are too general to be feasible for algo-
rithmic purposes, however. In Section 1.5, we introduced CW complexes, which
are a more restrictive notion of a topological space; this data is a recipe for build-
ing a space from spheres and disks. Although CW complexes are an incredibly
useful notion in modern algebraic topology, they are still not concise enough for
algorithmic purposes. The issue is that describing the data of an attaching map
f : S n → Xn in general requires an infinite amount of information. That is, despite
the fact that there are a limited number of building blocks, the instructions about
how to glue them together are not simple enough.

We now describe an older model of topological spaces, the category of simplicial
complexes, that is entirely discrete: here a space will be specified by gluing simple
pieces together in a very small number of ways. As long as we are willing to work
up to homotopy equivalence or weak homotopy equivalence, it will turn out that
this is a general model of topological spaces. Our treatment follows the fantastic
introduction given in [368].

Simplicial complexes are generalizations of graphs. And in this guise, there are
many examples of simplicial complexes that are studied by systems biologists. For
example, any of the networks that are described as graphs (e.g., protein interac-
tion networks, regulatory networks, ecological interaction networks) are simplicial
complexes. Thus, in a precise sense the theory we are developing here is a way to
talk about higher dimensional networks.

Suppose that we are given points {x0, . . . , xk} in Rn. We will assume that
these points satisfy the condition that the set of vectors in Rn represented by the



1 Basic Notions of Algebraic Topology 93

differences

{x1 − x0, x2 − x0, . . . , xk − x0}
are linearly independent. For example, a set {x0, x1, x2} will satisfy this condition if
the points do not all lie on the same line.

Definition 1.8.1. The k-simplex spanned by the points {x0, . . . , xk} is the set of all
points

z =
k∑

i=0

aixi,

k∑
i=0

ai = 1.

For a given z, we refer to ai as the ith barycentric coordinate.

Example 1.8.2.

1. A 0-simplex is a point.
2. A 1-simplex is a line segment (with endpoints the points x0 and x1).
3. A 2-simplex is a triangle with vertices the points {x0, x1, x2}.
(See Figure 1.42 for examples of geometric simplices.)

The simplices are the basic building blocks for a simplicial complex; roughly
speaking, a simplicial complex is a collection of simplices glued along their edges
(or “edges” of their edges).

Definition 1.8.3. The interior of a simplex S spanned by the points {x0, . . . , xk},
denoted int(S ), is the subset of points where ai > 0 for all the barycentric
coordinates ai. The boundary bd(S ) is defined to be S \ int(S ). (See Figure 1.43.)

It is straightforward to check that for any n-simplex S , there are homeomor-
phisms

bd(S ) � S n−1 and S � Dn+1.

(1,0)

v1

v1

v2

v2

v3

(0,1)

(1,0,0)

(0,1,0)

(0,0,1)

Figure 1.42 Geometric simplices specified by a set of vectors (including 0). On
the left, the simplices are determined by the standard axial unit vectors; on the
right, they are specified by the indicated vectors.
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Figure 1.43 The boundary of a standard simplex is a combinatorial sphere; the
interior is an open disk.

Therefore, there is a close analogy between gluing together simplices and building
CW complexes. The advantage of working with simplices rather than CW com-
plexes is that the boundaries of a simplex decompose into unions of simplices; we
will be able to use a very restricted universe of attaching maps.

Definition 1.8.4. For a simplex S spanned by the points P = {x0, . . . , xk}, a face
of S refers to any simplex spanned by a subset of P.

Example 1.8.5.

1. There are no non-empty faces of a 0-simplex.
2. The non-empty faces of a 1-simplex determined by the points x0 and x1 are the two

0-simplices spanned by {x0} and {x1} respectively.
3. The non-empty faces of a 2-simplex determined by the points {x0, x1, x2} are the edges

of the triangle and the vertices, the three 1-simplices determined by {x0, x1}, {x1, x2},
and {x2, x0} and the three 0-simplices {x0}, {x1}, and {x2}.

The following lemma is the key observation that allows us to glue together
simplices in a simple way (Figure 1.44).

Lemma 1.8.6. Let S be a simplex. The union of all of the faces of S is bd(S ).

We now define the notion of a simplicial complex.

Definition 1.8.7. A simplicial complex X in Rn is a set of simplices in Rn such
that:
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Figure 1.44 The boundary of the standard 3-simplex is a hollow pyramid; unfold-
ing it makes clear how the 2-simplices that form the faces are glued along edges
and vertices.

1. every face of a simplex in X is also a simplex in X, and
2. the intersection of two simplices in X is a face of each of them.

The zero simplices of a simplicial complex are referred to as the vertices. More
generally, the collection of simplices of dimension at most k is referred to as the
k-skeleton of the simplicial complex; we will denote the k-skeleton by Xk. For
simplicity, we will restrict attention to simplicial complexes with finitely many
simplices, referred to as finite simplicial complexes.

Definition 1.8.8. The geometric realization |X| of a finite simplicial complex X is
the topological space given by the union of simplices, given the subspace topology.
(Here we regard the union as a subspace of Rn.)

The geometric realization of a simplicial complex can be given the structure of
a CW complex, where the cells correspond to the simplices and the attaching maps
are determined by the faces.

Example 1.8.9. A circle can be given the structure of a simplicial complex (up to home-
omorphism) in R2 where the 0-simplices are the points (0, 0), (1, 0), and (1, 1) and the
1-simplices are the line segments specified by the equations

x + 0y = 1, 0x + y = 0, and x + y = 1,

where x, y ∈ [0, 1]. (In fact, as explained in Example 1.8.21, we can analogously model
the circle with n 0-simplices and n 1-simplices connecting them for any n. See also
Figure 1.45)

Remark 1.8.10. As with infinite CW complexes (recall Remark 1.5.8), we
can make sense of the geometric realization of an infinite simplicial complex,
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Figure 1.45 Up to homeomorphism, a torus can be triangulated as a simplicial
complex.

but describing the topology is somewhat more complicated. However, all of the
examples we consider in this book will be finite.

In a precise sense, a simplicial complex can be thought of as a higher dimen-
sional generalization of a graph.

Example 1.8.11. A simplicial complex that has only 0-simplices and 1-simplices rep-
resents a graph embedded in Euclidean space, where the 0-simplices are the vertices and
the 1-simplices are the edges.

We can assemble simplicial complexes into a category; for this purpose, we need
an analogue of a continuous map.

Definition 1.8.12. Let X and Y be simplicial complexes. A simplicial map
f : X → Y is specified by a map X0 → Y0 such that whenever

{z0, . . . , zk} ⊂ X0

span a simplex of X,

{ f (z0), f (z1), . . . , f (zk)}
span a simplex of Y .

Therefore, we can form a category with objects the simplicial complexes and
morphisms the simplicial maps. It is useful to characterize the isomorphisms in
this category.

Definition 1.8.13. Let X and Y be simplicial complexes. An isomorphism of sim-
plicial complexes is a simplicial map f : X → Y that is a bijection on 0-simplices
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and such that for any k > 1, a collection of vertices {x1, . . . , xk} specifies a simplex
of X if and only if { f (x1), . . . , f (xk)} is a simplex of Y .

Moreover, a simplicial map can be extended to a continuous map f : |X| → |Y |
by linear interpolation:

f

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

aixi

⎞⎟⎟⎟⎟⎟⎠ = n∑
i=0

ai f (xi).

Put another way, geometric realization is a functor.

Lemma 1.8.14. Geometric realization specifies a functor from the category of
simplicial complexes and simplicial maps to the category of topological spaces
and continuous maps.

One inconvenience with working with simplicial complexes as specified in Defi-
nition 1.8.7 is the dependence on a choice of embedding in some ambient Euclidean
space Rn. For example, ensuring that simplices intersect properly can require solv-
ing equations. Fortunately, it turns out that the data of a simplicial complex can
be abstracted even further; all that is really important is the data of how many
simplices there are and which faces they are glued along.

Definition 1.8.15. An abstract simplicial complex is a set X of finite non-empty
sets such that if A is an element of X then so is every non-empty subset of A.

1. Each element of X represents a simplex; we refer to elements of X as (abstract)
simplices.

2. The dimension of an abstract simplex A is |A| − 1, where here | − | denotes the
number of elements of a set.

3. Any non-empty subset of a simplex A is a face of A.
4. The vertices of X are the one-point sets in X. (Notice that any simplex of X is a

union of vertices.)
5. More generally, we will denote the subset of X consisting of sets of cardinality
≤ k + 1 as Xk, the k-skeleton.

We have a natural generalization of Definition 1.8.12 to the setting of abstract
simplicial complexes.

Definition 1.8.16. A map of abstract simplicial complexes f : X → Y is specified
by a map of sets f : X0 → Y0 with the property that for any element {x0, . . . , xk} in
X, { f (x0), . . . , f (xk)} is an element of Y .
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Therefore, we have a category with objects the abstract simplicial complexes
and morphisms the simplicial maps.

Definition 1.8.17. Let X and Y be abstract simplicial complexes. A simplicial
map f : X → Y is an isomorphism if f is a bijection on 0-simplices and {x0, . . . , xk}
is an element of X if and only if { f (x0), . . . , f (xk)} is an element of Y .

We now explain the relationship between abstract simplicial complexes and the
simplicial complexes of Definition 1.8.7, which to be clear we will refer to as
geometric simplicial complexes.

Lemma 1.8.18. Let X be a geometric simplicial complex spanned by the points
x0, . . . , xk ⊆ Rn. Then there is an associated abstract simplicial complex specified
by the collection of subsets of the vertices of X which span a simplex in X.

Two geometric simplicial complexes are isomorphic if and only if their asso-
ciated abstract simplicial complexes are isomorphic. Moreover, every abstract
simplicial complex can be uniquely associated to a geometric simplicial complex.

Theorem 1.8.19. For every abstract simplicial complex S , there exists a geomet-
ric simplicial complex S̃ such that S is associated to S̃ .

The preceding theorem allows us to define the geometric realization of an
abstract simplicial complex in terms of the geometric realization of the associated
geometric simplicial complex. Once again, geometric realization is a functor.

Lemma 1.8.20. The geometric realization of the associated simplicial complex
specifies a functor | − | from the category of abstract simplicial complexes and
simplicial maps to the category of topological spaces and continuous maps.

Example 1.8.21.

1. The abstract simplicial complex

{{v0}, {v1}, {v2}, {v0, v1}, {v1, v2}, {v2, v0}, {v0, v1, v2}}

describes the 2-simplex and its faces; the geometric realization has the homotopy type
of a disk in R2.

2. Removing the interior from the previous example, the abstract simplicial complex

{{v0}, {v1}, {v2}, {v0, v1}, {v1, v2}, {v2, v0}}
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Figure 1.46 Two different models of the simplicial circle.

describes the boundary of the 2-simplex; the geometric realization has the homotopy
type of a circle in R2. (In fact, Example 1.8.9 is homeomorphic to the geometric
realization of this complex.)

3. More generally, we can make an abstract simplicial complex which models the circle
using n vertices

{v0, v1, . . . , vn−1}
and n 1-simplices

{{v0, v1}, {v1, v2}, . . . , {vn−2, vn−1}, {vn−1, v0}}.
(See Figure 1.46 for examples of this.)

4. The previous examples are all of two kinds; we can form the standard simplex Δn by
taking a single n-simplex [v0, . . . , vn] and all of its subsets. The boundary ∂Δn is given
by removing the n-simplex from the complex Δn.

5. Although computationally tractable, simplicial complexes describing even relatively
simple surfaces can be large; see Figure 1.47 for a representation of a complex modeling
a torus.

A next question one might wonder about is whether every topological space is
homeomorphic or at least homotopy equivalent to a simplicial complex. In the case
of homeomorphism, this kind of question turns out to be very difficult to answer.
But for homotopy equivalence, there is a simple and satisfying criterion.

Proposition 1.8.22. Let X be an abstract simplicial complex. The geometric
realization |X| is a CW complex with an n-cell for each n-simplex of X.

Proposition 1.8.23. Let X be a CW complex. Then X is homotopy equivalent to
the geometric realization of a simplicial complex K. Moreover, if X is a finite CW
complex, then K can be taken to be a finite simplicial complex.

Thus a topological space is homotopy equivalent to the geometric realization of
a simplicial complex if and only if it is homotopy equivalent to a CW complex.
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1 2 3 1

4 6 7 4

5 8 9 5

1 2 3 1

Figure 1.47 This diagram represents the vertices, 1-simplices, and 2-simplices of
an abstract simplicial complex with realization homeomorphic to the torus. (Note
that we identify the top edge with the bottom edge and the left edge with the right
edge.)

But what about the morphisms? That is, can every continuous map |X| → |Y | be
described as the geometric realization of a simplicial map? To be precise, we might
ask the following question.

Question 1.8.24. Let X and Y be abstract simplicial complexes. Is every contin-
uous map |X| → |Y | homotopic to the geometric realization of a simplicial map
X → Y?

As the question is posed, the answer is no.

Example 1.8.25. Let S 1 be the minimal abstract simplicial complex that models the
circle; S 1 has vertices x0, x1, and x2 and 1-simplices {x0, x1}, {x1, x2}, and {x2, x0}. If we
consider simplicial maps from S 1 → S 1, it is clear that there is no way to model the
continuous maps S 1 → S 1 given by t �→ ekt(2πi) for k > 1. That is, we cannot represent
homotopy classes of maps that wrap the circle around itself more than once.

However, this deficiency can be repaired. The counterexample in Example 1.8.25
works because the “feature scale” of the domain is not fine enough. We can improve
the situation using the notion of subdivision. In this case, if we use a model of the
circle with n vertices and n − 1 1-simplices, as n increases we can represent maps
which wrap around the circle more and more. More generally, we can subdivide
any simplicial complex by dividing the simplices into unions of smaller simplices.
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The resulting complex has geometric realization homeomorphic to the original one.
Since we do not need these results we do not discuss them further here, but in fact
there is a fundamental result (the simplicial subdivision theorem) that guarantees
that any homotopy class of maps |X| → |Y | can be represented by a simplicial map
from some subdivision of X to Y .

We now turn to the discussion of algebraic invariants of topological spaces that
can be computed in terms of combinatorial operations on simplicial complexes.
The oldest and simplest example of such an invariant is the Euler characteristic.

1.9 The Euler Characteristic

A basic and classical combinatorial invariant associated to a CW complex or an
abstract simplicial complex is the Euler characteristic.

Definition 1.9.1. Let X be a finite CW complex, with cells of dimension at most
n. The Euler characteristic of X is defined to be the alternating sum

χ(X) =
n∑

i=0

(−1)iki,

where ki denotes the number of i-cells.

Equivalently, we can define the Euler characteristic of a finite simplicial complex
directly.

Definition 1.9.2. Let X be a finite simplicial complex, with simplices of dimen-
sion at most n. The Euler characteristic of X is defined to be the alternating
sum

χ(X) =
n∑

i=0

(−1)iki

where ki denotes the number of i-simplices (see Figure 1.48).

It is straightforward to verify that these two notions are consistent under
geometric realization.

The Euler characteristic is a very appealing invariant insofar as it does not
depend on any information about the way in which cells or simplices are glued
together, just their counts. As a consequence, it is very easy to compute. However,
it is not completely clear from the definition what sorts of equivalences the Euler
characteristic is preserved by. It is easy to see that χ is an isomorphism invariant
for simplicial complexes.
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    –        +    1 = 4    –    4    =    0
vertices 1-simplices vertices 1-simplices2-simplices

1

Figure 1.48 The Euler characteristic of a finite simplicial complex is computed
as the alternating sum of the counts of simplices.

Lemma 1.9.3. Let f : X → Y be an isomorphism of simplicial complexes. Then
χ(X) = χ(Y).

But this is not tremendously useful; as we have seen in Example 1.8.21, there are
many non-isomorphic models for the circle S 1. We would like there to be a well-
defined Euler characteristic for “the circle” that does not depend on the simplicial
model. Direct computation is encouraging, however – all the models of the circle
have n vertices and n 1-simplices, and therefore have Euler characteristic 0. It turns
out that χ(X) is a homotopy invariant for CW complexes.

Another concern about the Euler characteristic is that it does not reflect sim-
plicial maps. The issue is simply that numbers are not rich enough to support
functoriality. A central motivation for constructing invariants of topological spaces
that land in algebraic categories (e.g., groups or vector spaces) is to provide enough
structure for them to be functors.

1.10 Simplicial Homology

In this section, we finally develop the central invariant that we will use in topologi-
cal data analysis, the homology groups. The homology groups will be a collection
of functors indexed on the natural numbers

Hn : Simp→ VectF, n ≥ 0.

Let X be an abstract simplicial complex. Roughly speaking, the homology
groups of X are going to encode information about the way in which the simplices
in successive dimensions are glued together. For the definition, we will need to
pick an orientation for the simplices – in the case of a 1-simplex, this amounts to
picking a direction for the line segment connecting the two vertices.

Let X be an abstract simplicial complex and σ a simplex. We will pick an
ordering for the set of vertices in σ. Consider the case of a 2-simplex [v0, v1, v2].
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Then there are six possible orderings: (v0, v1, v2), (v0, v2, v1), (v1, v0, v2), (v1, v2, v0),
(v2, v0, v1), and (v2, v1, v0). However, we want to regard the possible choices of
orientation for this 2-simplex as twofold, either clockwise or counterclockwise.
We can express this by identifying orderings that are given by “rotations” of the
vertices.

Definition 1.10.1. An orientation of the vertices of a simplex σ is an equivalence
class of orderings of the vertices under the equivalence relation that two orderings
are the same if they differ by an even permutation. (Recall that an even permutation
is one that can be written as the composite of an even number of transpositions.)

Each k-simplex can be given one of two possible orientations for k > 0; there is
only a single orientation for a vertex. We now assume that we have chosen orienta-
tions for the k-simplices of X; this can be done arbitrarily. We let [v0, . . . , vk] denote
the oriented simplex specified by the vertices {v0, . . . , vk}, where the orientation is
specified by the ordering of the vertices.

1.10.1 Chains and Boundaries

We now explain the building blocks for the homology groups, the chain groups and
the boundary homomorphism. These provide algebraic encodings of the combina-
torial information of a simplicial complex. We start with the case of coefficients in
a field F, as this is most relevant for topological data analysis.

Definition 1.10.2. The k-chains Ck(X; F) is the vector space with basis the set
of oriented k-simplices. That is, elements of Ck(X; F) are linear combinations of
generators {gσ}, where σ varies over the oriented k-simplices of X.

Example 1.10.3. Consider the abstract simplicial complex

X = {[v0], [v1], [v2], [v0, v1], [v1, v2]}.
1. The space of 0-chains C0(X; F) for X is a vector space which is isomorphic to F⊕ F⊕ F.

We think of C0(X; F) as having elements of the form

a0v0 + a1v1 + a2v2, a0, a1, a2 ∈ F,
where generators correspond to the vertices v0, v1, and v2 respectively.

2. The space of 1-chains C1(X; F) for X is a vector space which is isomorphic to F⊕F. We
think of C1(X; F) as having elements of the form

a0g01 + a1g12, a0, a1 ∈ F,
where g01 and g12 are generators corresponding to the two 1-simplices of X.
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3. The space of 2-chains C2(X; F) (and all higher chain groups) is the trivial vector space
{0} since there are no k-simplices for k > 1.

We now define a linear transformation ∂k : Ck(X; F) → Ck−1(X; F), the bound-
ary map. As we will see, this is an algebraic way to encode the boundary of a
simplex.

Definition 1.10.4. The linear transformation

∂k : Ck(X; F)→ Ck−1(X; F)

is specified on the generators as

∂n([v0, . . . , vk]) �→
k∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk]

where the v̂i notation means we delete that vertex. The homomorphism is then
specified by extending linearly to all of Ck(X; F). (The orientation of the image is
determined by the ordering of the vertices.)

Notice that this expression has a clear geometric interpretation: the boundary
map applied to a simplex is precisely the alternating sum over the faces that make
up the boundary of the simplex. (See Figure 1.49.)

Example 1.10.5.

1. The boundary of the 1-simplex [v0, v1] is v1 − v0.
2. The boundary of the 2-simplex [v0, v1, v2] is [v1, v2] − [v0, v2] + [v0, v1].

Figure 1.49 The boundary map applied to a simplex is the alternating sum of the
simplices along the boundary.
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The boundary map has the special property that applying it twice is 0; “the
boundary of a boundary is 0.”

Lemma 1.10.6. The composite ∂k ◦ ∂k+1 = 0.

Checking this is an easy algebraic argument; the alternating signs result in
cancellation.

Example 1.10.7. We compute ∂1 ◦ ∂2 applied to the 2-simplex [v0, v1, v2]. As in
Example 1.10.5 above,

∂2([v0, v1, v2]) = [v1, v2] − [v0, v2] + [v0, v1],

and applying ∂1 we obtain

∂1∂2([v0, v1, v2]) = ∂1([v1, v2]) − ∂1([v0, v2]) + ∂1([v0, v1])

= (v2 − v1) − (v2 − v0) + (v1 − v0)

= v2 − v1 − v2 + v0 + v1 − v0

= 0.

As an immediate corollary, we have the following.

Corollary 1.10.8. For any simplicial complex X and natural number k,

im(∂k+1) ⊆ ker(∂k).

1.10.2 Homology Groups

We now define the homology groups associated to the simplicial complex; the kth
homology group Hk measures the failure of the inclusion of im(∂k+1) in ker(∂k) to
be an isomorphism. The idea of the homology groups is to take the subgroup of
Ck(X) of cycles, i.e., ker(∂k), and impose the equivalence relation that two chains
c1 and c2 are homologous if their difference c1 − c2 is a boundary, i.e., if c1 − c2 is
an element of im(∂k+1).

Definition 1.10.9. The kth homology group with F-coefficients Hk(X; F) is
defined to be the quotient group ker(∂k)/ im(∂k+1). (In fact, this quotient group
inherits the structure of a vector space.)

The zeroth homology group has a very natural interpretation.

Theorem 1.10.10. Let X be an abstract simplicial complex. The homology group
H0(X; F) is a vector space on generators in bijection with the path components
of X.



106 Part I Topological Data Analysis

Figure 1.50 (a) gives a simplicial complex for an annulus. The blue paths in pic-
tures (b) and (c) are examples of cycles in the complex. The cycle in picture (b)
is not the boundary of any collection of simplices in the complex; it represents a
non-zero class in the first homology group. In contrast, (c) is the boundary of a
simplex and therefore is 0 in the homology group.

As we make precise below in Theorem 1.10.29, the first homology group is
closely related to the fundamental group and hence to loops in X (see Figure 1.50).

Crudely, we can think of homology groups as the set of cycles in Ck(X; F)
that are not the boundaries of elements of Ck+1(X; F). Roughly speaking,
the fact that an element γ in Ck(X; F) is a cycle means that it encloses a
k-dimensional region, and the fact that γ is not a boundary means that the
interior of the region is not part of the space X.

More precisely, consider the simplicial complex ∂Δk, consisting of the boundary
of the standard k-simplex. There is a cycle consisting of the alternating sum of the
(k − 1)-simplices; this is the boundary of the (missing) k-simplex. But this cycle
cannot be a boundary, since there are no k-simplices. Thus, it specifies a class in
the homology group Hk−1; this class detects the “hole.” But if we fill the hole in, we
get the standard simplex Δk, and now this cycle is clearly in the image of δk, and so
vanishes in homology. More generally, given a simplicial complex X that contains
∂Δk but not the k-simplex, there will be a homology class representing that hole.
Of course, this analysis does not directly apply to “larger” holes (with boundaries
that are the union of many (k − 1)-simplices), but a similar analysis does apply.

Summarizing:

1. H0 a measure of path components of X,
2. H1 is a measure of the one dimensional “holes” in X, and
3. more generally, Hk is a measure of k-dimensional geometric features of X,

specifically, a count of the number of k-dimensional “holes” in X.
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One of the advantages of simplicial homology is that it is easily computable
given the data of an abstract simplicial complex. We illustrate this with some
examples below.

Example 1.10.11.

1. Let S be the abstract simplicial complex {[v0], [v1], [v0, v1]}; this represents the interval.
Then ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C0(S ; F) � F ⊕ F,
C1(S ; F) � F,

Ci(S ; F) = 0, i > 1.

The boundary map ∂1 : C1(S ; F)→ C0(S ; F) is specified by

1 ∈ F �→ (1,−1) ∈ F ⊕ F.

Then H0(S ) = F, since ker(∂0) is all of C0(S ; F) and the image of ∂1 is F. H1(S ; F) = 0,
as the kernel of ∂1 is 0. And all Hi(S ; F) = 0 for i > 1.

Interpreting geometrically, this answer tells us that S represents a topological space
that has one path component and no holes.

2. Let S be the abstract simplicial complex ∂Δ2, with vertices

{[v0], [v1], [v2]}

and 1-simplices

{[v0, v1], [v1, v2], [v2, v0]}.

This complex is a model for the circle. Then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C0(S ; F) � F ⊕ F ⊕ F,
C1(S ; F) � F ⊕ F ⊕ F,
C2(S ; F) = 0, i > 1.

Since ∂1([v0, v1]) = v1 − v0, ∂1([v1, v2]) = v2 − v1, and ∂1([v2, v0]) = v0 − v2, it is
straightforward to check that ker(∂1) is F with generator [v0, v1] + [v1, v2] − [v2, v0].
Therefore, H1(S ) � F and a similar argument shows that H0(S ) � F. Specifically,
ker(∂0) must be all of C0(S ) � F ⊕ F ⊕ F. The computations of the image of ∂1 above
imply that in the quotient by im(∂1), we have that v0 = v1 since v0 + ∂1([v0, v1]) = v1.
Similarly, v1 = v2. Therefore, the quotient must be F, generated by the coincident coset
of v0, v1, and v2. Interpreting geometrically, this example tells us that S represents
a topological space that has one path component and one one-dimensional hole (see
Figure 1.51).
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Figure 1.51 The red and yellow paths indicate representative generators for H1
of the torus, which is F ⊕ F.

3. More generally, for the simplicial complex Δn+1 modeling S n (i.e., the boundary of the
standard (n + 1)-simplex), we compute the answer⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H0(S n; F) � F,

Hn(S n; F) � F,

Hk(S n; F) = 0, k � 0, n.

This computation makes precise the sense in which we can think of the nth homology
group as capturing information about n-dimensional holes.

Of particular relevance for topological data analysis is the fact that simplicial
homology is algorithmically tractable; ∂k can be expressed as a matrix where
each column specifies the image in Ck−1(S ; F) of a generator of Ck(S ; F). We can
then compute the image and kernel using linear algebra manipulations. Specifi-
cally, using Gaussian elimination we put ∂k and ∂k+1 into Smith normal form; the
rank of the homology group can then be computed in terms of the ranks of ∂k and
∂k+1.

Theorem 1.10.12. Given a simplicial complex, there exists an algorithm to com-
pute Hk(−; F) whose running time is polynomial (cubic) in the total number of
(k + 1)-simplices, k-simplices, and (k − 1)-simplices.

1.10.3 Homology of Chain Complexes

The impressionistic description of the homology groups as computing informa-
tion about k-dimensional holes strongly suggests that the groups Hk are homotopy
invariants. To provide context for stating this kind of invariance result, it is use-
ful to describe the homology groups as functors. As we have emphasized, much
of the power of the invariants of algebraic topology comes because they are
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functorial. We can check directly from the definition that homology is in fact a
functor

Hn : Simp→ VectF.

Theorem 1.10.13. Let X and Y be abstract simplicial complexes and let
f : X → Y be a simplicial map. Then for each k ≥ 0 there is an induced group
homomorphism

f∗ : Hk(X; F)→ Hk(Y; F).

To explain this result, we provide an algebraic category to abstract the construc-
tion underlying homology. To this end, we now define the category Ch(VectF) of
chain complexes of F-vector spaces.

Definition 1.10.14. A chain complex of vector spaces A• is a collection of vector
spaces {An}, for n ∈ Z, and linear transformations

∂n : An → An−1

such that ∂n−1 ◦ ∂n = 0. More succinctly, a chain complex is a functor Zop → VectF
satisfying the condition above on the successive composites of maps.

Having specified the objects of Ch(VectF), we now need to explain the mor-
phisms.

Definition 1.10.15. A map of chain complexes f : A• → B• is a collection of
linear transformations fn : An → Bn for each n ∈ Z such that fn−1 ◦ ∂A

n = ∂
B
n ◦ fn,

i.e., such that the diagrams

∂A
n+1 ∂B

n+1

An
fn

∂A
n

Bn

∂B
n

An−1

∂A
n−1

fn−1
Bn−1

∂B
n−1

commute.
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There is a natural functor VectF → Ch(VectF) that takes a vector space V to the
chain complex

A• = . . .→ 0→ 0→ V → 0→ 0→ . . .

where A0 = V and Ai = 0 for i � 0.
As we have seen, the category of topological spaces has several useful notions

of equivalence: homeomorphisms, which are categorical isomorphisms, as well as
homotopy equivalences and weak equivalences. In contrast, the algebraic category
VectF does not have a good analogue of the notion of homotopy equivalence. One of
the advantages of Ch(VectF) is precisely that is an algebraic category that enlarges
VectF enough to have a notion of homotopy equivalence, which is called quasi-
isomorphism.

To explain a quasi-isomorphism of chain complexes, we need to observe that
the definition of homology makes sense for arbitrary chain complexes. Notice that
since by definition ∂n ◦ ∂n+1 = 0, we have the evident inclusion of groups

im(∂n+1) ⊆ ker(∂n).

We have the following general analogue of Definition 1.10.9.

Definition 1.10.16. For a chain complex A•, the nth homology group Hn is defined
as the quotient

Hn(A•) = ker(∂n)/ im(∂n+1).

The construction of homology is functorial.

Lemma 1.10.17. A map f : A• → B• of chain complexes induces a linear trans-
formation of vector spaces Hn(A•) → Hn(B•). Moreover, Hn specifies a functor
from the category of chain complexes to the category of vector spaces.

We think of the homology groups of a chain complex as akin to the homotopy
groups of a space, and this leads to the following definition.

Definition 1.10.18. A map f : A• → B• of chain complexes is a quasi-isomorp-
hism when each induced map Hn(A•)→ Hn(B•) is an isomorphism.

Of course, if each map fn is an isomorphism, then f is a quasi-isomorphism. But
there are many examples of quasi-isomorphisms that are not isomorphisms.

Example 1.10.19. Consider the chain complex where C3 = F, C2 = F, all other Ci = 0,
and ∂3 = id. Then the homology is zero for all n; this chain complex is quasi-isomorphic
to the zero complex (i.e., the complex where Ci = 0 for all i).
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For our purposes, the most interesting examples of chain complexes come from
the construction of the simplicial chains. This assignment is functorial.

Lemma 1.10.20. For a simplicial complex X, the chains C•(X; F) form a chain
complex of vector spaces. A simplicial map of simplicial complexes f : X → Y
induces a chain map C•(X; F) → C•(Y; F). That is, passage to simplicial chains
induces a functor

C•(−) : Simp→ Ch(VectF).

We can immediately deduce the functoriality of homology from this construc-
tion. An isomorphism of simplicial complexes clearly induces a quasi-isomorphism
of chains; in fact, so does a homeomorphism of the associated topological spaces.
But the power of homology arises because it is in fact a homotopy invariant. To
explain this, we need to consider the question of when two maps f , g : A• → B•
induce the same map on homology.

Definition 1.10.21. We say that two maps of chain complexes f , g : A• → B• are
chain homotopic if there exist maps h : An → Bn+1 such that fn − gn = ∂n+1 ◦ hn −
hn−1 ◦ ∂n.

The definition of chain homotopy is a precise analogue of the notion of
homotopy of maps of spaces.

Theorem 1.10.22. If f , g : X → Y are simplicial maps of abstract simplicial
complexes such that | f |, |g| : |X| → |Y | are homotopic, then the induced maps
f , g : C•(X; F)→ C•(Y; F) are chain homotopic.

In fact, Definition 1.10.21 can be derived by considering the chain complexes
C•(X × [0, 1]; F) and C•(Y; F) and the conditions imposed by the existence of a
homotopy h : X × I → Y .

For our purposes, the most important fact about chain homotopic maps is the
following result:

Proposition 1.10.23. If two maps f , g : A• → B• of chain complexes are chain
homotopic, then they induce the same map on homology.

The point is simply that

∂n ◦ ( fn − gn) = ∂n ◦ ∂n+1 ◦ hn − ∂n ◦ hn−1 ◦ ∂n = ∂n ◦ hn−1 ◦ ∂n,

i.e., the difference between fn and gn is a boundary.
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Corollary 1.10.24. If f : X → Y is a simplicial map of abstract simplicial com-
plexes such that | f | : |X| → |Y | is a homotopy equivalence, then f induces an
isomorphism on homology.

Put another way, we really have a functor

Hn : Ho(Simp)→ VectF,

where we define Ho(Simp) to be the category with objects abstract simplicial com-
plexes and morphisms from X to Y specified by the homotopy classes of maps
|X| → |Y |.

Remark 1.10.25. Typically, this fact is proved using a related homology theory
called singular homology, which coincides with simplicial homology but is (by
definition) independent of the simplicial structure. In addition, as we mentioned
in Remark 1.10.31, one can also define homology directly for CW complexes. In
light of this menagerie of definitions, a basic consistency question arises: given
an abstract simplicial complex X, do all the possible ways of defining its homol-
ogy agree? Direct comparisons are possible, but it turns out that the collection of
homology functors Hn : Top → VectF can be axiomatically characterized in terms
of a very simple set of axioms, the Eilenberg-Steenrod axioms. Roughly speaking,
these axioms describe families of functors that have prescribed behavior on the
spheres S n and satisfy certain gluing relationships; the proof that this suffices to
characterize the theories amounts to induction over a CW structure.

1.10.4 Simplicial Homology with Coefficients in an Abelian Group

In fact, simplicial homology can take values in the category of abelian groups
instead of vector spaces. We consider the case of Z for clarity. Definitions 1.10.14
and 1.10.15 generalize immediately to the category Ch(Ab) of chain complexes of
abelian groups.

Definition 1.10.26. A chain complex of abelian groups A• is a collection of
abelian groups {An}, for n ∈ Z, and homomorphisms

∂n : An → An−1

such that ∂n−1 ◦ ∂n = 0. More succinctly, a chain complex is a functor Z → Ab
satisfying the condition above on the successive composites of maps. The mor-
phisms are the maps of chain complexes, i.e., the collections of homomorphisms
fn : An → Bn such that fn−1 ◦ ∂A

n = ∂
B
n ◦ fn.
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We can build the simplicial chains by working with the free abelian group
generated by the simplices. Specifically, we have the following definition.

Definition 1.10.27. The group of m-chains Cm(X;Z) is the free abelian group
with basis elements in bijection with the oriented m-simplices. That is, elements of
Cm(X;Z) are linear combinations (with coefficients in Z) of generators {gσ}, where
σ varies over the oriented m-simplices of X.

Lemma 1.10.28. A map of simplicial complexes S → S ′ determines a chain map
C•(S ;Z)→ C•(S ′;Z). That is, passage to simplicial chains induces a functor

C•(−;Z) : Simp→ Ch(Ab).

Applying homology, we get a composite functor

Hn(−;Z) : Simp→ Ch(Ab)→ Ab.

We refer to this as homology with coefficients in the group Z. As in Proposition
1.10.23, homotopy classes of maps induce the same map on homology and quasi-
isomorphisms of chain complexes induce isomorphisms.

In this context, the first homology group can be described in terms of something
we have already seen.

Theorem 1.10.29. Let X be an abstract simplicial complex that is connected. The
homology group H1(X;Z) is the abelianization of the fundamental group π1(X, x),
where here the abelianization of a group is the quotient by the subgroup generated
by terms of the form xyx−1y−1.

The advantage of working with Z coefficients is that the homology captures more
information about the space X. More generally, it is possible to consider homology
with coefficients in any ring R; the situation for Z is a special case. However, when
working with topological data analysis, only the cases of homology with field coef-
ficients tend to be used. We explain the reason for this in Section 2.3. Just as for the
case of field coefficients, there is an efficient algorithm for computing homology
with coefficients in Z.

Theorem 1.10.30. Given a simplicial complex, there exists an algorithm to com-
pute Hk(−;Z) whose running time is polynomial (cubic) in the total number of
(k + 1)-simplices, k-simplices, and (k − 1)-simplices.
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Remark 1.10.31. Because of our focus on algorithmic methods, we have dis-
cussed simplicial homology in this section. As we mentioned in Remark 1.10.25,
there are a number of other candidate constructions of the homology of a space; for
example, one can define homology using calculus (in terms of differential forms)
or infinite-dimensional functions (singular homology). Most notably, in the spirit
of our discussion, it is possible to give a definition of homology that works directly
from the CW complex structure on a space; one begins with a chain complex
defined where Ck(X) is the free abelian group on the k-cells. However, the boundary
map is considerably more complicated in this case. Nonetheless, this approach has
been the basis for computational work in discrete Morse theory and computational
cubical homology (e.g., see [228, 280]).

1.11 Manifolds

The definition of a topological space is very general; an arbitrary topological space
can be extremely complicated and have a very non-geometric flavor. For example,
the Cantor set, constructed by removing the middle third from the interval [0, 1],
then the middle third from each of the resulting intervals, and so on (i.e., the subset
of [0, 1] consisting of elements whose ternary expansion does not contain 1) is an
exotic topological space. When we work up to weak homotopy equivalence, we
can restrict attention to simplicial complexes, which are a much nicer collection
of spaces. Nonetheless, simplicial complexes still admit a very wide collection of
examples with complicated local geometry.

However, in many applications (e.g., computer vision, medical imaging,
physics), particularly nice examples of topological spaces tend to arise; these are
spaces which admit Euclidean coordinates, at least locally, and permit the definition
of a precise generalization of classical calculus. Such a topological space is called
a manifold. A wonderful introduction to smooth manifolds is given by Milnor’s
classic book [355]; for more on Riemannian manifolds see [96].

In order to define a manifold, we need to explain what we mean by coordinates.

Definition 1.11.1. Let X be a topological space. Given an open set U ⊆ X, we
say that a chart is a homeomorphism θ : U → V , where V is an open subset of Rn.
The inverse θ−1 equips U with a coordinate system. (See Figure 1.52 for examples
of charts.)

An atlas for X is a collection of charts such that the {Ui} cover X. The composites

θαθ
−1
β : θβ(Uα ∩ Uβ)→ θα(Uα ∩ Uβ)
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Figure 1.52 Left: Two overlapping charts on a circle. Right: Two overlapping
charts on a torus. Each chart gives a little coordinate system, and transition
functions connect these coordinates on the overlaps.

are referred to as transition functions. These explain how coordinates change as we
move between different charts.

Definition 1.11.2. An n-dimensional topological manifold X is a second-
countable, Hausdorff topological space equipped with an atlas where the charts
are all subsets of Rn.

(Here recall that second-countable means that the topological space has a count-
able base and Hausdorffmeans that any pair of points can be separated by enclosing
open sets.)

It is often the case that examples have additional smoothness which permits
the use of the methods of calculus. Since the transition functions involve maps
from subsets of Euclidean space to itself, we can ask about their continuity and
derivatives using the standard techniques of multivariable calculus.

Definition 1.11.3. An n-dimensional smooth manifold is a topological manifold
where the transition functions are continuous and infinitely differentiable.

Many of the most familiar examples of topological spaces are manifolds.

Example 1.11.4.

1. Any Euclidean space Rn is a manifold, covered by a single chart.
2. The space S 1 = {(x, y) ⊂ R2 | x2 + y2 = 1} is a manifold, covered by two charts, one

covering points with y > 1
2 − ε and one covering points with y < 1

2 + ε. (Here we can
choose any ε > 0.)

3. More generally, any sphere S n = {(x1, x2, . . . , xn+1) ∈ Rn+1 | ∑i x2
i = 1} is a manifold

covered by two charts.
4. The torus is a manifold; charts can be provided by considering a covering of the torus

by little overlapping squares, for instance.
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Figure 1.53 The tangent space at a point is all the directions in which a derivative
of a curve could point; equivalently, it is the plane perpendicular to the normal or
“outward” pointing direction.

Calculus on manifolds is expressed in terms of the notion of tangent spaces. At
each point x of a manifold M, the tangent space TxM is simply a vector space
in which the tangent vectors (i.e., derivatives) to curves through that point can lie.
The derivative of a function f : M → R at a point x ∈ M is a vector which lies
in TxM.

Example 1.11.5.

1. The tangent space TxR
n of Euclidean space Rn at any point x ∈ Rn is isomorphic to Rn.

2. The tangent space TxS 1 at a point x ∈ S 1 is isomorphic to R1; the tangent space can be
viewed as the tangent line to the circle.

3. The tangent space to TxS n to a sphere at a point x ∈ S n is a plane Rn.

(See Figure 1.53 for a representation of the tangent space of spheres.)

For particularly nice manifolds (including the examples we have discussed
above), the tangent spaces TxM admit inner products that vary smoothly as we
move around on M. Recall that an inner product (sometimes referred to as a dot
product) is a pairing of the following form.

Definition 1.11.6. An inner product on a vector space V over the field R is a
function

〈−,−〉 : V × V → R
such that

1. 〈x, x〉 ≥ 0,
2. 〈x, y〉 = 〈y, x〉, and
3. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.
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The significance of an inner product is that it allows us to define the length of a
vector as the norm ||x|| = √〈x, x〉 and the (cosine of the) angle between two vectors
as being proportional to their inner product. That is, manifolds with inner products
on the tangent spaces admit nice notions of area and angles; such manifolds are
referred to as Riemannian manifolds. Riemannian manifolds have a number of rich
geometric properties.

1. A path-connected Riemannian manifold has a metric; a path γ in M has a length
computed by integrating the norms of the tangent vectors along γ. The dis-
tance between two points p and q is computed by taking the infimum (recall
Definition 1.2.17) of the lengths of all paths joining them.

2. A Riemannian manifold has a notion of area or volume of regions on the mani-
fold, referred to as the volume form, coming from the determinant in the tangent
spaces.

3. A Riemannian manifold M has a notion of curvature, which can be described
in terms of the divergence of paths following the tangent vectors at a point. For
example, the standard sphere has curvature 1, Euclidean space has curvature
0, and hyperbolic space has curvature −1. (Here recall that hyperbolic space
is a description of the geometry that arises when Euclid’s parallel postulate is
modified to allow infinitely many distinct parallel lines between two points.)
We will say more about this below in Section 4.7.3.

Such manifolds allow a theory of integration and sampling, and although one
does not expect data to lie on such manifolds, these provide a vital source of
intuition and theoretical backing for the behavior of topological data analysis
algorithms; such examples play an important motivating role, as we will see in
Chapters 2 and 3.

Despite their rigidity, there are an enormous number of possible manifold
topologies as the dimension increases; easy estimates show the number of home-
omorphism classes of manifolds grows faster than exponentially as the dimension
increases [533]. We can classify manifolds in low dimensions, however.

Example 1.11.7.

1. In dimension 0, the only manifolds are disjoint unions of points.
2. In dimension 1, the manifolds are homeomorphic to disjoint unions of circles and copies

of R. For example, a compact manifold with a single path component must be a circle.
3. In dimension 2, the classification of surfaces is an early and important theorem in topol-

ogy; compact manifolds can be completely described as either a sphere or a manifold
classified by a pair of natural numbers, describing how the manifold is made by gluing
two kinds of basic pieces (toruses and projective planes) together. (For a nice treatment,
see [369, §12].)
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Another important class of examples comes from matrix groups, which are
examples of Lie groups.

Example 1.11.8. Roughly speaking, a Lie group is a group which is also a topological
space that is a manifold, so that the group operations are continuous. For example, the
circle S 1 can be given the structure of a Lie group where the group operation is specified
by adding angles. As another important example, the set GLn(R) of invertible matrices can
be given the structure of a manifold; such manifold symmetry groups are ubiquitous in
physical applications.

On the one hand, manifolds provide geometric intuition for many methods in
computational topology, and provide a large and familiar class of topological
spaces. On the other hand, in contrast to physics, in applications to biology and
genomics we do not usually expect the metric spaces we encounter to come from
Riemannian manifold structures. In many cases, we do not even expect them to
come from continuous topological spaces, in the sense that for many biologically
relevant metrics, there is a minimum bound such that any distance is larger than
this bound – for example, the Hamming distance between strings has this property.

One potential compromise between manifolds and arbitrary topological spaces
comes from the theory of stratified spaces. Although a precise definition is more
technical than we require, roughly speaking a stratified space is a topological space
that is the union of manifolds (of possibly different dimensions) that fit together
nicely. (See [534] for a wide-ranging treatment.)

Example 1.11.9.

1. Any graph embedded in Euclidean space is a stratified space comprising zero dimen-
sional manifolds (points) and one dimensional manifolds (open intervals). Notably,
trees are stratified spaces.

2. The disjoint union of manifolds
∐

iMi is a stratified space.

1.12 Morse Functions and Reeb Spaces

A natural question to ask about a manifold is whether we can endow it with a CW
structure which reflects the geometric structure of the manifold. A classical answer
to this question is provided by Morse theory. Morse theory starts by considering a
manifold M along with a “height function”

h : M → R.

Example 1.12.1. Consider the standard sphere

S 2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.
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We think of this as sitting on the tangent plane z = −1, and we can define the height at a
point (x, y, z) as simply z+1. (Of course, there are many other reasonable choices of height
functions.)

Given a height function, the approach of Morse theory is to study the information
about M encoded in the inverse images f −1(k) as k varies; specifically, we consider
the inverse images for k ∈ R, or more generally in the inverse images f −1(I), where
I ⊆ R is an open interval (a, b). The places where the inverse images change in
interesting ways turn out to be precisely the critical points of the function h. That
is, the idea of Morse theory is that a space can be characterized by the critical
points of suitable continuous functions from M → R.

Example 1.12.2. A standard example to consider is the torus “stood on its end,” where
the bottom has height 0. As a varies, the inverse images h−1([0, a]) start as a disk, then
become a cylinder, then the torus with a disk cut out, and then finally become the entire
torus. From the perspective of homotopy theory, the process described is precisely cell
attachment in a CW structure! Attaching occurs as h passes through a critical point. (See
Figure 1.54.)

We do not need the full generality of Morse theory to explain the techniques of
topological data analysis, so we do not give precise statements of the main theo-
rems; for a beautiful treatment, see [354]. However, constructions inspired by this
approach, the Reeb graph and Reeb space, have turned out to be incredibly use-
ful in topological data analysis and computational geometry. We now give a brief
overview of these constructions; see [459] for a more in-depth exposition.

Suppose that we are given a topological space X (e.g., a CW complex or the
geometric realization of a finite simplicial complex) along with a continuous map
h : X → Rn.

Definition 1.12.3. We define an equivalence relation on X by stipulating that
p � q if p, q ∈ f −1(k) for some k and moreover that p and q are in the same path
component. The Reeb space of X is the quotient of X by this equivalence relation.

height (h)

Figure 1.54 As the height increases, the inverse image includes more and more
of the torus.
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Figure 1.55 The Reeb graph of a torus.

When n = 1, Definition 1.12.3 yields a graph, referred to as the Reeb graph. The
vertices of the Reeb graph correspond to components of the level sets, with edges
connecting components that merge as k varies. See Figure 1.55 for the Reeb graph
of the torus; notice the similarities to the Morse theory description above.

It is sometimes helpful in theoretical work to have a more general version of the
Reeb space, referred to as the categorical Reeb space.

Definition 1.12.4. Given a topological space X equipped with a continuous func-
tion h : X → Rn, we specify the functor RX, f from the category of open sets of Rn

with morphisms inclusions U1 → U2 to the category of spaces as follows.
Let RX, f (I) be the space f −1(I), and let the induced map RX, f (I) → RX, f (J) be

the evident inclusion f −1(I)→ f −1(J).

Under good conditions, when n = 1 the Reeb graph of Definition 1.12.3 can be
recovered from the categorical Reeb space of Definition 1.12.4 by applying π0 to
pass to components [459].

1.13 Summary

● Metric spaces, topological spaces, groups, and vector spaces are sets endowed
with additional mathematical structure. These structures are the central objects
upon which topological data analysis is built.

● A topological space (X,U) is a set X endowed with a topology U . We may
describe the similarities of (X,U) to other topological spaces by considering
homeomorphisms and homotopy equivalences.

● We may construct topological spaces by gluing together simpler spaces such as
cells (n-disks Dn) along their boundaries. Spaces produced in this way are called
CW complexes. We may also create new topological spaces by considering the
product of two or more smaller spaces (such as the torus in Example 1.5.11) or
by collapsing subspaces of larger spaces, called a quotient (such as the cone in
Figure 1.29).
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● The fundamental group π1(X, x) of a topological space X is the set of homotopy
classes of loops in X based at a fixed point x ∈ X. We may generalize the idea
of the fundamental group to higher dimensions with the nth homotopy group
πn(X, x) (see Definition 1.4.10). As the name suggests, πn(X, x) is a mathematical
group under composition of rescaled maps (see Theorem 1.6.27). The homotopy
groups of a space capture information about the space encoded in maps out of
test spaces, namely spheres.

● Category theory provides a means of formalizing the notion of moving between
different mathematical worlds. For example, we may use the language of cat-
egory theory to restate the previous bulletpoint: πn(X, x) specifies a functor
between the categories of based topological spaces and algebraic groups.

● Simplicial complexes provide a discrete, combinatorial framework for studying
topological spaces. Many topological spaces arise as the geometric realizations
of finite simplicial complexes.

● The combinatorial nature of simplicial complexes allows us to develop the idea
of simplicial homology. For each k ≥ 0, we may consider the group Ck(X) of
linear combinations of oriented k-simplices. Cycles in Ck(X) may or may not
form the boundaries of elements in Ck+1(X). The kth homology group Hk(X;Z)
measures the size of the difference between Ck(X) and the set of boundaries of
elements in Ck+1(X). That is, the kth homology group encodes information about
the k-dimensional holes in X. The homology groups can be computed efficiently
using linear algebra.

● Manifolds are topological spaces that are especially nice in that they admit
Euclidean coordinates locally. Riemannian manifolds provide geometric struc-
ture: a metric, volume, and curvature.

● Given a function f : X → R, the Reeb space encodes information about
topological changes in the level sets defined via inverse images.

1.14 Suggestions for Further Reading

The material we have covered in this section is standard, and in each of the pre-
vious sections, we have made suggestions about accessible treatments for readers
who want more detail. For a reader who wants a geodesic path to the necessary
background for topological data analysis, there are two sources to focus on: the
first part of Munkres’ book on simplicial homology [368], and Riehl’s introductory
textbook on category theory [428]. These are mostly self-contained (e.g., Munkres
has a concise but detailed treatment of the required abstract algebra) and provide
very lucid explanations.
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I prefer to express myself metaphorically. Let me stress: metaphorically,
not symbolically. A symbol contains within itself a definite meaning,
certain intellectual formula, while metaphor is an image. An image
possessing the same distinguishing features as the world it represents.

Andrei Tarkovsky

A central dogma of topological data analysis is that data sets have shape and that
describing this shape can help explain the process generating the data. As we
have outlined in the preceding chapter, from this perspective clustering techniques
extract “zero dimensional” information about connected components of the data
set. One of the central goals of topological data analysis is to use the methods of
algebraic topology to extract higher dimensional information about the shape of
the data set. For example, if we suppose that the data is sampled from a mani-
fold, a candidate goal might be to recover the homology of that manifold. More
realistically, we might simply wish to recover qualitative descriptors of the data set
that are robust to perturbation and capture higher dimensional information, without
necessarily postulating that there is such a clean underlying geometric description.
That is, we would like to set up a pipeline

{data} →
{

simplicial
complexes

}
→

{
algebraic
invariants

}
.

To apply algebraic topology to discrete data, two major issues need to be tackled.
First, we need a way to transform a discrete set of points into a richer topological
space in order to have interesting topological invariants to compute. Second, the
feature scale of the data must be accounted for; namely, we need to determine the
relationship between the size of meaningful geometric features of the data and
the distances between the sampled points. This second question is particularly
interesting, since a priori the feature scale is often unknown. In this chapter, we
explain approaches to these problems, with a primary focus on persistent homology

122
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and related constructions. The basic idea is to collect information for all feature
scales at once. Persistent homology originated in the work of Frosini [187], and
was independently rediscovered by Robins [433] and Edelsbrunner, Letscher, and
Zomorodian [154]; in Section 2.11 at the end of the chapter we provide more
comprehensive references for the interested reader.

2.1 Simplicial Complexes Associated to Data

A basic and widely applicable model for the kind of data that arises in practice
is a finite metric space; this is simply a metric space (X, ∂X) with finitely many
points. A natural geometric example of a finite metric space is a collection of points
{x0, x1, . . . , xk} ⊂ Rn equipped with the induced Euclidean metric ∂Rn . A natural
biological example of a finite metric space is a collection of gene expression vectors
in R20000, with the distance between v1 and v2 computed by the Pearson correlation
(recall Example 1.2.6).

Recall from Example 1.3.7 that any metric space (X, ∂X) has a natural topology
where the basic open sets are the balls Bε(x) = {z ∈ X | ∂X(z, x) < ε} for all
ε > 0. As a consequence, a first thought might be to simply regard a finite metric
space (X, ∂X) as a topological space directly. Unfortunately, such a space is not very
interesting – the topology is trivial, in the sense that it is discrete.

● Every point is both open and closed.
● There are no continuous maps γ : [0, 1]→ X other than the constant maps. (See

Figure 2.1.)
● All homological invariants except π0 and H0 (which just count the number of

points in X) are trivial.

In order to leverage the tools of algebraic topology to study finite metric spaces,
we need a different idea for assigning a topological space to (X, ∂X). To figure out
what to do, it is useful to think about the toy model in which the sampled data X
was generated by drawing from some probability distribution on a nice geometric

Figure 2.1 The only continuous maps from [0, 1] to a discrete topological space
are constant at a point.
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object embedded in Rn (e.g., a compact smooth manifold). In this case, it is clear
that we need to somehow “fill in the gaps” between the samples. If we have a rough
sense of the average distance between points that are supposed to be connected,
there is an evident construction: just take the union of balls around the points.

Definition 2.1.1 (Union of balls). Let X ⊂ Rn be a finite subspace and fix ε ≥ 0.
The union of balls is the union ⋃

x∈X

Bε(x) ⊂ Rn.

However, from a practical perspective, the union of balls is not ideal; it is not
evidently algorithmically tractable, and it requires that (X, ∂X) arise as a subspace
of Rn. To fix the first problem, we would like to produce an abstract simplicial
complex that encodes the information of the union of balls. We can adapt this
construction to the discrete setting by regarding the ε-balls around a finite set X
as a cover. That is, the idea is to associate a k-simplex to a set of k points whose
ε-neighborhoods intersect.

Definition 2.1.2 (Čech complex). Let X ⊂ Rn be a finite subspace and fix ε > 0.
The Čech complex Cε(X, ∂X) is the abstract simplicial complex with

1. vertices the points of X, and
2. a k-simplex [v0, v1, . . . , vk] when a set of points {v0, v1, . . . , vk} ⊂ X satisfies⋂

i

Bε(vi) � ∅.

In fact, the Čech complex (Figure 2.2) is a special case of a standard construction
from algebraic topology that associates a simplicial complex to a cover of a space.
Recall from Definition 1.3.15 that an open cover {Ui} of a space X is a collection
of open sets such that ∪iUi = X. Given a cover {Ui} of X, we define the nerve of
the cover as follows.

Figure 2.2 The Čech complex is a combinatorial approximation to the union of
balls.
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Definition 2.1.3. The nerve N({Ui}) of a cover {Ui} of X is the simplicial complex
with

1. vertices corresponding to the sets {Ui}, and
2. a k-simplex [ j0, j1, . . . , jk] when the intersection

U j0 ∩ U j1 ∩ U j2 ∩ . . . ∩ U jk � ∅.

The interest of this construction is the following classical result about the rela-
tionship of the geometric realization (recall Definition 1.8.8 and Lemma 1.8.20) of
this nerve to X; see e.g., [307, §15.4.3] for further discussion and a proof.

Theorem 2.1.4. Let X be a topological space. Let {Ui} be an open cover of X
such that all non-empty finite intersections

U j1 ∩ U j2 ∩ . . . ∩ U jk

are contractible (homotopy equivalent to a point). Then the geometric realization
|N({Ui})| is homotopy equivalent to X.

As a corollary, we obtain the following result comparing the geometric realiza-
tion of the Čech complex to the geometric Čech nerve.

Proposition 2.1.5. Let X ⊂ Rn be a finite subspace and fix ε > 0. There exists a
homeomorphism ⋃

x∈X

Bε(x) � |Cε(X, ∂X)|

between the union of balls and the geometric realization of the Čech complex.

The Čech complex provides a procedure for assigning a simplicial complex to
a finite metric space embedded in Rn. However, in order to construct the Čech
complex we need to be able to decide whether the intersection of ε-balls is non-
empty. This is a non-trivial enterprise in high dimensions. Moreover, we do not
wish to assume that the data points are embedded in Euclidean space at all!

To see how to proceed, it is helpful to recall our discussion of path components
and single-linkage clustering for a metric space from Section 1.3. Here, for a finite
metric space (X, ∂X) and fixed ε > 0, we defined a graph G = (V, E) with

1. vertices the points of X, and
2. edges (xi, x j) for each pair of points xi and x j such that ∂X(xi, x j) ≤ ε.

Recalling that a graph is a one dimensional simplicial complex, we use a mild
elaboration of this construction to define a simplicial complex associated to an
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arbitrary finite metric space (X, ∂X). The Vietoris-Rips complex is the maximal
simplicial complex determined by the vertices and 1-simplices specified by the
graph G.

Definition 2.1.6 (Vietoris-Rips complex). Let (X, ∂X) be a finite metric space and
fix ε > 0. The Vietoris-Rips complex VRε(X, ∂X) is the abstract simplicial complex
with

1. vertices the points of X, and
2. a k-simplex [v0, v1, . . . , vk] when

∂X(vi, v j) ≤ 2ε for all 0 ≤ i, j ≤ k.

For a point cloud in Rn, the Vietoris-Rips complex and the Čech complex can be
different; for instance, notice that there is a difference between the Čech complex
in Figure 2.2 and the Vietoris-Rips complex in Figure 2.3, which are generated
by the same underlying metric space. The next example highlights the kind of
phenomenon that leads to such differences.

Example 2.1.7. Consider the finite metric space X = {(0, 0), (1, 0), ( 1
2 ,
√

3
2 )} ⊂ R2. These

points are the vertices of an equilateral triangle with side length 1. Choose an ε in the open

interval ( 1
2 ,
√

3
3 ), i.e., 1

2 < ε <
√

3
3 . (For concreteness,

√
3

3 ≈ 0.577.)

1. The Vietoris-Rips complex VRε(X, ∂X) has three vertices (one for each point of X),
three 1-simplices (connecting the points), and therefore has a single 2-simplex filling in
the triangle.

2. In contrast, the Čech complex Cε(X, ∂X) has three vertices (one for each point of X) and
three 1-simplices (connecting the points), but does not have the 2-simplex spanned by
all the points since there is no point in the intersection of the balls of radius ε.

(See Figure 2.4 for a corresponding picture.)

The use of the Čech complex is justified by the Nerve Lemma (Theorem 2.1.4);
there is no analogous result for the Vietoris-Rips complex. However, despite the

Figure 2.3 The Vietoris-Rips complex is completely determined by its 1-skeleton.
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Figure 2.4 The Vietoris-Rips complex (on the left) is completely determined
by its 1-skeleton, whereas the Čech complex (on the right) can potentially omit
higher simplices.

fact that they are sometimes different, there is a close relationship between the
Vietoris-Rips and Čech complexes.

Lemma 2.1.8. Let X ⊂ Rn be a finite subspace and fix ε > 0. There are natural
simplicial inclusions

Cε(X, ∂X) ⊆ VRε(X, ∂X) ⊆ C2ε(X, ∂X).

An essential property of the constructions of the Čech complex and the Vietoris-
Rips complex is that they are functorial. To be precise, these constructions are
functorial in both X and ε. (In the following discussion, we focus on the Vietoris-
Rips complex; the properties of the Čech complex are analogous.) For ε < ε′ and
any metric space (X, ∂X), there is an induced simplicial map

VRε(X, ∂X)→ VRε′(X, ∂X),

since increasing the scale parameter adds more simplices.
Next, recall that a map f : X → Y between metric spaces (X, ∂X) and (Y, ∂Y) is

Lipschitz continuous with constant k if ∂Y( f (x1), f (x2)) ≤ k∂X(x1, x2). Given a Lip-
schitz map f : X → Y with Lipschitz constant k, there is an induced simplicial map

f : VRε(X, ∂X)→ VRkε(Y, ∂Y)

for any ε. Summarizing, we have the following theorem.

Theorem 2.1.9. The construction VRε(−) specifies a functor from the category of
finite metric spaces and Lipschitz maps with constant 1 to Simp. The construction
VR(−)(X, ∂X) specifies a functor from R to Simp.

This means that when we vary the scale ε, there is a map between the associ-
ated complexes for a given data set (X, ∂X). And if we change a data set (X, ∂X)
to produce a new data set (Y, ∂Y) related via a Lipschitz map, there is a map con-
necting the associated complexes. For example, if we add some data points, so that
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Y = X ∪ A and the metric on Y restricts to ∂X on X ⊂ Y , then there is a map
VRε(X, ∂X)→ VRε(Y, ∂Y).

We now turn to the question of when these constructions can recover information
about the underlying geometric structure of the process that generated the data.

Question 2.1.10. Let (X, ∂X) be a finite metric space consisting of samples from
a topological space A. When is |VRε(X, ∂X)| or |Cε(X, ∂X)| homotopy equivalent
to A?

2.2 The Niyogi-Smale-Weinberger Theorem

In order to make sense of this question, we need to develop a precise model for
sampling from a topological space A. We will introduce a definition of geometric
sampling and study Question 2.1.10 in Chapter 3. However, to illustrate some of the
geometric principles that motivate TDA, in this section we will explain an answer
to the question in a very restricted context. Specifically, we describe a minimal
sanity check: we explain the Niyogi-Smale-Weinberger result that given a finite
metric space (X, ∂X) consisting of sufficiently many points sampled “uniformly”
from a compact Riemannian manifold M ⊂ Rn, with high probability there is
an isomorphism

H∗

⎛⎜⎜⎜⎜⎜⎝⋃
x∈M

Bε(x)

⎞⎟⎟⎟⎟⎟⎠ � H∗(M)

for some suitable choice of ε.
Going forward, we assume that we are given a compact manifold M ⊂ Rn that

has a Riemannian structure. Recall from Section 1.11 that roughly speaking, this
means that at each point of the manifold we can equip the tangent space with an
inner product, and these inner products vary smoothly as we move on the manifold.
As a consequence, M has a metric and there is a natural notion of volume of sub-
spaces of M. In particular, there is a natural notion of what it means to sample from
such a manifold, as the manifold is equipped with a probability measure called the
volume measure.

We want to estimate how many sampled points are necessary to estimate the
homology with high probability. When sampling from the volume measure on a
Riemannian manifold, it is straightforward to figure out how many points to sample
so that with probability > κ (for any fixed κ) we get an ε-net. Therefore, we can
reduce the problem to trying to understand when a finite ε-net X ⊂ M has the
property that for some ε′,

H∗(|Cε′(X, ∂X)|) � H∗(M).
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When such an isomorphism occurs depends on the size of the smallest geometric
features of the manifold. That is, we need to figure out how close together points
need to be in order for little balls around them to capture the structure of the man-
ifold. For a manifold M embedded in Rn, there are two distinct but interacting
factors that control how small ε has to be in order for the geometric nerve to have
the correct topology. We need to worry about the intrinsic curvature of the manifold,
and how “twisted” the embedding into Rn is. See Figure 2.5 for some examples of
possible embeddings of familiar geometric objects into Euclidean space.

Consider the case of S 1 embedded in R2. In order for the Čech nerve of an ε-net
to have the right homotopy type, we must be able to choose an ε′ such that

1. ε′ is large enough to cause points of the net around the circle to be connected
by 1-simplices, but

2. ε′ is small enough so that points across the circle are not connected by “cross-
cutting” 1-simplices.

The relationship between the scale ε and ranges of suitable values for ε′ is con-
trolled in part by the underlying topology of the circle – sufficiently large values
for ε′ will always result in 1-simplices that connect points across the circle. On the
other hand, for very twisty embeddings, we will need to choose an ε′ that is smaller
than the size of the twists.

We think of these considerations as packaged into a quantity we refer to as the
feature scale of the manifold. A very nice way to encode the feature scale of the
manifold is to use an invariant called the condition number. (This is sometimes
also referred to as the reach or feature size.) Any manifold embedded in Rn can

Figure 2.5 The difficulty in reconstructing a geometric object can come from both
the intrinsic curvature and the twistiness of the embedding in Rn.

Figure 2.6 A tubular neighborhood is formed by expanding a manifold along the
normal directions (perpendicular to its surface).
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Self-intersection

Figure 2.7 As the tubular neighborhood of a curve expands, eventually it self-
intersects at the narrowest “pinch.”

be thickened out to a tubular neighborhood of radius r; this is what one gets by
extending out along the normal at any point. (See Figure 2.6 for some examples.)

The condition number is the minimum radius at which a tubular neighborhood
of a manifold self-intersects; clearly, this can happen either because the manifold
itself has small features (e.g., small holes) or because the embedding twists the
manifold around on itself. (See Figure 2.7 for an example.)

The following theorem, due to Niyogi, Smale, and Weinberger [384], now
provides a concrete result guaranteeing correct estimation of the homology.

Theorem 2.2.1. Let M be a compact submanifold of Rn with condition number
τ and let {x1, . . . , xk} be a set of points drawn from M according to the volume
measure. Fix 0 < ε < τ

2 . Then if

k > β1

(
log(β2) + log

(
1
δ

))
,

there is a homotopy equivalence ⋃
z∈{x1,...,xk}

Bε(z) � M

between the union of balls and M (and in particular the homology groups coincide)
with probability > 1 − δ.

Here

β1 =
vol(M)

cosn(θ1)vol(Bn
ε
4
)

and

β2 =
vol(M)

cosn(θ2)vol(Bn
ε
8
)
,

where θ1 = arcsin
(
ε

8τ

)
, θ2 = arcsin

(
ε

16τ

)
, and vol(Bn

r ) denotes the volume of the
n-dimensional ball of radius r.
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Remark 2.2.2. Using different techniques, one can also prove an analogous result
directly for the Vietoris-Rips complex [3, 315].

To get a sense for what this means, it is helpful to do an explicit example.

Example 2.2.3. The condition number of a sphere is simply its radius. So for example,
for the unit circle S 1 ⊂ R2, the condition number τ is 1. Choosing δ = 0.01 and ε = 1

4 , we
compute that

cos2
(
arcsin

(
1
32

))
≈ 1 and cos2

(
arcsin

(
1
64

))
≈ 1

and so

β1 =
2π

π( 1
16 )2

= 512

and

β2 =
2π

π( 1
32 )2

= 2048,

which means that we need at least

512(7.6 + 4.6) ≈ 6260

samples.

Example 2.2.4. The condition number of a torus is the minimum of r1 and r2−r1
2 , where

r1 and r2 are the radii of the inner and outer bounding circles. We can repeat a similar
computation as above, using the fact that the volume (surface area) of the torus is (r2

2−r2
1)π2;

once again, we end up with a number of points in the thousands for reasonable values of δ
and ε.

These examples frame the application of Theorem 2.2.1 in high relief. On the one
hand, this result is of critical theoretical importance, and it provides a vital consis-
tency check for combinatorial approaches to estimating the homology of manifolds
from finite data. On the other hand, the explicit bounds are useless – in practice it
is difficult or impossible to estimate the condition number (although see [1]) and
moreover a result of 3000 points to estimate the homology of a standard circle in
R2 is clearly much too large. (To be sure, a direct argument can be used to obtain
a much tighter bound.) In applications, we will be much more concerned about the
stability of the result in the face of sampling variation and noise.

Remark 2.2.5. Theorem 2.2.1 is a statement about approximating the homotopy
type of a manifold via finite sampling. One might wonder how many samples are
required to estimate the homeomorphism type of M. Unfortunately, even in this
very restricted setting, the problem turns out to be hopeless. Assume that M is
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embedded in Rn and the condition number is a fixed constant. Then when the
dimension of M is larger than 2, the number of samples required to identify the
homeomorphism type is exponential in diam(M)n; see [533, §2.2] for a discussion.
These concerns are relevant when studying single cell data; see Chapter 7.

2.3 Persistent Homology

The Niyogi-Smale-Weinberger theorem (Theorem 2.2.1) shows that in principle it
is possible to accurately recover topological invariants of geometric objects from
discrete samples. We interpret the theorem to suggest that it is reasonable to hope
that in very general settings, when the distance between the samples is smaller
than some feature scale, we can recover topological invariants of the underlying
geometric object.

However, there is a key problem: the feature scale of the underlying object is
usually unknowable a priori. That is, given (X, ∂X) from M, how can we choose
ε so that the topological invariants of |VRε(X, ∂X)| recover information about the
topological invariants of M? Moreover, choosing a single ε is problematic – for
one thing, there might be distinct feature scales at which we can recover meaningful
information, for instance if the data has regions of varying size. Another issue is
that the topological invariants of |VRε(X, ∂X)| are very unstable; small amounts of
noise or sampling variation can cause large changes in the Vietoris-Rips complex
and its homology. That is, at any given scale some features might not be stable with
respect to noise or change of scale.

The guiding viewpoint that underlies topological data analysis is that we should
simultaneously look at multiple feature scales; stable homological features that
exist for a range of values of ε are likely to reflect the underlying signal, and this
approach allows us to capture multiscale information. A naive approach to imple-
menting this idea would simply be to vary ε and compute a collection of associated
invariants.

1. Choose a topological invariant, e.g., the homology group H2(−;Fp).
2. Select a range [εmin, εmax], εmin < εmax. This interval reflects the smallest and

largest feature scales that we will consider; a maximal choice would be to set
εmin = 0 and εmax = diam(X).

3. Choose values {ε1, ε2, . . . , εm} ⊂ [εmin, εmax]. An easy way to do this is simply
to consider the equally spaced values

εi = εmin + i
(
εmax − εmin

m

)
,

but it might make sense to bunch the values around regions of interest, if we
have domain knowledge about interesting feature scales.
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4. Compute the collection of vector spaces

{H2(|VRε1(X, ∂X)|),H2(|VRε2(X, ∂X)|), . . . ,H2(|VRεm(X, ∂X)|)}.
5. Compare these abelian groups; for example, make a graph of the ranks of the

free parts. If these are all non-zero and all the same, it suggests that there are
stable topological features of M at the feature scales in the interval [εmin, εmax].
If there is a subinterval [a, b] ⊂ [εmin, εmax] on which the ranks are the same,
we might conclude that there are stable topological features at those ranges of
scales. (Of course, there is no guarantee that we are not seeing different features
at the different scales; this procedure does not really help us match topological
features across scales.)

For an example of how this might work, consider the situation depicted in
Figure 2.8. When ε is smaller than the distance between points, the Vietoris-Rips

A

B C

D E

F G

Figure 2.8 As ε increases, more and more simplices appear in the Vietoris-Rips
complex.
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complex only has 0-simplices. As ε increases, we first see 1-simplices appear that
eventually connect the right hand circle. Then the left hand circle also appears.
Finally, the circles are “filled in” by simplices crossing the circles when ε is large
enough.

A first question is how to systematically choose the values {εi}. Ideally, we will
track places where VRε(X, ∂X) changes. Since X is finite, there are only finitely
many values {εi} at which the simplicial complex VRε(X, ∂X) changes. We can see
this because for ε > diam(X) the Vietoris-Rips complex has all 2|X| simplices and
as ε increases simplices are added but never removed.

Lemma 2.3.1. Let (X, ∂X) be a finite metric space. Then there exist at most finitely
many values {εi} where VRεi(X, ∂X) changes, i.e., such that for all sufficiently
small δ, ⎧⎪⎪⎨⎪⎪⎩VRε(X, ∂X) = Z ε ∈ [εi − δ, εi)

VRε(X, ∂X) = Z′ ε ∈ [εi, εi + δ]

and Z � Z′.

Therefore, we should choose {εi} to lie at these “inflection points” (and there is
an upper bound on how many values we need to consider).

However, the most critical step is the last one; we need to find a systematic
way to compare the various {H2(VRεi(X, ∂X))}. The key insight of persistence is
that since VR(−)(X, ∂X) is functorial in ε, for ε < ε′ we have a map of simplicial
complexes

VRε(X, ∂X)→ VRε′(X, ∂X),

and for a collection ε1 < ε2 < . . . < εm we obtain a sequence of simplicial maps

VRε1 (X, ∂X)→ VRε2 (X, ∂X)→ . . .→ VRεm(X, ∂X).

Since Hk is also a functor, applying Hk we obtain induced maps of abelian groups
or vector spaces

Hk(VRε(X, ∂X))→ Hk(VRε′(X, ∂X))

and

Hk(VRε1 (X, ∂X))→ Hk(VRε2 (X, ∂X))→ . . .→ Hk(VRεm(X, ∂X)).

More concisely, we can package this data as follows.

Definition 2.3.2. Given a fixed finite metric space (X, ∂X), the Vietoris-Rips
complex induces a functor

VR(−)(X, ∂X) : R→ Simp
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from R (regarded as the category associated to a partially ordered set) to the cate-
gory of simplicial complexes. Composition with the kth homology group functor
gives rise to a functor

Hk(VR(−)(X, ∂X)) : R→ Ab.

It is useful to organize the resulting functors themselves into categories.

Definition 2.3.3. Let C be a category. The category of filtered systems of C is the
category of functors F : R→ C with morphisms given by natural transformations.

Clearly, any filtered system of simplicial complexes produces a filtered system of
abelian groups or vector spaces. There are a variety of sources of filtered complexes
that are relevant in topological data analysis, but for expositional clarity, we will
focus on the Vietoris-Rips complex for the remainder of this discussion.

Example 2.3.4.

1. The Vietoris-Rips complex and Čech complex produce natural examples of filtered sys-
tems of simplicial complexes from the data of a finite metric space where we allow the
scale ε to vary.

2. Motivated by the perspective of Morse theory, we assume the underlying data is a sim-
plicial complex X along with a function h : X → R. There is now an induced filtered
system of simplicial complexes induced by the inverse images {h−1((−∞,−])}. That is,
for b > a, it is clear that h−1((−∞, a]) is a subcomplex of h−1((−∞, b]).

Remark 2.3.5. Note that the “Morse theoretic” perspective can be regarded as
a generalization of the finite metric space approach, as follows. Given a compact
subset K ⊆ Rn, define the distance function

∂K(z) = inf
k∈K

∂Rn(k, z).

Then for a finite set of points X = {x1, . . . , xn} ⊆ Rn, the filtered system of Čech
complexes associated to the level sets of ∂X is isomorphic to the filtered simplicial
complex {C∗(X, ∂X)}.

The functor Hk(VR(−)(X, ∂X)) provides a means of addressing our problem about
comparisons between the homology of the complexes as ε varies:

1. an element γ ∈ Hk(VRεi(X, ∂X)) is a k-dimensional feature at scale εi, and
2. we can determine the significance and stability of γ by finding the maximum

j > i such that the image of γ under the group homomorphism

θi j : Hk(VRεi(X, ∂X))→ Hk(VRε j(X, ∂X))

is non-zero.
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Roughly speaking, an element γ ∈ Hk(VRεi(X, ∂X)) represents a k-dimensional
hole in the geometric realization of the Vietoris-Rips complex at εi. If γ does not
exist for ε′ < εi, we think of this feature as being “born” at εi. When θi j(γ) = 0, it
means that the hole has been filled in by a collection of simplices with boundary
γ. This suggests that it makes sense to try to figure out the “lifespan” of a partic-
ular element in homology, i.e., when it first appears and when it vanishes. More
precisely, for a filtered simplicial complex X•, an element γ ∈ Hk(Xi; F) is

1. born at i if it is not in the image of Hk(Xi−q; F)→ Hk(Xi; F) for any q > 0, and
2. dies at � > i if it becomes zero in Hk(X�; F) or its image in Hk(X�; F) coincides

with the image of another class that was born earlier.

Thus, we can think of the information contained in the filtered system of vector
spaces as a series of elements with intervals representing their lifetime. Precisely,
the persistent homology of a finite metric space can be described via a “barcode,”
a collection of intervals. Each interval represents the lifespan of a homological
feature. (See Figure 2.9 for a simple representative example.)

Definition 2.3.6. A barcode is a multiset of non-empty intervals of the form either
[x, y) ⊂ R or [x,∞). (A multiset is a generalization of a set where repeated elements
are allowed, e.g., {1,1,2}.)

To be precise about the connection between persistent homology and barcodes,
we require some finiteness hypotheses that always hold in practice, since we only
have finitely many data points. We fix a field F for the remainder of this section.

Definition 2.3.7. A filtered simplicial complex is tame if the homology groups
Hi(−; F) are always of finite rank and change at only a finite number of indices.

By Lemma 2.3.1, the filtered complexes produced by applying the Vietoris-Rips
complex construction to a finite metric space are always tame.

A B

α β

Figure 2.9 In (A), we have an idealized Vietoris-Rips filtration: when ε = α, the
circle appears, and when ε = β, the circle is filled in. In (B), the barcode has a
single bar (representing a Z in homology) that appears at α and vanishes at β; this
is the homology of the circle, for as long as it lasts.
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Lemma 2.3.8. Let X : R → Simp be a tame filtered simplicial complex. The
filtered vector space produced as Hi(X(−);F) has the property that

1. each vector space Hi(X(ε); F) is of finite rank and
2. there exists N such that Hi(X(ε1); F) → Hi(X(ε2); F) is an isomorphism for
ε2 > ε1 > N.

We say such a filtered vector space is of finite type.

Remark 2.3.9. A filtered vector space of finite type can be regarded as indexed
on Z, where the integral indices correspond to values in R where the homol-
ogy changes.

The key classification result of Zomorodian and Carlsson [551] is then the fol-
lowing.

Theorem 2.3.10. Let F be a field. There is a bijection between the set of finite
barcodes and the set of isomorphism classes of filtered F-vector spaces of finite
type.

The basic idea of this classification is quite simple; we define interval modules,
which are filtered systems Iab of F-vector spaces {Vi} where for i ∈ [a, b], Vi = F,
and all the maps F → F are the identity (and the others are necessarily zero).
Then any filtered system of F-vector spaces is a direct sum of interval modules; the
interval modules correspond to the bars in the barcode representing the lifetime of
particular elements in homology.

Theorem 2.3.10 tells us that all of the information in the filtered system of vector
spaces can be encoded as barcodes. It is often useful to think of a barcode as a
collection of points in R2, specified by the endpoints of the intervals. Such a set
is referred to as a persistence diagram, and often it is regarded as containing the
entire diagonal (consisting of size zero bars).

In conclusion, we have the “persistent homology pipeline”⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
finite
metric
spaces

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

filtered
simplicial
complexes

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→
{

barcodes / persistence
diagrams

}
.

We now turn to some examples of the use of barcodes to describe shape. When
k = 0, the persistent homology is describing a standard hierarchical clustering
construction.

Example 2.3.11. Recall from Theorem 1.10.10 that for a simplicial complex X, H0(X)
is computing the free abelian group on the components. In the case of VRε(X, ∂X) for a
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finite metric space (X, ∂X), H0(VRε(X, ∂X)) computes the single-linkage clustering at scale
ε of (X, ∂X).

When considering the persistent homology, observe that each cluster at time p+ i can be
thought of as resulting from the merger of clusters at i. This is clearly closely related to the
information encoded in the hierarchical clustering dendrogram associated to single-linkage
clustering. (See Figure 2.10 for comparison of the barcode and dendrogram for a synthetic
data set.)

In Figure 2.11, we see an idealized situation involving sampling from an object
in R2. In practice, however, the barcodes are often not so easy to interpret. Even
for geometrically simple situations, complications can arise. In Figure 2.12, we
illustrate how the barcode can change due to perturbation of the data by considering
a sequence of nested circles.

In Figure 2.13, persistent homology of genomic sequence data generated by coa-
lescent simulation is shown. As explained in Section 5.7, this is a way of modeling
evolutionary phenomena. Typically, one fits phylogenetic trees to the finite metric
space of sequences; here, we compute the persistent homology instead. Comput-
ing the first persistent homology group detects when “non-tree-like” events are
occurring, i.e., when there is genetic recombination. Another example of this kind
of application of persistent homology in studying recombination rates in the evo-
lution of bacteria is discussed in Section 5.6.3; see Figure 2.14. In both of these
applications, increased recombination can be detected by a large number of bars in
the PH1 barcode.

0
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Figure 2.10 For the data set on the left, both the dendrogram and the zeroth
persistent homology barcode capture how clusters merge as ε increases.
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A B C

D E F

Simplicial
complexes

Persistent 
homology
“barcode”

A B C D E F

Filtration scale

Dim. 0

Dim. 1

G Small loop in B
Large loop in D, E b1= 2

Figure 2.11 The points in panel A form a circle, with a horizontal gap separat-
ing upper and lower points. Panels A-F show the Vietoris-Rips filtration on these
points as ε increases. Panel G shows the barcode. PH0 (dimension 0) shows clus-
tering of the data at different scales; each horizontal bar in the barcode is a cluster.
In panel A (filtration scale 0), no points are connected; each is its own cluster
(represented as 17 horizontal bars). As the scale increases, points in the simpli-
cial complex connect, represented in the barcode as termination of a bar. There
are two distinct clusters through panels B and C and one cluster in panels D, E,
and F. PH1 (dimension 1) shows loops in the data at different scales. Each bar
in this part of the barcode identifies a different loop. There are two loops in this
data: a short-lived loop in the top-right of the simplicial complex at scale B, and
a long-lived loop appearing in panel D and persisting through panel E – this loop
is represented as the long bar in the dimension 1 barcode. Robust features of the
data set are captured in the barcode: the data clusters into two groups (two dimen-
sion 0 bars through scale C), and forms a loop (one long dimension 1 bar). The
persistent first Betti number (b1) is the total number of dimension 1 bars; here it
is equal to 2.

In Section 8.3, we discuss an application of persistent homology to study the
physical structure of DNA. Modeling DNA as a sequence of repeated units that
have prescribed interaction points, persistent homology can be used to extract
information about loops in the strands from a similarity matrix encoding the contact
of sites with other sites. (See Figure 2.15.)
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Figure 2.12 With two disjoint circles, we expect to see a barcode with two long bars, one significantly longer than the other to reflect the
difference in radius. But when the circles are nested, the bars are nearly the same length as the inner circle interferes with the outer circle.
Moreover, little loops connecting the two circles generate a lot of short bars. When the circles intersect non-trivially, we see an extra bar
representing the loop formed by the intersection. And finally when the circles are disjoint and separated, we see the expected two bars, one
longer and one shorter, corresponding to each circle.
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Figure 2.13 Two representations of the persistent homology of data from an
evolutionary simulation; see Section 5.7 for discussion. On the left, a barcode
diagram. On the right, a persistence diagram. Rather than identifying specific
bars with geometric features, in this case the count of the bars conveys important
information about the underlying process.

(a) Klebsiella pneumoniae (b) Salmonella enterica

Figure 2.14 Barcode diagrams reflect different scales of genomic exchange in K.
pneumoniae and S. enterica. Source: [161].

There are algorithms to compute the barcodes with running time cubic in the
number of simplices. See Section 2.7 and Appendix A for discussion of the
computational aspects of computing persistent homology.

2.4 Stability of Persistent Homology under Perturbation

In order to use topological invariants to describe data, it is essential that small
perturbations of the data give rise to small changes in the resulting invariants.
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H0

H1

A B

Figure 2.15 DNA can be simulated as a long polymer consisting of a large
number of monomeric units interacting at specific places. Here, we show the
data of a 50 Mb polymer with 10 fixed loops at random positions in the
genome consisting of 1000 monomeric units. (A) The average of 5000 simu-
lations allows us to construct a contact map. (B) Using persistent homology
in a similarity matrix derived from the contact map one can clearly iden-
tify the ten loops as ten long bars in dimension one persistent classes.
Source: [163].

One of the very useful aspects of persistent homology is that the set of bar-
codes forms a metric space; the distance between barcodes allows us to be precise
about measuring changes in the output of topological data analysis. For the input,
it turns out to be very useful to adopt a metric on the space of finite metric
spaces, the Gromov-Hausdorff distance. These metric space structures make it pos-
sible to prove stability theorems that relate perturbation of the input data in the
Gromov-Hausdorff metric to perturbation of the output barcodes in the barcode
metric [105, 117].

These stability results are the most important theorems in the subject. In order
to understand what they really say, we need to explain

1. what it means for two finite metric spaces to be close in the Gromov-Hausdorff
metric, and

2. what it means for two barcodes to be close in the barcode metric.

Definition 2.4.1. Let A and B be non-empty subsets of a metric space (X, ∂X).
Then we define the Hausdorff distance between A and B to be

dH(A, B) = max

(
sup
a∈A

inf
b∈B

∂X(a, b), sup
b∈B

inf
a∈A

∂X(a, b)

)
.

It is sometimes convenient to consider the equivalent formulation of the
Hausdorff distance as
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Figure 2.16 The Hausdorff distance is determined by the point in A with the
largest distance to the closest point in B (and vice versa).

B c AεA c BεB c AεA c Bε

Figure 2.17 The Hausdorff distance can be computed by considering the smallest
ε fattening of each set that contains the other.

dH(A, B) = inf
ε>0
{B ⊆ Aε , A ⊆ Bε},

where Aε and Bε denotes the sets of all points within distance ε of A and B,
respectively (see Figures 2.16, 2.17).

Example 2.4.2.

1. Let A ⊂ X and suppose that B is generated from A by perturbing each point a ∈ A by at
most ε; i.e., the points of B are in bijection with those of A and (denoting the bijection by
θ) we have ∂X(a, θ(a)) ≤ ε. For instance, consider A = {[0, 0, 0], [1, 2, 3], [−1, 0, 5]} ⊂
R3 and B = {[ε, 0, 0], [1, 2 + ε, 3], [−1, 0, 5 − ε]}. Then dH(A, B) ≤ ε.

2. The Hausdorff distance is heavily influenced by the single most extreme point; given
A ⊂ X, let A′ = A ∪ {x}. Then dH(A, A′) = mina∈A ∂X(x, a).

Lemma 2.4.3. The Hausdorff distance imposes a metric on the set of non-empty
subsets of a metric space (X, ∂X).

However, we cannot in general assume that the metric spaces we consider are
given as subsets of a common ambient metric space. A key insight of Gromov is to
circumvent this issue by considering the infimum of the Hausdorff distance over all
isometric embeddings of the two metric spaces into a larger ambient metric space.
Here an isometric embedding
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φ : (X, ∂X)→ (Y, ∂Y)

is an injective map X → Y such that

∂X(x1, x2) = ∂Y(φ(x1), φ(x2)).

That is, an isometric embedding identifies X with a submetric space of Y .

Definition 2.4.4. Let (X1, ∂X1) and (X2, ∂X2 ) be compact metric spaces. The
Gromov-Hausdorff distance between X1 and X2 is defined to be

dGH((X1, ∂X1), (X2, ∂X2)) = inf
θ1 : X1→Z
θ2 : X2→Z

dH(X1, X2).

Here θ1 and θ2 are isometric embeddings of (X1, ∂X1 ) and (X2, ∂X2) in (Z, ∂Z) respec-
tively (see Figure 2.18 for an example); the infimum is taken over all such (Z, ∂Z)
and embeddings θ1 and θ2.

We will say that two metric spaces are isometric if there exists an isomorphism
f : X → Y that preserves all distances. This clearly defines an equivalence relation
on the set of metric spaces.

Theorem 2.4.5. The Gromov-Hausdorff distance is a metric on the set of isometry
classes of compact metric spaces.

Figure 2.18 The Gromov-Hausdorff distance is computed by minimizing over
all embeddings; here, the embedding on the right has a much smaller Hausdorff
distance between the two image sets than the embedding on the left.
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As defined above, it is hard to see how one might ever compute the Gromov-
Hausdorff distance in practice. For this purpose, an alternative formulation is
useful; it is also conceptually helpful in understanding what dGH is measuring. Let
R be a correspondence between X1 and X2, i.e., a subset of X1 × X2 such that
there exists a tuple with first coordinate x for each x ∈ X1 and a tuple with second
coordinate y for each y ∈ X2.

The Gromov-Hausdorff distance can now be described by the formula

dGH((X1, ∂X1 ), (X2, ∂X2 )) = inf
R⊆X1×X2

1
2

⎛⎜⎜⎜⎜⎝ sup
(x,x′)∈R,(y,y′)∈R

|∂X1(x, y) − ∂X2(x′, y′)|
⎞⎟⎟⎟⎟⎠ .

Roughly speaking, the Gromov-Hausdorff distance measures the maximum distor-
tion in the best matching between the two metric spaces.

Example 2.4.6.

1. Suppose that X′ is an ε-net in X (recall that this means that for each x ∈ X, there exists
a point x′ ∈ X′ such that ∂X(x, x′) < ε). Then dGH((X′, ∂X), (X, ∂X)) < ε.

2. Let (X, ∂X) be a metric space and suppose that (X′, ∂X′ ) is formed by adding a sin-
gle point {z} to X such that ∂X′(z, x) = κ > diam(X) for any x ∈ X. (That is, we
are adding a single point to X which is “far away” from the rest of the points.) Then
dGH((X, ∂X), (X′, ∂X′)) > κ

2 .
3. Suppose that (X, ∂X) and (Y, ∂Y ) are isometric metric spaces. Then dGH((X, ∂X),

(Y, ∂Y )) = 0.

There is an interesting body of work on the topology induced on the set of
isometry classes of compact metric spaces by dGH . For our purposes, one thing
to observe is that any compact metric space can be approximated as the Gromov-
Hausdorff limit of finite metric spaces. (See Figure 2.19 for an example of this kind
of convergence.)

Lemma 2.4.7. Given a compact metric space (X, ∂X), let {Xn} denote a sequence
of finite 1

n -nets in X. Then

lim
n→∞ dGH((X, ∂X), (Xn, ∂X)) = 0.

The Gromov-Hausdorff distance is a suitable means for capturing perturbations
of data sets that involve bounded changes in each point, and therefore for measur-
ing the impact of certain kinds of noise. On the other hand, Example 2.4.6 makes
it clear that arbitrary changes in a constant number of points can cause arbitrary
changes in the Gromov-Hausdorff distance. We will return to a discussion of this
phenomenon in Chapter 3; see Section 3.4 in particular.
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1 2 3

4 5

Figure 2.19 Samples of points that lie on a circle converge to the circle in the
Gromov-Hausdorff distance as the sampling density increases.

We now turn to the description of various metrics on the set of barcodes. We
begin with the bottleneck distance. Given two intervals [a1, b1) and [a2, b2), define

d∞([a1, b1), [a2, b2)) = max(|a1 − a2|, |b1 − b2|).
We extend d∞ to include ∅ by defining

d∞([a, b), ∅) = |b − a|
2

.

Now given two barcodes B1 and B2, we define a matching between B1 and B2

as follows. Without loss of generality, assume that |B1| < |B2|. Then a matching is
specified by a bijection φ : A1 → A2, where A1 is a multi-subset of B1 and A2 is a
multi-subset of B2. We formally add ∅ to B1 and B2, and we regard the elements of
B1 \ A1 and B2 \ A2 as matched with ∅.

Definition 2.4.8. Let B1 and B2 be barcodes. The bottleneck distance is defined
to be

dB(B1, B2) = inf
φ

sup
Z∈B1

d∞(Z, φ(Z)),

where φ varies over all matchings between B1 and B2 and the supremum is taken
over bars in B1.

Roughly speaking, the bottleneck distance measures the worst discrepancy in
the best matching between the two barcodes. Note that two barcodes which are a
distance ε apart in the bottleneck distance could differ in an essentially arbitrary
number of short bars of length less than ε

2 . Put another way, two barcodes are close
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Figure 2.20 The bottleneck distance on barcodes is computed by matching long
bars. Figure from experiment performed by Elena Kandror, Abbas Rizvi, and Tom
Maniatis at Columbia University, with permission.

Figure 2.21 The bottleneck distance when expressed in terms of persistence dia-
grams is computed by matching nearby points and assigning points close to the
diagonal to the nearest diagonal point.

in the bottleneck distance if after ignoring “short” bars, the endpoints of matching
“long” bars are close (see Figures 2.20 and 2.21 for examples.)

There are other sensible metrics on the space of barcodes, most notably including
mass transportation (Wasserstein) metrics. Since it will be convenient for later use,
we will also introduce the Wasserstein metric here.

Definition 2.4.9. Let B1 and B2 be barcodes. For p > 0, the p-Wasserstein
distance is defined to be

dWp(B1, B2) =

⎛⎜⎜⎜⎜⎜⎜⎝inf
φ

∑
Z∈B1

d∞(Z, φ(Z))p

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

.

We can now state the stability theorem for persistent homology, arguably the
most important theorem in the subject [117]. (See Figure 2.22 for an illustration.)

Theorem 2.4.10. Let (X, ∂X) and (Y, ∂Y) be finite metric spaces. Then for all k ≥ 0,

dB(PHk(VR(X, ∂X)),PHk(VR(Y, ∂Y))) ≤ dGH((X, ∂X), (Y, ∂Y)).
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Figure 2.22 The two samples are close together in the Gromov-Hausdorff dis-
tance; although at various ε the homology groups are different, the barcodes are
close together.

Remark 2.4.11. Analogous results hold when using the Čech complex or using
the Wasserstein metric.

There are versions of the stability theorem expressed in terms of the “Morse fil-
tration” approach to persistent homology as well. The set of functions { f : X → R}
can be endowed with a metric specified as

d∞( f , g) = sup
x∈X
| f (x) − g(x)|.

We say that a function f : X → R is admissible if Hk( f −1(−∞, t];F) is finite rank
for all t ∈ R.

Theorem 2.4.12. Let X be a topological space. Let f , g : X → R be admissible
functions. Then for all k ≥ 0,

dB(PHk(X, f ), PHk(X, g)) ≤ d∞( f , g).

Using the observation of Remark 2.3.5 and the relationship between the Čech
and Vietoris-Rips complex, we can regard Theorem 2.4.12 as a generalization of
Theorem 2.4.10.

Remark 2.4.13. Theorems 2.4.10 and 2.4.12 are incarnations of an algebraic
stability theorem, which says that for persistence modules that are κ-interleaved
(which is a precise way of expressing the notion of being approximately
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isomorphic), the resulting barcodes are within κ in the bottleneck metric [42, 107].
This formulation of the stability theorem allows us to substantially weaken the
hypotheses necessary to apply it and also extends its reach.

2.5 Zigzag Persistence

Persistent homology is defined in situations where we have a filtered system of
complexes. As we have described above, these filtrations typically arise by varying
a scale parameter of some sort. Sometimes, however, we might not expect to have a
filtration but rather some kind of more general diagram. That is, a natural question
that arises is whether other “filtration shapes” could be used as input. We now
discuss an answer to the following specific form of this question [91].

Question 2.5.1. Does a construction like persistent homology make sense when
considering “filtrations” in which not all the arrows go in the same direction?

This more general kind of diagram can easily arise in practice. For example,
suppose we consider many sets of samples Xi from each fixed metric space (X, ∂X).
We then can form the sequence

where the maps are the obvious inclusions (Figure 2.23).
Applying the composite of Hk(−; F) and the Vietoris-Rips complex functor

(for some fixed ε) to this sequence yields a corresponding diagram of F-vector
spaces

In order to study these sorts of “filtrations” more carefully, we need to develop
some notation for describing the pattern of arrows. To do this, we consider zigzag
diagrams of shape S , where S is a string on the alphabet L,R.

Figure 2.23 We get a natural zigzag by taking unions of samples.
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Definition 2.5.2. A zigzag diagram (or zigzag module) of shape S is defined to
be a sequence of linear transformations between F-vector spaces:

where each map fi has its direction specified by the ith letter of the string S . (This
is also referred to as a zigzag module.)

The definition of a zigzag diagram is a strict generalization of the notion of
a filtration. When the shape S is RRRRRRRRR . . .R or LLLLLLL . . . L, a zigzag
diagram is simply a filtered F-module.

Example 2.5.3.

1. Let S = RRR. Then a zigzag diagram of shape S is a diagram

M1 → M2 → M3 ← M4

of vector spaces.
2. Let S = RLRLRL. Then a zigzag diagram of shape S is a diagram

M1 → M2 ← M3 → M4 ← M5 → M6 ← M7

of vector spaces.

In the original setting for persistent homology, it was intuitively clear that the
“lifespan” of a homological feature was an interesting topological invariant associ-
ated to a filtration. When working with zigzag diagrams, the corresponding idea is
that of a homological feature that is “consistent” across the zigzag. For example, if
we are considering a zigzag of shape RL,

then a zigzag feature should represent a collection of elements m1 ∈ M1,m2 ∈
M2,m3 ∈ M3 consistent in the sense that f1(m1) = m2 = f2(m3). In the context of
the sampling example we started with, a zigzag feature should represent some kind
of geometric property that is stable across different samples.

To work with this notion, one would again hope for an analogue of Theo-
rem 2.3.10 that allows us to characterize homological invariants of zigzag diagrams
in terms of some kind of numerical invariant like barcodes. We now switch to using
the zigzag module terminology.

Definition 2.5.4. A zigzag submodule N of a zigzag module M of shape S is a
zigzag module of shape S such that each Ni is a subspace of Mi and the maps are
determined by the restrictions of the fi.
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Example 2.5.5. Let F = R, and suppose we are given the zigzag module

where the first map is x �→ (x, 0) and the second map is x �→ (0, x). Then there is a zigzag
submodule

where the R in the middle comes from the first coordinate of R2; the maps are now x �→ x
and x �→ 0.

We say that a zigzag submodule M is decomposable if it can be written as the
direct sum of non-trivial submodules {Nj} (recall Definition 1.6.40); otherwise, we
say it is indecomposable.

Lemma 2.5.6. Any zigzag module M of shape S can be written as a direct sum
of indecomposables in a way that is unique up to permutation.

Indecomposable zigzag modules have a very constrained form.

Definition 2.5.7. An interval zigzag module of shape S is a zigzag module

where for fixed a ≤ b, ⎧⎪⎪⎨⎪⎪⎩Xi = F, 1 ≤ a ≤ i ≤ b ≤ k

Xi = 0, otherwise

and the maps between the F are the identity map, and the zero map otherwise.

We can now state the main theorem that gives rise to zigzag barcodes.

Theorem 2.5.8. The indecomposable zigzag modules are precisely the interval
zigzag modules.

As a consequence, we can obtain a barcode multiset which is referred to as
the zigzag persistence, and tends to be represented the same way as persistence
barcodes (Figure 2.24).

In Section 5.4.3, zigzag persistence is used to study HIV in tissue samples taken
from central nervous system (CNS) and non-CNS regions. See Figure 2.25 for an
indication of the data.
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Figure 2.24 The bars represent features that persist across zigzags.

Patient CX

Patient GA

CNS Non-CNSCombined

Figure 2.25 Phylogenetic networks of HIV-1 gp120 sequences obtained from
Patients CX and GA. Each node represents one sequence; larger nodes show
sequences that were sampled multiple times. Blue nodes were sampled from the
CNS; red nodes were sampled from elsewhere in the body. The position of each
node is determined by the first two principal components (computed via MDS)
of genetic distance (Hamming distance). The network backbone (thin gray edges)
is a minimum spanning tree, and the thick red and blue edges are generators of
cycles identified by persistent homology. Red cycles denote putative recombina-
tion events that involve sequences sampled fully outside the CNS; blue cycles
denote events that involve some sequences from the CNS.

We now discuss a basic zigzag that arises from metric data. In what follows, let
(X, ∂X) be a finite metric space, and choose an ordering for the points – we will
denote the ordering as
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X = {x1, x2, x3, . . .}.
Let Xk denote the subset of X consisting of the first k points in the ordering, i.e.,

X1 = {x1}, X2 = {x1, x2}, X3 = {x1, x2, x3},
and so on. We can then define a series of distinguished scales εi = dH(Xk, X). Notice
that εi ≥ εi+1; Xi+1 will always be at least as close to X as Xi in the Hausdorff
distance.

Definition 2.5.9. Choose real numbers α > β > 0. The Rips zigzag consists of
the zigzag module specified by the diagram of simplicial complexes

Notice that the constituent complexes in this zigzag have size controlled by the
limits α and β; it was originally proposed by Morozov for the purpose of computa-
tional efficiency. Work of Oudot and Sheehy [393] provides theoretical validation
for the use of this zigzag, showing that when X ⊆ Rn is close in Hausdorff distance
to a well-behaved compact subset Y ⊆ Rn, then there are long zigzag intervals in
the Rips zigzag that permit recovery of the homology of X for suitable α and β. (As
with Theorem 2.2.1, the actual numerical bounds extracted from these results are
much larger than needed in practice.)

Finally, given the central importance of the stability theorem for persistent
homology, one would hope for something similar in the context of zigzag per-
sistence. In [91], stability results were proved in the context of a particular
construction of zigzags from finite metric spaces, the level set zigzag diagram. In
general, the specific form of stability results depends on the particulars of the pro-
cess of constructing the zigzag. Nonetheless, theoretical considerations [67] show
that essentially any reasonable procedure for producing zigzag modules will have
some kind of stability theorem.

2.6 Multidimensional Persistence

The underlying idea of persistence, namely that a sensible way to cope with uncer-
tainty about parameter settings is simply to aggregate information as the parameter
changes, is a powerful and general one. But why limit ourselves to just the feature
scale? There are often many parameters which we might like to apply persistence
to: for example, in the motivating example for zigzag persistence, it would make
sense to vary both the samples and the feature scale ε. And in many probabilistic
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settings we want to simultaneously vary a density parameter as well as ε. In this
section we discuss two approaches to considering persistence in multiple directions.
First, we explain a systematic framework for multidimensional persistence. Then
we discuss a closely related idea, the persistent homology transform.

2.6.1 Multidimensional Persistence

In many situations, it is natural to consider multiple filtrations on a data set; e.g., for
a finite metric space (X, ∂X) one filtration will come from the distance scale param-
eter and another from an additional property of the data. A key motivating example
arises when the density of the data is not uniform: it often makes sense to consider
one filtration direction generated by the distance scale and another generated by
density.

Provided that these filtrations interact in a natural way, we can define multidi-
mensional persistent homology as a generalization of the definition of persistent
homology given above. Specifically, we regard Rn as a partially ordered set and
hence a category by setting {a1, . . . , an} ≤ {b1, . . . , bn} when each ai ≤ bi.

Definition 2.6.1. A multifiltered system of simplicial complexes is a functor from
Rn to simplicial complexes. A multifiltered vector space is a functor from Rn to
F-vector spaces.

Explicitly, for n = 2, a multifiltered complex {Xα,β} is specified by a commutative
diagram

for any x1, x2 ∈ [a, c] and y1, y2 ∈ [b, d].

Example 2.6.2. Suppose we have a finite metric space (X, ∂X) and a codensity function
γ : X → R, where γ is small at higher density points and large at sparse points. For example,
γ could be a normalized count of the distance to the kth-nearest neighbor. (Here k is a
parameter that has to be chosen.) Then we define a functor

R × R→ Simp

via the formula

(ε, δ) �→ VRε(γ
−1(−∞, δ]).

Given any multifiltered complex, by passing to homology, we obtain a multi-
filtered vector space, the multidimensional persistent homology. There is again
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a structure theorem for multifiltered vector spaces, but in contrast to the one
dimensional case, the irreducible objects are not easily described. As a con-
sequence, there is no tractable analogue of the barcode in this context which
completely describes the isomorphism type of the multifiltered vector space, and
so no easy summarization of the results of computing multidimensional persistent
homology.

A number of possible solutions to this problem have been proposed: even though
there is no complete invariant, there are many interesting invariants which capture
partial information that are relevant to data analysis.

1. Zomorodian and Carlsson proposed the rank invariant: this is the numerical
invariant obtained by taking the ranks of the maps in the filtration [92].

2. Lesnick and Wright studied in detail the “fibered barcode,” a version of the rank
invariant (introduced under a different name in [99]), which is the collection
of invariants obtained by choosing lines through the filtrations and computing
the one dimensional persistence in that direction [325]. They have developed a
tool, Rivet [324], that supports exploratory data analysis in this context, display-
ing the rank invariant as well as the bigraded Betti numbers. See Figures 2.26
and 2.27 for examples.

2.6.2 The Persistent Homology Transform

In the general spirit of persistence, one approach to choosing lines through the
filtration is to consider the collection of all of them at once. We now discuss
an implementation of this idea in the restricted context of surfaces embedded in
Euclidean space.

Beyond difficulties in computing persistent homology, as we discuss in detail in
Chapter 3, it can be difficult to interpret the results of persistent homology computa-
tions even for data embedded in comparatively low-dimensional Euclidean spaces
Rn for n > 3. One approach to this issue is to restrict attention to spaces embedded
in R2 or R3; such examples arise when considering surfaces, for instance. In the
setting of cancer genomics, motivating examples arise from the imaging of tumors,
as we discuss in a bit more detail in Section 3.8.

When working in R2 or R3, filtrations generated by a height function seem par-
ticularly useful. However, one issue with filtrations generated by height functions
is that they depend on a choice of orientation – along which direction do we mea-
sure height? Just as the basic idea of persistence is to consider all scales at once,
a simple approach is to consider all possible orientations at once. We now explain
a direct approach to considering a kind of multidimensional persistence in this
setting [510].
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Figure 2.27 Multidimensional persistence for the HIV data set. From Mon-
ica Nicolau, Arnold J. Levine, Gunnar Carlsson, Proceedings of the National
Academy of Sciences Apr 2011, 108 (17), 7265–7270. Reprinted with Permission
from Proceedings of the National Academy of Sciences.

Suppose that our data is presented as a finite simplicial complex M embedded
in Rd. For each direction, represented by a point v ∈ S d−1, we define a filtration of
M as

M(v)ε = {x ∈ M | x · v ≤ ε}.
We can now consider summarizing M by considering the persistent homology of
each of these filtrations in aggregate. Specifically, we have the following definition.

Definition 2.6.3. The persistent homology transform of M ⊆ Rd is the function

PHT: S d−1 → Bd

specified by the assignment

v �→ [PH0(M(v)•), PH1(M(v)•), . . . ,PHd(M(v)•)].

The main theorem of [510] shows that in dimensions 2 and 3, we can use the
collection of persistent homologies here to uniquely characterize the input object.

Theorem 2.6.4. Let d = 2 or d = 3. Then PHT specifies an injective function
from the set of finite simplicial complexes M ⊂ Rd to the set of functions from
S d−1 toBd.
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2.7 Efficient Computation of Persistent Homology

In order for topological data analysis to be useful in practice, it must be pos-
sible to efficiently compute invariants like PH of real data sets. For example,
one reason for the ubiquity of linear regression, PCA, and clustering in data
analysis is the ease of computation, even for large data sets. Moreover, since
many applications of TDA are in the context of exploratory data analysis, it is
important that repeatedly recomputing with different parameters be feasible. In
this section, we give an overview of the source of computational difficulty in
applying TDA; Appendix A has a more detailed discussion of specific software
packages.

As a baseline for comparison, we note the following.

1. Computing the single-linkage clustering dendrogram for a finite metric space
(X, ∂X) where |X| = n can be done in time proportional to n log n.

2. Similarly, Mapper (described in Section 2.8) can also be computed very
efficiently.

Persistent homology is another matter. As is evident from the discussion of the
computation of homology, persistent homology cannot be computed much more
efficiently than matrix multiplication on matrices with dimensions given by the
number of simplices – and for non-sparse matrices, practical algorithms for matrix
multiplication are roughly cubic.

To compute persistent homology, we proceed as follows. Suppose that we have a
filtered simplicial complex X. We choose a total ordering of the simplices of X that
is compatible with the filtration on X; i.e., σ < τ if σ appears in a lower filtration
than τ. (The order of simplices within a given filtration level is arbitrary.) Let n
denote the number of simplices of X. We now form the n × n matrix D defined by
the formula

Di, j =

⎧⎪⎪⎨⎪⎪⎩1, if σi is a codimension 1 face of σ j

0, otherwise.

We now define low( j) to be the row number of the last 1 in column j; we set
low( j) = 0 if column j consists only of zero entries. We will say that the matrix D
is reduced if low( j1) � low( j2) for j1 � j2. The following algorithm reduces the
matrix D:

for j = 1 to n

while there exists k < j such that low(k) = low(j) != 0:

add column k to column j
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The algorithm clearly terminates, since each step decreases low in a given col-
umn. We can extract the persistence diagram from the reduced form of D by
observing that the pairs ( j, low( j)) specify persistence intervals.

The serious issue that arises here is the dependence of the running time on the
number of simplices. For example, for the Vietoris-Rips complex (or the Čech
complex), this can be a problem when the feature scale ε approaches the maximum
distance between any pair of points in the data set.

Lemma 2.7.1. Let (X, ∂X) be a finite metric space, and choose ε > diam(X), i.e.,

∀x, y ∈ X, ε > ∂X(x, y).

Then VRε(X, ∂X) has 2|X| simplices.

The inexorable conclusion of Lemma 2.7.1 is that in order to efficiently com-
pute persistent homology, it will be necessary to control the number of simplices.
One way to do this is to only work with low-dimensional homology; state of the
art implementations (see Appendix A) can handle thousands of points when com-
putation is limited to H1. A general approach to this problem is simply to study
the Vietoris-Rips complex over a range [0, εmax] that ensures a tractable number
of simplices at εmax. Another technique is to take many subsamples from (X, ∂X)
such that each subsample results in tractable persistent homology computations,
and then combine the persistent homology of the subsamples in some way to esti-
mate the persistent homology of X. This idea is part of the motivation for zigzag
persistence, notably the Rips zigzag of Definition 2.5.9. Because zigzag persistence
can be used in contexts where we control the size of the maximal complex, modern
implementations can be used on data sets with thousands of points. Moreover, tech-
niques for combining such subsamples in a systematic way along with methods for
understanding error and variability in the results lead us naturally into the domain
of statistical methods; we explore this in detail in the next chapter.

Another possibility is to construct a smaller complex. An early approach to this
is the weak witness (or weak Delaunay) complex [458]. The idea is to choose as
vertices a set of landmarks but use all of the data points to determine the complex.

Definition 2.7.2. Let (X, ∂X) be a finite metric space. Consider a set of points

A = {x0, x1, . . . , xk} ⊂ X.

Then a point w ∈ X is a weak witness for A if ∂X(w, xi) ≤ ∂X(z, xi) for all i and
z ∈ X − A.
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Roughly speaking, the witness complex will only include simplices for which
weak witnesses exist.

Definition 2.7.3. Let L ⊂ X be a subset of the finite metric space (X, ∂X).
The witness complex is the simplicial complex specified by the rule that a sim-
plex [x0, x1, . . . , xk] for xi ∈ L is in the complex if all subsimplices admit weak
witnesses.

In practice, the landmarks are often picked randomly or using an algorithm to
maximize dispersion (Figure 2.28).

Although very attractive from the perspective of efficiency, the witness complex
has problematic theoretical properties:

1. There do not appear to be good stability theorems for the witness complex,
2. the dependence on choice of landmarks is not well understood [105], and
3. the witness complex can fail to reconstruct the homotopy type even in simple

examples [215].

In light of these issues, we believe that the only way to extract information from
witness complexes is by using the statistical techniques outlined in the next chapter.

For points embedded inRn, other “small” complexes come from consideration of
the Voronoi tesselation of Rn. For example, the Delaunay complex is the simplicial
complex obtained as the nerve of the cover of Rn given by the sets Ux for x ∈ X,
where

Ux = {z ∈ Rn | ∂X(x, z) ≤ ∂X(x′, z) ∀x′ ∈ X}.
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Figure 2.28 The landmark points give rise to concise simplicial circles that
capture the topology of the data.
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In low dimensions, the Delaunay complex can be computed very efficiently and
faithfully recovers the homotopy type of X, although the dependence on the ambi-
ent dimension is exponential in general. A variant of this is called the α-complex,
which again can be computed efficiently in low dimensions. (Both of these com-
plexes can be computed for data sets consisting of thousands of points via state the
art packages.)

As another example, using techniques from the theoretical computer science lit-
erature about approximation of metric spaces, the paper [455] explores how to build
a hierarchical collection of approximations to suitable finite metric spaces such
that for any given accuracy the computation time is linear in the number of points
X. Here, suitable means that the metric space has constant doubling dimension,
which is a measure of how the volume of balls changes as the radius changes. Note
however that metric spaces with doubling dimension d admit low distortion embed-
dings into Rd; from a practical perspective, it is not clear when these complexes are
useful.

2.8 Multiscale Clustering: Mapper

For very large data sets, the techniques of topological data analysis described above
can be computationally infeasible. For example, the number of simplices in the
Vietoris-Rips complex can grow too rapidly for computation of higher (persistent)
homology to be practical. (See Section 2.7 and Section 3.4 for various ways to
address this problem.) Another issue is that the output of persistent homology can
be hard to interpret for large high-dimensional data sets. An approach to answering
these questions when handling very large data sets is to consider integration of
ideas of persistence with clustering.

In this section, we describe a method for multiscale clustering: this is the Mapper
algorithm of Singh, Mémoli, and Carlsson [462]. Roughly speaking, the idea of
Mapper is to define a function on the data set, for example a measure of local
density, and then perform clustering at different ranges of values of this function
and keep track of how the clusters change as these ranges vary.

The basic framework assumes the data is presented as a finite metric space
(X, ∂X) and we choose

● a filter function f : X → Rn, and
● a cover C = {Uα} of the range of f in Rn; typically this cover is taken to be a

collection of overlapping closed boxes. In the case of n = 1, a typical cover is a
collection of closed intervals.

We now proceed as follows. This algorithm amounts to a discretization of the
Reeb graph (see Section 1.12) at each scale.
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1. Cluster each inverse image f −1(Uα) ⊆ X, regarded as a metric subspace of X,
for all Uα ∈ C; denote by Cα,i the ith cluster. (Any clustering algorithm can
be used that takes as input only the interpoint distances and does not require
specification of the number of clusters; single-linkage clustering is a standard
choice.)

2. Form a graph where the vertices are given by the clusters Cα,i as α and i vary
and there is an edge between Cα,i and Cα′, j when

Cα,i ∩Cα′, j � ∅ (clusters overlap).

3. Finally, we assign a color to each vertex in the graph corresponding to a
particular cluster Cα,i according to the average value of f on x ∈ Cα,i.

The results are of course dependent on the choice of filter function and the cover;
this algorithm is well adapted to the methodology of exploratory data analysis,
where we are trying to understand the data without an explicit hypothesized model
to describe it. For the cover, it is standard to try successive refinements of the range
of f , sometimes equally spaced, but often with increased resolution in areas where
we expect more interesting behavior to occur. Standard filter functions include den-
sity measures and eccentricity measures; these depend on the data, and we will see
in the examples and applications many different useful choices of filter function.

Example 2.8.1.

1. Let (X, ∂X) be any finite metric space, f : X → R an arbitrary function, and C =
{(−∞,∞)}. Then the output of Mapper is simply the graph consisting of a point for
each cluster of (X, ∂X), no edges, and the clusters colored with the average value of f
on the cluster. (See Figure 2.29 for an example.)

2. Let (X, ∂X) be any finite metric space, f : X → R an arbitrary function, and C =
{[0, 1], [2, 3]}. Writing

X[0,1] = f −1([0, 1]) and X[2,3] = f −1([2, 3])

the output of Mapper is the union of a collection of vertices for the clusters of X[0,1]

and a collection of vertices for the clusters of X[2,3]. Again, there are no edges, since the
cover does not overlap, and the colors represent the average values of f on the cluster
corresponding to the vertex.

3. Now consider the previous example, but modify the cover to be C = {[0, 1], [0.5, 3]}. In
this case, there are potentially edges between the vertices for clusters that overlap.

4. Consider points sampled densely from a unit circle in R2, let f : X → R be the function
(x, y) �→ x that takes a point to its x-coordinate, and take C to be a series of overlapping
subsets of [−1, 1]. (Specifically, we take ten intervals which overlap by 25% on each
side.) Then the Mapper graph recovers the circle; see Figure 2.29.
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Figure 2.29 Top: The filter function is a projection onto the x-axis and there are 10
overlapping charts; the Mapper graph recovers the topology of the circle. Bottom:
When there is a single chart that covers the domain, Mapper just returns the results
of clustering, colored by the filter function (in this case, distance from the mean
of the data). From Abbas H. Rizvi et al., Nature Biotechnology 35, 551–560 (270).
c© 2017 Nature. Reprinted with Permission from Springer Nature.

In practice, Mapper has turned out to be very useful for identifying clinically sig-
nificant subsets of the data that are hard to find with traditional clustering methods.
It has also been an effective way to represent the structure of the data set across fea-
ture scales. To give a sense of what this means, we illustrate with some examples
of the use of Mapper on real data.

Example 2.8.2. An early and celebrated example of the application of Mapper was
work on a breast cancer data set, by Nicolau, Levine, and Carlsson [383]. The data here is
presented as a finite metric space comprising vectors of expression data in Rn. Expression-
based classification of tumors is a well-studied problem and has been the subject of a vast
number of papers (e.g., see [236, 512]); clustering is the standard technique here. However,
there is reason to worry about the efficacy of basic clustering techniques: for example,
different tumors activate or suppress pathways with varying strengths, and there is widely
variable infiltration of healthy cells into tumor samples. As a consequence, one expects
clinically significant features to appear at varying scales.
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The analysis used samples from 295 breast cancers as well as additional samples from
normal breast tissue; see Figure 2.30. The original expression vectors were in R24479, but
a preprocessing step projected them into R262.

● The distance metric was given by the correlation between (projected) expression vectors.
● The filter function used was a measure taking values in R of the deviation of the

expression of the tumor samples relative to normal controls.
● The cover was overlapping intervals in R.

In the Mapper graph, the samples divide into two branches. The lower right branch itself
has a subbranch (referred to as c-MYB+ tumors), which are some of the most distinct from
normal and are characterized by high expression of genes including c-MYB, ER, DNALI1
and C9ORF116. Interestingly, all patients with c-MYB+ tumors had very good survival
and no metastasis. These tumors do not correspond to any previously known breast cancer
subtype; the grouping seems to be invisible to classical clustering methods – for example,
hierarchical clustering fails to identify this particular subset of tumors (see bottom left of
Figure 2.30). We will study this example in detail in Section 6.7.

Example 2.8.3. Another interesting application of Mapper is to the study of the dif-
ferentiation process from murine embryonic stem cells to motor neurons. The process is
demonstrated in Figure 2.31; over time, undifferentiated embryonic cells become differen-
tiated motor neurons when retinoic acid and sonic hedgehog (a differentiation-promoting
protein) are applied.

The data generated corresponds to RNA expression profiles from roughly 2000 single
cells.

● The distance metric was provided by correlation between expression vectors.
● The filter function used was multidimensional scaling (MDS) projection into R2; as we

review in Section 4.2, this is a procedure for embedding an arbitrary metric space in a
lower dimensional Euclidean space.

● The cover was overlapping rectangles in R2.

As can be seen in Figure 2.32, the Mapper diagram neatly identifies various regions char-
acterized by their state in the differentiation process; in contrast, conventional clustering
directly applied to the raw metric data does not produce clusters that encode information
about the progress of differentiation. We will study this example in Section 7.3.

One potential concern for applications is the fact that the Mapper algorithm is not
stable in the sense that we have described for persistent homology. For one thing,
choice of parameters for the clustering algorithm can lead to unstable results; for
example, when hierarchical clustering is used, the results are very sensitive to the
choice of cutoff parameter. Worse, it is possible to construct examples of metric
spaces (X, ∂X) and a cover C such that two very similar filter functions give rise to
very different results.
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Day 2 Day 6 Day 3 Day 4 Day 5 

Figure 2.31 Over time, embryonic stem cells differentiate into distinct cell types.
These pictures capture the in vitro differentiation of mouse embryonic stem cells
into motor neurons over the course of a week. Embryonic stem cells are marked in
red, and fully differentiated neurons in green. Figure from experiment performed
by Elena Kandror, Abbas Rizvi and Tom Maniatis at Columbia University.
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Figure 2.32 The different regions in the Mapper graph nicely line up with
different points along the differentiation timeline. Source: [431].

Effectively, the issue is that a mismatch between the scale of change in the data
and the width of the overlap of inverse images can give rise to dramatic changes
in the Mapper graph in response to small shifts in filter function or cover. (See
Figure 2.33 for a representative example of this phenomenon.)

There are various different approaches to handling this instability in practice.
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δ ∋ δ ∋

Figure 2.33 Small perturbation of the data relative to the cover can lead to large
changes in the Mapper graph.

1. As we discuss in Section 3.9 below, various approaches motivated by standard
considerations in statistics give us tools to establish confidence in the robustness
of Mapper output.

2. Another possibility is to reintroduce persistence in the cover direction: the idea
is to consider a tower of successive refinements of covers. With a suitable metric
on such towers of covers, one can prove a stability theorem in this context [143].

The notion of refinement of covers also gives rise to a way to make precise
the connection between Mapper and the Reeb graph. Specifically, consider the
sequence of covers Cε consisting of all intervals of size ε. Then as ε → 0, the
resulting Mapper graph converges to the Reeb graph [366].

2.9 Towards Persistent Algebraic Topology

In this chapter, we have focused primarily on ways of associating homological
invariants to data sets; our focus reflects the majority of existing work on topolog-
ical data analysis. From a pragmatic perspective, this choice of emphasis is very
natural. Homology groups are distinguished in part by being computable; as we
have seen, given a topological space presented as the geometric realization of a
simplicial complex, there is an efficient algorithm for computing its homology.

In contrast, computing homotopy groups is an intractable problem. Comput-
ing the homotopy groups of spheres is a basic and unsolved problem in algebraic
topology. From an algorithmic standpoint, we have the following hardness results.

1. Even for a finite complex X, π1(X) is uncomputable in general. (This problem is
equivalent to solving the “word problem” in groups, which asks for an algorithm
to determine whether two expressions in a generators and relations presentation
of a group are equal.)

2. For simply connected finite complexes X and fixed k, computing πk(X) can be
done in time polynomial in the number of simplices of X [85], although the
complexity is completely infeasible for realistic use.
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3. If k is allowed as part of the input (i.e., not fixed at the outset), even computing
the ranks of πk(X) is a #P-complete problem [14] (and therefore likely to be
exponential, provided that current beliefs about computational complexity are
true).

Notwithstanding, one can define and study persistent homotopy groups. This
is an interesting endeavor for several reasons. For one thing, it is possible to use
partial computations of such persistent homotopy groups to distinguish topological
features of data [59]. From a theoretical perspective, consideration of persistent
homotopy groups leads to efforts to understand persistent algebraic topology.

In classical algebraic topology, homology groups are homotopy invariants and
thus capture information about the homotopy type of the space. In fact, a version
of Whitehead’s theorem (Theorem 1.6.31) shows that a map f : X → Y between
simply connected CW complexes that is an isomorphism on homology groups is
a homotopy equivalence. There are corresponding questions about the relationship
between persistent homology and some kind of persistent homotopy equivalence.

1. What is the right notion of persistent homotopy equivalence and persistent weak
equivalence? Is there an analogue of the Whitehead theorem (Theorem 1.6.31)?

2. Can we axiomatically characterize persistent homology in an analogous fashion
to the way we can axiomatically characterize ordinary homology?

3. How should we think about the stability theorem (Theorem 2.4.10) in these
terms?

Although it is not totally clear what candidate answers for these questions might
look like, the stability theorem and the importance of the metric structure on bar-
codes suggests that what we are seeing is the outline of some kind of “approximate
algebraic topology.” See [58] for the beginnings of foundations for such a theory.

2.10 Summary

● We may assign mathematical structure to a data set by viewing the points of the
set as points in a suitable metric space (X, ∂X).

● This chapter focuses on two ways to assign a simplicial complex to a finite met-
ric space (X, ∂X). For a given ε > 0, we have the Čech complex Cε(X, ∂X)
(see Definition 2.1.2) and the Vietoris-Rips complex VRε(X, ∂X) (see Defini-
tion 2.1.6). These complexes are functorial in ε.

● Given a finite metric space (X, ∂X) uniformly sampled from a compact Rieman-
nian manifold M, the Niyogi-Smale-Weinberger Theorem (see Theorem 2.2.1)
shows that it is possible to recover topological invariants of the underlying
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geometric object M, provided the distance between sampled points is smaller
than some feature scale.

● The feature scale of data is unknown a priori. The idea of persistent homology is
to keep track of how homological features change as the scale parameter varies.

● To investigate persistence, we examine filtered systems of simplicial complexes
(see Definition 2.3.3), which arise via the functoriality of VRε(X, ∂X) in ε.

● In order to use topological invariants to describe data, we must guarantee that
small perturbations in the data correspond to commensurately small changes in
the resulting invariants. To measure the size of these changes in the data, we
use the Gromov-Hausdorff distance (see Definition 2.4.4). To measure changes
in the barcodes, we use the bottleneck distance (see Definition 2.4.8). The sta-
bility theorem for persistent homology (Theorem 2.4.10) bounds the size of
changes in barcodes by the size of changes in the data.

● Zigzag persistence is the study of persistent homology considering filtrations of
different shapes where the arrows have different orientations. This approach may
be helpful in controlling the number of simplices, allowing efficient computation
of persistent homology.

● In some cases, a single data set may give rise to multiple filtrations. For example,
we might filter by both scale and density. This is the focus of multidimensional
persistence.

● The Mapper algorithm is a method for multiscale clustering that has been effec-
tively applied to identify clinically significant information in data sets that
traditional clustering may miss. Mapper performs clustering at different scales,
keeping track of changes in the clusters as the scale varies.

2.11 Suggestions for Further Reading

Topological data analysis is a young field, and for many aspects of it the original
papers remain the best reference. However, there have been a number of excellent
introductory articles, ranging from brief treatments (e.g., [193, 326, 535]) to more
comprehensive (and technical) overview articles [90, 103, 156, 157]. There are also
now a number of good books [111, 155, 194, 392, 550], with slightly different areas
of emphasis.
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Statistics and Topological Inference

O! it is pleasant with a heart at ease,
Just after sunset, or by moonlight skies,
To make the shifting clouds be what you please . . .

Samuel Coleridge

Our central goal in this book is to explain how to use topological data analysis as a
tool for scientific inference in biology. In the previous chapter, we described a strat-
egy for assigning topological invariants to experimental data presented as a finite
metric space. Moreover, we have presented theoretical justification that in ideal
cases these topological invariants encode information about the shape underlying
the data. But when trying to understand how to extract answers to specific scientific
questions from the shape of real experimental data, many methodological questions
immediately arise.

1. How confident can we be that the results of TDA applied to sampled data
correctly reflect something about the underlying process generating the data?

2. How stable are the results of TDA in the face of noise and differing choices of
parameters?

3. What does a particular value of a topological invariant tell us about the shape
of the data?

These questions are not unique to this setting, but arise pervasively in data
analysis. But the last of these questions is particularly acute in the context of topo-
logical data analysis. The geometric significance of clustering is fairly clear; the
data breaks up into groups which are made up of similar points. This is not to say
that it is always easy to make use of clustering for inference, but we feel like we
understand the information about the shape of the data that it provides. In contrast,
suppose that you compute the homology of a data set at scale 0.75 and discover
that H6 has rank 15. What then?

170
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In this chapter, we describe answers to the three questions above using statisti-
cal techniques to analyze topological invariants computed from data. It is easy to
engage in self-deception with incautious use of statistical techniques. As a conse-
quence, our focus is on trying to understand how to sensibly and reliably use these
tools to analyze data.

3.1 What Can Topological Data Analysis Tell Us?

In order to understand the use of statistics in topological data analysis, it is useful
to draw a contrast with the basic approaches in classical statistics. Consider the
most fundamental problem.

1. We are given a finite collection of samples {x1, . . . , xn} ⊂ R which have been
drawn independently from a Gaussian with mean μ and standard deviation σ.
The probability density function of this distribution is

ρ(x) =
1√

2πσ2
e
− (x−μ)2

2σ2 .

2. We know that the data has come from some Gaussian, and we want to estimate
μ and σ.

This is a parametric problem; we know the answer lies in a family of unknown
distributions in which each member is described by a collection of numbers. To
recover the distribution, we would estimate μ and σ using the sample mean

μ̂ =
1
n

∑
i

xi

and the sample variance

σ̂2 =
1

n − 1

∑
i

(xi − μ̂)2,

which are unbiased estimators of the mean and variance of the underlying
distribution.

Deep theoretical results provide confidence in this procedure. The law of large
numbers tells us that as n increases, the sample mean converges to μ in a suit-
able sense. Since μ̂ depends on the particular sample, it will vary, and the central
limit theorem describes the distribution of μ̂; specifically, it tells us that this quan-
tity itself has a Gaussian distribution. We can summarize the information we
obtain about μ̂ in terms of a confidence interval; this is an interval [a, b] ⊂ R,
defined in terms of the samples, that contains the true parameter value with a
specified probability. For example, the 95% confidence interval for the mean of



172 Part I Topological Data Analysis

a Gaussian is centered around μ̂ and has width that depends on the standard
deviation σ.

In general parametric settings, we cannot always assume that the underlying dis-
tribution is Gaussian or that we know a closed form expression for the distribution
of the parameter we are estimating. As a consequence, in practice we often form
confidence intervals using the bootstrap: this procedure estimates the distribution
of the parameter by repeatedly generating samples (with replacement) from the
given samples and computing the test statistic from them.

Sometimes we do not want to assume that we know a parametric family of distri-
bution that generated the samples; this is the domain of non-parametric statistics.
Even in these cases, the law of large numbers and central limit theorem tell us
a great deal about how to estimate various summary statistics of the underlying
distribution. For example, the law of large numbers tells us that the empirical
distribution on a sample {xi}, which assigns probability to each value propor-
tional to its frequency, converges to the underlying distribution. For more general
summary statistics, the bootstrap remains a powerful way to estimate confidence
intervals in this setting. Another possibility is to try to describe the distribution
using density estimation; for example, we could solve the optimization problem of
fitting the observed samples to a mixture of Gaussians and regard this result as an
approximation of the underlying distribution.

In topological data analysis, we have access to many fewer tools. As we dis-
cuss below, it is very hard to algorithmically specify the underlying geometric
object, even if we assume it is a manifold, except under very restrictive hypothe-
ses. This implies it will be hard to recover it as well. Moreover, for distributions
on general metric spaces, we do not necessarily expect many of the analogues of
classical statistics to hold. And writing down parametric distributions is generally
difficult. As a consequence, statistical inference in topological data analysis imme-
diately focuses on estimating distributions of summary statistics, often generated
by persistent homology barcodes.

In the literature on topological data analysis, there is often an implicit (and some-
times explicit) view of topological inference as a process in which some sort of
underlying geometric “ground truth” can be recovered. In a setup where we have
access to samples which we regard as coming from a probability distribution on an
underlying space, there are a number of ways of formalizing what we mean.

1. A first goal might be simply to recover the persistent homology of the underly-
ing space (or rather, the support of the sampling distribution) from computation
of persistent homology of the samples, the empirical persistent homology.

2. A more sophisticated version of the preceding goal would be to recover infor-
mation about both the persistent homology of the underlying space and the
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probability measure generating the samples. For instance, a natural way to pro-
ceed is to try to recover the persistent homology of the level set filtration. Given
a suitable probability density ρ on A ⊆ Rn, the super level sets

Γρ(z) = {x ∈ A | ρ(x) > z}
induce a filtration as z varies.

3.1.1 Persistent Homology and Sampling

We begin by considering the first question above: can we recover the persistent
homology of the underlying space from the empirical persistent homology? An ini-
tial consistency check, described in Section 3.4, is that with large enough samples
we can always recover the persistent homology of the support of the probabil-
ity distribution from the empirical persistent homology (Figure 3.1). The basic
observation is simply that with sufficiently many samples, even regions of low
probability density will be well sampled.

However, in practice we will usually not know how many samples are enough;
the feature scale of the underlying object is often unknown and even when we have
some estimates of the scale, experimental realities may limit the number of data
points available. Thus, we need to understand the behavior of the empirical persis-
tent homology as it converges, i.e., when we do not necessarily assume the number
of samples is large. The kind of situation we might worry about is represented in
Figure 3.2; an anomalous sample leads to misleading results.

Thus, we need to understand sampling variability and decide how to assemble an
estimate that aggregates the empirical persistent homology from different samples;
for example, we might hope to build a confidence region for the population value
of the parameter. Figures 3.3 and 3.4 indicate sampling variability in persistent
homology at different sample sizes. We study questions of convergence properties
and confidence intervals for estimates in Section 3.5. Thinking about summaries of
collections of barcodes raises interesting questions about what it means to compute
the “average” barcode or to think about the variance or spread of a collection of bar-
codes; we will discuss these issues throughout the chapter, notably in Sections 3.3
and 3.6.

Summarizing collections of empirical barcodes is an interesting endeavor from
another perspective: we might regard the probability distribution generating the
samples as itself worthy of investigation, and so want to have an invariant or col-
lection of invariants for persistent homology which explicitly encodes information
about the distribution. For example, Figure 3.5 illustrates that different distributions
on the same underlying space can result in very different barcodes at small sample
sizes.
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Figure 3.1 As the sample size increases, the persistent homology of the sample converges to the persistent homology of the support of the
distribution, in this case the underlying space.



3 Statistics and Topological Inference 175

2.0

2.0

1.0

1.0

0.0

0.0

–1.0

–1.0

–2.0

–2.0

0.5

2.0

2.0

1.0

1.0

0.0

0.0

–1.0

–1.0
–2.0

–2.0

2.0

2.0

1.0

1.0

0.0

0.0

–1.0

–1.0

–2.0

–2.0

1.0 1.5 2.00.0 2.5
time

0.5 1.0 1.5 2.00.0 2.5
time

0.5 1.0 1.5 2.00.0 2.5
time

Figure 3.2 These samples were all generated from a uniform distribution on
nested circles, and underneath we graph the PH1 barcode. The barcode on the
left is consistent with our expectations. But in the sample in the middle (which
was a particularly anomalous sample among the many we generated), the two bars
are very short and do not coexist, and on the right, there is only a single bar.

In the limiting cases where we have many samples, regions of low probability
mass can make the same contribution to the topology as regions of high probability
mass. And we might not regard this insensitivity to the density as a feature!

A closely related question is to understand the impact of noise in the data. One
might expect the empirical persistent homology to behave well with respect to
noise. After all, part of the original intuition behind persistent homology is to make
homology computations robust to perturbation by integrating information across
various feature scales; and this intuition is confirmed by Theorem 2.4.10, the stabil-
ity theorem for persistent homology. And indeed, persistent homology is relatively
stable in the face of noise concentrated around the real data; see Figure 3.6 for an
example.

However, even in this case, the barcode has an increasing number of short “noise
bars.” The difficulties are exacerbated when we deal with data coming from a low-
dimensional space embedded in a higher dimensional Euclidean space; then the
noise is often the same dimension as the ambient space, which can lead to very
complicated topological signals arising from the noise. These considerations moti-
vate the study of the topology of “random” geometric complexes, which we review
in Section 3.7.
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Figure 3.3 Sampling variation when the sample size is small relative to the feature scale can result in large variation in the resulting
barcodes.
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Figure 3.4 As the sample size increases, the empirical barcodes are increasingly clustered around the “true” value.
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Figure 3.5 Independent identically distributed samples of fixed size from different probability distributions on the same space can result in
very different barcodes.
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Figure 3.6 Increasing amounts of Gaussian noise centered around the underlying object cause the barcode to be filled with small spurious
bars.
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An even more serious problem is that not all noise is concentrated around the
data. And the stability theorem has basically nothing to say about the presence of
arbitrary outliers (i.e., noise points that are far from the data points). Adding a sin-
gle point to a metric space (X, ∂X) can perturb it in the Gromov-Hausdorff distance
arbitrarily (recall Example 2.4.6). And we can perturb PHi arbitrarily by adding
“synthetic i-spheres” far away from the points of X. For instance, when i = 1, we
can add 4 points at the vertices of a square with side-length k; this adds an interval[

k
2 ,

k
√

2
2

)
. Using more points, we can control the size of the interval and introduce

additional intervals. (See Figure 3.7 for an example of the effect of outliers.)
This kind of instability is a well-known problem that arises even in very basic

statistical inference.

Example 3.1.1. Consider computing the mean of a set of points {x1, . . . , xn} ⊂ R.
Specifically, let us take {1, 2, 3, 4, 5}; we find the mean is 1+2+3+4+5

5 = 3. Now change the
point 5 to 1050. To first approximation, the mean is now very close to 1049. Put another way,
given a set {x1, . . . , xn}, one can make the mean any arbitrary value by suitably modifying
a single data point! (See Figure 3.8 for a picture of this phenomenon.)

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

−2.0

−2 0 2 4 6 0.0 0.5 1.0 1.5

Outer Samples
Inner Samples
Bad points

Figure 3.7 Adding a small number of points to create a circle far away from the
real data can make a significant change in the barcode; a tiny number of “bad
points” creates a noticeable third bar.

mean meanmedian median

Figure 3.8 A small amount of outlying probability mass can have a large effect
on the mean but cannot affect the median very much.
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Traditionally, this phenomenon is the purview of robust statistics [251]; the mean
is not robust. In contrast, the median is the classic example of a robust replacement
for the mean. Changing 5 to 1050 does not affect the median of {1, 2, 3, 4, 5} at all.
(More generally, one needs to change at least 50% of the points in order to achieve
arbitrary change in the median.) The situation with persistent homology turns out to
be even worse, since whereas the mean is stable with respect to small perturbations
of the distribution, barcodes of samples are not.

There are various ways to try to make persistent homology invariants more
robust. One possibility is to simply preprocess the data to remove “outliers”; when
there are a small number of points that are very far away from the bulk of the
points, it is easy to identify them. A more principled way to do this is to consider
filtering the data by density; we discuss one approach to using density estimators
in Section 3.5.1, and we discuss the use of the density filtration with Mapper in
Section 3.9. Another version of this strategy involves subsampling; if the number
of outliers is small, most subsamples will not contain many outliers. We explain in
more detail in Sections 3.4 and 3.5 how to use these ideas to bound the impact of
parts of the data set with small probability mass. Finally, in Section 3.6, we discuss
how to use real-valued invariants of the data and techniques from robust statistics.

3.1.2 Topological Inference

In contrast to the relative success of procedures for trying to recover information
about the persistent homology of the underlying space, we cannot hope in gen-
eral to identify the homotopy type of the underlying space. Any effort to identify
topological spaces runs up against the fact that there is no algorithmic classifica-
tion of topological spaces up to homeomorphism or homotopy type; the problem
is provably uncomputable in dimensions ≥ 4, even if we restrict attention only to
manifolds. (See [550, §4.1] for a nice review of these results.)

Theorem 3.1.2. The problem of determining whether two manifolds M and N
of dimension ≥ 4 presented as finite simplicial complexes are homeomorphic is
undecidable.

This result is proved by constructing a manifold whose fundamental group π1(M)
encodes the word problem (recall Example 1.6.22 and Remark 1.6.23). Weakening
homeomorphism to homotopy equivalence does not help.

Corollary 3.1.3. The problems of determining whether two manifolds M and N of
dimension ≥ 4 presented as finite simplicial complexes are homotopy equivalent or
weakly homotopy equivalent are undecidable. (Even the problems of determining
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whether a given manifold is homeomorphic or homotopy equivalent to a fixed
manifold Z are undecidable.)

Worse, as the allowable diameter grows, there are exponentially many possible
homeomorphism types of manifolds arising as submanifolds of Euclidean space of
dimension greater than 2 [533, §1.2]. Similar bounds hold for the number of possi-
ble homotopy types. As a consequence, it is not in general plausible to parametrize
hypothesis classes of spaces except when imposing strong restrictions or using
coarse invariants. Moreover, the explicit sample bounds for recovery of persistent
homology (from Section 2.2 above and Section 3.5 below) are exponential in the
intrinsic dimension of the data.

Even if we restrict ourselves to the seemingly easy problem of distinguishing
spheres of different dimensions (i.e., S 50 versus S 51), basic results about con-
centration of measure in high-dimensional Euclidean spaces imply that under an
oblivious sampling model (i.e., when samples are drawn independently of one
another) most of the mass on a sphere S n is concentrated around a radial region
which is homeomorphic to S n−1. This shows that this problem requires an expo-
nentially large number of points [533, §1.3]. More generally, as we discuss below
in Section 4.6, it is very difficult to successfully estimate the dimension of very
high-dimensional manifolds.

These constraints place sharp limits on the kind of geometric inference that we
can expect. We have basically three options: work with low-dimensional topo-
logical features of the data and perform exploratory data analysis, work with
low-dimensional data where exact topological inference is reasonable, or treat the
results of topological data analysis as signals about shape that are potentially unin-
terpretable except as input to statistical inference or machine learning procedures.
In more detail, TDA provides the following.

1. A methodology for exploratory data analysis via description and visualization
of low-dimensional shape information. Arguably the most widely used TDA
technique is Mapper, and indeed the standard usage pattern for Mapper is to
search for meaningful clusters in the data which can then guide further exper-
iments. We discuss this at a high level in Section 3.9. In the second part of
the book, we will explain many examples of this approach, including appli-
cations to tumor classification and cell differentiation (see Sections 6.7, 7.3,
and 7.4).

2. Exact information about data that truly does lie in low-dimensional topological
spaces. In these cases, topological data analysis can be interpreted to provide
specific geometric information about the data and is often applied in a “hypothe-
sis testing” framework. For instance, in dimension 1, specific hypotheses about
the process generating the data are reasonable, and analogues of parametric
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statistics make sense. We will discuss an example of this kind of approach in
phylogenetics in Section 5.2, where persistent H1 is used to detect divergence
from the “tree hypothesis” for evolutionary data and estimate recombination
rates.

3. Robust “topological signals” to use as features for classification, inference,
and supervised learning algorithms. Although many topological features cannot
be interpreted directly (e.g., “H15(X) is approximately 39”), they still con-
vey discriminative information about the data. Ideally, this approach permits
integration of information from topological data analysis with other sources
of information (e.g., standard parametric statistical models). Two examples of
this approach that we will discuss are surface recognition via the persistent
homology transform (see Section 3.8 for a general discussion and Section 9.3
for specific applications) and the use of persistent homology information to fit
parameters for population genetics models (see Section 5.7).

We now explain how to integrate topological data analysis with suitable
statistical techniques in order to carry out these three kinds of analyses.

3.2 Background: Geometric Sampling and Metric Measure Spaces

At the most basic level we access geometry through a metric. Therefore, we want to
work with metric spaces equipped with probability measures that are compatible
with the metric. We do this using the machinery of metric measure spaces. This
framework makes it possible to extend intuitive and familiar ideas from ordinary
statistics in Euclidean space to a very broad class of geometric objects.

3.2.1 Metric Measure Spaces

To express the compatibility of metric and probability measure in a precise fashion,
we work with the notions of measurable spaces and measures. A measurable space
is a set along with a collection of subsets to which we can assign “area.” A measure
on a measurable space is a rule for assigning area, i.e., a theory of integration. We
rapidly review these definitions here; we recommend [56, 57] for more in-depth
treatments.

Definition 3.2.1. For a set X, a σ-algebra is a collection Σ of subsets of X such
that

1. ∅ ∈ Σ,
2. given a countable set {Ui} such that Ui ∈ Σ, then the union

⋃
i Ui is also in Σ,

and
3. if U ∈ Σ, then the complement X \ U is in Σ.
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As we noted above, these closure properties are motivated by the perspective
that the elements of a σ-algebra have area; for instance, given a collection of sets
that have area, we should be able to measure the area of their union. Given an
arbitrary collection S of subsets of X, the σ-algebra generated by this collection is
the smallest σ-algebra containing S ; roughly speaking, we simply add all missing
unions, intersections, and complements.

Example 3.2.2. The most important example of a σ-algebra is the Borel σ-algebra
associated to a topological space X; this is just the σ-algebra generated by the collection
of open sets of X. (Equivalently, it is generated by the collection of closed sets of X.)

In fact, when (X, ∂X) is separable (i.e., contains a countable dense subset; recall Defini-
tion 1.2.14), then the Borel σ-algebra is generated by the collection of open balls {Bε(x)}
as ε varies over R>0 and x over the points of X.

Definition 3.2.3. A measurable space is a pair (X,Σ) consisting of a set X and a
σ-algebra Σ.

Example 3.2.4.

1. Let X be a countable set; the power set of X forms a σ-algebra, which we refer to as the
counting σ-algebra. This σ-algebra is generated by the points x ∈ X.

2. Euclidean space Rn with the σ-algebra generated by the boxes (a1, b1) × · · · × (an, bn)
is a measurable space.

3. More generally, any topological space is a measurable space with the Borel σ-algebra.
4. It turns out to be technically advantageous to equip Euclidean space with a more

sophisticated σ-algebra, the Lebesgue σ-algebra. This is an enlargement of the Borel
σ-algebra; it includes more measurable sets, in order to force every subset of a set of
measure zero to be measurable. (This enlargement is referred to as the “completion” of
a σ-algebra.)

Functions between measurable spaces are defined in analogy with continuous
functions.

Definition 3.2.5. Let (X,Σ) and (X′,Σ′) be measurable spaces. A map of sets
f : X → Y is a measurable function if f −1(A) ∈ Σ for all A ∈ Σ′. A measurable
function is a measurable isomorphism when f is an isomorphism of sets and f −1

is also a measurable function.

Measurable spaces support the computation of area; a measure space is
a measurable space that has been equipped with a specific area function, a
measure.
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Definition 3.2.6. A measure μ on a measurable space (X,Σ) is a function

μ : Σ→ R≥0

such that

1. μ(∅) = 0, and
2. for Xi ∈ Σ such that Xi ∩ X j = ∅ for all i and j,

μ

⎛⎜⎜⎜⎜⎜⎜⎝ ∞⋃
i=1

Xi

⎞⎟⎟⎟⎟⎟⎟⎠ = ∞∑
i=1

μ(Xi).

A basic theorem that allows us to construct measures is that for a σ-algebra
generated by a collection of subsets S , it suffices to define the measure on the sets
in S . This result is closely related to the construction of the Riemann integral. (See
Figure 3.9 for an example of the process.)

Example 3.2.7.

1. For a finite set X with the counting σ-algebra, the counting measure on X assigns to
each subset A ⊆ X the cardinality of A, i.e.

μ(A) = #A, A ⊆ X.

This can be regarded as the measure determined by setting each point x ∈ D to have
measure 1.

2. For Rn with the box σ-algebra, the standard measure is determined by assigning to each
rectangle its area, i.e.,

μ([a1, b1] × . . . × [an, bn]) =
∏

i

(bi − ai).

Figure 3.9 In favorable cases, the measure of an arbitrary region is bounded by
the area of inner and outer covers by generating sets; the actual area is given by
taking limits as the inside sum increases and the outside sum decreases. In general,
the inner measure is defined in terms of the outer measure of the complement.
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Given a measure μ on X, we can integrate any measurable function f : X → R
over a region A ⊆ X as follows. Assuming temporarily that f ≥ 0, we set∫

A
f dμ = sup

B1∪B2∪...B�=A
Bi∩Bj=∅,i� j

∑
i

(
inf
x∈Bi

f (x)

)
μ(Bi).

Here the sup is computed over all decompositions of A into finitely many disjoint
subsets {Bi} (in particular, � will vary). If f takes both positive and negative values,
we define the integral in terms of the expression above for the positive part and
negative part separately and take the sum.

We are most interested in probability measures, for which we require that
μ(X) = 1. An important class of examples of probability measures are determined
by probability density functions. Given a probability measure μ and a measurable
function f , the integral

∫
X

f is called the expectation of X.

Definition 3.2.8. Let μ be a measure on (X,Σ) and f be a measurable function
f : X → R so that μ({z | f (z) < 0}) = 0. Then there is an induced measure on X

ν(A) =
∫

A
f dμ, A ⊆ X.

We say that the measure ν has density f with respect to μ.

Remark 3.2.9. It is standard to describe measures via probability densities when
working with a basic reference measure for integration, e.g., the Lebesgue measure
on Rn or the counting measure on a finite set. In the following discussion, we will
sometimes omit specification of the measure when working with densities.

When (X, ∂X) is a metric space, we can now use the topology induced by the
metric and the Borel σ-algebra to express compatibility of metric and measure. A
Borel measure is a measure with respect to the Borel σ-algebra.

Definition 3.2.10. A metric measure space with a probability measure is a metric
space (X, ∂X) that is complete and separable, equipped with a Borel probability
measure μX . The support of a metric measure space is the subset supp(X) of X
consisting of points x for which every neighborhood U of x satisfies μX(U) > 0.

Remark 3.2.11. More generally, we can consider metric measure spaces where
the measure is not a probability. We will not use such examples in this chapter,
however.
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Definition 3.2.10 provides a theoretical framework for describing data sampled
from some kind of geometric object.

Our working hypothesis throughout this chapter is that we have data
presented as samples from an underlying metric measure space (X, ∂X , μX).

Example 3.2.12.

1. A finite metric space (X, ∂X) with the normalized counting measure

μ(A) =
#A
#X

, A ⊆ X

is a metric measure space.
2. For any subset A ∈ R and a measure μ (not necessarily a probability measure) such that

μ(A) < ∞, A becomes a metric measure space via the uniform measure

μ′(S ) =
μ(S )
μ(A)

, S ⊆ A.

3. More generally, the standard probability distributions on R and Rn equip them with the
structure of metric measure spaces. For example, R with a Gaussian density gives rise
to the Gaussian measure when integrated with regard to the Lebesgue measure.

4. Manifolds also provide natural geometric examples of metric measure spaces – any
compact Riemannian manifold M is a metric measure space under the volume mea-
sure [144]. Samples from the volume measure on a manifold have the property that any
small region has a number of points proportional to its volume; this is a version of the
uniform distribution.

5. Given any metric measure space (X, ∂X , μX), any measurable subset A ⊂ X is itself a
metric measure space, where

μA(V) =
μX(V)
μX(A)

for V ⊂ A.

We can describe finite independent identically distributed (i.i.d.) samples as
follows.

Definition 3.2.13. Let (X, ∂X , μX) be a metric measure space. The product mea-
sure μ⊗n

X makes the metric space (
∏n

i=1 X,
∏n

i=1 ∂X) into a metric measure space,
where
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μ⊗n
X (A1 × A2 × . . . × An) = μX(A1)μX(A2) . . . μX(An),

A1 × A2 × . . . × An ⊆
n∏

i=1

X = X × X × . . . × X.

Thus, an i.i.d. sample of size n from (X, ∂X , μX) can be described as a draw from
the distribution μ⊗n

X .
We will be interested in measures induced by the application of functions

(e.g., persistent homology). To be precise about this, we need the notion of the
pushforward of a measure.

Definition 3.2.14. Let f : (X, ∂X) → (Y, ∂Y) be a measurable function between
the Borel measure spaces X and Y . Then given a probability measure μX , the
pushforward measure f∗μX on Y is specified by the formula

f∗μX(A) = μX( f −1(A)),

for A a measurable set in Y .

Another useful way of generating new measures is by combining old ones.

Definition 3.2.15. Let μ and ν be finite Borel measures on Rn. Then the
convolution μ ∗ ν can be defined as

μ ∗ ν = +∗(μ × ν),
the pushforward of the product measure along the addition map + : Rn × Rn → Rn.

Explicitly, the convolution is given by the formula

(μ ∗ ν)(A) =
∫
Rn

∫
Rn

1A(x + y)dμ(x)dν(y),

where 1A is the indicator function for the measurable set A ⊂ Rn. Convolution
with a Gaussian affords a useful general technique for smoothing distributions
with complicated local structure; the width of the Gaussian controls the degree
of smoothing.

Finally, we note that it is frequently useful to have a notion of size for real-valued
functions on a metric measure space. To this end, we quickly recall the definition
of the Lp and L∞ norms.

Definition 3.2.16. Let (X, ∂X , μX) be a metric measure space and let f : X → R
be a measurable function such that

∫
X

f pdμ < ∞. Then the Lp norm of f for 1 ≤
p < ∞ is



3 Statistics and Topological Inference 189

|| f ||p =
(∫

X
| f |pdμ

) 1
p

.

When p = ∞, we define

|| f ||∞ = inf{k ∈ R | μ({x ∈ X | f (x) > k}) = 0}.

Remark 3.2.17. When X is a finite set and μX is the counting measure (i.e., the
measure that assigns probability mass 1

|X| to each point), these norms reduce to the
pth root of the sum of pth powers and the max, respectively.

Remark 3.2.18. Geometric sampling on non-Euclidean metric measure spaces
can be very subtle, even when dealing with the volume measure on a compact
Riemannian manifold [144]. For example, consider the problem of sampling from
the surface of the sphere S 2 ⊆ R3. In this case, there is a natural parametrization
of the points of the sphere arising from spherical coordinates (r, θ1, θ2). A naive
approach is to use the spherical coordinates to sample: sample uniformly θ1 and θ2

from [0, 2π] and [0, π] respectively and consider the map σ : [0, 2π] × [0, π] → R
specified by

x = sin(θ2) cos(θ1)

y = sin(θ2) sin(θ1)

z = cos(θ2).

Denoting by U the uniform distribution on [0, 2π] × [0, π], we have the pushfor-
ward σ∗U which is supported on S 2 ⊆ R3. However, σ∗U is concentrated at the
poles and is not the distribution associated to the area form. In this case, we can
simply sample uniformly in a cube around the origin in R3 \ {0}, discard points fur-
ther than 1 from the origin, and divide by the norm. More generally, one needs to
use either rejection sampling or Markov chain Monte Carlo (MCMC) techniques.
These methods can be applied to general manifolds, provided one has access to an
explicit and computationally tractable parameterization; of course, this is often a
serious problem.

3.2.2 The Fréchet Mean and Variance of a Metric Measure Space

Most practical applications of statistics involve the use of summary statistics. As
such, it is natural to look for notions of mean and variance that apply in the gen-
eral context of metric measure spaces. The standard approach to this problem is
the theory of the Fréchet mean and variance of a probability measure μ on a met-
ric measure space (e.g., see [487] for an introduction to this theory). Although it
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turns out that this theory is not particularly useful in barcode space (as we explain
below), we nonetheless quickly review it here since understanding the pathological
behavior of the Fréchet mean motivates the techniques used in practice. We restrict
our attention to probability measures μ satisfying a finiteness condition.

Definition 3.2.19. Let (X, ∂X , μX) be a metric measure space. Then the Fréchet
variance as a function of z ∈ X is the integral

vμ(z) =
∫

X
∂X(z, x)2dμ(x).

We will assume that vμ < ∞. Then the Fréchet mean is defined as follows.

Definition 3.2.20. The Fréchet mean is the set

eμ = argmin
(
inf

z
vμ(z)

)
⊆ X,

i.e., the values z ∈ X that achieve the infimum.

When dealing with a finite sample {x1, x2, . . . , xn} from (X, ∂X , μX), the Fréchet
mean and variance of the underlying distribution are approximated using the
empirical measure which assigns probability 1

n to each point in the sample. See
Figure 3.10 for a simple example.

It is not at all clear that the Fréchet mean exists for general metric measure
spaces; in practice, we rely on the following result.

Theorem 3.2.21. Let (X, ∂X , μX) be a metric measure space. If μX has compact
support (e.g., if X is compact), then the Fréchet mean exists.

Figure 3.10 The Fréchet mean (green) of a finite sample (red) from the uniform
distribution on a sphere is the point on the sphere that is the “centroid” of the
sample.
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More generally, the Fréchet mean can be shown to exist as long as the “tails” of
μ decay sufficiently rapidly. (See [285] for a precise statement.)

The general theory of the Fréchet mean and variance provides laws of large
numbers; given finite samples from μ equipped with the empirical measure, the
Fréchet means of the samples converge to the Fréchet mean of μ.

Theorem 3.2.22. Let (X, ∂X , μ) be a metric measure space. Let {Zk} be a collection
of i.i.d. samples Zk ⊂ X drawn according to μ, such that |Zk| → ∞ as k → ∞. Let
μk denote the empirical measure on Zk. Then almost surely eμk → eμ (i.e., the
probability of convergence is 1).

The problem of understanding the convergence of derived quantities of distribu-
tions for increasing finite samples suggests that we should put a topology on the set
of probability measures. We now turn to a discussion of how to construct metrics
on probability distributions and on metric measure spaces.

3.2.3 Distances on Measures and Metric Measure Spaces

In order to state Theorem 2.4.10, the stability theorem for persistent homology
of finite metric spaces, we used a metric on the set of isometry classes of finite
metric spaces. To state the analogous stability theory describing the interaction of
sampling and persistent homology, we will use a metric on the set of isomorphism
classes of compact metric measure spaces. Recall that the Gromov-Hausdorff met-
ric is defined in terms of a metric on subspaces of a fixed metric space, the
Hausdorff metric. To define a metric on metric measure spaces, we will start with
a metric on probability measures on a fixed metric space.

To motivate this definition, we quickly explain the notion of weak convergence
of probability measures. For a metric space (X, ∂X), let P(X) denote the set of Borel
probability measures on X.

Definition 3.2.23. Let (X, ∂X) be a metric space. A sequence {μn} ⊂ P(X) weakly
converges to μ ∈ P(X) if for all bounded continuous functions f : X → R,∫

X
f dμn →

∫
X

f dμ.

The idea of weak convergence is that a sequence of distributions converges when
the average value of any function f converges; i.e., weak convergence means that
the expectation of any random variable converges. This notion of convergence is of
particular importance because it is the kind of convergence that arises in the central
limit theorem.
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Warning 3.2.24. Weak convergence is very different from requiring that the
measure of each set converge!

Since convergence of sequences can be defined in terms of a metric (recall Def-
inition 1.2.7), it is natural to look for a metric that controls weak convergence.
We now introduce several such metrics that are useful in topological data analysis,
starting with the Prohorov distance.

Definition 3.2.25. Let (X, ∂X) be a metric space equipped with two Borel mea-
sures μ1 and μ2. Then we define the Prohorov distance between μ1 and μ2

to be

dPr(μ1, μ2) = inf{ε > 0 | μ1(A) ≤ μ2(Bε(A)) + ε and μ2(A) ≤ μ1(Bε(A)) + ε},
where A varies over all closed sets in X and

Bε(A) = {z ∈ X | ∃ a ∈ A, ∂X(z, a) ≤ ε}.

To understand what the Prohorov distance means, it can be convenient to use
an alternative formulation. For this, we need the notion of a coupling, which is a
probability distribution θ on X×X such that θ(A×X) = μ1(A) and θ(X×B) = μ2(B)
for arbitrary measurable subsets A, B ⊆ X.

Lemma 3.2.26. Let (X, ∂X) be a metric space equipped with two Borel measures
μ1 and μ2. Then we can compute the Prohorov distance as

dPr(μ1, μ2) = inf
C

inf{ε > 0 | C{(x, x′) ∈ X × X | ∂(x, x′) ≥ ε} < ε},
where C varies over all couplings.

Roughly speaking, two measures are within ε in the Prohorov metric when there
is a matching of the space with itself such that on a region of probability mass 1− ε
matched points are within ε and can vary arbitrarily on the remainder.

Proposition 3.2.27. The distance dPr is a metric on P(X, ∂X), the space of prob-
ability measures on X. If X is complete and separable, then given a sequence of
probability measures {μi} that converges to a measure μ in dPr, μi weakly converges
to μ.

A complete and separable metric space is called a Polish space. In general,
Polish spaces are a good setting for probability theory: not only is weak conver-
gence metrizable, but in addition certain pathologies with product measures do not
arise.
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Example 3.2.28.

1. Let μ1 and μ2 be distributions determined by δ-functions, i.e., μ1 has mass 1 on a point
x1 and μ2 has mass 1 on a point x2. Then

dPr(μ1, μ2) = min(∂X(x1, x2), 1).

2. Let (X, ∂X , μX) be a metric measure space and Y ⊂ X have measure > 1 − ε. Then μX

regarded as a distribution on Y has Prohorov distance < ε from μX .

In fact, there are many metrics on P(X) that metrize weak convergence [195].
Optimal transport theory suggests the use of the Wasserstein or “earth-mover” met-
ric [517]. Here, the rough idea is to imagine distributions modeled by piles of dirt;
the Wasserstein distance is the minimal amount of energy (dirt times distance) that
must be expended to transform one distribution into another.

Definition 3.2.29. Let (X, ∂X) be a compact metric space equipped with two Borel
measures μ1 and μ2. For p ≥ 1, the p-Wasserstein distance between μ1 and μ2 is

dWp =

(
inf
C

∫
X×X

∂X(x, y)pdC(x, y)

) 1
p

,

where C varies over all couplings.

Any of the Wasserstein distances metrize weak convergence of probability mea-
sures on metric spaces with bounded diameter (i.e., where the maximum distance
between x1, x2 ∈ X is bounded).

Lemma 3.2.30. The distance dWp is a metric on P(X, ∂X), the space of proba-
bility measures on X. Let (X, ∂X) have bounded diameter. Then given a sequence
of probability measures {μi} that converges to a measure μ in dWp, then μi weakly
converges to μ.

Example 3.2.31.

1. Let μ1 and μ2 be distributions specified by δ-functions; μ1 has mass 1 on x1 ∈ X and μ2

has mass 1 on x2 ∈ X. Then dWp (x1, x2) = ∂X(x1, x2).
2. Let μ1 and μ2 be empirical distributions on finite subsets {xi} ⊂ X and {x′i } ⊂ X such

that |{xi}| = |{x′i }|. Then the Wasserstein distance can be computed as

dWp = min
θ : {xi}→{x′i }

⎛⎜⎜⎜⎜⎜⎜⎝∑
i

(∂X(xi, θ(xi)))
p

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

,

where θ varies over all bijections.
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Remark 3.2.32. It is common in information theory and Bayesian statistics to
measure the difference between distributions μ1 and μ2 in terms of the Kullback-
Leibler divergence. Taking p and q to be probability mass functions on a discrete
space X where q(x) = 0 =⇒ p(x) = 0, the Kullback-Leibler divergence is
computed as ∑

x∈X

p(x) log
p(x)
q(x)

,

where we interpret the contribution of a term with p(x) = 0 to be 0. (An analogous
definition can be given in the setting of measure spaces, but setting it up is suffi-
ciently complicated that we do not pursue it here; see [195] for a discussion, where
it is referred to as relative entropy.)

The Kullback-Leibler divergence has many interesting properties, but it is not a
metric; it is neither symmetric nor satisfies the triangle inequality.

The Wasserstein distance and the Prohorov distance are related, in the sense that

dP(μ1, μ2)2 ≤ dW1(μ1, μ2) ≤ (diam(X) + 1)dP(μ1, μ2)

(and dW1 (μ1, μ2) ≤ dWp(μ1, μ2) ≤ CdW1 (μ1, μ2) for a suitable constant C) [195]. We
can convert the Prohorov and Wasserstein distances into metrics on isomorphism
classes of compact metric measure spaces. The approach is to use an analogue
of the technique that converts the Hausdorff distance into the Gromov-Hausdorff
metric on isometry classes of compact metric spaces.

Definition 3.2.33. Let (X, ∂X , μX) and (Y, ∂Y , μY) be compact metric measure
spaces. The Gromov-Prohorov distance is defined as

dGPr((X, ∂X , μX), (Y, ∂Y , μY)) = inf
φX ,φY ,Z

dPr ((φX)∗μX , (φY)∗μY ) ,

where here φX : X → Z and φY : Y → Z are isometric embeddings into a metric
space Z.

Definition 3.2.34. Let (X, ∂X , μX) and (Y, ∂Y , μY) be compact metric measure
spaces. The Gromov-Wasserstein distance is defined as

dGWp((X, ∂X , μX), (Y, ∂Y , μY)) = inf
φX ,φY ,Z

dWp((φX)∗μX , (φY)∗μY),

where (φX , φY , Z) is as in the previous definition.

Lemma 3.2.35. The Gromov-Prohorov and Gromov-Wasserstein distances are
metrics on the set of isomorphism classes of compact metric measure spaces.
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Remark 3.2.36. Although we do not review this here, there is very interesting
work on the details of the topology induced on the set of isomorphism classes of
metric measure spaces by these metrics [207, 346, 347].

3.3 Probability Theory in Barcode Space

The foundation of any statistical approach to persistent homology is the notion
of a probability distribution of barcodes. The set B of barcodes is a metric
space under the bottleneck distance dB (Definition 2.4.8) or the p-Wasserstein
distance dWp (Definition 2.4.9). Therefore, B endowed with the Borel σ-algebra
becomes a measurable space: we can work with the collection of Borel proba-
bility measures on B. Proposition 3.2.27 shows that the Prohorov metric on the
set of Borel probability measures metrizes weak convergence of probability mea-
sures when the underlying metric space is complete and separable. We begin
this section by constructing subspaces of barcode space that are complete and
separable.

3.3.1 Polish Spaces of Barcodes

A first thought is to consider the set of finite barcodes. It is easy to see that this
barcode space is separable for either the bottleneck or Wasserstein distance; an
arbitrary “bar” [a, b), with a, b ∈ R, can be approximated arbitrarily well by choos-
ing rational approximations a′ for a and b′ for b. However, the set of finite barcodes
is not complete.

Example 3.3.1. Consider a sequence of barcodes {Xi} where X0 = ∅ and Xi is obtained
from Xi−1 by adding a disjoint bar [0, 1

n ). That is,

Xi = {[0, 1), [0, 1/2), [0, 1/3), . . . , [0, 1/i)}.
Working with the bottleneck distance, it is easy to check that {Xi} is a Cauchy sequence
(recall Definition 1.2.9),

dB(Xi, X j) ≤ 1
max(i, j)

,

as the distance between Xi and X j is bounded by the longest bar present in X j and not in
Xi (assuming that j > i). But {Xi} does not converge to any element of B; the sequence is
clearly converging to a barcode with infinitely many bars! (See Figure 3.11 for a picture of
this sequence.)

Instead, we can consider countable barcodes, although certain finiteness condi-
tions are still required.
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1
1/2 1/3

1/4 1/5 1/6

Figure 3.11 By adding shorter and shorter bars, this sequence eventually con-
verges to a barcode with infinitely many bars!

Definition 3.3.2. Let B denote the subspace of B consisting of those barcodes
such that for all ε > 0, the number of bars of length > ε is finite. We regard B as a
metric space with the bottleneck metric (recall Definition 2.4.8).

When working with the p-Wasserstein metric, it turns out that we need to use a
slightly different finiteness condition.

Definition 3.3.3. Let BP denote the subspace of B consisting of those barcodes B
for which

dWp(B, ∅) < ∞.
We regard BP as a metric space with the p-Wasserstein metric (recall Defini-
tion 2.4.9).

These finiteness conditions rule out phenomena like that exhibited in Exam-
ple 3.3.1: we can now show that B and BP are complete metric spaces [60, 352].

Theorem 3.3.4. The metric spaces (B, dB) and (Bp, dWp) are complete and
separable.

In order to summarize distributions in B and Bp, we need to define summary
statistics. In light of the discussion in the preceding section, one might hope to use
the Fréchet mean and variance. Unfortunately, the Fréchet mean of a distribution
of barcodes is not that useful in practice.

1. Computing the Fréchet mean is computationally expensive. An algorithm for
computing an approximation to the Fréchet mean for finite sets of barcodes
equipped with the empirical measure is given in [511]; however, the algo-
rithm involves gradient descent (and so only finds local minima of the variance
expression) and the rate of convergence is not well understood.

2. The Fréchet mean of a distribution μ is not necessarily unique; barcode space
is positively curved [511], which means that unique geodesics do not connect
all points; see Section 4.7.3. (In fact, most pairs of points are not connected by
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unique geodesics, in a precise sense.) In particular Fréchet means may not be
unique.

3. The Fréchet mean is very unstable; small perturbations in the sample distribu-
tion can cause the mean to jump around. To handle both this and the preceding
problem, the paper [367] proposes using a distribution-valued variant of Fréchet
means. Nonetheless, computation is still basically intractable.

As a consequence, the Fréchet mean and variance of distributions on barcode
space are primarily of theoretical interest; in Section 3.6 below, we discuss various
practical summary statistics.

3.3.2 Sampling and Hypothesis Testing in Barcode Space

We now describe our formalization of sampling problems in persistent homology
using the analysis of the barcode space above. Specifically, we work with the
following assumptions.

Hypothesis 3.3.5.

1. The data consists of independent samples from a metric measure space
(X, ∂X , μX).

2. For any k, the function assigning the kth persistent homology barcode to a sam-
ple {x1, . . . , xn} ⊂ X drawn from μX is a measurable map. (For example, in the
case of the Vietoris-Rips complex, the stability theorem for persistent homol-
ogy (Theorem 2.4.10) implies that persistent homology is continuous and hence
measurable.)

3. Therefore, taking the product measure μ⊗n
X on Xn and then computing persistent

homology, we obtain an induced measure PH∗μ⊗n
X on B. This distribution rep-

resents the distribution of barcodes associated to PHk computed from samples
of size n.

A standard statistical approach would now be to assume that the distribution μ on
(X, ∂X) is parametrized by values (z1, z2, . . . , zk). We might then hope to compute a
joint density function in terms of a likelihood function. In this way, in principle, one
could use a maximum likelihood method to estimate the parameters. However, in
general, these kinds of statistical procedures are not really feasible, as we explained
above in Section 3.1.2. The problem is that without stringent constraints there is
no reasonable way to come up with sensible “topological hypotheses,” for the fol-
lowing basic reasons. Theorem 3.1.2 and Corollary 3.1.3 show that the problem of
specifying a topological hypothesis is ill posed. Only in certain special cases (e.g.,
the data is known to be low dimensional or known to be contractible) is it at all
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reasonable to imagine producing a guess about the underlying topological type of
the process generating the data or a parametric distribution for sampling from this
topological space.

Even in the situation where a specific topological hypothesis is reasonable, it is
often a challenging problem to provide an efficient algorithm for sampling from the
null hypothesis. There are not natural parametric families of distributions for most
metric spaces (X, ∂X). Even in the case of a manifold, the most naive approach to
specifying a distribution involves choosing coordinate charts and sewing together
distributions on each chart – parametric inference and sampling is complicated in
this setting. As an example of the difficulties, recall from the discussion in Sec-
tion 3.2 above (notably Remark 3.2.18) that even correctly sampling from the
volume measure on a compact Riemannian manifold defined by specific systems of
equations requires some care. It is possible to compare the homology of observed
data against samples generated from some standard random distribution on a com-
pact geometric region bounding the empirical support. See Section 3.7 below for
discussion of recent progress on theoretical understanding of the resulting distri-
butions of barcodes; of course, simulation can also produce empirical estimates of
these distributions. But more general topological hypotheses are out of reach except
under stringent hypotheses about the dimension or complexity of the underlying
space.

As a consequence, we focus on how to reliably estimate barcodes from sam-
ples and how to produce tractable features from barcodes. We can now reformulate
more precise versions of the questions from the introduction to this section; we
pose the problems in terms of how to estimate the persistent homology of a met-
ric measure space (X, μX) from a sample {x1, x2, . . . , xk} and use this estimate for
inference. (For expositional convenience, we assume that supp(μX) = X.)

1. If k is large enough, does the sample faithfully represent the persistent homol-
ogy of the underlying space X? To be precise, if we take a sequence of finite
samples S n of increasing size from a metric measure space (X, ∂X , μX), does the
sequence {PHk(S n)} converge to PHk(X)?

2. Under the conditions for which the first question has a positive answer, how fast
is the rate of convergence? Can we construct confidence intervals controlling
the expected error in the estimate PHk(S n)?

3. Analogously, if our points are sampled from a density ρ on A ⊆ Rn, can we
recover the persistent homology of the level set filtration associated to the super
level sets

Γρ(z) = {x ∈ A | ρ(x) > z}.
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Can we understand the rate of convergence and construct confidence intervals?
4. Given a collection of barcodes generated by samples of size k, how do we

produce summaries of these barcodes? The discussion in Section 3.3 above sug-
gests that the Fréchet mean is not useful in practice. A related question is how
to produce numerical summaries that can be used as input to standard machine
learning algorithms.

5. In the presence of noise, how can we ensure reliable estimation of barcodes?
The stability theorem for persistent homology (Theorem 2.4.10) implies that if
the noise is concentrated in the Gromov-Hausdorff metric, we can expect good
behavior. But suppose the noise consists of “outliers” that are far from the data.
How can we ensure that the estimates of persistent homology are not arbitrarily
disrupted?

3.4 Stability Theorems for Persistent Homology of Metric
Measure Spaces

We begin with analogues of the stability theorem in the context of metric mea-
sure spaces. We describe two related approaches to such a theorem. First, we
consider distributions of samples. The idea is to consider the induced distri-
butions on barcode space associated to the empirical persistent homology of
subsamples of a fixed size (Figure 3.12). For samples of size n, we define the asso-
ciated distributional persistent homology of a metric measure space (X, ∂X , μX) as
follows.

Figure 3.12 The distribution of barcodes is induced by taking many samples of a
fixed size and computing their persistent homology.



200 Part I Topological Data Analysis

Definition 3.4.1. For n and k, we define the distributional persistent homology

Φn
k(X, ∂X , μX) = (PHk)∗(μ⊗n

X ),

the distribution on B induced by pushforward along PHk of the product measure on
the Cartesian product Xn.

In practice, we approximate Φn
k by sampling many blocks of size n and comput-

ing the empirical distribution; as the number of blocks approaches ∞, the law of
large numbers guarantees that these approximations converge to the underlying dis-
tribution Φn

k . We might also subsample these blocks of size n from a larger sample
from μX; see Figure 3.13 for an example of this.

In order for Φn
k to recover the persistent homology of X, the size n must be

sufficiently large so that the samples can capture topological features of X; selecting
n large enough requires information about the feature scale. However, even when n
is too small, we can regard Φn

k as containing geometric information about the data,
because of the following stability theorem [60].

Theorem 3.4.2. Let (X, ∂X , μX) and (X′, ∂X′ , μX′) be metric measure spaces. Fix
n and k.

dPr(Φ
n
k(X, ∂X , μX),Φn

k(X′, ∂X′ , μX′)) ≤ ndGPr((X, ∂X , μX), (X′, ∂X′ , μX′)).

Interestingly, this bound is tight (and the n is unavoidable). One way of under-
standing the role of n is that as n increases the invariants become finer and finer
and better approximate the support of the measures, which can be far apart even
though the Gromov-Prohorov distance of the metric measure spaces is small. The-
orem 3.4.2 implies that the distributional invariants Φn

k are robust invariants, in the
sense that changing X on an ε-probability mass arbitrarily can perturb Φn

k by at
most nε. One can also formulate a Gromov-Wasserstein version of this result.

However, note that there is some subtlety to the behavior of these invariants in n;
having a smaller n can make the results less sensitive to outliers since fewer noise
points turn up in any given sample. On the other hand, smaller n means less reso-
lution for detecting actual topological features of the data. Compare Figures 3.14
and 3.15.

Of course, as we have discussed, working with distributions of barcodes directly
is difficult, and so in practice we will rely on ways of approximating these by dis-
tributions on R; we will describe ways to do this in Section 3.6. Before moving
on, we note two pragmatic benefits to using distributional invariants: the parame-
ter n can be chosen to accommodate the computational power available, and the
computation of Φn

k can be evidently parallelized with linear speedup.
We now turn to another approach to a probabilistic stability theorem which is

similar in spirit to Theorem 3.4.2. We suppose we are given a data set X embedded
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Figure 3.13 In practice, we might subsample from a large sample from the underlying distribution.
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Figure 3.14 Samples of size 100 are quite clean, showing just two long bars (although note the way the bars move around relative to one
another).
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Figure 3.15 Samples of size 200 have more stability in the position of the two long bars but also have a lot more short noise bars.
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in Rn. Recall from Remark 2.3.5 that the filtered complex associated to the Čech
complexes on X can be alternatively described in terms of the filtration imposed by
the distance function. Specifically, let C be a compact subset of Rn. The distance
function D : Rn → R is defined as

D(x) = inf
z∈C ∂R

n(x, z).

The sublevel sets {x | D(x) ≤ ε} as ε varies are precisely the filtration imposed
by the geometric Čech complexes of C. (When working with a finite metric space
(X, ∂X), the inf is replaced by the minimum.)

Estimating the persistent homology of the filtration for X ⊂ Rn via samples
from some distribution on X is very sensitive to outliers. The work of [104, 108]
proposes to handle this by replacing the distance function D (which captures the
distance to the support of X) by a generalization that incorporates the measure on
X. This generalization is referred to as the distance to a measure. For a continuous
distribution, we have the following definition.

Definition 3.4.3. Let (X, ∂X , μX) be a compact metric measure space. Let Fx(t) =
μX({z | ∂Rn(x, z) ≤ t}). Then for 0 < m < 1 we define the distance to a measure to
be

δμX ,m(x) =

√
1
m

∫ m

0
F−1

x (u)2du,

where here

F−1
x (u) = inf

t
{t | Fx(t) ≥ u}.

Here m is a resolution parameter that is a measure of the feature scale; choice
of suitable values of m is once again an issue in practical use. The idea of the
parameter m is that we are averaging density-biased approximations to the distance
over a range controlled by m. Along these lines, for finite samples, the distance to
a measure has a much simpler expression.

Lemma 3.4.4. Given a finite sample Y = {x1, x2, . . . , xn} ⊆ X, the distance to a
measure function for the empirical distribution on Y for m is

δm(x) =

√
1
k

∑
zα∈Nk(x)

∂Rn(zα, x)2,

where here k is the smallest integer ≥ mn and Nk(x) denotes the k nearest neighbors
of x in Y.

Notice that when m is very small, the distance to a measure function is very
close to the distance function D. The advantage of the distance to a measure is that
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it is Wasserstein stable, in the sense that the L∞ norm distance is bounded by the
2-Wasserstein distance. Specifically, we have the following theorem.

Theorem 3.4.5. Suppose that μ1 and μ2 are two probability measures on Rn. Then
for mass parameter 0 < m < 1, we have

||δμ1,m − δμ2,m||∞ ≤
1√
m

dW2 (μ1, μ2).

In turn, the bottleneck distance between the persistence diagrams associated to
the distance filtrations on these two functions is bounded by the L∞ norm.

Corollary 3.4.6. Suppose that μ1 and μ2 are two probability measures on Rn.
Then for mass parameter 0 < m < 1, we have

dB(Pδμ1 ,m
, Pδμ2 ,m

) ≤ ||δμ1,m − δμ2,m||∞ ≤
1√
m

dW2(μ1, μ2).

As a consequence, we can conclude that the persistent homology estimate asso-
ciated to the distance to a measure filtration is robust to outliers having low
probability mass. (See Figure 3.16 for an example demonstrating robustness in
the face of outliers.)

Furthermore, one can show [108] that the distance to a measure is statistically
well behaved in the sense that a uniform law of large numbers applies to establish
that it can be approximated by finite samples. Moreover, there are natural con-
fidence intervals describing how well it is approximated by empirical estimates.
Another interesting aspect of the distance to a measure is that, since for small m
it approaches the ordinary distance function to X, in principle it can be used for
geometric inference. On the other hand, computing the distance to a measure is
difficult in practice due to problems associated to estimating level sets. See [79] for
recent work that provides better algorithms and also extends the methodology to
arbitrary metric spaces.

We now turn to the issue of understanding the way that the empirical persistent
homology converges to the persistent homology of the underlying space.

3.5 Estimating Persistent Homology from Samples

Suppose we take a sequence of finite samples S n of increasing size from a met-
ric measure space (X, ∂X , μX). It is straightforward to see that in fact {PHk(S n)}
does converge to PHk(supp(μX)) almost surely, provided that X is bounded:
Lemma 1.2.20 shows that for any compact metric measure space (X, ∂X), there
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exists a finite ε-net Xε for each ε > 0. If we were given a sequence {Xn} such that
as n→ ∞, Xn is an 1

n -net,

{Xn} −→ X

in the Gromov-Hausdorff metric and so

{PHk(Xn)} −→ PHk(X)

in the barcode metric. The point now is that for any ε, there exists an n sufficiently
large so that any sample of size > n is with high probability an 1

n -net. This implies
the following result.

Theorem 3.5.1. Let (X, ∂X , μX) be a metric measure space. Let {S n} be a sequence
of finite samples drawn from μX such that |S n| → ∞. Then almost surely PHk(S n)
converges to PH(supp(μX)) in the barcode metric (or Wasserstein metric).

Theorem 3.5.1 focuses attention on the rate of convergence of {PHk(S n)}. The
key issue is to analyze the number of samples needed to obtain an ε-net with high
probability (for some fixed ε). Such estimates require knowledge of the feature
scale; we need to be able to compute how likely we are to sample in a ball around
any given point. Estimates for compact Riemannian manifolds were given by
Niyogi-Smale-Weinberger [384] (as explained in our discussion of Theorem 2.2.1),
and elaborated on and extended by [170]. We describe the problem in the frame-
work of the latter, which is more general and is expressed explicitly in terms of the
language of confidence regions.

A confidence region is the multivariate analogue of the basic statistical notion of
a confidence interval, which we now review. Returning to our example of estimat-
ing parameters of a Gaussian, we suppose that we have a sample {x1, . . . , xn} from
a Gaussian distribution with mean μ and standard deviation σ. As discussed above,
to estimate μ we compute the empirical mean μ̂ from the samples. We know that as
n increases, it is very likely that μ̂ will be a good approximation of μ. One way to
make that precise is to talk about a confidence interval.

Definition 3.5.2. A confidence interval [a, b] with confidence level α for the
parameter θ is specified by two random statistics a and b such that the probability
that θ ∈ [a, b] is α.

For example, we know that μ̂ is distributed according to the t-distribution
around μ with parameters determined by σ̂, and using this fact we can derive the
confidence interval for μ [

μ̂ − cσ̂√
n − 1

, μ̂ +
cσ̂√
n − 1

]
,
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where c is chosen such that the probability in the tail of the distribution larger than
c has mass 1−α

2 .
We now turn to the analogous notions for persistence diagrams. Associated to a

specific c, the confidence set around a barcode B is a subset of the set of barcodes
within a distance c of B. We can visualize this as the union of squares with side-
length 2c is centered at each point of the persistence diagram. Points where the
bounding box intersects the diagonal can be interpreted as noise. (Alternatively,
we can put a band of width (

√
2)c around the diagonal.) See Figure 3.17 for an

example.
To define a confidence set with probability α, we need to find c such that the

true parameter is within c of the empirical barcode with probability larger than α.
To formulate this, it turns out to be useful to talk about asymptotic confidence sets,
defined as follows.

Definition 3.5.3. Fix a reference barcode B and denote by B̂n the empirical bar-
code computed from a sample of size n. For 0 < α < 1, the asymptotic 1 − α
confidence set is the collection of regions determined by a (usually decreasing)
sequence cn > 0, where

lim sup
n→∞

Pr(dB(B, B̂n) > cn)) < α.

(Recall that lim sup denotes the limit of the supremums of the remaining terms in
the sequence.)

Figure 3.17 The confidence interval around the persistence diagram (in blue) is
given by the boxes; a band around the diagonal contains “noise.”



3 Statistics and Topological Inference 209

As one would expect, the rate of convergence (i.e., how large n has to be in order
to obtain sufficiently small cn) depends on the details of the density and the feature
scale of the underlying manifold space. Going forward, we will assume that M is
a compact manifold of dimension d embedded in Rk (k > d), that the condition
number (recall Section 2.2) of M is positive, and that the samples are drawn from
a probability density on Rk which is supported on M, smooth, and bounded away
from 0.

Remark 3.5.4. More generally, it suffices for M to be a compact and rectifi-
able (piecewise smooth) subset of Euclidean space and to have a relatively weak
differentiability criterion for M.

To bound the convergence of the confidence intervals for persistence diagrams,
we define

ρ(x, t) =
Pr(B t

2
(x))

td
and ρ(t) = inf

x∈M
ρ(x, t).

Then ρ = limt→0 ρ(t) captures relevant information about the local variation in the
probability measure on M.

We now fix our space M ⊂ Rk and let P denote the persistent homology of the
sublevel sets of the function

∂M(z) = inf
y∈M

∂Rk (y, z).

(Recall from Remark 2.3.5 that this is a version of the Čech complex.) For a sample
of size n, let P̂n denote the empirical persistent homology, i.e., the persistent homol-
ogy of the sublevel sets of ∂M restricted to Pn. We have the following analogue of
Theorem 2.2.1.

Proposition 3.5.5. Under the hypotheses above,

Pr(dB(P , P̂n) > t) ≤ 2d

ρ( t
2 )td

e−nρ(t)td .

The associated confidence region is the collection of boxes of side length t centered
at the points of the persistence diagram Pn.

In particular, setting

tn =

(
4 log n
ρn

) 1
d

,
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we have that

Pr(dB(P , P̂n) > tn) <
2d−1

n log n
.

Making use of this result involves estimating ρ, which can be done using the plug-in
estimator

ρ̂n = min
i

Pn(B rn
2

(xi))

rd
n

,

where rn is a sequence of numbers approaching 0 and Pn denotes the empirical
measure for the sample {x1, x2, . . . , xn}.

There are a number of other methods of obtaining similar confidence inter-
val estimates that are of broader interest; we turn to discussion of those in the
remainder of the section.

3.5.1 Estimating Persistent Homology by Density Estimation

Another approach to computing the persistent homology from samples of a den-
sity in Euclidean space is to use standard techniques for density estimation to
approximate the support of the density (e.g., see [429] for a modern theoretical
analysis). Given a suitable probability density ρ on Rd, the problem of estimating
the superlevel sets

Γρ(z) = {x ∈ Rd | ρ(x) > z}
is a classical question in statistics. The path-connected components of Γρ(z) have
long been studied in the context of unsupervised clustering and classification [229].

From the perspective of persistence, a natural question is to try to estimate the
persistent homology of the level set filtration determined by the inclusions

Γρ(z2) ⊆ Γρ(z1)

for z1 < z2. A standard approach is to use a kernel density estimator; this is a
smoothed version of the empirical density. The specific choice of kernel function
employed is not important for our discussion, except for the following properties.
We require a function K : R→ R such that

1.
∫

K = 1,
2. the kernel has mean 0,
3. supx K(x) = K(0), and
4. K is Lipschitz for some constant �.

Typically we will think of a smooth symmetric kernel, e.g., the Gaussian kernel

K(t) = 1√
2π

e−
x2
2 .
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For a bandwidth parameter h (this controls the amount of smoothing), define the
measure

Kh(A) = h−d
∫

A
K(h−1t)dt.

Given the density ρ and associated measure P on Rd, we want to study the convo-
lution Ph = Kh ∗ P, which we regard as a smoothed version of P. Denote the level
set persistent homology of Ph by PHk(Ph).

We can form an empirical approximation as follows. The density of the
convolution is

ph(x) =
∫

M

1
hd

K

(
∂Rd (x, u)

h

)
dP(u),

and so the standard estimator given points {x1, . . . , xn} is given by

p̂h(x) =
1
n

n∑
i=1

1
hd

K

(
∂Rd (x, xi)

h

)
. (3.1)

We can now compute the persistence diagram associated to the level set filtration
determined by the estimated density p̂h, which we will denote by PHk(P̂h).

Remark 3.5.6. We note that this is estimating a somewhat different quantity
than the persistent homology of the support of ρ; instead, we are in some sense
directly estimating the homology of the support of ρ using the persistent homol-
ogy of the level set filtration. This increases the robustness of the result, due to
smoothing.

For simplicity, we assume that the support of the distribution P is contained in
the Euclidean box [−c, c]d ⊆ Rd. Standard arguments show that p̂h converges to ph;
this follows from Hoeffding’s inequality, for example. (And stronger statements
can be derived from tighter refinements of this sort of bound.) Translating this into
a statement about persistence diagrams, we obtain the following result.

Theorem 3.5.7. Under the hypotheses above, for fixed α and for any distribution
P supported on the box [−c, c]d

Pr(dWp(PHk(P̂h), PHk(Ph)) > δn) ≤ α
and where δn is a solution to the equation

2

⎛⎜⎜⎜⎜⎝4c�
√

d
δnhd+1

⎞⎟⎟⎟⎟⎠d

e
− nδnh2d

2K(0)2 = α.
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Figure 3.18 In the top panel, the 95% confidence interval contains the two bars for
both H0 and H1 (dots represent H0, triangles H1); this correctly separates signal
from noise. However, in the bottom panel, the 95% confidence interval suggests
that all of the H1 bars are noise.

As we can see in Figure 3.18, the confidence intervals computed in this fashion
are fairly conservative.

For data embedded in Euclidean space, density estimation can also be used to
eliminate outliers by smoothing to remove regions of low density. For example, this
was performed manually in the famous example of the Klein bottle in visual image
data [95], and is a standard data analysis tool [251]. Specifically, the persistent
homology associated to the level set filtration of a density estimator is robust in the
presence of outliers.

Let X ⊆ Rn denote the set of all points that might be returned by sampling,
including both data points and noise points, i.e.,

X = X′ ∪ Z, where Z ∩ X′ = ∅,



3 Statistics and Topological Inference 213

where we regard X′ as real data and Z as noise. Assume that the distribution on X
we have experimental access to is

Ψ = εθ + (1 − ε)μ,
for 0 ≤ ε ≤ 1, where μ is supported on X′ and is the distribution we wish to
estimate. We make no assumptions about θ.

Denote by Pρ the persistence diagram associated to the level set filtration of the
standard density estimator of equation (3.1), for fixed width parameter h, applied
to empirical samples from a distribution ρ. The following lemma is now a simple
calculation [170].

Lemma 3.5.8. Let X ⊆ Rn be a subspace with probability densityΨ = εθ+(1−ε)μ.
Then

dB(PΨ,Pμ) ≤ Cε,

where C is a constant that depends on h.

This result implies that when ε is small and h is chosen appropriately, PΨ is a
good approximation to Pμ no matter what θ is, in particular, no matter how far away
from X′ the points of Z may be. Simple experiments in low dimensions validate this
result [170].

Although this result is very encouraging, the general problems with density fil-
tering remain – namely, choosing the width parameter requires either knowledge
of the feature scale of the underlying data or a lot of experimentation, and density
filtering is really only tractable for data embedded in Euclidean space or compara-
tively simple manifolds (see Figure 3.19). (Nearest neighbor density estimators do
not perform well for realistic numbers of sample points.)

We believe that density filtering could be an ideal application of multidimen-
sional persistence.

3.5.2 Estimating Persistent Homology by Resampling

Resampling is a standard technique for estimating confidence intervals around an
empirical estimate of some quantity by generating many new finite subsamples
from the given finite sample. Given n data points X = {x1, x2, . . . , xn}, there are two
distinct possibilities for resampling estimators.

1. Subsampling involves estimating confidence intervals from empirical quantiles
computed from subsamples {S i} of size k < n generated by drawing without
replacement from the empirical distribution on X (e.g., [412]).



2.0

2.0 4.0

1.0

0.0

0.0

–1.0

–2.0

–2.0 6.0

K
D

E

0.
0

0.
4

0.
3

0.
2

0.
1

500 1000

Index

0 250020001500

D
ea

th

0.
4

0.
8

0.
0

0.20.0 0.80.60.4

Birth

Distance Function Diagram

Figure 3.19 Using a density estimator provides a robust computation of the persistent homology.
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2. The bootstrap involves estimating confidence intervals from empirical quan-
tiles computed from subsamples {S i} of size k < n generated by drawing with
replacement from the empirical distribution on X (e.g., [54]).

We now discuss the use of these ideas to estimate persistent homology from finite
samples. We start with the first case above, subsampling. Results in this regime are
asymptotic and so stated in terms of the convergence of both n and k to∞. We first
work with the hypotheses of Proposition 3.5.5.

Remark 3.5.9. In the following discussion, to talk about asymptotic convergence
we use “big-O” and “little-o” notation.

1. To say that a sequence {xn} is o( f (n)) means that for every k ∈ R, there exists
an N ∈ N such that for all m > N, xm < k f (m).

2. To say that a sequence {xn} is O( f (n)) means that there exists a constant k ∈ R
and N ∈ N such that for all m > N, xm < k f (m).

Roughly speaking, the sequence is o( f (n)) if it grows strictly more slowly than
the function f whereas the sequence is O( f (n)) if it grows at most as fast as a
constant times f (n).

Let bn denote a sequence such that

bn → ∞ and bn = o

(
n

log n

)
.

Let N =
(

n
bn

)
, and denote by {S i} the collection of all N subsamples of size bn from

the given sample {x1, x2, . . . , xn}. Set

Ln(t) =
1
N

N∑
j=1

I(dH(S i, S ) > t),

where I is the indicator function and dH is the Hausdorff metric. For a given α ∈
(0, 1), let

cn = 2L−1
n (α).

The arguments of [412] then imply convergence of the subsamples to the underly-
ing metric space in Hausdorff measure and hence the following theorem providing
confidence regions.

Theorem 3.5.10. Under the hypotheses of Proposition 3.5.5, for large n (and
ρ > 0), we have

Pr(dB(P , P̂n) > cn) ≤ α + O

⎛⎜⎜⎜⎜⎜⎜⎝(bn

n

) 1
4
⎞⎟⎟⎟⎟⎟⎟⎠ .
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We can also apply the bootstrap; in this situation, the best results come from
considering the context of level set estimation from the density estimator. We work
with the hypotheses of Section 3.5.1.

Then we have the following theorem.

Theorem 3.5.11. Under the hypotheses of Theorem 3.5.7, we have that

lim
n→∞ Pr

(
dB(Ph, P̂h) >

qα√
n

)
≤ α.

Here qα is the 1 − α quantile and is described below. The estimated confidence
interval is then of width 2qα√

n
.

We can estimate the value qα as

q̂α = inf
q

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑
i=1

I(
√

n||p̂i
h − p̂h||∞ ≥ q) ≤ α

⎞⎟⎟⎟⎟⎟⎠ ,
where p̂i

h is the empirical probability density of the ith bootstrap subsample
and ||(−)||∞ denotes the L∞ norm. Figure 3.20 has an example of confidence
regions produced in this fashion; again, notice that these regions are quite
conservative.

Remark 3.5.12. It is also possible to show that resampling methods and the boot-
strap can be applied directly in barcode space; this is more challenging technically
due to the complexity of the metric geometry of B. The issue is that establishing the
asymptotic consistency of the bootstrap depends on obtaining control on the com-
plexity of the class of functions used to describe empirical processes. For example,
in R, one uses the indicator functions supported on intervals (−∞, t]. In barcode
space, bounding the complexity of natural function classes is difficult and requires
imposing further finiteness restrictions on the allowable barcodes.

3.6 Summarizing Persistence Diagrams

The results of Section 3.3 and Section 3.4 imply that it is possible in some circum-
stances to reliably estimate the persistent homology of a geometric object from
samples. However, as we have emphasized, it remains difficult to directly apply the
estimated barcode to inference. In view of this, a compelling approach is to study
associated features produced by a choice of measurable map
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Figure 3.20 In the top panel, the 95% confidence interval clearly contains one bar
and has a second at the edge for both H0 and H1; this correctly separates signal
from noise. However, in the bottom panel, the 95% confidence interval suggests
that all of the H1 bars are noise whereas both the H0 bars appear significant.

θ : B → Rn.

More generally, we might consider a measurable map

θ : B → V,

for a vector space V which has a compatible topology (e.g., induced by the norm
metric); V is regarded as equipped with the Borel σ-algebra. Then a distribution ρ
on barcode space induces a pushforward distribution θ∗ρ on Rn or V .

This methodology has two substantial concrete benefits.

1. Many standard techniques in classical statistics apply essentially immediately
to the distribution θ∗ρ on Rn or V . For example, summary statistics for θ∗ρ,
while not necessarily corresponding to any barcode, are now easy to compute
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and work with. Consistency and convergence rates for empirical estimates can
be quickly derived.

2. The resulting statistics can be used as input to visualization techniques or also
as features for machine learning, e.g., classification and clustering algorithms.
A particular advantage here is that such features can be combined with other
sources of information or statistics produced from the raw data.

We can summarize the benefits of this simplification approach in terms of the
following meta-theorem.

Theorem 3.6.1 (Meta-theorem of real projections from barcode space). For any
reasonable real-valued test statistic of barcodes, i.e., a suitable map B → Rn, all
the standard theorems and techniques of statistics and machine learning can be
applied to the pushforward of any distribution on B.

There is infinite variety in the choice of feature maps to apply; in the remainder
of this section, we discuss some representative examples.

3.6.1 Tractable Features from Persistence Diagrams

We begin by considering two simple and generic approaches for embedding arbi-
trary metric spaces in Rm: the distance distribution and landmark embeddings. Both
of these are easy to apply to distributions of barcodes, and yield distributions on
Euclidean space. Then, for example, the mean of the pushforward distribution is a
useful summary statistic.

The distance distribution is simply the induced distribution produced by com-
puting distances between points; the next definition makes sense since the metric
is always a measurable map on a metric measure space. See Figure 3.21 for a
simple example.

Definition 3.6.2. Let (X, μX , ∂X) be a metric measure space. The distance distri-
bution on R is defined to be the pushforward (∂X)∗μ⊗2

X of the distribution μ⊗2
X on

X × X along the function ∂X : X × X → R.

There are various elaborations of this example; for instance, one could consider
distributions of k × k distance matrices induced by samples of size k. (Distance
matrices as summaries of barcodes were studied in [97].)

Remark 3.6.3. In fact, a famous result of Gromov implies that a metric measure
space is uniquely characterized by such distance matrix distributions for all k, in
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Figure 3.21 Left: The distance distribution for 1000 points sampled uniformly
from [0, 1]. Right: The distance distribution for 1000 points sampled uniformly
from S 1.

the sense that two metric measure spaces (X, ∂X , μX) and (Y, ∂Y , μY ) are isomorphic
if and only if the distance distributions coincide as k goes to∞ [212].

Another possibility is to consider distances to a fixed collection of points.
Choose k landmark points {�1, . . . , �k}; these can be selected arbitrarily, or as points
of interest based on domain knowledge, or via a randomized algorithm biased to
choose a point far from the existing landmarks, etc.

Definition 3.6.4. Let (X, μX , ∂X) be a metric measure space and take a finite
subset {�1, . . . , �k} ⊂ X. Then the landmark embedding distribution on Rk is the
pushforward of μX along the function X → Rk specified by the formula

x �→ (∂X(x, �1), ∂X(x, �2), . . . , ∂X(x, �k)) .

Remark 3.6.5. The selection of landmarks introduces many new statistical prob-
lems. For instance, the choice of k introduces a rough notion combining dimension
and feature scale; the larger the dimension and the smaller the feature scale, the
more landmark points one needs. Moreover, questions of stability of the results in
the face of shifts in landmark points immediately arise. Currently, there are not
many theoretical results in this regime (e.g., recall the discussion of the properties
of the weak witness complex in Section 2.7). On the other hand, standard statisti-
cal tools (e.g., empirical confidence intervals for quantities computed from these
distributions) can be applied to handle such issues.

The landmark distribution is a first guess at how to embed a metric space
in Euclidean space. There is in fact an enormous literature on the problem of
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Figure 3.22 (a) The length of the longest bar, (b) the ratio of the endpoints of
the longest bar, (c) the number of bars of length over 4, and (d) the righthand
endpoints of each bar.

efficiently embedding a finite metric space in Euclidean space in a way which min-
imizes distortion (e.g., see [168] for a celebrated and essentially optimal result);
although there has not been much investigation so far of these techniques in TDA
(although see [455] for work that employs methods from this literature) we expect
that this will be a useful avenue of research.

There are also many specific invariants of barcodes that provide values in R
or Rn; we provide some representative examples. (See Figure 3.22 for a specific
example.) Note that a basic and important issue to consider for any such feature is
whether it is stable with respect to perturbation in the barcode metric.

1. For a barcode B we can define

gm(B) = |B(m)| − |B(m + 1)| and hm(B) =
B(m)

B(m + 1)

where B(k) denotes the kth largest interval in B.
2. Given a barcode B, we can consider the set of birth-times {xi} or the set of

death-times {xi} to provide a map to Rn, where n is a bound on the size of the
barcodes we consider.

3. Given a barcode B, we can consider a map to Z given by the number of non-zero
bars or the number of non-zero bars greater than some minimum length ε.

4. Given a barcode B, we can consider a map to Rn given by the set of lengths
{yi− xi} or the set of size ratios

{
xi
yi

}
; to make sense of this, we must again bound

the size of the barcodes and also sort the bars by length.

In [49], an explicit embedding of persistence diagrams in high-dimensional
Euclidean space is considered; the idea is to take a grid on the persistence diagram
and count barcode points within it. Unfortunately, this is not stable for certain kinds
of perturbations of the barcodes that are small in the bottleneck distance.
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3.6.2 Kernel Methods for Barcodes

The idea of kernel methods for machine learning involves embedding the data
points in some kind of infinite-dimensional vector space where standard machine
learning techniques apply. The trick is that rather than working with the embedding
directly, it turns out to be sufficient to understand the inner product between two
points in the embedded space; this is the kernel function. We say a bit more about
the specifics of this in Section 4.3.4. Here, we focus on explaining the construction
and definition of kernels for barcodes based on approximating a persistence dia-
gram with a sum of Gaussian functions [4, 425]. These sorts of approaches yield
kernels that are stable in the bottleneck and p-Wasserstein metrics on barcodes and
provide sensible feature vectors for machine learning.

In [425], the kernel at scale σ for persistence diagrams D1 and D2 is computed
by the formula

kσ(D1,D2) =
1

8πσ

∑
p∈D1
q∈D2

e
−∂(p,q)2

8σ − e
−∂(p,q̄)2

8σ ,

where q̄ denotes the reflection across the line x = y. Roughly speaking, we can think
of this as a approximation by positive and negative Gaussians. The basic idea is that
a persistence diagram can be approximated in function space as a sum of Dirac δ-
functions centered at the points. However, the resulting metric on functions does
not incorporate information about the proximity to the diagonal (i.e., bars of zero
length). So instead, the δ-functions are used to specify a diffusion equation with
the diagonal providing boundary constraints; the resulting solutions are Gaussians.

In contrast, in [4] a closely related approach was studied which uses weighted
positive Gaussians; the difference in weights permits more flexibility in focusing
on different features in the barcodes, and the use of positive Gaussians in some
circumstances can provide computational efficiency. Although this is not phrased
as a kernel method per se (but simply as a vector-space valued summary), it can be
applied to produce a kernel just as in [425].

Remark 3.6.6. We can regard the grid counting method of [49] as a discretization
of the Gaussian kernel description.

3.6.3 Persistence Landscapes

Another systematic approach to producing features from persistence diagrams is
provided by Bubenik’s persistence landscapes [76]. Suppose that we are given
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a barcode {[xi, yi)}, which we regard as a persistence diagram in R2. Changing
coordinates via the transformation

[x, y) �→
[ x + y

2
,

y − x
2

)
,

we can equivalently represent a barcode as the multiset {[ xi+yi
2 , yi−xi

2 )} in R2; we
will assume that all persistence diagrams are represented in this format for the
remainder of the section.

Next, define the piecewise-linear function

Λ(x,y)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t − x, t ∈ [x, x+y

2 ]

y − t, t ∈ ( x+y
2 , y]

0, otherwise.

Definition 3.6.7. Let B = {[xi, yi)} be a persistence diagram. The persistence
landscape is the collection of functions λk

B : R→ R for k ∈ N, defined as

λk
B(t) = λB(k, t) = kmax[xi,yi)∈BΛ[xi,yi)(t),

where kmax denotes the kth largest value, defined to be 0 if the set in question con-
tains fewer than k points. (We will often regard this collection as a single function
Λ : N × R→ R.)

See Figure 3.23 for an example of a persistence landscape. One advantage of
working with the persistence landscape is that for any fixed k this is a 1-Lipschitz
function, and the set of all such functions is a R-vector space with a metric induced
by a norm that is complete and separable. As a consequence, one can easily define
the mean landscape Λ̄ for a collection of barcodes {Bi}, which is simply computed
pointwise:
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Figure 3.23 Left: A persistence diagram. Right: The associated persistence
landscapes for k = 1 and k = 2.
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Λ̄n =
1
n

n∑
i=1

λBi(k, t).

The mean landscape is the average value of the largest bar contained in k intervals.
It is important to emphasize again that the mean landscape need not correspond to
any particular barcode.

In this context, there is both a law of large numbers and a central limit the-
orem; these say that the mean of the landscapes of samples converges to the
mean of the underlying distribution, and explain how fast this convergence occurs.
Moreover, the average persistence landscape weakly converges to a Gaussian pro-
cess (with a known rate of convergence) [76]. Specifically, we have the following
result.

Theorem 3.6.8. Provided that the expectation is finite,

Λ̄→ E(Λ),

where Λ̄n is the empirical mean of the first n sample landscapes and E(−) denotes
the expected value.

Theorem 3.6.9. Provided that the expectation and variance are both finite, then

√
n[Λ̄ − E(Λ)]

converges to a Gaussian random variable with the same covariance structure as Λ.
(Here recall that the covariance structure determines the width of each Gaussian
in the random variable.)

The following corollary allows us to perform inference.

Corollary 3.6.10. The random variable produced by applying any functional (i.e.,
function from the space of landscapes to R) also satisfies the central limit theorem.

Of course, a choice of a useful and informative functional depends on the data
and is not always evident. A simple approach is to use an indicator function for t
in an interval [−B, B] and k bounded by K.

Remark 3.6.11. In fact, we can prove a uniform version of the central limit theo-
rem and bound the rate of convergence. This implies in particular that the bootstrap
is asymptotically consistent and so can be used to estimate confidence intervals for
persistence landscapes; see [109] for results of this form involving the multiplier
bootstrap.
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Furthermore, landscapes satisfy an evident analogue of the stability theorem:
the L∞ distance between landscapes is bounded by the Gromov-Hausdorff distance
between point clouds.

A natural application of persistence landscapes to robust inference was studied
in [110], where they used the average persistence landscape of the samples inΦn

k as
a summary; this has the advantage of being easy to compute and study. In analogy
with Theorem 3.4.2, one can show that the average persistence landscape is Wasser-
stein stable. Moreover, explicit estimates of the bias of this estimator as a function
of the number of sample points can be obtained. (See Figures 3.24 and 3.25 for
examples of this approach.)
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Figure 3.24 Since the landscape is a real-valued function, the pointwise average
is easy to compute. The top two panels show the landscape for samples from two
circles plus a noisy circle far away and two circles without the noisy circle. The
bottom panels represent the effect of subsampling and averaging to remove the
effect of the noisy circle.
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Figure 3.25 Subsampling and averaging is also effective with noisy data where
the noise is concentrated around the underlying space.

3.6.4 Coordinates on Persistent Homology

A more principled source of real-valued invariants from barcodes comes from con-
siderations from algebraic geometry. Adcock, Carlsson, and Carlsson introduced
the idea of regarding subsets of barcode space as algebraic varieties and study-
ing their coordinate rings [5]. Coordinates on a barcode just means a collection of
functions from a space of barcodes to R. In [5], the basic idea is to use symmetric
polynomials in the start and endpoints of the bars, for barcodes with a fixed number



226 Part I Topological Data Analysis

of bars. (The symmetry of the polynomials is a consequence of the fact that we do
not care about the ordering of the bars within the barcode.)

Remark 3.6.12. This approach was extended to multidimensional persistence
in [465].

Unfortunately, these coordinates are not stable with respect to perturbation of the
barcode in the bottleneck or p-Wasserstein metric; this is clear, as very short bars
with large start and endpoints can affect these polynomials dramatically. To fix this
problem, Verovšek [283] (building on [94]) introduced ideas from tropical geome-
try to build stable coordinates. Tropical geometry studies a semiring structure on R
where addition of x and y is computed by max(x, y) or min(x, y) and multiplication
of x and y by x + y (ordinary addition on real numbers). This is a semiring in the
sense that we do not require every number to have an additive inverse.

The work of [283] showed that stable coordinates on barcode space could be
obtained from rational functions (i.e., fractions) in “polynomial” expressions on
the bar endpoints using the max-plus tropical structure. In [357], it is further shown
that these coordinates provide sufficient statistics suitable for parametric inference;
applications to reassortment in avian flu are discussed.

3.7 Stochastic Topology and the Expected Persistent Homology
of Random Complexes

In the preceding sections, we have discussed techniques to produce stable persis-
tent homology invariants of data despite the presence of noise. Another part of the
statistical aspect of the story is to quantify the effect of idealized noise by describ-
ing the expected persistent homology of a “random complex.” For example, such a
description yields a family of strong null hypotheses. However, despite the mathe-
matical interest and depth of theoretical work of this kind, in practice it is typically
more suitable to use Monte Carlo simulation to find empirical estimates.

As a consequence, our discussion is brief and we refer the interested reader to
the primary sources for precise theorem statements (see also Kahle’s survey [281]
and the article [61]).

In order to specify the problem, we need a model for generating random com-
plexes. Recall that the Vietoris-Rips complex is completely determined by its
1-skeleton (see Definition 2.1.6), which is a graph. Therefore, processes that
generate random graphs can also be regarded as producing random simplicial
complexes.

The most familiar model of a random graph is the Erdös-Renyi model, which
connects vertices with some fixed probability. However, although there is a
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substantial literature on random simplicial complexes from this perspective (e.g.,
see [64] for a classic exposition), this is not a sensible model of random sim-
plicial complexes in the geometric setting. The most relevant definition of a
random complex from this perspective arises from the definition of a geometric ran-
dom graph. (See [403] for an extensive treatment of the properties of geometric
random graphs.)

Definition 3.7.1. Let (M, ∂M, μM) be a metric measure space. Fix ε > 0. A geo-
metric random graph with k points is generated by sampling k points {xi} from
M according to μM and forming the graph with k vertices and an edge (i, j) if
∂M(xi, x j) < ε.

Example 3.7.2. The most frequently studied example is the case when M is the unit
cube [0, 1]n ⊆ Rn.

Definition 3.7.3. Let (M, ∂M, μM) be a metric measure space. Fix ε > 0. A geo-
metric random complex with k points is generated by sampling k points {xi} from M
according to μM and forming either the Vietoris-Rips or Čech complex associated
to ε and the finite metric space {xi}.

Although we have stated the definitions in full generality, most existing work
studies distributions supported either on Rn or in a few cases on a smooth compact
manifold embedded in Rn (e.g., see [62] for the latter).

Most current results (e.g., the work of Kahle) about geometric random com-
plexes consider the expected ranks of the homology groups β� as simultaneously
ε → 0 and k → ∞. The results are controlled by kεn:

1. in the sub-critical regime, kεn → 0,
2. in the critical regime, kεn goes to a constant, and
3. in the super-critical regime, kεn goes to∞.

We now summarize what is known in these various settings.

1. Sub-critical. There are various results on the expected Betti numbers [282].
Here the situation is sometimes referred to as “dust,” since there are many
disconnected components and so the most important contribution is to H0. This
is the easiest non-trivial regime to analyze.

2. Critical. There is an enormous amount of non-trivial homology, and [543]
provides detailed estimates on the expected rank of the homology for certain
distributions on Rd and weak and strong laws of large numbers describing con-
vergence.
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3. Super-critical. The complex is asymptotically contractible and so there is no
contribution to homology (and the analysis is basically trivial). This is analo-
gous to the emergence of the “giant component” in the classical results on the
behavior of random graphs.

A closely related but distinct perspective is provided by the work of Adler,
Bobrowski, and Weinberger [7]. They consider distributions with infinite support
on Rn, and observe that sufficiently large samples separate into

● the “core,” which is densely sampled and contractible, and
● the periphery, which “crackles” with homology.

This perspective is a variation on the results summarized above, insofar as the
core and periphery correspond to super-critical and critical regimes simultaneously
arising due to variation in the density.

The conceptual frameworks of “core” and “crackle” provide two kinds of
indications of the limits of certain approaches to topological data analysis:

● a large core will obscure the signal, and
● the crackle will generate spurious homology classes.

All of the work discussed so far has focused on understanding homology for
complexes with specific ε; only very recently has there been work extending this to
persistent homology [63]. Here, there is more similarity between the regimes, but
the scale of events differs. (See Figure 3.26 for a representative example.)

Notably, in the critical regime the longest bar in the barcode appears to satisfy
a “law of the iterated logarithm” describing its length, for certain distributions
on a cube (notably the Poisson distribution) and both the Čech and Vietoris-
Rips complexes. Such a bound gives a precise estimate for how fast the length

increases as the number n of sample points increases; roughly
(

log n
log log n

) 1
k for kth

homology. (This phenomenon is also mentioned in passing in the Adler-Bobrowski-
Weinberger work.)

3.8 Euler Characteristics in Topological Data Analysis

A reasonable conclusion to draw from the discussion of this section is that it
is advantageous to use the simplest possible topological invariants, e.g., low-
dimensional persistent homology. This perspective suggests consideration of the
Euler characteristic as a potentially interesting topological invariant which is robust
and easy to compute and yet rich enough to capture topological properties of the
underlying space.
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Figure 3.26 Persistent homology of points sampled uniformly from a unit square.
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To further motivate this focus, Weinberger has pointed out that the Euler char-
acteristic of a simplicial complex is locally testable [160]. Locally testable in this
case means that the Euler characteristic can be computed from a small number of
random samples from a simplicial complex, with high probability [204]. Specifi-
cally, fix ε > 0. A tester for the Euler characteristic chooses K(ε) random vertices
of the complex and has access to neighborhoods of size D(ε) around those vertices.
The tester then returns a guess χ′(X) for the Euler characteristic such that

Pr

(
χ(X) − χ′(X)
|X0| ≥ ε

)
≤ ε.

The existence of a tester is interesting because the functions K and D do not depend
on the size of the complex but only on ε! Weinberger proposes that local testability
is a good proxy for understanding when a topological invariant will be robust and
reasonable to compute for small samples [533].

Remark 3.8.1. Although more generally rational homology groups are known to
be locally testable [160], no such results are known for other coefficients.

There has been a great deal of study of the special case of the Euler characteristic
of Gaussian random fields. Let M be a smooth compact manifold and f a Gaussian
random field on M; then Adler and Taylor provide formulas describing the expected
Euler characteristic of the “excursion sets” f −1(u,∞). See [8] for an overview of
this work, and [9] for an interpretation in terms of persistent homology. These kinds
of results have had numerous applications in situations where smooth processes
of this sort arise, notably imaging. However, application of these techniques in
genomics is in its infancy, although searching for ways to apply them seems like a
productive endeavor.

A potentially promising direction for problems related to genomics comes from
the smooth Euler characteristic transform, a generalization of the persistent homol-
ogy transform [127]. We again assume we are working with a finite simplicial
complex M embedded in Euclidean space Rd. For a given direction v, let av and bv

denote the minimum and maximum values of x · v over the points of M. The Euler
characteristic curve in the direction v is now defined to be the function

[av, bv]→ Z

defined by t �→ χ(M(v)t). Let χ̄(M(v)) denote the average value of the Euler
characteristic curve in the direction v.
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Definition 3.8.2. The smoothed Euler characteristic curve for the direction v is
defined to be the function

FM
v (y) =

∫ y

−∞
(χ(M(v)x) − χ̄(M(v))) dx.

Observe that by construction this is a smooth piecewise-linear function with
compact support.

Definition 3.8.3. The smooth Euler characteristic transform is the function

SECT: S d−1 → L2(R)

specified by

v �→ FM
v .

Interestingly, when d ≤ 3, the SECT can be shown to be injective; this is a suffi-
cient statistic for describing the underlying distribution. Moreover, since the result
is a function in L2, just as in the case of the discussion of persistent landscapes, the
SECT can be used as input to standard statistical models and resampling techniques
can be used to obtain confidence intervals for predictors and summary statistics.
This approach has been used to generate clinically meaningful conclusions from
imaging data from glioblastoma tumors in [127].

3.9 Exploratory Data Analysis with Mapper

Because of the tremendous possible space of topological hypotheses, the frame-
work of exploratory data analysis is very well suited for TDA. That is, rather than
seeking to confirm specific hypotheses or test existing ideas about the data set, it is
often much more sensible to simply attempt to find structure in the data.

The Mapper algorithm (as discussed in Section 2.8) is particularly well suited
for this.

● The output of Mapper is a colored graph representing a multiscale clustering; it
is often possible to visually interpret the results.

● As Mapper requires choices about bin sizes and filter functions, varying these
allows us to explore structural properties of the data. For example, Mapper can
account for the measure on the data by using a density estimator as the filter
function.

Remark 3.9.1. Although Mapper output is not stable with regard to perturbation
of these choices, in the exploratory paradigm this is not as substantial a problem
as it might seem. One can use the same statistical tools normally used to assess
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the stability of the results of clustering, i.e., cross-validation. There are different
ways to do this, but all of them boil down to either partitioning or subsampling the
data and then comparing clustering results by counting pairs which end up chang-
ing depending on whether they are in the same or different clusters. But perhaps
more importantly, there is a strong sense in which instability is not as big an issue
in genomics as one might expect. Exploratory analysis will typically be validated
by further experiment. That is, in this kind of usage, predictions from TDA are
confirmed by a follow-up experiment before being regarded as a reliable discov-
ery. As such, the consequence of errors in inference due to instability is a wasted
experiment; this is in stark contrast to applications in machine learning such as, for
example, self-driving cars or clinical recommendations.

A common experimental application of Mapper is to explore various choices of
filter function and other parameters in order to find clusterings of the data such
that the clusters correlate strongly with other known properties of the data (e.g.,
clinically significant variables). More precisely, we have the following setup.

1. In addition to the data (X, ∂X), filter function, and cover, we have an additional
function θ : X → R.

2. We extend θ to a function with domain the Mapper complex by defining θ on a
point in the complex to be the average or median of the values of f along the
corresponding data points.

3. We want to identify regions in the Mapper complex where θ is unusually large.

Now we can apply permutation tests (i.e., randomly relabeling the points and
computing the values of the function θ) to determine the significance of an observed
value. To be precise, we carry out the following.

1. We generate a distribution on values of θ by randomly shuffling the values of θ
on X and recomputing the values on the points of the Mapper complex.

2. We then regard an actual value as significant if it is larger than 99% of the values
produced in this fashion, for example. (The specific cutoff for significance is a
parameter choice as usual.)

This procedure has been used in applications, for instance in the cell differenti-
ation example we described previously in Example 2.8.3. However, note that as is
usual with permutation tests, it can be expensive computationally to obtain confi-
dence intervals as opposed to simply p-values. Also, the stability of this procedure
does not yet have sound theoretical foundations in general, although in practice it
appears to be stable with respect to cross-validation.
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3.10 Summary

● This chapter provides tools with which we may formally discuss sampling
from geometric objects. We adopt the working hypothesis that we have data
randomly sampled from an underlying metric measure space (X, ∂X , μX) (see
Definition 3.2.10).

● In order to state probabilistic stability theorems, we need distances between
distributions and more generally metric measure spaces. Toward this goal, we
use the Gromov-Prohorov distance (see Definition 3.2.33) and the Gromov-
Wasserstein distance (see Definition 3.2.34).

● We can study probability measures on barcode space; Section 3.3 provides a
formal approach to probability theory on barcodes.

● Using metrics on distributions, Theorem 3.4.2 provides an analogue of the sta-
bility theorem of persistent homology (Theorem 2.4.10) in the context of metric
measure spaces. Another version of a probabilistic stability theorem is given by
Theorem 3.4.5.

● Section 3.5 provides a rigorous approach to this chapter’s overarching goal
of estimating persistent homology by taking sufficiently many samples from
a space in order to recover the persistent homology of the support of the
probability distribution.

● Summarizing distributions of barcodes turns out to be a challenging problem.
One possibility is to consider techniques that involve extracting real-valued
features from persistence diagrams.

● We may also approach this problem via kernel methods (see Section 3.6.2),
persistence landscapes (see Section 3.6.3) or coordinates on a barcode (see Sec-
tion 3.6.4); all of these methods map barcodes to a vector space where traditional
statistical methods can be applied.

● In addition to the study of techniques to produce reliable persistent homol-
ogy invariants despite the presence of noise, we are interested in considering
the effect of idealized noise itself through the persistent homology of random
complexes.

● Adaptation of the Euler characteristic is an attractive idea due to the advantages
of using simple topological invariants.

● The Mapper algorithm (see Section 2.8) is a useful tool for exploratory data
analysis. Section 3.9 outlines a procedure for the use of Mapper in applications.

The integration of topological data analysis with statistical methods is still in
its infancy. As the discussion in the next part of the book makes clear, the kinds
of techniques presented in this chapter have not yet made it into practice. Some
of this is due to the lack of consensus about the best way to handle some of the
issues that arise. But the lack of power of some of the tests (e.g., techniques for
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estimating confidence intervals) combined with difficulties in producing topologi-
cal summaries also provides a substantial impediment. We hope that the readers of
this book will feel particularly motivated to work to develop standards for statistical
practice in topological data analysis.

3.11 Suggestions for Further Reading

For background in probability theory, we recommend Billingsley’s textbook [57].
For discussion of probability theory in non-positively curved metric measure
spaces, Gromov’s book [212] and Sturm’s article [487] are very informative. How-
ever, in general, there are not yet any good survey articles or textbooks about
probability theory in the context of topological data analysis; as an exception,
Kahle’s survey article on random complexes [281] is comprehensive. For a review
of statistics, Wasserman’s books [526, 527] provide good introductions, and Freed-
man’s classic introduction to statistical modeling [184] teaches a healthy dose of
skepticism about the power of statistical inference.



4

Dimensionality Reduction, Manifold Learning, and
Metric Geometry

A map is not the territory it represents, but, if correct, it has a similar
structure to the territory, which accounts for its usefulness.

Alfred Korzybski

Although topological data analysis is new, the idea of studying data by analyzing
shape is classical. The original forms of this kind of analysis (regression, princi-
pal components analysis (PCA), and multidimensional scaling (MDS)) make the
assumption that the data lies on a linear subspace in Rn. In contrast, TDA makes
minimal assumptions about the underlying metric measure space generating the
data. On the one hand, this means that we can apply TDA to data sets where
we have no reason to expect linear structure. On the other hand, strong geomet-
ric assumptions have many benefits. For example, assuming that the data lies on a
k-dimensional subspace of Rn characterizes the problem as searching for a linear
transformation θ : Rn → Rk such that {θ(xi)} retains something about the structure
of {xi}. Assuming linearity

1. provides coordinates for describing the data and predicting where new data
points might lie,

2. allows the application of standard statistical inference methods, and
3. makes it straightforward to perform dimensionality reduction by constraining

the value of k. For example, even if we believe that the data lies on a plane
of dimension � > 3, it can be useful to project into R2 or R3 for visualization
purposes.

Linear models are arguably the most frequently used tools in applied mathe-
matics; however, the assumption of linearity is often unreasonable. As a result,
there has been a lot of recent work generalizing these methods to algorithms that
operate under the assumption that the data has been sampled from a compact
manifold M ⊆ Rn of much lower dimension than n. These algorithms, loosely

235
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referred to as dimensionality reduction or manifold learning, then seek to infer
a parameterized representation of the data in terms of a coordinate system for a
manifold. It is interesting to point out that in many biological applications we do
not expect the data to lie on a manifold. For instance, the intrinsic dimension of
transcriptomic data is related to active transcription programs (see Chapter 7). The
number of these programs, relative to the intrinsic dimension, is not expected to be
constant.

Although the manifold assumption is usually unrealistic for genomic data,
dimensionality reduction has been successfully applied in various ways to ana-
lyze real biological data. For example, most applications of clustering in genomic
analysis use dimensionality reduction as a preprocessing step (e.g., the frequent
application of t-SNE), which is becoming standard in single cell analysis, see Chap-
ter 7. More interesting from our point of view is the fact that some of the most
successful genomic applications of Mapper have used coordinates from PCA as
filter functions.

In the first part of this chapter we give a rapid overview of manifold learning and
dimensionality reduction, starting with the classical techniques and moving on to
recent generalizations. There is a vast literature on this subject, and we cannot hope
to do more than give a flavor of these techniques. Our goal is to convey the central
ideas underlying these approaches to analyzing data. Roughly speaking, the basic
strategy of most manifold learning techniques is to take the k-nearest neighbors of
a point x and use the vectors specified by the line segments from x to its neighbors
as an approximation for the tangent plane at x. Global optimization then sews these
local approximations together to produce a low-dimensional representation of the
data. In a sense that can be made precise, the efficacy of these approaches depends
on the fact that the Laplace-Beltrami operator on the manifold (which describes
heat flow) can be approximated from finite samples by a certain graph Laplacian
matrix.

In Figure 4.1, we indicate the results of different manifold learning representa-
tions on data that lies on a plane in R3; all of them recover coordinates for the plane.
In Figure 4.2, we show a plane that has been rolled up – although the plane is flat,
the embedding is twisted and so cross-cutting connections are potentially a problem
(recall Section 2.2). Here, there is a noticeable difference in performance between
classical techniques that assume linearity and manifold learning algorithms that do
not.

In contrast to these cases, we will explore our running example of nested circles
(which are not linear at all), and also consider nested arcs. In this context, manifold
learning algorithms do a much worse job at recovering meaningful parametriza-
tions. These simple experiments highlight the ways that topological data analysis
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Figure 4.1 When the data lies on a plane inR3, all algorithms successfully recover
a representation of the original data.

Figure 4.2 When the data lies on a rolled-up sheet, classical algorithms like PCA
and MDS perform very poorly, whereas manifold learning techniques successfully
capture the intrinsic shape of the data.
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can be useful, even in situations where the data does lie on a low-dimensional man-
ifold. Of course, in general, we do not necessarily expect such a hypothesis to hold.

However, in genomics there is an even more specialized geometric assumption
that is frequently warranted. When working with data generated by evolutionary
processes, it is standard to assume that the data can be organized into a phylogenetic
tree. A phylogenetic tree is typically represented as a metric tree; recall from Exam-
ple 1.2.4 that this is a graph with no cycles and weighted edges, where the metric
is computed as the sum of the weights along the shortest path between two points.

In the second part of this chapter we give an overview of mathematical frame-
works for dealing with phylogenetic trees. Again, this is a vast area of research with
many excellent books; Felsenstein’s text is a classic exposition [172]. We begin by
giving a quick treatment of how to infer a phylogenetic tree from genomic data pre-
sented as a finite metric space; see Appendix C for a more detailed review. We then
explain celebrated work of Billera, Holmes, and Vogtmann [55] that shows that
phylogenetic trees can themselves be organized into a metric space; we will later
see in Chapter 5 that the associated metric geometry (see Section 4.7.3) supports
clinically significant analysis.

4.1 A Quick Refresher on Eigenvectors and Eigenvalues

Almost all of the dimensionality reduction techniques we will describe in this sec-
tion involve computation of the eigenvectors of a matrix formed from the data
points. Although we have assumed that the reader has familiarity with basic linear
algebra, in this section we briefly review the relevant definitions. In the following,
we always work with real vector spaces.

Definition 4.1.1. Let A be an n×n matrix. An eigenvector v for A with eigenvalue
λ is a non-zero vector v ∈ Rn such that

Av = λv.

The first key observation is that for symmetric matrices A (i.e., matrices such
that A = AT ), eigenvectors with distinct eigenvalues are orthogonal.

Proposition 4.1.2. Let A be a symmetric n × n matrix and let v1, v2 ∈ Rn be
eigenvectors with distinct eigenvalues λ1 � λ2. Then v1 is perpendicular to v2.

This suggests that we can think of eigenvectors for different eigenvalues as giv-
ing a preferred alternative set of coordinates for Rn which are adapted to the linear
transformation represented by A. We do not always have enough eigenvectors to
form a basis for all of Rn, however.
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Proposition 4.1.3. An n × n matrix A has at most n distinct eigenvalues and at
most n linearly independent eigenvectors. When there are exactly n independent
eigenvectors, they form a basis.

It is standard to sort the eigenvectors by the size of the associated eigenvalues;
when we talk about the “top k” eigenvectors, we mean those with the k largest
eigenvalues.

4.2 Background on PCA and MDS

A classical example of dimensionality reduction is principal component analysis
(PCA). The idea here is, given a set of points {x1, x2, . . . , xm} in Rn as data, to find
an “optimal” linear projection θ : Rn → Rk, for k < n. Here is an outline of the
algorithm.

1. We normalize to center the data and define

x̃i = xi − μ, where μ =
1
n

∑
i

xi.

2. We then form the covariance matrix

C =
1
n

∑
i

x̃i x̃i
T .

3. We compute the top k eigenvectors {v1, . . . , vk} of C to use as our basis.
4. These eigenvectors span a hyperplane (subspace) of Rn that is isomorphic to
Rk; the projection θ : Rn → Rk of the data is precisely the orthogonal projection
onto this plane followed by a choice of identification of the plane with Rk.

5. We can also regard θ as producing vectors in Rn; adding back μ yields
approximations yi = θ(x̃i) + μ of each xi.

This process chooses the basis which maximizes the variance captured by the
representation; the eigenvector v1 with the largest eigenvalue is the single direction
which captures the maximal amount of information about the variance in the points,
the plane spanned by {v1, v2} is the plane with the most variance, and so forth.
Interestingly, we can also characterize the output of PCA as the projection that
minimizes the error function

E =
m∑

i=1

∂Rn(xi, yi)
2.

That is, PCA produces the points {yi} which minimize the reconstruction error
among all projections onto a k-dimensional subspace.
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In fact, another classical approach to dimensionality reduction is to take min-
imization of E as a point of departure. Metric multidimensional scaling (metric
MDS), takes as input a finite metric space (X, ∂X) and computes an optimal
embedding of X into a Euclidean space Rk. Here the optimality criterion is to
preserve the original metric data as much as possible, i.e., to minimize an analogue
of E. Specifically, in MDS we search for a map θ : X → Rk that minimizes

E =
∑

xi,x j∈X

(
∂X(xi, x j) − ∂Rk (θ(xi), θ(x j))

)2
.

We do this as follows.

1. Let D denote the matrix with entries Di j = ∂X(xi, x j).
2. Set

H = I − 1
n

eeT and Z = −1
2

HDH,

where as usual I denotes the identity matrix and e is the vector with all entries
1. (This step centers the results; since the minimizing embedding is not unique
as distances are preserved by translation, we need to impose such a constraint
to get a specific output.)

3. The embedding that minimizes E is then given by finding the eigenvectors {v j}
of Z. Specifically, the embedding θ(xi) ∈ Rk is specified by normalizing so that
||v j||2 = λ j, making a matrix with the eigenvectors {v j} as columns, and taking
the ith row.

When the metric space (X, ∂X) arises as a subspace of Rn, then it turns out that
PCA and metric MDS coincide.

Theorem 4.2.1. Given {x1, x2, . . . , x�} ⊂ Rn and k < n, the results of metric MDS
and PCA embedding {xi} into Rk are isometric.

However, metric MDS has the advantage that it can be applied to arbitrary met-
ric spaces, i.e., metric spaces that are not subspaces of Rn. Moreover, posing the
problem as minimizing the embedding error function E allows us to consider vari-
ants which minimize different error functions. For example, work on “antigenic
maps” describing genomic and phenotypic variability in the flu virus uses an MDS
variant [467]. Of course, changing E can result in substantially more difficult
optimization problems.

These procedures are very widely used in data analysis because they are in gen-
eral easy to compute and (especially when k is chosen to be 2 or 3) result in
convenient visualizations of the embedded data. However, these algorithms can be
very unstable in response to perturbations of the data (although there is a growing
literature on robust variants of MDS and PCA, e.g., [89]), especially when noise
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processes vary in different directions (e.g., see [411]). Under assumptions that the
signal is low rank, variants known collectively as sparse PCA do a good job at
recovering a sparse basis to describe the signal [552]. Sparsity of the data can also
result in serious distortions; this is a particular problem in single-cell expression
data. For a more extensive discussion of this problem and its relation to random
matrix theory, see [15]. Another issue is that the optimal choice of k is a pri-
ori unknown. In practice, one often looks for an “eigenvalue gap,” i.e., a natural
splitting of the eigenvalues into a group of “large” eigenvalues and then a collec-
tion of much smaller eigenvalues. However, this procedure requires a threshold for
deciding where the gap is, and is in general more of an art than a science.

A more serious issue from our perspective is the fact that when the data cannot be
isometrically embedded as a Euclidean subspace of Rn, PCA and MDS simply do
not work particularly well to capture the intrinsic geometric structure. In Figure 4.3,
we see that for a single curved ribbon in R3, PCA captures the intrinsic geometry
with some distortion. But in Figures 4.4 and 4.5, for more complicated geometric
objects (the union of two ribbons and a sphere in R3, respectively), PCA does not
recover the intrinsic coordinates along the circle but rather just embeds a flattening
of the circle in Euclidean space.
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Figure 4.3 When the data lies on a single curved ribbon, the embedding into R2

exhibits distortion arising from the curvature.
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Figure 4.4 When the data lies on nested ribbons, the embedding is further
distorted by the proximity of the two components.
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Figure 4.5 When the data lies on the standard sphere S 2, the embedding flattens
the sphere and distorts the distances along an arbitrary axis.
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Remark 4.2.2. When using the eigenvectors from PCA to describe the data,
one possible source of difficulty in interpretation arises from the fact that the
relevant linear combinations might include negative terms. In many applications,
subtraction of basis vectors does not make sense. For example, many genomics
applications of dimensionality reduction are interpretable only for positive com-
binations of terms. In this context, an algorithm called “non-negative matrix
factorization” (NMF) is often used. In contrast to PCA, NMF is an iterative
optimization procedure. See [319] for a classic rigorous discussion.

4.3 Manifold Learning

Suppose that we are given data points {x1, . . . , xm} ⊆ Rn, but we no longer assume
that they admit a nearly isometric embedding as a hyperplane (i.e., an affine linear
subspace). As we explained in Section 2.2, even when the points {xi} are produced
by sampling from some embedding γ : M → Rn of a compact Riemannian mani-
fold M, the distance ∂Rn(γ(xi), γ(x j)) may not be very representative of the intrinsic
distance ∂M(xi, x j). For example, as Figure 4.2 indicates, even when the manifold
in question is homeomorphic to a plane, PCA and MDS can perform very poorly.

Consider the case of a line segment γ : [0, 1]→ R2 which is very twisted. Clearly,
the distance along the curve γ([0, 1]) is poorly approximated by the Euclidean dis-
tance, especially near kinks. However, when γ is sufficiently smooth, there exists a
feature scale at which Euclidean distances and intrinsic distances agree up to small
error. In the work described in Section 2.2, this observation was leveraged to justify
an algorithm for recovering the homology (and in fact homotopy type) of M. Here,
we are interested in recovering coordinates on the manifold. This is a meaningful
and potentially subtle question even in the case where M is contractible, and in fact
most manifold learning algorithms focus on the case where M is contractible but
the embedding γ : M → Rn is twisted.

Manifold learning approaches ultimately rely on the fact that in favorable cases
the manifold structure can be reconstructed by considering the “short distances” as
reliable indicators of the intrinsic distance and ignoring the “long distances.” One
way to express this idea is to hypothesize that the basis determined by the k-nearest
neighbors of a point z give a good approximation of the tangent plane to M at z.

4.3.1 Isomap

An early and prominent manifold learning algorithm is Isomap, which simply
applies MDS to an empirical approximation of the intrinsic metric [495]. The
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procedure works as follows. We assume we are given data points {x1, . . . , xn} ∈ Rn.
We fix a scale parameter ε and a target dimension parameter k.

1. Form the weighted graph G with
● vertices the points {xi}, and
● edges (i, j) with weight wi j = ∂Rn(xi, x j) when ∂Rn(xi, x j) ≤ ε.

2. We now form a new metric space X′ with points {x1, . . . , xn} but distance given
by the graph metric on G. Recall from Example 1.2.4 that this means that the
distance between two vertices is the length of the shortest path in the graph. The
graph metric can be efficiently computed, for example via Dijkstra’s algorithm
(e.g., see [125, 24.3]).

3. Finally, we use MDS to embed this new metric space into Rk as above,
producing points yi = θ(xi).

When the points {xi} are sampled from a convex subset M ⊆ Rm embedded
isometrically into Rn, k ≥ m, and ε is in the right range, Isomap can recover almost
exactly the coordinates for M. (Here recall that a subset A of Rn is convex if for
x1, x2 ∈ A, the line between x1 and x2 is entirely contained in A. In particular, this
implies that A is contractible.) The recovery guarantees follow from the fact that for
sufficiently dense sampling from a Riemannian manifold and suitable ε, the graph
metric computed in the second step of the procedure approximates the underlying
distance [51].

In Figure 4.6, we see that for a single curved ribbon in R3, Isomap does recover
the intrinsic distances, with a small amount of distortion. But in Figures 4.7 and 4.8,

1.0
0.5
0.0

2 1 0 –1
2
1
0
–1

1.0
0.5
0.0 2 1 0 –1

2
1
0
–1

1.0
0.5
0.0

2 1 0 –1
2
1
0
–1

Figure 4.6 When the data lies on a single curved ribbon, Isomap does a good job
of recovering the intrinsic coordinates.
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Figure 4.7 When the data lies on nested ribbons, Isomap collapses the two
components to single lines.
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Figure 4.8 When the data lies on the standard sphere S 2 in R3, Isomap is not able
to recover the intrinsic distances and embeds a flattening of the sphere in R2.

for more complicated geometric objects (the union of two ribbons and a sphere in
R3, respectively), Isomap again fails to recover the intrinsic coordinates of the data.
These examples illustrate some of the problems with Isomap.

1. An intrinsic issue is that MDS presumes that M can be isometrically embed-
ded in Euclidean space; if it is not, the procedure seriously distorts the
coordinates [335]. As a consequence, M must be flat in the sense of hav-
ing zero curvature. Moreover, Isomap performs poorly on non-convex but
contractible subspaces of Euclidean space, e.g., a space in the shape of the
letter “Y.”

2. Given new data points, the Isomap embedding has to be recomputed; there is
no way to adapt an existing embedding.

3. A further issue in practice is that the algorithm is not robust to outliers and is
very sensitive to differences in density or the precise value of ε. (For example,
see [373] for discussion of these points.)

4. Finally, efficiency can also be a problem, especially for large numbers of
samples. These issues arise both from the substantial costs of computing the
graph metric and from the size of the resulting MDS problem. Some efforts to
approach this by subsampling have been studied, e.g., see [460] for a sparse
version of Isomap.

4.3.2 Local Linear Embedding (LLE)

A closely related approach is the local linear embedding (LLE) algorithm [439].
Once again, we assume we have data points {x1, . . . , xn} ⊂ Rn and we fix a target
dimension parameter k and a neighborhood size K.

1. For each point xi, we solve for weights wi j which minimize the expression

E(xi) =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎜⎝xi −
∑

j

wi jx j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

,
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subject to the constraints⎧⎪⎪⎨⎪⎪⎩wi j = 0 x j not a K-nearest neighbor of xi∑
j wi j = 1.

Roughly speaking, we are solving for weights that optimally reconstruct each
point xi from its K-nearest neighbors. The weights can efficiently computed via
least squares.

2. Embedding points {yi = θ(xi)} ⊆ Rk are computed so that

E =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎜⎝yi −
∑

j

wi jy j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

is minimized. This problem can be solved by computing the top k eigenvectors
of the matrix corresponding to the associated quadratic form, subject to some
nondegeneracy constraints.

Broadly speaking, LLE has fairly similar qualitative properties as Isomap; this is
illustrated in Figures 4.9, 4.10, and 4.11. In practice, it turns out to work somewhat
better than Isomap on samples of non-convex contractible subsets M ⊆ Rk (e.g.,
regions with dents in them), and also has the advantage that the eigenvector prob-
lem involves a matrix that is always sparse, and hence it can be run on substantially
larger data sets than Isomap.
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Figure 4.9 When the data lies on a curved ribbon, LLE does a good job of
recovering the intrinsic coordinates and unfolding the ribbon.
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Figure 4.10 When the data lies on nested ribbons, LLE does a better job than
PCA or Isomap but still engages in serious distortion of the intrinsic metric.
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Figure 4.11 When the data lies on the standard S 2 in R3, LLE does not do a
good job of capturing the intrinsic distances and simply embeds a flattening of
the sphere.

4.3.3 Laplacian Eigenmaps

Isomap and LLE implicitly use the tangent plane of a manifold to perform local
reconstruction of points. A more explicit use of the manifold structure is to try to
exploit the existence of the Laplace-Beltrami operator, a map from functions on M
to functions on M which is computed as the divergence of the gradient; on Rn, this
takes the classical form

Δ f =
n∑

i=1

∂2 f

∂x2
i

.

The first technique to take this approach is the Laplacian eigenmaps algorithm due
to Belkin and Niyogi [45].

Once again, we assume we are given data points {x1, . . . , xk} ⊆ Rn and we form a
neighborhood graph that captures the “small” distances between points. Precisely,
we fix a width parameter σ and proceed as follows.

1. Form the weighted graph G with
● vertices in bijection with the points {xi}, and

● edges (i, j) with weight wi j = e−
∂(xi ,x j)

2

σ when ∂(xi, x j) ≤ ε.
2. We let D denote the diagonal matrix specified by Dii =

∑
j wi j and define

the graph Laplacian as L = D − W, where W is the matrix of edge weights
from G.

3. We solve L f = λD f for the top k eigenvectors, which determine the embed-
ding; we form the matrix with columns these eigenvectors, and the rows are the
embedded points {yi}. This procedure can be viewed as finding a solution to the
optimization problem of determining {yi} that minimize

E =
∑
i, j

(yi − y j)
2Wi j,

i.e., finding an embedding that penalizes nearby points xi and x j being sent to
distant points yi and y j.
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Here the basic technical underpinning is one of the fundamental insights of spec-
tral graph theory, namely that the graph Laplacian we describe above shares many
interesting properties with the Laplacian of a manifold [116]. Moreover, as a basic
consistency check, when the points {xi} are sampled from a compact Riemannian
manifold, as the number of points increase and σ decreases, the graph Laplacian
converges in a precise sense to the Laplace-Beltrami operator on the manifold [46].

As with Isomap and LLE, Laplacian eigenmaps is expected to work best on
convex subsets ofRn; like LLE, the eigenvector problems involved tend to be sparse
and so Laplacian eigenmaps can handle comparatively larger data sets. However,
as Figures 4.12, 4.13, and 4.14 indicate, Laplacian eigenmaps has distinctly worse
performance than either Isomap or LLE. We discuss the method due to its historical
importance and conceptual clarity.

Remark 4.3.1. A refinement of the Laplacian eigenmaps algorithm, called Hes-
sian eigenmaps [146], uses a discretized version of the Hessian matrix of second
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Figure 4.12 When the data lies on a single curved ribbon, Laplacian eigenmaps
does not unfold the ribbon properly.
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Figure 4.13 When the data lies on nested ribbons, Laplacian eigenmaps does
in fact manage to recover some aspects of the relationship between the ribbons,
although each one is compressed and distorted.
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Figure 4.14 When the data lies on the standard S 2 in R3, Laplacian eigenmaps
does not do a good job of capturing the intrinsic distances.
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partial derivatives. The advantage of using the Hessian is improved theoretical
guarantees: the Hessian eigenmaps algorithm can be shown to be asymptotically
correct for arbitrary connected subsets of Rn. Although in idealized situations Hes-
sian eigenmaps outperforms other manifold learning algorithms, in practice it does
not work well – estimating second derivatives is well known to be numerically
unstable.

4.3.4 Manifold Learning and Kernel Methods

There is a basic resemblance between all of the manifold learning techniques
described in the preceding subsections; at a high level, it appears that they are
relying on similar geometric ideas. It turns out that this connection can be made pre-
cise using a standard body of techniques for handling nonlinearity in data analysis,
kernel methods.

The basic idea is to choose a nonlinear embedding Ψ of the points {xi} into an
infinite-dimensional inner-product space H, and use the inner product and norm
on H to analyze the points. The idea is that Ψ will unfold the data so that linear
techniques applied to Ψ(xi} will reveal nonlinear structure in {xi}. For example,
kernel PCA performs PCA on the embedded points and is frequently applied in
conjunction with clustering algorithms.

Although it is easy to see that for a suitable nonlinear embedding, such tech-
niques would be very effective, a number of questions about how to implement this
procedure arise.

1. It is not clear how easy it will be to produce a suitable mapΨwithout possessing
a priori knowledge of the data, and

2. it is not clear that working directly in the infinite-dimensional space H is
algorithmically tractable.

The key insight that makes kernel methods effective is the observation that a
wide variety of algorithms (including clustering and PCA) can be computed with-
out explicit knowledge of Ψ or H provided one has access to a kernel K, which is
a map

K : X × X → R
such that

K(xi, x j) = 〈Ψ(xi),Ψ(x j)〉H ,
where the expression on the right denotes the inner product in H. This formulation
reduces the question to producing a kernel K which is algorithmically tractable
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and also encodes geometric information about X. The construction of such kernels
turns out to be much more tractable than producing Ψ.

Example 4.3.2.

1. A standard kernel is the radial basis function or Gaussian kernel

K(xi, x j) = e
− ∂X (xi ,x j)

2

2σ2 .

This kernel is standard in classification and clustering applications.
2. On the set of trees (acyclic connected graphs), an interesting kernel is the subtree kernel

which is defined as

K(ti, t j) = #{isomorphic subtrees of ti and t j}.
This kernel is frequently used in analysis of linguistic and phylogenetic data. (See [121]
for an early paper on kernel methods in natural language processing.)

3. On the set of strings, the (k,m) mismatch kernel is defined as

K(wi,w j) = #{substrings s1, s2 of wi and w j such that

|s1| = |s2| = k and s1, s2 agree up to m mismatches}.
This kernel has seen notable applications to protein matching [322].

It now turns out that many manifold learning approaches can be interpreted as
kernel PCA; notably, we can represent Isomap, LLE, and Laplacian eigenmaps
in this fashion [225]. For example, for a data set {xi}, Isomap is (up to scaling)
identical to kernel PCA for the kernel

K(xi, x j) =

(
−1

2
(I − eeT )D2(I − eeT )

)
i j

,

where D2 denotes the matrix of squared distances, and e denotes the vector with all
entries 1.

4.3.5 Discrete Harmonic Analysis

As we have seen, many manifold learning algorithms essentially involve an approx-
imation to the Laplace-Beltrami operator on a manifold via the graph Laplacian.
That is, one way to think about the underlying mathematics of manifold learning
is in terms of discrete approximations of heat flow on the underlying manifold. In
classical physics, the Laplace operator Δ arises in the heat equation, which in its
simplest form can be written

∂ f
∂u
= Δ f .
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The heat equation describes how the geometry of a manifold interacts with local
temperature information to control the diffusion of heat over time.

Elaborating on this perspective, work of Jones, Coifman, Maggioni and collab-
orators has produced a large body of work on discrete harmonic analysis in terms
of the heat kernel, the function that describes the infinitesimal flow. Two basic
observations in the mathematical setting are that:

● the heat flow on the manifold describes the geometry of the manifold, and
● harmonic analysis (a generalization of Fourier analysis) in terms of the basis

of powers of the heat kernel gives a good description of functions on the
manifold.

The idea of discrete harmonic analysis is to analyze data using discretized
approximations to the heat flow. Given the data represented as a finite metric space
(X, ∂X), we fix a rapidly decaying function K(xi, x j) : X × X → R. For example, a
standard similarity measure is given by

K(xi, x j) = e−
∂X (xi ,x j)

σ ,

where σ is a width parameter. We now proceed as follows.

1. Form the weighted graph G with vertex set in bijection with the points x ∈ X
and an edge (xi, x j) of weight wi j = K(xi, x j) provided that K(xi, x j) > 0.

2. Writing Dii =
∑

j wi j, define the (normalized) graph Laplacian to be

L = D−
1
2 (D −W)D−

1
2 ,

where Wi j = wi j. (Notice that there is a slight difference from the graph
Laplacian used in Section 4.3.3.)

The discrete version of the heat flow is given by the random walk on the graph,
sometimes referred to as the diffusion walk in this situation; this is a Markov pro-
cess on the vertices where the vertex at time t is selected from the neighbors of
the vertex at time t − 1 according to the edge weights. Precisely, the probability of
moving to vertex k from vertex i is

pki =
wki∑
j wk j

.

The random walk on the graph G above has transition probabilities determined by
D−1W. It is sometimes useful to make this walk symmetric (i.e., to ensure that
pki = pik); in this case, the transition probabilities for the symmetrized walk are
given by

T = I − L = D−
1
2 WD−

1
2 .
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Roughly speaking, the diffusion walk on the graph describes how a point mass
at a given point in the graph spreads out over time as it diffuses according to the
edge weights. In the limit as the number of points increases and σ decreases, the
diffusion walk converges to the actual heat flow on the manifold described by the
heat equation.

The key observation is now that harmonic analysis of T gives rise to geometric
descriptions of the data set. To explain, the eigenfunctions of the powers T t deter-
mine a metric on X; this is the so-called “diffusion distance” at scale t. Specifically,
if we denote the eigenvectors of T (regarded as an L2 operator) by {Ψk} and the
associated eigenvalues {λk}, the diffusion distance at scale t is given by

Dt(x, y)2 =
∑
k≥0

λ2t
k (Ψk(x) − Ψk(y))2.

Since T and its powers describe an ergodic Markov process, the eigenvalues λi

satisfy |λ0| = 1 and

|λ0| ≥ |λ1| ≥ |λ2| ≥ . . . .
Truncating the expression for Dt by removing eigenfunctions corresponding to
eigenvalues smaller than some threshold ε provides a tractable approximation.
Roughly speaking, the diffusion distance between two points is a measure of how
connected the points are; i.e., it reflects the probability of moving from x to y in the
diffusion walk.

Moreover, we can use eigenvectors of T to embed the data {xi} in Rk so as to opti-
mally preserve the diffusion distance; just as in the manifold learning algorithms
described above, we put the scaled eigenvectors λt

iΨi as the columns of a matrix
and take the rows to compute the embedding. This embedding is such that the
Euclidean distance between the embedded points is close to the diffusion distance
on G.

Furthermore, wavelet bases for functions on the data can be constructed using
powers of T ; this gives a geometric basis for representing functions. The diffu-
sion process can also be used to smooth data before applying machine learning
algorithms. See [119] for the original paper; more generally, Maggioni’s research
group has an extensive bibliography.

4.3.6 Other Manifold Learning Techniques

We have chosen to highlight manifold learning techniques that are conceptually sig-
nificant and of historical importance; however, this has subsequently become a very
active area of research. There are now many other techniques, each with slightly
different virtues, insights, and limitations. As a few examples, some interesting
methods include the following.
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1. Local tangent space alignment [519], which uses the nearest neighbors of
a point to estimate the tangent space locally and then performs a global
optimization to align these compatibly.

2. Maximum variance unfolding [532], which forms a neighborhood graph that
maximizes distance between far-away points by solving a semidefinite pro-
gramming (SDP) problem and then computes eigenvectors, and uses these as
the basis for an embedding.

3. Manifold charting [69], which solves for local neighborhood coordinate patches
for each point and then sews them together using a global optimization process.

4.3.7 Manifolds of Differing Dimension

An obvious extension of the setup for manifold learning is the case where the data
is generated from the union of manifolds of differing dimension. This situation is
the simplest case of the general problem of “stratified space learning” (see Exam-
ple 1.11.9). Of course, ad hoc adaptations of manifold learning techniques could
be used: for example, cluster points by some estimate of local dimensionality (so
that points in a cluster come from a subset of roughly constant dimension) and then
apply manifold learning techniques to each cluster separately.

However, it is reasonable to expect that more systematic approaches would be
superior. So far, there have been two main settings studied.

1. The data is assumed to lie on the union of hyperplanes of different dimensions;
i.e., M = ∪iR

ni , where each Rni is presented as embedded in an ambient space
Rm via a linear map γi : Rni → Rm [481].

2. The data is assumed to lie on a metric graph. Recall from Example 1.11.9 that
these are stratified spaces with a zero dimensional stratum for the vertices and
a one dimensional stratum for the edges. We discuss the special case of trees
further below in Section 4.7.1. See for example [106] for an approach to general
graphs using Reeb graphs.

(Although note that [48] studied the problem of clustering points into different
strata, using estimates of local homology.)

4.4 Neighbor Embedding Algorithms

In this section, we discuss a different approach to dimensionality reduction,
stochastic neighbor embedding (SNE) [242] and its more popular descendant
t-distributed stochastic neighbor embedding (t-SNE) [336]. One issue with many
of the manifold learning algorithms we have discussed so far is that they do
not work well when the data points are of non-uniform density. The stochastic
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neighbor embedding algorithms address this by constructing a similarity measure
between points that reflects the local density around each point. They are much
more explicitly probabilistic (and less geometric) in their design.

4.4.1 Stochastic neighbor Embedding (SNE)

Let {x1, . . . , xm} ⊂ Rn denote the data and {y1, . . . , ym} ⊂ Rk denote a candidate set
of corresponding image points, for k ≤ n. Then we define

p j|i =
e
− ∂Rn (xi ,x j)

2

2σ2
i

∑
k�i e

− ∂Rn (xi ,xk)2

2σ2
i

and

qj|i =
e−∂Rn (yi,y j)2∑

k�i e−∂Rn (yi,yk)2 ,

where the variances σi are obtained by an optimization process we will describe
shortly and in the second equation we are fixing all of the variances to be identically√

2
2 . We set pi|i = qi|i = 0.

The idea behind SNE [242] is that good image points {y1, . . . , yn} have the prop-
erty that the difference between p j|i and q j|i is minimized, in the sense that we
minimize the summed Kullback-Leibler divergences via the cost function

C =
∑

i

∑
j

p j|i log
p j|i
q j|i

.

(See Remark 3.2.32 for discussion of the Kullback-Leibler divergence as a dis-
similarity measure on probability distributions.) Notice that ensuring these local
distributions are similar means that SNE is sensitive to variation in density; the
density around a point is explicitly represented in the cost function.

Remark 4.4.1. Recall that the Kullback-Leibler divergence is a dissimilarity mea-
sure but not a metric: it is not symmetric. In the context of SNE, this asymmetry
is a regarded as a feature – it serves to enforce a preference for preserving local
distances.

In practice, the SNE algorithm proceeds by solving for minimizing points {yi}
via a gradient descent procedure (often with diminishing amounts of noise added
as a form of simulated annealing) in order to find a good local minimum for C.
Convergence is often slow and depends critically on good choices of the vari-
ances σi, which we now explain how to obtain. In principle, differing choices of σi
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amount to enforcing variable numbers of neighbors used to do the local estimation
of the coordinates; this is expressed here via the use of the “perplexity,” which is
computed as

P = 2−
∑

j p j|i log2 p j|i .

Roughly speaking, P controls the number of effective neighbors that are used;
recall that this is a loose estimate of the local dimension. The desired perplex-
ity (typically in the interval [10, 100]) is a parameter, and we solve for values σi

which achieve the perplexity. The output of the algorithm can be fairly sensitive to
the choice of perplexity value.

4.4.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

In practice, a refinement of stochastic neighbor embedding is commonly used. One
of the problems with the original SNE procedure is that the gradient descent opti-
mization procedure is slow and it can be difficult to get it to converge. Another
problem afflicts the standard application of SNE to visualization. Specifically, in
order to use SNE to visualize data, one solves for embedded points {yi} in R2 or
R3. When there are even a moderately large number of points, the cost function
can cause compression of the points so that they all lie very close to the center of
mass, which makes the visualization hard to use. (This compression also defeats
clustering algorithms.)

To resolve these problems, van der Maaten and Hinton [336] proposed the vari-
ant algorithm t-SNE. This is quite similar to SNE, with the following modifications.

1. We symmetrize p j|i as follows:

pi j =
p j|i + pi| j

2
.

2. We define a symmetrized variant of q j|i as follows:

qi j =

(
1 + ∂Rm(yi, y j)2

)−1

∑
k��

(
1 + ∂Rm(yk, y�)2

)−1
.

In the original definition, the q j|i was defined using a Gaussian; this expression
replaces that with the Student t-distribution with one degree of freedom (i.e., a
Cauchy distribution), which has more weight in the tails.

3. Finally, the cost function is replaced with the alternative expression

C =
∑

i

∑
j

pi j log
pi j

qi j
.
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Once again, the cost function is optimized via a gradient descent procedure.
These modifications have a number of interesting consequences.

1. The use of a heavier tailed distribution in the embedding space means that
outliers have less impact on the overall results and the compression effects
around the center of mass are alleviated to some degree (although there are
still upper bounds on the number of points that can reasonably be embedded
before “clumping” occurs).

2. The adjusted formula for qi j also has the effect of substantially improving the
efficiency and quality of the gradient descent procedure.

Figures 4.15, 4.16, and 4.17 show that the t-SNE procedure can produce very
reasonable embeddings recovering local geometry; in particular, t-SNE arguably
performs best of the methods we have examined on the nested ribbons.

However, caution is required when interpreting the results of t-SNE. In contrast
to other dimensionality reduction methods, t-SNE does not directly depend on a dis-
cretization of the Laplace-Beltrami operator or approximation of the local tangent
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Figure 4.15 Especially at lower densities, t-SNE unfolds the ribbon to recover its
intrinsic coordinates.
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Figure 4.16 When the data lies on the nested arcs, t-SNE actually does a
reasonable job at recovering the intrinsic coordinates.

2.5

0.0

–2.5
–2

0
2 2 0 –2

2.5

0.0

–2.5
–2

0
2 2 0 –2

2.5

0.0

–2.5
–2

0
2 2 0 –2

Figure 4.17 When the data lies on the standard S 2 in R3, t-SNE does not do a
good job of capturing the intrinsic distances and instead flattens the sphere.
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planes. Put another way, it is more sensitive to different properties of the underly-
ing geometric object than other manifold learning methods. On the one hand, this
flexibility can be a real asset when working with data that does satisfy the mani-
fold hypothesis. On the other hand, the geometric properties of {yi} can be difficult
to relate to the geometric properties of {xi}. For example, when clustering points
after computing the t-SNE embedding in R2, inter-cluster distances do not reflect
global properties faithfully, and relative sizes of clusters are usually meaningless.
Moreover, there are no geometric theoretical guarantees about the ideal behavior
of t-SNE. We now turn to discuss an application highlighting best practice in using
t-SNE.

4.4.3 Reliable Use of t-SNE

A common usage pattern for t-SNE is to project into R2 and then apply a stan-
dard clustering method. This application of the algorithm has had some impressive
successes, as a method which adjusts for local density can reveal clusterings which
would not be evident using methods which impose a global constraint. A celebrated
application is the viSNE procedure [13], a tailored use of t-SNE, which has been
used for visualizing and classifying single-cell expression data, notably to distin-
guish healthy and cancerous bone marrow samples. We highlight the protocol here
as it provides an exemplary case study of how to robustly apply dimensionality
reduction.

The basic approach of viSNE applies t-SNE to embed gene expression data col-
lected from single-cell bone marrow samples, regarded as vectors in Rn with the
correlation metric, into R2 and then performs clustering on the embedded data. The
overall conclusion is that in this embedding, healthy bone marrow cells are close
together across samples and quite far from cancerous samples. This conclusion was
carefully validated.

1. The stability of each clustering was tested via standard cross-validation; some
data points were removed and deviation in the clusters was measured.

2. In order to handle the limits on the total numbers of points for embeddings in
R2, the algorithm was run repeatedly on subsamples from the data. The clusters
were compared to ensure that the analysis was robust to this subsampling.

3. To demonstrate more global stability, samples from different normal patients
were compared (and observed to be extremely similar in terms of the resulting
clusterings).

4. To ensure that the results were not artifacts of experimental procedure, differ-
ent experimental methods for obtaining the expression data were compared by
contrasting the resulting clusters.
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The procedures outlined above give very good confidence that the results of the
viSNE procedure are capturing real geometric information about the expression
data of bone marrow. In general, this example is a good model for an analytical
protocol for topological data analysis.

4.5 Mapper and Manifold Learning

In principle, one could use the coordinate charts provided by manifold learning
algorithms for all sorts of geometric inference about the data. In practice, dimen-
sionality reduction procedures are most commonly used as a preprocessing step
before applying some kind of clustering algorithm. From the perspective of TDA, a
very interesting extension of this approach is to use the output of manifold learning
algorithms as filters for Mapper.

Recall from Example 2.8.3 that using PCA coordinates of expression data as
a filter function for Mapper captured cell differentiation trajectories [431]. A rea-
sonable question to ask is what Mapper adds over standard manifold learning; to
answer this, we can directly compare the output of Mapper to the output of var-
ious manifold learning procedures. In Figure 4.18, we represent both the output
of Mapper and the raw outputs of PCA, MDS, and t-SNE for the differentiation
process.

The results are informative.

1. Mapper is only very slightly better than MDS and t-SNE for estimating a cell’s
position along the differentiation trajectory.

2. However, the graphical representation of Mapper contains additional informa-
tive structure; the loops and flares in the resulting Mapper graph are biologically
relevant.

In general, we expect that this kind of fusion of topological data analysis
and dimensionality reduction will provide a useful technique for describing the
structure of genomic data.

4.6 Dimensionality Estimation

Recall that the basic operating assumption in dimensionality reduction is that the
data points {xi} ⊆ Rn lie on a geometric object that has much lower intrinsic dimen-
sion k than the ambient space. As such, a natural problem to consider is whether
we can directly determine the dimension of {xi} without actually computing a
description of the lower dimensional object.
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Figure 4.18 The differentiation timeline can be extracted from various manifold
learning techniques. Source: [431]. From Abbas H. Rizvi et al., Nature Biotechnol-
ogy 35, 551-560 (270). c© 2017 Nature. Reprinted with Permission from Springer
Nature.

There are several reasons why we might want to have efficient approaches to this
problem. Although the very idea of intrinsic dimension presupposes the data has
enough geometric structure to give rise to a notion of dimension, there are many
classes of objects that have a good definition of dimension which are not mani-
folds (e.g., fractals). Moreover, estimating the intrinsic dimension can provide a
sense of how good low-dimensional summaries can be; for example, projecting
a data set with intrinsic dimension 4 into R2 will typically result in much less
distortion than projecting a data set with intrinsic dimension 50 into R2. Finally,
understanding the intrinsic dimension gives us a sense of the number of sam-
ple points required to accurately estimate geometric features of the underlying
object.
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There are a number of ways to try to directly estimate the dimension of the points
{xi}; almost all of them consider the rate of growth of the number of points within
an ε-ball as ε increases. For example, the correlation dimension [205] of a set of
points {x1, . . . , xn} is computed by considering the curve produced by plotting

(x, y) =

(
log ε,

2
n(n − 1)

θε

)
,

where θε is the count of the number of pairs (xi, x j) such that ∂(xi, x j) ≤ ε, and per-
forming a regression to estimate the slope of this curve. The correlation dimension
has proven useful in handling estimation of dimension for geometric objects like
fractals that are not well described by more classical measures of dimension.

When working under the manifold learning assumptions, i.e., that the data is
given as points {xi} ⊂ Rn sampled from a k-dimensional manifold, a more geomet-
ric version of this idea can be applied. The basic observation is that when points are
sampled from a density ρ in Rk, the number of points expected in a ball of radius
ε centered around z is approximately ρ(z) times the volume of the ball. There-
fore, empirical estimates of the rate of growth of the count of sample points in
Euclidean balls of expanding radius can be used to estimate dimension. A very
clean form of this approach is given by the maximum-likelihood estimator of Lev-
ina and Bickel [327], which assumes a Poisson distribution for the data and is given
at the point x by the formula⎛⎜⎜⎜⎜⎜⎜⎝ 1

N(R, x)

N(R,x)∑
j=1

log
R

T j(x)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

,

where N(R, x) is the number of points in the ball of radius R around x and T j(x) is
the distance from x to the jth point in this ball. To compute a global estimate, we
can average the likelihood estimators.

Remark 4.6.1. MacKay and Ghahramani observe that the estimator above has
substantial bias (even for low dimensions) which can be corrected by a slightly dif-
ferent approach to combining the points, namely again using maximum likelihood
estimation. This amounts to computing the following:

m−1 =

∑n
i=1

∑N(R,xi)
j=1 log R

T j(xi)∑n
i=1 N(R, xi)

.

Notice that this is very similar to the original approach; here we are just averaging
the inverses. Numerical experiments suggest this correction reduces both bias and
variance.
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Another interesting approach in the manifold setting, due to Little et al. [332],
combines local PCA estimates of the dimension at various scales. The idea is
around each data point z to choose k-nearest neighbors and perform PCA on
the vectors determined by the pairs of z and a nearest neighbor to obtain a
local estimation of the tangent plane. More precisely, we perform the following
algorithm.

1. For each point z, we compute the eigenvalues λ1(r), . . . , λK(r) of the covariance
matrix

C =
1
n

∑
i

xix
T
i ,

restricted to the data points xi ∈ Br(z), as r varies. (We assume that the data has
been centered.)

2. Ideally, we will see the magnitudes of the eigenvalues cluster into two groups,
i.e., there will be a substantial eigenvalue gap over a broad range of values of r.
We regard the smallest ones as noise. We then restrict attention to the region of
the eigenvalue curves (i.e., plots of the values of the kth eigenvalue as a function
of r) where the rate of growth of the noise eigenvalues is flat.

3. Of the remaining eigenvalues, we separate those having linear growth as a func-
tion of r from those having quadratic growth via a regression. The linear growth
eigenvalues are regarded as corresponding to eigenvectors in the direction of
the local tangent plane, whereas the quadratic growth eigenvalues are com-
ing from eigenvectors in the direction of the local curvature of the manifold.
The number of linear growth eigenvalues provides a local dimension estimate
at z.

4. Finally, we average the dimension estimates over all points z.

4.7 Metric Trees and Spaces of Phylogenetic Trees

In this section we explain an approach to the analysis of phylogenetic trees based
on endowing sets of trees with geometric structure. The importance of phyloge-
netic tree structures in biological sciences cannot be overstated; their use begins
with Darwin’s proposal of the tree as a metaphor for the process of species gen-
eration through branching of ancestral lineages [133]. Since then, tree structures
have become ubiquitous in biology for describing evolutionary relations: notably,
clonal evolution events that start from asexual reproduction of a single organism
(primordial clone), which mutates and differentiates into a large progeny (see the
left panel of Figure 4.19) [293]. Examples of these processes include single gene
phylogeny in non-recombinant viruses, bacteria that are not involved in horizontal
gene transfer events, and metazoon development from a single germ cell.
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Figure 4.19 Clonal evolution of an asexually reproducing organism. Left:
Through acquiring mutations and differentiation, the primordial clonal organism
gives rise to a large heterogeneous population, whose evolution can be described
with tree-like structures; here horizontal lines represent organisms, and symbols
on the line represent mutations. Right: Longitudinal sampling of a clonal popula-
tion permits the construction of phylogenetic trees that describe its evolutionary
history. Here, subpopulations are represented by different colors; subsampling of a
particular subpopulation is illustrated by the color of the branch in the tree, one of
the many trees that can be reconstructed from this population. Source: [545]. From
Zairis et al., Genomic data analysis in tree spaces, arXiv: 1607.07503 [q-bio.GN].

There are a number of basic mathematical and algorithmic questions that arise
in this context.

1. Given genomic data, how can we fit a “best” phylogenetic tree to this data that
optimally encodes the evolutionary relationships in the data?

2. Given two trees, how can we assess quantitatively how different they are? Given
a collection of trees, can we compute a “summary” or average tree?

3. More generally, how can we describe probability distributions on trees? (For
example, more sophisticated output of algorithms to answer the first question
might provide a distribution of trees.)

There is a tremendous body of work on the first question; in the first part of
this section, we focus on a purely metric method (neighbor-joining) that takes
as input a finite metric space and produces a corresponding metric tree. We
give a rapid but more comprehensive treatment of tree inference algorithms in
Appendix C.
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In the remainder of the section, we assume that our raw data has been turned
into phylogenetic trees, and describe an approach to the second and third questions
based on using the metric geometry (Section 4.7.3) associated to a specific metric
on the set of phylogenetic trees.

4.7.1 Inferring Trees from Metric Data

One way to formulate the problem of inferring a phylogenetic tree structure from
genomic data is to regard the data as a finite metric space (X, ∂X) and postulate that
the metric ∂X is a tree metric, i.e., the points correspond to the leaves of a tree and
the distance corresponds to the length of the shortest path in the graph. (Recall the
discussion of graph metrics from Example 1.2.4.)

Definition 4.7.1. A phylogenetic tree with m leaves is a weighted, connected
graph with no circuits, having m distinguished vertices of degree 1 labeled
{1, . . . ,m} (referred to as leaves), and all other vertices of degree ≥ 3.

We refer to edges that terminate in leaves as external edges and the remaining
edges as internal. We will use the term tree metric to refer to the metric induced on
the leaves from the graph metric of the phylogenetic tree.

Of course, not every metric arises from a tree metric. Specifically, given a metric
space (X, ∂X), the metric ∂X is a tree metric if and only if it satisfies the four point
condition [82].

Lemma 4.7.2. A metric space (X, ∂X) is isometric to a tree metric space if and
only if for any u, v,w, x ∈ X, two of the three sums

∂X(u, v) + ∂X(w, x), ∂X(u,w) + ∂X(v, x), ∂X(u, x) + ∂X(v,w)

are equal and greater than the third.

But although this can be used as a test, it does not provide an algorithm for
producing a tree. A good solution to the tree inference problem then ideally has the
following properties.

1. When ∂X really is the metric corresponding to a tree metric, the algorithm
recovers a tree such that the associated metric is isometric to the input.

2. When ∂X is “close” to a tree metric in a suitable sense, the algorithm recovers
a tree T such that the associated tree metric is close to ∂X .

An influential method to do this is neighbor-joining [442], which recursively
constructs the output tree by selecting a pair of points, joining them as leaves com-
ing out from an internal vertex, and then repeating the process with the new vertex



4 Dimensionality Reduction and Manifold Learning 263

regarded as a leaf and the joined points removed, until all of the points are part of
the tree. More precisely, the algorithm works as follows. We assume we are given
as input a finite metric space (X, ∂X) such that |X| = n.

1. We initialize the output tree T to have a vertex for each point of X, each
connected to a central root and with no other edges.

2. Calculate the function

Q(xi, x j) = ∂X(xi, x j) − 1
n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∑
k�i

∂X(xi, xk) +
∑
k� j

∂X(x j, xk)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
3. Find the points xi and x j that minimize Q(xi, x j).
4. Define a new point z, and form T ′ from T by adding edges from xi and x j to

z, deleting the edges from xi and x j to the root, and connecting z to the root.
Define the edge weights as

wxi,z =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂X(xi, x j) +
1

n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∑
k�i

∂X(xi, xk) −
∑
k� j

∂X(x j, xk)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

and

wx j,z =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂X(xi, x j) +
1

n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∑
k� j

∂X(x j, xk) −
∑
k�i

∂X(xi, xk)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

5. Form the discrete metric space X′ = X − {xi, x j} ∪ {z}, with

∂X′(xk, z) =
1
2

(∂X(xi, xk) + ∂X(x j, xk) − ∂X(xi, x j)).

6. If X′ consists only of {z}, terminate and return T ′. Otherwise, return to step 2
with T ′ and X′ in place of T and X.

First, the algorithm is sound, in the sense that when the metric ∂X actually is
a tree metric, the neighbor-joining algorithm recovers the tree. More interestingly,
it is fairly robust to noise; notice that neighbor-joining does not really require a
metric space as input, as the triangle inequality is never used. We have the following
consistency result [23].

Theorem 4.7.3. Let (X, ∂X) be a tree metric space and D : X × X → R a function
satisfying

|D(x, y) − ∂X(x, y)| ≤ 1
2

min
x1,x2∈X
x1�x2

∂X(x1, x2)

for all x, y ∈ X. Then neighbor-joining applied to D returns a metric space
isometric to (X, ∂X).
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Neighbor-joining turns out to work surprisingly well in practice; a theoretical
justification for this is given in [351]. Nonetheless, there are no global guarantees
about the behavior of the procedure for metric spaces far from trees; for instance,
in some cases neighbor-joining can produce negative edge lengths or exhibit other
perverse behavior.

Remark 4.7.4. A natural question to ask is how to determine whether a metric
space is far from being tree-like. One measure of the divergence from being a tree
metric is given by Gromov’s δ-hyperbolicity, which is a relaxation of the four-point
condition.

Persistent homology also gives an interesting approach to detecting whether a
metric space is a tree: metric trees are contractible and should have no homol-
ogy. Therefore computing PHk for any k > 0 yields information about divergence
from being tree-like. We discuss applications of this idea to population genetics in
Section 5.2.

4.7.2 The Billera-Holmes-Vogtmann Metric Spaces
of Phylogenetic Trees

For many applications, it would be very desirable to have a metric on the set of
phylogenetic trees. A distance function would permit quantitative comparisons. It
would also allow one to apply clustering algorithms to collections of trees (e.g.,
produced from samples from distinct patients). A metric would also provide some
of the foundations for dealing with probability distributions on phylogenetic trees
as well as summary statistics.

Billera-Holmes-Vogtmann (BHV) constructed a metric on weighted phyloge-
netic trees using the tools of metric geometry [55]. They defined a metric space
BHVm of isometry classes of rooted phylogenetic trees with m labeled leaves where
the non-zero weights are on the internal branches. The space BHVm is constructed
by gluing together (recall Section 1.5) (2m−3)!! positive orthants Rn

≥0 of dimension
n = m − 2, where

Rn
≥0 = {(x1, x2, . . . , xn) ∈ Rn | x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0};

each orthant corresponds to a particular tree shape, with the coordinates specifying
the lengths of the internal edges. A point in the interior of an orthant represents
a binary tree; if any of the coordinates are 0, the tree is obtained from a binary
tree by collapsing the internal edges with length 0. We glue orthants together such
that a (non-binary) tree is on the boundary between two orthants when it can be
obtained by collapsing edges from either tree geometry. Put another way, orthants
corresponding to two tree topologies are adjacent when they are connected by a
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rotation, i.e., one topology can be generated from the other by collapsing an edge
to length 0 and then expanding out another edge from the incident vertex.

The metric on BHVm is induced from the standard Euclidean distance on each
of the orthants.

1. For two trees t1 and t2 which are both in a given orthant, the distance
dBHVm(t1, t2) is defined to be the Euclidean distance between the points
specified by the weights on the edges.

2. For two trees which are in different orthants, there exist (many) paths connect-
ing them which consist of a finite number of straight lines in each orthant. The
length of such a path is the sum of the lengths of these lines, and the distance
dBHVm(t1, t2) is then the minimum length over all such paths.

For many points, the shortest path goes through the “cone point,” the star tree in
which all internal edges are zero. See Figure 4.20 for a picture of tree space.

As explained in [55, §4.2], efficiently computing the metric on BHVm is a
non-trivial problem. However, there exists a polynomial-time algorithm based on
successive approximation of geodesic paths [394].

Figure 4.20 Moduli space of phylogenetic trees describing clonal evolution. Col-
lections of trees can be mapped onto a geometric space, forming a point cloud.
Trees with the same topology will live in the same orthant, and crossing into an
adjacent orthant corresponds to a tree rotation (collapsing an edge to 0 and expand-
ing out a new edge). Points closer to the vertex of the cone have relatively little
internal branch length, while points near the base of the cone have little weight in
the external branches. Source: [545]. From Zairis et al., Genomic data analysis in
tree spaces, arXiv: 1607.07503 [q-bio.GN].
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The main result of Billera, Holmes, and Vogtmann is that the length met-
ric on BHVn endows this space with a (global) CAT(0) structure (see Defini-
tion 4.7.9 below). The fact that BHVn is a CAT(0) space means that points
are connected by unique geodesics (which realize the distance between them)
and there are unique centroids. As a consequence, it is reasonable to con-
sider geometric inference in this setting. Moreover, BHVn is clearly a com-
plete metric space and is separable, which means that it contains a countable
dense subset; any tree can be approximated by a sequence of trees in the
same orthant that have rational edge lengths. That is, BHVn is a Polish space
and so as discussed in Section 3.3 is a reasonable space on which to apply
the standard machinery of probability theory (see [247, 248] for work in this
direction). In some applications it is also useful to consider a projectivized vari-
ant of the tree space where the internal edges are constrained to have lengths that
sum to 1. We denote this subspace of Σn by PΣn and refer to it as the projective tree
space.

Remark 4.7.5. The space of phylogenetic trees turns out to appear in various
other contexts in mathematics; for instance, it is closely related to the moduli space
of algebraic curves [141]. Perhaps more relevantly, it appears in the context of
Diaconis and Sturmfels’ algebraic statistics [145] as a tropical Grassmannian [479]
(see also [395]).

4.7.3 Metric Geometry

Although metric spaces often arise in contexts in which there is no evident notion
of geometry, it turns out that under very mild hypotheses a metric space (X, ∂X) can
be endowed with structures analogous to those arising on Riemannian manifolds.
See [73, 83] for a comprehensive treatment of metric geometry. The basic approach
to this involves the notion of length of a path in a metric space.

Definition 4.7.6. Let (X, ∂X) be a metric space. Let I ⊂ R be an interval [a, b].
The length of a path γ : I → X is

L(γ) = sup
n∑

i=1

∂X(γ(xi), γ(xi−1)),

where the sup is taken over all collections a = x0 < x1 < . . . < xn−1 < xn = b.

We can define a potential distance function on (X, ∂X) by defining the distance
between x and y to be

inf
γ

L(γ),
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where the infimum is taken over all γ : [0, 1] → X such that γ(0) = x and γ(1) = y.
A metric space is a length space if this distance agrees with the metric. When the
infimum can be achieved, we have the notion of a geodesic metric space.

Definition 4.7.7. A metric space (M, ∂M) is a geodesic metric space if any two
points x and y can be joined by a path with length precisely ∂M(x, y).

Any Riemannian manifold is a geodesic metric space. But more generally, a
good notion of curvature makes sense in any geodesic metric space [11]. The idea
is that the curvature of a space can be detected by considering the behavior of
the area of triangles, and triangles can be defined in any geodesic metric spaces.
Specifically, given points p, q, r, we have the triangle T = [p, q, r] with edges the
paths that realize the distances ∂M(p, q), ∂M(p, r), and ∂M(q, r). The connection
between curvature and area of triangles is revealed by the observation that given
side lengths (�1, �2, �3) ⊂ R3, a triangle with these side lengths on the surface of
the Earth is “fatter” than the corresponding triangle on a Euclidean plane. To be
precise, we consider the distance from a vertex of the triangle to a point p on the
opposite side – in a fat triangle, this distance will be larger than in the correspond-
ing Euclidean triangle. (Thin triangles are defined analogously.) See Figure 4.21
for examples of thin and fat triangles.

Given a triangle T = [p, q, r] in (M, ∂M), we can find a corresponding triangle T̃
in Euclidean space with the same edge lengths. Given a point z on the edge [p, q],
a comparison point in T̃ is a point z̃ on the corresponding edge [p̃, q̃] such that
∂R2(z̃, p̃) = ∂M(p, z).

Definition 4.7.8. Let (M, ∂M) be a metric space. We say that a triangle T in M sat-
isfies the CAT(0) inequality if for every pair of points x and y in T and comparison
points x̃ and ỹ on T̃ , we have ∂M(x, y) ≤ ∂R2(x̃, ỹ).

Definition 4.7.9. If every triangle in M satisfies the CAT(0) inequality then we
say that M is a CAT(0) space.

Figure 4.21 Thin triangles have angles that add up to less than 180 degrees; fat
triangles have angles that add up to more. We can detect the curvature of the Earth
by observing that big triangles are fat.
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More generally, let Mκ denote a complete and simply connected two dimensional
Riemannian manifold with curvature κ; the classification results discussed above
show that there is a unique such manifold up to homeomorphism. The diameter of
Mκ will be denoted Dκ. A Dκ-geodesic metric space is one in which all pairs of
points p and q such that ∂M(p, q) < Dκ are connected by a geodesic.

Definition 4.7.10. A Dκ-geodesic metric space M is a CAT(κ) space if every trian-
gle in M with perimeter ≤ 2Dκ satisfies the inequality above for the corresponding
comparison triangle in Mκ.

Clearly, if κ′ ≤ κ, any CAT(κ′) space is also CAT(κ). More importantly, this
notion coincides with standard ideas about curvature in geometric examples: An
n-dimensional Riemannian manifold M that is sufficiently smooth has sectional cur-
vature ≤ κ if and only if M is CAT(κ). For instance, Euclidean spaces are CAT(0),
unit spheres are CAT(1), and hyperbolic spaces are CAT(−1).

As described, CAT(κ) is a global condition.

Definition 4.7.11. A metric space (X, ∂X) is locally CAT(κ) if for every x there
exists a radius rx such that Brx(x) ⊆ X is CAT(κ).

Example 4.7.12. For example, the flat torus (formed by taking the box [0, 1] × [0, 1]
and gluing together the edges {0} × [0, 1] to {1} × [0, 1] to make a cylinder and the edges
[0, 1] × {0} to [0, 1] × {1} to make a torus) is locally CAT(0) but not globally CAT(0).

Theorem 4.7.13 (Cartan-Hadamard). A simply connected metric space that is
locally CAT(0) is also globally CAT(0).

A remarkably productive observation of Gromov is that many geometric proper-
ties of Riemannian manifolds are shared by CAT(κ) spaces. In particular, CAT(κ)
spaces with κ ≤ 0 (referred to as non-positively curved metric spaces):

1. admit unique shortest paths joining each pair of points x and y,
2. have the property that all balls Bε(x) are convex and contractible for all x and
ε ≥ 0, and

3. have stable midpoints of shortest paths.

It is in general very difficult to determine for an arbitrary metric space whether
it is CAT(κ) for any given κ. Even for finite simplicial complexes where the metric
is induced from the Euclidean metric on each face, this problem does not have a
general solution.
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4.8 Summary

● A standard approach in data analysis is to search for low-dimensional structure
in high-dimensional data points using the geometry encoded in the interpoint
distances.

● Principal component analysis (PCA) takes a finite set of points in Rn (with the
assumption that these points admit an isometric embedding as a plane) and seeks
to find an optimal linear projection of the data into Rk for k < n.

● Metric dimensionality scaling (MDS) is another classical method which deter-
mines an optimal embedding of a finite metric space (X, ∂X) into a Euclidean
space. MDS is similar to PCA, but can be applied to arbitrary metric spaces.

● Isomap and local linear embedding (LLE) are two related algorithms that apply
MDS to empirical approximations of the intrinsic metric of a manifold. Isomap
and LLE differ slightly in their procedures. LLE is slightly more successful in
practice on non-convex contractible subsets of Euclidean space.

● Almost all manifold learning algorithms depend on approximating the local
tangent structure of the manifold from the data, typically by studying the spec-
trum of the graph Laplacian. Heat flow provides a conceptual framework for
describing these approximations.

● Neighbor embedding algorithms like stochastic neighbor embedding (SNE)
make different geometric assumptions and are effective in working with data
points of non-uniform density. A descendant of SNE, t-distributed stochastic
neighbor embedding (t-SNE), is an extremely popular choice in applications.

● As synthetic examples illustrate, classical dimensionality reduction and man-
ifold learning techniques work best under restrictive hypotheses about the
geometry of the data.

● The coordinates provided by manifold learning algorithms can be used as filters
for Mapper. This is an interesting avenue for combining TDA and geometric
dimensionality to provide a more flexible description of the underlying structure
of the data.

● Metric geometry is the study of geometric structures on metric spaces that are
similar to those that arise in Riemannian geometry.

● The space of phylogenetic trees may be endowed with geometric structure. This
structure provides the foundations for dealing with probability distributions and
summary statistics.

4.9 Suggestions for Further Reading

There is of course a tremendous literature on PCA and many different variants
of MDS; we particularly recommend Hastie, Tibshirani, and Friedman’s classic
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text [233] for a wonderful exposition in the context of classification and learning.
The area of manifold learning and the problem of working with non-Euclidean
manifolds embedded in Euclidean space is substantially more recent. A nice survey
of manifold learning techniques (discussed in a broader machine learning context)
is available in [50].
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5

Evolution, Trees, and Beyond

The affinities of all the beings of the same class have sometimes been
represented by a great tree. I believe this simile largely speaks the truth.
The green and budding twigs may represent existing species; and those
produced during each former year may represent the long succession of
extinct species.

Charles Darwin

Any living cell carries with it the experience of a billion years of
experimentation by its ancestors.

Max Delbruck

5.1 Introduction

It is impossible not to marvel at the richness of life on Earth: from the large mam-
mals in the sea and on the plains, to the hardy plants of the high mountains, to the
microbes living in hydrothermal vents and under the Antarctic ice. The adaptabil-
ity and sheer quantity of cellular life on this planet is staggering. The challenge of
classifying its diversity was recognized as far back as the fourth century BC, when
Aristotle (384–322 BC) introduced one of the first systematic taxonomies of living
organisms. He began his work by separating the plants from animals. Then, he split
the animals into those that walked, swam or flew, and the plants into those small,
medium or large in size. He further subdivided these groups based on other criteria.
Beyond his taxonomy, Aristotle also proposed a hierarchy of animals, known as
the “Ladder of Life,” with simple organisms on its lower rungs and humans at the
top.

Modern taxonomy was founded in the eighteenth century by the Swedish sci-
entist Carolus Linnaeus, who undertook the colossal task of classifying all known
animals, plants and even minerals. In Systema Naturae (1735), Linnaeus proposed
a hierarchical structure where similar organisms were first grouped into species,
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similar species would be grouped into one genus, and similar genera would be
grouped into one family, and so on, generating a phylogeny built of six ranks of
taxa: kingdom, class, order, family, genus, species. Thus the highest rank taxa in
the Linnaean taxonomy were the three kingdoms (plants, animals, and minerals).
The animal kingdom, for instance, was divided into six classes: Mammalia, Aves,
Amphibia, Pisces, Insecta, and Vermes. The Linnaean system is the forerunner of
most modern classifications of living and extinct organisms. Each lower rank taxon
belongs to a higher rank taxon, ultimately generating a tree structure (Figure 5.1).
Despite the elegance of his taxonomy, Linnaeus was troubled by the possibility that
a given organism could present characteristics common to several taxa of the same
rank. To deal with this contingency, he annotated some animalia paradoxa, or con-
tradictory animals, that resisted hierarchical classification. Amongst these were the
dragon – which looks like a snake but has wings like a bird – and the legendary
Borometz or Scythian Lamb, a tree that grew lambs (Figure 5.2). Based on their
failure to fit within the hierarchy, it was eventually concluded that some of these
animals were mythical and did not exist beyond the medieval bestiaries and the
human imagination.

In 1859, Charles Darwin published On the Origin of Species [133], in which he
introduced his landmark theory of evolution by natural selection. Evolution arises
when parent organisms reproduce, generating progeny that resemble their parents
but have additional variation that allows them to adapt to different environmental
pressures. Some of this variation in the progeny is inheritable and is passed on to
future generations. The accumulation of inherited variation over time eventually
leads to the formation of new species. On the Origin of Species contained a single
figure, depicting the ancestry of species as a phylogenetic tree (Figure 5.3). The
idea of variation and its inheritance provided a beautiful explanation of the gener-
ation of species through a branching process: different organisms in the same taxa
resemble each other because they share a common ancestor. Darwin revealed that
a taxonomy is fundamentally a historical document – a record of the development
of life on Earth.

Since then, the tree structure has become a dominant framework for represent-
ing evolutionary processes. Prior to the advent of sequencing technologies, most
comparisons between organisms were based on phenotypic traits, the set of an
organism’s observable characteristics. The development of technologies to decode
genomic material has provided a means to track the source of inherited varia-
tion and has enabled the comparison of organisms at the most fundamental level.
Inferring evolutionary trees from molecular data, the practice known as molecular
phylogenetics, has become a standard process in the study of evolution.

A species tree can only be inferred from genomic data if different regions of
the genome provide similar trees. In humans, however, this is not the case. We



Figure 5.1 In 1735, the Swedish scientist Carolus Linnaeus published the Systema Naturae, a hierarchical classification of all known
animals, plants, and minerals. These three groups formed his kingdoms, each of which was further divided into classes. For instance, except
for a few exceptions (animalia paradoxa), all known animals were segregated as mammals, birds, amphibians, fish, insects or worms.
Interestingly, the animalia paradoxa presented features from several classes and could not be unequivocally classified. Source: (1) Portrait
of Carl Linnaeus, 1707–1778, Painted by Alexander Roslin in 1775, NMGrh 1053, Nationalmuseum, Stockholm, public domain. (2) Table
of the Animal Kingdom (Regnum Animale) from Carolus Linnaeus’s first edition (1735) of Systema Naturae.
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Figure 5.2 The “animalia paradoxa” were animals that challenged Linnaean tax-
onomy because they possessed similarities with organisms belonging to at least
two different higher taxa. The dragon, for instance, had a body similar to that of
a reptile but also wings like birds (illustration from the Liber Floridus, or Book of
Flowers, circa 1100AD, public domain). The Borometz, or Scythian Lamb, was
a plant that grew lambs. Source: Lee, H. 1887. The Vegetable Lamb of Tartary: a
Curious Fable of the Cotton Plant, to Which Is Added a Sketch of the History of
Cotton and the Cotton Trade. S. Low, Marston, Searle & Rivington, London.

Figure 5.3 This tree appeared in Darwin’s On the Origin of Species as a means
of capturing the divergence of species. In this figure, time advances moving
up the tree. The roots of the tree represent the original species that diversified
according to a branching process through progeny variation and selection. The
top branches constitute the modern species, and the branches that do not persist
to the top represent extinct species. Source: Left: Library of Congress, Prints &
Photographs Division, reproduction number, LC-DIG-ggbain-03485. Right: Dar-
win, C. R. 1859. On the origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life. London: John Murray.
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know that some genomic material, like mitochondrial DNA, is inherited through
the maternal line, while other material, like the Y chromosome in men, comes
through the paternal line. Thus trees inferred from mitochondrial DNA will not
agree with those inferred from the Y chromosome, as the evolutionary stories of our
fathers and our mothers are different. The problem becomes more complex when
different regions across chromosomes give rise to different potential trees. Genomic
data has increasingly challenged the single-tree picture, as biological phenomena
like species hybridization, bacterial gene transfer, and meiotic recombination have
complicated the lineage of inheritance. Despite their smaller genomic size, viruses
are also found to contain incompatible genomic tree histories. Frequent recombina-
tion events in HIV, for instance, have confounded attempts to reconstruct an early
history of the epidemic.

In 1990, using molecular comparison, Carl Woese et al. proposed the organiza-
tion of all cellular life forms into three large domains: the Bacteria, the Archaea,
and the Eukarya [538]. This study showed the power of genetic information to
elucidate deep phylogenetic relations that were hidden to other methods. Woese’s
tree, however, was based only on a small fragment of 1500 nucleotides in the 16S
ribosomal RNA of prokaryotes, a tiny fraction of any organism’s genome. One
then wonders if the tree reconstructed from this small part of the genome can be
extended to other parts of the genome, or if there exist other genes that could gen-
erate vastly different trees. Indeed, with the accumulation of genomic information,
an increasingly complex picture of the relations between species is emerging, with
different genes providing different incompatible tree phylogenies (see Figure 5.4),
highlighting the need for new representations [147].

There are, broadly, two ways in which organisms acquire genomic material. The
first, which we call here clonal evolution, is the consequence of direct transmission
of genes from a single parent to the offspring. Clonal evolution is a type of vertical
evolution, the direct transmission of genetic information from parents to offspring.
Changes in genomic material are mediated by random mutations over multiple gen-
erations. The genomic material is inherited from a single parent, and mutations will
lead to differences between a clone and its parents. This type of vertical evolution
is best represented by a mathematical structure called a phylogenetic tree. The left
of Figure 5.5 depicts a rooted tree where the root node at the apex represents an
ancestor that propagates and diversifies over time, creating new lineages, called
clades, in a branching pattern.

As has become increasingly apparent with the advent of sequencing technolo-
gies, genomic material may also be acquired through a second means: horizontal
or reticulate evolutionary events. These events occur when distinct clades merge
to form a new hybrid lineage. This phenomenon may be effected in a number
of ways and occurs across all domains of life. This phenomenon is pervasively
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Phylogenetic Tree

Phylogenetic Network

Figure 5.4 Idealized, simplistic phylogenetic trees contrast with more realistic,
complex reticulate networks. On the top right is the Doolittle representation of the
Tree of Life, made before the advent of sequencing technologies. It was thought
that most evolution occurred through branching processes, with the notable excep-
tions of mitochondria and chloroplasts – believed to be symbiotic bacteria that
fused part of their genome to their host’s. This picture is changing as the signifi-
cance of horizontal exchange of genomic information is becoming more evident.
Source: [147]. From Doolittle, W. F., Phylogenetic Classification and the Uni-
versal Tree, Science, 1999, 284 (5423): 2124–2128. c© 1999 Reprinted with
permission from AAAS.

found in viruses, for instance. As we will see later in detail, viral influenza under-
goes horizontal evolution through reassortment and HIV undergoes horizontal
evolution through recombination. Phylogenetic trees, however, are not able to
capture these horizontal evolutionary events. Representing these events graphi-
cally requires a new structure called a reticulate network, in which branches are
allowed to both join and split. Places in the network where branches merge are
known as cycles and correspond to individual reticulate events (Figure 5.5, right).
The resulting network is the result of merging many different trees with different
topologies.

To detect reticulate events by phylogenetic means, one must first construct a
tree for each gene in the genome and then cross-reference each pair of trees for
conflicts in lineal history. The simple example of the Network of Life, depicted
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Figure 5.5 Examples of a phylogenetic tree (left) and a reticulate network (right)
capturing clonal and horizontal evolution, respectively. Source: [100]. From
Joseph Minhow Chan, Gunnar Carlsson, and Raúl Rabadán ‘Topology of viral
evolution’, Proceedings of the National Academy of Sciences 110.46 (2013):
18566–18571. Reprinted with Permission from Proceedings of the National
Academy of Sciences.

in Figure 5.4, illustrates the complexity of inferring the properties of phylogenetic
networks summarizing complex data sets (from Doolittle [147]).

Some of the processes that lead to non-tree-like structures are shown in the table
below.

Organism Reticulate process Description

Viruses Homologous recombination Intragenomic homologous crossover

Reassortment New sets of different segments in
segmented viruses

Bacteria Transformation Acquisition of foreign DNA from
environment

Transduction Viral-mediated exchange

Conjugation Exchange through cell-to-cell contact

Eukaryotes Meiotic recombination Crossover and gene conversion during
meiosis

Hybrid speciation Hybridization between different species

Endosymbiosis Fusion of genomes of symbionts

5.2 Evolution and Topology

We now explain how to use topological data analysis to determine when evolution-
ary processes violate tree-like assumptions, i.e., to detect reticulate events, based on
observed genomic data. First, to understand how reticulate events can be observed
in genomic data, we will consider a very simple model.

Assume that we have a simplified genome with only two nucleotides, or basic
informational units, 0 and 1. We will further assume that this genome is quite large
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Figure 5.6 Summary of concepts used in this chapter. Clonal processes, such as
tumor development or bacterial evolution without gene transfer, are well captured
and represented by trees. Many processes, however, cannot be represented by a
tree and require the reticulate representation. These include certain vertical pro-
cesses where the genetic information is inherited from more than one parent, like
in meiosis in eukaryotes. Other processes involve the transfer of genetic infor-
mation between species, like in horizontal gene transfer in bacteria or species
hybridizations.

and that mutations exchanging 0s and 1s occur at uniformly random positions along
the genome. If the total number of bases is very large compared to the number of
mutations, then, assuming that mutation sites are chosen at random, the probability
that any particular site will be mutated twice is very small. In particular, as the
genome length approaches infinity and the number of mutations is held constant,
the probability of any site being mutated twice approaches zero. We can formalize
this for genomes of finite length by imposing the constraint that any given site only
mutates once; this is called the infinite-sites assumption. For this discussion, let
us adopt the infinite-sites assumption and assume that an organism evolves only
through a clonal process.

We now observe that certain mutational patterns are not possible given these
assumptions. Suppose that we have a genome of length 2. Then we can have four
possible alleles: 00, 01, 10, and 11. Consider an organism with ancestor 00. A muta-
tion in the ancestor’s first site generates 10 and a subsequent mutation in its second
site generates 11. How can we generate 01 after these two mutations? The ancestral
genome would have to mutate back at the first site; but this second mutation at the
first site would violate the infinite-sites assumption and thus this mutational pattern
would not be allowed in our model. Similarly, if the ancestor’s second site mutated
first, we would not be able to generate the allele 10. Therefore the presence of four
alleles in the observed population is incompatible with a solely clonal evolutionary
process from a single ancestor in this setup.

This observation can be turned into a test for reticulate events: checking for
these four alleles is referred to as the four gamete test. In practice, no genome is of
infinite length and so the infinite-sites hypothesis is not quite right; thus, violations
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of the four gamete test are possible even for strictly clonal evolution. However, if
the violation is identified at multiple sites, chance becomes an unlikely explanation.
For instance, in order to generate four genomes 0000, 1100, 0011, 1111, the infinite-
sites model would need to be violated twice. The more violations we have, the
less likely it is that our assumptions of clonal evolution are correct. So if we are
confident that the infinite-sites model is a reasonable approximation, then a large
number of incompatibilities casts doubt on the assumption of clonal evolution.

This raises the question of how to quantify what a “large number” of incom-
patibilities should be. One method is the Hudson-Kaplan test, which counts the
minimum k such that there exists a partition of the data into k subsets such that
within each subset all sites are compatible with the four gamete test [254]. For
example, in the case of the genomes 0000, 1100, 0011, 1111, if we split the
genome down the middle, and consider each half independently (00, 11, 00, 11
and 00, 00, 11, 11), then the four gamete hypothesis is no longer violated in each
partition.

Besides the Hudson-Kaplan method and variations based on the four gamete
test, there have been significant efforts to identify recombinants, their ancestors,
and specific genomic break points, i.e., the points in the genome where recom-
bination has occurred. Several major strategies have been developed to detect
recombinants.

● Distance methods rely on differences between the genetic pairwise distances
along the genome, usually using a sliding window technique. Based on some
underlying model one can then evaluate the likelihood of a recombination [530].

● Phylogenetic methods are based on the idea that if a recombination has occurred,
the trees inferred from different parts of the genome could have distinct topolo-
gies [432]. The same type of techniques can be used to identify genes that have
been transferred when orthologous genes from different species are more similar
to each other than expected, given the species’ evolutionary relationship [27].

● Compatibility methods search for phylogenetic incongruence in a site-by-site
basis, and, in general, do not require the phylogeny of the sequences to be known
[414, 470].

● Substitution methods search for clustering of substitutions along the genome
using some summary statistics in different phylogenetic partitions [414, 485].

● Linkage disequilibrium methods are one of the most popular techniques for
studying large genomes, e.g., the human genome. The main idea in such meth-
ods is that if in a section of a genome there has not been recombination, the
presence of a substitution is informative (linked) to nearby regions. Recombina-
tion breaks this linkage. We will describe in Section 5.8 how linkage is used to
study recombination in the study of large numbers of human genomes.
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A B C D

Figure 5.7 Tree topologies are contractible. When computing persistent homol-
ogy, one can observe that there are no bars in barcodes of dimension bigger than
zero. Source: [162]. Reprinted with permission: c© EAI European Alliance for
Innovation 2016.

00
A B

0110

11

Filtration

H0

H1

543210

Figure 5.8 A simple reticulation event involving four genomes with only two sites
and two bases 0 and 1. (A) If the four possible states 00, 01, 10 and 11 are present
(four gamete test) one can suspect that a site has mutated twice or there has been a
recombination between these sites. In the case of large genomes where mutations
in the same site are considered highly improbable (infinite site models), the four
gamete test is used in many statistical tests for the identification of recombination
events and specific recombination sites. (B) When we apply persistent homology
to the Hamming distance between these different small genomes, one clearly iden-
tifies an interval [1, 2) in the first homology persistent diagram. The non-trivial
homology classes in dimension one and higher can be used as indicators of the
presence of recombination or multiple mutations in the same site. Source: [162].
Reprinted with permission: c© EAI European Alliance for Innovation 2016.

A summary of these methods and accompanying software can be found at the
end of the chapter in Section 5.12.

The methods used to identify recombinant sequences can suffer from prohibitive
computational costs in large data sets. These methods are designed for the specific
task of identifying recombinants and breakpoints. They use quantified measures
of the violation of the tree assumption to infer these events. A natural question
that then arises is whether there are better descriptors of the data in the event of
recombination. The first hint that topological data analysis might be useful comes
from the observation that trees are contractible (see Figure 5.7).
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The four genomes {00, 01, 10, 11} can be considered the fundamental and sim-
plest model of recombination. Topologically the set forms a loop, as shown in
Figure 5.8, i.e., the Vietoris-Rips complex (recall Definition 2.1.6) contains a
complex with a non-trivial loop. Four of the six pairs of gametes are separated
by a Hamming distance of 1, while the other two are separated by a distance of 2.
(Here recall from Example 1.2.5 that the Hamming distance counts the number of
positions at which the strings are different.) At a filtration distance of 1, the four
pairs become connected, forming a loop. At a filtration distance of 2, the remaining
two pairs become connected, destroying the loop. Thus, we have non-vanishing H1

homology on the filtration interval [1, 2). This simple example suggests that per-
sistent homology provides a method for counting the number of incompatibilities
and, at the same time, determining the scale of each incompatibility in terms of the
distance between the alleles.

Each interval in the barcode can be interpreted as a sign of a recombination event
involving a set of sequences including the common ancestor, parental, and recom-
binant strains. The interpretation and identification of the recombinant and parental
strains could be complicated or impossible unless given further information. This
is analogous to the problem of finding a root of a phylogenetic tree if no informa-
tion about ancestral states is provided. Persistent homology can provide a simple
way to estimate the number of incompatibilities.

For our purposes, we can assume the genomes of organisms in an evolving pop-
ulation forms a metric space (X, ∂X), which we never directly observe. Instead, we
observe a sample of data points (i.e., sequenced genomes of cells) that lie in X.
Restricting the metric ∂X on X to our sample gives us a distance between points.
Considering genomes as a string of characters makes it easy to define distances,
e.g., the Hamming distance. Metrics currently used in biological applications are
based on different models of how mutations can occur. For instance, one can mod-
ify Hamming distances to account for the possibility of back mutations after some
time (Jukes-Cantor distances [279]), account for the fact that different substitutions
can occur with different probability (Kimura models [298]), allow different bases
to occur at different frequencies [173, 231], among many possible refinements.
Thus, we have a finite metric space generated by genomic sequences separated
from each other by some genetic distance, to which we can apply the techniques of
topological data analysis.

Recall from Section 4.7.1 that some finite metric spaces can be derived from
a weighted tree, with the distances between two leaves calculated by adding up
the weights associated to the edges connecting them (see Figure 5.9). Tree-like
spaces can be used to represent clonal processes, with internal nodes representing
unsampled ancestors.
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Figure 5.9 Pipeline for analyzing genomic data using persistent homology. Start-
ing from a sample of sequences, one can compute distances reflecting the
similarity between organisms. These distances provide a finite metric space, that,
in some cases, can be summarized by a phylogenetic tree whose leaves correspond
to points in the metric space. Distances between branches can be estimated by the
addition of weights along the shortest path.

Obviously, not every metric space has this tree-like metric property. In general,
finite metric spaces that can be represented by weighted trees are only a small
subspace of all finite metric spaces. Indeed, Lemma 4.7.2 described the required
four point condition satisfied by metric spaces generated by trees.

But when there is no underlying tree explaining the data, we can capture and
represent evolutionary processes beyond trees using topology. A phylogenetic tree
can be continuously deformed into a single point. The same action cannot be
performed for a reticulate network without destroying the loops or cycles in the
structure. The active hypothesis then is that the presence of these holes results
directly from horizontal evolutionary events. This idea can be formalized into the
following theorem [100].

Theorem 5.2.1. Let (M, ∂M) be any tree-like finite metric space, i.e., a space
satisfying the four point condition, and let ε ≥ 0. Then the Vietoris-Rips
complex VRε(M, ∂M) is a disjoint union of acyclic complexes. In particular,
Hi(VRε(M, ∂M)) = {0} for i ≥ 1.

In other words, the presence of homology above dimension zero indicates
that the metric space does not satisfy tree-like metric properties. Identifying
the genomes that are the generators of these homology classes selects subsets
of genomes whose derived distances do not satisfy the tree condition, indicat-
ing that non-tree-like evolutionary processes have occurred within these subsets
(Figure 5.10).
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Figure 5.10 Persistent homology detects historical recombination events from
population genetic data. Consider the reticulate phylogeny in panel A. Five
genetic sequences sampled today (the yellow circles) developed from a single
common ancestor through clonal evolution (solid blue lines) and recombinant
evolution (dotted red lines). Panel B illustrates this sample within a larger sam-
ple of the population. Persistent homology is applied to this larger sample and
three filtrations are shown in panels C, D and E. Panel F shows the resulting bar-
code. Note that these two dimensional plots (panels C, D, E), created by principal
component projection, are used merely to visualize the sequences; projection is
not part of the algorithm. The dimension 1 bar near the center of panel F iden-
tifies a recombination event involving the five highlighted sequences. The scale
over which this bar persists captures the genetic difference between the parents of
the recombinant [323]. Source: [100].

The persistent homology approach suggests a general strategy to study the space
of genomes. Instead of considering trees and reticulate networks in the phyloge-
netic sense, we consider these structures in the context of simplicial complexes and
compute their persistent homology. An additive tree is a single connected compo-
nent without any loops which displays only zero dimensional topology. Reticulate
structures, on the other hand, contain loops and therefore may contain non-trivial
higher dimensional topology.

Recall from Section 2.3 that persistent homology can be displayed in a barcode
plot where for a given filtration and dimension k, different bars represent indepen-
dent k-dimensional cycles that generate non-trivial homology classes. As we have
observed, the presence of non-zero homology above dimension zero indicates devi-
ation from a tree metric. The next step is to define a quantity that captures the extent
of deviation from a tree. In order to do this, we consider the distribution Bk of bar
lengths of k-dimensional cycles for some k > 0.

Specifically, a natural measure of the deviation from a tree metric is some kind
of count of the number of bars in PH1. We define the topological obstruction to
phylogeny (TOP) to be the L∞ norm, or maximum, of the lengths of the bars. The
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work of [100] established that a filtration with non-zero TOP implies that the finite
metric space is not tree-like. Another possible measure is the L1 norm, which is
equivalent to the sum of the bar lengths. In simulations of evolutionary data where
we initially set a rate r of horizontal evolution, we find that of all Lp norms, the L1

norm best correlates with r. Finally, we could also consider the L0 norm, simply
the count of the number of bars, which is also proportional to r. To approximate r,
we consider either the L1 or L0 norm normalized by time; we define the irreducible
cycle rate (ICR) to be precisely this normalization.

As we will see at the end of this chapter, the relationship between the recombi-
nation rate and the persistent homology of a sample of genetic sequences can be
probed using coalescent simulations of evolution. Figure 5.11 shows how the num-
ber of persistent dimension 1 cycles, b1, grows with the number of recombination
events that occur in a simulation.

In [164], it was demonstrated how b1, together with the birth and death scales
of each cycle, can be used to estimate the population-scaled mutation rate ρ. The
accuracy and precision of this estimator increases with sample size; we discuss this
in Section 5.7.3.

These results suggest a map between algebraic topology invariants, such as
Betti numbers and generators of homology classes, and different types of genomic
exchange events (Figure 5.12). Persistent homology provides information about
the obstructions to tree-like metrics due to homoplasies (shared mutations in dif-
ferent genomes that are not shared by their common ancestors), recombination,
reassortment, or other modes of horizontal exchange of genomic material. By
studying the cycles that generate higher dimensional classes (the witnesses to the
violation of the tree-like assumption), we can infer what type of biological pro-
cess occurred that violated the tree-like assumption. Later in this chapter, we will
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Figure 5.11 The number of one dimensional persistent homology classes, b1,
scales with number of recombination events in a coalescent simulation.
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Figure 5.12 Rough dictionary between TDA notions and evolutionary concepts.
Source: [100]. From Joseph Minhow Chan, Gunnar Carlsson, and Raúl Rabadán,
‘Topology of viral evolution’, Proceedings of the National Academy of Sciences
110.46 (2013): 18566–18571. Reprinted with Permission from Proceedings of the
National Academy of Sciences.

explore this relationship in detail through a series of examples in the viral, bacterial,
and eukaryotic worlds.

Remark 5.2.2. In some cases the map between homological invariants and evo-
lutionary phenomena can be made more explicit [323]. This is the case for “galled
trees,” directed acyclic graphs that differ from trees by a few isolated recom-
binations. In that case, the homology in dimensions bigger than one vanishes,
generalizing Theorem 5.2.2. These “galled trees” can be constructed by pasting
tree-like and isolated recombination events that correspond to operations in the
associated finite metric spaces [323].

5.3 Viral Evolution: Influenza A

5.3.1 Influenza A

Influenza A is a segmented single-stranded RNA orthomyxovirus that infects dif-
ferent hosts of many species. Indeed, the highest genetic diversity of these viruses
is found in birds, mostly waterfowl, of the order of Anseriformes (ducks, swans
and geese), Passeriformes, and Charadriiformes (including gulls). Waterfowl are
the virus’s natural reservoir, perpetuating the vast biodiversity of influenza, includ-
ing all different subtypes. But influenza A has also been found in pigs, seals, and
other mammals including, of course, humans. Classification of influenza viruses
is traditionally made by the antigenic properties of the proteins displayed in the
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viral envelope hemagglutinin (HA), ranging from H1 to H16, and neuraminidase
(NA), ranging from N1 to N9. Recently, new types of influenza viruses have been
identified in bats in Central America [500], leading to two new hemagglutinin types
(H17 and H18) and two new neuraminidase types (N10, N11). Of course, it is
possible that, as surveillance programs get more extensive, new related viruses will
be found in other hosts (Figure 5.13).

Infection in humans and other mammals usually occurs in the upper respira-
tory tract, lasts a couple of weeks, and is associated with symptoms that vary
from fever, sore throat and other cold-like symptoms to more serious complica-
tions that can result in death. It has been estimated that near half a million deaths
are associated to influenza infections every year around the world. Transmission
of human influenza occurs mostly through the air, in the form of droplets of water
released from coughs or sneezes, and through fomites, surfaces that carry infectious
particles. These modes of transmission seem to be more effective at low tempera-
tures and low humidity, factors that are probably relevant for the seasonal pattern
observed in human influenza. Illness associated with influenza infection is most
common in winter – from November to April in the Northern Hemisphere, and
from May to October in the Southern Hemisphere.
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Figure 5.13 Left: Influenza A infects many different species, mostly birds and
mammals. The greatest diversity of the virus can be found in waterfowl. Occasion-
ally, viruses can jump species and infect other hosts. Influenza A has been reported
in humans, swine, horses, seals, camels, bats and even whales. Right: Twentieth
century influenza pandemics. Pandemics are caused by viruses containing genes
from other species. Although there is some speculation about pandemics in the
nineteenth century, the first well-characterized influenza pandemic was the so-
called Spanish flu in 1918. Since then influenza pandemics have occurred every
30 years, with the last pandemic originating in swine in 2009. The Influenza A
virus infects different species and generates pandemics.
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In contrast to mammals, most birds show no clinical signs of infection by the
virus, which replicates in their gut and sheds into the water through feces [529].
However, mutations occasionally occur that increase its pathogenicity, resulting in
a highly pathogenic avian influenza (HPAI), which causes a multi-organ systemic
disease that can kill birds. Large surveillance programs are dedicated to detecting
HPAI outbreaks; HPAI transmission to humans is a chief concern.

What factors allow a virus to be transmitted between individuals or species? In
both humans and waterfowl, the virus must recognize specific molecules on the
surface of the cell in order to fuse with it and infect it. These molecules vary in
different cells and hosts; however, the recognition of monosaccharide residues on
epithelial cells by viral hemagglutinin is a common pathway. Avian influenza inter-
acts with an α-2,3-sialic acid, prevalent in the intestinal tract of birds. In contrast,
human influenza binds the α-2,6-sialic acid predominant in the human upper respi-
ratory tract, begetting the flu-like symptoms of cough, sore throat, and rhinorrhea.
Pig trachea contains both types of sialic acids. This unique feature of swine sup-
ports the mixing vessel theory that pigs provide a bridge for influenza from avian
host to human, allowing the virus to adapt to recognize α-2,6-sialic acid through
reassortment [269]. Host switching from waterfowl to human, however, does not
require a swine intermediary. The HPAI H5N1 virus, for instance, infected 18 peo-
ple and killed six in 1997 after first appearing in Guangdong in 1996 then spreading
rapidly to poultry in Hong Kong. That year, Hong Kong culled more than 1 million
poultry.

Since 2003, a number of sporadic H5N1 outbreaks with suspected poultry inter-
mediaries have taken place among humans and other mammals, causing 860 human
infections and 454 deaths as of February 2019 – a staggering mortality rate of
nearly 60%. The fulminant progression of H5N1 infection most likely results from
its specificity for α-2,3-sialic acids, which are present at a low concentrations in the
human lower respiratory tract. Infection in the lower respiratory tract leads to the
more flagrant symptoms of viral pneumonia. As such, avian H5N1 demonstrates
high pathogenicity and productive infectivity in humans, but an inability for sus-
tained transmission between humans. Given the high mortality rate of infection,
it is a matter of the utmost importance to determine whether these viruses could
become transmissible among humans like seasonal influenzas.

Recently, in the laboratory setting, teams led by Kawaoka [266] and Fouch-
ier [240] demonstrated the pandemic potential of non-seasonal strains. They
engineered H5N1 by mutating specific sites (site-directed mutagenesis) and pass-
ing the virus along ferrets (which share similar sialic acid distributions to humans)
until they generated strains capable of transmission. Similarly, Zhu et al. showed
that the 2013 H7N9 strain, which infected 131 humans and caused 32 deaths in
two months in the Jiangsu province of China [191], infected and was transmitted
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between ferrets, suggesting that human to human transmission of H7N9 has most
likely already occurred [548]. These outbreaks underscore the need for further
investigation into the mechanisms of viral evolution and the adaptation of animal
viruses to humans.

Influenza viruses are enveloped and nearly 100 nm in diameter. Their genome is
13,000 bases long and is composed of eight segments of single-stranded antisense
RNA (Figure 5.14). Each segment encodes one or two viral genes. Antisense RNA
is the complement of the RNA that codes for proteins; thus it cannot be directly
translated into functional protein. In order for the influenza genome to express
protein, positive-sense strands must be produced from the template of the antisense
strands. Further complexity arises when the virus attempts to make new virions,
the infectious particles that allow the virus to be transmitted outside of the host
cell. The replicating virus must duplicate its original antisense RNA and, in order
to do so, it must polymerize new strands of ribonucleotides complementary to the
template of the positive-sense RNA. Influenza carries its own polymerase complex,
which it uses for all of its RNA replication; in fact, the three longest genes of
influenza (PB2, PB1, PA) code for the three proteins directly involved in replicating
genomic material. The polymerase complex interacts directly with viral RNA and
the nucleoproteins (NPs) that attach to it. An RNA segment, together with a copy
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neuraminidase

PB2
PB1
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HA
NP
NA

M
NS
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Figure 5.14 Influenza A is an antisense single-stranded RNA virus whose genome
is composed of eight different segments containing one or two genes per segment.
This virus contains an envelope borrowed from the infected cell that expressed
two viral proteins, hemagglutinin and neuraminidase. When circulating viruses
co-infect the same cell, new viruses can be created that contain segments from
both parents. This phenomenon, called reassortment, can lead to dramatic adapta-
tions to novel environments, and it is thought to be one of the contributing factors
to human influenza pandemics.
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of the polymerase complex and several NP proteins, forms the ribonucleoprotein
(RNP) particle that is released into the cell cytoplasm and packaged in the virion or
viral particle. The virion consists of a shell (capsid) of membrane proteins (MPs)
and M2 proteins that form tetramers with ion channel activity. These ion channels
help modulate pH within the virions and regulate the release of viral RNA into
infected cells. Two other proteins, non-structural N1 and NS2, are found in infected
cells but are absent, or have low expression, in virions. The existence of other
proteins in alternative reading frames has been proposed; however, these proteins
do not have a well-characterized role in the life cycle of the virus [507, 547].

Influenza evolves by accumulating mutations at a high rate. Estimates of evo-
lutionary rates, or changes per unit time, indicate that influenza, like many other
RNA viruses, evolves at a rate of ∼ 10−3 per nucleotide per year. This brisk evolu-
tionary rate poses a significant challenge in the development of vaccines. Current
vaccines for influenza rely on leveraging the antigenic response to epitopes (the
sections of proteins recognized by antibodies) in hemagglutinin. However, these
epitopes change as the virus accumulates mutations. The World Health Organiza-
tion updates the composition of the vaccine with the hope that the updated vaccine
will more faithfully resemble circulating strains. To help the WHO, national and
international organizations put significant effort into collecting genomic and anti-
genic data from circulating strains of influenza. These large collections – more
than 100,000 genomes, currently – constitute excellent material on which to test
the mathematical and computational methods described in this book.

Substitutions (i.e., point mutations) accrued by influenza can be viewed as small
changes in the nearly continuous evolution of its genome. However, point muta-
tions are not the only way that influenza evolves; more dramatic change can occur.
As discussed, influenza genomes consist of eight different segments. These seg-
ments are the viral analogue of chromosomes. When two viruses of different
strains co-infect the same host cell, they can generate a progeny containing novel
combinations of segments taken from both parental strains [416, 417]. This phe-
nomenon, called reassortment, shuffles the genomic material of different strains
and constitutes the underlying mechanism behind influenza pandemics.

A pandemic influenza is a viral strain that was initially endemic to animal hosts
like waterfowl and swine that obtained the requisite mutations to infect and adapt to
human hosts, thereby spreading on a global scale. Mutations necessary for human
adaptation can be easily acquired by incorporating segments from viruses already
adapted to human hosts through reassortment. Mutations and reassortments can
introduce changes in the antigenic properties of the strain, which, in turn, can
render antibodies raised against previously circulating viruses ineffective. The
mutational change of seasonal influenza, referred to as antigenic drift, contrasts
with the more dramatic reassortment in pandemic strains that creates entirely new
viral genomes, referred to as antigenic shift.
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In modern history, the most calamitous example of an influenza pandemic was
the H1N1 (Spanish flu) epidemic of 1918. H1N1 claimed the lives of 50 to 100
million people worldwide [276]. As it disseminated throughout post-war Europe,
it justified drastic public health measures including the widespread shuttering of
theaters, schools and churches. A physician working at Camp Devens, a military
base west of Boston, related the dramatic effects of the pandemic strain to a friend
in a letter on September 29th, 1918 [210]:

This epidemic started about four weeks ago, and has developed so rapidly that the
camp is demoralized and all ordinary work is held up till it has passed. . . These men
start with what appears to be an attack of la grippe or influenza, and when brought
to the hospital they very rapidly develop the most vicious type of pneumonia that
has ever been seen. Two hours after admission they have the mahogany spots over
the cheek bones, and a few hours later you can begin to see the cyanosis extending
from their ears and spreading all over the face, until it is hard to distinguish the
coloured men from the white. It is only a matter of a few hours then until death
comes, and it is simply a struggle for air until they suffocate. It is horrible. . . We
have been averaging about 100 deaths per day, and still keeping it up. . . We have
lost an outrageous number of nurses and doctors . . . It takes special trains to carry
away the dead. For several days there were no coffins and the bodies piled up some-
thing fierce, we used to go down to the morgue (which is just back of my ward) and
look at the boys laid out in long rows. It beats any sight they ever had in France
after a battle. Good-by old Pal, God be with you till we meet again.

The genome and the virus itself were isolated from bodies buried in a mass
grave in the permafrost of a remote Inuit village in Brevig Mission (called Teller
Mission in 1918) on the Seward Peninsula of Alaska [423]. 85% of the adults
that were buried in the mass grave died within the span of five days in Novem-
ber, 1918. In 1997, several of the bodies were exhumed. The viral sequence of
this strain was recovered and can be found online under the name A/Brevig Mis-
sion/1/18 (H1N1). Despite knowledge of the sequence, many questions about the
1918 pandemic strain remain:

What was its original host?
Where and when did it first infect humans?
And why was it so pathogenic?
After a couple of waves of worldwide infection, the pandemic-causing strain

became a seasonal influenza virus.
The next human pandemic, the so-called Asian flu, occurred in 1957. A

descendant of the 1918 H1N1 pandemic strain, still circulating in humans, acquired
three segments of avian origin (PB1, HA, NA), forming the H2N2 strain and
causing a pandemic (Figure 5.13). The H2N2 virus circulated in humans, replacing
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the H1N1 virus, until the next pandemic. In 1968, a new reassortant, H3N2, which
contained H2N2 and avian segments (PB1, HA), was identified in South Asia and
rapidly spread across the world. H3N2 still circulates in humans today and is a
major cause of morbidity associated with influenza. Interestingly, H1N1, which
had not been found circulating in humans since the pandemic of 1957, reemerged
in 1977 and co-circulated with H3N2.

In 2009, a swine-origin novel H1N1 virus marked the first pandemic of the
twenty-first century (Figure 5.15). In mid March 2009, reports came from Mexico
regarding an outbreak of respiratory illness. In April, two cases were documented
in the United States in children from Southern California [200]. The CDC was
alerted to the first case on April 13th: a ten-year-old boy who lived in San Diego
County. The patient had fallen ill with fever, cough and vomiting on March 30th.
None of his family members shared his symptoms. In the other case, a nine-year-
old girl developed a respiratory illness in Imperial County. The CDC identified
a new strain of influenza related to viruses circulating in swine and character-
ized and published its genome. Since neither of the children had been in contact
with pigs or each other – they lived 130 miles apart – the CDC suggested that
the virus was already circulating in humans. A few days later, cases emerged in
Texas. Within the following month, infection had struck every continent. The World
Health Organization declared the strain a pandemic on June 11th, 2009.

The 2009 pandemic resulted from a reassortment between different influenza
viruses circulating in swine [474, 506]. The pandemic virus showed relation to
viruses isolated in swine more than a decade ago in North America and Asia. It is
still unclear how, where and when these viruses developed into a human pandemic,
and where the virus was circulating in the year before the pandemic. The most
widely accepted conjecture is the hidden pig herd hypothesis, which proposes that
incomplete surveillance missed strains in untested swine herds, and recent reports
suggest that these viruses circulated in pigs in Mexico [241, 348].

The recent ancestors of a pandemic virus provide invaluable information about
the set of minimal genomic alterations that can transform a zoonotic agent into
a human pandemic. Understanding the origins of infectious strains can help us
define scientifically based rules for the risk assessment of new strains and for
the implementation of public health measures that might help avoid or mitigate
future pandemics.

5.3.2 Reassortments in Influenza through TDA

We have seen that dramatic changes in the genetic makeup of an influenza virus can
occur through reassortments, i.e., when two or more diverse viruses co-infect the
same cell and create new viruses containing genomic material from the parental
strains. Figure 5.16 shows three parental viruses with genomes comprising three
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Figure 5.15 Origins of H1N1 2009 pandemic virus. Using phylogenetic trees,
the history of the HA gene of the 2009 H1N1 pandemic virus was reconstructed.
It was related to viruses that circulated in pigs potentially since the 1918 H1N1
pandemic. These viruses had diverged since that date into various independent
strains, infecting humans and swine. Major reassortments between strains led to
new sets of segments from different sources. In 1998, triple reassortant viruses
were found infecting pigs in North America. These triple reassortant viruses
contained segments that were circulating in swine, humans and birds. Further
reassortment of these viruses with other swine viruses created the ancestors of this
pandemic. Until this day, it is unclear how, where or when these reassortments hap-
pened. Source: [506]. From New England Journal of Medicine, Vladimir Trifonov,
Hossein Khiabanian, and Raúl Rabadán, Geographic dependence, surveillance,
and origins of the 2009 influenza A (H1N1) virus, 361.2, 115–119. c© 2009
Massachusetts Medical Society. Reprinted with permission from Massachusetts
Medical Society.



Figure 5.16 Left: Reassortments in viruses lead to incompatibility between trees. Reticulate network representing the reassortment of
three parental strains. The reticulate network results from merging the three parental phylogenetic trees. Source: [100]. Right: Indeed,
incompatibility between tree topologies inferred from different genes is a criterion used for the identification of events of genomic material
exchange. Here we represent two genes of influenza A virus with different topologies using phylogenetic networks. From Joseph Minhow
Chan, Gunnar Carlsson, and Raúl Rabadán, ‘Topology of viral evolution’, Proceedings of the National Academy of Sciences 110.46 (2013):
18566–18571. Reprinted with Permission from Proceedings of the National Academy of Sciences.
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different genes and unique phylogenetic histories. All three can undergo a reas-
sortment in which each parent donates a different gene. No single tree can capture
the whole history. As such, incompatibilities between tree topologies derived from
different genes may provide evidence of reassortment.

There are many interesting questions pertaining to reassortment. Imagine two
different viruses infecting a cell. In principle, if each virus has eight segments,
one could generate 28 different segmental combinations. Are these combinations
all realized in nature? Is there any preference for certain combinations? Several
reports have suggested that reassortments do not occur at random, but demonstrate
clear preferences [206, 292, 416]. These apparent preferences may have multiple
causes. The process of generating new viruses involves the packaging of eight dif-
ferent segments into the same virion and, although the packaging process is not
completely understood, it is possible that different segments physically interact
[385]. Cosegregation could also be due to selection. Given that different segments
code for different proteins that work in conjunction, it is conceivable that two pro-
teins that are co-adapted to work together will lead to offspring with higher fitness.
Knowledge of these patterns may help reduce the number of potential viruses that
we must consider in future pandemics.

We can study reassortments using the persistent homology framework described
previously in this chapter. Let us start with a single segment: hemagglutinin [100].
To leverage persistent homology, we align our sequences, compute pairwise dis-
tances between them, and generate a finite metric space with points representing
different sequences. The distance metric captures the genetic diversity present in
the collection of sequences. We observe that most of the information in this met-
ric space is contained in its zero dimensional homology with a few short bars in
dimension one (see Figure 5.18 below). At this point, we can infer that a tree is a
good representation of the evolution of one segment. The zero dimensional homol-
ogy provides useful information about the clustering structure of different isolates.
Looking at the generators of the zero dimensional classes, we can reconstruct a hier-
archical clustering structure that resembles a phylogenetic tree. For example, when
studying different subtypes of influenza A circulating in aquatic birds, we clearly
see that the hierarchical structure derived from the zero dimensional homology cor-
rectly captures the splits between major subtypes. This phylogenetic information
can be obtained easily by classical techniques that do not use persistent homology
(Figure 5.17). Similarly, with our HA data, the sequences that generate zero dimen-
sional homology can be assembled into a tree that closely resembles the unrooted
phylogenetic tree created on the viral subtypes. This same analysis can be repeated
for each of the eight segments of influenza (Figure 5.18). In each case, we do
not recover large bars in the barcode diagram for non-zero dimensions. The few
small bars at dimension one are associated with homoplasies. In cases of vanishing
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Figure 5.17 In case of vanishing higher dimensional homology, zero dimen-
sional homology generates trees. When applied to only one gene of influenza
A, in this case hemagglutinin, the only significant homology occurs in dimen-
sion zero (panel A). The barcode represents a summary of a clustering procedure
(panel B), that recapitulates the known phylogenetic relation between different
hemagglutinin types (panel C). Source: [100]. From Joseph Minhow Chan, Gun-
nar Carlsson, and Raúl Rabadán, ‘Topology of viral evolution’, Proceedings of
the National Academy of Sciences 110.46 (2013): 18566–18571. Reprinted with
Permission from Proceedings of the National Academy of Sciences.

higher homology, the zero dimensional homology closely follows the traditional
tree structure.

However, when studying the persistent homology for several genes at the same
time, large numbers of homology classes appear at dimensions one and higher,
indicating pervasive reassortments. By looking in detail at the cycles in higher
dimensional homologies, we can attribute these cycles to different biological
processes that violate tree-like assumptions: homoplasies, recombinations or reas-
sortments. If several sequences generate a large non-trivial class, a reassortment
event likely took place among the ancestors of these isolates [100]. We can gen-
erate useful statistics based on barcode information; for instance, we can estimate
how often different combinations of the eight segments cosegregate in an effort to
identify preferences among the potential combinations. As an example, we rarely
see cycles form with the segments that interact to form the polymerase complex
PA, PB1, PB2, NP, indicating that these segments tend to cosegregate [100]. This



Figure 5.18 Influenza evolves through mutations and reassortment. When the persistent homology approach is applied to finite metric
spaces derived from only one segment, up to small noise, the homology is zero dimensional suggesting a tree-like process (left). However,
when different segments are put together, the structure is more complex revealing non-trivial homology at different dimensions (right). 3105
influenza whole genomes were analyzed. Data from isolates collected between 1956 to 2012; all influenza A subtypes.
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Figure 5.19 Co-reassortment of viral segments as structure in persistent homol-
ogy diagrams. Left: The non-random cosegregation of influenza segments was
measured by testing a null model of equal reassortment. Significant cosegregation
was identified within PA, PB1, PB2, NP, consistent with the cooperative func-
tion of the polymerase complex. Source: [100]. Right: The persistence diagram
for whole-genome avian flu sequences revealed bimodal topological structure.
Annotating each interval as intra- or inter-subtype clarified a genetic barrier to
reassortment at intermediate scales. From Joseph Minhow Chan, Gunnar Carls-
son, and Raúl Rabadán, ‘Topology of viral evolution’, Proceedings of the National
Academy of Sciences 110.46 (2013): 18566–18571. Reprinted with Permission
from Proceedings of the National Academy of Sciences.

finding is consistent with the cooperative functioning of these proteins, which
engenders negative selection against new combinations that do not cooperate as
effectively (Figure 5.19).

In addition, each of the sequenced viruses (isolates) comes with information
of where and when the virus was isolated, together with the hemagglutinin and
neuraminidase subtype. Under the assumption that smaller cycles in the non-trivial
homology classes are in some way closer genetically, one can also infer when and
where the event took place and what the types of the parental strains were. Other
relevant information is provided by the birth and death times of the class which
provide information about how genetically distant parental viruses were. Numbers
associated to one and higher dimensional classes (birth, death and size of bars in
the barcode diagram) provide a useful way to summarize the type of event. The size
of the bars associated to non-zero homology classes is also indicative of the type of
reassortment events that could occur. The persistence diagram for whole genomes
of avian flu sequences reveals bimodal topological structure (Figure 5.19, right).
In other words, there are smaller bars and larger bars. Inspection of generators
of different bars immediately reveals two types of reassortment processes. Small
bars are generated by mixing of viruses that are closely related, belonging to the
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same subtype, such as two strains of H5N1 for example. Large bars, meanwhile, are
generated by the mixing between the genomic material of distant viruses belonging
to two different subtypes, such as H5N1 and H7N2, for example.

These examples show how studying finite metric spaces derived from large num-
bers of genomes can reveal biologically interesting phenomena and assess the flow
of genomic material across different scales.

5.3.3 Influenza Virus Evolution and the Space of Phylogenetic Trees

Vaccination is probably the most effective method of reducing the morbidity asso-
ciated with influenza infection. Administering a vaccine introduces a peptide with
similar antigenic properties to circulating strains, causing the body to form protec-
tive antibodies against those strains. Every year, the World Health Organization
selects strains for the Northern and Southern Hemispheres. Historically, it selected
three different strains: two representing influenza A subtypes (H3N2 and H1N1)
and one representing an influenza B subtype. Recently, a second influenza B sub-
type was added to make a quadrivalent vaccine containing peptides related to two
influenza A and two influenza B strains. As viral genomes evolve, so does their
antigenic presentation. This creates a continuous challenge to engineer new pep-
tides that accurately represent circulating strains for use in vaccines. Ideally, one
would like to have a universal vaccine able to target a wide spectrum of different
strains and also future emerging strains. Interesting ideas in this vein have been put
forward, but no such vaccine exists yet.

Hemagglutinin (HA) causes most of the body’s antigenic response to influenza
and it is the protein used in vaccines. The relation between the different isolates
of the HA gene can be represented by a phylogenetic tree. Currently, more than
100,000 HA sequences can be found in public databases. With such a large sample
of genomes, corresponding phylogenetic trees can become too complex to visu-
alize or analyze. For instance, we would like to study these trees in terms of the
geometry of the Billera-Holmes-Vogtmann metric space of phylogenetic trees (see
Section 4.7.2). However, these spaces become increasingly complex as the number
of leaves increases.

In Zairis et al., an approach involving reducing complicated trees to lower-
dimensional structures by a process referred to as tree dimensionality reduction was
proposed [545]. The idea behind tree dimensionality reduction is simple: instead
of studying the properties of large trees like the one in Figure 5.20, one decom-
poses the large tree into a cloud of smaller trees by repeatedly subsampling the
leaves of the large tree and taking the subtree determined by these leaves. In this
way, one obtains a distribution of smaller trees that can capture a range of com-
plex structural properties. This procedure has two advantages: first, it is far easier
to visualize, extract, perform statistical analysis, and interpret different types of
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(a) Large tree.

Figure 5.20 Evolution of influenza A virus presenting clear seasonal variation.
Identifying statistical patterns in large trees is often difficult. This phylogenetic
tree of the hemagglutinin (HA) segment from selected 1089 H3N2 influenza
viruses across 15 seasons can be subsampled for statistical analysis in lower
dimensional projections. Source: [545]. Adapted from Zairis et al., Genomic data
analysis in tree spaces, arXiv: 1607.07503 [q-bio.GN].

evolutionary relationships on these smaller trees; and, second, it avoids the poor
scalability of phylogenetic algorithms.

As an illustration, we describe an analysis from [545] relating HA sequences
from certain seasons to those of later seasons. Zairis et al. picked random strains
from five consecutive seasons from a data set of 1,089 sequences of H3N2 HA col-
lected in the United States between 1993 and 2015. Unrooted trees were generated
using neighbor-joining based on Hamming distance (a visualization of the position
of these trees in tree space is shown in Figure 5.21).
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Figure 5.21 Temporally windowed subtrees in the projectivized tree metric space
PΣ5. The distribution of trees derived from five-consecutive-season windows in
time are superimposed on a common set of axes for projective tree space. 1089
full-length HA segments from H3N2 were collected in New York state from 1993
to 2016. Two consecutive seasons of poor vaccine effectiveness in 2003–2004 and
2004–2005 are highlighted with green and gray arrows respectively. The green
distribution strongly pairs the 1999–2000 and 2003–2004 strains, hinting at a
reemergence. Source: [545]. Adapted from Zairis et al., Genomic data analysis
in tree spaces, arXiv: 1607.07503 [q-bio.GN].

Most of the trees showed linear evolution between seasons (the topology of the
trees follows a time ordered pattern, with ancestor of strains in a season directly
related to strains in the immediate previous season), indicating genetic drift as the
virus’s dominant evolutionary process; however, there are distinct clusters of trees
in other regions of the space that indicate reemergence of strains in the 2002–2003
season genetically similar to those circulating in the 1999–2000 season.

The data was analyzed to test the hypothesis that elevated HA genetic diver-
sity in circulating influenza predicts poor vaccine performance in the subsequent
season. This amounts to staggering the seasons sampled for distributions of trees
from the season of the vaccine effectiveness label, to yield an honest prediction
task. Distribution features that may intuitively predict future vaccine performance
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Figure 5.22 Diversity in recent circulating HA predicts vaccine failure. Negative
correlation observed between vaccine efficacy in season (t, t + 1) and the variance
in trees generated from seasons (t − 1, t), (t − 2, t − 1), and (t − 3, t − 2). Source:
[545]. Adapted from Zairis et al., Genomic data analysis in tree spaces, arXiv:
1607.07503 [q-bio.GN].

include the variance and the number of clusters in the point cloud. Given the lim-
ited number of temporal windows, too rich a feature space may lead to overfitting
the vaccine efficacy. In Figure 5.22 we illustrate the predictions of the variance
of a lagging length-3 window on vaccine effectiveness. Our notation is such that
a window labeled year y would include the flu season of (y − 1, y) and preceding
years. The vaccine effectiveness figures represent season (y, y + 1). It is clear, from
both the left and right panels, that lower variance in a temporal window predicts
increased future vaccine effectiveness, with a Spearman correlation of −0.52 and p-
value of 0.02. The lone outlier season came in 1997–1998 [218], when the vaccine
efficacy was lower than expected. In that season the dominant circulating strain
was A/Sydney/5/97 while the vaccine strain was A/Wuhan/359/95.

5.4 Viral Evolution: HIV

5.4.1 Human Immunodeficiency Virus

Human Immunodeficiency Virus, or HIV, is one of the most devastating infec-
tious diseases in modern history. Current estimates suggest 36.7 million people
live with HIV today and more than 1 million die each year [244]. HIV mostly
infects and destroys helper T-cells. These T-cells, also known as CD4+ cells, play
an essential role in the body’s response to infection: they coordinate the immune
response by promoting B-cells to produce antibodies and recruiting and activat-
ing neutrophils, macrophages, natural killer cells, and CD8+ killer T-cells – a
host of cells which neutralize invading pathogens. When CD4+ T-cells die, the
body’s immune response is severely impaired. Pathogens that can normally be
controlled by the immune system are able to infect HIV-positive patients. These
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“opportunistic infections” can result in the death of the infected individual. The pro-
cess of CD4+ T-cell depletion typically takes years and symptoms do not become
evident until the cell population declines sufficiently. This clinical latent period of
infection contributes to the spread of the virus through apparently healthy hosts.

HIV is a retrovirus. Retroviruses encode their genome in single-stranded and
positive-sense RNA. When a retrovirus infects a cell, it converts its genome to
double-stranded DNA in the cell’s cytoplasm by first creating an antisense strand
of DNA complementary to its RNA genome (cDNA) and then forming a positive-
sense DNA strand complementary to the cDNA. The conversion of RNA to DNA is
the opposite of the usual process in human cells, in which RNA is generated from
a DNA template. It is termed reverse transcription and is facilitated by the viral
enzyme reverse transcriptase (RT). After the creation of double-stranded DNA in
the cytoplasm, the DNA is transported to the nucleus, where it is incorporated into
the human genome. By this means, the virus gains access to the host cell’s genomic
machinery and its abilities to transcribe mRNA and thus the ability to translate viral
proteins and replicate the viral genome (Figure 5.23).

Retroviruses are classified into two subfamilies (Orthoretroviridae and
Spumaretroviridae) that include some oncoviruses, such as Rous sarcoma virus,
which we will briefly describe when talking about cancer. HIV belongs to the
Lentivirus genus, a taxon of retroviruses with long incubation periods before they
become symptomatic and acquire the capability to infect non-replicating cells. The
virions, or viral particles, of retroviruses have capsids, which surround and pro-
tect their genome, and envelopes (lipid bilayer surrounding the capsids) borrowed
from the host-cell plasma membrane (Figure 5.23); specifically, HIV has a coni-
cal capsid of about 100 nm. Retroviruses contain two identical copies of the RNA
genome, each around 10,000 bases in size. There are three major genes present in
all retroviruses.

● The gag gene codes for the proteins that generate the capsid.
● The pol gene carries information about the enzymes necessary for replication

and reverse transcription (i.e., reverse transcriptase), for integrating viral DNA
into the host genome (i.e., integrase) and for cleaving viral polyproteins to
activate them (i.e., protease).

● The env gene codes for the glycoproteins that bind to the T-cell’s receptors and
allow the virus to invade the host cell. Env translates directly to the polypro-
tein gp160, which is cleaved into two smaller proteins: gp120, which binds to
the CD4 receptor and the co-receptors (CCR5 or CXCR4), and gp41, which
promotes fusion of the cell membrane and viral envelope.

In addition to these three long genes, HIV has at least six smaller proteins that are
involved in genomic regulation and interaction with host machinery; multiple roles



5 Evolution, Trees, and Beyond 305

5
6

4
3

2

1

1. Virion attaches to receptor
    and co-receptors.
2. Viral RNA diploid genome is
    released into cytoplasm.
3. Reverse transcription and
    integration of provirus into
    cell genome.
4. Transcription and translation
    of viral proteins.
5. Viral RNA replication.
6. Budding from cell.

1

2

33Re
ad

in
g

 F
ra

m
e

1000 2000 3000 4000 5000 6000

Base Pairs

7000 8000 90000 10000

5’ LTR gag

pol

vif

vpr

vpu

tat

rev

env

nef

3’-LTR

Figure 5.23 Life cycle and genomic structure of the HIV virus. Top: Life cycle
of HIV. The virion attaches to CD4 receptors and co-receptors on the membrane
of the CD4+ T-cell, allowing for the fusion of the viral envelope with the T-cell
membrane and the release of the viral RNA into the cell’s cytoplasm. The viral
reverse transcriptase reverse transcribes the viral genome into double-stranded
DNA, which is transported into the cell’s nucleus and integrated into the host’s
DNA. After integration, the host cell’s genomic machinery treats the integrated
virus, or provirus, as part of the host genome, generating mRNA and viral protein,
and copies of the RNA genome. Two copies of the HIV genome are packaged in
each virion and the virions bud from the host cell. In the final process of matura-
tion, cell-free virions assemble conical capsids that stabilize their genomes. These
mature virions are now able to infect other cells. Bottom: The genome of HIV con-
sists of three large genes, gag, pol and env, common to most retroviruses, and six
small genes that arise from subsequent splicing events.

have been reported for each of these proteins. The Trans-Activator of Transcription
(Tat) is a small protein of around 100 amino acids that binds to cellular factors in
order to increase transcription of all HIV genes, including itself, thus creating a
positive-feedback loop of transcription. The regulator of the expression of virion
proteins (Rev) is necessary for the synthesis, stability and transport of several viral
mRNAs. The Viral protein R (Vpr) has about 100 amino acids and among other
functions, transports the pre-integrated viral genome into the host’s nucleus. The
Viral infectivity factor (Vif) inhibits the cellular protein APOBEC3G. APOBEC
proteins are cytidine deaminases, proteins that induce mutations in cytidines, that
catalyze the deamination of cytidine to uridine, introducing a large number of
C-to-U or C-to-T mutations in RNA or DNA respectively in localized settings.
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APOBEC3G enters the virion and mutates the viral genome, resulting in hyper-
mutated genomes causing defective viruses. Vif prevents APOBEC3G activity by
targeting it for proteasomal degradation [454, 544]. Beyond blocking APOBEC3G
activity, it has also been associated with the infectivity of virions. Finally, the Viral
protein Unique (Vpu) has been implicated in the degradation of host-cell CD4
receptors and the release of virions.

It remains unclear exactly when, where, and how HIV became a human pathogen
[453]. The disease associated to the virus, the Acquired Immunodeficiency Syn-
drome, or AIDS, is caused by two related retroviruses, HIV-1 and HIV-2. In the
developed world, AIDS was identified through a sudden increase in rates of oppor-
tunistic infections and very rare tumors in injection drug users and men who
have sex with men. The opportunistic infections included Pneumocystis jirovecii
pneumonias, previously reported to occur in individuals with highly compromised
immune systems, and the tumors included Kaposi sarcoma, later shown to be itself
caused by an infection [185]. In 1983, two groups in the United States and France
reported a new retrovirus associated with this immunodeficient state [36, 190]. For
this work, Françoise Barré-Sinnousi and Luc Montagnier won the Nobel Prize in
Physiology or Medicine in 2008 (Figure 5.24). A second HIV virus, named HIV-2,
was reported in West Africa in 1986 with a similar, although not identical, genomic
structure to HIV-1.

The virus was then identified in the general population living in Africa
[410]. Infection rates indicated that the virus was already circulating in African

Figure 5.24 Identification of HIV as a cause of AIDS. Left: Electron microscopy
of sections of HIV virus producing cells. Source: [36]. From F. Barré-Sinnoussi et
al., Isolation of a T-Lymphotropic Retrovirus from a Patient at Risk for Acquired
Immune Deficiency Syndrome (AIDS), Science, New Series, Vol. 220, No. 4599,
pp. 868–871, 1983. c© 1983 American Association for the Advancement of Sci-
ence. Reprinted with permission from AAAS. Right: Françoise Barré-Sinnousi
and Luc Montagnier, who won the Nobel Prize in Physiology or Medicine in
2008 for the discovery of the virus. Source: c© The Nobel Foundation. Photo:
Ulla Montan.
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populations before it was identified in the Western world. More recently, sampling
of HIV viruses in Central Africa has shown a higher genetic diversity compared
with other viruses collected all around the world, suggesting an older African ori-
gin [516]. That was supported by retrospective studies that identified the virus in
blood samples from patients in Kinshasa at the end of the 1950s [540]. A Nor-
wegian sailor, Arvid Darre Noe, was reported to be infected with HIV-1 group O,
most likely in 1961 or 1962 when working in Cameroon [186]. The closest rela-
tives of these viruses infecting other species can be found in African primates. It
is now believed that there were multiple transmission events leading to the major
subclades of the virus. Some of these transmission events, such as that of group M
from chimpanzees in Central Africa, led to rapid spread throughout the human pop-
ulation. A recent study using HIV-1 env sequence data from different countries in
the Congo River basin suggests that the most recent common ancestor of all group
M strains dates back to 1920 in the Democratic Republic of Congo [169]. Several
societal changes occurring at that time, including the growth of African cities and
the mobility of workers, have been discussed as potential factors contributing to
the spread of the virus.

5.4.2 Viral Recombination in HIV

HIV is notorious for its high diversity, created and maintained not only by its high
mutation rate but also by frequent recombination. Using data from patients, muta-
tion rates of HIV have been estimated to be (4.1 ± 1.7) × 10−3 per base per cell
[129]. Many of these mutations, however, are lethal to the virus and only a small
fraction can make functional viruses. The major causes of mutations in vivo are
the reverse transcriptase and cytidine deaminases (in the process of retrotranscrip-
tion), although human DNA-dependent RNA polymerase can also contribute when
generating viruses from the integrated provirus. On average, mutations caused by
RT only constitute 2% of all mutations; but this statistic varies to a large degree
across patients. Patients that rapidly progress to the symptomatic stage experience
fewer hypermutations (accumulation of a large number of mutations in a virus),
suggesting that cytidine deaminases play an important role in HIV pathogenesis.

Because the genome of HIV is not segmented, reassortment does not occur.
Instead, recombination is the major driver of horizontal evolution. RT’s polymerase
can use either genomic RNA strand as a template for reverse transcription and
it can switch between strands during the process (Figure 5.25). If the two RNA
strands packaged in a virion include distinct mutations or come from different
parent viruses, template switching by RT can create a mosaic genome.

These recombinations can occur commonly, and recombinants can become the
dominant forms circulating in large fractions of host populations. Circulating
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Figure 5.25 Recombination in HIV. The genome of HIV is diploid, containing
two more-or-less identical copies of the RNA genome. Virions, however, can be
packaged with two very different copies if two distinct HIV viruses co-infect the
same cell. When reverse transcribing the RNA from these virions into a single
copy of DNA, the polymerase can jump between the two strands, generating a
mosaic virus containing fragments of both parental strands.

Recombinant Forms, or CRFs, are common recombinants deriving from recom-
bination between viruses of different subtypes. The notation and naming of CRFs
is complex because different “pure” parent subtypes can generate many different
mosaic viruses. The breakpoint of recombination can occur anywhere along the
genome and multiple breakpoints are common. Barred by frequent recombina-
tion, drawing an evolutionary tree from a single gene is virtually impossible. As
expected, and in contrast to influenza, when applying persistent homology to HIV,
individual genes reveal large numbers of one and higher dimensional homology
classes, indicating a history of reticulate events, most likely recombination (Fig-
ure 5.26). When concatenating the large genes of the virus, large recombination
events are uncovered, relating multiple parental strains of subtypes A. An exam-
ple of a long bar observed in two dimensional homology is shown in Figure 5.27,
revealing a complex recombination event between major HIV subtypes, B, C, D, F,
and 13cpx, a complex recombinant strain.

5.4.3 Viral Recombination in Late-Stage HIV Infection

We have seen that untreated HIV can lead to an impaired immune system. How-
ever, there are other symptoms that occur in patients with long-term infections.
HIV-associated dementia (HAD) is a condition associated with long-term viral
progression and low CD4+ T-cell counts. This condition is the most severe of
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Figure 5.26 Persistent homology reveals recombination within genes and across
the genome. Unlike in influenza, persistent homology barcodes of HIV reveal
intragenic recombination in the three major HIV genes gag, pol and env. When
concatenated and run through the persistent homology pipeline, the multi-gene
fragments have homology classes in dimensions one and higher. Source: [100].
From Joseph Minhow Chan, Gunnar Carlsson, and Raúl Rabadán, ‘Topology of
viral evolution’, Proceedings of the National Academy of Sciences 110.46 (2013):
18566–18571. Reprinted with Permission from Proceedings of the National
Academy of Sciences.

the HIV-associated neurocognitive disorders, which are believed to result from
exposure of the brain to high levels of HIV-1 following breach of the blood-brain
barrier by HIV-infected monocytes [287]. While instituting combination antiretro-
viral therapy early in infection may prevent neurocognitive decline, later initiation
of therapy does not appear to reverse pre-existing symptoms [503]. Understanding
the nature of the viral population in the brain is therefore of ongoing interest.
Virus sampled from the cerebrospinal fluid (CSF) or brain of HAD-affected indi-
viduals is often genetically distinct from that of the peripheral blood, suggesting
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Figure 5.27 Here is a polytope representing complex recombination events with
multiple parent strains. This polytope represents a two-dimensional class in persis-
tent homology. Each vertex of the polytope represents a sequence that is colored
according to HIV-1 subtype. Source: [100]. From Joseph Minhow Chan, Gun-
nar Carlsson, and Raúl Rabadán, ‘Topology of viral evolution’, Proceedings of
the National Academy of Sciences 110.46 (2013): 18566–18571. Reprinted with
Permission from Proceedings of the National Academy of Sciences.

continuous viral replication in the brain as a potential cause of HAD [311]. More-
over, viral recombination may occur more frequently within the populations found
in the brains of individuals affected with severe HAD than in other HIV-infected
individuals, further implicating unchecked viral replication as a cause of HAD.

In this section, we describe how tools of persistent homology can be used to
characterize this viral recombination to study intra-host HIV evolution in patients
with long-term viral progression. In particular, we are interested in understand-
ing how recombinant viruses spread between different tissues. This can be done
by comparing genomic sequences from the central nervous system (CNS) to
sequences obtained from other tissues. Zigzag persistent homology [93], described
in Section 2.5, provides a formalism to study and compare events across different
populations.

Lamers et al. [310, 311] obtained tissue samples from the autopsies of 11 individ-
uals who died from AIDS. They extracted genomic HIV DNA and amplified a 3.3
kb fragment stretching from env to the 3′ LTR by PCR, cloned it, and sequenced
it. They published sequences of the glycoprotein gp120 (≈ 1200 bp) found in the
peripheral tissues of seven individuals and, for five of the individuals (Patients AZ,
BW, CX, DY, GA), included sequences from the CNS. Patients AM and IV only
had sequences from non-CNS tissues reported. A summary of the data is shown in
Table 5.1.

Recall from Section 2.5 that zigzag persistence provides a formalism to describe
“filtrations” where arrows can go in both directions; for example, when the data
can be modeled by a mathematical object that first “builds up” (the “zig”) and
later “breaks down” (the “zag”) [91, 93]. For sequences sampled from two related
subpopulations, this framework provides a way to divide recombination events into
four classes:
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Table 5.1 Summary of patient data: first column is the identifier of the
patient, second and third columns are the number of sequences obtained
from the central nervous system, fourth columns is the GenBank
accession numbers

Patient # CNS sequences
(unique sequences)

# Non-CNS sequences
(unique sequences)

Accession Numbers

AZ 35 (33) 52 (48) HM001587 – 1673
DY 107 (99) 59 (54) HM002004 – 2169
BW 103 (99) 18 (18) HM001674 – 1794
CX 162 (152) 47 (43) HM001795 – 2003
GA 75 (73) 57 (55) HM002170 – 2301
AM — 225 (210) HM001362 – 1586
IV — 181 (177) HM002302 – 2482

1. event occurring in the first population, but not the second;
2. event occurring in the second population, but not the first;
3. event detectable in either population alone (typical if the two populations are

very closely related);
4. events involving both populations, detectable only in some union of their

sequences and not in either population individually; this class represents the
case of gene flow between genetically distinct populations.

Consider the reticulate phylogeny shown in Figure 5.28A, where the red nodes
(left node in each numbered pair) are sampled from one population (e.g., geo-
graphic region or anatomical site) and the yellow nodes (right node in each pair)
are sampled from a second population. Computing persistent homology identifies
the recombination event as a topological loop that appears at particular scales
(see Figure 5.28C). Visually, it is clear that a single recombination event has
affected both populations, and can be seen from either population. Zigzag persis-
tence allows us to recover this computationally. Starting from the first population
alone, a loop is detected (Figure 5.28B). Complexes are built up (the “zig”) by
adding sequences from the second population (Figure 5.28C) and broken down
(the “zag”) by removing sequences from the first population (Figure 5.28D). The
zigzag barcode captures the fact that the loop in panel B and the loop in panel D
are representatives of the same homology class, indicating that the same recombi-
nation event generated them – a class 3 event. The ancestry represented in panel E
contains a recombination event that brings together the red and yellow populations.
The sequence of simplicial complexes starts as a single line (panel F), builds up
to a square (panel G), and breaks down to a different line (panel H). As a loop
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Table 5.2 Patient status and putative recombination events indicated by
persistent homology

Patient HAD status Degree of
neuropathology

# CNS events # Cross-site
events

# Non-CNS
events

AZ None 3 0 1 2
DY Acute 1 2 5 1
BW Progressive 2 3 0 0
CX Progressive 5 8 0 1
GA Progressive 5 5 7 8
AM n/a n/a — — 7
IV n/a n/a — — 9
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Figure 5.28 Schematic of zigzag persistence used to identify inter-population
recombination (see text).

appears only when both populations are included (class 4 recombination event),
this identifies exchange of genomic material between populations.

Summarizing, persistent homology was used to identify putative recombination
events. Where sequences from both CNS and non-CNS sources were available,
zigzag persistence was used to classify each recombination as occurring in the
CNS, outside the CNS, or between CNS and non-CNS sequences (Table 5.2). The
two patients exhibiting progressive HAD and the most severe neuropathology –
CX and GA – also had the greatest number of recombination events localized
in the CNS, suggesting that frequent viral recombination contributes to this dis-
order. Apart from this similarity, the viral population structure was strikingly
different for the two patients: patient GA’s CNS sequences were relatively more
intermingled with the non-CNS sequences, with frequent recombination events
occurring between the two anatomical groups. In contrast, the two groups in patient
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Patient CX

Patient GA

CNS Non-CNSCombined

Figure 5.29 Phylogenetic networks of HIV-1 gp120 sequences obtained from
patients CX and GA. Each node represents one sequence; larger nodes show
sequences that were sampled multiple times. Blue nodes were sampled from the
CNS; red nodes were sampled from elsewhere in the body. The position of each
node is determined by the first two principal components (computed via MDS)
of genetic distance (Hamming distance). The network backbone (thin gray edges)
is a minimum spanning tree, and the thick red and blue edges are generators of
cycles identified by persistent homology. Red cycles denote putative recombina-
tion events that involve sequences sampled fully outside the CNS; blue cycles
denote events that involve some sequences from the CNS.

CX were more clearly separated. Figure 5.29 depicts phylogenetic networks of the
sequences for these two patients, illustrating this difference in structure.

Since the number of sequences sampled can affect the number of cycles
observed, in Table 5.3 we show ρ̂PH , an estimate of the population-scaled recom-
bination rate, as described in Section 5.7. Again patients CX and GA stand out
as having CNS populations with the highest recombination rate, suggesting that
the association of HAD with severe neuropathology is not an artifact of the
sampling procedure.

If the CNS and non-CNS populations are completely distinct, then the
population-scaled recombination rate ρ for the combined population will equal the
sum of the ρ values for each individual population. For most patients, the value of
ρ̂PH computed using all sequences is in fact less than the sum of the two ρ̂PH values
computed from the CNS and non-CNS samples. This is consistent with the two pop-
ulations being partially intermingled and sharing common ancestral recombination
events, such that much of the historical signal can be obtained by sampling just a
single population. Patient DY was unique in that ρ̂PH for the combined population
exceeded the sum of the two individual values. Consistent with this observation,



314 Part II Biological Applications

Table 5.3 ρ̂PH estimated from different sources

Patient ρ̂PH from CNS
sequences

ρ̂PH from
non-CNS
sequences

Sum of both
estimates at
left

ρ̂PH from all
sequences

AZ 0 6.7 6.7 4.4
DY 4.0 3.0 6.9 11.0
BW 5.9 0 5.9 5.3
CX 12.7 3.7 16.3 12.5
GA 12.5 27.4 39.9 35.2
AM — 9.2 — —
IV — 13.1 — —

patient DY was also the only individual in which the majority of recombina-
tion events observed occurred between representatives of the two populations
(“cross-site events” in Table 5.2). These observations suggest considerable recent
traffic of virus across the blood-brain barrier in this patient, perhaps borne by
increased traffic of macrophages stimulated by the Mycobacterium avium infection
that started a year prior to death. Although there is statistically significant clustering
of the two populations, it is weakest in this patient compared to the others [255].

5.5 Other Viruses

Most of our knowledge of microbes relates to human pathogens, of which there are
on the order of 103 species, representing a tiny fraction of all microbial species. It
has been estimated that there are 1031 viruses on this planet [158, 488], constituting
the largest and most diverse biological population on Earth. About 8% of our DNA
is derived from remnants of viruses that once infected our ancestors. While all
cells in the three domains of life store their genomes as double-stranded DNA,
viruses use RNA and DNA in different forms. The taxonomy of viruses is extremely
complex as there are no common structures shared by all viruses, and there is no
clear evidence that all viruses share a common origin. The Baltimore classification
[28], a common classification based on the type of genomic material and replication
strategy, divides viruses into seven different groups.

● Group I: double-stranded DNA viruses.
● Group II: single-stranded DNA viruses. Unlike cells, these viruses use only one

strand of DNA.
● Group III: double-stranded RNA viruses.
● Group IV: single-stranded RNA viruses, with genomic material encoded in the

positive-sense strand.



5 Evolution, Trees, and Beyond 315

● Group V: single-stranded RNA viruses, with genomic material encoded in the
negative-sense strand.

● Group VI: single-stranded positive RNA viruses that use reverse transcription.
● Group VII: DNA viruses that use reverse transcription.

We have seen that influenza uses negative-sense RNA for its genomic material,
so it is classified in the type V group. HIV is a retrovirus, using RNA and reverse
transcription, and thus it is classified as type VI. An example of a type I virus is
the Epstein-Barr virus, which causes mononucleosis, and which we will encounter
again when talking about cancer. This classification may be neat, but it does not
provide information about the origins of viruses, and two viruses belonging to the
same group may have very little in common genetically, while viruses from differ-
ent groups may have related genes. Such similarities could be due to a common
ancestor or to different exchange modes of genomic material.

The same persistent homology approach that we used to study reassortment in
influenza and recombination in HIV can be applied to study other viruses. Fla-
viviridae is a family of viruses comprising several different genera, including
hepaciviruses and flaviviruses. Flaviviridae are positive-sense single-stranded RNA
viruses (group IV), whose ability to perform homologous recombination through
RNA polymerase template switching has been debated. Sporadic recombinant
strains have been detected for hepaciviruses like hepatitis C [120] and flaviviruses
like dengue virus [539] and West Nile virus [409]. In some of these cases, the
evidence for recombination remains controversial [426]. One can use persistent
homology to study the extent of recombinations in the Flaviviridae family [100].
Comparing using different measures such as the size of the longest bar (TOP) and
the number of bars in the sample time (ICR), it was found that hepatitis C showed
some but lower recombination than in HIV (Figure 5.30). No high-dimensional
homology was found in dengue or West Nile virus, suggesting that recombination
rarely occurs in these viruses.

In type V viruses, like influenza, recombination is considered to be an even less
frequent event like in Newcastle or Rabies virus. Persistent homology does not
identify high-dimensional classes for rabies, while the analysis of Newcastle virus
confirmed a low ICR but a non-vanishing TOP.

5.6 Bacterial Evolution

Bacteria are the most common cells on Earth and even in our bodies. From marine
samples, biologists estimate that there are 3× 1028 bacterial cells on Earth. Despite
being less numerous than viruses, these prokaryotes represent more than 90% of
Earth’s biomass [158, 488]. The bacteria in a human’s gut collectively weigh about
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Figure 5.30 Recombination across different viruses. Left: A topological obstruc-
tion is estimated using the maximum barcode length in dimension one. Right:
The rate of irreducible cycles is defined as the number of one dimensional bars
in the barcode diagram divided by the time spanned by the sequence collection.
Source: [100]. From Joseph Minhow Chan, Gunnar Carlsson, and Raúl Rabadán,
‘Topology of viral evolution’, Proceedings of the National Academy of Sciences
110.46 (2013): 18566–18571. Reprinted with Permission from Proceedings of the
National Academy of Sciences.

a kilogram. In a gram of dental plaque there are 1011 bacteria. Only a small fraction
of bacterial species has been characterized so far. Although large multidisciplinary
efforts are under way, such as the Earth Microbiome Project (which plans to study
200,000 samples) it is unlikely that we will have a comprehensive atlas in the near
future.

5.6.1 Horizontal Gene Transfer in Bacteria

Bacterial genomes vary widely in size; typically they are a few megabases long.
Mycoplasma genitalium, an intracellular pathogenic bacterium, has one of the
smallest genomes at half a megabase. Escherichia coli, a common bacterium liv-
ing in our intestine and used in laboratories, has a genome of 4.6 megabases. Its
mutation rate has been found to be 5.4 × 10−10 per base per replication, or 0.0025
per genome per replication [149, 150]. Mutation rates vary between species, but
also with changes in the ambient environment. For example, it has been shown that
starving bacteria have dramatically increased evolutionary rates [72, 86].

In addition to mutations, horizontal gene transfer (HGT), the exchange of
genomic material in a non-vertical way, constitutes a major form of genetic inno-
vation in bacteria. Borrowing genes through HGT allows for rapid adaptation to
challenging environments [389]. As we will see, HGT has been found to be a major
factor in the spread of antibiotic resistance [134]. Transfer of genetic material is
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well known since the work of Lederberg on bacterial conjugation in the 1940s
[318] (Lederberg received the 1958 Nobel Prize for this work). Until the advent
of large scale genomic studies, it was widely thought that HGT was a rare event.
Now it is known that effects of HGT are found pervasively across many different
bacterial species [305]. In some cases the effect of HGT is extremely dramatic, in
particular when genes are imported across different domains of life. For instance,
the genomes of some bacteria contain a large fraction of archaeal genes. The best
known example of this borrowing is that of hyperthermophilic bacteria, which
are bacteria that can tolerate temperatures near boiling, such as Aquifex aeolicus
and Thermotoga maritima. In genomic analysis, HGT is usually identified through
incongruent tree phylogenies, with different gene histories represented by incom-
patible tree topologies. The widespread effect of HGT across and within different
domains of life has led some to question the existence and usefulness of represent-
ing the relationship between distant bacterial species in a Tree of Life [147].

There are three main molecular mechanisms by which HGT can occur (see
Figure 5.31) [389].

● Transformation: the uptake of naked, free-floating DNA from the environment.
● Transduction: the transfer of genomic material through a virus intermediate.

Viruses that infect bacteria, known as bacteriophages or phages, mediate the
transduction process. The amount of DNA is limited by the size of a viral cap-
sid, usually about 100,000 bases. Phages also can encode proteins that can help
the integration of the new material into the receptor cell.

● Conjugation: transfer of genomic material by cell-cell contact. For this to occur,
the cytoplasms of the bacteria must be connected. Bacteria often connect to each
other using an appendage called a pilus. The pilus exists precisely for this role,
demonstrating that HGT can be advantageous for bacteria.

HGT can be hindered by disruptions in any of the following processes: in the
donor, the ability to generate genomic material in the form of free DNA or plas-
mids; a transportation method for the DNA, such as the existence of phages that

Bacterial transformation Bacterial transduction Bacterial conjugation

Figure 5.31 A few mechanisms of horizontal gene transfer in bacteria: transfor-
mation, transduction and conjugation.



318 Part II Biological Applications

can effectively infect both the donor and recipient; and in the recipient, the capacity
to uptake and integrate the new DNA.

Experimentally, it has been shown that HGT between species decreases with
increasing genetic distance [182]. In the following section, we will employ
genomic data from large databases and tools from TDA to study the frequency
and patterns of intra- and inter-species HGT in bacteria.

5.6.2 Pathogenic Bacteria

As previously mentioned, horizontal exchange occurs when a donor bacterium
transmits foreign DNA into a genetically distinct bacterial strain; for instance, in
Germany, 2011, E. coli acquired the Shiga toxin, typical to the Shigella genus,
via phage-mediated gene transfer, and caused a serious outbreak of foodborne ill-
ness [435]. Control of bacterial pathogens is hampered by rampant horizontal gene
transfer, which allows bacteria to acquire genes conferring resistance to commonly
used antibiotics [382, 391, 497]. Genes for resistance can be transferred between
strains of both the same and different species existing in the same environment. Ele-
ments of bacterial genomes demonstrating evidence of foreign origin are known as
genomic islands and may be associated particularly with phenotypic effects, such
as virulence or resistance to antibiotics.

Tools from topological data analysis can help to characterize the frequency and
scale of horizontal gene transfer in bacteria, elucidating issues of significant pub-
lic health relevance, such as the spread of antibiotic resistance in Staphylococcus
aureus and the human microbiome’s role as a reservoir for antibiotic resistance
genes.

5.6.3 Multilocus Sequence Typing Analysis

Within a single bacterial species there can be many genetically distinct strains.
Different strains can have important functional differences. For example, some
strains may be more virulent than others and some may be more susceptible to
the immune responses generated by vaccines. Multilocus sequence typing (MLST)
is a method for detecting particular bacterial strains that does not require whole-
genome sequencing. It relies on the fact that strains can be identified from certain
representative genomic loci selected from regions within housekeeping genes.
Typically the size of each locus is about 500 base pairs.

Curated MLST data from laboratories around the world is available in large
online databases. Often there are thousands of strains identified within a single
pathogenic species (over 10,000 in the case of Neisseria spp.). MLST data can
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be used to study horizontal exchange of genomic material in bacteria. Because
different species have different loci, one can only examine horizontal exchange
within species. Furthermore, because all of the selected loci exist within a few
housekeeping genes, our analysis does not provide information about events
involving genes other than these housekeepers.

The data used here comes from PubMLST [277]. For each of twelve bacterial
species, one can construct a pseudogenome by concatenating the typed sequence
at each locus. Using the Hamming distance metric, one can calculate a pairwise
distance matrix between strains and compute persistent homology on the resulting
metric space. In Figure 5.32, we show the persistent homology barcodes associ-
ated to the witness complex (recall Definition 2.7.3) with 250 landmark points.
We plotted the H1 barcode diagrams for K. pneumoniae and S. enterica. Based
on the observed range of recombinations, one can identify two distinct species
profiles: K. pneumoniae recombines solely at one short-lived scale, while S. enter-
ica recombines both at the short-lived scale and also at another longer-lived scale.
This analysis can be repeated for each species; we plotted the results as persistence
diagrams in Figure 5.33. For the bulk of pathogens, there are three major scales of
recombination: one short-lived scale at intermediate distances, another longer-lived
scale at intermediate distances, and a third short-lived scale at longer distances. H.

Klebsiella pneumoniae Salmonella enterica

Figure 5.32 Barcode diagrams reflect different scales of genomic exchange in
K. pneumoniae and S. enterica. Source: [161]. Reprinted by permission from
Springer Nature: Emmett K. J., Rabadán R. (2014) Characterizing Scales of
Genetic Recombination and Antibiotic Resistance in Pathogenic Bacteria Using
Topological Data Analysis. In: Ślȩzak D., Tan A. H., Peters J. F., Schwabe L. (eds)
Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science, vol
8609. Springer, Cham. c© Springer International Publishing Switzerland 2014.



320 Part II Biological Applications

Figure 5.33 On the left, the H1 persistence diagram for the twelve strains of
pathogens selected for this study MLST profile data. Observe three scales of
recombination. On the right, the birth time distribution for each strain. There is
an earlier scale of recombination present in H. pylori not observed in the other
species. Source: [161]. Reprinted by permission from Springer Nature: Emmett
K. J., Rabadán R. (2014) Characterizing Scales of Genetic Recombination and
Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis.
In: Ślȩzak D., Tan A. H., Peters J. F., Schwabe L. (eds) Brain Informatics and
Health. BIH 2014. Lecture Notes in Computer Science, vol 8609. Springer, Cham.
c© Springer International Publishing Switzerland 2014.

pylori is a clear outlier, tending to recombine at significantly lower scales than the
other pathogens.

A relative recombination rate can be defined by counting the number of H1 loops
across the filtration and then dividing by the number of samples for that species.
The results of this analysis are shown in Figure 5.34, which demonstrates that there
exist a wide range of recombination profiles among bacterial species. S. enterica
and E. coli have the highest recombination rates, while H. pylori recombines at a
substantially lower rate than the others. This analysis suggests that H. pylori’s core
genome is comparatively impervious to recombination except by closely related
strains.

5.6.4 Protein Family Analysis

MLST data can provide information about the exchange of genomic material in
typed loci within related species. In order to study horizontal exchange between
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Figure 5.34 Relative recombination rates computed by persistent homology from
MLST profile data. Source: [161]. Reprinted by permission from Springer Nature:
Emmett K. J., Rabadán R. (2014) Characterizing Scales of Genetic Recombina-
tion and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data
Analysis. In: Ślȩzak D., Tan A. H., Peters J. F., Schwabe L. (eds) Brain Informat-
ics and Health. BIH 2014. Lecture Notes in Computer Science, vol 8609. Springer,
Cham. c© Springer International Publishing Switzerland 2014.

different species, one needs data that are relevant across bacterial species. One
approach is to consider the presence or absence of protein families among different
bacterial species. Protein families are proteins with similar sequence and function.
The presence of a member of a protein family in a strain could be due to a horizontal
gene transfer event between strains or species.

The presence or absence of protein families can be converted into a binary vector
for each bacterial strain. One can use FigFam protein annotations in the Pathosys-
tems Resource Institute Center (PATRIC) database, one of the most comprehensive
databases for genomic annotations, including pathogenic strains [527]. When this
analysis was performed FigFam contained over 100,000 protein families compris-
ing over 950,000 unique proteins [350]. Binary vectors describing the presence or
absence of protein families were used to calculate a distance matrix and compute
the persistent homology in this space. Figure 5.35 shows the persistence diagram
relating the scale and structure between species. Different species have a far more
diverse topological structure in this space than in the MLST space, as well as a
wide range of recombination scales. The large scales of exchange in H. influenzae
suggest it is readily capable of acquiring novel genetic material from quite distantly
related strains. It is known that HGT in H. influenzae can lead to the acquisition of
virulent factors [199]. Furthermore, it has been observed that differences between
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Figure 5.35 Persistence diagram for a subset of pathogenic bacteria, computed
using the FigFam annotations compiled in PATRIC. Compared to the MLST per-
sistence diagram, the Figfam diagram has a more diverse scale of topological
structure. Source: [161]. Reprinted by permission from Springer Nature: Emmett
K. J., Rabadán R. (2014) Characterizing Scales of Genetic Recombination and
Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis.
In: Ślȩzak D., Tan A. H., Peters J. F., Schwabe L. (eds) Brain Informatics and
Health. BIH 2014. Lecture Notes in Computer Science, vol 8609. Springer, Cham.
c© Springer International Publishing Switzerland 2014.

H. influenzae strains are more commonly associated to recombination than to point
mutations [345].

5.6.5 Antibiotic Resistance in Staphylococcus aureus

S. aureus is a gram positive bacterium found commonly in the upper respiratory
tract and nostrils. Some strains are capable of causing severe infections in high-
risk populations, particularly in a hospital setting. Therefore, the emergence of
antibiotic resistant S. aureus is a significant clinical concern. Methicillin resis-
tant S. aureus (MRSA) strains are resistant to β-lactam antibiotics, which include
cephalosporin and penicillin. The gene mecA, part of Staphyloccoccal cassette
chromosome mec (SCCmec), codes for a dysfunctional penicillin-binding protein
2a (PBP2a), prohibiting the β-lactam primary mechanism and causing resistance
[273]. Characterizing the spread of resistance within the S. aureus population is
clearly of critical clinical import.
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To address this question, one can use FigFam annotations in PATRIC, as
described in the previous section. PATRIC contains genomic annotations for 461
strains of S. aureus, collectively spanning 3578 protein families. One can perform a
clustering analysis using Mapper [268]. By selecting as filter function the first two
singular values, it can be observed that the resulting graph structure exhibits two
main clusters with a thin “bridge” connecting them, as shown in Figure 5.36. These
two clusters accord with previous phylogenetic studies which used multilocus
sequence data to identify two major population groups [124].

142 of the 461 strains of S. aureus in PATRIC carry the mecA gene. When we
color based on an enrichment for mecA, a stronger enrichment can be observed in
the cluster on the right (Figure 5.36). This analysis would suggest that β-lactam

Figure 5.36 The FigFam similarity network of S. aureus constructed using Map-
per as implemented in Ayasdi Iris. One can use a Hamming distance metric and
primary and secondary metric SVD filters (res: 30, gain 4×, eq.). Node color
is based on strain enrichment for mecA, the gene conferring β-lactam resistance.
Two distinct clades of S. aureus are visible, one of which already shows significant
drug resistance. The growing enrichment for mecA in the second clade is clini-
cally worrisome. Source: [161]. Reprinted by permission from Springer Nature:
Emmett K. J., Rabadán R. (2014) Characterizing Scales of Genetic Recombina-
tion and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data
Analysis. In: Ślȩzak D., Tan A. H., Peters J. F., Schwabe L. (eds) Brain Informat-
ics and Health. BIH 2014. Lecture Notes in Computer Science, vol 8609. Springer,
Cham. c© Springer International Publishing Switzerland 2014.
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resistance has already become dominant in that clade, likely as a result of selective
pressures. More strikingly, one observes that while mecA enrichment was not as
strong in the second cluster, there was a distinct path of enrichment emanating
along the connecting bridge between the two clusters and into the less enriched
cluster. This suggests the hypothesis that antibiotic resistance has spread from the
first cluster into the second cluster via strains intermediate to the two and will likely
continue to appear in the second cluster.

5.7 Persistent Homology Estimators in Population Genetics

Mathematical models provide a way of generating data that can be used to tune
inference procedures. In population genetics, there are simple models that can sim-
ulate the generation of mutations and recombination in populations of genomes. In
Appendix B we describe some of the commonly used models of population genet-
ics, including the Wright-Fisher, Moran, and coalescence models. In this section,
we will study one of the most popular models, the coalescent model with recom-
bination. With only two parameters, the mutation and recombination rates, one
can generate large amounts of simulated data. Using this data, we will construct
estimators based on persistent homology.

5.7.1 Coalescent Process

The coalescent process is a stochastic model for generating genealogies, evolu-
tionary histories represented by lines of descent from a common ancestor, for a
collection of individuals sampled from an evolving population (see Appendix B).
These genealogies can then be used to simulate new, synthetic genetic sequences.
Coalescence processes and the attendant coalescent theory underlie many methods
commonly used in population genetics.

Starting with a sample of n individuals from a present-day population, each indi-
vidual’s lineage is traced backward in time by randomly choosing a member of
the previous generation as the individual’s parent. Two individuals may, by chance,
be assigned the same parent, in which case their lineages merge. This stochastic
process ends when the lineages of all sampled individuals have merged at a single
most recent common ancestor.

In this process, if the total population size N is sufficiently large, then the
expected time before a coalescence event, in units of 2N generations, is approx-
imately exponentially distributed:

P(Tk = t) ≈
(
k
2

)
e−(

k
2)t,

where Tk is the time that it takes for k separate lineages to collapse k − 1 lineages.
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Figure 5.37 Two representations of the same topological invariants, computed
using persistent homology. Left: Barcode diagram. Right: Persistence diagram.
Data was generated from a coalescent simulation with n = 100, ρ = 72, and θ =
500. Source: [164]. From Emmett et al., Parametric inference using persistence
diagrams: A case study in population genetics, arXiv: 1406.4582 [q-bio.QM].

After generating a genealogy, the genetic sequences of the sample can be simu-
lated by placing mutations on the individual branches of the lineage. The number of
mutations on each branch is Poisson distributed with mean θt

2 where t is the branch
length and θ is the population-scaled mutation rate. In this model, the average
genetic distance between any two sampled individuals – the number of mutations
separating them – is θ.

Coalescence models can be extended to include recombination events, allow-
ing different genetic loci in a sampled individual to come from different lineages
within the genealogical structure. Recombination is modeled as a splitting event
in which an individual, rather than being a direct descendant of only a single par-
ent, descends from two separate lineages – and occurs at a rate determined by a
population-scaled recombination rate ρ. Thus evolutionary histories are no longer
represented by a contractible tree, but, due to the combined splitting and joining
actions, by an ancestral recombination graph which may have loops and other
non-trivial, higher-dimensional topology.

5.7.2 Statistical Model

A persistence diagram generated by a coalescence simulation with recombination
is shown in Figure 5.37. The information in the diagram can be used to infer the
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Figure 5.38 Distributions of statistics defined on the H1 persistence diagram for
different model parameters. Top left: Number of features. Top right: Birth time
distribution. Bottom left: Death time distribution. Bottom right: Feature length
distribution. Data generated from 1000 coalescent simulations with n = 100, θ =
500, and variable ρ. Source: [164]. From Emmett et al., Parametric inference using
persistence diagrams: A case study in population genetics, arXiv: 1406.4582 [q-
bio.QM].

parameters θ and ρ (the mutation and recombination rates, respectively) that gener-
ated the data. Here, inference is based only on the detected H1 invariants, but the
idea can be readily generalized to higher dimensions. We consider the following
properties of the persistence diagram: the total number of features, K; the set of
birth times, (b1, . . . , bK); the set of death times, (d1, . . . , dK); and the set of persis-
tence lengths, (l1, . . . , lK). In Figure 5.38 the distributions of these properties for
four values of ρ are shown, keeping fixed n = 100 and θ = 500.

It is immediately evident that the number of features K increases with ρ, consis-
tent with the basic intuition that recombination events generate non-trivial topology
in the model. The means of the birth and death time distributions depend only very
weakly on ρ and are slightly smaller than θ, suggesting θ defines a natural scale in
the topological space; however, higher values of ρ dramatically reduce variance of
the distributions. Finally, the distribution of persistence lengths is independent of ρ.

Examining Figure 5.38, we can observe that the distribution can be
approximated by K ∼ Pois(ζ), bk ∼ Gamma(α, ξ), and lk ∼ exp(η). Death time
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is given by dk = bk + lk, which is incomplete gamma distributed. The parameters
of each distribution are assumed to be an a priori unknown function of the model
parameters, θ and ρ, and the sample size, n. Keeping n fixed, and assuming each
other parameter in the diagram is independent (a strong assumption), we can define
the full likelihood as

p(D | θ, ρ) = p(K | θ, ρ)
K∏

k=1

p(bk | θ, ρ)p(lk | θ, ρ).

Simulations over a range of parameter values suggest the following functional
forms for the parameters of each distribution. The number of features is Poisson
distributed with an expected value

ζ = a0 log

(
1 +

ρ

a1 + a2ρ

)
.

Birth times are gamma distributed with shape parameter

α = b0ρ + b1

and scale parameter

ξ =
1
α

(c0 exp(−c1ρ) + c2).

These expressions appears to hold well in the regime ρ < θ, but break down for
large ρ. The length distribution is exponentially distributed with shape parameter
proportional to mutation rate, η = αθ. The coefficients in each of these functions
are calibrated using simulations, and could be improved with further analysis. This
model has a simple structure and standard maximum likelihood approaches can be
used to find optimal values of θ and ρ.

5.7.3 Coalescent Simulations

We describe results associated to the simulation of a coalescent process with sam-
ple size n = 100 and l = 10,000 loci. The mutation rate, θ, was varied across θ =
{50, 500, 5000}. The recombination rate, ρ, was varied across ρ = {4, 12, 36, 72}.
The output of the process is a set of binary sequences of variable length (the length
is dependent on θ). The Hamming metric yields a pairwise distance matrix between
sequences. Computing persistent homology and using the model described in Sec-
tion 5.7.2 produces estimates of θ and ρ. Results are shown in Figure 5.39, where
we plot estimates and 95% confidence intervals from 500 simulations. We observe
an improved ρ estimate at higher mutation rate. This is expected, as increasing θ
is essentially increasing sampling on branches in the genealogy. We also observe
tighter confidence intervals at higher recombination rates, consistent with the
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Figure 5.39 Inference of recombination rate ρ using topological information. The
recombination rate ρ is estimated for five values {4, 12, 36, 72, 144} at three
different mutation rates {50, 500, 5000}. Mean estimates over 500 simulations
and 95% confidence interval are shown. Source: [164]. From Emmett et al., Para-
metric inference using persistence diagrams: A case study in population genetics,
arXiv: 1406.4582 [q-bio.QM].

behavior seen in Figure 5.38. See [259] for follow-up work on estimating recom-
bination rates for coalescent models and further discussion of the relationship
between topological invariants and population genetics.

5.8 Recombination Landscape in Humans

Sexual reproduction is a non-tree-like event, essential to ensuring genetic diversity
of offspring and preserving genome integrity. Cells in sexually reproducing organ-
isms contain two copies of most chromosomes (autosomes). Each copy differs
slightly in sequence, but has the same overall structure. Humans have 22 pairs of
chromosomes, as well as sex chromosomes – a pair of X chromosomes for females
and an X and Y chromosome for males. Each of these 23 pairs of chromosomes is
inherited from a different parent. In the process of meiosis, cells become haploid,
i.e., containing only one chromosome of each pair, with different regions randomly
selected from the paternal or maternal copy.

Meiosis occurs through two rounds of division. In division I of meiosis, a diploid
cell containing a paternal and maternal copy of each chromosome duplicates (see
Figure 5.40). Homologous chromosomes are then paired in a structure that is called
a bivalent. This is where the process of recombination takes place. In a nutshell,
meiotic recombination begins with a double-strand break in one of the parental
chromosomes catalyzed by a particular protein, Spo11, and the broken strands
from this chromosome are partially degraded. To repair this chromosome, the intact
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Figure 5.40 Left: Process of meiosis through two rounds of division. Top right:
Cartoon of recombination. Bottom right: Illustration from the 1916 book of
Morgan explaining crossovers. Source: [359].

chromosome strands are used as templates. The final recombination product could
result in crossover resulting in a new chromosome generated from both parental
chromosomes. Also it could lead to a non-crossover event (associated to gene con-
version, or partial replacement of a DNA region by a homologous sequence), where
part of the genomic material from one parent is used in the other strand. Finally, the
cell divides and two of the homologues are then contained in each daughter cell. In
division II of meiosis, cells divide again without further duplication of the genomic
material. At the end, there are four haploid cells derived from the initial diploid cell.
Each of the cells contains genomic material from the paternal, the maternal, or a
recombinant of both.

Given that meiotic recombination is such a fundamental process in eukaryotic
evolution, involving break and repair of genomic material, it is not surprising that
it is a highly regulated process. Since the work of Morgan using the fruit fly,
Drosophila melanogaster, as a model, we have a quantitative understanding of how
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often chromosomal crossovers occur in meiosis (bottom right panel in Figure 5.40,
obtained from [359]). Morgan was able to establish a link between the probability
of crossover and how far away in chromosomal position two different loci were.
In humans, recombinations occur at an average rate of one crossover per chromo-
some per generation. A more quantitative measure of these rates can be obtained
by estimating the probability that a crossover event will occur between two differ-
ent loci in a chromosome. One defines a centi-Morgan (cM) distance in genomic
position with a 1% chance of recombination per generation. The average rate of
recombination in humans is about 1 cM per megabase.

However, genetic versus chromosomal distance approaches do not allow a high-
resolution mapping below millions of bases, as it will require many generations to
track many meiotic events. Pedigree and linkage disequilibrium analysis provide a
much more refined view of where recombination occurs [288]. Pedigree analysis
studies families of related individuals along several generations. Linkage disequi-
librium (LD) is a measure of how the variability of two genomic loci is associated.
If there is no recombination between loci, two mutations in the same chromosome
will be always traveling together. If recombination occurs very frequently, the pres-
ence of a particular allele provides very little information about nearby mutations.
The simplest measure of LD is Di j = fi j − fi f j, where fi j is the frequency of
observing two alleles i and j together, and fi is the frequency of observing the
allele i.

It has been found that recombination occurs preferentially at narrow genomic
regions known as recombination hotspots [18, 37, 396]. In mammals, recom-
bination hotspots are specified by binding sites of the meiosis-specific H3K4
trimethyltransferase PRDM9 [38, 372, 400]. However other factors play a role too.
The recombination landscape in eukaryotes is actually the result of a hierarchical
combination of factors that operate at different genomic scales. High-resolution
mapping of meiotic double-strand breaks (DSBs) in yeast and mice [181, 294, 397,
466] reveals fine-scale variation in recombination rates within hotspots as well as
frequent recombination events occurring outside hotspots [397].

Population-based recombination maps are a valuable tool in the study of
recombination in humans [344, 371]. Due to the number of genomes published
by such consortia as the 1,000 Genomes Project [122] and ENCODE [123],
it is now possible to produce exquisitely fine-scale mapping and annotation of
human recombination. Chromatin immunoprecipitation (ChIP-seq), bisulfite, or
RNA sequencing methods, as well as other high-resolution data sets reveal a wide
variety of distinct biological features associated with small genomic regions. These
can aid in connecting locations where recombination occurs with other molecular
and biological phenomena.

Establishing compelling statistical associations with such narrow and often clus-
tered biological features, and analyzing the very large numbers of sequences in
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these data sets, is becoming a crucial challenge for traditional methods of recombi-
nation rate estimation (such as methods based on linkage disequilibrium). Robust
and scalable methods to detect and quantify rates of recombination at different
scales are particularly useful.

5.8.1 Fine-Scale Resolution of Human Recombination

The persistent homology estimators of recombination introduced in the previous
section can be easily implemented on a sliding window and therefore adapted to
the very long eukaryotic genomes [87, 88]. The sliding window cuts the genome
into small overlapping segments. One can estimate the local recombination rate
ρ(x) using the persistent homology estimators of recombination rates in a sliding
window centered around a genomic position x. There are different implementa-
tions of the procedure that determine the size of the window. A constant window
size may not be desirable, because mutation rates can vary over different genomic
regions; and thus one might get windows that contain no polymorphic sites, in
which no recombination could be detected. Choosing variable window sizes to fix
the number of polymorphic sites per window avoids this problem. The number of
polymorphic sites per window defines the genomic scale at which recombination
is observed.

Figure 5.41 captures a snapshot of the sliding window near the cytogenic band
1q24.1 of human Chromosome 1 [87]. We describe estimates of recombination
rates from 647 individuals genotyped for the 1,000 Genomes Project [122], with
windows containing 14 polymorphic sites. The sliding window approach assigns
a finite metric space for each position x, containing 647 points, one for each
individual. The one dimensional homology estimator of ρ(x) based on b1 on a
sliding window allows inference of local recombination rates at x. Recombination
maps reflect a landscape with peaks showing recombination hotspots and valleys
showing low recombination regions.

The 1,000 Genomes Project provides genotype data of nearly 38 million sin-
gle nucleotide polymorphisms (SNPs). The data is phased, meaning the sequences’
locations include the specific chromatid on which they were found. The individuals
genotyped by the 1,000 Genomes Project came from seven different populations:
European-American, Han Chinese, Finnish, British, Japanese, Tuscan and Luhya
(a Bantu ethnic group in Kenya). Each of these populations has a different recom-
bination map that can be compared to the others. The median effective population
recombination rates detected for non-African populations had ρ ∼ 0.6 per kbp. The
effective population recombination rates were substantially higher in the African
population, consistent with its larger effective population size and supporting the
out-of-Africa human expansion model [494]. While the recombination maps agree
at a global scale, there are population-specific variations. In particular, the Luhya
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present a more unique recombination landscape. Topological methods can be used
to describe gene flow across populations, where migration and admixture appear
as high-dimensional loops in the evolutionary space.

The fine-resolution maps of recombination connect population maps to spe-
cific genomic locations that can inform us about specific molecular processes
associated to recombination hotspots. Recently, high-throughput methods have
catalogued binding sites of different proteins, epigenetic marks, and gene expres-
sion across genomes [123]. For instance, one can ask what proteins bind to the
genome in locations where recombination occurs. The persistent homology recom-
bination landscape recapitulates known proteins and epigenetic marks associated
to recombination, such as the meiosis-specific histone 3 lysine 4 (H3K4) trimethyl-
transferase PRDM9, CpG hypomethylation and H3K4 trimethylation. Comparing
persistent homology estimators of recombination to binding sites from ChIP-
seq data of 118 transcription factors, these binding sites are depleted in high
recombination loci on average (see Figure 5.42) [87]. In addition, this analysis
led to the discovery of previously unreported transcription factors associated to
recombination regions, such as members of the E2F protein family, important reg-
ulators of cell cycle progression and differentiation. These proteins bind to sites of
RNA polymerase II and different regulatory subunits of the MLL/MLL1 protein
complex [87].

5.9 Gene Trees and Species Trees

In the previous sections, we have described how different genomes from individual
organisms are related. Sometimes, like in clonal processes, the relation between
different genomes can be well represented by a phylogenetic tree. However, phy-
logenetic trees have been traditionally used to capture relations beyond individual
organisms, describing relationships between different taxa (e.g., kingdoms, genera,
or species). For instance, when Darwin in 1859 proposed his model for the ori-
gin of species he had in mind a branching process with different species as leaves
(panel A in Figure 5.43). We have to remember that while genomes are ascribed to
individual organisms, individuals within a species have slightly different genomes.
In a strict sense, the genome of a species, such as the human genome, does not
exist, only the related genomes of organisms within a species. If there is no single
genome for a species, how can one construct a species tree, a tree where leaves
are labeled by species? More formally, given a set of genomes G from organisms
belonging to a set of species S , how can we find a representation between different
species (or other taxa)? When does it make sense to talk about a species tree?

The construction of a species trees is not straightforward, as there are not only
technical questions but also profound conceptual obstacles to this enterprise. First,
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(A) (B) (C)

Figure 5.43 Phylogenetic trees have been traditionally used to describe the rela-
tion between species. (A) Tree of life by Haeckel, Generelle Morphologie der
Organismen (1866) with species and higher taxa assigned to branches and leaves.
In a strict sense, there is no genome of a species or any higher taxa, and different
genomes and different genomic regions could generate (slightly) different trees.
Incomplete lineage sorting is a common phenomenon that generates different tree
topologies. Source: From E. Haeckel, Generelle morphologie der organismen. All-
gemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet
durch die von Charles Darwin reformirte descendenztheorie, Berlin, G. Reimer,
1866. (B) and (C) Incomplete gene sorting can occur if a locus in an ancestral
species is polymorphic (has more than two alleles). Suppose that it divides first
into two lineages and then one of those further divides into another two. The
alleles could then be fixed differently in each of the lineages. Incomplete lineage
sorting generates “gene trees” (trees from the allele) that present a different tree
topology than the species tree. These tree incompatibilities are represented in a
“fat tree” that can capture different topologies such as the ones occurring during
incomplete gene sorting (B) or represented by arrows representing horizontal gene
transfer events (C).

and the most serious obstacle, relates to the assignment of a given genome to a par-
ticular species. Even in metazoa, where phenotypic differences are significant, it is
sometimes unclear how to define species. The problem becomes acute in bacteria
and viruses. From an empirical genomic point of view, given genomic data from
two organisms, how can we determine whether they belong to the same species?
This assignment problem is linked to the definition of species. A species is com-
monly and informally understood as the largest group of interbreeding individuals
capable of producing fertile offspring. However, there is no consensus on a precise
species definition that can incorporate sexual and asexual organisms, that can con-
sider more complex phenomena such as ring species (populations that can breed
with nearby populations but not those far apart), that can consider hybrids, among
others. More importantly, from a pragmatic genomic point of view, it is not unusual
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to sequence the genome of an organism without knowing the mating possibilities
with others. Genomic based definitions of species are based on genomic data, for
instance, based on arbitrary cutoff values for species definitions, e.g., a 95% aver-
age nucleotide identity as a potential criterion to define whether two bacteria belong
to the same species. In viruses, the problem is even more acute. According to the
International Committee on Taxonomy of Viruses (ICTV) a virus species is a “poly-
thetic class of viruses that constitute a replicating lineage and occupy a particular
ecological niche.” A “polythetic class” means a group of organisms with several
properties in common but not necessarily a single defining property. Thus, in a
way, the very definition of viral species is artificial.

Even if we have a good species assignment, a serious second obstacle appears.
We have seen in the previous sections of this chapter that a variety of biological
processes (reassortments, recombinations, horizontal gene transfers, etc.) generate
genomic relations that are not well captured by trees. When these processes occur
between members of different species, there will not be a tree representation. If
exchange of genomic material is rare one could envision a tree with small cor-
rections reflecting non-tree-like processes (Figure 5.43). But even if non-tree-like
processes did not occur between members of different species, the history of a
particular genomic region could be different from the history of another region, a
phenomenon that is referred to as incomplete lineage sorting.

Incomplete lineage sorting could happen when lineages divide before poly-
morphisms fix in the population. If variant alleles are kept in the different
descendant populations and fix independently in each population, the final tree
of these alleles could be different from the species tree (Figure 5.43B). These
tree incompatibilities are informally represented in a “fat tree” that reflects the
tree topological ambiguity due to incomplete lineage sorting. The problems of
defining species, of assigning species and of finding good species summariza-
tions (tree or others to be defined) are linked. If organisms across different species
frequently exchange genomic material it is difficult to establish clear species
boundaries.

Sometimes, under the assumption that there are some smaller genomic
regions where trees are good approximations, one can consider the problem of
reconstructing a species tree as finding a good “summarization” of a set of trees.
In the literature, this problem is referred to as finding the species tree from a set of
smaller genomic region trees, called gene trees, although the latter do not necessar-
ily refer to genes and could refer to other genomic regions. In this context, Billera,
Holmes, and Vogtmann [55] applied the structure of the CAT(0) spaces described
in Section 4.7. Here, the species tree problem is posed as the problem of finding
the centroid of a set of trees of 12 primates, including Homo sapiens.
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5.10 Extensions: Median Complex and Topological Minimal Graphs

Thus far, our approach has been to start with genomic data, compute a finite metric
space, and relate the topological properties of the metric space to biological phe-
nomena, such as reassortment, recombination, or horizontal gene transfer. We have
constructed estimators of recombination rate based on statistical properties of per-
sistent homology summaries. We have also deconstructed large genomes using a
sliding window. Beyond these methods, there exist other constructions that can be
useful. In particular, starting from the genomic data, we can increase the number of
genomes by adding inferred genomes that could be associated to potential ances-
tors. From this extended data set, one can again define a finite metric space, whose
topology could increase the sensitivity for recombination detection, at the expense
of increasing the complexity and introducing spurious non-interpretable events in
a biological context.

Let us consider a few simple examples for which the four gamete test (the pres-
ence of all four different alleles in two loci) indicates a non-tree-like event, and
how persistent homology can or cannot detect the reticulate event.

Our first set of examples [162] consists of four genomes of length two and two
bases represented by 0 and 1: s1 = 00, s2 = 10, s3 = 01, and s4 = 11. One
can easily verify that the four gamete test finds an incompatibility between the
first two sites, as the four possible gametes are present (Figure 5.8). This event
is precluded in an infinite-sites model without recombination, where mutations in
the same site are rare. Persistent homology captures this event, as it identifies a
bar [1, 2) in the first homology persistent group using Hamming distance. We can
vary this simple example by taking four genomes of length three and two bases
represented by 0 and 1: s1 = 000, s2 = 100, s3 = 010, and s4 = 111. One can again
easily verify that the four gamete test finds incompatibility between the first and
second sites. However, the barcode in dimension one (or higher) does not show any
bar. In this simple example, it is easy to identify the reason: if s1 is the common
ancestor to other sequences, s2 and s3 can be considered to be the parents of s4,
a direct descendant of a reticulate event. In this case, it is easy to infer that there
was an ancestral recombinant sequence, sr = 110, which was not sampled in our
data set (Figure 5.44A). If this missing sequence was present in our data set, we
would have recovered a bar in the first homology group representing the event. This
simple case shows that incomplete sampling of the process can significantly lower
the sensitivity of persistent homology to detect potential recombinant events.

Another example can be found in the article by Song and Hein [476]. In this
case there are five genomes with four sites: s1 = 0000, s2 = 1100, s3 = 0011,
s4 = 1010, and s5 = 1111. There are multiple incompatibilities between sites that
can be easily identified using the four gamete test (1 and 3, 1 and 4, 2 and 3, and
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Figure 5.44 Two simple cases where the Vietoris-Rips complex applied to a dis-
tance matrix between sampled genomes fails to identify a potential recombination.
(A) In this example an ancestral sequence has not been considered in the sam-
ple. If considered, that recombination is identified. (B) In more complex cases,
multiple recombinations can lead to a degeneracy. Source: [162]. Reprinted with
permission: c© EAI European Alliance for Innovation 2016.

2 and 4). Song and Hein [476] show that at least two recombinations are needed
to explain this data. When applying persistent homology using the Vietoris-Rips
complex with Hamming distance as the metric, one finds that the barcode diagram
does not show any event in dimension larger than zero, failing to capture potential
recombinations. Close inspection shows that this is a special case, where s4 sits
at the same distance from the other four sequences. If other ancestral states could
have been sampled or if s4 had not been present in the data set, persistent homology
could have detected the reticulations.

These examples show that persistent homology using Vietoris-Rips complexes
applied to genetic distances is limited as a method to identify potential reticulate
events. This is not surprising, as sequence data is much richer than a distance
matrix; as in standard phylogenetic approaches, methods based only on distances
constitute a first approximation.

Working directly with sequences provides a much more powerful data structure
that can capture all potential reticulations. For instance, from our original sequence
data, we can construct many distance matrices by subsampling sets of sites. If
the phylogeny is truly tree-like and the infinite-sites model holds, none of these
subsamples generates any non-tree-like structure, and the persistent homology bar-
codes for each of the subsamples should be empty for dimension bigger than zero.
If the four gamete test is satisfied for a particular subset of data, the four alleles
should be present and so a bar in dimension one. Subsampling sites provides a very
powerful tool to increase sensitivity at heavy computational expense, as the num-
ber of potential subsets is exponential with the number of sites. There is also the
problem of interpretability of the results: can we infer what could have been the
recombination history, or just the minimal number of recombination events, from
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subsamples of data? There are several alternatives though that take advantage of the
fact that homologous recombination occurs between nearby sites in the genome, or
in other words, the four gamete test is more informative between nearby sites in the
genome. This type of information is fundamental for interpretability and is used in
most standard tests of recombination, for instance, the Hudson-Kaplan test [255].

In what follows we propose several approaches to increase the sensitivity and
interpretability of persistent homology for the identification of reticulate events.
The first approach, the median complex, is based on the idea of adding potential
ancestral states. The second infers associated graphs, named topological minimal
graphs, as explicit representations of potential histories.

5.10.1 The Median Complex Construction

In order to increase the sensitivity of persistent homology methods for identifica-
tion of recombination, we apply an old insight in the field, namely that adding
information about ancestral inferred states can make it easier to identify potential
recombinant events. The idea is to add extra points to the original data, some of
which can be mapped to potential ancestral states. The median graph (also called
the Buneman graph) is a graph constructed with inferred median points. It was
introduced as a way of capturing all maximum parsimony evolutionary trees [81]
and has been the object of study for phylogenetic network inference [30, 31].

Associated to the median graph is a collection of filtered complexes referred to
as the median complex. The persistent homology of the median complex can be
computed by considering from the finite metric space consisting of the original
data plus the new points imputed from the median procedure. If the original data is
tree-like, there is no persistent homology information in the median complex above
dimension zero; this is consistent with the persistent homology of the data [100].
But high-dimensional classes in the median complex can capture recombination
events not visible in the persistent homology of the underlying complex. The major
drawback to the use of median graphs is the large number of imputed points, which
complicate computation and obscure the biological interpretation.

The median sequence m(a, b, c) of three binary sequences a, b, and c is a
sequence with the majority consensus at each site. For instance, take the example
shown in Figure 5.46 with three sequences with three sites each: a = 000, b = 110,
and c = 011. The median of the first site is a 0, in the second a 1 and in the third
a 0, so the median sequence is m = 010, different from any a, b, and c. Note that
the median sequence is not sensitive to sites that are specific to one of the original
sequences.

Notice that in the example previously shown in panel A of Figure 5.44, the
median of s2 = 100, s3 = 010, and s4 = 111 is precisely the missing sequence
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Figure 5.45 One can infer some interesting sequences by applying the median
operation. The newly inferred median node (in white) can be interpreted as the
missing recombinant between s2 and s3 and the ancestor of s4. Adding the median
sequence to the original set one can identify a new one dimensional persistent
class in the interval [1, 2). The median operation does not generate other new
sequences. Source: [162]. Reprinted with permission: c© EAI European Alliance
for Innovation 2016.

000

110 011

010

m(000,110,011) = 010

Figure 5.46 The median sequence is constructed for triples of sequences by tak-
ing the most common allele at each site. The process can be iterated, adding more
median sequences to the original data until no new sequences can be added by
this procedure (the median closure). Source: [162]. Reprinted with permission:
c© EAI European Alliance for Innovation 2016.

sr = 110. Applying the median operation to subsets of size 3 of the augmented set
of sequences does not generate any new sequences (Figure 5.45). Computing the
persistent homology of the Vietoris-Rips filtration of the original set of sequences
together with sr uncovers the missing one dimensional loop in the interval ε = [1, 2)
generated by s1, s2, s3, and the newly reconstructed sr.

For every triple of sequences one can define the median. The median of a triple
may or may not be in the original set. This procedure can be repeated by adding the
new median sequences to our original set of sequences S and iterating until there
are no more new sequences added. The final set of original sequences and their
medians, and successive medians, and so forth, constitute the median closure S̄ :

S̄ = {v | v = m(a, b, c) ∈ S̄ ∀ a, b, c ∈ S̄ }.
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The median closure is closed under the median operation.
Instead of constructing the Vietoris-Rips complex using the distances from

the original set of sequences, one can construct the complexes using the median
closure S̄ . We will refer to the resulting Vietoris-Rips filtration as the median
complex.

Let us revisit our second example (Figure 5.44B). The median operation adds
four new sequences, as displayed in Figure 5.47. Now persistent homology applied
to the median closure identifies four one dimensional persistent intervals in the
barcode diagram, all in the interval ε = [1, 2). In this example the minimal number
of recombinations that is needed to explain the data is two, as found by Song and
Hein [476]. The number of intervals found in persistent homology is now higher
than the minimal number of recombinations. As a consequence, the interpretation
of these homology classes as potential recombination is a central problem with the
use of the median constructions.

Observe that we can compute the Vietoris-Rips complexes of two finite metric
spaces: the one we previously explored with the original data (called here the leaf
complex) and the median complex. If the original data is derived from a tree-like
structure, the two complexes will provide no high-dimensional persistent homol-
ogy. Counting bars in PH1 for the leaf complex frequently underestimates reticulate
evolution because of incomplete sampling, while counting bars in PH1 for the
median complex usually overestimates reticulate events. The median complex is in
some sense an upper bound on probable recombination histories; although it does
not contain within it all possible recombination graphs, as there are infinitely many

1100 1101 1111

0100
0101

0111

0000 0001 0011

Filtration

(A) (B)

Figure 5.47 The median complex increases the power to identify potential retic-
ulations, but complicates interpretability. When applying the median operation to
the example of Song and Hein, one finds four median vertices (in white). Per-
sistent homology identifies four one dimensional loops in this case. Song and
Hein found that this data could be explained by a minimum of two recombina-
tions. Source: [162]. Reprinted with permission: c© EAI European Alliance for
Innovation 2016.
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complicated ancestral recombinant graphs (ARGs, see Section 5.10.2), it contains
within it all maximum parsimony trees.

We now illustrate the use of the median complex via some examples using
real data. In the following examples, the Vietoris-Rips complexes built from the
distance matrices of the original data do not show any non-trivial homology.
However, it is easy to verify using the four gamete test that there are poten-
tial recombinations. The median closure in these examples adds new median
sequences that enrich the original data, increasing the power of homology to
identify potential recombinations.

The first example is a classic data set in population genetics from Kreitman
[309] of eleven sequences from the alcohol dehydrogenase (Adh) locus of the fruit
fly Drosophila melanogaster. The original eleven sequences consist of 43 polymor-
phic sites. The median closure adds more than 30 median sequences to the original
data set (see Figure 5.48). While persistent homology on the original data set of 9
sequences fails to identify any higher dimensional homology, the median complex
identifies 32 bars in dimension one homology and 3 in dimension three.

Hybridization, the process of generating new species by the genetic mixing of
two different species, is very common in plants. Common plants, such as wheat,
are the result of hybridization and artificial hybrids are very commonly used in
crops. Huber and colleagues [250] collected data from the maturase gene (matK)
in nine species from the genus Ranunculus. The median closure added 23 new
median vertices to the original data (Figure 5.49). Persistent homology on the orig-
inal data does not identify any non-trivial class, but the median complex shows 17
one-dimensional and 3 three-dimensional classes.

5.10.2 Topological Minimal Graphs and Barcode Ensembles

In the last two decades, there have been many efforts to produce frameworks to rep-
resent non-tree-like events. Phylogenetic networks try to represent inconsistencies
among trees as graphs [30, 31, 32, 33, 260, 261, 262, 263, 362]; however, the
biological interpretation of these networks is often unclear. Other constructions,
sometimes referred to as explicit networks, try to provide potential reconstruc-
tion of past events that lead to tree inconsistencies. The ancestral recombination
graphs, or ARGs, provide a potential historical explanation in terms of mutation
and recombination events. Mutations appear as events along the branches of the
graph and recombinations appear as merges between parental branches. ARGs do
not consider homoplasies due to convergent evolution [208, 209, 220].

In principle, there is an infinite number of ARGs that are consistent with the
data. Population genetics models, like coalescence with recombination, can assign
probabilities to them [209, 253]. Finding the minimal ARG, i.e., an ARG with the
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Figure 5.48 Left: The alcohol dehydrogenase (Adh) locus of the fruit fly
Drosophila melanogaster provides a well studied set of sequences with recom-
bination. Source: Reprinted with permission from André Karwath under the
Creative Commons Attribution-Share Alike 2.5 Generic license. Right: Persis-
tent homology on the median closure of the original data identifies one- and
three-dimensional homology structures due to recombination events in the pop-
ulation. Source: [162]. Reprinted with permission: c© EAI European Alliance for
Innovation 2016.

minimal number of mutations and recombinations, is an extremely computationally
intensive task. Indeed, finding a minimal ARG has been shown to be an NP-hard
problem [65, 66, 522], and an infeasible approach to large data sets. There are, how-
ever, several approaches that can approximate minimal ARGs, including heuristic
methods [356], branch and bound [477], galled trees [219, 221], and sequentially
Markov coalescent approaches [421].

Here, we will present another approximation called a topological ARG or tARG
[88], which is closely related. These capture ensembles of minimal recombination
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Figure 5.49 Hybridizations are commons in plants. Reprinted with permission
from Walter Siegmund under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation. Left:
The median closure of data collected by Huber and colleagues from the mat-
urase gene (matK) in nine species from the genus Ranunculus. Source: Wikipedia.
Right: The median complex allows us to identify 17 one-dimensional and 3 three-
dimensional homology classes. Source: [162]. Reprinted with permission: c© EAI
European Alliance for Innovation 2016.

histories. tARGs, like minimal ARGs [220, 356], are interpretable, explicit phy-
logenetic representations. But unlike minimal ARGs, they can be constructed in
polynomial time.

An ARG is an explicit representation of a potential history of mutations and
recombinations that, starting from an ancestor, is able to generate the sampled
sequences. Let us consider a sample of n sequences with m binary characters that
can take values in states 0 or 1.
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Definition 5.10.1. An ARG is a labeled directed acyclic graph N with n+ 1 exter-
nal nodes, corresponding to the n sequences, and a unique root node. There are two
types of internal nodes:

1. Tree nodes, of in-degree one.
2. Recombination nodes, of in-degree two.

Each node in N is labeled by an m-length binary sequence, subject to the
following constraints:

1. External leaf nodes are labeled by the original sequences.
2. Tree nodes are labeled by sequences that differ from the parent node in certain

positions; these represent mutations.
3. Recombination nodes have sequences attached that are formed by taking the

first k sites from the sequence of one of the parent nodes and appending the last
m− k sites from the other parent node. These labels represent recombination of
the parent sequences.

We are particularly interested in ARGs satisfying minimality conditions. A min-
imal ARG is an ARG that contains the minimal number (Rmin) of single-crossover
recombinations required to explain the binary sequence data [220].

Definition 5.10.2. An ultra-minimal ARG is a further restricted type of minimal
ARG, that minimizes the function

D(N ) =
Rmin∑
r=0

dr,

where dr is the Hamming distance between the two sequences in the rth recombi-
nation. Examples of ultra-minimal ARGs are shown in Figure 5.50.

The condensed graph of an ARG is the graph resulting from collapsing edges
that connect identically labeled nodes. Condensed graphs can be embedded into
m-dimensional hypercubes and their diagonals.

Definition 5.10.3. A topological ARG (or tARG) associated to a set of con-
densed ultra-minimal ARGs {Gi = (V, Ei)} explaining S and having the same
set of vertices V is defined as the undirected graph G = (V, E), with vertices
V and edges E = E1 ∪ . . . ∪ El, resulting from the union of all condensed
ultra-minimal ARGs.
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Figure 5.50 ARGs and condensed graphs. Examples of ultra-minimal ARGs and
a condensed graph resulting from collapsing the unlabeled edges. The root and
sampled nodes are marked in red and green. Edges in a recombination node
can be annotated depending on their contribution as prefix (P) or suffix (S).
Source: [88]. From Pablo G. Cámara, Arnold J. Levine, and Raúl Rabadán, ‘Infer-
ence of ancestral recombination graphs through topological data analysis’, PLOS
Computational Biology 12.8 (2016). doi: 10.1371/journal.pcbi.1005071.

A tARG captures the possible parsimonious histories (see Figure 5.51 for exam-
ples). One advantage of tARGs over minimal ARGs is that a tARG is completely
determined by its vertices, in the sense that the tARG can be computed entirely
from the vertices and their labels.

Given a sample of genetic sequences, our goal is now to obtain information about
the associated ultra-minimal ARGs that explain S, without explicitly constructing
them (see Figure 5.52).

We now explain how to make inferences about recombination events in topo-
logical ARGs associated to sequence data by applying persistent homology. The
persistent homology of the metric space determined by the original sequence
data under the Hamming distance captures information about the genetic distance
between recombining parental sequences. In particular, one-dimensional classes in
persistent homology correspond to loops in the tARG corresponding to the data.
That is, the tARG provides a framework for explaining the persistent homology
barcodes.

However, the size of the barcode provides only a lower bound on the number of
recombination events in the tARG, and the larger the length of the sequences, the
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Figure 5.51 Ultra-minimal ARGs. Here we show two examples of ARGs that
contain three recombinations, in this case the minimum number of recombina-
tion events. This is the minimal number required to characterize a sample of
seven sequences with only three sites. Both ARGs are minimal ARGs. Source:
[88]. From Pablo G. Cámara, Arnold J. Levine, and Raúl Rabadán, ‘Inference
of ancestral recombination graphs through topological data analysis’, PLOS
Computational Biology 12.8 (2016). doi: 10.1371/journal.pcbi.1005071.

worse this bound gets. A standard technique for handling this issue is to partition
the sequences and reassemble local estimates. By a partition of the sequences we
mean sets of subsequences specified by fixing a collection of indices 0 = i0 < i1 <
i2 < . . . < ik = m. Now for each 0 ≤ j < k, we consider the set of sequences
determined by taking the characters in positions between i j and i j+1 in the origi-
nal sequences. Given a partition of the sequence data into distinct intervals, one
can associate a barcode that captures information about recombination events with
breakpoints in each interval. Taking the union of the barcodes of a partition usu-
ally captures more recombination events than the barcode associated to the union



Figure 5.52 Topological ARGs. The tARG, shown on the right, can be differ-
ent from the original condensed ultra-minimal ARGs, shown on the left. Source:
[88]. From Pablo G. Cámara, Arnold J. Levine, and Raúl Rabadán, ‘Inference
of ancestral recombination graphs through topological data analysis’, PLOS
Computational Biology 12.8 (2016). doi: 10.1371/journal.pcbi.1005071.
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Figure 5.53 Barcode ensemble of a sample. (A) A schematic representation of
the barcode ensemble of a genomic sample. Persistent homology is computed
for each genomic partition of the sequences. Barcodes associated to different
genomic intervals capture different recombination events with breakpoints con-
tained within their respective partitions. The union of these barcodes builds the
barcode ensemble. The total number of intervals in the barcode ensemble is
denoted as b̄1. The genomic partitions are chosen such that b̄1 is maximized.
(B) Comparison of the lower bounds b̄1 ≤ Rmin and RMG ≤ Rmin in coales-
cent simulations. Values of b̄1 and RMG are plotted for simulated samples of 40
sequences with 12 segregating sites, sampled from a population under the coa-
lescence model with recombination. 4000 samples were simulated in total. The
colored band represents the interdecile range, whereas the central line represents
the mean. The values of b̄1 and RMG are strongly correlated (Pearson’s r = 0.98,
p < 10−100). At high recombination rates, b̄1 tends to be larger than RMG, as
cases where Rmin > Rmin occur more frequently. Source: [88]. From Pablo G.
Cámara, Arnold J. Levine, and Raúl Rabadán, ‘Inference of ancestral recombi-
nation graphs through topological data analysis’, PLOS Computational Biology
12.8 (2016). doi: 10.1371/journal.pcbi.1005071.

of the two genomic intervals. By systematically exploring all possible partitions
of the genetic sequences in a data set, it is possible to find a partition that maxi-
mizes the total number of bars in the barcodes, referred to as the barcode ensemble
and denoted by b̄1 (see Figure 5.53). A detailed explanation of the algorithm to
compute barcode ensembles can be found in [88]. In simulated data, b̄1 is a good
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Figure 5.54 Barcode ensemble of two divergent sexually reproducing popula-
tions. The case in (A) assumes the two populations are completely isolated. All
recombination events present in the barcode ensemble involve genetically close
parental gametes. The case in (B) allows migration between the populations at
a low rate. Some of the recombination events present in the barcode ensemble
involve distant parental strains, leading to larger death times εd. The total number
of detected recombination events is similar in both cases and uniform across the
entire genome. Intervals with the location of the recombination breakpoints are
indicated for each recombination event, where positions refer to segregating sites.
Source: [88]. From Pablo G. Cámara, Arnold J. Levine, and Raúl Rabadán, ‘Infer-
ence of ancestral recombination graphs through topological data analysis’, PLOS
Computational Biology 12.8 (2016). doi: 10.1371/journal.pcbi.1005071.

approximation of the minimum number of recombination events, as Myers and
Griffiths described [370]. Barcode ensembles not only provide b̄1, but also richer
information that bounds the genetic distances between recombining sequences.

Let us consider two cases of sampling two sexually reproducing populations
with effective population sizes N and N/5 that diverged 24N generations ago.
In the first case, the two populations were completely isolated from each other
(Figure 5.54A). In the second case, a migration occurs between the two pop-
ulations at a low rate (Figure 5.54B). We can detect the presence of gene
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flow by studying the barcode ensembles. Whereas the number of total detected
recombination events was very similar, reflecting the fact that both examples
had the same recombination rate, migration was reflected in the existence of
large scale loops. Specifically, these correspond to migration events followed by
recombination.

The phenotypic variation and geographical distribution of finches on the Gala-
pagos Islands inspired Darwin’s theory of the origin of species. It is believed
that these finch species originated from a common ancestor 1.5 million years ago
[406]. Recently, genetic information was collected from 15 different species of
finches from the Galapagos archipelago and the Cocos Islands [312]. With infor-
mation about homozygous single-nucleotide variants in a nine megabase genomic
region of 112 finch samples, we computed a barcode ensemble. The one dimen-
sional barcode ensemble (Figure 5.55A) indicates 13 potential recombination
events. Interestingly, the majority of these events involve individuals from multi-
ple species and include Certhidea samples (Figure 5.55B), the Certhidea being
the most ancestral lineage in the data set. Barcode ensembles provide support for
genetic introgression, meaning the acquisition of genetic material from one species
by another through hybridization [312].

5.11 Summary

● Vertical evolution is the direct transmission of genetic material from parent to
offspring.

● Horizontal evolution refers to other modes of acquisition of genomic material
that are not vertical. Phylogenetic trees cannot represent these events, which are
better summarized by a network with loops (reticulate evolution). At all lev-
els of life (virus, bacteria, eukaryotes) there are reticulate events. Viruses have
recombination and reassortment. Bacteria have transformation, transduction and
conjugation. Eukaryotes have recombination.

● Finite metric spaces can be constructed by comparing genomic sequences. Per-
sistence homology captures properties of these spaces. In particular, if genomic
data is derived from trees, the only non-trivial homology is in dimension zero.
Or equivalently, there is a topological obstruction to constructing trees when
homology is found in dimensions higher than zero.

● The number of loops tells us how frequently reticulate events occur. We have
seen, for instance, that HIV has a high rate of recombination relative to other
viruses, and that H. pylori has a low rate of horizontal gene transfer among
bacteria.

● The scale of bar tells us how different the species are, and persistent homol-
ogy generators identify individuals whose ancestors were involved in reticulate
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Figure 5.55 Barcode ensemble and partially reconstructed tARG of a sample of 112 Darwin’s finches. The barcode ensemble is shown in
(A), based on 140 homozygous SNPs present in a 9 megabase scaffold. In total, 13 recombinations or gene flow events were captured in the
barcode ensemble at different genetic scales. Bars are colored according to the position of the corresponding recombination breakpoint in
the genome, as depicted in (C). We also indicate the number of recombination events detected at each genomic interval, as well as some of
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were detected. The reconstructed tARG is presented in (B). Loops in the reconstructed tARG are outlined using the same color code as (A).
We also include leaf nodes that do not participate in recombination, clustering them with a nearest-neighbor algorithm based on genetic
distance. Edge lengths are arbitrary. Source: [88]. From Pablo G. Cámara, Arnold J. Levine, and Raúl Rabadán, ‘Inference of ancestral
recombination graphs through topological data analysis’, PLOS Computational Biology 12.8 (2016). doi: 10.1371/journal.pcbi.1005071.
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events. Barcodes in dimension one and above provide valuable information
about size and frequency of genomic exchange events.

● In segmented viruses, like influenza, reassortment can lead to the formation
of novel viruses by combining segments from different parental strains. Other
viruses, like HIV, recombine generating high diversity.

● Persistent homology can be used to estimate actual recombination rates by fitting
models involving topological features to values generated by simulations (e.g.,
created by the coalescent model of evolution). These models can be used to
estimate recombination rates across the human genome.

● A persistent homology sliding window approach in large genomes provides fine
detail on recombination rates in specific locations in the genome.

● Other constructions, like median complexes and barcode ensembles, increase
the sensitivity for identification of non-tree-like events.

5.12 Suggestions for Further Reading, Databases, and Software

Here is a recommendation of a few books that explore topics related to the ones
described in this chapter.

● Gene Genealogies, Variation and Evolution, by Jotun Hein, Mikkel Schierup
and Carsten Wiuf [237], is an excellent primer in coalescence theory, with
dedicated chapters on population genetics models, coalescence, ancestral recom-
binant graphs, and linkage disequilibrium. There is also a chapter on applications
to human evolution, population structure, and migrations.

● Phylogenetic Networks, by Daniel Huson, Regula Rupp and Celine Scornavacca
[262], provides a very clear survey of methods for inference of phylogenetic
networks.

● Viruses, by Arnold Levine [328], is a lucid introduction for the neophyte to the
world of viruses, including a description of molecular biology and historical
accounts of HIV, influenza, and some other common human pathogens.

● The Evolution and Emergence of RNA Viruses, by Eddie Holmes [246], is a
beautiful account of different evolutionary aspects of RNA viruses, insightful
and very complete, with very interesting speculations about the deep origins of
RNA viruses.

● Principles of Virology: Molecular Biology, by Jane Flynt, Lynn Enquist, Vin-
cent Racaniello, and Anna Skalka [179] is a very clear two-volume description
of the main principles of viral entry, replication, propagation, etc. Highly
recommended for the reader who wants to delve deeper into how viruses
operate.
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● Recent review of applications of topological data analysis to genomic data have
been written by P. Cámara [87] and the authors of this book [502].

Data used in the examples in this chapter and related data can be found in diverse
databases.

● Influenza genomes annotated by subtype, day and geographic location can be
found in the Influenza virus resource, in NCBI (National Center for Biotech-
nology Information, www.ncbi.nlm.nih.gov/genomes/FLU/), the Global
Initiative on Sharing All Influenza Data (GISAID, http://platform.gisaid
.org/), and the Influenza Research Database (IRD, www.fludb.org/).

● HIV genomes and immunological data can be obtained in Los Alamos
HIV database (www.hiv.lanl.gov/content/sequence/HIV/mainpage.
html). HIV genomes used in the study of HIV associated dementia can be found
with consecutive GenBank accession numbers HM001362 to HM002482.

● For other viruses, Los Alamos HIV database also has compiled annotated
genetic data from Hepatitis C Virus (HCV) and Hemorrhagic Fever Viruses
(HFV) Databases (mostly Ebola). More general information can be found in
the National Center for Biotechnology Information viral genome database (www
.ncbi.nlm.nih.gov/genome/viruses/).

● The 1,000 Genome Project data can be found in The International Genome
Sample Resource (IGSR, www.1000genomes.org).

● MLST bacterial data can be found in PubMLST [277].
● Data sets and software used along this chapter can be found in https://
github.com/RabadanLab.

Here is a list of some software that can be used to detect recombinations and
breakpoints.

● RDP in http://web.cbio.uct.ac.za/~darren/rdp.html
● GARD in www.hyphy.org/.
● BARCE in www.topali.org/.
● Simplot in https://sray.med.som.jhmi.edu/scroftware/simplot/
● PhylPro in https://cran.r-project.org/web/packages/stepwise/
index.html

● Recco in http://recco.bioinf.mpi-inf.mpg.de/
● MaxChi in http://web.cbio.uct.ac.za/~darren/rdp.html.
● Chimaera in http://web.cbio.uct.ac.za/~darren/rdp.html.
● GeneConv in http://web.cbio.uct.ac.za/~darren/rdp.html;https://
www.math.wustl.edu/~sawyer/geneconv/.

www.ncbi.nlm.nih.gov/genomes/FLU/
http://platform.gisaid.org/
www.fludb.org/
www.hiv.lanl.gov/content/sequence/HIV/mainpage.html
www.hiv.lanl.gov/content/sequence/HIV/mainpage.html
www.1000genomes.org
https://github.com/RabadanLab
https://github.com/RabadanLab
http://web.cbio.uct.ac.za/~darren/rdp.html
www.hyphy.org/
www.topali.org/
https://sray.med.som.jhmi.edu/scroftware/simplot/
https://cran.r-project.org/web/packages/stepwise/index.html
http://recco.bioinf.mpi-inf.mpg.de/
http://web.cbio.uct.ac.za/~darren/rdp.html
http://web.cbio.uct.ac.za/~darren/rdp.html
http://platform.gisaid.org/
http://www.ncbi.nlm.nih.gov/genome/viruses/
http://www.ncbi.nlm.nih.gov/genome/viruses/
https://cran.r-project.org/web/packages/stepwise/index.html
http://web.cbio.uct.ac.za/~darren/rdp.html
https://www.math.wustl.edu/~sawyer/geneconv/
https://www.math.wustl.edu/~sawyer/geneconv/
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● 3seq Substitution in http://web.cbio.uct.ac.za/~darren/rdp.html,
http://mol.ax/software/3seq/.

● PhiPack in www.splitstree.org/.
● SiScan in http://web.cbio.uct.ac.za/ darren/rdp.html; http://
mateo.fourment.free.fr/software.html.

● TREE in https://github.com/MelissaMcguirl/TREE.

www.splitstree.org/
https://github.com/MelissaMcguirl/TREE
http://web.cbio.uct.ac.za/~darren/rdp.html
http://mol.ax/software/3seq/
http://web.cbio.uct.ac.za/~darren/rdp.html
http://mateo.fourment.free.fr/software.html
http://mateo.fourment.free.fr/software.html


6

Cancer Genomics

This chapter aims to introduce the reader to an important problem in biology and
in our own lives: cancer. Massive efforts have been dedicated to providing large-
scale cancer-related molecular data to the scientific community. In this chapter,
we provide the reader with some of the background material and concepts neces-
sary for starting work in this area. First, we will walk the reader through a brief
history of cancer genetics, from its origins, through the molecular biology revolu-
tion and, finally, the modern age of genomics. This history will illustrate the path
leading to our current understanding of cancer as a molecular disease caused by
mutations. We will also explain the most common types of genomic alterations
found in cancer. Then, we will go through some recent examples on how topo-
logical data analysis techniques have been used in cancer research: identifying
molecular markers associated with patients in breast cancer, distinguishing benign
moles from melanomas, and studying the response of various cancers to different
drugs.

6.1 A Brief History of Cancer

In March 1953, Carl O. Nordling, a Finnish architect with an inclination to statisti-
cal problems, published an article in the British Journal of Cancer [386]. He noted
a common observation that most of us have unfortunately experienced through our
relatives and friends: the incidence of cancer increases with age. Apart from some
specific pediatric tumors, cancer is uncommon in children and adolescents (with a
typical incidence of ∼ 18/100,000 per year), and becomes more common in adults
(increasing to ∼ 500/100,000 per year) [472].

Nordling plotted the logarithm of cancer-associated death rates versus the loga-
rithm of age using data from males from four different countries: the United States,
United Kingdom, France and Norway. Interestingly, the mortality data fitted similar
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Figure 6.1 Age-adjusted incidence rates of different tumors for males (left) and
females (right). Source: Surveillance, Epidemiology, and EndResults (SEER) Pro-
gram, National Cancer Institute. The large fluctuations in the prostate incidence
are due to over-diagnosis associated to changes in diagnosis procedures, including
the PSA (Prostate Specific Antigen) test. General trends can be associated with
change of habits (such as in lung cancers). The incidence of other tumors, includ-
ing melanomas, seems to be steadily increasing. Source: [457]. From Rebecca
L. Siegel, Kimberly D. Miller, Ahmedin Jemal, Cancer Statistics, CA: A Cancer
Journal for Clinicians, Volume 66, Issue 1, pp 7-30, Jan 2016 c© 2016. Reprinted
with Permission from John Wiley and Sons.

straight lines in all four data sets (Figure 6.2), suggesting that the mortality of can-
cer followed a rule ∼ tα, where t is the age and α ∼ 6. Nordling’s work was carried
out in a time where the main causes of tumors were still unclear, and conflict-
ing evidence suggested both exogenous and endogenous elements contributing to
carcinogenesis.

Several lines of work in the beginning of the twentieth century suggested that
particular chemical compounds could induce cancers in laboratory animals. Kat-
susaburō Yamagiwa and Kōichi Ichikawa induced skin carcinomas in rabbits
by painting their ears with coal tar [542], showing its carcinogenic properties.
In the middle of the twentieth century, chemists were systematically cataloging
compounds by their ability to cause tumors in mice. In addition to chemical com-
pounds, it was clear that radiation could also increase the incidence of tumors.
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Figure 6.2 Nordling analysis of cancer mortality rates in males from four different
countries. Source: [386]. Reprinted by permission from Springer Nature: Nature,
British Journal of Cancer, A new theory on the cancer-inducing mechanism, C.
O. Nordling, 7.1, 1953. c© 1953.

The beginning of the atomic era was marked with scientists, health workers, and
survivors of nuclear attacks exposed to high doses of radiation, leading to a remark-
able increase in the incidence of unusual tumors. How did these diverse classes of
agents all lead to cancer?

Theodor Boveri was a German biologist who studied the organization of cel-
lular genomic material into chromosomes. In 1902 he hypothesized that cancers
originate from alterations in the genomic material of a single normal cell [68] (see
Figure 6.3). In 1927, Hermann J. Muller received a Nobel Prize for showing that
X-rays could induce mutations in flies [364] (see Figure 6.4). Before publishing his
observations in 1953, Nordling was also aware that “the original cancerous cell is
nothing but an ordinary cell affected by genetic mutation of some kind.” Nordling
reasoned that, if a single mutation was sufficient to cause cancer, and there was
a constant rate of mutations, then tumor incidence should be independent of age.
However, if multiple mutations were needed, the incidence should increase with
age. Thus, he proposed a simple model that explained the “universal” α ∼ 6
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Figure 6.3 Cancer genomes can be unstable. Instead of 23 pairs of similar chro-
mosomes, the chromosomes in cancer cells come in different copy numbers,
with amplified and deleted regions. Source: [270]. From Aniek Janssen et al.,
Chromosome segregation errors as a cause of DNA damage and structural chro-
mosome aberrations, Science 333.6051 (2011): 1895-1898. c© 2011. Reprinted
with permission from AAAS.

Figure 6.4 A few pioneers in the history of cancer genetics. On the left, Theodor
Boveri hypothesized that cancer could originate from alterations of the genomic
material of normal cell. (The History Collection / Alamy Stock Photo). In the cen-
ter, Katsusaburo Yamagiwa showed that some chemical compounds could cause
tumors in laboratory animals. (Pictorial Press Ltd / Alamy Stock Photo.) On the
right, Hermann Muller showed in 1927 that X-rays could cause mutations in flies.
(INTERFOTO / Alamy Stock Photo.)

by assuming that tumors were caused by around seven independent mutations.
Nordling discussed variations on the universal factor, including hormonal-related
tumors in women and childhood tumors. These observations were replicated in
greater detail and different mathematical models were proposed in subsequent
years [16].
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6.2 Cancer in the Era of Molecular Biology

Some of the first breakthroughs in the molecular biology of cancer came through
an unexpected route: viruses. As we showed in the previous chapter, viruses are
small particles that replicate inside cells. Some viruses replicate and kill the host
cell, while others lead to uncontrolled cell proliferation. At the turn of the twentieth
century, sporadic observations reported transmissible tumors in animals. It was the
work of Peyton Rous in 1909 at Rockefeller University that opened the field of
tumor virology. Studying a sarcoma in a hen of “light color and pure blood,” Rous
showed that it was able to transmit the tumor to other chickens [438]. In 1911,
Rous filtered the tumor cells and showed that inoculation of the cell-free filtrate in
other chickens was sufficient to recreate the tumor [437]. The Rous sarcoma virus
(RSV) was the first definite oncovirus (tumor causing virus) identified, playing
a crucial role in the successive developments in the molecular understanding of
cancer. Peyton Rous was awarded the Nobel Prize in 1966 for his work, more than
50 years after the original discovery.

This is where the modern history of molecular biology and cancer research
starts. The work on RSV was revisited at the end of the 1950s by Renato Dul-
becco, Harry Rubin, and Howard Temin. They observed that normal chicken cells
could be “transformed” into tumor cells in a Petri dish. The transformed cells
resembled tumor cells but could be studied in a simpler environment than a liv-
ing animal. Although the genomic material of RSV is RNA, Temin showed that
the viral genetic material persisted in the transformed cells in the form of DNA
[493]. Temin proposed that after RSV infected a cell, it generates DNA that is
able to replicate as the cell’s normal DNA. The enzyme responsible for the RNA
to DNA conversion (reverse transcriptase) was simultaneously identified by Temin
and David Baltimore [29, 492] in 1970. Viruses like RSV that carry reverse tran-
scriptase are called retroviruses. Dulbecco, Baltimore and Temin shared the Nobel
Prize in 1975. (See Figure 6.5.)

The possibility of studying tumors in vitro and the development of new tech-
nologies led to a young generation of molecular biologists that expanded on the
relation between oncoviruses and cancer. RSV is a small virus that contains only
four genes, one gene more than other related, non-transforming retroviruses. This
led to the speculation that the extra gene encoded a protein src (for sarcoma), that
was somehow responsible for the transformation. The puzzle was finally solved in
1976 by Michael Bishop and Harold Varmus, when they found that homologous
copies of the transforming gene were present in different bird genomes [484]. (See
Figure 6.6.) The discovery that the genes that were responsible for transforming
normal cells were present in untransformed cells was surprising. However, it was
not a new idea. Several researchers, including Robert Huebner and George Todaro,
had previously suggested that cancer could be the result of the activation of silent
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Figure 6.5 The beginning of the understanding of the molecular biology of cancer
through oncoviruses. From left to right: Peyton Rous (Keystone Pictures USA /
Alamy Stock Photo), Renato Dulbecco (Science History Images / Alamy Stock
Photo), and Howard Temin. (Courtesy of the University of Wisconsin-Madison
Archives (ID 16555))

genes present in normal cells. These activated genes, or oncogenes, were derived
from our own normal genes. The original gene, called the proto-oncogene, is acti-
vated through diverse genetic and exogenous mechanisms leading to malignant
transformation. The work of Bishop and Varmus established that a normal cellu-
lar gene, in this case c-src (c- for cell), was the ancestor of the transformed gene
found in the RSV oncovirus, v-src (v- for virus). This work demonstrated that can-
cers could be due to alterations in our own genes, and that some viruses, like RSV,
could hijack these genes leading to transformation. This discovery was awarded
a Nobel Prize in 1989. This was a fascinating discovery that led to the quest for
oncogenes in our own cells.

The findings of Bishop and Varmus led to speculation that perhaps other mech-
anisms could activate oncogenes as well. In 1982 three independent investigators,
Robert Weinberg, Michael Wigler and Mariano Barbacid, cloned the first oncogene,
RAS [203, 398, 444, 456].

A related line of research was carried out on a different type of virus, SV40
(Simian virus 40). SV40 is a double-stranded DNA virus (unlike RSV). The
genome of this virus is small, containing only five different genes. Two of these
genes, called the T-antigens, are expressed early after infection. SV40 was first
identified in primary cells isolated from kidneys of monkeys that were used for
the production of the Salk poliovirus vaccine. 1 Although monkey cells die when
infected with the virus, occasionally cells from other species (mice and hamsters)

1 The story of the discovery of this virus is fascinating but outside the scope of this book. We recommend
reading chapter 5 of the book of A. Levine on viruses [328].
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Figure 6.6 Viruses can cause cancer. Retroviruses can take genes from host cells
and integrate them into other cells. Some of these host genes can lead to the trans-
formation of infected cells. For the discovery of the cellular origin of retroviral
oncogenes, Michael Bishop (left, Science History Images / Alamy Stock Photo)
and Harold Varmus (right, Richard Ellis / Alamy Stock Photo) were awarded the
Nobel Prize in 1989. Source: Nobel Prize webpage.
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are transformed. In the rare case where SV40 genomic material integrates into
the host cell genome, it transcribes the T-antigens, generating a cancerous cell.
In 1979, Arnold Levine, Lionel Crawford, David P. Lane, and Lloyd Old iden-
tified a human 53 kilodalton protein (named p53) bound to the large T protein
[139, 313, 331]. In the late 1980s, it became clear that p53 inhibited cell prolifer-
ation. It was found that p53 was inactivated in a large fraction of human cancers
(near 50%), and that mice with inactivated copies of the p53 gene grew a variety of
tumors. These proteins that become inactivated in tumors are called tumor supres-
sors. These results suggested that tumors can be associated to oncogenes, like RAS,
becoming activated in tumors, and to tumor suppressor genes, like p53, becoming
inactivated.

6.3 The Standard Model of Tumor Evolution

We now briefly summarize the standard model of tumor evolution as put forth by
Peter Nowell in 1976 [388]. We have many cells in our body, around 4 × 1013. As
time passes and cells divide, mutations accumulate randomly. If any of these cells
acquires the right combination of mutations, it could lead to uncontrolled cell pro-
liferation. In this model, all cancer cells are derived from a single cell, the original
clone (see Figure 6.7). Chemical carcinogens or radiation could accelerate the pro-
cesses of tumorigenesis and progression, leading to earlier onset. Some of these
mutations could lead to activation of oncogenes or inactivation of tumor suppres-
sors. These mutations confer selective advantage, and subsequent clones replace
ancestral ones, accelerating the progression.

Mutations contribute to cancer formation and progression by activating and inac-
tivating key fundamental cellular processes [227]. These altered processes include
indefinite replicative potential (cells can replicate without apparently diminishing
their replication potential), evasion of programmed cell death (apoptosis), stimula-
tion of self-sufficient growth signals (cells can replicate without receiving external
inputs), inactivation of antigrowth signals, abnormal metabolism, activation of
signals for blood vessel formation (angiogenesis), invasion, evasion of immune
response, and spread of tumor cells to other organs (metastasis).

Mutations accumulated in our bodies throughout our lives are termed somatic.
These are not all the mutations that could contribute to cancer. Mutations that are
inherited (germline mutations) could increase the risk of developing certain can-
cers. For instance, Frederick Li and Joseph Fraumeni characterized families with
mutations in p53, whose members developed multiple tumors at an early age. Other
familial diseases have also helped in the identification of different genes implicated
in cancer.
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Figure 6.7 The origins and evolution of cancers. Left: Cancer understood as a clonal process. A single clone starts acquiring mutations that
lead to uncontrolled growth. The cartoon represents subsequent nested clonal expansions that characterize different phases of tumor evolution
(time runs from left to right). We have more than 10 trillion cells in our bodies that accumulate mutations over time. These mutations lead to
clonal expansions. Tumors are diagnosed when the number of cancerous cells is sufficient to be detected with current technologies, or when
associated clinical symptoms become apparent. Tumors are treated, but other clones could emerge, leading to resistance to therapy and/or
metastasis. Source: [546]. Reprinted by permission from Springer Nature: Springer: Zairis S., Khiabanian H., Blumberg A. J., Rabadán
R. (2014) Moduli Spaces of Phylogenetic Trees Describing Tumor Evolutionary Patterns. In: Ślȩzak D., Tan A. H., Peters J. F., Schwabe
L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science, vol 8609. Springer, Cham. Right: Some of these
mutations activate and deactivate important key steps necessary for oncogenesis and tumor progression. The figure on the right represents the
summary by Hanahan and Weinberg of the main mechanisms that are altered in tumor proliferation. Source: [227]. From Douglas Hanahan
and Robert A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, Volume 144, Issue 5, pp 646-674. Reprinted with permission
from Elsevier.
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Although primitive, the model of clonal evolution through somatic muta-
tions is a first approximation to how tumors evolve. However, it is far from
comprehensive, as many other factors are known to play a crucial role, includ-
ing surrounding cells (microenvironment), epigenetic mechanisms, and immune
response.

6.4 Cancer in the Era of Genomic Data

The process of identifying oncogenes and tumor suppressors, so laborious and
painstaking in the 1980s, has been changed dramatically by the development of
high-throughput sequencing techniques in the first decade of the twenty-first cen-
tury. Genomic material from samples obtained from tumors could be sequenced
and compared to the normal tissue. Studies of cohorts of patients with different
tumors started to show the distribution of somatic alterations associated with par-
ticular tumors. The process of finding somatic alterations in cancer starts with the
collection of tumor samples and matched normal tissue from patients. Figure 6.8
shows a standard procedure for how these mutations are read. The DNA from each
sample is extracted, fragmented, and enriched for certain genomic regions of inter-
est. For instance, one could be interested in sequencing some genomic region with
an oncogene or a tumor suppressor. Some popular procedures involve the selection
of all genomic regions that contain coding genes, also known as the exome. This
is called whole-exome sequencing or WES. The capture of the genomic regions

DNA
extraction 

Capture Amplification

Tumor material

Matched normal
(blood)

Sequencing Comparison

Figure 6.8 High-throughput sequencing allows us to read the somatic alterations
in tumor cells. Samples are obtained from tumor and matched normal tissue from
the same individual. The DNA is extracted and fragmented. In the case of whole-
exome sequencing, different regions are captured using complementary probes.
The captured material is then amplified and sequenced. The final results are files
containing reads (small sentences of nucleotides) that can be aligned to a refer-
ence genome and annotated for diverse variants. The results from the tumor and
normal tissue are compared for the identification of diverse alterations present in
the tumor tissue but not in the matched control.
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of interest is achieved through various techniques usually relying on complemen-
tary oligonucleotides. Other protocols aim for whole-genome sequencing (WGS)
without enrichment for particular regions. Finally the captured DNA is sequenced,
generating a large collection of sequences consisting of the four characters (A, C,
G, and T), each roughly 100 nucleotides in length. These sequences are referred to
as reads.

The next procedure is the alignment of these reads to a reference (haploid)
genome. Sequence alignment is the procedure of finding the best match between
two different genomic sequences. Similarity between the two sequences should
account for the possibility of one sequence not matching some of the nucleotides
in another sequence. In our particular case of interest, reads from the tumor
and matched normal DNA are aligned into the human genome. The comparison
between the tumor and normal alignments allows the identification of diverse
genetic alterations (see Figure 6.9).

For instance, the reads from the tumor sample could report a particular base
change that are not present in the matched normal tissue. This is an example of
a somatic point mutation. The difference could be a small number of bases in the
tumor that are not present in the normal (small insertion) or present in the normal
but not in the tumor (small deletion). Sometimes, large portions of the genome
(from thousands of bases to whole chromosomes) are lost or amplified in the tumor
(Figure 6.9). These events can be identified by either an unusually low or high
number of reads in the tumor sample, respectively. Other types of alterations such
as translocations involve the generation of new genes by the joining of two distant
genomic regions. There could also be genomic material that maps into viruses or
bacteria that could be present in the tumor sample.

In the sections that follow we will briefly walk the reader through some of the
most common somatic alterations in cancer.

6.4.1 Point Mutations

Somatic point mutations are on average the most common somatic alterations
across many different tumor types, although there is a large range of variation in
the absolute number (see Figure 6.10). Pediatric tumors have in general a lower
number of mutations than adult tumors, in concordance with the observations by
Nordling in the 1950s [386]. Some tumors like melanoma or lung tumors present
large numbers of somatic point mutations associated with the exposure to different
carcinogenic environmental factors, like UV radiation or tobacco smoke, respec-
tively. There is a fraction of tumors with mutations inactivating the DNA damage
repair pathways that accumulate large numbers of mutations, sometimes referred
to as hypermutant tumors.
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Figure 6.9 Diverse alterations that can be read using genomic technologies. Point
mutations are identified when reads aligned to a particular genomic location report
a different base than that in the reference genome and the matched normal. Indels,
or small insertions and deletions, are reported when the best alignment of a set
of reads mapped to a genomic locus skips or inserts a few bases that are not
present in the reference and matched controls. Copy number variations can be
identified by two complementary methods: statistically significant difference in
number of reads in the tumor versus normal, and loss of heterozygosity. A gain
(a few extra copies) or amplification (more than 10 extra copies) can be inferred
when there are more reads mapped to a particular genomic locus in tumor than
normal. Heterozygous (1 copy) or homozygous (both copies) losses occur when
there are fewer reads. Loss of heterozygosity (LOH) is the loss of some variants
that are heterozygous (50% one allele and 50% the other) in the normal but change
the allele frequency in the tumor. Translocations can be identified through pairs
of reads mapping to distant locations in reference locations. Finally, there can
be reads that do not map to the human genome. These can be the result of the
presence of other organisms in the tumor.
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Figure 6.10 This figure (from [316]) represents the rate of somatic mutations per million genome bases across many different tumors. The
number of point mutations differs very dramatically across different tumor types. In general, pediatric tumors such as rhabdoid tumors
show very few mutations, while some tumors associated to exposure to different carcinogenic environmental factors (such as melanoma
and UV radiation) present large numbers of somatic point mutations. Source: [316]. Reprinted by permission from Springer Nature: Nature,
Mutational heterogeneity in cancer and the search for new cancer-associated genes, Lawrence, Michael S., et al., 499.7457 (2013): 214-218.
c© 2013.
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Figure 6.11 An example of somatic point mutations in glioblastomas from The
Cancer Genome Atlas. This is the most common brain tumor type in adults. Each
row reports a particular somatic mutation. Different columns annotate the muta-
tions: the patient identifier, the genomic position, the type of mutation, gene,
amino acid change, frequency of the mutation in the sample, how many reads
were mapped to the location, lower posterior estimates of frequency in tumor,
upper posterior estimates of frequency in tumor, frequency of the alteration in
the matched normal sample, and number of reads in the normal mapped to the
position.

The typical genomic information associated with point mutations can be dis-
played in a table similar to Figure 6.11. Each row represents a single point mutation.
The first column contains the (de-identified) code of a patient. The second column
captures the chromosomal location where the somatic mutation is found.

For instance, the first row tells us there is a mutation in position 7,518,257 of
chromosome 17. This mutation changes the amino acid 250 of the TP53 gene from
a proline (P) to a leucine (L). We all have two copies of chromosome 17 in our
cells; however this particular mutation, despite not occurring in normal cells (0%
frequency), was at a frequency of 98% in tumor cells. The columns referred to as
depth represent the number of sequence reads that cover that genomic position, a
proxy of the relative amount of DNA in a particular genomic locus. A mutation
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that occurs in one of the copies of TP53 and was found in all tumor cells should be
present in 50% of reads as there are two copies in each cell. The fact that this num-
ber is close to 100% indicates that the non-mutated allele is probably lost (see the
next paragraph). This is one of the most common mechanisms of inactivating tumor
supressors where both alleles are inactivated through point mutations or deletions.

The second row is also illustrative. It reports a mutation in position 55,221,823 of
chromosome 7. This mutation does not change the amino acid where it is located
(alanine) but despite being absent in the normal tissue is reported in 97% of the
sequence reads covering this particular region. Closer inspection of the depth shows
an extraordinary increase from 123 reads to 3987 in tumor, suggesting a 60 fold
amplification of the mutated allele. It is known that this genomic region contains an
oncogene (EGFR) that is frequently amplified in glioblastomas. The synonymous
mutation (a mutation that did not change the amino acid) was carried over in the
amplification process.

A close inspection of this list reveals several important features. There are
several genes recurrently mutated in glioblastomas (TP53, ATRX, EGFR, PTEN,
PDGFRA, among others). Some of these mutations appear amplified (EGFR or
PDGFRA) while others are accompanied with loss of the non-mutated allele
(TP53). Other genes present inactivating mutations, suggesting that they could
function as tumor suppressors (ATRX, RB1, PTEN).

6.4.2 Copy Number Alterations

A second type of somatic alteration, common across many different tumors, is copy
number alterations. As cells replicate, genomic regions can be lost (deletion) in one
allele (hemizygous) or both alleles (homozygous); on the other hand, extra copies
of a genomic region can be incorporated (amplification). These alterations can
range from a few bases to the whole chromosome. Chromosomal regions that are
amplified or deleted that contain oncogenes or tumor suppressors could be selected
in the process of tumor development.

Two types of information are usually considered here for the characterization of
copy number alterations. The first is the loss or increase of genomic material in
tumor sample versus the normal counterpart, indicating a deletion or amplification,
respectively. The second is the changes of allele frequencies of heterozygous posi-
tions. Let us explain what we mean. Across the genome of our normal cells there
are positions that differ between the two chromosomes. For instance, it could be
that in one position in our chromosome we observe a C while in the same position
in the other chromosome we observe a T. These positions are called heterozygous.
If one of the two regions in the chromosomes is lost or amplified, that will generate
an imbalance between the two alleles (C or T), one becoming more frequent than
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the other. This phenomenon is called loss of heterozygosity (LOH). Copy number
losses or amplifications can be identified by changes in the amount of genomic
material covering a particular genomic region and a corresponding LOH.

Figure 6.12 shows two examples of these phenomena in chronic lymphocytic
leukemia patients. On the left, there is a loss of one of the regions of chromosome
17 (in the p arm) reflected by loss of tumor material in that region and LOH in
polymorphic position in this area. On the right, there is an example of a different
phenomenon where no significant difference of genomic material is present in chro-
mosome 20, but a significant LOH is observed across a whole chromosomal arm.
This is an example of a phenomenon called copy neutral loss of heterozygosity,
where one of the genomic regions is lost and the corresponding region of the other
chromosome is duplicated.

6.4.3 Gene Fusions and Translocations

Gene fusions are the result of translocations, where two distant genomic regions,
within or between chromosomes, are joined together. Translocations can take two
different genes and generate a new one containing features from both parental
genes. The most famous example of gene translocation is the Philadelphia chromo-
some, the result of a reciprocal translocation between chromosomes 9 (q34) and
22 (q11); see Figure 6.13. First described in 1960 by Peter Nowell [387], these two
chromosomal regions contain two genes, the Abelson murine leukemia viral onco-
gene homolog 1 (or ABL1) (in chromosome 9) and the breakpoint cluster region
gene (or BCR). ABL1 is a potent tyrosine kinase whose activity is highly regu-
lated. When fused to the new gene, BCR-ABL becomes a potent oncogene with
uncontrolled activity. This is a very common translocation in chronic myelogenous
leukemia. BCR-ABL fusions are the target of imatinib, one of the major successes
of targeted cancer therapy [152].

A second type of translocation involves the juxtaposition of a very activating pro-
moter, a region in the genome that controls the transcription of a given gene, next to
a potent oncogene without affecting its coding domains. One example of this phe-
nomenon is the MYC oncogene, a potent oncogenic transcription factor suspected
to be active in more than 50% of all tumors. This activation occurs in a variety of
ways, including translocations activating the expression of MYC in different B-cell
lymphomas, leading to dysregulated expression of a normal protein [131].

Genomic approaches such as the ones described above are mapping the land-
scape of translocations across many different tumor types. When reads or pairs
of reads are partially aligned to two different genomic regions, one can infer that
these two regions have been joined in the tumor. Sequencing the RNA instead of
the DNA allows one to read which novel expressed transcripts have appeared in
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Figure 6.12 Amplifications and losses of chromosomal regions can be read as gains or losses of genomic material across the region and
loss of heterozygosity. Top figures represent the logarithm in base 2 of the ratio between the amount of genomic material covering different
genomic sections in the tumor versus the normal control. The lower part is an estimate of the allele frequency of the heterozygous position
in the tumor samples. Red and blue bars represent posterior estimates of frequencies that differ from the expected 50%. On the left, we
have an example of a loss of the p arm of chromosome 17 in a chronic lymphocytic leukemia patient. On the right, we have an example of
a copy neutral loss of heterozygosity, where no significant loss or gain of material can be found but there is a systematic LOH in a whole
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the tumor (left panel of Figure 6.14). Using this information, one can characterize
the most common fusion events across many different tumors. For instance, FGFR-
TACC fusions [461] are found in nearly 5% of all glioblastomas (right panel of
Figure 6.14), but also in many bladder and lung tumors.
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6.4.4 Viruses

Somatic mutations accumulate during the entire lifespan of each individual. How-
ever, they are not the only important contributors to cancers. The relationship
between viruses and cancer has been the subject of a long and tortuous investi-
gation. As we explained in the introduction to this chapter, some of the major
discoveries in the understanding of the molecular mechanisms of cancers came
through the study of transforming viruses. However, it was not until the 1960s that
the relation between some viruses and specific human cancers became evident. The
World Health Organization recently estimated that nearly 20% of human cancers
are caused by or associated with infections [399]. At present seven viruses have
been shown to be strongly associated to human cancers

1. Epstein-Barr virus (Human Herpes Virus 4, HHV-4 or EBV). In 1958, Denis
P. Burkitt, a surgeon working in Uganda, described a fast growing tumor type
affecting the jaws of children with a median age of five years [84]. In 1963
a specimen of this tumor (Burkitt’s lymphoma) was sent to London where
Michael A. Epstein and Yvonne Barr identified a new virus, now known as the
Epstein-Barr virus [165]. EBV is a common virus that for some reason is asso-
ciated with Burkitt’s lymphomas in children from Equatorial Africa but rarely
in the rest of the world. Figure 6.15 represents the somatic mutations and virus
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Figure 6.15 Burkitt’s lymphomas occur in children in Equatorial Africa and
rarely in other parts of the world. Each column is a separate patient; the colored
rectangles indicate the presence of particular viruses or mutation. The endemic
tumors are always associated with the EBV virus while the association is rare
in sporadic cases. In addition to viruses, somatic point mutations occur in key
oncogenes and tumor suppressors. Source: [2].
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associated with endemic Burkitt’s lymphomas from Uganda (left) in compar-
ison to sporadic cases from the United States (right) [2]. Endemic Burkitt’s
lymphomas are associated with somatic mutations in distinct genes and the
EBV virus. Since then, EBV has been found in many other tumors, includ-
ing nasopharyngeal carcinomas, gastric cancers and specific types of peripheral
T-cell lymphomas.

2. Human T-cell lymphotropic virus type 1 (HTLV1) is a retrovirus that has
been associated with a rare type of T-cell lymphoma (adult T-cell lymphoma or
ATL), discovered in Japan at the end of the 1970s [243]. The virus is rare in
most populations in the world, with higher prevalence in Japan, the Caribbean,
and some populations in South America. Transmission is through contaminated
blood products or direct mother to child transmission.

3. Human papillomavirus (HPV) is a type of non-enveloped double-stranded
DNA virus (a Group I virus in Baltimore’s classification) with a genome size
of around 8000 nucleotides. HPV has been associated to a significant fraction
of oral, cervical, vaginal, vulvar, penile and anal cancers. Harald zur Hausen
received the Nobel Prize in 2008 for the discovery that human papilloma viruses
cause cervical cancer. It has been estimated that more than half a million people
get HPV-related cancers every year. Fortunately, the development of the HPV
vaccine could prevent the development of these cancers.

4. Hepatitis B virus (HBV) is a member of the Hepadnaviridae family of viruses.
HBV is one of the smallest enveloped viruses that infect mammals (viral par-
ticle of diameter of 40 nm). The genome, of only 3200 nucleotides, is made
of partly double-stranded and partly single-stranded DNA. Chronic hepati-
tis, caused by HCV or HBV infection, can lead to hepatocellular carcinomas.
Fortunately, a HBV vaccination has been available since 1981.

5. Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus that
we briefly encountered in the previous chapter. Like HBV, chronic infection is
associated to high risk of developing liver cancer.

6. Kaposi’s sarcoma-associated herpesvirus (HHV-8) is a double-stranded DNA
virus belonging to the herpeviridae family, with a large genome of 170,000
bases. It is associated to rare lymphoproliferative disorders, such as primary
effusion lymphoma, multicentric Castleman’s disease, and Kaposi’s sarco-
mas, a rare tumor in immunosuppressed patients. Kaposi’s sarcomas were first
reported in 1872 by a Hungarian physician working in Vienna, Moritz Kaposi,
as a rare condition in some Mediterranean populations. During the AIDS epi-
demics in the 1980s, near 50% of AIDS patients reported Kaposi’s sarcomas. It
was identified in 1994 by Yuan Chang and Patrick S. Moore [101].

7. Merkel cell carcinoma virus (MCCV) is a small (5400 bases), non-enveloped,
double-stranded DNA virus. It was identified in 2008 by the same team that
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identified HHV-8 [175]. The integration of the genomic sequence of this virus
has been found in 80% of a rare, highly aggressive type of skin cancer, Merkel
cell carcinomas.

6.5 Differential Gene Expression Analysis
in Cancer

Each cell generates a different number of RNA copies for each gene, and many of
these RNAs (the coding RNAs) will be translated into proteins. The RNA expres-
sion of a cell, the number of RNA copies of each gene, is correlated then with the
amounts of proteins that are being produced. This relation is not linear, as differ-
ent RNAs can be translated at different rates and proteins can have very different
lifetimes. In addition, many RNAs are not translated into proteins; these are the so-
called non-coding RNAs. Non-coding RNAs play many functions in the cell, such
as regulation of other transcripts or as scaffolds for proteins, but many of these
functions remain uncharacterized.

The activation of different pathways in tumors is reflected in changes of expres-
sion of different genes. For instance, there are important oncogenes that are
transcription factors, such as MYC, which activates transcription of a large number
of genes involved in the cell cycle. Looking at the RNA expression of transcrip-
tional targets of MYC informs us about the activity of this protein. The expression
of all the genes in a cell provides extremely useful information about transcriptional
programs that are active in the cell.

Gene expression in cancer has been used for many purposes, for instance, to
examine which transcriptional programs are activated (like cell proliferation) or
inactivated (like apoptosis) in tumors. From the transcriptionally active genes one
can infer the activity of different transcription factors. Another standard technique
is to study the mechanisms of action of a particular drug or the effect of a muta-
tion by comparing the expression profiles of cells before and after treatment. A
different use that we will return to is the classification of patients based on the
transcriptional programs of the tumor cells. These studies proceed by collecting
RNA from large collections of tumors and classifying patients according to their
transcriptional profile. These clusters then can be associated to other phenotypes,
such as drug response or survival.

Most of the RNA expression data in tumors considers a population of cells
(bulk), including tumor cells and surrounding cells (microenvironment) that are
associated with the tumor. The measured total transcription abundance is then the
sum of the transcription abundance of the cells of the sample, which may be a
complex mixture. Many tumors present cells that are different at the genomic,
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transcriptomic or cellular level; this is referred to as tumor heterogeneity. In addi-
tion, stromal cells, the cells surrounding the tumor, may be quite diverse. Cells
also vary their transcriptional state over time, as they differentiate, replicate, or
engage with the environment. In sum, bulk transcriptional data reflects a mixture
of cells and transcriptional programs. Single cell sequencing techniques are now
used to disentangle these effects. In the next chapter, we will introduce the reader
to several of these techniques and some examples of their use in the context of
cancer.

6.6 The Space of Glioblastomas

As tumors evolve, their genomes accumulate mutations. Sequencing tumors pro-
vides a way of understanding the molecular mechanisms driving this process, as
well as the mechanisms of resistance to therapies and potential therapeutic alterna-
tives tailored to the genetic background of specific tumors. Glioblastoma (GBM)
is one of the most common and most aggressive types of brain tumors. Median
survival after initial diagnosis is little bit more than a year. The standard of care con-
sists of surgery followed by radiotherapy and an alkylating agent, temozolomide
(TMZ). Tumors invariably recur, leading to a fatal outcome. How these tumors
evolve, the effect of the therapies, and the mechanism of relapse in these tumors is
unclear.

To study how GBM evolves, Wang et al. sequenced longitudinal tumor samples
in 114 GBM patients, both at relapse and at diagnosis [520]. They also sequenced
tumor-matched normal samples. Comparison of the mutational profile in the three
samples provides mutations that are in common (founder mutations), those spe-
cific to diagnosis and those specific to recurrence. Mutations that are specific to
diagnosis could be associated to sensitivity to therapy, and mutations associated
to recurrence could inform us about the mechanisms of resistance. From each of
the 114 samples, we have three numbers corresponding to the three different types
of mutations. From each triplet one can draw a simple phylogenetic tree of three
branches: one representing the mutations in common, another branch representing
the mutations specific to diagnosis, and the final branch representing the mutations
acquired in the recurrent tumor. The mutational story of each patient is then rep-
resented by a tree, and the genomic information of the 114 patients is a forest
(Figure 6.16). Now the question of how tumors in different patients evolve can
be understood in terms of the metric spaces of phylogenetic trees described in
Section 4.7.

We can now show the forest representing our data project as points in PΣ3

(Figure 6.16), as described in Section 4.7.2. Here, the upper corner represents the
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Figure 6.16 Genomic information of tumors from a patient generates a tree rep-
resenting the different phases of tumor evolution. Cohorts of patients can be
represented by a forest (left). In yellow are mutations that are in common in diag-
nosis and relapse, in red the ones that are specific to diagnosis and in black those
that are specific to relapse. The forest can be mapped to points in evolutionary
moduli spaces (right). Machine learning and statistical techniques can be applied
to classify patient histories and to associate different mutational profiles or clin-
ical outcomes. Source: [520]. Reprinted with permission from Springer Nature:
Wang, Jiguang, et al. “Clonal evolution of glioblastoma under therapy.” Nature
Genetics 48.7 (2016): 768-776.

fraction of mutations that are common to both samples, the left corner represents
the fraction exclusive to the untreated sample, and the right corner represents the
fraction exclusive to recurrence.

If we want to see if there are different patterns of how tumors evolve in different
patients, we can perform clustering. We describe the application of three clustering
algorithms to this metric space: k-means clustering, spectral clustering, and density-
based spatial clustering (DBSCAN). In order to ensure stability of the results, they
were cross-validated using Monte Carlo simulations. Unsupervised clustering of
the different phylogenies identifies three clusters. The yellow group represents the
limiting case where few mutations are lost from diagnosis. This is similar to the
classical model of linear tumor evolution, where mutations accumulate in clones
that drive recurrence. The abundance of points far from the right edge of the dia-
gram suggests that in most patients, the dominant clones prior to treatment appear
to be replaced by new clones that do not share many of the same mutations. If
many mutations in the initial sample are lost at recurrence, this suggests that the
clone dominant at recurrence originated (i.e., diverged from the clone dominant
at diagnosis) a relatively long time before the initial sample was taken. This is an
interesting finding as it suggests that a different clone to the one that caused the
initial tumor is responsible for the recurrent tumor.
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Interestingly, patient histories identified in the black cluster correspond to par-
ticular trees with very long branches associated to relapse tumors. These long
branches, associated with a phenomenon called hypermutation, were present only
in patients treated with TMZ, and patients in this cluster are associated with longer
survival (more than two years). All these patients harbor mutations in the mismatch
repair pathway, mostly inactivating mutations in MSH6. The MSH6 protein plays
an essential role in repairing damaged DNA, by fixing potential mistakes in the
replication of DNA. These tumors cannot effectively repair the damage caused by
the therapy (TMZ), accumulating many more mutations in branches of the tree
associated to the relapse. These mutations are also different from the other muta-
tions. Hypermutated recurrent tumors are highly enriched with C to T (and G to A)
transitions, occur in a CC/GG motif, and are associated with the expression of the
hypermutated genes.

6.7 Cross-Sectional Data in Cancer and Patient Stratification
Using Expression Data

One important question both from the basic biology and clinical points of view
is how molecular data, mutations, fusions, and expression can classify patients
into different subtypes. From the basic biology point of view, this is important
because common molecular features could tell us about the molecular patterns that
are associated to particular patients. These molecular patterns can in turn reveal
the specific pathways that are activated or deactivated in tumors, and the specific
alterations that are related to these pathways. From the clinical point of view, the
problem of patient stratification, or classifying patients into different sets, is an
extremely relevant one, as molecular data can tell us whether patients could be
sensitive or resistant to a particular therapy, and what molecular features are asso-
ciated to progression or metastasis. Clinical questions can be translated into a
problem of understanding the shape or structure of molecular data associated to
a large cohort of patients. Information on many patients is usually referred to as
cross-sectional data. The “dual or transpose problem,” looking at different genes
in the space of patients, is probably the more interesting biologically, as genes dif-
ferentially regulated in a group of patients reveal common deregulated pathways
(Figure 6.17).

All of the molecular data discussed in the previous sections could be used to clas-
sify patients or genes. The data can be discrete and sparse, such as somatic point
mutations, with a binary value that indicates if the mutations are present or not.
Expression data, in contrast, is a very rich source of information as it associates
each transcript with a real value that corresponds to the copies of mRNA present
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Figure 6.17 Hierarchical clustering of expression point cloud data corresponding
to peripheral T-cell lymphoma patients. The data can be seen as two “dual” point
clouds. In the space of genes each point is a patient and clustering of points cor-
responds to clustering of patients. On the dual space, the space of patients, each
point is a gene and clustering of points corresponds to clustering of genes.

in the tumor. Most of the data corresponds to the ensemble of cells present in the
sample and as such represents a complex mixture of expression levels from differ-
ent tumor cells, and even different types of non-tumor cells that are also present
in the sample. The typical structure of expression data is a point in a very high-
dimensional real vector space, as there are typically on the order of 22,000 potential
transcripts. Each patient represents a point in this space, and the cross-sectional
data corresponds to a point cloud. The question of stratification is usually posed
as a clustering problem: how many groups of patients are there presenting similar
expression profiles?

Expression-based classification of tumors has been a dominant theme for
research since the first microarray experiments and there is an extensive literature
on the topic [236, 512] that we do not have the space to discuss. All these earlier
approaches are in some way or another based on the idea of clustering patients
and genes (see Figure 6.18). It could be, however, that the point cloud data does
not have a nice cluster structure. Indeed, that is generally the case due to many
biological and technical factors. Not every tumor activates or suppresses different
pathways with the same strength, resulting in a more continuous structure from
suppression to activation. There is also a common phenomenon of non-tumor cells
infiltrating the tumor sample. These and other factors contribute to generating large
continuous structures that sometimes are not correctly represented by clusters.

In [383], the authors studied the point cloud data associated with 295 breast can-
cers, given microarray gene expression data and normal breast tissue. Expression
data was normalized and represented by Mapper. As we saw in Section 2.8, Mapper
represents the cluster structure of the inverse images of a function on the data. In



6 Cancer Genomics 381

−2
00

0

−1
00

0 0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

−1000

−500

0

500

1000

1500

2000

2500

1st Principal Component

2n
d 

Pr
in

ci
pa

l C
om

po
ne

nt

−2
00

0

−1
50

0

−1
00

0

−5
00 0

50
0

10
00

15
00

20
00

25
00

30
00

−2000

−1500

−1000

−500

0

500

1000

1500

1st Principal Component

2n
d 

Pr
in

ci
pa

l C
om

po
ne

nt

Genes Patients

Figure 6.18 Expression point cloud data corresponding to 881 breast cancer
patients from The Cancer Genome Atlas Consortium.

this study the function used was provided by a measure of the deviation of the
expression data of the tumor samples compared to the expression in normal con-
trols. Clusters of points of overlapping intervals in the image of this function were
represented as nodes, and edges corresponded to shared points between different
clusters (see top left, Figure 6.19). Blue colors correspond to samples with close
similarity to normal tissues (left part of the figure). On the right hand side the sam-
ples diverge into two branches. The lower branch, named in the study as c-MYB+
tumors, constitutes 7.5% of the cohort (22 tumors). These tumors are most distinct
from the normal tissues and are characterized by the high expression of particu-
lar genes, including c-MYB, ER, DNALI1 and C9ORF116. Hierarchical clustering
fails to identify this particular subset of tumors (see bottom left Figure 6.19), and
segregates these tumors into separate clusters with low confidence. Interestingly,
these tumors do not correspond to a previously reported breast cancer expression
subtype. This new class of tumors, c-MYB+ tumors, is characterized by very good
survival and no metastasis.

To validate these observations in an independent cohort, we looked at samples
with high expression of DNALI1 and C9ORF116 (more than a 2-fold overexpres-
sion) in 960 breast invasive carcinomas from The Cancer Genome Atlas. Of these
960 tumors, 32 have expression in these genes and show excellent survival (right
Figure 6.19), confirming the observation of [383]. The tumors do not contain TP53
mutations and deletions, and are associated with GATA3 mutations, suggesting a
distinct mutational and expression subtype.

A different approach was taken by L. Seemann, J. Schulman and G. Gunaratne
[450]. They looked at the expression data of 202 glioblastoma patients from The
Cancer Genome Atlas. Expression-based clustering has identified four groups of
glioblastoma expression profiles: classical, mesenchymal, proneural and neural
[71, 515]. This partition into four groups has been questioned on several grounds.
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Figure 6.19 The structure of the space of expression of breast tumors. Top left: Mapper representation of the gene expression data from
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of c-MYB+. These c-MYB+ tumors cannot be identified using standard clustering (in lower left figure hierarchical clustering split c-MYB+
tumors, represented in red). Independent validation using 960 breast invasive carcinomas from The Cancer Genome Atlas of two of the
highest expressed genes in c-MYB+ tumors, DNALI1 and C9ORF116, shows very good prognosis for these tumors.
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First, several groups have shown that sampling from different genomic regions
does generate different profiles [197, 478]. This heterogeneity has also been seen
using single cell expression data [401]. The expression profile also changes over
time, before and after therapy [520]. Thus, there are significant concerns about the
reliability of classifications of tumors based on expression profiles; such classifi-
cation might not even make sense in highly heterogeneous tumors. This motivates
the search for different approaches that can recover more complex structures.

An approach using persistent homology was explored in [450] to stratify patients
is based on a hierarchical partition of samples. A first step was dimensionality
reduction. A common problem in all expression-based studies is that the number
of genes whose expression is considered is usually much larger than the number
of samples, or patients in this case. However, many genes are not expressed, and
many others have a similar pattern of variation. This suggests that the dimensional-
ity of the gene space is effectively much lower. Seemann and colleagues propose to
reduce first the number of genes. In particular, zeroth dimensional persistent homol-
ogy was used to cluster genes with similar expression profile. Similarity between
different patient profiles was computed using Pearson correlation, or more specifi-
cally, di j = 1 − corr(ei, e j), where ei is the expression profile of patient i. Using the
persistent homology of the associated Vietoris-Rips filtration, 30 genes were iden-
tified as characterizing the two long-lived clusters. Patients were then represented
by projection onto these genes. The resulting clustering analysis produced novel
predictions for genes implicated in GBM. This work represents just the first step
towards the use of topological methods for more nuanced classification of tumors.

6.8 Cross-Sectional Data in Cancer and Identifying Driver
Genes in Cancer

We have described how different genomic alterations could contribute to cancer
formation and progression. We have also shown how we can identify these alter-
ations using genomic technologies. However, not every alteration in a tumor plays
a role in its clonal history. For instance, many tumors contain tens of thousands of
point mutations, but only a handful of those have a role in oncogenesis and progres-
sion (termed the driver alterations). How can we identify a few driver alterations
within the large background of other irrelevant alterations (the so-called passen-
gers)? Most of the ideas for identifying the most relevant players are based on the
concept that, if a gene is found mutated more than would be expected from random
variation in a sufficiently large cohort of patients, these alterations have probably
been selected along the history of the tumor. Figure 6.20 shows a common rep-
resentation, known as circos plot, of somatic alterations from 150 glioblastoma
exomes. The external annotation refers to different chromosomes. In the interior,
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Figure 6.20 A representation of the mutations that occur in 150 glioblastoma
patients. Each patient is represented by a concentric circle and the angle represents
the chromosomal position where the mutation occurs. Genes frequently mutated
across many patients are captured by the histogram in the external part of the
representation.

in light green there is information on the 150 tumors represented on concentric cir-
cles [183]. Protein changing mutations are represented as red dots. Finally, between
the external depiction of chromosomes and the mutations there is a histogram, rep-
resenting the number of times that a particular gene has been mutated in the cohort.
Recurrent mutations occur in chromosome 7, containing an oncogene (EGFR), and
in chromosome 17, containing a tumor suppressor (TP53).

Recurrence-based methods are the standard approach for identifying driver
genes in cancer. However, we know that there are alterations that are not very
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frequent but could have a strong impact on the tumor development. An alterna-
tive approach for identifying genes with a clear phenotypic effect is to look for
alterations that share a common phenotypic profile, such as expression. Obviously
not every driver gene alteration should have a strong impact in expression, and not
every alteration with strong impact in expression is a driver alteration. But the asso-
ciation of the genetic and phenotypic effects is strong indication that the alteration
has an effect. Using the expression profiles of many patients and the correlation
as a similarity measure, one can apply Mapper, using the distances to the first two
nearest neighbors as a filter function. Now, one can see if patients with a particular
alteration present a similar expression profile. Figure 6.21 represents expression
data from 512 low grade glioma samples.

The Mapper representation finds three distinct groups with strong statistical
association with mutated genes.

● A group enriched in CIC, NOTCH1 and IDH1 mutations.
● A group enriched in IDH1 and TP53 mutations.
● A group enriched in EGFR and PTEN mutations.

These subtypes capture the recent glioma classification [381] into IDH wild-type
cases, IDH mutant with a co-deletion of chromosomal arms 1p and 19q, called IDH
mutant-codel, and finally patients with mutations in IDH1 without the co-deletion
1p/19q (non-codel). Codel tumors have a good prognosis and are associated with
mutations in IDH1, CIC, FUBP1, and NOTCH1. The non-codel tumors harbor
mutations in TP53. The lower grade gliomas without an IDH1 mutation clinically
resemble high grade gliomas (glioblastomas), and are associated to EGFR and
PTEN deletions.

In summary, by studying the localization of different mutations in the expression
space, one is able to identify genes that are associated with specific expression
profiles. These expression profiles are associated with different tumor subtypes that
have well-defined clinical characteristics.

6.9 The Tissue of Origin of Melanomas

Melanoma is the most aggressive form of skin cancer, with a five-year survival
rate of 98% for early-stage tumors compared to 63% and 16% for regional lymph
node and distant metastasis, respectively [472]. A strong risk factor for melanoma
is UV exposure, which typically causes an abundance of somatic mutations on
the order of 10 mutations per megabase [12]. This mutational burden far exceeds
that of many other solid tumors and complicates the process of separating the
passenger from the driver mutations. Interestingly, it has recently been shown
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that higher mutational loads in melanoma actually lead to greater immunogenic-
ity, better response to immune checkpoint inhibitors like CTLA-4 antibodies, and
improved survival [471].

A hallmark feature of melanoma tumorigenesis is the phenomenon of oncogene-
induced senescence, in which a typically strong oncogenic mutation – usually
BRAF or NRAS in melanoma – triggers a “fail-safe mechanism” through the p19-
p53 or p16-pRb pathways leading to senescence (stop proliferation) rather than cell
proliferation. The result is a benign growth called a nevus, known in lay terms as
a mole. The most prevalent types of acquired nevi are the common acquired nevus
and the dysplastic nevus, both of which have an increased risk of progression to
cancer, generally through the loss of tumor suppressor genes like PTEN.

A number of genomic studies have explored the mutational and regulatory land-
scape of metastatic melanoma [245, 514], and The Cancer Genome Atlas (TCGA)
has made publicly available an abundance of genomic, transcriptomic, epigenetic,
and clinical data for primary and metastatic melanoma. Despite this progress, the
key transcriptional events that govern the development from normal skin to nevus
to primary and finally metastatic melanoma remain uncharacterized.

The continuous nature of the transformation and the fact that tumor samples
are “contaminated” with normal cells of different kinds leads to continuous point
cloud data with structures that are difficult to discern with standard clustering
techniques. We now describe the results of applying Mapper to transcriptional
data from patient-derived samples from melanomas to identify substructures that
were predictive of a number of features, including survival, tumor attributes, and
gene modules. Comparison of these results to other standard methods of unsu-
pervised exploratory data analysis, including hierarchical clustering and principal
component analysis (PCA), is illuminating [334].

The full spectrum of transcriptional changes throughout the progression of
melanoma has yet to be fully elucidated. Expression data was collected from 122
punch biopsies of four different subtypes of tissue: 51 primary melanoma (PM),
27 common acquired nevus (CAN), 15 dysplastic nevus (DN), and 29 normal skin
(NS). 13 DN were also matched to 13 NS. Initial processing of data included map-
ping and aligning, calculating counts per transcript using subread, and normalizing
using trimmed mean of M-values [434]. An initial approach was to identify dif-
ferentially expressed genes (DEG) distinguishing PM, CAN, DN, and NS using
a standard linear model [469]. This analysis identified the molecular signature of
4862 genes. We then calculated Z-scores derived from the normalized log counts
per million for the set of DEG. We next calculated the pairwise distance matrix
samples using a distance associated to the correlation (d = 2(1 − r), where r is the
Pearson correlation). We then provided this pairwise distance matrix as input for
unsupervised analysis with
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(1) principal component analysis (PCA),
(2) hierarchical clustering, and
(3) Mapper, using the Euclidean distance as the metric and distances to the first

two nereast neighbors as the filter function.

PCA of these genes confirmed general separation of these tissue types
(Figure 6.22).

Hierarchical clustering was also performed with the Euclidean distance metric
and average linkage (Figure 6.22). This method also demonstrated overall effective
clustering between all subtypes except for DN and NS. While 13 DN and 13 NS
derived from the same patient, this fact alone did not explain their clustering. A
separate analysis showed that DN clustered with NS likely due to a similarly low
melanocytic content in both tissue types. Interestingly, two subclusters of PM sepa-
rated far from the rest of the PM cohort, one low-thickness subcluster that clustered
with DN and NS and one high-thickness subcluster.

The Mapper representation provided a richer analysis of the data that shared
some features of the PCA and hierarchical clustering stories, but also contrasted
in other unexpected ways. We were able to capture a rich topological network that
not only demonstrated the separation of tumor subtypes, but also suggested CAN
as a further outgroup from the rest of the other subtypes (Figure 6.23).

Interestingly, there were two general subclusters of DN and NS, one to the right
and to the bottom of the PM subnetwork. On closer inspection of the members
comprising these two subclusters, the right subcluster contained 7 DN and 4 NS,
while the bottom subcluster contained 3 DN and 24 NS, suggesting that Mapper
was better able to distinguish between DN and NS. Of the 13 matched DN, 4 in the
right and 3 in the bottom subcluster were found next to their matched NS. However,
6 of the matched DN were placed in the right subcluster and were separated from
their matched NS in the bottom subcluster. These findings suggest that Mapper, to
some extent, was able to distinguish the tumor subtype.

Although the Mapper representation was built based on differential expression
of subtypes, the resulting structure reflects biological and phenotypic attributes
beyond just subtype. Coloring by tumor thickness of PM, we can see that there
is a coherent progression of tumor thickness away from the bottom and right
DN and NS subclusters where the outer flares approach a higher tumor stage
(Figure 6.23).

Recall that hierarchical clustering identified a subcluster of PM that was closer
to the DN and NS clade but apart from the rest of the PM. Mapper resolved this
inconsistency by readily demonstrating that these lower thickness PM were closer
to the rest of the PM subnetwork but were close to the DN and NS subclusters, as
well.
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The Cancer Genome Atlas (TCGA) also provided a ready source of public
RNA sequencing data of both 93 primary (PM) and 352 metastatic tumors (MM).
The metastatic tumors included 72 regional cutaneous/in-transit/satellite metastasis
(RCM), 215 regional lymph node metastasis (RLNM), and 65 distant metastasis
(DM). Similar to the previous analysis, we first applied a standard linear model
[469] to identify 695 genes that were differentially expressed between primary and
metastatic melanoma. PCA of the resulting DEG data showed some separation of
PM away from all subtypes of MM along both the first and second components.
Unsurprisingly, subtypes of MM are not clustered separately as DEG analysis was
performed with the label MM versus PM as the primary covariate (Figure 6.24).

Hierarchical clustering provided a similar picture as PCA. Three major clades
were identified, including a predominantly PM cluster and a predominantly RLNM
cluster. The third cluster was heterogeneous (Figure 6.24). Again, Mapper was able
to provide a portrait of the shape of the data in richer detail. Not only was Mapper
able to separate PM from MM, but it was also able to identify distinct clusters
of RCM and RLNM. Interestingly, DM and PM occupied distinct domains of the
same cluster (Figure 6.25).

Beyond subtype differentiation, the inherent structure of the topological network
reflected underlying biological structure as well. Coloring by time to death after
diagnosis as well as by living status at end of study, we identified two subclusters
with better survival, one among the PM cohort with greater number of survivors at
the end of study and a subgroup within the RLNM cohort with longer time to death
among individuals that died at end of study (figure 6.25).

6.10 Association between Drug Sensitivity and Genomic
Alterations

In the previous chapters we have described different kinds of somatic alterations
and how these alterations stratify patients and define prognostic markers. We have
seen that cancers in different patients are the result of different evolutionary his-
tories and environmental exposures. The phenotypic evolution of tumors, their
growth, how they metastasize, and how they respond to therapies will depend on
these factors. The overall goal of precision cancer approaches is to find ways of
linking the genomic and environmental data of a tumor to specific therapies.

We would like to end this chapter with a description of some applications
of topological data analysis to understanding how genetic information could be
used in connection to drug sensitivity. Methods that model and predict therapeutic
sensitivity of cancer can be extremely useful in the development of more effective
treatments. Somatic genetic alterations in cancer have been linked with the aberrant
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behavior of signaling pathways, which has led to the development of therapies
targeted at these pathways.

While recent advances in sequencing technology make it possible to obtain a
wealth of data on the genomic and transcriptomic profiles of specific tumors, our
ability to translate this information into improvements in clinical outcomes is lim-
ited by our lack of understanding in two areas. First, we do not understand the
function of most mutations. Second, we do not know which drugs are best suited
for targeting the pathways those mutations affect or participate in. We use Mapper
in a computational approach for genome-based drug sensitivity prediction to deter-
mine the therapeutic impact of recurrent gene alterations and the role of tumor
heterogeneity in drug resistance across a range of cancers.

We have performed initial analysis of the Cancer Cell Line Encyclopedia
(CCLE), which contains genomic characterizations of a large panel of cancer cell
lines. In the left part of Figure 6.26, we have analyzed expression across cell lines
using Mapper. Each node is a set of cancer cell lines that share similar expression
profiles, and gene expression is used to construct a similarity metric. The filter
function was the map to R2 specified by the distances to the first two nearest neigh-
bors. Using this approach we first identify the overall network structure of cancer
cell lines. Then, we identify specific genes that are characteristic of certain cell
lines. For example, we identify that PDGFRA is expressed with high specificity in
glioblastoma and neuroblastoma.

In the right part of Figure 6.26, we perform an analysis on the same data set,
transposed. Here, each node is a gene, and the expression across different cell lines
is used to construct a distance metric for the graph. We color genes to show the
average expression across central nervous system cell lines. We observe a large
cohort of genes centrally expressed across most cell lines. Flares emanating from
the main set of genes correspond to genes with unique patterns of expression in par-
ticular cell lines. For example, central nervous system specific genes are localized
in the flare on the right side of the network. Furthermore, we can localize specific
genes within the network to identify neighbors with correlated expression, as we
do with EGFR in the figure inset.

These networks can be used in a useful manner not only for representing these
data sets, but also for predicting drug sensitivity based on genomic alterations. For
example, we can perform clustering and feature selection based on these representa-
tions of the sample space. Using drug sensitivity information across each cell line
from CCLE, specific neighborhoods of sensitivity can be identified. Then, these
neighborhoods can be modeled for enrichment of specific alterations. In this way,
we incorporate genetic background into the prediction of drug sensitivity. In Figure
6.27, we show a representation in the cell line space, highlighting a common muta-
tion across many tumors in BRAF. We showed in the previous section that the
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Figure 6.26 Mapper graphs of expression data from the Cancer Cell Line
Encyclopedia (CCLE). Left: These images show two distinct patterns of gene
expression of targets across a large variety of human cancers. Each node is a set
of cell lines sharing a similar expression profile. On the top left, PDGFRA is
expressed with high specificity in glioblastoma and neuroblastoma (warm colors
in the uppermost and lower right nodes). The bottom left image shows the expres-
sion of EGFR across several tumors (warm colors in nodes in the left portion
of the image). Right: Dual representation, where nodes are composed of genes
that share expression across CCLE cell lines. Normalized correlation was used
to generate the metric, and the filter functions are the first two principal compo-
nents. Coloring shows average expression in central nervous system cell lines.
Inset localizes EGFR within the larger network.

BRAF mutation V600E is frequently found in a large fraction of melanomas, but
specific point mutations in BRAF are also found across many other tumors includ-
ing 100% of hairy cell leukemias [498], 57% of Langerhans cell histiocytosis [26],
and 36% of thyroid papillary cancers [297]. In the representation, we see that
BRAF mutant cell lines co-localize in a specific region of the Mapper represen-
tation. Recently, different drugs have been developed to target specific alterations
in BRAF. We represent on the right panel of Figure 6.27 the cell lines that are
sensitive to PLX4720, a specific V600 mutant BRAF inhibitor. PLX4720 is the pre-
cursor of PLX4032 (Vemurafenib), a specific BRAF inhibitor approved by FDA for
treatment of late-stage melanoma.
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Figure 6.27 Left: Mapper graphs of expression data from the Cancer Cell Line
Encyclopedia (CCLE). Nodes are composed of genes, features are the expression
across CCLE cell lines. Norm correlation metric with principal component lenses
is used. Each node is a set of cell lines with similar expression profile. For repre-
sentation purposes, the network is then colored based on the expression of specific
genes of interest. In this example, coloring shows cell lines with BRAF mutations.
BRAF is a gene mutated in different tumors, including melanomas. Right: Color-
ing shows cell lines sensitive to PLX4720, a compound with specific action on
mutant BRAF.

Cellular heterogeneity reflects both clonal heterogeneity and genetic instability;
thus, it can be impacted by anticancer therapy on several levels. First, new selective
pressures are expected to favor relatively treatment-resistant clonal subpopula-
tions over sensitive ones, therefore limiting clonal diversity. Second, genotoxic
treatments may elevate genomic instability, thereby potentially increasing cellular
genetic diversity. Despite its clinical importance, the potential impact of cancer
therapy on cellular genetic heterogeneity is largely unknown. Topological data
analysis (TDA) methods to model phenotypic and genetic determinants of drug
resistance in silico can generate testable hypotheses for addressing drug resistance.
Very recently, the role of clonal heterogeneity in tumors and the impact on therapy
has been studied using topological data analysis in [321, 322].

6.11 Summary

● Cancer is the result of mutations in our cells. Nowell first formalized the notion
of cancer as an evolutionary process in which genetic instability creates varia-
tion that is sieved by natural selection [388]. This instability leads to a menagerie
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of somatic mutations, including substitutions, indels, copy number variants,
methylation aberrations, translocations, and gene fusions.

● Cancer evolution is largely a clonal process, where an initial tumor cell popula-
tion proliferates, often through abnormal mitosis, and different cell lineages are
created by sequential mutations that confer greater or lesser fitness.

● Fitness is determined by the “hallmarks of cancer”: the tumor cell’s abilities
of evasion of apoptosis, self-sufficiency in growth signals, insensitivity to anti-
growth signals, sustained angiogenesis, limitless replicative potential, and tissue
invasion and metastasis [227].

● The mutations at each step of a clonal expansion endow the cancer cell
with variable fitness. Indeed, these mutations can be divided into driver
lesions that further tumor progression and passenger lesions that are byprod-
ucts of the mutagenic environment of the cancer [222]. Driver genes pro-
vide potential candidates for oncogene addiction, in which the survival of a
tumor cell becomes increasingly dependent on the continuing function of a
lesion [536].

● Recent technological developments are generating large scale molecular data
from many different tumor types in many patients. This data includes systematic
characterization of mutations, expression and methylation profiles, and many
other kinds of information. Problems in studying the molecular mechanisms of
cancer initiation and progression, prognosis, or sensitivity to therapies can be
translated into understanding the structure of these data sets.

● Mapper has been used to study molecular data in cross-sectional studies to
understand the transcriptional similarity between the tumors in different patients.
These studies classify patients based on transcriptional similarity and identify
subsets of patients with differential survival.

● Molecular data can be collected along the progression of a tumor or at dif-
ferent locations in a metastatic process. Mapper has been used to understand
the relation between molecular data and physical or temporal information, and
progression of the disease.

● Molecular characteristics and responses to drugs vary enormously across
patients (patient heterogeneity) and also within a tumor of a single patient (tumor
heterogeneity). Integrating molecular and drug response data is one of the main
challenges in developing precision therapeutics for cancer patients. Topologi-
cal data analysis can uncover the structure of these data sets, linking molecular
features to drug response characteristics.

● As we will see in the next chapter, single cell technologies are generating molec-
ular data across many cells in different biological systems, including tumors.
How these cells are different and how these differences relate to tumor evolu-
tion and drug response constitute a fascinating problem that is now beginning
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to be explored. The structure of these single cell tumor data sets remains poorly
characterized; unsupervised techniques, including topological data analysis, can
potentially identify fundamental molecular mechanisms driving tumor initiation
progression. As these technologies improve and larger single cell cancer data
sets become available, we expect a greater need for these methods.

6.12 Suggestions for Further Reading and Databases

There are a few books that we recommend to the neophyte.

● The Emperor of all Maladies [363] is a Pulitzer prize winning book that narrates
the history of our understanding and treatment of cancer.

● Robert Weinberg’s The Biology of Cancer [531], provides a comprehensive
overview of cancer research, explaining the main molecular mechanisms that
have been identified.

● Arnold Levine’s book on viruses [328], is a nice introduction to viruses,
including historical accounts on the discovery and mechanisms of oncoviruses.

There are extensive databases that provide a large variety of different data sets
associated with multiple cancers.

● The Cancer Genome Atlas constitutes a large US-based effort between the
National Cancer Institute and National Human Genome Research Institute to
characterize genomic/transcriptomic/epigenetic changes together with clinical
annotation in 33 types of cancer. (http://cancergenome.nih.gov)

● The International Cancer Genome Consortium constitutes a worldwide effort to
generate a comprehensive genomic, transcriptomic and epigenomic description
in 50 different major tumor types. https://dcc.icgc.org.

● The Cancer Cell Line Encyclopedia (CCLE) project provides a detailed genetic
characterization of a large panel of human cancer cell lines together with
responses to different drugs. www.broadinstitute.org/software/cprg/?q=node/11

● The Genomics of Drug Sensitivity in Cancer (GDSC) is a resource for
therapeutic and genomic characterizations of a large panel of cell lines.
www.cancerRxgene.org

http://cancergenome.nih.gov
https://dcc.icgc.org
www.cancerRxgene.org
http://www.broadinstitute.org/software/cprg/?q=node/11
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Single Cell Expression Data

In multicellular organisms cells can have different genomes, and distinct cell types
have different expression profiles. Humans, for instance, are composed of more
than 40 billion cells [53] forming distinct organs, tissues, and cell types. This
genetic and transcriptomic variability has important phenotypic consequences. An
example of genetic variability is evident in some of our immune cells, T-cells and
B-cells, which rearrange and mutate sections of their genome. These mutations
and rearrangements lead to a large repertoire of B- and T-cell receptors provid-
ing the means to fight the gamut of potential pathogens. Our gametes contain
half of the genomic material of somatic cells after carrying out meiotic recom-
bination. Even for two cells that share the same genome, the expression profile
can vary dramatically. The changes in expression from a stem cell to terminally
differentiated cells are the result of a carefully orchestrated program of cellular
differentiation.

As cells transit through different states of differentiation and the cell cycle,
different transcription programs are activated and deactivated. A population of
cells contains, in general, a representation of a diverse set of transcriptional pro-
grams, and expression profiles from these cells represent an average that may
not correctly represent the underlying diversity. Single cell RNA sequencing pro-
vides the opportunity to accurately map these transcriptional states. In single
cell RNA-seq experiments, each cell can be represented by a point in a very
high-dimensional space, whose dimension is typically the number of expressed
genes (several thousands). Due to the high-throughput nature of the data (mea-
sures involving tens of thousands of genes and thousands of cells), single cell
analysis requires methods that are able to deal with large amounts of very
high-dimensional data. In addition, these methods should preserve the contin-
uous character of the data, as cellular differentiation can be thought of as a

399
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biological continuous process: there is usually a continuous set of states interpolat-
ing between a stem-like state and any of the fully differentiated states descending
from it.

We will argue in this section that the condensed representations produced by
Mapper, applied in the previous chapter to the analysis of cancer cross-sectional
data, satisfy these two requirements precisely.

7.1 Introduction to Single Cell Technologies

Recently, single cell sequencing has emerged as a new high-throughput method
to access the genome, the epigenome, and the transcriptome of hundreds or thou-
sands of individual cells. These technical developments have been the confluence
of several techniques, including the following.

● Single cell isolation methods. The first step in sequencing RNA or DNA
from single cells is to generate a suspension of single cells, which can be
challenging for particular tissues and cell types. Once in suspension, individ-
ual cells are isolated by serial dilution, micropipetting, optical tweezers, etc.
Although these techniques are effective in isolating single cells, they are not
scalable for isolating thousands of single cells. Scalable techniques for sin-
gle cell isolation remains an active area of research where the most popular
techniques include fluorescent activated cell sorting (FACS) and microfluidic
devices.

● Methods for amplification of DNA and RNA from single cells. A variety of
methods have been described to amplify genomic material from single cells,
including polymerases from different organisms. For RNA, one of the com-
mon techniques for single cell RNA-seq is Smart-Seq, which amplifies full
transcripts using a retroviral reverse transcriptase, a switching mechanism at
the 5′ end of the RNA transcript, and then amplifies the CDNA [419]. CEL-
Seq uses in vitro transcription as an amplification protocol, avoiding some of
the exponential amplification artifacts from PCR [232]. Drop-seq and inDROP
are two related but independently developed methods based on micro droplets
[302, 338]. Each micro droplet contains a cell barcode and primers together
with a captured single cell. The approach allows study of the transcriptome of
thousands of cells. Several techniques have been described to amplify DNA
material from single cells. PCR based methods (degenerative oligonucleotide
PCR, or DOP-PCR) use random or degenerate primers, providing low coverage
of whole genomic regions. More popular methods are based on multiple dis-
placement amplification (MDA) using DNA polymerases from a phage (Φ29)
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or, more rarely, from a thermophilic bacterium, Bacillus stearothermophilus (Bst
polymerase).

There is a frenzied competition in the development of methods for isolating sin-
gle cells, amplifying RNA and DNA, and sequencing. In the next few years, this
will result in dramatic changes in the type of data available, the quality of the data,
and the throughput. The availability of single cell data has led to the development of
computational methods to study diverse biological processes. Among other things,
single cell transcriptomics has enabled more detailed studies of cellular differenti-
ation processes in developmental biology [47, 408, 431, 505] and cancer biology
[401, 499]. Single cell analysis has the power to identify different types of minor-
ity cells that are eclipsed within larger populations, to identify transitions between
different states to draw transcriptional trajectories, and to find specific markers and
transcription factors for the different cell types and states.

Ideally, one would like methods for studying single cell transcriptomic data that
do not rely on previously known information and thereby allow the discovery of
potentially novel biology. The number of cells in these experiments is on the order
of thousands which is frequently comparable to the number of genes studied. Recall
from the discussion in Chapter 3, to get a good sample of a truly high-dimensional
object (here the dimension is the number of genes), one needs a number of
points (cells) exponential in the dimension. This is one of the reasons that most
approaches to the study of single cell data are based on dramatically reducing the
dimensionality of the space through the selection of a few known markers, applying
standard dimensionality reduction techniques (e.g., using PCA or t-SNE [13]), or
looking for specific low-dimensional features (such as reconstructing trajectories
or bifurcating points [223, 452]).

An alternative strategy based on ideas from topological data analysis tries to
derive a low-dimensional space that can capture some of the biologically inter-
esting properties (such as number of cell types, or trajectories); we use a Reeb
graph to describe the data. Recall from Section 1.12 that a Reeb graph is a one-
dimensional object that can capture some of the low-dimensional features of the
data. As discussed in Section 2.8, Reeb graphs can be approximately inferred from
the data using the Mapper algorithm. A generic pipeline for analyzing single cell
expression data begins by filtering out low quality cells, based on standard crite-
ria such as the ratio of mapped to unmapped reads, and normalizing the data to
account for differences in the length of the transcripts and the total amount of RNA
sequenced, as determined by spikes in reads or other methods [483]. The remain-
ing high quality cells are represented as points in a high-dimensional space, of
dimension given by the number of different transcripts present in the samples. This
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Figure 7.1 Processing of single cell transcriptomic data.

space is endowed with a metric in a standard way, for instance using Pearson’s
correlation as a measure of similarity. Applying Mapper with various choices of
filter function then produces a graph representation; this yields a low-dimensional
condensed representation that tries to preserve salient local relations between cells
in the high-dimensional space (Figure 7.1).

7.2 Identifying Distinct Cell Subpopulations in Cancer

Our first example of the use of single cell genomic data is in cancer (see Figure 7.2).
As we previously discussed, cancers are (among other factors) the result of the accu-
mulation of somatic mutations and epigenetic changes that lead to uncontrolled cell
growth. Not all cells in a tumor share the same genetic, transcriptional, epigenetic,
morphological, and phenotypic profile, a fact that is usually described as tumor het-
erogeneity. Two populations of cells that share a dominant clone could have very
different phenotypes, as minor populations can be incentivized to grow or become
resistant to specific therapies, leading to the long time evolution of these tumors.
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Figure 7.2 Single cell RNA-seq allows the spatial and temporal study of the struc-
ture of tumors. This is a particular case of a patient with two focal glioblastomas,
on the left and right hemispheres. After surgery and standard treatment, the tumor
reappeared on the left side. Genomic analysis (on the left) shows that the initial
tumors were seeded by two independent, but related clones. The recurrent tumor
was genetically similar to the one on the left. The expression profiles from single
cells from the two foci at diagnosis and the relapse recapitulate the clonal history.
Transcriptionally and genetically, the recurrence resembles the left parental tumor.
A small subset of the cells in the initial left tumor show a similar transcription pro-
file as the recurrent tumor, suggesting that the resistant population originated from
a subclonal population in the original tumor. Source: [320]. From Jin-Ku Lee et
al., Spatiotemporal genomic architecture informs precision oncology in glioblas-
toma, Nature Genetics 49.4 (2017): 594-599. c© 2017. Reprinted with permission
from Springer Nature.

Single cell techniques provide the means to study heterogeneous cell popula-
tions. The following example studies the mutational and transcriptional profile of a
multicentric glioblastoma. Multicentric glioblastomas represent tumors that occur
in multiple discrete areas in the brain. In this particular case, at diagnosis, the tumor
presented two focal points, on the left and on the right brain frontal lobes. After
surgery, chemoradiotherapy, and EGFR targeted therapy, the tumor recurred on
the left side. Different samples were taken from the initial left and right loci and
two samples at recurrence. The history of this tumor was then reconstructed using
genomic sequencing from each of the biopsies. The genetic characterization shows
that the right tumor shares most but not all genetic alterations with the left tumor,
indicating a common origin for the two clones that seeded the left and right tumors.
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The two loci at diagnosis show distinct clonal and subclonal alterations, indicating
that there were two independent founding clones for each location. The recurrence
samples were genetically similar to the original tumor in the same side.

Although the recurrent tumor shared many alterations with the parental tumor
in the left section, the recurrent tumor had also acquired other alterations in the
course of the progression.

To study this case in further detail, single cell RNA-seq was performed on cells
from the two primary tumors and the recurrent tumor. The current standard for
classification of glioblastomas based on expression identifies four subtypes, neural,
proneural, classical and mesenchymal [515]. When single cells are classified into
these four types, the heterogeneity becomes evident, with the right initial tumor
being composed of a majority of classical cells. Both the left initial and recurrence
tumors showed more heterogeneous cell populations involving three different sub-
types (classical, proneural and mesenchymal). This classification does not provide
any information on how related the cells responsible for the relapse are to any of
the original tumors. All three cell populations show a minority of cells in active
cellular division, as indicated by the upregulation of mitotic genes.

Using Mapper, one can appreciate a more continuous structure that recapitulates
the clonal and genetic history. The tumor on the right appears to be transcriptionally
distinct from the left tumor and the recurrence tumor. Expression profiles from
cells in the recurrence tumor resembled the originating initial tumor. This is an
important finding, as it shows a continued progression at the expression level, with
a few cells at diagnosis having a similar pattern as cells at relapse. It also shows
that EGFR mutation is a subclonal event, occurring only in the tumor at diagnosis
that is not responsible for the relapse. This observation illustrates the problem of
clonal heterogeneity for targeted therapies: tumors with heterogeneous populations
of cells containing different alterations are less sensitive to specific therapies which
target a subpopulation.

7.2.1 Clonal Heterogeneity from Single Cell Tumor Genomics

The recent development of single cell transcriptomics and genomics is providing an
opportunity to study the role of clonal heterogeneity in tumors [159, 378, 401] and
to identify small, previously uncharacterized cell populations [214]. The single cell
approach to studying complex populations brings with it new challenges associated
with the large number of sampled genomes. Another rapidly maturing technol-
ogy in modeling tumor population dynamics is that of patient-derived xenografts.
Patient-derived xenografts, or PDX, are generated by transplanting tumor tissue
into immunodeficient mice. With different rates of success depending on tumor
type and specific samples, these tumors are able to proliferate in the mice, and
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they can be passed from one animal to another. While not completely recapitulat-
ing tumors in humans with an intact immune system, they capture many in vivo
properties of tumors, allowing tumor evolution studies with and without therapy.

Single cell genomics provide the opportunity to understand clonal dynamics in
PDX models, connecting different cell populations that are established at differ-
ent times. Subclones are selected to set up different passages. Eirew et al. studied
single-nucleus deep-sequencing from different passages of breast cancer PDX
[159]. This study collected single cell data from 55 informative sites from a pri-
mary breast cancer tumor and three subsequent mouse passages. These sites were
selected using the union of bulk DNA sequencing data across different samples,
which excludes, of course, specific alterations in single cells.

Since single cell data from the primary tumor was not available, we generated
eight cluster-representative sequences using 27, 36, and 27 single nuclei from the
first, second, and fourth passages. From these, we subsampled 3000 trees from all
possibilities and projected the data into PΣ4. First, we included trees relating the
germline sequence, a randomly selected cluster-representative sequence from the
primary tumor, and randomly selected single-nucleus sequences from the initial
two xenograft passages. Then, in the second analysis, we included trees relat-
ing a randomly selected cluster-representative sequence from the primary tumor
and randomly selected single-nucleus sequences from three consecutive xenograft
passages.

The results (Figure 7.3) showed consistent linear evolution from primary tumor
through the first two xenograft passages. However, significant heterogeneity of
tumor clones is observed upon the fourth mouse passage. The first time window
(purple) is completely contained within the topology corresponding to linear evo-
lution, unlike the second (gold) which is centered on the origin and extends into
all three possible topologies. The point cloud for the second time window displays
a higher standard deviation than the first (10.49 versus 8.69), and its centroid is
essentially a star tree. The high degree of genotypic heterogeneity giving rise to
the second time window distribution is suggestive of a clonal replacement event
between the time points of Xenograft 2 (X2) and Xenograft 4 (X4). Many of the
prevalent alterations before X4 disappear during the final passage, and many new
mutations rise to dominance. This raises interesting questions about the long-term
fidelity of PDX vehicles to the genetics of their ancestral primary tumors, which
theoretically they serve to mimic.

7.3 Asynchronous Differentiation Processes

One of the most interesting applications of topological data analysis is related
to single cell expression profiles along a particular differentiation process. For
instance, during the process of differentiation, one can observe how stem cells
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Figure 7.3 Emerging clonal heterogeneity in patient-derived xenograft. Single
cell analysis of tumor evolution in a breast cancer derived xenograft model. Single-
nucleus deep-sequence data obtained from passages 1, 2, and 4. Single cell data
from the primary tumor was not available, however, Eirew et al. identified eight
distinct clusters. These data were used to generate two PΣ4 spaces. Source: [545].
From Zairis et al., Genomic data analysis in tree spaces, arXiv: 1607.07503
[9-bio.GN].

evolve into multiple differentiated cells [431]. Single cell RNA-seq samples the
transcriptional programs of cells moving along differentiation trajectories. But of
course, not all cells move at the same time, and while some retain the characteris-
tics of the original state, others quickly differentiate into final states. In experiments
where time information is available, one can organize the process and assign a
pseudo-time, so that the transcription data correlates with time. This pseudo-time
information is extremely useful as it can organize different transcriptional programs
along the differentiation process.

Ideally, one would like to reconstruct evolutionary trajectories in the high-
dimensional expression space, and provide a representation that preserves the
high-dimensional similarity. One of these representations can be obtained using
Mapper. Once the Mapper representation has been established, one can associate a
time to different states along the graph (Figure 7.4). We can define a root node as
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the node that maximizes the correlation between the distance in the Mapper graph
and time. A pseudo-time can then be inferred by calculating the distance in the
graph. In Figure 7.4, the representation is marked with a red arrow. In differenti-
ation, this node corresponds to the most undifferentiated transcriptional state. As
expected, the distance along the graph from the root node is associated with the
differentiation state.

Different genes are expressed at different stages while others are not expressed
or not particularly associated with the progression. One can define the centroid of
the expression of a particular gene in the representation to quantify the measure
of dispersion of its expression. A relatively simple way to do this while matching
to the experimental time is to fit a linear relation between the distance in the rep-
resentation from the root node to a particular node β, dβ, and the average time of
sampling cells associated with that node, 〈tβ〉, (right of Figure 7.4):

dβ ∼ a0 + a1〈tβ〉.
From there one can define the centroid μi for the expression ei of a particular

gene i, measured in time units as:

μi =
1
a1

(
Σβdβei,β

Σβei,β
− a0

)
.

In a similar way, one can define the dispersion, σi, as

σi =
1
a1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√
Σβ(dβ − a1μi − a0)2ei,β

Σβei,β

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Centroids and dispersions are a way to assign different transcriptional programs

to different differentiation states. In the following, we show how topological data
analysis could be used for studying single cell transcriptomic data in differentiation
processes.

7.4 Differentiation in Human Preimplantation Embryos

One of the most fascinating biological processes is the development of a meta-
zoon from a single cell: an exquisitely orchestrated organization of transcriptional
programs that gives rise to different tissues and cell types, in a particular spa-
tiotemporal fashion. Fertilization occurs with the fusion of parental gametes (egg
with a sperm) which creates a zygote. Before the implantation of the embryo in
the mother’s uterus (six days after fertilization in humans), the original zygote
cell undergoes successive replications (Figure 7.5). In the first stages, the zygote
divides exponentially (2, then 4, then 8 cells, etc.) to generate the morula. During
this process the preimplantation embryo is surrounded by a protein shell called the
zona pellucida, that precludes premature attachment to the oviduct walls, where the
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whole process takes place. When there are about 32 cells, the blastomeres generate
a cavity by accumulating fluid in the intercellular space. The generation of this cav-
ity generates the blastocyst. Subsequently, the cells on the outside of the blastocyst
differentiate into the trophectoderm, induced by the expression of a combination
of transcription factors. The cells in the interior of the morula form the inner cell
mass that further differentiates into the epiblast and the primitive endoderm. The
late blastocyst is composed of three different cell types: the trophectoderm, primi-
tive endoderm, and epiblast. The cells in the trophectoderm lead to the development
of and interaction with the placenta, the primitive endoderm forms the amniotic sac
where the embryo resides during pregnancy, and the epiblast further differentiates
into the three germ layers (endoderm, mesoderm, and ectoderm). Finally, the blas-
tocyst growth disrupts the zona pellucida, leading to the implantation of the zygote
into the uterine wall.

To study this process, our final example is a single cell RNA sequencing data set
of 1529 cells collected from 88 preimplantation human embryos [408]. The data set
captures the process of differentiating embryonic cells at different times and char-
acterizes the segregation between trophectoderm and the inner cell mass lineages.
In these examples, multidimensional scaling (MDS) was used as the auxiliary filter
function for the condensed representation and Pearson’s correlation distance was
used as the metric. Analysis of the Mapper graph shows how the cells progress
from a highly homogeneous expression pattern corresponding to the morula for-
mation to an intermediate state; this is followed by the establishment of specific
transcriptional programs of expression of lineage-specific genes, coinciding with
the blastocyst formation. The inner mass cells present a more homogeneous tran-
scriptional program with high expression of embryonic-specific growth factors and
receptors (such as TDGF1 and PDGFRA), while the trophectoderm is associated
with GATA transcription factor genes expression [431].

This is a nice example of how topological data analysis applied to single cell
expression data can recapitulate the history of the first stages of human differ-
entiation. By studying the specific cell populations, one can hope to recover the
successive combinatorial transcriptional programs that define this process.

7.5 Summary

The application of topological based approaches to single cell data is at a nascent
stage. The technology, methods and many of the ideas reviewed here will be rapidly
evolving in the next few years.

● Genomic technologies have recently been applied to single cells to study a
diversity of biological problems, including heterogeneity in cancer, mapping
transcriptional programs along development, and identification of rare species.
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● Evolution in cancer occurs by changes in the genome and the transcriptional
states. The spatial and temporal diversity maps to transcriptional states.

● In the differentiation processes, expression profiles of single cells can cap-
ture transition states, bridging the differences between the undifferentiated and
differentiated populations.

● Topological data analysis methods, such as Mapper, can identify transcriptional
profiles and infer the continuous relationship between related states. This is of
particular relevance to the study of transition states.

● Topological data analysis can be complemented with temporal information of
the biological processes, allowing the identification of different transcriptional
states.

7.6 Suggestions for Further Reading, Databases, and Software

● Single cell genomic and transcriptomic studies are relatively recent, and
dramatic developments appear almost every other month in both the tech-
nology and analysis sectors. Recent reviews worth noting include one by
Yong Wang and Nicholas E. Navin [524] and one by Stephen Quake and
colleagues [192].

● On the computational side, different approaches for dimensionality reduction
have been applied, including multidimensional scaling (MDS), independent
component analysis (ICA), and t-distributed stochastic neighbor embedding
(t-SNE). A nice review of these techniques can be found in [483]. As is often
the case, the computational techniques are developed within particular appli-
cations, including resolving spatial/expression structures [445], studying B-cell
development [47], transcriptome dynamics of skeletal myoblasts during differ-
entiation [504], and early development of mouse embryos [340], among many
others.

● Interesting applications of single cell genomic and transcriptomic technologies
beyond the few examples described in this chapter can be found in lineage
decision making [451], understanding tumor heterogeneity in cancer [377], the
discovery of new species in the tree of life [430], etc.

The software (and documentation) for analyzing time evolution using single
cell data can be found at http://github.com/RabadanLab/SCTDA. An online
database and exploration tool for some results in neuronal development can be
found at http://rabadan.c2b2.columbia.edu/motor_neurons_tda.

http://github.com/RabadanLab/SCTDA
http://rabadan.c2b2.columbia.edu/motor_neurons_tda
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Three-Dimensional Structure of DNA

Chemically, DNA is a long polymer. This polymer is packed inside the nucleus
of the cell by binding to sets of specific proteins called nucleosomes. Chromatin
refers to the combined structure of DNA and these DNA binding proteins. One
can visualize the three-dimensional structure of DNA as a long polymer winding
around at different scales. The three-dimensional structure of chromatin plays a
crucial role in a large variety of fundamental biological processes, including repli-
cation and expression. For instance, to be transcribed (i.e., to generate RNA from
this DNA), the local structure of DNA has to be accessible to different proteins
that bind to specific locations. Distant genomic locations can be brought together
and coregulated by the same transcriptionary machinery. In this way, the structure
of chromatin regulates expression of RNA and influences the expression of pro-
teins by different cells. Thus the three-dimensional structure of DNA determines
why two cells containing the same genome can function in very different ways. For
instance, a motor neuron and a B-cell share the same genome but their behavior,
function, and the proteins they express are vastly different.

In an eukaryotic cell there are well-studied structures that organize chromatin
(Figure 8.1). The two DNA strands are 2.5 nanometers wide and coil in the form
of a helix of 10.4 base pairs per turn. 146 bases of DNA can wrap around nucle-
osomes, a structure of four proteins (histones). Histones pack into 30 nanometer
filaments in a highly compact way (heterochromatin). At even larger scales, on
the order of a million bases, these structures are assembled into different terri-
tories, as topological associated domains or TADs. In [330] Lieberman-Aiden et
al. suggested specific large conformations, called fractal globules. At still larger
scales, it has been postulated that different chromosomes are located at specific
three-dimensional chromosomal territories. The location of genomic regions within
these territories is associated to transcriptionally active domains [375]. Due to the
nature of the relevant biological processes, including DNA replication, repair, and
transcription, DNA presents a highly dynamical nature.

412
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Figure 8.1 Summary of some structures found in chromatin organization. Nucle-
osomes are sets of proteins that bind DNA at 150 base pair scale. At much larger
scales, on the order of megabases, chromatins organize into different territories
bound by specific proteins. At even larger scales different structures have been
proposed, including the so-called fractal globule structure. At still larger scales
chromosomes can be found in separate chromosomal territories. Source: [330].
From Erez Lieberman-Aiden, et al., Comprehensive mapping of long-range inter-
actions reveals folding principles of the human genome, Science 326.5950 (2009):
289–293. c© 2009 Reprinted with permission from AAAS.

In the previous chapters, we have explored the use of high-throughput sequenc-
ing technologies to read the genome of organisms. There are preliminary indica-
tions that these techniques can also be used to infer three-dimensional properties
of DNA across different genomic scales. We will describe here genome wide chro-
matin conformation techniques. Data generated in this way provides information
about genomic locations that are in close proximity in three dimensions. We will
follow reference [163] to describe how topological techniques can be used to infer
and quantify three-dimensional structural properties of DNA. In particular, persis-
tent homology provides a natural framework for summarizing these properties. We
will first demonstrate the efficacy of persistent homology techniques in data from
simulated polymers, and then in the circular bacterial genome of C. crescentus and
a human lymphoblastoid cell line. We believe that this will be a fertile area for the
application of topological data analysis in the future.

8.1 Background

In the last few years there have been extraordinary developments in providing
genome wide information on the three-dimensional structure of DNA [25, 138,
330]. Chromosome conformation capture technologies give a variety of methods to
study the three-dimensional organization of chromatin inside the nucleus of a cell.
These methods identify genomic locations that are in very close physical proximity
(in space).
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Figure 8.2 Hi-C protocol to map the three-dimensional chromatin structure. First,
nearby regions in DNA are cross-linked in formaldehyde. Then DNA is frag-
mented using a restriction enzyme. A biotinylated residue is incorporated and
ends are ligated. The DNA is sheared and the junctions are pulled down with
streptavidin beads that bind strongly to biotin. The purified fragments are then
sequenced, leading to information on close proximity DNA fragments.

Chromosome conformation capture technologies vary depending on the extent
of the regions interrogated. Hi-C protocols use high-throughput sequencing tech-
niques to provide genome wide maps of DNA interaction. A common Hi-C
protocol has been summarized in Figure 8.2: DNA fragments in close proxim-
ity are cross-linked in formaldehyde, DNA is fragmented, nearby fragments are
ligated to form close loops. These loops are then sequenced. Mapping sequence
reads into a reference genome, one can identify specific genomic locations in
close proximity. The final result is summarized in a contact data matrix that
quantifies the genomic locations that are in close three-dimensional proximity
[138]. Specifically, if there are n locations, the contact matrix C is an n × n
matrix such that the entry Ci j = C ji encodes the proximity between locations i
and j. Further processing involves denoising and normalization of the raw data
matrix [25].

There are many caveats with the use of this procedure. For instance, we are
assuming that different cells present the same three-dimensional structure. Contact
matrices represent the average over many different cell configurations, and might
not represent any specific configuration. Recently chromosome conformation cap-
ture techniques have been applied to single cells [374, 375, 486]. These studies
have found that despite a large degree of variability, megabase scale domains are
well maintained across individual cells.

8.2 TDA and Chromatin Structure

We are interested in learning global properties of the three-dimensional structure
of DNA: how DNA folds at different scales. Hi-C data provides the means to
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capture information about the three-dimensional information of DNA as off diag-
onal elements in the contact matrix. Specifically, once correctly normalized, one
assesses the proximity between different genomic regions using the contact matrix.
Small loops in DNA can be detected as close to the diagonal non-zero elements in
the contact matrix.

Topological data analysis provides a natural language to identify and quan-
tify loops in the three-dimensional structure. One can apply persistent homology
to the similarity matrices derived from Hi-C data to try to detect the shape of
the DNA. In the following discussion, we focus on PH1, the one-dimensional
persistent homology barcodes, which represent one-dimensional physical loops
in DNA.

Recall that each element of the barcode is an interval [bi, di), where bi is the
smallest scale and di is the largest scale where the class is present. Following the
work of MacPherson and Schweinhart [339], one can define the size of a particular
persistent homology class as the mean of the birth and death:

xi =
bi + di

2
.

The values of xi represent a sample of the distribution of different folding scales
inferred from the Hi-C data. Of particular interest in these analyses are large scale
interactions (larger than 100 kilobases) that can represent different biologically
meaningful structures. For instance, it has been observed that transcription hap-
pens in transcription factories, specific three-dimensional locations in the nucleus
that accrue large protein complexes involved in transcription [265]. Typically tran-
scription factories encompass tens of RNA polymerases together with a variety
of proteins involved in RNA processing, such as helicases, transcription factors,
splicing factors, etc. Transcription factories can be physically observed by electron
microscopy. Other types of structure can be observed where promoters (the region
in a gene associated with transcriptional initiation of a gene, located near the tran-
scription start site of the gene) interact with enhancers (a region in the genome
that enhances the transcription of a particular gene) at long distances, sometimes at
megabase scales. Long range interactions in chromatin are known to occur in DNA
repair and replication among many other processes.

Different biologically distinct structures represent different looping structures
in DNA. For instance, a one-jump loop can be observed on promoter-enhancer
interactions, while multi-jump loops (multiple loops) from diverse regions can be
associated to a transcription factory (Figure 8.3). So the scale and structure of loops
can provide biologically relevant information.

While persistent homology provides interesting information on the size and num-
ber of cycles, one may be interested in specific details concerning a particular
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Figure 8.3 The scale and structure of loops can provide biologically relevant
information. Here are two examples of known structures associated to transcrip-
tional regulation. (A) Enhancers are genomic loci that regulate the expression of
genes that could be located in different genomic locations. Loops in DNA can put
enhancers and promoters in close proximity. (B) Other examples can be found in
transcription factories containing RNA polymerases, splicing proteins, and other
proteins involved in transcription and RNA processing. These are regions that can
be linked to distant genomic locations. Source: [163]. Reprinted with permission:
c© EAI European Alliance for Innovation 2016.

loop in the class. This is important to identify genomic regions of interest and
to link structure to function, for instance, linking specific structures to regulation
of specific genes. If we identify a class, how can we select a particular mem-
ber? One obvious criterion is to identify the cycle in the homology class that
has minimal size. In the context of Hi-C data and contact maps, Emmett and
colleagues proposed [163] to identify minimal cycles as corresponding to the short-
est length along the genome being homologically independent to other classes
born at smallest scales [449]. However, it has been shown that finding the mini-
mal cycle is an NP-complete problem [113], and so approximation techniques are
necessary.

8.3 Simulations

The molecule of DNA can be treated as a polymer with specific biophysical prop-
erties. As such it can be modeled as a long homogeneous flexible fiber with
interactions within specific sites (see, for instance, [148]). Simulations allow evalu-
ation of the inference procedures used from Hi-C and other types of chromosomal
conformation data.

In [163] a 50 megabase chromatin polymer was simulated by considering a poly-
mer formed by 1000 smaller monomers of a few nucleosomes each (Figure 8.4).
Specific interactions representing protein-mediated interactions were incorporated
by hand at ten random positions in the polymer. A contact map was constructed
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Figure 8.4 Simulations of DNA as a polymer. DNA can be simulated as a long
polymer consisting of a large number of monomeric units interacting at specific
places. Here, we show the data of a 50 Mb polymer with 10 fixed loops at random
positions in the genome consisting of 1000 monomeric units. (A) The average
of 5000 simulations allows construction of a contact map. (B) Using persistent
homology in a similarity matrix derived from the contact map one can clearly
identify the ten loops as ten long bars in dimension one persistent classes. Source:
[163]. Reprinted with permission: c© EAI European Alliance for Innovation 2016.

using 5000 conformations (Figure 8.4). The contact map was transformed into
a similarity matrix d = 1 − ρ, where ρ is the Pearson correlation between two
genomic positions. The one-dimensional homology groups clearly identify ten long
bars, corresponding to the interacting position in the polymer. Polymer simulations
provide a nice way to optimize the identification of interactions from contact maps.

8.4 The Topology of Bacterial DNA

We now explore the persistent barcode diagrams derived from real data in two very
different systems: a bacterium and an eukaryotic cell.

The typical size of a bacterial genome is a few megabases, which if linearly
stretched would reach more than 1 mm. However, bacteria are only a few microm-
eters long, meaning that the genome has to be compacted 1000 fold. Although
bacteria do not have a proper nuclear membrane, there is an irregular shaped region,
called the nucleoid, that aggregates most of the genomic material. There are several
mechanisms of packing the bacterial DNA genome into the cell. The first mecha-
nism is negative DNA supercoiling. The DNA is a double helix that twists every
10.5 bases. If a segment of DNA of length L (in bases) is circularized by pasting
the two ends, there will be a number of turns expected that create a relaxed DNA
∼ L/10.5. DNA supercoiling occurs when there is an over (positive) or under (nega-
tive) winding of DNA (see top panel of Figure 8.5). In general most DNA presents
a negative supercoiling. In bacteria, negative supercoiling generates plectonemic
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Figure 8.5 Left: Diverse levels of twisting generate supercoiling in circular DNA.
Source: [306]. From Kornberg A. 1980 DNA replication, p. 29. San Francisco,
CA: W. H. Freeman. Supercoiling can be quantified by the linking number
between the two strands of DNA if ends are joined. In a relaxed DNA configu-
ration one should expect a turn every 10.5 bases. So in a length L DNA fragment,
the expected linking number is L/10.5; deviations from this linking number lead
to different levels of supercoiling. Right: Plectoneme emanating from an E. coli
nucleoid core. Source: [211]. c© Designergenes Posters Ltd; in memory of Dr
Ruth Kavenoff 1944–1999.

loops. A simple way of characterizing the level of supercoiling is by the linking
number of the two strands of DNA (see bottom panel of Figure 8.5). Nice work
relating the topology of links and knots to the structure of DNA has been carried
out by different groups [20, 80, 126, 178, 308, 415].

The second mechanism of compacting bacterial DNA is by topological domains,
supercoiled domains insulated from each other. Topological domains vary in size
but are of order 10 kb, indicating that a typical bacterium genome contains hun-
dreds of topological domains. The structure of each domain is kept independent
by protein and RNA complexes that work as boundary elements. Of special signifi-
cance is the structural maintenance of chromosome (SMC) condensin complexes
and topoisomerases. SMC proteins form part of a highly conserved complex from
bacteria to human that bridge different chromosomal loci working as a high level
scaffold. Topoisomerases work as enzymes that can cut the DNA strains, modifying
the DNA topology, changing the winding and unlinking DNA loops.

Macrodomains are much larger structures (of almost a megabase) that encom-
pass many topological domains and suggest highly structured regions with reduced
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DNA mobility. Understanding the structure of bacterial DNA, the boundary ele-
ments, the macrodomain structure, the functional characterization, transcription,
and replication remains a very active area of research. For a nice review on bacterial
chromosomal organization see [523].

Caulobacter crescentus is a gram negative bacterium ubiquitously found in
water. The genome has a length of 4 megabases in a circular chromosome coding
for near four thousand genes. Hi-C interaction data from Caulobacter crescen-
tus was examined as published in [317]. This paper found several structures,
including chromatin interaction domains at scales of 100 kilobases and smaller
plectonemes. A simple model of nesting these chromatin structures was proposed
where plectonemes were arranged in a brush-like fashion and topological domains
encompassed several plectonemes (see panel A of Figure 8.6). The contact matrix
binned at a ten kilobase resolution from a wildtype Caulobacter cell is represented
in panel B of Figure 8.6. Panel C shows the barcode diagram in dimensions 0 and
1 computed from the associated similarity matrix. The one-dimensional barcode
shows a very interesting bimodal structure corresponding to a large number of
smaller loops and a few larger ones, as shown in the bimodal distribution of panel
D of Figure 8.6.

To specify genomic locations associated to particular one-dimensional persis-
tent homology classes, one can identify small cycles within each class. These
representative cycles are depicted in Figure 8.7. The bimodal distribution shown
in panel D of Figure 8.6 shows two types of loops. The smaller loops are located
close to the diagonal (as expected) and could be related to structural maintenance
complexes [523]. More interestingly, the larger ones (of approximately 100 kb)
connect extremely distant genomic locations in particular locations, suggesting
specific genomic locations associated to large range interactions in Caulobacter
crescentus.

8.5 The Topology of Human DNA

If stretched end to end, the roughly 6 billion bases of the human genome would
stretch nearly two meters, yet they are able to occupy a volume of only a few
cubic micrometers within the cell nucleus. Even more surprising (or perhaps
not surprising at all), this million-fold compression is highly non-random, and
exhibits a complex hierarchical structure which impacts genome function inti-
mately by regulating gene expression. This multiscale pattern exhibits increasing
levels of complexity: from nucleosomes every 150 bases, to interactions between
promoters at the megabase scale, to topologically associated domains at the 10
megabase scale, and finally, to the organization of the chromosomes [138]. Chro-
matin conformation is dynamic, and changes continuously throughout the cell
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Figure 8.6 Persistent homology study of bacterial DNA structure. (A) Cartoon
model of the structure of DNA in Caulobacter crescentus. The genome is con-
tained in a large circular chromosome. At smaller scales there are compact
domains and plectonemes, supercoiled DNA loops emanating from a central cir-
cular fiber. (B) The contact map reveals an off-diagonal structure reflecting the
circular nature of the bacterial chromosome. Persistent homology maps (C) indi-
cate a more refined structure shown as distribution of H1 bar sizes showing a
bimodal distribution of DNA folding patterns (D). Source: [163]. Reprinted with
permission: c© EAI European Alliance for Innovation 2016.

cycle under the influence of a diverse range of chromatin remodeling proteins.
Chromatin architecture can also be impacted by post-translational modifications
of histones, including but not limited to methylation and acetylation of specific
residues on histone tails. Many data sets of human cell Hi-C data have been pub-
lished [274, 330, 420]. In [163], Emmett et al. applied the persistent homology
pipeline to study the three-dimensional chromatin structure of a healthy human
lymphoblastoid cell line published in [330]. Figure 8.8 shows the contact map of
chromosome 1 binned at 1 megabase resolution. On the right of the same figure, the
barcode diagrams for dimensions zero, one and two are given. The one-dimensional
persistence diagram reveals an interesting pattern of short and long range inter-
actions, as shown in the bimodality of sizes in Figure 8.9. These results support
previous observations [330] regarding topological associated domains of size 10
megabases.
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Figure 8.7 Genomic position of minimal cycles associated to persistent homol-
ogy classes in dimension one. As previously shown, loops can be divided into
two types. On the left, smaller loops distribute uniformly across the genome rep-
resented as the diagonal. The right panel shows the genomic positions associated
to larger loops which clearly show two large interacting domains. Source: [163].
Reprinted with permission: c© EAI European Alliance for Innovation 2016.
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Figure 8.8 Hi-C data for chromosome 1 from a human lymphoblastoid cell line.
On the left we show the contact map representation. The white band in the mid-
dle represents the centrosome where information is not available. On the right,
persistent homology barcode diagrams in dimensions zero, one, and two reveal
long-range interaction patterns. Source: [163]. Reprinted with permission: c© EAI
European Alliance for Innovation 2016.

8.6 Summary

The application of topological approaches to studying the three-dimensional struc-
ture of DNA is still in the early stages. We expect that the technology, methods, and
many of the ideas reviewed here will be evolving very rapidly in the next few years.
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Figure 8.9 The one-dimensional persistent homology barcode of a human lym-
phoblastoid cell line shows a clear bimodal distribution related to topological
associated domains of an approximate size of 10 megabases.

● Cells with the same genome can have vastly different form and function. The
three-dimensional architecture plays an important role regulating important
biological processes.

● Chromatin structure in the nucleus of cells presents structure at different scales,
from hundreds of bases (nucleosomes) to topological associated domains at
megabase scale, to chromosomal territories.

● These structures are associated to biologically functional processes, such as
RNA transcription.

● Recently chromosomal conformation capture techniques are generating genome
wide contact maps reporting large scale interations.

● Topological data analysis techniques, in particular persistent homology, are a
natural language to study contact maps and infer the size and number of loop
structures in the genome.

8.7 Suggestions for Databases and Software

● The Mirny group has produced software for polymer models http://
bitbucket.org/mirnylab/openmm-polymer that allow one to perform sim-
ulations, and recreate contact maps.

● The data from the work of Lieberman-Aiden et al. [330] can be found
at http://hic.umassmed.edu/welcome/welcome.php. The 3D Genome
Browser at Penn State allows one to browse existing Hi-C data sets and
to visualize user-generated Hi-C data sets http://promoter.bx.psu.edu/
hi-c/.

● Large collections of Hi-C data sets can be found at GEP DataSets www.ncbi
.nlm.nih.gov/gds/?term=hi-c.

http://bitbucket.org/mirnylab/openmm-polymer
http://bitbucket.org/mirnylab/openmm-polymer
http://hic.umassmed.edu/welcome/welcome.php
http://promoter.bx.psu.edu/hi-c/
http://promoter.bx.psu.edu/hi-c/
http://www.ncbi.nlm.nih.gov/gds/?term=hi-c
http://www.ncbi.nlm.nih.gov/gds/?term=hi-c
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Topological Data Analysis beyond Genomics

In this last chapter we will briefly introduce several recent interesting applications
of TDA to diverse biological problems beyond the genetics and genomics work we
have focused on in this book. In the first part of this chapter we will explain how
TDA can be used to study ordered data, referred to here as series data. Series data
is frequently found in many biological applications; for instance, when studying
the evolution of a biological organism or population, where data is ordered in time,
or when looking at genomic data along a chromosome, where data is ordered by
chromosomal location. Examples of time series data with periodic patterns can
be found in the cell cycle, or the phenotypic changes in immune genes following
infection and recovery [501].

Next, we will discuss TDA techniques for studying graphs, or networks. Net-
works are standard representations of complex biological systems with different
components interacting. For example:

1. The set of interactions between different proteins within an organism is tra-
ditionally represented by a graph where nodes represent proteins and edges
physical interaction.

2. Transcriptional networks are captured by graphs, where nodes represent genes
or transcripts and edges represent how the expression of one relates to the
expression of the other.

3. In neuroscience, neurons and their interaction are usually encoded by a graph.
The central problem in neuroscience focuses on how the neuronal system cap-
tures information about the world; a key question is to how to study this problem
using the structure of the interaction graph.

As graphs are pervasive representations of biological data and the simpli-
cial complexes that arise in TDA are generalizations of networks, it is perhaps
unsurprising that there are interesting TDA approaches to extract and quantify
global properties of biological networks.

423
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Next, we describe some natural sets of applications for TDA in medical imag-
ing. For example, magnetic resonance imaging (MRI) is a non-invasive technology
that is used to test for many diseases and to obtain data on the real-time activity
of living organisms. The output is a function from the three physical dimensions
of space (and time if dynamic information is being captured) to the real num-
bers. Filtrations of this function can be studied using TDA methods and one
hopes to relate these topological features to biologically or clinically interpretable
characteristics.

Finally, we briefly mention some recent applications of TDA in the context
of infectious diseases: first, models of networks of infectious disease spread in
a population; second, how organisms respond to infectious diseases.

Our goal in this chapter is to provide a very brief overview of examples of TDA
techniques applied to a variety of biological problems beyond the main scope of
the book. Our treatment is of necessity superficial, and in particular by no means
should be viewed as comprehensive. (We apologize now for work which is omitted;
our choices here are not intended to reflect a judgement about the most interesting
work.)

9.1 Topological Study of Series Analysis

Time series analysis is an old discipline aiming at extracting patterns and sum-
maries from data arising from weather measurements, financial markets, signal
processing, and many other systems. Biological processes are not an exception. In
many biological problems data is naturally ordered along a well-defined physical
or biological dimension. For example, the position of genes along a chromosome
specifies an ordering. Another set of examples come from the time course of a
biological process (Figure 9.1).

The first applications we will describe here are time series analysis of expres-
sion data. There are a large variety of biological systems that display interesting
time dependent expression profiles. For instance, periodicity is observed in cir-
cadian regulation, the cell cycle, and the life cycle of malaria [6], among many
other examples (Figure 9.2). Genes are regulated according to different tempo-
rally orchestrated transcriptional programs, and discovering information about this
time dependence can inform theories of how these programs are organized. Several
techniques have been used to study time series expression and recently some imple-
mentations using ideas from topological data anlysis have appeared. Cohen-Steiner
and colleagues [118, 140] proposed a measure of similarity of expression profiles
of different genes based on comparing the persistence diagrams arising from level-
set persistence (recall Example 2.3.4) applied to a function from time to expression
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Figure 9.1 Changes in transcription are observed in multiple biological processes. (A) Time series data is ubiquitous in biological processes:
for example, response to transitory external stimuli, changes between two different states (in development, for instance), or cyclic changes
as observed in the cell cycle or circadian rhythm. There are many interesting biologically interpretable patterns of potentially infinite
types. (B) Qualitative phenomena include pulses (a single spike associated to stimuli), sustained changes, periodic changes, among many
other examples. (C) An example of a fundamental cyclic process: the cell cycle, where DNA replicates and a mother cell divides into
two daughter cells. Source: [35]. Reprinted by permission from Springer Nature: Springer Nature, Nature Reviews Genetics, Studying and
modelling dynamic biological processes using time-series gene expression data, Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon, 13.8
(2012): 552–564. c© 2012.
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Figure 9.2 Expression of different genes in the malaria parasite life cycle. Left: Genes can be ordered by the time of expression. Right: Using
PCA (see Section 4.2 for a brief overview) one can observe a cycle in gene expression reflecting the parasite (Plasmodium falciparum) life
cycle. Time series data (expression of P. falciparum genes at different time points) was analyzed using the fast Fourier transform (FFT) and
enrichment of different cell processes. The higher PCA components replicate the cycle of P. falciparum replication. Source: [6].
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levels. Perea and Harer [404] proposed a method based on a common strategy in
time series analysis, applying a sliding window. As we explain below, they regard
the sliding window as a map from the time series data to point cloud data, and then
explain how to use topological properties of this point cloud to study the periodic-
ity of the original time series data. (There has also been interesting recent work by
Khasawneh and Munch [291] on stochastic delay differential equations.)

Finally, we turn to an application to data that uses the natural ordering in
genomics coming from the position along a chromosome. As we saw in Chap-
ter 6, chromosomal aberrations (deletions, amplifications and translocations) are
very common events in most tumors. The number of copies of particular chromo-
somal regions is a function of the ordering of genes. Arsuaga and colleagues have
also proposed a sliding window approach to study copy number aberrations in can-
cer [19, 21]. The sliding window, moving across the chromosome, provides a map
from the copy number data to point cloud data; hierarchical cluster structure in this
point cloud data, as measured by the zeroth Betti number, reflects changes in copy
number structure. This approach can be used to identify copy number changes in
tumors and to compare the profile of these changes across different tumors.

9.1.1 Time Series Analysis of Gene Expression Data

Biological processes are dynamic, changing at different time scales. For instance,
we could be interested in tracking the expression of a particular gene that is
involved in the cell cycle. As we saw in Chapter 6, the cell cycle is one of the
fundamental processes altered in cancers, and looking at how proteins differen-
tially altered the cell cycle in cancer cells could provide therapeutic opportunities.
Another example is the circadian rhythm, which regulates fundamental biological
processes in a daily cycle. These biological processes can be studied by measure-
ments x(ti) taken at different times {ti}; this is popularly called a time series. There
is an extensive literature on general methods for time series analysis [102, 226],
but of particular interest in this chapter is the identification of periodic signals in
gene expression data.

Time series expression data presents some distinctive features that make it dif-
ferent from finance or weather time series: it is usually collected for a few cycles,
the sampling can be sparse and uneven, there is not usually a characteristic shape
(such as a sinusoidal curve), there is significant biological variability and, last
but not least, there is a potentially significant amount of experimental noise. All
these features make time sampling of genomic data particularly interesting and
challenging.

Since the first high-throughput expression experiments at the beginning of the
century, there has been a plethora of methods applied to extract signals from time
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series expression data. These methods usually rely on standard techniques used
and developed in other fields, for example Lomb-Scargle periodograms developed
for astrophysics [202, 333]. We will briefly summarize some of the most common
techniques used for time series analysis to study biological genomic/transcriptomic
data.

● Spectral methods. Spectral methods express signals in terms of the fre-
quency domain (e.g., via Fourier analysis). A basic and widely used method
is direct application of the fast Fourier transform (FFT) algorithm, which trans-
forms discrete data into Fourier components. A particularly useful technique
when working with uniformly spaced time-sampled data is to approximate the
spectrum by the periodogram:

s(ω) =
Δt
N

∣∣∣∣∣∑N−1

n=0
x(tn)e2πinω/N

∣∣∣∣∣2
where Δt is the time interval between two observations and N is the total num-
ber of observations. Periodic signals can be identified as sharp peaks in the
periodogram.

Fourier analysis has been widely applied to study cell cycle genes from
expression data (e.g., [537]). Fourier analysis in connection with permutation
tests was implemented in [136] and applied to yeast cell cycle data and other
species [272].

However, the FFT is suboptimal for sparse and non-uniformly sampled data.
The Lomb-Scargle periodogram [333, 448] is a Fourier type of analysis able to
infer spectral properties from sparse and irregular sampling at times tk [202]. For
a fixed frequency ω, a time delay τ is defined as a solution to the equations

tan 2ωτ =

(∑
k

sin 2ωtk
)

(∑
k

cos 2ωtk
) .

Then the periodogram at the frequency ω is equal to:

s(ω) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∑N−1

k=0
xn cosω(tk − τ)

∣∣∣∣∣2∑N−1

k=0
(cosω(tk − τ))2

+

∣∣∣∣∣∑N−1

k=0
xn sinω(tk − τ)

∣∣∣∣∣2∑N−1

k=0
(sinω(tk − τ))2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The Lomb-Scargle periodogram has been used in several biological applications
with incomplete data or time series sampled at different time points [422, 441],
including the cycle of malaria [202], circadian rhythms in plants [271], and
phenotypic behavior in animals [286], among many others. For instance, in ref-
erence [202] it was used to study the expression of Plasmodium falciparum (the
agent causing malaria) genes, during infection. The Lomb-Scargle periodogram
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analysis showed higher sensitivity than the Fourier transform in the identification
of periodic signals, mostly in day and two day cycles.

● Wavelets. The Fourier transform decomposes the temporal data as a sum of
orthogonal sinusoidal representations; this is typically used for identifying peri-
odic patterns in data. Wavelets provide an alternative decomposition in terms
of an orthogonal basis of multiresolution functions (wavelets) ψ j,k(t) localized
around a time-frequency region parametrized by the k and j indices; the basis
elements are scaled and shifted versions of a generating “mother wavelet.” The
wavelet basis allows us to express any function as follows:

x(t) =
∑

j,k
c j,kψ j,k(t)

where c j,k are the coefficients. (There are many different choices of wavelet
bases, including Haar and Daubechies wavelets.)

Wavelets have been used to study clusters in gene expression along the
genome [509], regulatory networks from time-varying expression data [189,
295, 475], and functional MRI data [446].

● Reference curve comparison. Fourier analysis decomposes data into sinusoidal
signals, but the data that we are interested in could have different shapes. For
instance, we can be interested in identifying narrow peaks indicating the expres-
sion or activity of a particular gene in a narrow time window. If we have a
particular time dependence in mind, regression analyses could provide useful
insight. Partial least squares regression (PLS) has been used to identify genes
with periodic expression along the cell cycle in Saccharomyces cerevisiae [275].
In that work, the authors were interested in the identification of periodic sig-
nals with a common period (cell cycle) but where different genes obtained the
highest expression at different times of the cell cycle. That was modeled by a
function A sin (ωt + φ), where ω = 2π/T is the frequency associated to the cell
cycle. Every gene received an amplitude and a phase, representing the variability
along the cell cycle and the cell cycle phase. The same procedure can be used for
a non-sinusoidal family of curves, such as the ones shown in panel B of Figure
9.1, using PLS to find the parameters corresponding to each family member.

The Jonckheere-Terpstra trend test [278] is a non-parametric statistical test for
comparing two alternative hypotheses regarding the medians of populations; the
null hypothesis is that the medians are the same, and the alternative hypoth-
esis is that the ordered populations have increasing medians. This is closely
related to the Kendall τ statistic for analyzing rank correlation. JTK CYCLE is
an algorithm based on these statistics that compares data to a set of hypothesized
user-defined group orderings [258]. The algorithm has been extensively applied
to study different aspects in different systems of circadian rhythms includ-
ing expression profiles, chromatin changes, metabolic changes and changes in
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microbiota among many others [132, 258, 303, 496]. An advantage of these
methods is that since they are rank based, they are robust invariants and hence
resistant to corruption by outliers (recall the discussion from Chapter 3).

● Stochastic processes and correlograms. A stochastic process is a set of ordered
random variables x(ti). There is an extensive literature on the study of time series
analysis using stochastic processes [102]. Here, we will briefly mention autore-
gressive models (AR) of order p as a common type of stochastic model used in
time series analysis. The main idea behind these models is that the value of the
observation at time ti depends on a linear combination of the previous p-values
{xi−k} for k = 1, . . . , p, in other words:

x(ti) =
∑p

k=1
ckxi−k + εti

where ck are some real coefficients and εti is an error term, typically assumed to
be Gaussian distributed. These are a generalization of Markov processes; in fact,
AR(1) models are precisely Markov processes.

A generalization of AR is given by the moving average process (MA), where
the value of the observation depends on a linear combination of q independent
random processes εi with zero mean and equal (finite) variance:

x(ti) =
∑q

k=1
cqεi−q

The most general models contain a sum of p terms from an AR model and q
terms from an MA model; these are usually called (p, q) ARMA models.

One common assumption in stochastic processes is that the observations
x(ti) are derived (possibly after subtraction of global trends) from a stationary
stochastic process. A stochastic process is stationary if the joint distribution of
every set of variables x(ta) is the same as x(ta + τ) for all τ. In other words, the
process does not present any systematic change in mean, variance and higher
moments at different time points. Stationarity is a very strong assumption, and it
is usually only applicable after all trends (changes in mean, variances, periodic
components) are removed from the original data.

A useful function for studying stationary processes is the autocorrelation γ(τ),
defined as the covariance between x(ti) and x(ti+τ) divided by the value at τ = 0.
Using the data of a stationary process one can define [102]

r(k) =

∑N−k

i=1
(xi − x̄)(xi+k − x̄)∑N

i=1
(xi − x̄)2

where N is the total number of observations. The function r(k) is called the
correlogram and carries interesting information on the coefficients and memory
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of stationary stochastic processes. These models have been proposed for gene
clustering from time series of expression data [188, 418, 525].

● Compressibility. Most patterns in biological data do not have a predefined form;
the use of reference curve comparison could preclude the identification of some
relevant biological signal. One idea for capturing general regularity is to study
the compressibility of the data. One can define the algorithmic complexity of
a string of characters as the size of the shortest program that outputs the string
[304, 473]. These ideas were applied to yeast cell cycle expression data in [10].
First, the data were transformed to their rank value, for instance, 2.5, 2.7, −1.2,
23 will be transformed to 2, 3, 1, and 4. This corresponds to a permutation of 1,
2, 3, and 4. Then one looks at a function f from the permutations to the real num-
bers. For example, such a function could be the length of the longest increasing
or decreasing sequence (2 in our case), the number of local maxima (2 in our
example), the sum of the absolute values of the difference between consecutive
numbers (|2 − 3| + |3 − 1| + |1 − 4| = 6), etc. (Notice that some permutations
will be assigned the same value.) One way of describing the permutation p of
interest (e.g. 2, 3, 1, and 4) is to count the number of permutations with the same
image under f ; denote this quantity by M f . A bound on the compressibility can
be obtained by k( f ) = log Mt − log N − log M f , where Mt is the total number
of permutations and N is the number of different values the function f can take.
The main idea of the method of [10] is that simple functions can be used to iden-
tify interesting patterns as corresponding to highly compressible permutations.
Note that these patterns are not periodic.

● Biologically based time dependent models. In some cases, there are actual
models intended to describe the evolution of the biological system. For example,
transcription is a classical problem where different models have been proposed
that relate the activity of some genes (transcription factors) in the regulation
of other genes. Such models are usually represented in the form of a net-
work (e.g., Boolean or Bayesian networks or sets of first order differential
equations) [34, 296].

All these methods have tradeoffs [137]. If we are interested in looking for peri-
odic signals using a large collection of longitudinal data, we might be tempted to
try Fourier approaches. On the other hand, if we are studying a narrow localized
signal, we could try some of the simple wavelet methods. Stochastic methods are
useful if we have reason to believe that the hypotheses of the main methods (e.g.,
AR, MA, ARMA, etc.) hold in data; for instance, when the noise can be modeled
with a known distribution and there is a memory of a few previous values. In other
cases, we might have a suspicion of what kind of signal we should expect and we
can try to fit the expected curve directly to the data.
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Of course, in practice, especially when performing exploratory data analysis, we
do not expect to have a clear idea of what kind of information we are looking for.
The topological approaches that we will describe in the following section provide a
more general framework for identification of periodic patterns. At the moment it is
an open question which methods will be most informative when working with the
time series data arising in genomics. As transcriptomic data becomes more reliable
and abundant, we expect to have the opportunity to evaluate the performance of
these algorithms.

9.1.2 Time Series Analysis Using Topological
Data Analysis

A simple mathematical model of the expression values of a particular gene i evolv-
ing in time is simply a function ei : X → R, where X could be an interval [a, b]
(when considering a fixed time interval) or S 1 when looking at periodic systems.
Of course, in practice we expect to have access to the values of these functions at a
finite collection of times (i.e., points of the domain).

A first natural question is how to compare the expression patterns of two dif-
ferent genes i and j; in this model, we are comparing the functions ei(t) and e j(t).
One way to answer this question is to consider the sublevel set filtration of ei(t)
and e j(t) (recall Example 2.3.4); we consider the filtration of spaces induced by
considering the collection of sublevel sets f −1((−∞, a]), which are equipped with
evident inclusions

f −1((−∞, a])→ f −1((−∞, a′])
for a < a′.

The two functions ei(t) and e j(t) can then be compared by measuring the bot-
tleneck or Wasserstein distances between the persistence diagrams arising from
this filtration. The stability theorems for persistent homology in this context (recall
Theorem 2.4.12) now imply that these measures are fairly robust in the face of
sampling variation or noise in the data (Figure 9.3).

Sublevel set persistence and bottleneck distances were used in [118, 140] to
study clustering of genes by expression level over different developmental stages
in microarray data from the arabidopsis plant. Specifically, the data is structured as
vectors of expression levels for each gene, with entries corresponding to develop-
mental stages. In the same papers [118, 140], the authors used topological methods
for identification of periodic signals using expression values of 7500 genes across
17 time points within a single period of the formation of somites in mouse embryo.
In combination with a variety of other methods (e.g., Lomb-Scargle periodogram
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Figure 9.3 Persistence homology can be applied to filtrations from different
sublevel sets induced by a function.
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Figure 9.4 The sliding window approach is a very common strategy used in many
genomic analysis applications. Data corresponding to a window of constant size
n can be represented as a point in n dimensions. Sliding the window, one can
generate a point cloud data representing the series. TDA techniques can be then
applied to the cloud data to learn properties of the series.

and the cyclohedron method), this study found a new cyclic gene that regulates
the segmentation clock. Comparative analysis found the topological methods to
be competitive with other methods, although not obviously superior to the best
alternatives.

9.1.3 Topological Data Analysis of Sliding Windows

A different strategy of studying time series data is to study the point cloud data
generated by sliding windows (Figure 9.4). An illuminating analysis and devel-
opment of this method for periodicity detection was carried out by Perea and
Harer [404].

The basic idea is simple. Suppose we have a series of points {x1, x2, . . . , xn} ⊂ R,
where the subscript indicates the time label of the point. We think of these as the
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image of a function f : R → R on a collection of values {t1, . . . , tn}. We define a
window of size w starting at interval i as the collection of points

{ f (ti), f (ti+1), . . . , f (ti+w−1)} = {xi, xi+1, . . . xi+w−1}.
An idealized case is where ti = t1 + (i − 1)d, for some shift value d.

As an abstraction, imagine that we simply have a function f : R→ R, and when
fixing a window starting at value x we parametrize by M and τ and instead consider
the collection of points

{ f (x), f (x + τ), f (x + 2τ), . . . , f (x + Mτ)}.
Fixing M and τ, we can regard the window as specifying a curve

W( f )τ,M : R→ RM.

To understand what this looks like for a periodic signal, it is interesting to focus
on f (θ) = cos(Lθ) for some choice of period L ∈ N. An easy analysis shows that
the resulting closed curve traces out an ellipse and that the length of the minor axis
of the ellipse is maximized when the window size is close to the period!

This suggests the approach of computing the length of the longest barcode in the
persistence diagram for H1 as an estimate of the periodicity; we can in fact recover
the period exactly in this case. More generally, any suitably bounded function can
be expressed via the Fourier transform as a linear combination of periodic func-
tions; the stability theorem for persistent homology can then be used to show that
in the case where this signal is periodic, the longest barcode still recovers useful
periodicity information.

Based on this analysis, Perea and Harer propose the algorithm SW1PerS and
demonstrate applications to finding periodicity in gene expression from yeast
metabolic and cell cycles [405]. In simple tests, the algorithm compares well to
existing tests for periodicity (notably Lomb-Scargle). In particular, SW1PerS has
extremely good performance in the face of noise, performing better than Lomb-
Scargle in high noise regimes on signals where the magnitude decays over time
and where there are separated peaks.

9.1.4 Identification of Copy Number Alterations

Time series are not the only interesting ordered biological data sets. Chromosomes
present a natural one-dimensional ordering of genes. In cancer, chromosomal
regions are often amplified, deleted, and translocated. Regions that are recurrently
amplified could contain oncogenes, regions that are deleted could contain tumor
suppressors, and regions with translocations could give rise to gene fusions. For
instance, many tumors contain deletions in the 9p21.3 region containing a known
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tumor suppressor gene CDKN2A, or the region 17p13.1 containing the TP53
gene. A common approach for the identification of genes that could be impli-
cated in cancer is to assess recurrence of alterations across many different patients.
Most methods that have been proposed using copy number alterations in cross-
sectional samples propose a measure of recurrence and a statistic associated to
it [52, 508].

Arsuaga and colleagues have proposed a method for the analysis of copy number
data using persistent homology [19, 142]. The idea is based on a sliding window
approach similar to the method used for studying periodic signals in time series
[404], but instead of using time as the ordering dimension they use the chromo-
somal position. A sliding window defines a map from the copy number data to a
w-dimensional space. In this case, the authors chose a three-dimensional window,
so the data can be viewed as point cloud data in three dimensions. If there are no
copy number alterations, one should expect that the data should fluctuate around
the expected number (two in the case of autosomes), so this will correspond to
fluctuations near the point (2, 2, 2) in the three-dimensional point cloud. However,
a deletion will change this number to one (heterozygous) or zero (homozygous),
changing the concentration point for the point cloud to (1, 1, 1) or (0, 0, 0). In the
same fashion, amplifications could be identified as changes in the point cloud data
to concentrate around other diagonal values.

The authors use the zero dimensional persistent homology (i.e., the dendrogram
representing single-linkage clustering) for the identification of regions containing
copy number alterations. To derive a statistical test, the resulting PH0 barcode was
compared to one generated by a non-tumor control. One should expect that con-
trols will become a single cluster at small values of the filtration value whereas the
tumor samples containing copy number alterations will cluster in several groups
at low filtration value and become a single connected component at larger filtra-
tion value. To assess the statistical significance, Arsuaga and colleagues propose
a statistic s = Σε(tε − cε)2, where tε and cε denote the average number of con-
nected components in the test and control data sets, respectively. An associated
null hypothesis (and p-value) was generated by random permutations of the data.
When applied to breast tumors from an independent study [249], the authors were
able to recapitulate known recurrent alterations and to identify some unreported
alterations.

The same approach could be used for the identification of regions of differential
gene expression. Using chromosomal position as ordering dimension, and expres-
sion of genes as a function, Arsuaga and colleagues [21] generated point cloud
data using a sliding window approach. Notice that expression of a gene is cor-
related to copy number information, i.e., highly amplified genes tend to be more
expressed, and deleted genes less expressed. The number of clusters as measured by
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H0 is associated to consistent changes in expression profiles across a chromosomal
region. Applying this approach to 251 breast cancer expression profiles from [353]
identified specific clustering profiles associated to different expression subtypes.

9.2 Topological Data Analysis in Networks and Neuroscience

Networks have become a common representation of many biological systems, rep-
resenting different scales of knowledge. For instance, protein-protein interactions
are summarized as networks where we can represent proteins in a living system as
nodes and their interactions as edges. Neurons in the brain and their interactions
provide another example of a biological system where some properties could be
loosely captured by networks. The architecture of the brain as captured by the inter-
connections between different regions provides another example. Researchers are
currently exploring the use of topological techniques to characterize the molecular,
neuronal, and architectural properties of the brain [98, 130, 201, 407, 424, 463].
The hope is that topological techniques will provide ways to summarize properties
of complex networks that generalize and extend the standard invariants based on
global statistical properties of local information (e.g., degree distribution, measures
of centrality of a vertex, or number of components).

9.2.1 Cellular Scales: Neuronal Activity

One of the central problems in neuroscience is how the ensemble of neurons can
efficiently capture and faithfully represent information about the world. Neurons
in physical proximity can exchange information across synaptic gaps, reflected in
their neuronal activity. The relationship between neuronal connectivity and activity
is highly nonlinear. Linear techniques do not suffice to correctly capture its struc-
ture. The visual cortex is a classical system in which to study the coding of external
physical stimuli into neurons. Singh and colleagues [463] used persistent homol-
ogy to study the population activity in the primary visual cortex. The invariants
derived from persistent homology in natural image stimulation were similar to a
spontaneously active cortex. Giusti and colleagues [201] proposed a method based
on TDA to extract nonlinear but monotonic relationships. The hippocampus has
been found to encode information about the physical environment through pyrami-
dal neurons. Different neurons in the hippocampus respond selectively to different
physical locations [390]. In [201], the method is shown to be able to recover geo-
metric information encoded in neuronal correlations (without using the external
stimuli); that is, they can recover place cell activity without hypotheses about the
stimuli or the receptive fields of the cells.
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Reimann et al. [424] explored the relation between neuronal architecture and
information processing by constructing directed graphs capturing the direction of
synaptic transmission. In particular, they summarized data as a directed graph
with nodes representing individual neurons and directed edges representing pre-
to postsynaptic neuronal connections. The response to external stimuli can be
modeled as time series data in the directed graph. Different aspects of the struc-
ture of these graphs can be quantified by identifying different objects at different
scales, from local (as indicated by the presence of cliques of neurons) to global
(as indicated by the existence of larger topological structures). (See Figure 9.5.)
Applying TDA techniques to computational reconstructions of neocortical circuits
in the brain of a rat, the authors were able to quantify the presence of these differ-
ent structures, including large numbers of high-dimensional cliques and “holes.”
This quantification of structural properties of neuronal networks hopefully pro-
vides a first step for understanding the association between brain architecture and
function.

9.2.2 Mesoscopic Scales: Brain Functional Networks

Cognitive processes usually involve the coordinated activity of different areas of
the brain. The relation between the activity of brain regions can be represented
by networks, and statistical properties of these networks can provide informa-
tion on the functional architecture. Functional imaging can provide information
on the activity of the brain at mesoscopic scales of thousands or millions of cells.
Petri et al. [407] proposed to use TDA techniques to study the statistical proper-
ties of homological cycles in these networks. To test these ideas, they compared
the resting state of 15 healthy volunteers receiving placebo or psilocybin, a psy-
choactive drug. A significant difference was observed in the homological features
between the two groups, suggesting that these rough descriptors capture relevant
structural properties of brain architecture. The brain architecture of structural con-
nectomes was also explored using topological techniques by Sizemore et al. [464];
in particular, they sought to identify densely connected groups of active regions.
Further, they proposed that these cliques were related to local fast processing.
Experimentally, they verified that these regions were consistent across a group of
eight individuals. Cassidy et al. [98] has applied TDA to compare the activity of
the brain using functional MRI (fMRI) in a variety of conditions. This approach
improves over standard correlation comparison methods, in the sense that when
applied to real data it produces much more sensible functional connectivity pre-
dictions. It involves a method to analyze network architecture using persistent
homology, accounting for potential artifacts due to spurious spatial and temporal
correlations.
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Figure 9.5 Representation from a slice of in silico reconstructed neuronal tissue.
In red, a clique formed by five pyramidal cells. Source: [424].

9.3 Topological Approaches to Biomedical Imaging

Imaging is one of the main non-invasive modalities for diagnosing and evaluat-
ing the progression of many diseases, including cancers. Solid tumors appear as
masses in various imaging technologies, notably including MRI. Tumors have a
shape and volume; these can be modeled as the topological and geometric proper-
ties of a three-dimensional object. Rough metrics on these masses (e.g., changes in
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volume) are used as a standard for prognosis and to evaluate therapeutic efficacy.
However, it has been found that other geometric invariants can provide interesting
clinical information. For instance, glioblastomas, the most common type of brain
tumors in adults, come in two types: one single mass or multiple masses (multifo-
cal/multicentric glioblastomas). That is, a glioblastoma is classified by whether it
has multiple path components. In [320], it was shown that these two types are asso-
ciated to different genetics: multifocal/multicentric tumors are strongly enriched in
point mutations in PIK3CA, a major oncogene, and are genetically highly heteroge-
neous with different lesions associated to different masses in the tumor (Figure 9.6).
This observation has important clinical implications, as multifocal/multicentric
glioblastomas have a worse prognosis and drug responses to different masses are
extremely heterogeneous.

The observation that simple geometric and topological properties of images (vol-
ume or number of path-connected components) can inform prognosis and drug
responses prompts the question of how image data relates to genetic and clinical
data. Ideally, one would like to systematically explore the map between genetic
and phenotypic data (as expressed in the image and in other clinical sources).

Figure 9.6 Glioblastomas can appear in a single mass (left), or several masses
(multifocal/multicentric glioblastomas) (right). This simple topological difference
is associated to specific mutations (PIK3) and worse prognosis. Source: [320].
Reprinted with permission of Springer-Nature: Lee, Jin-Ku, et al. “Spatiotem-
poral genomic architecture informs precision oncology in glioblastoma.” Nature
Genetics 49.4 (2017): 594–599.
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Crawford et al. [128] proposed to use the smooth Euler characteristic transform
(recall Section 3.8) to decompose tumor image data into a set of topological
features amenable to machine learning. The procedure starts by segmenting the
tumor image (i.e., identifying from the image data the tumor and reconstructing a
three-dimensional manifold [112]), then sectioning it using the smooth Euler char-
acteristic transform to extract a function of different directions that can be used for
subsequent functional machine learning analysis. Crawford et al. showed that topo-
logical information provides complementary information to other types of genomic,
transcriptomic, and volumetric data to predict overall survival in glioblastomas.
This work suggests an interesting approach of combining “omic” data with imag-
ing to better characterize the mechanisms of initiation and progression of tumor
growth; topological analysis appears naturally as a way of quantifying imaging
features.

Another interesting complex network studied using TDA is the blood vessel
system. In [489], Szymczak and colleagues proposed reconstructing the vascular
trees from three-dimensional images using persistent homology. The method was
applied to reconstruct coronary trees from computed tomography (CT) scan data
of the heart.

9.4 Spreading of Infectious Diseases

Networks have also been used to capture the spread of infectious agents, where
nodes represent infected individuals and direct infection is represented by edges.
Understanding the structure of these networks is one of the main objects of study
in epidemiology; such analysis provides information about the main routes of trans-
mission (aerosol, food, through other species, etc.), spread via local contact versus
long range contact (e.g., airline influence), how effective is the transmission of
infection, potential sensitive and resistant populations, and the efficacy of potential
ways of curtailing the spread. Taylor and colleagues [491] used TDA techniques
to study the mathematical structure of these graphs, their intrinsic dimensionality,
and their topological and geometric properties; they connected these invariants to
epidemiologically significant quantities.

Another application is the study of immune responses to infectious agents
[501]. It is well understood that different hosts will have very different responses
when exposed to the same infectious agents: some are resilient, others present
mild symptoms, and others could die. Torres et al. propose a phenotypic space,
the “disease space,” that captures the potential states of an infected host (Fig-
ure 9.7). Measuring physiological data (weight, temperature, different cell counts,
among others) at different states of infection, one can trace the trajectories of
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Figure 9.7 Left: Conjectured “disease space” capturing the potential phenotypic
states of a host infected with a pathogen. The normal state of an uninfected indi-
vidual is on the left. When it is exposed it is thrown out of this state. As the host
recovers, it goes back to the healthy state through a trajectory that does not track
back the previous states. Right: Mapper applied to physiological data from mice
exposed to Plasmodium chabaudi. Source: [501].

different hosts after exposure. It was observed that resilient hosts do not signifi-
cantly change states, while less resilient hosts are associated to large “loops” in
the disease space. These hypotheses were evaluated in mice exposed to Plasmod-
ium chabaudi (a murine analogue of the cause of human malaria) and in malaria
patients.

9.5 Summary

There are many exciting directions in the application of TDA methods to biolog-
ical data beyond genomics, and we expect more to be discovered in the coming
years. This work is clearly in its infancy, but already there have been interesting
and suggestive results.

● There is a great deal of biological data which comes as an ordered sequence;
time series data is a notable example, but not the only one.

● Topological data analysis methods provide a way to detect periodicity in ordered
signals, via a sliding window approach, that is competitive with the best standard
methods (and has different properties).

● TDA methods for analyzing graph structures have been profitably applied
to problems in neuroscience (studying neuronal connectivity and its corre-
lation with neural activity), epidemiology, and analysis of coronary artery
structure.
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9.6 Suggestions for Further Reading

● There are very good introductory books on time series analysis. A very ped-
agogical introduction is the book by J. Brockwell and R. Davis, Time Series:
Theory and Methods [74]. The book reviews spectral methods, autoregressive
and moving average processes, state-space models and forecasting.

● A review on time series analysis applications to transcriptomic and epigenetic
data is given by Z. Bar-Joseph et al. [35], with a summary of recent interesting
problems and standard bioinformatic tools for analysis.

● Regarding the TDA study of the sliding window approach to series data, we
recommend reading the work of J. Perea and J. Harer [404].

● For recent applications of TDA techniques to neuroscience, we recommend the
review by C. Curto [130].
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Conclusions

This is an extremely exciting time in biology, where new discoveries happen on
a daily basis and there is a vast amount of data available to researchers. In this
book, we have made the argument that scientific progress in biology requires the
application of more sophisticated methods for representing and analyzing the shape
of data. To carry out this argument, we have walked the reader through some basic
applications of algebraic topology to biological problems.

The attentive reader has no doubt observed that our efforts serve mostly to high-
light the extensive work that needs to be done. On the mathematical side, there are
many urgent foundational problems that need to be addressed, including further
development of statistical methods attuned to biological applications, finding better
ways of applying multiple filtration parameters, defining new simplicial complexes
that can capture biological relationships in a natural way, and more. On the biolog-
ical side, the applications we have described constitute only the tip of the iceberg
of potential applications. Developing biologically meaningful metrics and Morse-
type functions and accurate and meaningful topological condensed representations
remains an art that needs to be systematized.

Our hope is that this book will help inspire the next wave of work in the area.
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Appendix A

Algorithms in Topological Data Analysis

A.1 Computing Persistent Homology

To explicitly compute the homology of a simplicial complex, one needs to choose
bases for Ck(X) and Ck−1(X) and then find the image and kernel of the boundary
map

∂k : Ck(X)→ Ck−1(X).

This can be done via representing the boundary map as a matrix with respect to the
chosen bases and putting this matrix in Smith normal form. In order to compute
persistent homology, one has to choose compatible bases for each chain group
simultaneously; this is what is behind the standard algorithms for computing the
persistent homology (recall Section 2.7 or see for example [551]).

These algorithms are O(n3) in the number of simplices in the complex, and while
they are often linear in practice, it is not hard to construct explicit filtrations that
achieve the cubic bound [361]. As discussed in Section 2.7, if the feature scale is
close to the diameter of the data, the Vietoris-Rips filtration will have exponentially
many simplices. There have been some efforts to achieve better performance by
simplifying the complex; [455] describes how to build a hierarchical collection of
approximations to suitable finite metric spaces such that for any given accuracy
the computation time is linear in the number of points X, and [549] uses simplicial
collapses to reduce the complex without changing its homotopy type.

However, the best performance to date has been achieved by work that uses
a series of optimizations of the basic algorithm, most notably the use of per-
sistent cohomology in Ripser [39], which is currently the fastest and most
memory-efficient available implementation (for Vietoris-Rips complexes).

A.2 Software for Persistent Homology and Mapper

We begin by describing the software available for persistent homology. There are
essentially two categories of efficiency: the first group does not work for large
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complexes but in general has more functionality, and the second group provides the
state of the art performance. A very nice summary of the situation (with detailed
performance comparisons) is given in [413]. All of the packages we discuss are
under active development at the time of writing.

1. Javaplex: handles zigzag persistence and construction of the witness com-
plex [490].

2. Dionysus: handles vineyards, zigzag persistence, and persistent cohomol-
ogy [360].

3. Perseus: handles cubical complexes as input [376].

For large data sets, there has been a recent revolution; most notably, Ripser and
Eirene work on remarkably large complexes (billions of simplices).

1. Gudhi: handles the witness complex, subsampling, persistent cohomology,
cubical complexes [341].

2. Dipha: distributes computation across many parallel nodes [40, 41].
3. Ripser: fastest performance available, only compatible with Vietoris-Rips so

far [39].
4. Eirene: very good performance (comparable to Ripser), supports identification

and rendering of specific cycles that represent homology [238, 239].

Software for multidimensional persistence has been considerably more limited,
until the recent development of the excellent Rivet tool.

1. Rivet: supports novel simplification techniques and rendering options [324,
325].

A number of the statistical techniques for topological data analysis, most notably
persistence landscapes, are now available in free software packages.

1. Hera: supports fast computation of bottleneck and Wasserstein distances [289,
290].

2. TDA statistics R package: supports confidence sets, bootstrapping, persis-
tence landscapes, and distance to a measure. Incorporates Gudhi, Dionysus,
and PHAT [171]. (PHAT is a library for persistence computation [43, 44].)

3. Persistence Landscape Toolbox: supports various statistical operations in the
context of persistence landscapes [77, 78].

The situation for Mapper is somewhat more limited amongst free software; far
and away the best implementation is the Ayasdi version, which requires a license
and contacting the company in order to download the software.
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1. Python Mapper: an experimental package that provides both a GUI interface
and a python package [365].

2. TDA Mapper: an R package exposing Mapper functionality [402].
3. KeplerMapper: an experimental package that provides a python library [447].
4. Ayasdi: commercial software for Mapper, supporting a wide range of filters, a

well-developed GUI, and elaborate output renderings [267].
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Introduction to Population Genetics

B.1 Population Genetics

Population genetics studies the distribution of frequency of alleles in populations,
subject to mutation, selection, changes in population size, migration, and many
other factors. It is mostly a model-based framework, where estimators of param-
eters of the model could be derived under certain assumptions. For instance, a
common problem is to describe the likelihood of the rise of a certain mutation to
become the dominant allele in the population after a few generations. To assess the
impact of this mutation, one needs to postulate a model that captures some of the
key features of the population. For instance, the simplest assumption is a constant
size N and no selective advantage in the mutation. Under these simple assumptions,
it is possible to derive the probability for a random mutation to become dominant
and compute how many generations this would take. One can also derive proba-
bility distributions, for instance, the probability p(t |N) that under the hypotheses
above, a mutation would become dominant after t generations.

Until the development of genomic techniques and the availability of popula-
tion data sets, the development of population genetics was largely theoretical. The
founding principles of population genetics were set in the 1920s and 1930s by
Ronald Fisher, Sewall Wright, and J. B. S. Haldane. Their work quantitatively inte-
grated Mendelian genetics with natural selection. In the 1960s the work of Motoo
Kimura connected the probability distributions derived from population genetics
models to diffusion theory and Kolmogorov’s treatment of stochastic Markov pro-
cesses [299]. Kimura proposed the neutral theory of evolution, suggesting that, at
the molecular level, most of the variation in populations is not the effect of natural
selection but of stochastic drift in allele frequencies [300]. Until the 1980s most
models in population genetics were evaluating the changes in distributions of alle-
les, starting from some initial conditions and evolving the population forward in
time. In 1982 Kingman proposed a simple framework to study the distribution of
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potential histories given a sample of n individuals in the population. This approach,
known as coalescent theory, has become a standard in the field. We now turn to
briefly review these different models.

B.2 Wright-Fisher Model

Ronald Fisher and Sewall Wright, at the beginning of the 1930s, introduced one of
the first models in population genetics. The model studies a diploid (each individual
has two chromosomal copies) constant population of N individuals, so there are
2N copies of each allele in the population. The basic Wright-Fisher model ignores
mutations and recombinations to study distributions of alleles in a population. The
results are identical for a generation of 2N haploid individuals. In the Wright-Fisher
model generations are discrete and do not overlap, and copies of an allele are drawn
at random from the alleles in the previous generation. This model also does not
consider that there can be structure in the parental population, that there are males
and females, that the number of individuals in the population can change, and that
there can be geographic limitations in mating (Figure B.1).

At generation t = n + 1, an allele is picked up from a parent allele at random
from generation t = n. The number of descendants m of a particular allele follows
a binomial distribution with probability 1/2N:

p(m) =

(
2N
m

) (
1

2N

)m (
1 − 1

2N

)2N−m

.

For large populations, the probability that a gene has no descendants in the next
generation is p(0) ∼ e−1 ∼ 0.37. At each generation, that probability that a particu-
lar gene has no descendants increases monotonically. After many generations, only
one gene will be present in the population, and we say that it will become fixed.
The probability that a gene will become fixed in the population at very large time
scales will then be 1/2N, as in this model all genes have the same probability of
becoming fixed in the population. If a particular allele is present in the population
at frequency x, the frequency in the next generation will have variance x(1− x)/2N.
The effect of random drift depends on the size of the population. Note that this loss
of variation has nothing to do with selection but is just random drift. The Wright-
Fisher model estimates the average number of generations that have passed until a
gene becomes fixed in the population to be 4N.

One can introduce mutations in this model at a particular rate μ per gene per
generation. The expected number of mutations in a generation is 2Nμ. However,
as we have seen, most of the alleles where the mutations occur disappear from the
population after a long time (≥ 4N).
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Figure B.1 Wright-Fisher model in population genetics. Assume a population
of constant size 2N and generations that occur at discrete intervals ti. A parent
gene can randomly replicate into m descendants following a binomial distribu-
tion of mean m = 1. In some cases, the parent leaves no descendants and the
lineage becomes extinct, and only one allele becomes dominant at longer times
(becomes fixed). In the top figure we represent an example of how different alle-
les are related by ancestry. The individuals in the initial population on the left
replicate and descendants are colored according to the original parent. After some
generations one color dominates. In the bottom figure, we represent the frequency
of each of the original parents.

B.3 Moran Model

The Moran model is a variation of the Wright-Fisher model that assumes over-
lapping generations [358] in a population of 2N haploid individuals. Like the
Wright-Fisher model, the Moran model does not consider structure in the popu-
lation or selection of particular alleles. In the Moran model, each step corresponds
to (1) selection of a random individual and (2) a decision to reproduce (two copies)
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or die with equal probability. One generation of the Wright-Fisher model corre-
sponds to 2N steps. As expected, the Moran model gives the same results as the
Wright-Fisher model.

B.4 Kimura Diffusion Model

One of the main objects of study in the previous models is the probability distribu-
tion f (x′, t′ | x, t) of finding a particular allele at a frequency x′ and a time t′ given
that it was observed at a frequency x and time t. The change in allele frequencies
in random drift models is then a stochastic stationary Markov process. When the
number of individuals or genes in the population is large, the changes in frequency
are almost continuous. Kimura in 1964 observed [299] that f (x′, t′ | x, t) obeys
an equation that he called the Fokker-Planck equation (or Kolmogorov forward
equation).

Consider two alleles A and B in a gene with frequency x and 1 − x respectively
at time t. Let us consider also the general case where the allele A can mutate to the
allele B with a probability of μ1 per gene per generation, and B can mutate to A
at a rate of μ2 per gene per generation. Kimura found that f (x′, t′ | x, t) follows the
equation:

∂

∂t′
f (x′, t′ | x, t) = 1

4N
∂2

∂x′2
(
x′(1 − x′) f (x′, t′ | x, t)

)
+

∂

∂x′
(
((μ1 + μ2)x′ − μ2) f (x′, t′ | x, t)

)
with initial conditions f (x′, t | x, t) = δ(x′ − x), where δ(x) is the Dirac delta. This
is a heat or diffusion equation with a drift term (last term on the right). If the
mutation rates are very low, the dominant term is the first term on the right, which
is a diffusion term that depends on N, the size of the population. If the population
size is large, the diffusion term is small, and drift due to mutation dominates. The
effect of selection in one of the alleles can also be included as part of the drift term
[299].

The stationary solutions of this equation of the two allele model with mutation
rates at t′ → ∞ are beta distributions, already discovered by Wright in 1931 [541]:

f (x) =
Γ(4N(μ1 + μ2))
Γ(4Nμ1)Γ(4Nμ2)

x4Nμ1−1(1 − x)4Nμ2−1.

B.5 Coalescence

Previous models studied the distribution of gene and allele frequencies and how
these distributions change as we move forward in time. Coalescence takes a
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Figure B.2 The coalescence process traces back the ancestry of a set of n lin-
eages/individuals in a pool of 2N lineages/individuals. In the simplest model
without recombination, two of the n lineages/individuals coalesce, the n − 1 coa-
lesce again, etc. generating a tree structure. The times to the branching events T (n)
can be easily computed.

different approach [301]. Starting from a sample of n genes, we reconstruct the
potential histories. In the case of no recombination, the stories are trees that reflect
a common ancestor to different individuals (Figure B.2). Moving back in time,
two of the n will be found to be derived from a common ancestor, reducing the
problem to n − 1 lineages, then to n − 2, etc. until all n coalesce in a single ances-
tor. By studying the distribution of potential histories we can estimate different
parameters, for instance, the time to the most recent common ancestor (TMRCA),
the number of generations it took for all n alleles to coalesce into a single
ancestor.

The simple coalescence model, like the previous forward models, is also based
in a homogenous population of constant size N diploid individuals, with no selec-
tion, no recombination, and no population structure. In that case results can be
obtained analytically. For instance, we can compute the time t when two lineages
coalesced. The probability that by random chance two of 2N lineages coalesce in
one generation is 1/2N and the probability that they do not coalesce is 1−1/2N. As
these probabilities are the same in every generation (population size is constant),
the probability that they coalesce at generation t follows a geometric distribution:
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p(t) =
1

2N

(
1 − 1

2N

)t−1

.

If we now have m lineages, we can follow the same reasoning and estimate the
probability that two of these coalesce. The probability that none of them coalesces
in the first generation is qm = (1− 1/2N)(1− 2/2N) . . . (1− (m− 1)/2N). In the limit
of m � 2N the probability qm ∼ m(m−1)

4N , so the probability that they coalesce in t
generations is a geometric distribution:

pm(t) = (1 − qm)qt−1
m .

The expected number of generations is the mean value of the distribution Tm =

1/qm ∼ 4
m(m−1) . The time to the most recent common ancestor, the expected time to

the coalescence of all m lineages, is the sum of Tk for k = 2, . . . ,m:

TMRCA =

m∑
k=2

Tk ∼ 4N

(
1

1 · 2 +
1

2 · 3 + . . . +
1

(m − 1)m

)
= 4N

(
1 − 1

m

)
.

If there is a mutation rate μ per generation, one can estimate how many mutations
S have been accumulated in the whole process by estimating the size of the whole
tree. As there are k lineages per time Tk this is simply:

S = μ
m∑

k=2

kTk ∼ 4Nμ

(
1
1
+

1
2
+ . . . +

1
(m − 1)

)
∼ 4Nμ log m.

Counting the number of polymorphic sites S by sampling m lineages in a pop-
ulation of 2N provides an estimate of θ = 4Nμ, the number of mutations per
generation in a population, equal to:

θ̂ =
S∑m−1

k=1
1
k

.

This is known as the Watterson estimator [528], one of the most frequently used
estimators of θ.

The basic coalescence framework we have just described could be easily
extended to recombination, fluctuating population sizes (exponential growth, con-
tracting populations, bottlenecks), population divided into different subpopulations
(finite island, population subdivision models), splitting of populations, migrations,
and effect of selection, among others. In these cases, there are fewer analytic results
but coalescence simulations have been implemented in a variety of contexts.

B.6 Suggestions for Further Reading

There are excellent books and reviews on phylogenetics for the reader who wants
to dive into this topic.
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● Principles of Population Genetics by Daniel Hartl and Andrew G. Clark [230]
is a very nice introduction to population genetics, with careful explanations and
many examples. It does not require previous knowledge and it is accessible to a
wide audience. A beautiful first read on the topic of population genetics.

● Population Genetics: A Concise Guide by John H. Gillespie [198], is a concise
introduction to population genetics.

● Gene genealogies, Variation and Evolution: a Primer in Coalescent Theory
by Jotun Hein, and Mikkel Schierup, and Carsten Wiuf [237], provides an
introduction to population genetics with a coalescence angle.

● Coalescent Theory: An Introduction, by John Wakely [518], like the previous
book, focuses on coalescence with a wide target audience, including biologists,
concentrating on the mathematical structure of coalescence.

● ReCombinatorics: a Comprehensive Introduction to Inference of Ancestral
Recombination Graphs by Dan Gusfield [220].

● Mathematical Population Genetics 1: Theoretical Introduction by Warren
Ewens [166] is a nice book with a mathematical angle. Recommended as an
advanced treatment for the more mathematically inclined.

B.7 Data and Software

There are many software packages for population genetics simulations and infer-
ence. Here is a very incomplete list of some of the most commonly used.

● GeneTree: by R. C. Griffiths, reconstructs trees describing the mutation history
of samples of DNA sequences and estimates maximum likelihood parameters
such as mutation rates, changes in population (migration and growth), and dis-
tribution of times to most recent common ancestors. Software can be found at
www.stats.ox.ac.uk/griff/software.html.

● MS: by Hudson [252], can simulate variable population size, migration and
admixture, recombination, and gene conversion.

● MSMS: by Gregory Ewing and Joachim Hermisson [167], is a coalescent simu-
lation software that can include different factors such as demographic structure
and selection.

● MaCS: by Chen, Marjoram and Wall [114], is a fast algorithm that can simulate
different demographic models including admixtures, different population sizes
and recombination hotspots.

www.stats.ox.ac.uk/griff/software.html
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Molecular Phylogenetics

C.1 Introduction

The main goal in molecular phylogenetics is to reconstruct a phylogenetic tree
from a set of protein or genomic sequences. The tree will represent the history
of a set of organisms that share a common ancestor. For this purpose, sequences
need to be homologous; that is, they should have evolved from a common ancestral
sequence. Alignment of homologous sequences is the first step to any phylogenetic
inference. For instance, let us try to align two small sequences that we suspect are
homologous: S 1 = ACTGCGAA and S 2 = CCGTCT AA. An alignment is a map
between a set of strings of the same length that contain the same nucleotides and
have the same order as in the original data, and could include gaps, represented
by −. For instance, a potential alignment can be of the form:

S ′1 = ACTG −CGAA

S ′2 = −CCGTCT AA,

consisting of two strings of length 9, that differ in position 1 (A → −), position
3 (T → C), position 5 (− → T ), and position 7 (G → T ). Differences between
two nucleotides represent mutations between the two bases, and a gap indicates a
deletion or insertion of a particular nucleotide.

There are many potential alignments between a set of sequences, and we need
criteria to determine which are optimal. A common approach is to consider a score
for each alignment. For instance, one could count the number of differences. In the
case of the alignment {S ′1, S ′2}, this would be 4. A simple score is just the number
of similarities minus the number of differences, in this case 5−4 = 1. But of course,
not every change is necessarily weighted equally, indeed, there are some changes
that are more likely to occur than others. The genomic material in all known organ-
isms is polymers of nucleotides, each composed of a sugar, a nitrogenous base, and
a phosphate group. The five-carbon sugar (ribose or deoxyribose) defines the type

454
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of molecule, RNA or DNA. Bases can be divided into two types based on the chem-
ical structure, purines (adenine and guanine) and pyrimidines (cytosine, uracil and
thymine). A substitution, changing a base into another, could happen as a result
of different chemical processes. For instance, one of the most common chemical
processes is a spontaneous deamination (removing an amine group) of a cytosine,
changing it into uracil. If not correctly repaired, that will lead to a C → T mutation
in DNA. It turns out that changes within purines and within pyrimidines (tran-
sitions) are much more common than changes between purines and pyrimidines
(transversions). The probabilities of these changes can be inferred experimentally,
by considering data across different homologous sequences and estimating likeli-
hoods. Similarly, one can evaluate the effect of small insertions and deletions by
working with protein sequences.

A popular type of score assigns to every alignment a linear score that adds the
weights for every substitution and adds a gap penalty for indels. There are sev-
eral classic dynamic programming algorithms, like Needleman-Wunsch [379] and
Smith-Waterman [468], for optimal alignment between a pair of sequences. When
dealing with multiple sequences one could consider adding the pairwise scores, but
this problem has been shown to be NP-complete [521]. In practice, heuristics are
used.

Once the sequences are aligned one can start inferring trees (see Figure C.1).
There are several kinds of trees to consider. In some cases, trees can be rooted,
e.g., if they have a node that represents the common ancestor to all the analyzed
taxa, which gives information about the temporal order of nodes in the tree. Alter-
natively, unrooted trees display the evolutionary relationships among taxa, without
any ancestral root. The root is usually, but not always, determined by using an out-
group taxon that falls outside the group of taxa of interest. In general, when this
information is not available or not used, one can construct an unrooted tree. For
m sequences, an unrooted tree has m external nodes (or leaves) each of which
is labeled with a different sequence. Internal nodes can be labeled by inferred
sequences that represent the genomic information of common ancestors of two
of the contiguous nodes. With m labeled leaves it is easy to see that the number of
tree topologies is (2m − 5)!! = (2m − 5)(2m − 7)(2m − 9) · · · 1. That is, for m = 3
branches, there is only one labeled unrooted tree, for m = 4 there are 3, for m = 5
there are 15, etc.

Edges could be weighted by a positive number that is associated to the num-
ber of changes between nodes (for instance, it could be the number of changes, or
a weighted version of this, assigning each change a different weight). The space
of potential trees is enormous and some criterion is needed to find the optimal
tree. There are many methods that have been proposed. Here we explain some of
the most popular ones. Many methods work directly with the aligned sequences,
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Figure C.1 Notation on a tree. There are 2m − 3 possible ways of constructing a
rooted tree from an unrooted tree of m leaves.

referred to as alignment-based methods. In all these methods the strategy is to min-
imize a criterion (a likelihood, for instance) by exploring a large number of trees.
As previously described, the number of trees increases as m!, making it unfeasible
to explore all possible tree topologies. Different heuristics are used to explore a
reasonable set of topologies.

A second type of approach computes a distance metric from the data, and works
directly using the distance data. These methods have the advantage that they scale
polynomially in the number of sequences and genome length, and so one can easily
work with thousands of sequences. On the other hand, the results are sometimes
less biologically plausible than likelihood-based methods.

C.2 Sequence Based Methods

C.2.1 Parsimony

The parsimony principle is the preference for the simplest explanation of some
facts. In the case of phylogenetic reconstruction, parsimony selects the tree with
the minimum number of changes required to explain an alignment. Given a tree T ,
and a set of sequences S from a multiple alignment attached to the leaves (external
vertices), we can assign hypothetical sequences H to internal nodes. We can com-
pute for each edge a distance using the Hamming metric or a weighted version of
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it. Adding the results for all edges, we obtain the parsimony score P(T,H | S ). The
(large) maximum parsimony tree is the tree T and hypothetical internal sequences
assignment H that minimizes P(T,H | S ). The task of computing the best H, given a
particular tree topology T , from some external data S , is called the small parsimony
problem and can be computed in polynomial time, using for example, some clas-
sical algorithms from phylogenetics such as the Fitch algorithm [176]. The large
parsimony problem requires going through all possible topologies and for each one
computing the optimal H. The output is the topology that minimizes the parsimony
score. This problem has been shown to be NP-complete [180].

There are, however, some heuristic methods to explore possible solutions, with-
out, of course, any guarantee that they will be the optimal solution. Branch and
bound methods start with a subset of three sequences S 3 from the original data S .
In this case, there is a unique tree and a maximum parsimony solution can easily be
found. Now, we can select a sequence from S that is not in S 3 and attach a new leaf
to any of the three leaves. There are three different possibilities to consider. Now
we can select another sequence from S that was not previously considered, and
repeat the procedure, but now there are five potential edges. In this way, one can
construct iteratively all possible trees in a hierarchical fashion (a tree of trees). Now
in each of these iterations we can compute the parsimony score, which will always
increase when considering more branches. In the branch and bound method, one
proceeds iteratively and selects the best tree in each iteration and only considers
subsequent iterations along those particular branches in the tree of trees (see
Figure C.2).
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Figure C.2 Branch and bound.
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A B C

Figure C.3 As the number of taxa increases, the number of potential trees
becomes extremely large. There are techniques to explore the space of potential
trees by branch swapping strategies: (A) nearest neighbor interchange (NNI), (B)
pruning and regrafting (SPR), and (C) tree bisection and reconnection (TBR).

A second type of strategy is based on the idea of swapping branches. Here we
describe three major strategies, nearest neighbor interchange (NNI), pruning and
regrafting (SPR), and tree bisection and reconnection (TBR). Any internal edge
on a bifurcating tree has four neighbor subtrees, two attached to one vertex and
two to the other. NNI is an operation that exchanges a tree of one of the neigh-
bor vertices with another one (see Figure C.3). There are several implementations
of these methods, but in the simplest version, a NNI procedure is accepted if it
reduces the parsimony score. Pruning and regrafting is an idea along the same
lines where a subtree is cut and regrafted in one of the edges, creating a new
node (see Figure C.3). Tree bisection and reconnection (TBR) selects an edge and
removes it completely from the larger tree, generating two smaller subtrees. Then
one edge from each subtree is selected and two new nodes are introduced in each
of the edges and finally joined by a new edge (see Figure C.3). NNI, SPR and
TBR are operations in the space of trees, and different algorithms can be imple-
mented to make sure that local minima are avoided. These heuristic approaches are
commonly used in other phylogenetic techniques, like the likelihood methods we
discuss next.

C.2.2 Likelihood Methods

Likelihood methods optimize a likelihood function Ψ(S |T, L, M), that calculates
the probability of obtaining the observed sequence data S given a tree T with
branch lengths L and a model M that determines the probability of a particular
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mutation to occur. The advantage of probabilistic models is that they incorporate
realistic assumptions based on empirical data and they can be used to estimate
parameters. For instance, it is easy to incorporate the probability of back muta-
tions, different rates for transitions and transversions, and so forth, and estimate
the likelihood for those parameters. For instance, one can compute the probability
of a base to change after some particular time l (associated to a branch of length l
in the tree) and at a constant mutation rate μ to be p(l) = 3

4 (1− e−
4
3μl). The formula

can be easily adapted to allow different mutation rates across different bases, and
even different rates in different branches and genomic positions.

Most likelihood methods assume that the likelihood for a sequence is the prod-
uct of likelihoods for all positions (independence among sites): Ψ(S |T, L, M) =∏
Ψ(si |T, L, M), where si is the alignment data for genomic position i. For each

edge on the tree and site i, one can associate characters and compute the probability
for change (p(l)) or staying the same (1 − p(l)), where l is the length associated to
the edge. For a given tree T with edge length L, the likelihood for the observed data
S can be computed using the Felsenstein algorithm [173, 174].

However, the full solution to the likelihood problem requires that all different
tree topologies and branch lengths are explored, and as such finding the maximum
likelihood tree is NP-hard [115]. There are, however, good approximations that
adjust tree topology and branch lengths simultaneously. For instance, in [216] a
hill-climbing algorithm is proposed, that starts from a fast distance-based method
and modifies this tree to improve its likelihood at each iteration.

C.2.3 Bayesian Methods

Bayesian methods are based on a similar idea to likelihood methods, but instead
of estimating the probability of the observed data S given a tree, they estimate the
posterior probability P(T, L | S ) of a weighted tree (T, L) given the observed data S
[257]. The basic object here is a distribution on the space of all potential trees. The
whole distribution cannot be estimated analytically, but it is possible to sample the
distribution. Most of the implementations are based on variations of Markov chain
Monte Carlo (MCMC) approaches. The main idea is simple: one can take a tree
Ti, modify it to obtain a new tree T ′, and compute the ratio between the posterior
probabilities:

R =
P(T ′, L′ | S )
P(Ti, Li | S )

.

Using Bayes theorem, this can be shown to be equivalent to:

R =
P(S |T ′, L′)P(T ′, L′)
P(S |Ti, Li)P(T, L)

,
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where P(T, L) is the prior probability of observing a weighted tree (T, L).
Based on the posterior ratio R, we can decide whether or not to accept the modifi-

cation T ′. If so, we take the accepted tree as new starting point and we continue the
operation. This procedure generates a random walk on the space of trees sampling
a distribution that approximates P(T, L | S ). One of the most popular implementa-
tions is the Metropolis-Hastings algorithm [234]: we accept the new tree with a
probability min(1,R). If so, we define (Ti+1, Li+1) = (T ′, L′), and now we iterate.
Trees with higher posterior probability will tend to be sampled more frequently. In
the end, the result is a set of trees with high posterior probabilities; this allows us
to account for uncertainty. This set of trees can then be summarized in a consensus
tree if necessary.

Different implementations have been carried out, involving different pertur-
bations of the trees (for instance, the ones discussed above, NNI, SPR, TRD),
different evolutionary models (constant and non-constant rates, different rates for
different mutation types), variations on initial location in tree space, and many
others.

In some simple cases, Bayesian techniques have been reported to be more
accurate (the output tree topology displays evolutionary relationships closer to real-
ity) than parsimony or distance based methods, especially when analyzing highly
divergent taxa [256].

C.3 Distance Based Methods

Distance based methods reduce the complexity of the inference tree dramatically
by considering only the distances between the sequences S ; the problem is then
to reconstruct a weighted tree. As not all the information regarding particular posi-
tions is used, there is no attempt to reconstruct sequences attached to internal nodes
(ancestral states).

Several distance functions can be constructed from a set of sequences. The
simplest one is the Hamming distance dH , which is the fraction of bases that
differ between two sequences. The Hamming distance considers all substitutions
equally likely and it does not consider the probability that for long times there
could be mutations in already mutated positions. A natural way to assign a dis-
tance that takes into account the possibility of back mutations is estimating μt
by the fraction of bases changed after a time t if the mutation rate is μ, which
we can compute by inverting p(l) = 3

4 (1 − e−
4
3μl). This defines the Jukes-Cantor

distance:

dJC = −3
4

log(1 − 4
3

dH).
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The Jukes-Cantor distance is just a transformation of the unit interval into
the positive numbers. When dH → 0, dJC ∼ dH , i.e. when they are near zero
both distances are similar. But when two random sequences with four bases are
aligned and there is an equal number of the four bases, only one quarter of the
bases will be the same. Then dH → 3/4 and dJC → ∞. More complicated
models incorporate different rates of transitions and transversions, and different
frequencies of nucleotides. For instance the K80 model [298] considers that all
bases are equally frequent but that there are different rates for transitions and
transversions. If p is the fraction of transitions (like the Hamming distance but
only counting transitions) and q the fraction of transversions, the K80 distance is
defined as:

dK80 = −1
2

log(1 − 2p − q) − 1
4

log(1 − 2q).

If the frequency of the four nucleotides is different from 25%, Jukes-Cantor can
be modified to the Tajima-Nei distance:

dT N84 = −β log(1 − dH

β
)

where β =
∑

i f 2
i , and fi is the frequency of the nucleotide i. Further generalizations

include different rates for each mutation and different frequencies per nucleotide.
Now assume the whole data is reduced to a distance metric. How can we infer

a weighted tree from this metric? One of the oldest methods is the least squares
method, proposed in 1967 by Fitch and Margoliash [177]. The basic idea is to find
the weighted tree that minimizes the sum of the squares of differences between the
distances between two sequences and the sequence in the tree (sum of branches
connecting the two leaves dT

i j, also called patristic distance):

s =
∑
i, j

(di j − dT
i j)

2.

The method requires exploration of all topologies; unsurprisingly, the method is
NP-complete [135].

Agglomerative or clustering methods are usually much more convenient and
faster, generating a solution in polynomial time. The main idea of these methods
is to start from the pair of closest sequences that are linked. Then eliminate the
columns and rows from these sequences and introduce a new one where distances
are computed using a particular rule. Now, the distance matrix contains one fewer
column and row. By iterations, one quickly arrives at a single element. The most
popular algorithm of this type is neighbor-joining (NJ) [442], which proceeds as
follows.
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1. First calculate the matrix Ti j = (m − 2)di j − ∑
k dik − ∑

k d jk, where m is the
number of sequences.

2. Find the leaves with lowest Ti j, i and j.
3. Define a new leaf k, and join i and j with k.
4. Compute distances to the new node from the leaves being joined:

dik =
1
2

di j +
1

2(m − 2)

⎛⎜⎜⎜⎜⎜⎝∑
s

(dis − d js)

⎞⎟⎟⎟⎟⎟⎠ .
5. Compute distances to the other leaves from the new node k,

dks =
(dis + d js − di j)

2
.6. Replace the joined neighbors with a new node, using the recomputed distance.
And restart the algorithm.

The NJ algorithm generates a tree in polynomial time, and generates the right
tree if the distance matrix satisfies the four point condition. However, in more
general cases, it could lead to strange results such as negative branch lengths.

C.4 Phylogenetic Networks

As we have seen in Chapter 5, phylogenetic trees fail to capture reticulate events
including recombinations and reassortments in viruses, horizontal gene transfer
in bacteria, and meiotic recombination and species hybridization in eukaryotes.
Phylogenetic networks aim to represent these events as a generalization of a tree
with external nodes representing the observed data and a graph, with cycles rep-
resenting incompatibilities. Like phylogenetic trees, phylogenetic networks can be
constructed from sequences or distances. We will briefly mention a few methods
that we have discussed in this book.

A common approach to capture reticulate events is to use split networks. Split
networks represent incompatible splits, but the interpretation in terms of biological
processes that could generate these splits is obscure. For example, it not easy to tell
if an incompatible tree was generated by recombination, back mutations, or a hori-
zontal gene transfer event. Nor can one determine how many events generated the
incompatibility, whether just one reticulate event is enough to generate an incom-
patibility, how the number of incompatibilities scale with recombination rates, etc.
The lack of interpretability of split representations constitutes a serious obstacle to
a wider adoption of these representations for the biological community.

Clearer biological interpretations arise from a reticulate network, where each
loop is supposed to represent a reticulate event (recombination, gene transfer,
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reassortment, etc.). Ancestral recombinant graphs (ARGs), for instance, introduce
nodes that correspond to potential recombination.

C.4.1 Split Networks

Let X be a set. Then a split S 1 | S 2 is any partition of X into two non-empty sets:

● S 1 � ∅ and S 2 � ∅,
● S 1 ∪ S 2 = S ,
● S 1 ∩ S 2 = ∅.

A weighted set of splits (S, L) is a collection of splits {S i} together with a set
of weights {li ≥ 0}. In a tree, each edge provides a split: if we cut the edge, the
data splits into two non-overlapping subsets. More interestingly, trees provide a
set of splits {S i} that satisfy an extra condition – they are compatible. Two splits
S i = Xi |Yi and S j = Xj |Yj are compatible if and only if one of the intersections
Xi ∩ Xj, Xi ∩ Yj, Yi ∩ Xj, or Yi ∩ Yj is empty. A set of splits S is compatible if all
possible pairs are compatible.

Trees generate compatible sets of splits, and compatible sets of splits can be
represented by trees. A weighted tree (T, L) is in this way equivalent to a weighted
set of compatible splits (S, L). But splits that are not compatible generalize the
notion of a tree. A representation of incompatible splits is through a split network.
A split network represents a set (S, L) where each element of S labels a single
node, and each edge is labeled by splits, in such a way that removing the edges
corresponding to a split partitions the graph into two, where labeled nodes are split
correspondingly. In a split network one can use one or more edges to represent a
split, in such a way that the deletion of such edges generates the two elements of
the split (see Figure C.4).

C.4.2 Sequence Based Methods

We will briefly mention two sequence based network techniques that we described
in Section 5.10: median networks and ancestral recombinant graphs (ARGs).

Median networks. Median networks take as input a set of aligned sequences S ,
that we will assume have letters 0 and 1. First a simplification of S is performed
by taking a condensed representation that discards positions that are the same in
all sequences, and taking only one representative position for every set of positions
that displays the same pattern. Each of the representatives is assigned a weight βi

corresponding to the number of positions that are in the same class. Let us call the
set of representatives with weights the condensed representation, S ′. The median
operation takes any three binary sequences and computes another sequence that for
each character takes the median (the most common character in that position). For
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Figure C.4 A split network captures incompatible splits. Each taxon or sequence
is associated to a vertex. Each edge on the network is labeled by a a split, in such
a way that cutting the edges cuts the network into two, separating the labeled
vertices corresponding to the split.

instance, the median of 0000, 1100, and 0111 is 0100. Adding the median sequence
to the set and iterating the procedure until no new sequences are generated gives
the median closure. A network, the median network or Buneman graph, can be
constructed by taking as many nodes as binary sequences in the condensed repre-
sentation S ′ and edges connecting them if they differ by only one character. The
median network has nice properties as it is made of cubes of different dimensions
and it contains all trees with minimal parsimony scores. But typically the number
of nodes generated by the median operation is extremely large, and the biological
interpretation is extremely obscure. The reduced median (RM) network algorithm
and median-joining algorithm [31, 33] selects a subnetwork in the median network,
reducing significantly the complexity of the network. Generalizations to more than
two states sequences are called quasi-median networks.

Ancestral recombinant graphs (ARGs). Ancestral recombinant graphs con-
stitute the most interpretable of all phylogenetic networks. An ARG provides a
potential reconstruction of the history that gave rise to the data S through a series
of mutations and recombinations. For a full explanation of ARGs and extensions
using topological data analysis we refer the reader to Section 5.10.

C.4.3 Distance Based Methods

In distance based methods, we compute a distance between a set of sequences S ,
and we work exclusively with the distance matrix. These methods, as with phyloge-
netic trees, are fast and easily implementable, with the caveat that the interpretation
of cycles in the network is obscure.
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Split decomposition. In split decomposition, one takes advantage of the unique
decomposition of a finite metric space into a set of splits using the Bandelt and
Dress theorem [30]. The main idea of the Bandelt-Dress decomposition is that a
finite metric space can be decomposed into a sum of independent metrics associ-
ated to weighted splits plus a remnant. The weight of each split S 1|S 2, called the
isolation index, can be computed as follows:

αS =
1
2

min
i1, j1∈S 1
i2, j2∈S 2

(max(di1, j1 + di2, j2 , di1,i2 + dj1, j2 , di1, j2 + di2, j1 ) − di1, j1 − di2, j2 ).

For every split S one can define a split metric dS to be 0 if two elements are
in the same split and 1 if not. The Bandelt-Dress result decomposes the original
metric:

d =
∑

S

αS dS + r.

The simplest example of a residue metric corresponds to 5 points with distances
derived from a complete bipartite graph K2,3. For s sequences, the approach pro-
vides at most

(
s
2

)
non-zero weight splits. Remember that a tree is a set of compatible

2s−3 splits: if the set (S, L) is compatible then there is a single tree with edges cor-
responding to compatible splits and edge weights corresponding to split weights.
In particular, finite metric spaces that satisfy the four point condition correspond
to totally decomposable metrics and compatible splits, corresponding to the under-
lying tree. Focusing on the non-remnant part, this construction allows finite metric
spaces to be mapped to weighted splits that can be represented by a split network.
But in the case of non-compatible splits the split decomposition generalizes this
result.

Neighbor-net (NN). Developed in 2004 by David Bryant and Vincent Moulton
[75], this is an agglomerative distance based method that generalizes the neighbor-
joining algorithm we discussed before. Given a finite metric space, NN constructs
a collection of weighted splits and then represents the results using a split graph.
Like NJ, this is an agglomerative method that starts by selecting pairs of nodes, but
instead of replacing them immediately by a new node, it waits until it is paired a
second time. Then the three linked nodes become two nodes and the distance matrix
is reduced (see Figure C.5). The procedure continues until the number of nodes is
reduced to two or three. Being an agglomerative distance based method, the speed
and throughput is very high, similar to NJ. Like other split networks, the main prob-
lem is the interpretability of the results. A nice mathematical description of the NN
algorithm in terms of some discrete metric spaces, called circular decomposable
metrics, can be found in [329].
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Figure C.5 This figure illustrates how the neighbor-net algorithm works. It is an
agglomerative method that takes distance matrices as input. In (i) each node repre-
sents a single sequence. One first looks for closest neighbors; in (ii) the closest to
e is f and the closest to b is c. Other neighbors are identified in (iii); e has as neigh-
bors f and d. Two incompatible splits e f |abcdg and de|acd f g are represented and
d, e, and f are substituted by new nodes x and y. Source: [75]. Bryant, David, and
Vincent Moulton. “Neighbor-net: an agglomerative method for the construction of
phylogenetic networks.” Molecular Biology and Evolution, 2004, 21.2: 255–265,
by permission of Oxford University Press.

C.5 Suggestions for Further Reading

There are excellent books and reviews on phylogenetics for the reader who wants
to dive into this topic.

● Inferring Phylogenies, by J. Felsenstein [174] is a complete and clear exposition
on different approaches to phylogenetic trees which is highly recommended.

● Molecular Evolution and Phylogenetics, by Masatoshi Nei and Sudhir Kumar
[380] is a nice didactical overview on phylogenetic methods.

● The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analy-
ses and Hypothesis Testing, by Philippe Lemey, Marco Salemi and A. M.
Vandamme [443].

● ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and
Explicit Phylogenetic Networks, by Dan Gusfield [220] is highly recommended
to learn more about biologically interpretable phylogenetic networks.

● Phylogenetic Networks, by Daniel Huson, Regula Rupp and Celine Scornavacca
[262] is a nice clear survey on methods for inference of phylogenetic networks.

● Basic Phylogenetic Combinatorics, by Andreas Dress and colleagues [151] is a
nice mathematical introduction to the relationship between finite metric spaces,
split systems, and systems of quartets.
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C.6 Data and Software

There is a large number of software programs for phylogenetic inference. Here is a
very incomplete list of some of the most commonly used.

● PHYLIP: phylogenetic tree inference package by Felsenstein incorporating now
classical methods, such as maximum parsimony, distance based algorithms,
and maximum likelihood. It can be found at http://evolution.genetics
.washington.edu/phylip/general.html.

● PhyML [217] and RaxML [482]: two of the most commonly used likelihood
algorithms.

● Bayesian Evolutionary Analysis Sampling Trees (BEAST) [153]: a very com-
monly used Bayesian method for tree inference and parameter estimation.

● MrBayes: Bayesian posterior probability estimation for phylogenetic trees
[436].

● SplitsTree [260]: a very wide platform that provides a wide range of phy-
logenetic tree and network inference methods, including median networks,
parsimony splits, spectral analysis, split decomposition, and neighbor-net.

● Dendroscope [264]: provides a platform for visualizing trees and networks.

http://evolution.genetics.washington.edu/phylip/general.html
http://evolution.genetics.washington.edu/phylip/general.html
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Čech nerve

geometric, 124
chromatin, 412
chromosomal gains, 366, 370, 434
chromosomal loss, 366, 370, 434
chromosomal territories, 412
chromosome conformation capture, 413
chronic myelogenous leukemia, 371
CIC, 385
circadian rhythm, 424
classification of surfaces, 117
closed set, 38
clustering

relationship to path components, 48
single-linkage, 48, 137

coalescence, 286, 324, 327, 450
Cohen-Steine, D, 424
commutative diagram, 83
compact

closed and bounded, 43
complex

median, 337, 339
Vietoris-Rips, 284

compressibility, 431
congruence class, 65
contact maps, 414
continuous, 37, 43
convolution, 188
copy number variation, 370, 434
correlograms, 430
cosets, 68
cover

open, 42
cover of a space, 124
Crowford, L., 361
CW complex, 58

quotient, 60
subcomplex, 60

cyclic group, 65

Darwin, C., 274, 351
Darwin’s finches, 351
deformation retraction, 52
dengue virus, 315
dense subset, 35
diameter, 36
diffusion distance, 251
Dionysus, 445

Dipha, 445
discrete harmonic analysis, 250
disease space, 440
dispersion, 408
distance distribution, 218
distance to a measure, 204
distributional persistent homology, 199
Drosophila melanogaster, 342
Dulbecco, R., 360

edge
external, 262
internal, 262

EGFR, 370, 385, 403
eigenvalue, 238
eigenvector, 238
Eirene, 445
embryos, 408
endoderm, 408
enhancer-promoter interactions, 415
epiblast, 408
equivalence relation, 29

homeomorphism of spaces, 47
homotopy equivalence, 51
homotopy of maps, 50
isomorphism of sets, 29
weak homotopy equivalence, 74

Euclidean space, 31
Euler characteristic, 101
evolution, 273

clonal, 277
horizontal, 277
reticulate, 277
vertical, 277

exome, 365

face, 94
Felsenstein, J., 459
FGFR-TACC gene fusions, 371
field, 75
filtered simplicial complex

tame, 136
filtered system, 135

of abelian groups, 135
of simplicial complexes, 135
of vector spaces, 135

filtered vector space
finite type, 137

finitely generated, 69
Fisher, R., 447
Fitch algorithm, 456
four gamete test, 337, 339
four point condition, 262, 283
Fourier transform, 428
Fréchet mean, 190
Fréchet variance, 190
fractal globule, 412



Index 497

functional MRI, 437
functor, 90
functoriality

of path components, 46
fundamental group, 53

gene expression, 376
gene fusions, 371
gene trees, 333
generator and relations, 69
geometric random complex, 227
geometric random graph, 227
geometric realization, 95
geometric sampling, 189
glioblastoma, 371, 377, 384, 403, 438

classical, 404
mesenchymal, 404
multicentric glioblastoma, 403
Multifocal, 438
neural, 404
proneural, 404

graph, 31
geometric random, 227
Laplacian, 246
neighborhood, 48
path components, 48
weighted, 31

Gromov, M., 339
Gromov-Hausdorff distance, 30, 144
Gromov-Prohorov distance, 194
Gromov-Wasserstein distance, 194
group, 62

abelian, 64
cyclic, 65
free, 69
infinite cyclic, 66
Lie, 118
quotient, 68
rank of, 71
subgroup, 67

group homomorphism, 66
image of, 66
isomorphism, 67
kernel of, 66

Gudhi, 445

Haldane, S., 447
Hamming distance, 31, 460
Harer, J., 424
Hausdorff distance, 142
hepatitis C virus, 315
hepatocellular carcinomas, 375
Hera, 445
Hessian eigenmaps, 247
heterochromatin, 412
Hi-C, 413
hierarchical clustering

and persistent homology, 137
dendrogram, 138

homologous recombination, 328
homology group, 105, 110

algorithm for computing, 108
homotopy, 49
homotopy class, 52
homotopy equivalence, 50
homotopy group, 53
homotopy type, 51
Human Immunodeficiency Virus, 303

Env, 304
Gag, 304
Pol, 304
Recombination, 307

hippocampus, 436

IDH1, 385
imaging, 424
imatinib, 371
indels, 366
inf, 36
infectious diseases, 440
infimum, 36
influenza

2009 pandemic, 293
avian, 287
hemagglutinin, 289
neuraminidase, 289
pandemic, 289
reassortment, 289, 291, 293
seasonal, 288
Spanish influenza, 291

influenza A, 287
initial object, 83
injective, 26
interior, 93
inverse function, 27
Isomap, 242
isomorphism, 27

categorical, 82
of abstract simplicial complexes, 98
of groups, 67
of sets, 27
of simplicial complexes, 96
of vector spaces, 80

isomorphism class, 29

Javaplex, 445
Jonckheere trend test, 429
Jonckheere-Terpstra-Kendall (JTK) test, 429
Jukes-Cantor distance, 460

Kaposi sarcomas, 375
KeplerMapper, 446
kernel methods, 248
kernel PCA, 248



498 Index

Kimura diffusion model, 450
Kimura, M., 447
Kolmogorov, A., 447
Kullback-Leibler divergence, 30, 253

landmark embedding distribution, 219
landmark point, 159
Lane, D., 361
Laplacian eigenmaps, 246
leaf, 262
Levine, A., 361
Li-Fraumeni families, 363
Lie group, 118
linear transformation, 79

image, 79
kernel, 79

linearly independent, 77
Linnaeus, C., 273
LLE, 244
local linear embedding, 244
local tangent space alignment, 252
Lomb-Scargle periodogram, 428
loss of heterozygosity, 366, 370

MacPherson, R., 415
malaria, 424, 427
manifold

Riemannian, 117
smooth, 115
topological, 115

manifold charting, 252
manifold learning

LLE, 244
local tangent space alignment, 252
manifold charting, 252
maximum variance unfolding, 252

map, 26
bijective, 26
continuous (metric spaces), 37
continuous (topological spaces), 43
homeomorphism, 46
homotopic, 49
homotopy, 49
homotopy classes of, 52
homotopy equivalence, 50
injective, 26
isomorphism, 27
Lipschitz, 38
of sets, 26
quasi-isomorphism of chain complexes, 110
quotient, 56
simplicial, 96
surjective, 26

Mapper, 404, 406
packages for computing, 445

maximum variance unfolding, 252
measurable function, 184

measurable isomorphism, 184
measurable space, 184
measure, 184

counting, 189
support of, 186

measure space, 184
median graph, 337
median networks, 463
meiotic recombination, 328
melanomas, 385
Merkel cell carcinomas, 375
metric, 30

bottleneck, 146
diffusion, 251
earth-mover, 193
graph, 31
Gromov-Hausdorff, 30, 144
Gromov-Prohorov, 194
Gromov-Wasserstein, 194
Hamming, 31, 460
Hausdorff, 142
Jukes-Cantor, 460
Pearson correlation, 32
Prohorov, 192
Tajima-Nei, 461
tree, 262
Wasserstein, 147, 193

metric measure space, 186
metric space, 30

complete, 35
curvature of, 267
finite, 123
geodesic, 267
length of path, 266
length space, 267
non-positively curved, 268
of phylogenetic trees, 264
separable, 35

minimal cycles, 415
modular arithmetic, 65
Moran model, 449
morphism, 81
Morse function, 119
Morse theory, 118
morula, 408
most recent common ancestor, 452
Moulton, V., 465
moving average process, 430
MRI, 438
Muller, H. J., 358
multifiltered complex, 154
multifiltered vector space, 154
mutations

germline, 363
somatic, 363

MYC, 371, 376

nasopharyngeal carcinomas, 374



Index 499

natural transformation, 91
Needleman-Wunsch algorithm, 455
neighbor-joining, 262
neighbor-net, 465
neighborhood, 41
neighborhood graph, 48
nerve of a cover, 124
networks, 423
neuronal activity, 436
neuroscience, 436
NMF, 241
non-coding RNA, 376
non-negative matrix factorization, 241
Nordling, C. O., 356
NOTCH1, 385
Nowell, P., 363, 371
nucleosomes, 412

object
initial, 83
terminal, 83

oncogene, 360
oncovirus, 360, 374
open set, 38

p53, 361
partition, 57
path, 44
path components, 45
path-connected, 45
PDGFRA, 370, 410
Pearson correlation distance, 32
Perea, J., 424
periodogram, 428
Perseus, 445
persistence diagram, 137
persistence landscape, 222
persistence landscape toolbox, 445
persistent homology, 137, 415

and hierarchical clustering, 137
barcode, 136
distributional, 199
packages for computing, 445

persistent homology transform, 157
phylogenetic networks, 462
phylogenetic tree, 262, 274
phylogenetics

agglomerative methods, 461
Bayesian methods, 459
Distance methods, 460
Fitch-Margoliash method, 461
likelihood methods, 458
Markov chain Monte Carlo (MCMC), 459
nearest neighbor interchange (NNI), 458
neighbor-joining (NJ), 461
parsimony, 456
pruning and regrafting (SPR), 458

tree bisection and reconnection (TBR), 458
PIK3CA, 438
Plasmodium chabaudi, 440
Plasmodium falciparum, 427
plectoneme, 417
point mutations, 366
polymer, 416
population genetics, 447
probability density, 186
probability measure, 186
product measure, 187
Prohorov metric, 192
projective tree moduli space, 377
PTEN, 370, 385
pushforward measure, 188
pushout, 85
Python Mapper, 445

quasi-isomorphism, 110
quotient group, 68
quotient map, 56
quotient space, 57
quotient topology, 56

rank, 71
RAS, 361
RB1, 370
reciprocal translocation, 371
recombination hotspots, 331
Reeb graph, 119
Reeb space, 119

categorical, 120
reference curve comparison, 429
retrovirus, 304
Riemannian manifold, 117

curvature, 117
volume form, 117

ring, 75
Rips zigzag, 153
Ripser, 445
Rivet, 445
Rous, P., 360
Rubin, H., 360
Russell’s paradox, 81

sampling
geometric, 189

scalar multiplication, 76
sequence, 33

Cauchy, 33
converging (metric spaces), 33
converging (topological spaces), 42

sequence alignment, 454
sets, 25

Cartesian product, 26
closed, 38
countable, 28



500 Index

finite, 25
infinite, 25
isomorphic, 27
open, 38
subset, 26
uncountable, 28

simplex, 93
simplicial complex

abstract, 97
geometric, 94
geometric random, 227
geometric realization of, 95
multifiltered, 154
orientation of vertices, 103

simplicial map, 96
single cell, 399

amplification, 400
isolation, 400
technologies, 400

single-linkage clustering, 137
sliding window, 433
Smith normal form, 108
Smith-Waterman algorithm, 455
smoothed Euler characteristic curve, 230
smoothed Euler characteristic transform, 231
SNE, 253

t-SNE, 254
space, 30

metric, 30
quotient, 57
topological, 38

span, 77
species trees, 333
split decomposition, 465
split networks, 463
stochastic neighbor embedding, 253
stratified space, 118
subcategory, 82
subgroup, 67
subset, 26

dense, 35
sup, 36
supercoiling, 417
support, 186
supremum, 36
surjective, 26

Tajima-Nei distance, 461
tangent space, 116
taxonomy, 273
TDA Mapper, 446
TDA R package, 445
TDGF1, 410
Temin, H., 360
temozolomide (TMZ), 377
terminal object, 83
time series, 423
topolisomerases, 418

topological ARGs, 342, 344
topological associated domains, 412, 420
topological data analysis, 415
topological obstruction to phylogeny, 285
topological space, 38

Cartesian product, 41
compact, 43
Hausdorff, 40
homeomorphic, 46
homotopic, 49
homotopy equivalent, 50
path-connected, 45
second countable, 40

topology, 39
base for, 39
discrete, 39
indiscrete, 39
metric, 39
product, 41
quotient, 56
subspace, 41

torsion, 71
totally bounded, 36
TP53, 370, 385, 434
transcription factories, 415
transcription factors, 376
triangle inequality, 30
trophectoderm, 408
tumor supressors, 361
tumors, 356

unit, 75

Varmus, H., 360
vector space, 76

basis, 77
dimension, 79
inner product, 116
multifiltered, 154
norm, 117
subspace, 77

vertices, 95
Vietoris-Rips complex, 126
virus

Epstein-Barr virus (HHV4), 374
hepatitis B virus, 375
hepatitis C virus, 375
human Kaposi-associated herpesvirus (HHV8), 375
human papilloma virus (HPV), 375
human T-cell lymphotropic virus type 1, 375
Merkel cell carcinoma virus (MCCV), 375
Rous sarcoma virus, 360
SV40, 361

viSNE, 256
visual cortex, 436
volume measure, 187
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Wasserstein distance, 147
Watterson estimator, 452
wavelets, 429
weak convergence, 191
weak equivalence, 74
weak homotopy equivalence, 74
weak homotopy type, 74
weak witness, 159
Weinberg, R., 361
West Nile virus, 315
Wigler, M., 361
witness complex, 160
Woese, C., 277
Wright, S., 447

Wright-Fisher model, 448

xenografts, 405
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zigzag diagram, 149
zigzag module, 149

interval, 151
zigzag persistence, 310
zigzag submodule, 150
zona pellucida, 408
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