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Foreword

I am pleased to provide this foreword on such an exciting topic. Research on agricultural systems
models represents both a new frontier and a return to a holistic look at the world.

When the first scientists began to examine the world from an analytical instead of a mythological
viewpoint, they had few tools other than their powers of observation. The only way to understand
the natural world was to dissect it. As time went on, specialization allowed researchers to understand
amazing details about the world, including all aspects of agriculture. We can never overestimate
the importance of these discoveries, such as uncovering the mysteries of how plants use light to
grow or how genes govern the structure and function of living organisms. At the same time, we
have always known that no specific organism or process acts in isolation.

Although a myriad of things still need to be learned and understood, we are now at the point
where we can start to put the world back together. We also have the technology in computers that
allows us to store and organize the millions of individual pieces of information that make up a
system. User-friendly interfaces let producers and other users obtain meaningful results while
inputting only a small amount of site-specific information. This systems approach is not just an
intellectual exercise or academic luxury — it is a necessity.

Agricultural producers face a much more complex world than their ancestors. More people
need to be fed with fewer natural resources (land, water) as well as more competing uses for these
resources. Quality of our natural resources is a public concern. Many small family farms have given
way to national and international conglomerates. Traditional crops have lost market value, creating
the need for nontraditional farming approaches and reduced input costs. Today’s farmers not only
have to worry about the health, success, and marketing of their product — enough of a challenge
in itself — they must also ensure that, while providing high value, low-cost food for consumers,
they maintain a healthy environment. Because farms often lie next to urban areas, producers must
also consider social demands to reduce odor and noise. In short, today’s farmer is a total resource
manager. Producers need agricultural systems models to help them make appropriate decisions
amid an ever-changing environment.

Even apparently minor adjustments to agricultural practices and treatments could have major
impacts. In this information age, through tools like the Internet and remote sensing, producers have
access to a variety of real-time data about crops, range conditions, and weather. But they need
quantitative tools to make sense of these data. The models can also give the producers objective
ground for presenting and supporting their decisions to neighbors, legislators, and other interested
parties who may question management choices.

In the 21st century, agricultural systems models and decision support systems with ancillary
information and databases will increasingly play a vital role in transferring knowledge and tech-
nology such that it becomes useful in addressing society’s needs. The Agricultural Research Service
(ARS) has been a leader in developing and promoting applications of systems models, and its role
in this area will greatly increase in the coming decades. These developments were often made in
partnership with our university and international collaborators.

In this book, we will see demonstrations of some of these first sophisticated models. We will
also see discussion of existing problems, knowledge gaps, challenges and ways those challenges
can be met. This book should produce greater understanding of the science issues involved and
some guidance on how to address these issues.

I commend ARS scientists for taking a leadership role in this endeavor, and I look forward to
watching this field grow and to fostering the important work presented here.

Floyd P. Horn
Administrator, Agricultural Research Service

U.S. Department of Agriculture
© 2002 by CRC Press LLC



   
Preface

The purpose of this book is to present the state-of-science of applications of agricultural system
models, and tremendous benefits to be derived from the use of these computer models in agricultural
research and technology transfer in the 21st Century. Leading international agricultural system
scientists present their experiences and provide guidance on how the models can be used to enhance
the quality of field research, transfer of research information and technology to farmers, and decision
support for agricultural management. They also present expert review of the existing problems and
possible solutions to improve these applications in the future. An international modular modeling
computer framework is proposed to build problem-specific models in the future. Future research
needs to fill major knowledge gaps are identified. The presentations cover modeling of natural
resources, crop production, grazing lands, and animal production systems.

The first chapter summarizes the current status of whole-system integration and modeling in
agriculture, existing problems, and future vision for their highly useful applications in research and
technology transfer. The second chapter outlines the approaches taken by the CSIRO Plant Industry
in Australia to develop models and decision support tools for managing grazing enterprises, and
presents examples of their applications in sheep and cattle grazing industries. Chapter 3 presents
experiences with the use of a cotton simulation model/decision support system, GOSSYM-
COMAX, for management of water, nitrogen, herbicide, and growth regulator applications in cotton
crop on farmers’ fields, problem and policy analysis research, and education. GOSSYM was the
first comprehensive crop management model developed in the U.S.

Chapter 4 presents applications, similar to those mentioned previously, of a soybean simulation
model, GLYCM, for field management of soybean crop. Chapter 5 presents highly valuable expe-
riences with different methods of agrotechnology transfer, including a decision support system,
DSSAT, built around the CERES and CROPGRO family of crop models, in tropical and subtropical
countries all over the world. Chapter 6 describes efforts of the International Fertilizer Development
Center (IFDC) in using DSSAT and the associated global network of collaborators to develop and
transfer fertilizer use and related technologies for sustainable agricultural production in developing
countries. In Chapter 7, the authors present a comparison of the leading corn and soybean models
for their performance and application under the most difficult water stress conditions in the U.S.
Chapter 8 presents Australian experiences with using crop models to design better farming practices
in the semiarid dry land farming systems, and the evolution of a new soil and crop-based Agricultural
Production Systems Simulator, APSIM, and its application in farming system analysis and design.
Chapter 9 presents an excellent review of the potential and current, mostly research, applications
of models for a number of crops in the semiarid regions of the world.

Chapter 10 addresses the current need for having different models for different spatial scales,
from individual plants or small plots to field, watershed, and basin scales, and example applications
of four such models. Chapter 11 provides a good example of a distributed, multiple application of
an agricultural system model to simulate spatial and temporal (year-to-year) variability of crop
growth and nitrogen status in a field for site-specific fertilizer recommendations. Chapter 12
describes experiences with three approaches to using models for site-specific agriculture problems
in spatially variable fields — making multiple model runs, using remote sensing of crop to adjust
model inputs, state variables or parameters, and using optimization schemes to obtain variable
model inputs. Chapter 13 reviews the literature on relationships of soil properties and crop yield
to topographic attributes, and presents the hypothesis that topographic analysis and available soil
map data can be combined with agricultural system models to improve spatial characterization of
landscape processes within a field for precision management and for up-scaling results to watershed
and larger scales.

Chapter 14 deals with the biggest and most difficult problem in modeling — how to determine
model parameters for different components of the system and their change with environmental
© 2002 by CRC Press LLC



        
stresses and management practices. Chapter 15 describes a state-of-the-technology, object-oriented,
modular modeling computer framework, the Object Modeling System, which is under development.
This framework would enable future model developers to create and quickly update custom models
specific to problems or scales of application from a library of modules in the computer. This
framework would also help coordinate national and international efforts in modeling and serve as
a reference library of quantified knowledge of system components to guide future research. Finally,
Chapter 16 presents a thoughtful, competent list of agricultural concerns, that future research needs
to address.

The editors are very grateful to the contributors for their best efforts in preparing and revising
their chapters.

Lajpat R. Ahuja
USDA-ARS

Fort Collins, CO

Liwang Ma
USDA-ARS

Fort Collins, CO

Terry A. Howell
USDA-ARS

Bushland, TX
© 2002 by CRC Press LLC



              
The Editors

Lajpat (Laj) R. Ahuja is a supervisory soil scientist and research leader of the USDA-ARS,
Great Plains Systems Research Unit, Fort Collins, Colorado. He has made original and pioneering
research contributions in several areas of agricultural systems: infiltration and water flow in soils,
estimation of hydraulic properties, and scaling of their spatial variability; transport of agrochemicals
to runoff and to groundwater through soil matrix and macropores; quantification of the effects of
tillage and other management practices on above properties and processes; and modeling of the
entire agricultural systems and application of system models in field research, technology transfer,
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As development team leader, Ahuja guided the development, validation, and publication of the
ARS Root Zone Water Quality Model (RZWQM), that is being widely used for evaluating effects
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Howell is a Fellow of the American Society of Agricultural Engineers (1992) and the American
Society of Agronomy (1999). He received the Person of the Year Award in 1995 from the Irrigation
Association, the Royce J. Tipton Award in 1998 from the American Society of Civil Engineers, the
Hancor Soil and Water Engineering Award in 2000 from the American Society of Agricultural
Engineers, and the Senior Scientist Award for the Southern Plains Area from USDA-ARS in 2000.
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CHAPTER 1

Whole System Integration and
Modeling — Essential to Agricultural

Science and Technology in the 21st Century

Lajpat R. Ahuja, Liwang Ma, and Terry A. Howell

CONTENTS

Current Status
The Future Vision

Integration of Modeling with Field Research
New Decision Support Systems
Collaborations for Further Developments
An Advanced Modular Modeling Framework for Agricultural Systems

References

CURRENT STATUS

Agricultural system integration and modeling have gone through more than 40 years of devel-
opment and evolution. Before the 1970s, a vast amount of modeling work was done for individual
processes of agricultural systems and a foundation for system modeling was built. For example, in
soil water movement, models and theories were developed in the areas of infiltration and water
redistribution (Green and Ampt, 1911; Philips, 1957; Richards, 1931), soil hydraulic properties
(Brooks and Corey, 1964), tile drainage (Bouwer and van Schilfgaarde, 1963), and solute transport
(Nielsen and Biggar, 1962). In plant-soil interactions, models and theories were developed for
evapotranspiration (Penman, 1948; Monteith, 1965), photosynthesis (Saeki, 1960), root growth
(Foth, 1962; Brouwer, 1962), plant growth (Brouwer and de Wit, 1968), and soil nutrients (Olsen
and Kemper, 1967; Shaffer et al., 1969).

Although in the early 1970s, a few models were developed to include multiple components of
an agricultural system, such as the model developed by Dutt et al. (1972), agricultural system
models were not fully developed and used until the 1980s. In the 1980s, several system models
were developed, such as the PAPRAN model (Seligman and van Keulen, 1981), CREAMS (Knisel,
1980), GOSSYM (Baker et al., 1983), EPIC (Williams and Renard, 1985), GLYCIM (Acock et al.,
1985), PRZM (Carsel et al., 1985), CERES (Ritchie et al., 1986), COMAX (Lemmon, 1986),
NTRM (Shaffer and Larson, 1987), and GLEAMS (Leonard et al., 1987). In the 1990s, agricultural
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system models were more mechanistic and had more agricultural components, such as CROPGRO
(Hoogenboom et al., 1992; Boote et al., 1997), Root Zone Water Quality Model (RZWQM)
(RZWQM Team, 1992; Ahuja et al., 2000), APSIM (McCown et al., 1996), and GPFARM (Ascough
et al., 1995; Shaffer et al., 2000). In addition, the new system models have taken advantage of
current computer technology and come with a Windows™-based user interface to facilitate data
management and model simulation. Some models are also linked to a decision support system
(DSS), such as DSSAT which envelopes CERES and CROPGRO (Tsuji et al., 1994; Hoogenboom
et al., 1999) and GPFARM (Shaffer et al. 2000). Agricultural system research and modeling are
now being promoted by several international organizations, such as ICASA (International Consor-
tium for Agricultural Systems Applications) and other professional societies. 

The collective experiences from model developers and users show that, even though not perfect,
the agricultural system models can be very useful in field research, technology transfer, and
management decision making as demonstrated in this book. These experiences also show a number
of problems or issues that should be addressed to improve the models and applications. The most
important issues are:

1. System models need to be more thoroughly tested and validated for science defendability under
a variety of soil, climate, and management conditions, with experimental data of high resolution
in time and space.

2. Comprehensive shared experimental databases need to be built based on existing standard exper-
imental protocols, and measured values related to modeling variables, so that conceptual model
parameters can be experimentally verified.

3. Better methods are needed for determining parameters for different spatial and temporal scales,
and for aggregating simulation results from plots to fields and larger scales.

4. The means to quickly update the science and databases is necessary as new knowledge and methods
become available. A modular modeling approach will greatly help this process together with a
public modular library.

5. Better communication and coordination is needed among model developers in the areas of model
development, parameterization and evaluation.

6. Better collaboration between model developers and field scientists is needed for appropriate
experimental data collection and for evaluation and application of models. Field scientists should
be included within the model development team from the beginning, not just as a source of model
validation data.

7. An urgent need exists for filling the most important knowledge gaps: agricultural management
effects on soil–plant–atmosphere properties and processes; plant response to water, nutrient and
temperature stresses; and effects of natural hazards such as hail, frost, insects, and diseases.

THE FUTURE VISION

Understanding real-world situations and solving significant agronomic, engineering, and envi-
ronmental problems require integration and quantification of knowledge at the whole system level.
In the 20th Century, we made tremendous advances in discovering fundamental principles in
different scientific disciplines that created major breakthroughs in management and technology for
agricultural systems, mostly by empirical means. However, as we enter the 21st century, agricultural
research has more difficult and complex problems to solve.

The environmental consciousness of the general public is requiring us to modify farm manage-
ment to protect water, air, and soil quality, while staying economically profitable. At the same time,
market-based global competition in agricultural products is challenging economic viability of the
traditional agricultural systems, and requires the development of new and dynamic production
systems. Fortunately, the new electronic technologies can provide us a vast amount of real-time
information about crop conditions and near-term weather via remote sensing by satellites or ground-
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based instruments and the Internet, that can be utilized to develop a whole new level of management.
However, we need the means to capture and make sense of this vast amount of site-specific data.

Integration and quantification of knowledge at the whole-system level is essential to meeting
all the above challenges and needs of the 21st century. Our customers, the agricultural producers,
are asking for a quicker transfer of research results in an integrated usable form for site-specific
management. Such a request can only be met with system models, because system models are
indeed the integration and quantification of current knowledge based on fundamental principles
and laws. Models enhance understanding of data taken under certain conditions and help extrapolate
their applications to other conditions and locations. Models are the only way to find and understand
the interrelationships among various components in a system and integrate numerous experimental
results from different conditions.

System modeling has been a vital step in many scientific achievements. We would not have
gone to the moon successfully without the combined use of good data and models. Models have
been used extensively in designing and managing water resource reservoirs and distribution systems,
and in analyzing waste disposal sites. Although a lot more work is needed to bring models of
agricultural systems to the level of physics and hydraulic system models, agricultural system models
have gone through a series of breakthroughs and can be used for practical applications, with some
good data. 

Integration of Modeling with Field Research

Integrating system modeling with field research is an essential first step to improve model
usability and make a significant impact on the agriculture community. This integration will greatly
benefit both field research and models in the following ways:

• Promote a systems approach to field research.
• Facilitate better understanding and quantification of research results.
• Promote quick and accurate transfer of results to different soil and weather conditions, and to

different cropping and management systems outside the experimental plots.
• Help research to focus on the identified fundamental knowledge gaps and make field research

more efficient, i.e., get more out of research per dollar spent.
• Provide the needed field test of the models, and improvements, if needed, before delivery to other

potential users — agricultural consultants, farmers/ranchers, state extension agencies, and federal
action agencies (NRCS, EPA, and others).

The most desirable vision for agricultural research and technology transfer is to have a continual
two-way interaction among the cutting-edge field research, process-based models of agricultural
systems, and decision support systems (Figure 1.1). The field research can certainly benefit from
the process models as described above, but also a great deal from the feedback from the decision
support systems (DSSs). On the other hand, field research forms the pivotal basis for models and
DSSs. The DSSs generally have models as their cores (simple or complex).

Modeling of agricultural management effects on soil-plant-atmosphere properties and processes
has to be a center piece of an agricultural system model, if it is to have useful applications in field
research and decision support for improved management. An example is the ARS Root Zone Water
Quality Model (RZWQM), which was built to simulate management effects on water quality and
crop production (Figure 1.2, Ahuja et al., 2000).

After a system model has passed the field testing and validation and both modelers and field
scientists are satisfied with the results, it should be advanced to the second step: application. Only
through model application to specific cases can a model be further improved by exposure to differing
circumstances. The field-tested model can be used as a decision aid for best management practices,
including site-specific management or precision agriculture, and as a tool for in-depth analysis of
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problems in management, environmental quality, global climate change, and other new emerging
issues.

New Decision Support Systems

Decision support systems commonly have an agricultural system model at their core, but are
supported by databases, an economic analysis package, an environmental impact analysis package,
a user-friendly interface up front for users to check and provide their site-specific data, and a simple
graphical display of results at the end. An example is the design of ARS GPFARM-DSS (Figure 1.3,
Ascough et al., 1995; Shaffer et al., 2000). GPFARM (Great Plains Framework for Agricultural
Resource Management) is a whole-farm decision support system for strategic planning — evaluation

Figure 1.1 Interaction among field research, process-based system models, and decision support systems.

Figure 1.2 Management practices are the centerpiece of a process-based cropping system model RZWQM.
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of alternate cropping systems, range-livestock systems, and integrated crop livestock farming
options, for production, economics, and environmental impacts.

Currently, process-level models may be difficult for agricultural consultants, NRCS field office
personnel, and producers to use. A new approach toward a DSS is to create an integrated research
information database as a core of the DSS in place of a model. A system model, validated against
available experimental data, is used to generate production and environmental impacts of different
management practices for all major soil types, weather conditions, and cropping systems outside
the experimental limits. This model-generated information is then combined with available exper-
imental data and the long-term experience of farmers and field professionals to create the database
(Rojas et al., 2000). The database can be combined with an economic analysis package. It may
also be connected to a so-called “Multi-Objective Decision Support System” for determining trade-
offs between conflicting objectives, such as economic return and environmental quality. It is also
very flexible in generating site-specific recommendations.

Collaborations for Further Developments

In the future, model developers need to work together to address the seven problem areas
described in the previous section, and then train and work with field scientists to improve model
usability and applicability in solving real world problems. Also, there is a need to document system
models and simulated processes better, so that field scientists will be able to understand these
processes without too much difficulty. We also need to document good case studies on model
applications to serve as guides for field users. Any improvements to an existing model could be
checked against these documented cases to see if these improvements are applicable to all situations.
Since most field data are not collected for the purpose of evaluating with a system model, some
good system-oriented experiments may be needed. International efforts are needed to coordinate

Figure 1.3 The design of the GPFARM decision support system.
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system modeling and to encourage model developers and field scientists to work on identified
knowledge gaps and research priorities.

An Advanced Modular Modeling Framework for Agricultural Systems

A modular modeling computer framework will consist of a library of alternate modules (or
subroutines) for different sub-processes of science, associated databases, and the logic to facilitate
the assembly of appropriate modules into a modeling package. The modeling package can be
tailored or customized to a problem, data constraints, and scale of application. The framework will:

1. Enable the use of best science for all components of a model.
2. Allow quick updates or replacement of science or database modules as new knowledge becomes

available.
3. Eliminate duplication of work by modelers.
4. Provide a common platform and standards for development and implementation.
5. Serve as a reference and coordination mechanism for future research and developments.
6. Make collaboration much easier among modelers by sharing science modules/components and

experimental/simulated databases, so that specialties of each individual modeling group can be
maximally utilized.

These actions will prepare the models for the important role in the 21st century, and take the
agricultural research and technology to the next higher plateau.
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INTRODUCTION

Farm decision making and grazing management decisions in particular have always been
risky in Australia because of extreme variability in seasonal weather, widely varying land
capability, and uncertainty about future commodity prices. Even so, the best farmers are able
to supply markets with quality products in most seasons although increasingly stringent require-
ments for timeliness and security of supply make this a difficult task. In some districts, farm
profitability and sustainability of the environment are also threatened by issues such as soil
acidification, rising water tables, and dry land salinity.

In 1967, the late Dr. Fred Morley initiated a research program at CSIRO, Australia’s national
research organization, to use computer models to reduce the guesswork in agricultural decision-
making. Morley (1968) believed that agriculture had to find more effective ways to make good
management decisions than merely relying on experience and common sense. He was concerned
that, in a rapidly changing world, experience could quickly become irrelevant and common sense
was too often based only on qualitative approximations. He knew computer models were used
successfully in defense and business to explore the probable consequences of decisions, but saw
no evidence or appreciation that the same technology could offer significant benefits to agriculture.
He also recognized the great potential for better decision making in agriculture inherent in an early
attempt by Arcus (1963) to simulate a grazing system.

By 1972, scientific interest and involvement in modeling grazing systems had increased dramatically
(Morley, 1972). Thirty years later, Donnelly and Moore (1999) cited four decision support tools from
several countries, including Australia, that were being used successfully to deliver the benefits of grazing
systems research. A direct outcome of Morley’s vision was the release by CSIRO of the GRAZPLAN
family of decision support (DS) tools (Donnelly et al., 1997), which have changed the way farmers
assess their pastures and manage their animals. Australia is at the leading edge of development and
commercial implementation of this practical technology (Donnelly and Moore, 1999).

This chapter outlines the approach taken at CSIRO Plant Industry in Australia to develop models
and DS tools for managing grazing enterprises. The different types of biological models used in DS
tools are reviewed briefly, including the link between the purpose of the DS tool and the level of
detail in the underlying models. Key features of several DS tools are described together with examples
of their application in the grazing industries of temperate southern Australia. The impact this
experience has had on future development goals at CSIRO is discussed as well as an exciting new
development that will enable models produced by different research groups to be linked into any
DS tool so that tailor-made applications are available for specific tasks. A preliminary assessment
of success of the CSIRO program to achieve better technology transfer in agriculture is presented.

MODELS FOR GRAZING SYSTEMS RESEARCH

Building models of biological processes has always been an integral part of research method-
ology. Agricultural scientists routinely use mathematical equations and statistical models to sum-
marize data from their experiments. This is used as the basis of many general recommendations
or rules of thumb about management. Mostly this approach has served agriculture well and crop
and animal yields have risen through use of improved genetics and better management practices.
In recent times, cost increases and long-term decline in the real value of commodity prices mean
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that modern agriculture is becoming less profitable and more risky. Farm decision making needs
to be much smarter to remain competitive. Targeted advice tailored to the operational circumstances
of specific farms must replace the rules of thumb and generic advice of old. The emergence of
user-friendly DS tools makes this change possible.

A Hierarchy of Models

Agricultural models can help evaluate tactical, short-term, day-to-day farm management as well
as strategic, longer-term management options. The predictions of a tactical model can often be
checked against an actual outcome after a relatively short passage of time. This contrasts markedly
with predictions from a strategic model where a real-world outcome may take many years to
eventuate. In this case the quantitative accuracy of the predictions can be difficult to establish, as
many years of data collection may be needed to provide an adequate sample for testing the
predictions. In general, however, predictions from tactical models are relatively easy to interpret
and are more likely to gain user acceptance.

Thornley (2001) provides an excellent summary of the different types of models used in
agriculture. He and other authors (e.g., Beever et al., 2000) also refer to an “organizational hierar-
chy” in biological systems where processes modeled empirically at one level are used to predict
system responses at the next or higher level. Linking these empirical models at a lower level can
give insight into system behavior at a higher level as the response integrates scientific knowledge
about the lower-level processes. In general, but not exclusively:

• Empirical models are less complex biologically than mechanistic models.
• Static models do not have time as a variable and provide a “snapshot” of a system’s response;

they are less complex computationally than dynamic models where model state changes with the
passage of time.

• Deterministic models can be static or dynamic but are less complex computationally than the
equivalent stochastic models that require many repetitions of a simulation to account for variability
in the estimates of parameters.

Most of the models described in this chapter are deterministic. The predictions from dynamic
models are driven by actual historical daily weather data and can be presented as a frequency
distribution. However, it is not practical at present to include a random element as part of each
equation in these comprehensive models, due mainly to difficulties in interpretation and also the
time required for computation.

Conceptual Models

A useful first step in modeling a farming or grazing system is to place the relevant component
processes into context using a conceptual model, often a diagram, that shows the links between
the processes as well as the flows of information or material between them. Figure 2.1 illustrates
a representation of the fate of soluble phosphorus (P) applied as an annual fertilizer dressing of
superphosphate to pastures grazed by sheep in southern Australia. P is the main fertilizer applied
to pastures in Australia. Understanding the fate of P is a key to determining how much fertilizer
is needed to maintain soil fertility and is vital information to keep investments in fertilizer on target.
However, this conceptual model is not one that can be used to make specific decisions about annual
fertilizer use on a particular farm because it hides the complex cycle of biological and physical
interactions between fertilizer, soil, plant and animals. Instead, it shows in broad quantitative terms
the current state of knowledge. It also serves as an approximate, quantitative template of the key
processes that must be included in computer models of nutrient cycling in grazing systems.
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Empirical Models

At any level of system organization models can be based on empirical observation and statistical
analysis. Good statistical models are parsimonious in terms of the number of predicting variables.
They provide a precise description about the observations on which they are based and predictions
have known errors. They do not imply causality or even knowledge of underlying processes although
they may provide some insight into these. Predictions generally do not require validation, but
extrapolation beyond that range of the data from which the model was derived requires caution.

Despite the limits on extrapolation, empirical models are valuable tools for guiding specific
decisions rather than the operation of the whole farm or grazing enterprise. An example is a model
developed by Donnelly (1984) to predict the probability of neonatal lamb deaths due to heat loss
from exposure to chilling weather conditions, which is a major cause of lamb mortality in Australia.
Field observations were used to predict the probability of neonatal mortality as a function of
environmental chill, which was calculated from mean daily wind speed, mean daily temperature
and rainfall. This simple model has been incorporated into a DS tool called LambAlive (see
subsection on LambAlive) and released for commercial use (Donnelly et al., 1997). The predictions
of lamb mortality under a wide range of weather conditions are sufficiently accurate to indicate to
farmers whether it would be worthwhile adjusting the date for the start of the lambing period. In
this case, no predictive advantage would be gained by attempting to model mortality at the more
complex mechanistic level described below, although a mechanistic approach is necessary to predict
animal production responses to cold weather.

Mechanistic Models

Livestock production is a complex of many dynamic processes that can be modified by man-
agement interventions. Mechanistic models can describe each process provided their mechanisms
are understood and data are available for initialization. For example, the impact of cold weather

Figure 2.1 A conceptual model showing the approximate fate of P fertilizer applied annually to a pasture
grazed by a flock of breeding ewes where 20% are replaced annually. The numbers within the
circles show the partitioning of the annual flow of P (kg) to key pools and destinations in the cycle.
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on livestock production can be predicted from the extra heat an animal must generate to maintain
body temperature. The amount of heat will be a function of the insulating properties of the body
tissues, the area of skin surface from which heat can be lost, and the amount of external insulation
provided by the animal’s coat trapping a layer of air adjacent to the body (Freer et al., 1997).
With this information it is possible to calculate the lower critical temperature of the animal; if
the atmospheric temperature falls below this temperature, the additional metabolizable energy
required to maintain body temperature can be calculated. A model or DS tool that includes these
calculations gives a livestock manager an easy way to estimate the amount of extra feed animals
will need to cope with the cold weather and still achieve their production targets. However, the
manager will need to provide information about the current condition of the animals, details of
their coat characteristics and the nutritional quality of the feed to be offered. This is significantly
more information than that required by the more simple, empirical model predicting lamb
mortality.

The purpose of a model, therefore, has a major bearing on the level of detail and number of
processes that must be modeled for a particular application. Freer and Christian (1983) developed
a model to estimate the intake of grazing animals and their need, if any, for feed supplements to
meet specified production targets. The model has many predictive functions that are common to
sheep and cattle, with specific parameters for a range of breed types and for all stages of growth
and reproduction. Despite its generality, the model maintains a level of realism (Stuth et al., 1999)
that has proved ideal for use in advisory situations. The model predicts the intake of metabolizable
energy and protein by grazing sheep and cattle, and takes into account grazing selection and
substitution of forage intake by supplements. The intake of the dietary protein and energy is
partitioned for maintenance and production, but the model does not explicitly simulate processes
involved in tissue metabolism. The model equations conform to the recommendations in the
Australian feeding standards for ruminants (SCA, 1990), which are based on more than 50 years
of research in Australia and elsewhere. Significant generality is achieved by scaling feed intake,
body compositionand milk production to the mature size of the animal being simulated. As the
animal develops, its productive attributes depend on its size and condition relative to its mature
weight, rather than its current body weight. The model includes facilities for adjusting, in an
empirical way, such responses as the effect of protein composition on the efficiency of wool growth,
the effect of seasonal changes in the composition of digested herbage on the efficiency of weight
gain, or the partition of absorbed nutrients between milk production and weight change.

More detailed models of animal nutrition and metabolism are required if the purpose is to
advance research and understanding of ruminant nutrition. For example, it should be possible to
predict the composition of weight gain in terms of subcutaneous, intramuscular and visceral fat
and muscular and visceral protein from the amount and concentration of individual volatile fatty
acids and amino acids produced from transactions in the rumen. Nagorcka et al. (2000) showed a
significant improvement in modeling the rate of production of individual volatile fatty acids if
substrate fermentation was linked to the three major groups of microbes found in the rumen. This
opens a potential way for managers of beef feed lots to tailor feed composition so that desired
carcass conformation is achieved to meet stringent market requirements for quality meat products.
At present the approach is still at an early research stage but the mechanistic models are already
providing greater understanding of links between underlying processes of production.

Although this highly mechanistic approach to modeling potentially offers significant advantages
for intensive animal production, obstacles lie in the way of extending it to the management of
grazing animals. Here, the main limitations, on a day-to-day basis, are the fluctuating quality of
feed on offer and the difficulties in accurately characterizing the chemical composition of the diet
selected by grazing animals. At present the more simple model based on the feeding standards has
less scope for generating errors and is generally more reliable for making on-farm decisions about
animal nutritional management.
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Empirical or Mechanistic Models?

Both empirical and mechanistic models use mathematical equations to describe the quanti-
tative responses of biological processes indicated in conceptual models. These mathematical
models can range from mechanistic descriptions of cellular metabolism to empirical models of
production responses of plants, herds, flocks, or even whole farms and regional catchments.
Unlike mechanistic models, empirical models are not necessarily based on biological theory but
are derived from statistical analyses of observed data. They do not need to draw on lower-level
system attributes. Empirical models at one level can be coupled and this may provide increased
insight into how lower-level processes interact and influence system response at the next higher
level of organization. Perhaps the most important guidelines to building models and DS tools
are clarity of purpose and minimum complexity in model content and structure consistent with
achieving this purpose.

At present, empirical models of grazing system responses are more likely to give reliable
predictions than models based on a series of mechanistic processes, where a greater detail of
knowledge is required and where there is greater scope for generating errors. The cost of using
an empirical model as a DS tool for guiding farm decisions is its lack of flexibility for applications
that involve extrapolation beyond the source data. On the other hand, the detailed mechanistic
model lacks well-defined statistical properties, and validation may be impractical or difficult and
costly to undertake. The mechanistic model, however, has wider generality of application and
can provide more insight into the sensitivity of different underlying processes to management
intervention.

Data Requirements

Morley (1968) saw that agricultural modeling would require much data and the effort to
collect it would be substantial. This would involve physicists, chemists, meteorologists, math-
ematicians and physiologists as well as agronomists. Dedicated experimental designs on
centralized field stations would supply the data essential for model building, testing and
revision. Analysis of data would be more penetrating and rigorous. Regional experiments would
become less important. Unfortunately today the reality is different; there is more emphasis on
regional and farmer-initiated experiments that often are more demonstration than true exper-
iment. Rural industries seek quick returns from investment in research and dedicated experi-
ments to meet the requirements of model building do not fit this mold. There is also a critical
lack of data from long-term experiments that can be used to check the validity of model
predictions.

The amount and accuracy of data required to initialize models is another critical limitation
for realistic simulation particularly with detailed mechanistic models. Data inputs must be
minimal and the data must be readily available if models or DS tools are to be used by farmers
or their advisors. Where possible, default values must be provided. In general, extensive instru-
mentation to collect data at a site will not be feasible. For the model of Freer and Christian, the
most critical input is the standard reference weight for the breed or strain of animal that is being
simulated. This term is used to scale the animal’s feed intake and production. If the standard
reference weight is poorly estimated then the simulation of animal production will be inaccurate.
For the pasture growth models discussed later in this chapter, critical data inputs are the physical
properties of the soil such as bulk density, and the capacity of the soil to store plant-available
water. Such data are not presently available for most farms or paddocks and the data are costly
to collect. At present, we mostly rely on default descriptions of typical soil profiles for districts
included as look-up tables in the program. Users of the models are also encouraged to invest in
collecting input data.
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MODEL AND DECISION SUPPORT TOOL DEVELOPMENT 
FOR GRAZING SYSTEMS AT CSIRO AUSTRALIA

Scientists at CSIRO Plant Industry were early to recognize the advantage of a generalized
structure for simulation models that allowed easy inclusion of new or extended modules of grazing
system processes and flexible control of grazing management. This was seen as an essential
requirement if a model were to contribute usefully to strategic management on real farms where
there was wide diversity in enterprise structure and management (Christian et al., 1978). The original
concept of a flexible scheme for management and optimization of the biological system underlying
grazing enterprises has been further generalized and extended to include integration with cropping
enterprises. This powerful new tool is called FarmWi$e (see subsection on FarmWi$e).

The original program was written in Fortran, and the approach was a marked departure from
earlier models of grazing systems that mirrored the arbitrary and inflexible timetable of management
events used in field experiments. A key issue in the design of the model was its operation at three
levels of organization — the biological system, management of the biological system and optimi-
zation of management. A novel and highly systematic approach to coding was required to coordinate
its execution. Although this early program lacked a user-friendly interface and was not used
extensively by outside groups, it was the forerunner to the GRAZPLAN family of DS tools that
has been released for commercial use in the grazing industries of temperate southern Australia.

The GRAZPLAN Family of Decision Support Tools

The GRAZPLAN family of DS tools developed at CSIRO is designed with user-friendly
graphical interfaces that have evolved over time in response to user requests (Figure 2.2). The DS
tools and their underlying models are described in detail by Donnelly et al. (1997), Freer et al.
(1997) and Moore et al. (1997) and are outlined briefly in this chapter. The primary purpose of
these tools is to enable better analysis of the consequences of management decisions for farm
businesses, by using the power of the computer to integrate and evaluate all the effects that different
management options have on a grazing enterprise. Analysis of business risk due to variable seasonal
conditions is possible because potential farm performance can be evaluated across many years,
using historical weather records to drive the simulations. Business risk due to market fluctuations
in costs and prices can also be evaluated. The models reflect the current scientific understanding
of the processes controlling on-farm production, including interactions between the processes.

The DS software is programmed with the Borland Delphi development tool and runs in a
Microsoft Windows™ environment. The models are based on the best available experimental
information but our understanding of some of the processes we are attempting to model is preliminary.
Users are cautioned about the limitations that this may have on the accuracy of simulations.
Successful application may also depend on users developing new practical skills in pasture recording
and livestock husbandry so that essential data inputs are available.

CSIRO has a commercial contract with Horizon Pty. Ltd. (e-mail: horizontech@msn.com.au),
which is the agent for the distribution of the GRAZPLAN software. This company provides after-
sales service including a Help Desk and an organization of training courses. CSIRO provides
technical training to users with financial support from Meat and Livestock Australia and Australian
Wool Innovations Pty. Ltd.

A brief description of the GRAZPLAN DS tools follows.

LambAlive

This DS tool calculates the risk of death over the first 3 days of life of lambs as a result of
exposure to chilling weather conditions. Likely reductions in mortality from shifting the date of
the flock lambing period or of lambing in more sheltered paddocks can be evaluated.
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MetAccess

MetAccess is a database tool that provides structured access to historical records of daily surface
weather data collected by the Australian Bureau of Meteorology. The entire data set, for more than
6000 active locations where rainfall is recorded, is stored on a single CD-ROM. Data on up to 16
other daily surface weather observations are also included where available.

GrazFeed

GrazFeed is a software tool that assists farmers with feeding grazing livestock. Simple inputs
supplied by the user describe the condition of a specified pasture and the animals grazing on it.
Outputs include details of the nutritional requirements for energy and protein of the animals to
meet specified levels of production. Because the program allows for substitution of pasture by
supplement, the livestock manager can avoid expensive overfeeding of supplement. GrazFeed is
suitable for use with any breed of sheep or cattle grazing on any type of pasture, but it is not
designed for grazing systems based on semiarid rangelands where shrubs and forbs are components
of the vegetation that are also consumed by animals.

The animal model in GrazFeed (Freer et al., 1997) has many predictive functions common to
sheep and cattle, with specific parameters for a range of breed types and for all stages of growth
and reproduction, mostly adapted from the feeding standards (SCA, 1990). Despite its generality,
the model maintains a level of realism (see Stuth et al., 1999) that has blazed a new trail within
Australia for the use of computers for advisory purposes in the grazing industries (Simpson et al.,
2001).

Figure 2.2 The GRAZPLAN family of DS tools is an integrated set that uses the identical underlying models
where relevant. FarmWi$e is a whole-farm tool for evaluating mixed cropping and grazing enter-
prises. GrassGro can evaluate management decisions for a sheep or a cattle enterprise. GrazFeed
is a nutritional management system for grazing sheep or cattle. LambAlive can be used to predict
the mortality of newborn lambs from bad weather. MetAccess is a tool to analyze historical daily
weather records. The other DS tools in the family access the MetAccess database of weather
records.
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GrassGro

The GrassGro DS tool is a related piece of software that links the generalized animal model
described above to a generic model of pasture growth (Moore et al., 1997) covering a wide range of
plant species and cultivars (Figure 2.3). GrassGro simulates production of temperate pastures and
grazing animals through time as opposed to the single-day “snapshot” estimates of GrazFeed. Although
the complexity of the underlying models is hidden from the user, the range of outputs generated
allows the user to explore the biological relationships between the different processes operating in a
grazing system. The user is free to concentrate on the problem to be solved. GrassGro also contains
powerful facilities for analyzing business risk due to variability in weather and markets. 

Farm details are specified in GrassGro by selecting the relevant historical weather file and by
describing soil characteristics specific to the farm. The flock or herd genotype is specified by
selection of the appropriate breed, the mature weight and, for sheep, typical fleece characteristics.
More than one species or pasture plant cultivar can be represented in a sward; selecting several
pasture species from a menu specifies sward composition. When the user selects a pasture species,
the pasture model opens a set of parameters that are used with generalized equations to uniquely
characterize the genotype of the particular pasture species or cultivar (Moore et al., 1997). The
equations respond to climate, soil and grazing management to produce the phenotype relevant to
the location of the farm. Presently, pasture parameter sets are available to characterize about 12 species
used in temperate pastures in Australia including perennial ryegrass, phalaris, annual grass, white
clover, subterranean clover and lucerne. Additional pasture parameter sets are being developed and
will include native pasture species and weeds. Colleagues at Saskatoon, Canada, have developed
parameter sets for a broad range of species (c.15) found on the prairies (Cohen, 1995).

Figure 2.3 Grazing system resources as represented in the GrassGro decision support tool. Historical daily
weather data drives pasture and animal production constrained by the soil, pasture species, animal
enterprise, and management rules specified by the user. Production can be simulated on a daily
basis over a number of years and environmental, production and business risks that are associated
with climate variability can be evaluated.
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To develop new parameter sets, the same general form of equation is used where possible, with
allowance for morphological and ecological differences between annuals and perennials, grasses,
legumes and other forbs (Moore et al., 1997). Soil properties, weather events, grazing, and man-
agement interventions control expression of the phenotype. Developing parameter sets (about
100 parameters per plant cultivar) is a demanding task as data relevant to individual species may
be difficult to find. Where data are missing, our approach is to use an existing parameter set as a
template. For example, the set for Phalaris aquatica, where we have reasonable data to justify
parameter values, would be used as the template for another species with similar growth charac-
teristics but where there were few supporting data. Parameters are then modified based on experience
and other relevant information; such changes being kept to a minimum. Though not ideal, the
approach is working. It also allows us to model in an approximate way, weeds and other species
that invade sown pastures and affect production, even though their biology may not have been
studied extensively. To ensure the integrity of the pasture model, it is not possible for users to
change these “genotypic” parameters.

GrassGro can be used for two types of simulation: historical and tactical. Historical simulations
predict output over a series of years to assess the effect of climatic variability on production and
form the basis of risk analysis. They are most useful for longer-term strategic planning of a grazing
enterprise. Tactical simulations are used to project forward from a known starting point to assess
the probability of production outcomes that result from changes to the management plan over the
short to medium term.

Management rules covering pasture composition, grazing practices, herd or flock reproduction,
lambing, calving and weaning policies, policies for sale and purchase of additional or replacement
livestock following culling, and supplementary feeding are set for each run of the program. These
rules are not sufficiently flexible for the management of dairy herds but extensions to do this are
under consideration. An example of a user interface to GrassGro is shown in Figure 2.4. The
dialogue shows how reproduction in a breeding cow herd is specified.

Figure 2.4 A typical dialogue box from the user interface of GrassGro. This dialogue allows the user a great
deal of flexibility to specify the precise management for reproduction in a breeding cow herd.
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The yield of a pasture can be simulated reasonably well by models that treat the sward as a
single entity and do not model the mix of plant species present. Such models are empirical and
have been used to establish seasonal patterns of herbage yield. The pasture model used in GrassGro
goes further and attempts to model the individual species in the mixture in a more mechanistic
way. However, we are not yet satisfied that the representation of the processes involved in compe-
tition between the plant species or cultivars accurately models change in composition over time.
This applies to plant species that were either sown or have subsequently volunteered in the pasture.

The usefulness of GrassGro as a decision support tool depends greatly on the way model outputs
are displayed. This helps users to easily visualize how accurately the biological processes of the
grazing system are modeled. The series of outputs shown in Figure 2.5, for example, summarize
the major responses of a simulated breeding ewe enterprise. This output can be scanned quickly
to check whether the simulation appears reasonable.

FarmWi$e

FarmWi$e is a flexible DS tool for grazing systems management. It uses the same daily time-
step simulation models that are the basis of GrazFeed and GrassGro. It extends the domain of
GrassGro to include, for example, mixed sheep and cattle enterprises, soil fertility management,
soil acidification, sequences of different crops, and pastures grown in rotation and irrigation.

FarmWi$e is configurable so that the user can tailor a simulation to represent precisely the
grazing or mixed grazing system of interest. It is also extendable by the addition of submodels
from other sources that follow the CSIRO programming protocol (Moore et al., 2001). The spec-
ification of management is flexible using a special purpose scripting to specify the rules that schedule
events. The rules can use model variables so that management can respond to the state of the system
at relevant times in the simulation.

Component submodels in FarmWi$e are stored as dynamic link libraries (DLL) (i.e., executable
code). Written in any language that can be compiled and stored as a DLL, component models can
be deleted or replaced with an alternative without the need for the lengthy process of recompilation.
The protocol also allows coupling of multiple replicates of any component model so that it is
simple, for example, to set up both a multi-paddock and multiple enterprise farm.

A graphical interface allows component models to be placed within a structure that visually
represents a farm. This visual representation can show any level of detail that is necessary to
describe the farm’s operation, and the structure can be modified by simple rearrangement of the
components on the graphical interface.

Management of the farm is customized through a management script written by the user. This
allows, for example, the allocation of different livestock classes to specific paddocks, the scheduling
of irrigation, the sale or purchase of livestock, or sowing of a crop. The script is basically a set of
commands that is read by FarmWi$e to initialize and control the operations of the farm.

The output of this flexible modeling tool can range from detailed daily values to summaries of
user-selected variables that describe the system. These can be displayed as charts or tables. Variables
from different farming systems or simulation runs can be displayed in a common chart or table to
compare outputs.

APPLICATION OF MODELS — RESEARCH

As illustrated by the following examples, there is considerable information supporting a mod-
eling approach to guide the direction of research before committing resources to undertake expen-
sive experiments.
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First, at CSIRO Plant Industry, researchers are particularly interested in being able to predict
the effects of organic acids and enzymes excreted into the rhizosphere by plants, to assess their
capacity to mobilize P and to alleviate aluminum toxicity. Although the capacity to model rhizo-
sphere dynamics is limited, a simple modeling approach was used successfully by Hayes (1999)
to simulate the potential capabilities of a novel clover plant (Trifolium subterraneum) with a
genetically improved capacity to access insoluble organic P found in soils. The model was used to
determine the enzymatic characteristics that transgenic clover plants expressing a phytase gene in
their roots would need to enhance plant P nutrition to achieve optimal growth. These analyses

Figure 2.5 Typical output from a GrassGro simulation over 20 years of a ewe-breeding enterprise. The time
course data are generated daily and can be quickly interpreted to see if the model output is within
realistic bounds. For example, the bottom trace of supplement intake indicates substantial hand-
feeding during the early 1980s. This coincides with a severe drought at that time. Otherwise, feeding
at this level and frequency would alert the user to a possible anomaly or an error in the set up for
the simulation.
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supported existing empirical knowledge, even though the representation of the rhizosphere envi-
ronment was greatly simplified. In addition to the immediate application of this model to assist in
the development of a genetically modified plant, the model provides insight about the way to
describe these processes in farming systems models. The ability to predict the amount of P that
can be mobilized from various soil P fractions by different plant species, apart from genetically
modified ones, would be extremely beneficial.

Second, decision support tools such as GrassGro are useful for evaluating the likely impact on
enterprise gross margins of achieving various plant breeding objectives. Donnelly et al. (1994)
investigated, in simulated pastures based on Phalaris aquatica, the impact of breeding cultivars
with increased winter growth. Although their analyses demonstrate a likely financial advantage in
breeding for this trait, they also demonstrate a marked interaction with grazing management. For
example, in a wool-producing enterprise running at 10 Merino wethers/ha, the use of a ‘winter-
active cultivar’ increased predicted gross margin/ha by only 12% (due entirely to reduced supple-
ment costs), whereas at 15 wethers/ha, the increase was more substantial (28%) and resulted from
increased income from animals as well as reduced supplement costs. Similar results were obtained
from analyses based on a hypothetical cultivar which maintained a higher digestibility of dead
material during the summer months.

Dove (1998) extended these assessments by looking at the additivity of these two separate plant
breeding objectives, and also the impact of the presence of legume in the sward on the financial
advantage offered by the improved grass cultivar. As shown in Figure 2.6, the presence in the
simulated grass sward of a cultivar with higher digestibility over the summer months resulted in
increases in gross margin/ha in a ewe breeding enterprise, which were highly dependent on stocking
rate, as in the earlier simulations of Donnelly et al. (1994). At 12.5 ewes/ha, the increase in gross
margin was $53/ha, only $19 of which was attributable to decreased summer feeding costs.

Further simulations demonstrated two important points:

• The inclusion of both plant breeding traits in the simulated improved cultivar resulted in increases
in gross margin/ha which were, on average, 80 to 90% additive, that is, the advantage of having
both traits was 80 to 90% of the sum of the advantages of the separate traits.

• The inclusion of legume in the simulated sward meant that the advantage of the improved grass
cultivar was reduced to some extent, partly because there was less of it in the sward and partly
because the legume “filled in gaps” in the supply of feed from the grass component. Nevertheless,
the gross margins in simulations involving the “improved” grass cultivar were still higher than
those for the unimproved.

Figure 2.6 The effect of stocking rate on the simulated economic value of an improved cultivar of perennial
ryegrass compared with a standard cultivar. The improved cultivar, which had a higher digestibility
over summer, increased gross margins ($/ha) and marginally reduced business risk (standard
deviation of gross margins).
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APPLICATIONS OF MODELS — ON-FARM CASE STUDIES

A major objective of the initiatives to develop models and DS tools at CSIRO Plant Industry
is to provide producers with practical tools to help them strategically position their farm enterprises
for future profit and sustainability. The tools can also be used to provide tactical guidance for day-
to-day management within a broader strategic plan. The following case studies demonstrate the
application of GRAZPLAN DS tools to practical on-farm problems.

One way to manage a farm successfully is to estimate the likely profit margins of different
strategies and judge these in the light of likely business and environmental risks. The process is
demanding, as the farm manager must identify the key management variables that control production
and product quality and estimate any impact on the environment. The variables listed in Table2.1
are the key profit drivers of grazing enterprises of temperate Australia. Although the list is relatively
short, setting an appropriate level and predicting the outcome of interactions between drivers is a
skill that can be difficult to master. Computer models can help guide this process, because they
provide a framework and a systematic way to investigate and integrate the impact of these key
profit drivers on the farm business. However, of 90 Australian models designed for investigation
of farm production and the impact of farming practice on water catchments (Hook, 1997), most
were built for research use, few focus on the profit drivers, and few are used outside the research
groups that built them. Moreover, many models require large inputs of data and need a high level
of expertise to operate. Seligman (1993) and others have commented that early predictions about
the use of models to guide decisions in agriculture were too optimistic. The situation is now changing
and DS tools are starting to have significant impact on the management of “real-world” grazing
enterprises (Donnelly and Moore, 1999; Stuth et al., 1999; Bell and Allan, 2000). 

Tactical Farm Planning

Tactical farm planning is about short-term decisions that must be made as a consequence of
prevailing weather conditions or to take advantage of market opportunities for farm products. The
following case studies show how the GRAZPLAN tools can help farm managers improve profits
under adverse as well as favorable seasonal conditions.

Alleviating the Impact of Drought with Fodder Crops

Case Study: A livestock producer wanted to assess the chances of growing a fodder crop over
summer after failure of winter and spring rains.

Rainfall over substantial parts of southeast Australia is nonseasonal, but pastures for sheep and
cattle enterprises are typically based on winter-growing annuals and perennials. Failure of winter
or spring rains can cause crippling losses over the following summer and autumn due to the need
to feed large amounts of supplements. This situation was experienced in 1994 on a wool growing
property near Braidwood in southern New South Wales. By mid-spring pastures had ceased to
grow, and property owners believed the only remaining option to provide desperately needed feed

Table 2.1 The Key Drivers of Profit 
in Temperate Grazing 
Systems in Australia

Stocking rate
Time of calving/lambing
Fertilizer use
Animal genetics
Animal health
Supplementary daily feeding policy
Herd/flock structure
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for livestock over the coming summer and autumn was to sow a forage crop of turnips. At the same
time, the prevailing negative value of the Southern Oscillation Index (SOI), promoted in Australia
as a drought indicator, suggested that dry conditions would continue until autumn. Fearing an
increased risk of erosion, the property owners, therefore, were uncertain about the wisdom of
sowing summer forages and asked for an analysis using MetAccess. It was pointed out that success
or failure for the specific fodder crop could not be predicted; however, an indication of the odds
that sowing the fodder crop would help overcome the critical feed shortage could be based on
historical daily rainfall records at Braidwood. Based on those records, the prospect of adequate
rain for a safe sowing of grazing turnips in late spring was quite promising, and the chance of good
follow-up rains after sowing was excellent. Moreover, the correlation between the SOI and summer
rainfall is not particularly strong at that time of the year, andscientists at CSIRO considered that
it could be ignored for the growth of the turnip crop. As it turned out, this analysis proved correct,
the sowing and subsequent growth of the forage crop was successful, and owners avoided a
prohibitively expensive supplementary feed bill. If conditions had remained dry and the crop failed,
the decision would have still been the correct one based on the information available at the time,
although the outcome would have been adverse.

This case study shows how a relatively simple DS tool such as MetAccess can give a livestock
producer sound information on which to base a decision. The owners were further advised to
cope with climate variability in the Braidwood area by placing greater reliance on perennial
pasture species wherever they can be sown, rather than using pastures based on winter-growing
annuals.

Timely Drought Decisions for Breeding Cow Herds

Case Study: As the green pick from summer rain in February disappeared cattle producers on
the southern tablelands of New South Wales met with their livestock advisor to discuss options for
managing breeding cow herds.

Cows with calves at foot were running out of feed in February 1998 following one of the driest
spring and summer seasons on record. There was uncertainty about when the autumn rains were
likely to arrive and the amount of feed that would be needed to grow the calves to weights suitable
for the on-property weaner sales in May.

The first task of the advisor was to calculate when autumn rains were likely to occur based on
historical rainfall records. From past experience, the producers agreed with the advisor that a total
of at least 30 mm of rain over a week would be needed before the beginning of April for reasonable
pasture growth to commence. If rain were delayed after this period, there would be insufficient
time for calves to fatten to the desired weight for the sales. Analysis of the rainfall records for the
district over the past 56 years with MetAccess showed that there was only a “1–year–in–2” chance
of drought breaking rains occurring before the beginning of April (Figure 2.7). On the basis of this
analysis, the producers considered the chance of getting adequate pasture to fatten calves from an
early break was very slim and the only alternative was to embark on an expensive supplementary
feeding program, requiring careful calculation to ensure cost containment. It would be important
to keep the total number of cattle handfed on property to a minimum.

The advisor helped the producers use GrazFeed to test a range of supplements that would allow
the calves to reach a target sale weight of 260 kg from their current live weight of 180 kg (Figure 2.8
and Table 2.2).

Feed budgets for full supplementary feeding until the end of April then gave the graziers a clear
indication of additional income needed from the sales to recover the cost of feeding.

It was uneconomical to hand-feed the lighter calves on the cows so a decision was made to
wean these calves earlier than usual and send them to fatten on agistment in another region of New
South Wales. A reasonable price was secured well before the rest of the district started seeking
agistment, and the agisted calves did well and were sold direct to northern markets. 
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The small group of heavier calves (over 210 kg) was kept on the cows and handfed, despite
the high cost, to maintain the viability of the local weaner sales. These heavier calves made
the grade for the weaner sales by feeding the cows at the correct level for production.

By adopting this strategy, cash flows were maintained and costs contained (Table 2.2). The
advisor commented, “This is about separating fact from hope. MetAccess and GrazFeed gave
these producers a set of realistic costed options based on hard facts. The producers combined
their own knowledge and expectations with the additional information to make a timely
decision.”

Figure 2.7 Probability of 30 mm or more of rainfall in any 7-day period after March 1 [weather data from
Australian Bureau of Meteorology Station, Tharwa Store (1939–96)].

Figure 2.8 Weight gain by calves at foot after feeding barley and lupins.

Table 2.2 Comparison of the Costs of Agistment and a Supplementary Feed Mix (80% barley and 20% 
lupins) with ME:DM = 13.6 MJ/kg DM

Weight 
of Calf

Starting 
Live Weight

Required 
Weight Gain 

(kg/day)

Amount 
Fed 

(kg/cow/day)
Daily Feed 

Cost ($)

Total Cost 
Hand-Feeding 

($/calf)

Total Cost 
Agistment 
Including 
Transport 

($/calf)
Difference 

($/calf)

Light 180 0.89 9.16 1.81 162.90 61.00 101.90
Heavy 210 0.56 7.63 1.51 135.90 61.00 74.90

Probability
(%)

Time of Year

Weight gain by
calves

(kg/day)

Amount of supplement
(kg/cow/day)
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Cattle Fattening Options in Southern New South Wales

Case Study: In favorable seasons, when there is a surplus of pasture, livestock producers can
purchase additional animals for fattening and sale; however, this opportunity also involves signif-
icant business risks if normal seasonal rains fail and the additional animals do not reach their target
sale weight.

Simpson et al. (2001) developed this case study of beef producers in southern New South Wales
who occasionally have sufficient feed on hand in late summer to consider purchasing weaner steers
to fatten for the domestic retail trade, or for sale to a feedlot at the end of the following spring. If
seasonal conditions deteriorate, however, the additional animals may not reach sale weight and the
main farm enterprise could be placed under increased pressure, threatening normal farm income.
The risk of these outcomes can be assessed quickly with a DS tool, such as GrassGro, before a
decision is made to invest in the opportunity. GrassGro can be set up to represent the prevailing
pasture conditions and the genotype and condition of the weaner steers available for immediate
purchase. The possible pasture and animal production outcomes that may occur are simulated from
the day of purchase to the day of sale using the historical weather record over a long run of years
(1958 to 1997).

Figure 2.9 shows the probability of achieving differing live weight outcomes given three alter-
native stocking rates. The simulations suggest that there is a 95% chance of reaching the minimum
live weight for the domestic retail trade (330 kg) if the producer grazes the animals at two steers/ha.
This reduces to 85% and 73%, respectively, at three and four steers/ha. To sell into an export feedlot
the steers must reach 400 kg. This can be achieved 1 year in 2, given similar seasonal starting
conditions if grazing at two steers/ha, but there is only a one-in-five chance at four steers/ha.

This form of business risk assessment gives a measure of the likely variability in feed supply
and would normally be combined with further economic analysis when making a business decision.
Tactical simulations are not just about capturing new markets and production opportunities. They
can also be very helpful when preparing a business for adverse conditions. For instance, Alcock
et al. (1998) report tactical preparations for an anticipated feed shortage due to drought.

Strategic Farm Planning

A clear understanding of how the key biological, managerial and economic drivers interact
among all enterprises on a farm is a fundamental requirement for profitable and sustainable land

Figure 2.9 Probability of achieving target steer live weights by November 30 at Holbrook, New South Wales
at three stocking rates. Minimum target live weight for domestic trade is 330 kg, and for export
feedlot entry 400 kg.
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use. Research shows that the primary profit drivers for the grazing enterprises are usually stocking
rate, time of lambing or calving, fertilizer and supplement use, choice of suitable plant species and
animal genotypes, and attention to animal health. Level of subdivision and rotational management
to rest pastures from grazing are generally of secondary importance. Rural consultants (e.g., Lean
et al., 1997) find that attention to these key profit drivers makes it possible to shift typical grazing
enterprises in temperate Australia from severe financial loss to a modest level of profit even when
commodity prices are low. Given the dramatic reversal of profitability that consultants like Lean
and his colleagues can achieve for their clients, why then are many grazing enterprises in Australia
currently unprofitable? There is no single answer, but it is evident that clear messages must be
provided to graziers about the role of each profit driver. Advice also needs to be specific to the
soil, weather, pasture species and grazing management of individual farms, particularly when profit
margins are low.

Estimating Production Risk for a Grazing Lease

Case Study: Leasing additional land is a strategy that enables an efficient producer to increase
the scale of a grazing enterprise and reduce the cost of production to lift profits, although the
opportunity to expand a grazing business also carries risks.

A wool-growing partnership on the southern tablelands of New South Wales was interested in
leasing a property in an unfamiliar district. The area where the lease was located had a 750 mm annual
rainfall and acidic granite and basalt soils; it had not been fertilized for many years. The original
owners had stocked the lease, which was sown to phalaris and subterranean clover pastures, at 11 dry
sheep/ha. To make a decision to undertake the lease the partners wanted a more quantitative assessment
of the restrictions on carrying capacity of the feed supply and the likely responses by the pastures to
inputs of fertilizer. They also wanted to know the best time to lamb down their flock for optimum
utilization of the pasture supply and labor. They thought that carrying capacity might be increased to
15 to 20 dry sheep/ha with moderate to heavy applications of phosphorus and lime. GrassGro
simulations were seen as an objective way to assess the production potential of the lease property.

GrassGro simulations using local weather records over the period 1984 to 1998 and soil profile
data at the lease showed that at the relatively low stocking rate of 9 ewes/ha the yield of pasture
dry matter was below 650 kg/ha from start of growth in autumn until mid-September when spring
growth commenced (Figure 2.10). This concurred with the lease owner’s comment that livestock
relied on the feed produced in “big springs with not much in between.” Other test simulation runs
confirmed that the likely cause of the restricted pasture growth was low temperatures.

Figure 2.10 (a) Simulated median pasture availability over 15 years on the high fertility home property stocked
at 12 ewes/ha and the lease property stocked at two possible rates: 9 ewes/ha (if low fertility) and
12 ewes/ha (if high fertility). The arrows indicate the optimum lambing date on the home and lease
properties respectively. (b) Response of average gross margins (GM) and business risk to stocking
rate and soil fertility at each property. The numbers associated with each symbol refer to stocking
rates in ewes/ha.
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Time of lambing between early August and late October was also tested with GrassGro. The
optimum date to start lambing on the home property was mid-August and about four weeks later
on the lease property. This indicated a potential advantage to share labor resources between the
two properties.

Simulations also indicated that with improved soil fertility, 12 ewes/ha could be run profitably
on the lease property, approximately the same carrying capacity as on the home property. At
15 ewes/ha (approx. 20 dry sheep/ha), supplementary feed costs increased to unacceptable levels
on both properties.

These analyses with GrassGro added to the information that the woolgrower had about potential
production of the lease provided by local consultants, regional trial data and his own experience.
GrassGro had provided an objective framework to assess the resources of the lease that were critical
to profitability.

Fine Tuning the Time of Lambing in Spring: Is It Profitable?

Case Study: A producer of fine wool wanted information about the likely impact on profits
of “fine-tuning” his time of lambing in the spring. GrassGro was used to examine lamb mortalities
and lamb weaning weights for different lambing dates in spring but the analyses showed that the
path to bigger profits lay in modifying other aspects of the management plan.

Selection of an appropriate time of lambing is a major profit driver in most pasture-based sheep
breeding enterprises in most of southern Australia. Lambing in late winter or early spring generally
ensures the best match between ewe nutrient demand and pasture supply (McLaughlin, 1968; Reeve
and Sharkey, 1980; Lloyd Davies and Devaud, 1988). But the question remains: What are the gains,
if any, to be made from lambing at different times in this period?

The property in question was situated on the central tablelands of New South Wales at an
elevation of 1000 m with a mean annual rainfall of 850 mm. Low temperatures limited pasture
growth until late September and the sparse feed supply threatened both lamb and ewe survival.

GrassGro was used to estimate annual gross margins over 20 years for three lambing dates for
a self-replacing, fine-wool Merino flock. In the simulations, the flock was stocked at four rates (nine,
12, 15 and 18 ewes/ha) on highly fertile pastures of cocksfoot, annual grass and subterranean clover.

These analyses showed that time of lambing in spring had minor effects on lamb mortality,
lamb weaning weight and the need for ewe supplements. The differences in predicted gross margins
were not significant (Figure 2.11). Increasing the stocking rate from nine to 18 ewes/ha had a large

Figure 2.11 Box plots of gross margins for lambing dates in mid August ( ), mid September ( ) and mid
October ( ) at four stocking rates. Vertical bars represent the range of all values except 1982 (a
drought year), which is indicated by the dots. The upper line of the box is the 75th percentile, the
middle line is the median and the lower line is the 25th percentile.
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impact on profitability, showing that in this environment the primary profit driver was stocking rate
rather than lambing date; however, at the highest stocking rate there is greater downside risk
associated with August lambing compared to September or October lambing.

As a result of these analyses, the producer recognized the overriding importance of stocking
rate as a driver of profit. He is now increasing his stocking rate and he will monitor performance
of the enterprise closely (Behrendt et al., 2000). This case study shows how GrassGro provided a
framework for the producer to explore the outcomes of several management options over a range
of seasonal conditions that would otherwise be difficult to do.

PROGRESS IN ACHIEVING INDUSTRY ACCEPTANCE OF MODELS

Experience indicates that the tactical management tool, GrazFeed, has already had a far-reaching
impact on the profitability and environmental sustainability of grazing enterprises (Bell and Allan,
2000). For both cropping and grazing enterprises the benefits to farmers from the use of the strategic
management tools are less certain. Nevertheless, CSIRO is committed to ongoing revision and
further development of the underlying biological models and the user interfaces to achieve better
industry acceptance and to ensure the successful DS tools maintain their relevance for industry use.

Adoption of GrazFeed

GrazFeed is now a well-established management support tool used widely by growers and
extension workers in much of southern Australia. GrazFeed was first released for commercial use
in 1990, and since then more than 1200 producers and advisors have obtained licenses. It was used
to develop guidelines relating pasture characteristics with livestock production for the successful
PROGRAZE extension package that has been delivered to more than 4000 producers (Mason and
Kay, 2000). GrazFeed has undergone numerous upgrades in response to feedback from users and
the user interface has been updated as computer technology advances. Currently, the authors are
evaluating a version that includes breed types that may make it suitable for use in animal production
enterprises in North America.

Reasons for GrazFeed’s Success in Commercial Use

Reasons for the success of DS tools include simple user interfaces that hide the complexity of
the underlying models, minimal requirements for input data, the provision of default values wher-
ever possible, and flexibility to describe and test real life management options. Although direct use
of DS tools by Australian farmers is still relatively rare, indications are clear that some of the early
promise for this technology is at last being realized and a revolution is occurring in the way farmers
manage their pastures and animals. There is also a slowly growing appreciation in agribusiness
that computer models and DS tools may provide the only objective and feasible way to study how
the whole farm environment responds to management interventions. Financial support to continue
development of DS tools, however, remains difficult to secure.

Commercial release of GrazFeed was preceded by the development of a well-researched and
published feeding standard for ruminants (SCA, 1990). This standard gave GrazFeed a huge
advantage in gaining credibility within the research and extension communities as a DS tool for
the nutritional management of grazing flocks and herds. The standard provides an agreed framework
and a set of equations with which a model can be built. Unfortunately, a basis for developing an
analogous standard for the growth of pasture and crop plants has not emerged, so an agreed
framework for developing models of crops and pastures is not available. Two decades ago, there
were already sound reasons for building a DS tool such as GrazFeed, and several of these were
later outlined in Stuth et al. (1999). First, Freer and Christian (1983) recognized the advantage of
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developing a tactical model for testing the current feed requirements of a flock or herd. Second,
Freer was a member of the sub-committee, appointed by the Australian Standing Committee on
Agriculture, charged with developing feeding standards for ruminants. GrazFeed, seen as an easy
way for livestock producers to implement the feeding standards, makes the calculations of the
amount of feed needed for drought feeding or maintaining animals simple to undertake. Moreover,
the calculations are accurate for all classes of stock and all types of feed used in a grazing enterprise.

When CSIRO Plant Industry commenced development of GrazFeed, the grazing industry did
not see a need for it and was reluctant to fund it. CSIRO identified a product champion in the
government extension service of New South Wales Agriculture (NSW Agriculture). This was a vital
step for its widespread adoption. NSW Agriculture commenced training its extension officers in the
necessary pasture assessment skills and in using these assessments as inputs to GrazFeed. Subse-
quently, similar workshops were established for livestock producers through the PROGRAZE project.

The adoption of GrazFeed has resulted in massive savings for livestock producers, particularly
during drought, by rationalizing the need for feeding supplements to livestock. Advisory groups in
all the southern Australian states now use GrazFeed routinely in preparing advice for producers. The
leading advisors, however, want to extend the utility of GrazFeed to tackle questions that are more
concerned with strategic rather than tactical management, for example, questions about stocking
rate. CSIRO has released GrassGro for commercial use as a more appropriate way to do that.

Progress with the Commercial Adoption of GrassGro

GrassGro was released for commercial use in 1997. It is a much more comprehensive tool than
GrazFeed, and it is only sold as a package that includes an intensive 3-day training course. At
present about 100 advisors and research users have been licensed to use GrassGro in Australia. It
has been adapted for teaching undergraduate courses in the rural and natural sciences at the
University of New England in northern New South Wales. Twelve teaching staff attended intensive
training courses and are using GrassGro in 24 teaching units. By late 2000, more than 700 student
contact hours were spent working with GrassGro. GrassGro is also used for teaching at the
University of Adelaide and at the University of Melbourne, where it is also used for delivering
extension courses to farmers. The authors expect that the use of both GrazFeed and GrassGro for
teaching will lead to a growing body of users in the next generation of farmers and advisors.

GrassGro was designed so that research findings could be tailored more closely to the land
capability and grazing enterprises of individual farms. The authors thought that significant benefits
would accrue to individual growers if advice could be tailored to their precise needs. This was a
marked departure from the conventional approach in extension where advice is usually of a more
general nature; however, feedback from a committee appointed to evaluate how GrassGro is used
in industry suggested that our design goal did not match their expectations. Several committee
members, who were also professional rural advisors, used GrassGro to evaluate grazing enterprises
in districts where the considerable investment in time to do this could be spread over as many
clients as possible. To achieve this expectation and assist advisors using GrassGro, CSIRO is
developing templates based on thoroughly worked analyses where the focus is on the key profit
drivers in grazing systems.

CONCLUSION

This chapter has described the development of an integrated set of DS tools that are now used,
by farm advisors in particular, to remove uncertainty from the outcome of management decisions
on the profitability and environmental sustainability of grazing enterprises in temperate southern
Australia. The models operate with a daily time-step at the level of the whole animal and whole
plant. The generality of the equations in the models is based on the use of parameters that quantify
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the genotypes of animals and plants commonly used in Australian grazing systems. Production on
an individual farm is simulated by nominating the appropriate animal and plant genotypes, operating
within specified managerial constraints and driving the model with available local environmental
data. This approach enables users to simulate with the one model, most breeds of sheep, cattle and
a wide range of pasture species used in Australia’s temperate grazing systems. Local historical
daily weather records can be used to predict the outcome of both tactical and strategic management
decisions. Hence, a powerful facility has been developed to estimate how the business risk for an
enterprise changes with alternative management options.

Detailed examples outline the use of these tools in case studies undertaken on the properties
of collaborating farmers. The challenge of modeling pasture and crop growth in GrassGro and
FarmWi$e for planning strategic management is greater than guiding tactical management decisions
with GrazFeed. One advantage is confidence in the animal model so thoroughly tested in GrazFeed,
although the main challenges lie in issues such as modeling competition between companion species
in a pasture sward and responses of pastures to applied fertilizer. The authors’ approach, therefore,
is to make incremental improvements to the underlying biological process models, to increase the
scope of management issues that can be investigated and to improve the ease of use of the DS
tools. The authors’ viewpoint is that these models provide a framework for effective decision
support; they are not intended to determine management decisions. It is likely that many individuals
who say that models do not work or do not deliver probably do not understand their purpose.

Quite apart from the huge cost of developing and testing DS tools that model pasture and crop
systems, a major investment of time is needed to acquire the skill to use them. The benefit from use
must be able to repay this investment. For strategic applications the skilled advisor who uses the
tool or model on a regular basis is the primary target. Casual users who attend a course and then
use the DS tool once or twice a year will be prone to making serious errors that may prove costly.
Predictions in the 1970s that all farmers would have computers on their desks and use models to
make decisions have proved wide of the mark. The reality of today is that DS tools have started to
deliver their promise although rural advisors rather than farmers are presently the prime users.
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INTRODUCTION

Computer simulation of cotton growth and yield began at a meeting held at the University of
Arizona sponsored by the Departments of Agronomy and Agricultural Engineering and organized
by H.N. Stapleton in 1968. From this meeting, several modeling projects emerged. Stapleton’s
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group developed a computer program called COTTON (Stapleton et al., 1973). Dr. W.G. Duncan,
who held a joint appointment between the University of Kentucky and the University of Florida,
collaborated with researchers at Mississippi State University to develop a physiological cotton
simulation model called SIMCOT (Duncan, 1971). It used average plant data file from which the
cotton plant was simulated. The model was then modified to incorporate a nutritional theory of
plant growth. Carbon and nitrogen supply demand ratios were used as stress factors to calculate
organ growth and developmental responses to those nutrients, and the upgraded model named
SIMCOT II (McKinion et al., 1975).

Over the next two years, several improvements were made in the area of cotton physiology
using the data of Hesketh and Baker (1967), Hesketh et al. (1971) and Hesketh (1972). During the
middle and late 1970s, the SIMCOT II model was integrated with a two-dimensional gridded soil
model called RHIZOS (Lambert et al., 1977), and the new model was called GOSSYM, an acronym
coming from the word Gossypium, the genus of cotton (Baker et al., 1977). With progress in
developing systems for understanding plant responses to the environment, it was realized that the
commonly collected field data had limited value in model development because:

1. Field data were too confounded with covariates to allow one to separate cause and effect as most
field experiments were designed to test differences between means.

2. In most field experiments, at least one critical factor needed in the modeling process was not
measured, i.e., solar radiation.

Phene et al. (1978) recognized the importance of unambiguously determining the role of specific
environmental factors on plant processes, and they were the first to design naturally lit plant growth
chambers with realistic soil volumes. These became known as Soil–Plant–Atmosphere–Research
(SPAR) units. They were used for developing physiological process rate equations for cotton,
soybean and wheat simulation models. Since that time, extensive data sets have been obtained that
are unique and instrumental in developing improved cotton model and other crop simulation models
(Phene et al., 1978; Marani et al., 1985; K.R. Reddy et al., 1997a, 2000, 2001).

In early 1984, the GOSSYM research team was approached by Dr. Andy Jordan of the National
Cotton Council about using the GOSSYM model on commercial cotton farms as a decision aid.
As a result of that effort, it was realized that the program and user interface were harder to understand
and use. Therefore, an expert system was specifically designed for the GOSSYM model called,
COMAX (CrOp MAnagement eXpert, Lemmon, 1986; McKinion and Lemmon, 1985). With the
help of State Cotton Specialist for Mississippi Cooperative Extension Service and the National
Cotton Council, the model was delivered to 70 cotton farms in several states in the Midsouth by
late 1987.

By 1990, the model had grown from a pilot program on two farms in 1984 to an ongoing
program used by over 100 farmers in 12 states. The extension specialists and consultants served
an additional 200 to 300 farmers (Ladewig and Thomas, 1992). This success was primarily due
to continuous on-farm testing and developing new and improved algorithms as the model was
being tested within the U.S. Cotton Belt, and abroad (Marani and Baker, 1978; McKinion et al.,
1989; Ladewig and Thomas, 1992; Pan et al., 1994; K.R. Reddy et al., 1995; Jallas et al., 2000).
Research was conducted in different parts of U.S. and other parts of the world to improve the
model for effective prediction of crop growth under field conditions (Gertsis and Symeonakis,
1998; Gertsis and Whisler, 1998; Marani and Baker, 1978; K.R. Reddy et al., 1997a, 2000; Jallas
et al., 2000). Basic processes were simulated with data collected from carefully controlled
experiments, while field data were used to help refine the responses under multi-variant field
conditions. After a brief description of the GOSSYM/COMAX, we concentrate in this chapter
on the applications of the model for crop management and its usefulness in providing both the
farmers, crop production managers, and policy makers with economic and policy decisions.
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THE COTTON DECISION SUPPORT SYSTEM, GOSSYM-COMAX

The development, characteristics, and some applications of GOSSYM have been previously
described (Baker et al., 1983; McKinion et al., 1989; Boone et al., 1995; K.R. Reddy et al., 1997a;
Hodges et al., 1998). GOSSYM is a mass balance dynamic simulation model that accounts for
carbon, nitrogen, and water in the plant and soil root-zone. It simulates crop responses to the
environmental variables such as solar radiation, temperature, rain/irrigation, and wind, as well as
to variation in soil properties and cultural practices. The model estimates growth and development
rates by calculating potential rates for the observed daily temperatures assuming other conditions
are not limiting, then it corrects the potential rates by intensity of environmental stresses (Baker
et al., 1983; K.R. Reddy et al., 1997a; Hodges et al., 1998). Each day, the model provides the user
with the plant size and growth stage as well as growth rate and the intensity of the stress factors.
A grower can assume certain future weather conditions (days and weeks) to determine yield
estimates and impact of alternative cultural practices on the maturity of the crop.

A flow chart of GOSSYM shows the general organization of the model and program flow
(Figure 3.1). GOSSYM is the main program from which all of the subroutines vertically below it
in the diagram are called. CLYMAT reads the daily weather information and calls DATES, which
keeps track of both day of the year and the calendar date being simulated; and calls TMPSOL,
which calculates the soil temperatures by soil layer. SOIL is a mini-main program, which calls the
soil sub-programs (Boone et al., 1995). The soil routines provide the plant model with estimates
of soil water potential in each grid cell, as described in the following paragraphs, in both the rooted
and non-rooted portion of the soil profile, an estimate of the nitrogen entrained in the transpiration
stream available for growth, and an estimate of metabolic sink strength in the root system.

The belowground processes are treated in a two dimensional grid. The mass balances of roots
in three age categories, water, nitrate and ammonia, and organic matter are maintained and updated
several times per day. FERTLIZ distributes ammonium, nitrate, and urea fertilizers into the soil
matrix when applications are needed. GRAFLO simulates the movement of both rain and irrigation
water into the soil profile. Evaporation (E) estimates from the soil surface and transpiration (T)
from the plant are summed as evapotranspiration (ET). UPTAKE calculates the amount of soil
water taken from the soil region where roots are present. CAPFLO estimates the rewetting of dry
soil from wetter soil by capillary flow. NITRIF calculates the conversion of ammonium to nitrates
by bacterial action in the soil medium. CHEM is also a mini-main program, which calls subprograms

Figure 3.1 Flow diagram of the subroutines and structure of GOSSYM, a cotton crop simulator with organi-
zation and program flow of the model. See text for details.
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that calculate the effect of chemicals on plant physiological processes (PIX® and PREP®). PIX
deals with the effects of the plant growth regulator, mepiquat chloride, that will be discussed further
and PREP deals with the effect of the boll opener, ethephon.

In PNET, leaf water potential, canopy light interception, photosynthesis, and respiration are
calculated. Then, in the GROWTH subroutine, potential dry matter accretion of each organ is
calculated from temperature. These potential organ growth rates are adjusted for turgor and nitrogen
availability. Then, photosynthates and any reserve carbohydrates are partitioned to the various
organs in proportion to the total growth requirements. The partition-control factor is the carbohy-
drate supply:demand ratio. RUTGRO calculates the simulated potential and actual growth rates of
roots. RIMPED calculates the effect of root penetration resistance on the capability of roots to
elongate. NITRO calculates the partitioning of nitrogen in the plant. MATBAL keeps track of the
nitrogen and carbon material balance in all parts of the plant and soil complex. In PLTMAP, stress
induced fruit loss and developmental delays are calculated using both carbohydrate and nitrogen
supply:demand ratios. These developmental delays are used to delay the simulation of plastochrons
or other developmental intervals that are calculated as functions of temperature (Hodges et al.,
1998). ABSCISE estimates the rate of abscission of fruit, squares, and leaves due to stress and age.
PMAPS, COTPLT, and OUTPUT print various user-selected reports from the simulation model.
The program cycles through these subroutines daily from emergence to either the current in-season
date or to the end of the season. In-season simulations may be augmented with forecasted weather
data for the remainder of the season depending on the user’s choice.

The COMAX system is an expert system that was explicitly developed for working with
GOSSYM model (Lemmon, 1986; McKinion et al., 1989). COMAX is a forward-chaining, rule-
based system that contains an inference engine, a file maintenance system for the simulation model
requirements, a database system for the knowledge base, and “user friendly” menu-driven system
for user interactions. The inference engine applies rules to:

1. Organize weather and cultural practices input data files, including plant growth regulator applica-
tions used by the GOSSYM program.

2. Execute the GOSSYM program.
3. Interpret the model results making recommendations on timing and amounts of irrigation, fertil-

izers, plant growth regulators, and harvest-aid chemicals.

For more detailed information on COMAX, see Lemmon (1986) and Hodges et al. (1998).
The model has been continuously updated as new information became available (K.R. Reddy

et al., 1995, 1997a, 1997b, 2000; K.R. Reddy and Boone, 2001). Recent improvements include the
use of phytomer concept for plant height simulation and leaf area development (K.R. Reddy et al.,
1997b). Simulation of plant height involves the temperature-controlled rates of internode initiations,
duration of extension, and elongation and knowledge of internode lengths at node initiation under
optimum growing conditions. Similarly, potential leaf area development was simulated by the time
required to initiate a new leaf on the mainstem and branches, and growth rates and duration of
expansion and leaf sizes at leaf unfolding as functions of observed temperature under optimum
water and nutrient conditions (K.R. Reddy et al., 1997b). The effect of nitrogen and water defi-
ciencies, and the influence of plant growth regulators on leaf area development were also incorpo-
rated using appropriate stress-specific reduction factors (K.R. Reddy et al., 1995, 1997a, 1997b).
In addition, enhancements were made to simulate boll abscissions due to high air temperatures
(K.R. Reddy et al., 1997c). These modifications have increased the model’s sensitivity to a wide
range of environmental conditions including future climatic conditions. Simulations for future
climatic conditions have assumed historic daily weather patterns plus or minus certain perturbation
amounts for the various weather variables.
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MODEL VALIDATION

The model has been validated extensively across a wide range of environmental conditions and
cultural practices (Fye et al., 1984; V.R. Reddy et al., 1985; V.R. Reddy and Baker, 1988, 1990;
Boone et al., 1993; K.R. Reddy et al., 1995; K.R. Reddy and Boone, 2001). Models are not complete
enough during their initial inception for making crop management decisions. Validation helps in
the continuous evolution of the model by providing information feedback from researchers testing
it under new environments, and also from farmers and farm managers using it in variable climate
and soil conditions. Validation can be defined as “comparison of the predictions of a verified model
with experimental observations other than those used to build and calibrate it, and identification
and correction of errors in the model until it is suitable for its intended purpose” (Whisler et al.,
1986). Validation is usually done in areas where the model has not been tried before. This validation
has included data from areas of the USA cotton belt, and also from other cotton growing countries
like China (Pan et al., 1994), Greece (Gertsis and Symeonakis, 1998; Gertsis and Whisler, 1998)
and Israel (Marani and Baker, 1978).

The initial focus for GOSSYM validation was its response to water stress. As the model was
developed using crop data under Mississippi conditions, validation under Arizona conditions (Fye
et al., 1984) suggested that it needed alterations in the maximum reduction in photosynthesis due
to water stress to simulate an apparent hardening process in the cotton plants. This study also
helped to modify the growth rates of roots and plant height and leaves as affected by water stress.
In 1985, V.R. Reddy and co-workers further validated data collected from a cotton crop grown in
two locations of Mississippi. They found that under stress conditions 70% of the carbohydrates
were partitioned to squares and bolls. This feature was incorporated into the model making sub-
sequent model predictions closer to the observed values. A field study with cotton conducted at
Lubbock, Texas, in 1994 was used to validate the model evapo-transpiration (ET) subroutines
(Staggenborg et al., 1996). The simulations showed that the model underestimated cumulative
evaporation by 18%, while cumulative transpiration was 8% lower than observed values. These
predictions were attributed to the overestimation of Leaf Area Index (LAI) by the model, thus
reducing simulated incident solar radiation at the soil surface. They suggested that the measured
environmental humidity should be taken into account for calculating the potential ET, in order to
improve its predictive capabilities.

Increase in adoption of the model by farmers necessitated a more precise prediction of growth
and development. Atwell (1995) collected more detailed crop growth and development information
for model validation with several modern Upland and Pima cotton cultivars. An example of the
model performance and accuracy is shown in Figure 3.2 for plant height and mainstem nodes. This
study led to the development of cultivar-specific genetic coefficients for modern cultivars and
extended GOSSYM use across a wider geographic area and genetic base.

A model is successful if it can effectively predict the crop growth at places other than at its
origin. Collaborative studies were conducted by the Cotton Research Institute, the Chinese Academy
of Agricultural Sciences, Henan, People’s Republic of China, and the Crop Simulation Research
Unit, USDA-ARS at Mississippi State University to adapt the GOSSYM model to cotton production
systems of China. Field experiments were conducted in the single cropping district of the Hanghuai
cotton belt of China between 1991 and 1993 (Pan et al., 1994). The model accurately predicted the
key developmental stages within acceptable limits (±4 d). Plant height, leaf area, squares, and
fruiting sites were accurately simulated by the model, but the model could not account for the
damage caused by cotton bollworm infestation during certain periods of this study. In the cotton
production system of China, vegetative branches are removed and main stem tips are pruned
manually. Thus, modification of appropriate functions in GROWTH and PLTMAP subroutines to
account for these local cultural practices was necessary.
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MODEL APPLICATIONS

Farm Management

Preseason Decisions

The uses of the model for preseason decisions have not been well documented. Farmers and farm
managers have reported making numerous model runs with cotton varieties of different maturities
using many years of local weather and the pertinent soil types. The results of such an exercise allow
the producer to see the interaction of weather and crop maturity on yield in a given production
environment. It also allows the producer to estimate more accurately the value of adding practices
not used in the past such as irrigation or fertilizer applications. Farm mangers also used the model to
help determine whether to lease a particular farm and more importantly to determine its yield potential
using historical weather data and cultural practices. Experienced users have learned much about the
way cotton grows, develops, and responds to different environmental conditions and cultural practices.

In-Season Decisions

Timely decisions are the key to successful harvest. An analysis of GOSSYM usage by farmers
in 12 American states was conducted by a group independent of model developers (Ladewig and

Figure 3.2 Observed vs. simulated (A) plant height and (B) mainstem nodes for Upland cotton, cv. DPL 5415
during the 1992 growing season at Mississippi State University. Vertical bars are standard errors.
(r2 = 0.98). (From Atwell, K.D., Calibration and validation of GOSSYM (thesis), Mississippi State
University, Mississippi State, MS, 1995. With permission.)
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Powell, 1989; Ladeweig and Thomas, 1992). The survey revealed that the majority of the farmers
used the GOSSYM model as a decision support system for determining crop termination, nitrogen
utilization, and irrigation practices. On an average, users of GOSSYM earned U.S. $80 more per
hectare when compared with users who did not use any simulation models. McKinion et al. (1989)
reported that benefits of using GOSSYM-COMAX as a management tool were $100 to 350 ha–1.

The use of GOSSYM/COMAX in farm decision making can be well illustrated by the following
example. A pilot test was conducted in 1985 on the Mitchner farm, Sumner (Mississippi), to get
a realistic experience of GOSSYM/COMAX operation. GOSSYM/COMAX suggested that the
farmer apply an additional 56 kg (N) ha–1 and predicted an increase in cotton lint yield of 224 kg
ha–1. The farmer, who had not planned to apply any fertilizer, applied 22 kg (N) ha–1. Cotton was
picked both by hand and machine in this study. The hand–picked area showed a net increase in
yield of 202 kg ha–1 of cotton lint, while the machine picked recorded a 129 kg ha–1 increase in
lint yield. The difference between the hand–picked and machine–harvested yield is attributable to
losses in mechanical harvest. The additional economic value of the machine–picked cotton was
about U.S. $161/ha–1, where the cost of fertilizer was $10 and the application cost of fertilizer was
$15. This led to a net increase of U.S. $135/ha–1 on this 2700 ha farm.

Irrigation and Nitrogen Management

Timely irrigation and maintaining soil fertility are important in sustaining cotton productivity
and profitability. Cotton plants are sensitive to both water stress and reduction in nitrogen supply
caused by water stress (Radin and Mauney, 1986; K.R. Reddy et al., 1997a; Gerick et al., 1998).

GOSSYM simulates soil water and nitrogen present in the two-dimensional array of cells. Water
and nitrogen uptake are calculated in cells containing roots. GOSSYM calculates daily E, T, and
ET using modified routines of Ritchie (1972). These values (E, T, and ET) and plant water demand
are calculated from potential ET rates, canopy light interception, and soil water content. Staggenborg
et al. (1996) evaluated GOSSYM at Lubbock, TX, and determined that it underestimated E by 18%
during the 12-day period of measurement. This underestimation was due to overestimation of LAI,
thus reducing incident radiation at the soil surface; however, the simulated ET over the entire crop
duration of 102 days was within 10% at the end of the measuring period, despite overestimation
of LAI. It was concluded from this study that GOSSYM could be used to assess water use by
cotton, and as a tool for scheduling irrigation in a semiarid region, provided the current algorithms
used to calculate potential ET are modified to include air humidity.

Crop simulation models that include soil processes are the only tools that simultaneously
integrate the interacting soil, water, plant, and weather factors, which determine soil-N availability
and current and future N needs. Wanjura and McMichael (1989) used simulation analysis instead
of costly field experimentation to study the impact of N fertilization on cotton productivity.
Simulated preplanting application of N resulted in 4% higher yields compared to side dressing at
first square and first bloom under rainfed conditions, but when supplemental irrigations totaling
204 mm was provided along with the N source, the yield of preplant fertilized cotton was 4% less
than that when N was applied at first square and first bloom (Figure 3.3). Thus, crop models can
be used to study crop performance with simultaneous imposition of various factors.

Adoption of the model for on-farm use required the GOSSYM model to simulate the optimum
nitrogen supply under specific sets of farm conditions (soil, weather and cultivar). A survey of
GOSSYM users (Albers et al., 1992) found that 76% of the farmers who used the model changed
their N-management practices. Stevens et al. (1996) validated the nitrogen dynamics in cotton crops.
The GOSSYM simulated lint yields on the Loring soil (fine-silty, mixed, thermic Typic Fragiudalfs)
were greatest with 90 kg ha–1. The study revealed that GOSSYM simulated responses to N fertilizer
were similar to actual data but were lower over the whole range of applied N. GOSSYM over-
estimated soil N availability by 10 to 30 kg N ha–1, overestimated fertilizer N recovery, and
underestimated cotton yield. This was attributed to the inability of the model to simulate mineralization
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and immobilization processes or ammonia-volatilization losses from the soil or the plants (Boone
et al., 1995), which could explain the overprediction of fertilizer N recovery by plants in GOSSYM.
Thus, improving our understanding of the processes controlling the N dynamics of the plant and
soil system is essential to improving the model simulations and its wider utility for that purpose.

Excessive N application in farmlands is a major cause for the eutrophication of groundwater
and also an unnecessary cost for the farmer. Hunt et al. (1998) reported that the GOSSYM model
could be used to avoid excessive N fertilizer application on cotton farms. They conducted a study
to determine if seed yields or excess N application were affected by timing of N application via
buried microirrigation tubing, tubing spacing or peanut rotation. Rotation did not have any affect
on the measured parameters. GOSSYM/COMAX management did not improve seed yield, but it
did reduce the excess N (fertilizer N–seed N) to <20 kg ha–1/yr–1. Hence, the GOSSYM/COMAX
system may be used to tailor the fertilizer needs of individual fields.

Herbicide, Growth Regulator, and Crop Termination Applications

Weed control in cotton is largely achieved through the use of herbicides. Applying the plant
growth regulator, mepiquat chloride (1,1-dimethypiperidinium chloride), checks vegetative growth
in cotton. Crop termination chemicals are used to defoliate the plants and open bolls at the end of
the season. Successful yield and biomass predictions are possible if GOSSYM accounts for the
effects of these chemicals on cotton growth and development and lint yield in a wide array of
environmental and cultural conditions.

Yields across the Cotton Belt declined between 1965 and 1980, despite improvements in
technology and introductions of improved higher yielding cultivars (Meredith, 1987). One suggested
cause for the lower yields was the increased use of herbicides and their toxic effects on root growth
in the herbicide zone in the soil surface layer. Root reduction is often observed when herbicides
are applied on cotton (Anderson et al., 1967; Oliver and Frans, 1968; Bayer et al., 1967; Pavlista,
1980), and this is known to cause a reduction in cotton plant height and yield (Hayes et al., 1981;
Kappelman and Buchanan, 1968). Using the cotton model GOSSYM, V.R. Reddy et al. (1987)
demonstrated how the response of cotton to herbicide damage could be simulated. A series of
simulations were carried out to study the effects of root growth inhibition and reduction in the

Figure 3.3 Simulated lint yield response per unit of total applied for three nitrogen application strategies
(PREPLANT — all nitrogen applied as basal dose; FIRST SQUARE — 50% of total N applied as
basal dose and remaining at first square; FIRST BLOOM - 50% of total N applied as basal dose
and remaining at first bloom) using three soil moisture regimes; rainfed — no supplemental
irrigation; 1 IRRIGATION — rainfed plus one 102 mm summer irrigation; 2 IRRIGATIONS — rainfed
plus two 102 mm summer irrigations) 1965–1986. (From Wanjura, D.F. and McMichael, B.L., Trans.
ASAE, 1989. With permission.)
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permeability of roots to water and nutrients on cotton growth, development and lint yield. This
analysis demonstrated that herbicides, if improperly applied (deeper than 50 mm) or in excessive
amounts, would result in reduced root growth, water and nutritional shortages, and lower yields.
Using weather, soil and cultural practices input data at five locations in the U.S., for more than
20 years, V.R. Reddy et al. (1990) simulated cotton production and analyzed the effect of root
damage caused by herbicides on cotton yield trends. The reduction in root growth also decreased
the uptake of water and nitrogen by the cotton crop. The simulated adverse effects of herbicides
on lint yield varied from location to location and the lint yield decrease ranged from 14 kg ha–1 to
137 kg ha–1.

Mepiquat chloride (MC) is a plant growth regulator shown to reduce vegetative growth in cotton
(York, 1983a, 1983b; V.R. Reddy et al., 1990). MC suppresses excessive plant growth by decreasing
plant height (main-stem internode length); number of nodes, fruiting, and vegetative branch inter-
node lengths; and leaf area (York, 1983a, 1983b; Stuart et al., 1984; Zummo et al., 1984; V.R.
Reddy et al., 1990). The on-farm success of the GOSSYM is being attributed to continuous
development and upgrading the model as new information becomes available. An example in that
direction is the development of a subroutine dealing with a plant growth regulator, mepiquat
chloride. A detailed description of the MC model development, its incorporation into GOSSYM
and validation were given by V.R. Reddy (1993) and K.R. Reddy et al. (1995). The initial MC
subroutine was developed with a single rate of MC applied to flowering cotton plants. This
subroutine has not worked satisfactorily in all growing conditions and over a range of MC appli-
cation rates. The new MC subroutine was developed from leaf expansion, stem elongation, and
photosynthetic rates data of plants containing different MC concentrations in the tissues (K.R. Reddy
et al., 1995). The model with the new subroutine predicted with greater accuracy where, stem
elongation rate was reduced by 38% due to 30 µg MC a.i. g–1 of MC, while leaf area and
photosynthesis was reduced by 30%. The new model also performed well with data sets from a
wide range of environmental conditions, a variety of cultural practices, and diverse genetic resources
(Figure 3.4). The data sets comprised both single and multiple rates of MC applications applied
on different dates during the growing season.

GOSSYM is also used to determine the optimum MC application strategy. Watkins et al. (1998)
evaluated 12 different MC application strategies under two different soil types (Bosket sandy loam
and Dundee silty clay loam) and three different weather scenarios (normal, cold-wet, and hot-dry)
in the Mississippi Delta using GOSSYM/COMAX management system. The simulations revealed
quantitatively what most growers knew intuitively, but could not predict a priori. The soil type and
weather conditions determine the type of MC application strategy that should be used as opposed
to using a blanket MC application strategy for all weather conditions.

Precision Agriculture Management

Precision farming and agriculture aims to improve crop production efficiency and reduce
environmental pollution by adjusting production inputs (e.g., seed, fertilizer, and pesticide) to the
specific conditions within each area of the field. This depends on the successful development,
integration, as well as utilization of hardware, software, and people for data collection, planning,
and execution. The multidisciplinary field of precision farming requires expertise in remote sensing,
geographic information systems, global positioning system, and crop modeling.

Currently, efforts to integrate these systems into a single unit for planning and improving the
efficiency of cotton production systems are being investigated. McCauley (1999) used
GOSSYM/COMAX integrated with GRASS, a geographic information system, to produce spatially
variable outputs. Inputs to the model were collected from a 3.9 ha cotton field. Soil nitrate, a
primary driver for fertilizer recommendations was sampled on a 15.2 m regular grid for depths to
150 mm and on a 30.5 m rectangular grid at six 150 mm depth intervals (down to 900 mm).
COMAX was used to determine spatially variable fertilizer recommendations. GOSSYM was used
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to simulate the application of these recommendations and predicted spatially variable yield and
residual nitrogen. This study concluded that crop simulations and geographic information systems
are a valuable combination for modeling the effects of precision farming and planning variable rate
applications. Simulations from this study indicated that excessive fertilization, although potentially
damaging to the environment, might also have negative impacts on yield. This conclusion illustrates

Figure 3.4 Comparison of observed and simulated (A) plant height, (B) mainstem nodes, (C) lint yield using
the new MC routine in GOSSYM. The data collected from plants grown on various soil types,
weather conditions, and management practices across the U.S. Cotton Belt. (From K.R. Reddy
et al., Agron. J., 1995. With permission.)
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one of the advantages of precision farming, especially in fields with high variability of soil
properties.

In a recent study, McKinion et al. (2001) combined the GOSSYM/COMAX system with the
Arc View GIS software. It was used to evaluate nitrogen and water stress experiments on cotton
conducted during 1997 on the Kenneth Hood Farm in Bolivar County, Mississippi. The total actual
N applied was 160 kg (N) ha–1. The amount of irrigation water applied was 83 mm in three
applications. During the crop growth period of May to October of 1997, a total of 754 mm of
rainfall was also received. The entire selected area for the study was divided into grids containing
1-ha areas and 88 simulations were carried out which were based on the variation in soil types.

A whole field simulation based on the summation of the above simulations predicted an average
yield of 1133 kg ha–1, higher by 4.3%, compared with growers actual yield of 1084 kg ha–1. The
precision agricultural system (GOSSYM/COMAX + Arc View GIS) recommended nitrogen appli-
cation rates from 7.8 to 199 kg (N) ha–1. Further evaluation is needed for the higher rate of
199 kg ha–1, while the remaining rates of 16.8 to 108 kg (N) ha–1 were reasonable. The irrigation
totals range from 0 to 176 mm of water. The number of irrigations called for varied from one to
seven. Obviously, growers will not be able to apply water on a per hectare basis as addressed in
this analysis, but the numbers are included here to show the range in variability with just having
soil type information as a variable.

The yield predictions were shown as differences between the precision agriculture optimized
yield and the yield predicted using the grower’s actual cultural practices. The yield differences
ranged from –112 to 561 kg ha–1 (–0.2 to 1 bale per acre) across the field. The negative values
show that the expert system is not infallible. When an event such as this occurs, the user should
conduct manual simulations to determine if improvements can be made or an appropriate interpre-
tation of the problem can be obtained, although the amount of computer work and data analysis
likely would be prohibitive in terms of the user’s time for making decisions on a per hectare basis.
The predicted yield improvement using the precision agriculture tool showed that the grower could
expect an increase of 286 kg ha–1 (0.51 bales per acre) for this field even with the few negative results.

The study dramatically shows that there is potential for both increasing yields and decreasing
the use of agricultural chemicals by the adoption of simulation model driven precision agriculture
technology. A tool for generating the irrigation and nitrogen rates by soil type and/or soil site
sample as demonstrated in this study can be used to automate the calculation of optimum water
and N rates.

Another valuable tool in precision agriculture is remote sensing which may also be combined
with crop modeling. The agricultural research community is currently engaged in identifying cotton
plant spectral reflectance signals associated with growth and development stages, nutrient and water
status of cotton plants. Studies conducted so far using spectral reflectance have attempted to identify
plant responses to different stresses by using plant chlorophyll content as the primary indicator.
Bowman (1989) reported that in cotton, significant correlations were obtained between spectral
reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential
and turgor pressure. Efforts at Mississippi State University through the Remote Sensing Technol-
ogies Center are to identify cotton plant signals for deficiency of various plant nutrients (N, P, and K)
and plant water status (total water potential). Recently, Tarpley et al. (2000), compared predicted
and actual leaf N concentrations by regression for a validation set of field-grown samples from
diverse genotypes. Ratios obtained from combining the red-edge measure (700 or 716 nm) with a
waveband of high reflectance in the very near infrared region (755 to 920 and 1000 nm) provided
good precision (correlation) and accuracy (one-to-one relationship between predicted to actual
values). The other indices based on chlorophyll reflectance feature also had good precision but
were less accurate, presumably due to the influence of other factors associated with chlorophyll
concentration (Carter, 1994; Masoni et al., 1996; Sunderman, 1997).

Once the relevance of signals as described above is accurately validated, sensors can be
developed to predict cotton crop nutrient and water status under field conditions. Such sensors may
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be used via ground-based aircraft or satellites. Remote sensing may then be combined with crop
model predictions of yield response for real-time in-season crop management.

Research and Policy Management

Yield Decline Assessment Analysis

Meredith (1987) reported an analysis of data that cotton yields had declined slightly between
1960 and 1980 despite the introduction of better and improved varieties, effective pesticides
applications and continued increases in atmospheric carbon dioxide concentrations. Cotton scien-
tists discussed these issues at several cotton research conferences to identify causes and to recom-
mend corrective measures. Weather (Davis and Gallup, 1977; Orr et al., 1982), increasing soil
compaction (Brooks, 1977), increased nematode populations (Orr et al., 1982), soil herbicide
accumulations (Hurst, 1977), untimely use of pesticides (Leigh, 1977), excess and/or limited
nitrogen supply (Maples, 1977; Gerik et al., 1998), and rising atmospheric ozone levels (V.R. Reddy
et al., 1989) were all implicated as causative agents for the yield decline, but there was no com-
prehensive effort to determine the exact causes for the temporal yield declines because of the
complexities of site-specific soil–plant–environment, and management practices.

The National Cotton Council in 1984 contracted the GOSSYM-COMAX group to investigate
the causes for yield decline across the U.S. Cotton Belt. The cotton model was used to evaluate,
retrospectively, the influence of environmental conditions and cultural practices on cotton yields.
The weather issue was analyzed first by taking weather, soil, and cultural input data at five locations
across the U.S. Cotton Belt for more than 20 years (V.R. Reddy and Baker, 1990). The results of
the simulation analysis showed that weather varied greatly from year to year, causing large fluc-
tuations in yields. The model tracked yield variations fairly well, but overpredicted yield by 20%,
indicating that other yield-reducing factors were in play. Weather was ruled out as a yield-decline
factor.

Addressing the issue of herbicides, described previously in the herbicide application section,
V.R. Reddy et al. (1987, 1990) identified and hypothesized two herbicide effects on cotton growth
and development: root pruning at various depths and reduced root water and nutrient permeability.
The simulation analysis indicated that both factors reduced simulated cotton yields. They concluded
that improper applications of herbicides was one of the causative factors for the cotton yield decline
from 1960 to 1980 at all locations across the U.S. Cotton Belt.

The effects of compaction on soils were analyzed next (Whisler et al., 1993). Brooks (1977)
suggested that greater soil compaction was caused by the increasing size and weight of farm
equipment in the 1970s and 1980s compared with equipment used in earlier years. As in the previous
yield-decline studies, weather, soil, and cultural input data from six locations across the Cotton
Belt were used in this analysis, but there were no consistent trends traceable to soil compaction at
all locations. However, compaction effects were masked and complicated by weather and the effects
varied from location to location. For example, prior to 1974, compaction was found to have a
negative effect in Florence, South Carolina, but after annual in-row subsoiling became a common
cultural practice, it alleviated this effect. Soil compaction effects in Stoneville, Mississippi, were
generally detrimental, but they were often masked by weather, according to the simulation analysis.
In years with abundant water, wheel traffic compaction had little negative effects on yields, since
shallow root systems could extract sufficient moisture for crop growth and yield.

Finally, the effects of changes in atmospheric ozone and carbon dioxide were evaluated (V.R.
Reddy et al., 1989). The photosynthetic module was modified to accommodate the influence of
rising ozone and atmospheric carbon dioxide levels (Miller et al., 1998) from the 1960s to the
1980s. The simulated effects of the two environmental factors on cotton yields varied among
locations because of the interactions of soil, crop, and atmospheric variables and with nutrient
levels. Under well-fertilized conditions, it was found that the increase in atmospheric carbon dioxide
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from 1960 to 1985 would have increased lint yields by an accumulated average of 10%. The
inclusion of 23 years of summertime surface mean ozone concentrations along with the increased
carbon dioxide concentrations showed a 17% decrease in the corresponding simulated mean yield
of cotton lint in California, but not in other locations where ozone concentrations were lower. They
demonstrated that a physiologically, physically, and mechanistically–based model such as
GOSSYM is the only available tool that can be used to study the effects of such environmental
factors on crop growth and yield, but that the affected physiological processes in the model must
be appropriately calibrated for each variable tested.

Tillage and Erosion Studies

The model has been used to evaluate the effects of soil erosion and erosion-related activities
on cotton lint yields (Whisler et al., 1986). One soil profile, 1 m deep, was assumed to have a traffic
pan 170 to 240 mm below the soil surface and that the surface soil was eroded by 50 or 100 mm.
Weather for a relatively dry year, 1980, and wet year, 1982, were used and compared. For the dry
year, 50 mm of erosion reduced the simulated yield by 9%, and 100 mm of erosion reduced
simulated yield by 19%. For the wet year, the maximum simulated yield reduction was only 2%.
For a 0.3 m deep profile of the same soil, but where the traffic pan was reformed each year at
170 to 240 mm below the soil surface, the reductions in yield were greater. On the shallower soil,
the predicted yield was reduced 32% in a dry year and increased erosion further reduced the yield
another 10 to 20%. In a wet year, simulated yields on the shallower soil were only reduced by
14%, but more erosion further reduced the yields 20 to 40%.

The model has been used to investigate the effects of simulated tillage and wheel traffic on
cotton crop growth and yield (Whisler et al., 1986, 1993). The soil compaction due to wheel traffic
and subsequent loosening of the soil surface due to cultivation can change the root distribution
patterns and water and nutrient extraction patterns, especially in lighter, sandier textured soils. In
looking at overall effects of wheel traffic compaction, there were no consistent trends. The inter-
acting effects of weather that varied from location to location masked compaction trends. For the
Norwood silty clay soil at College Station, Texas, wheel traffic may have enhanced yields by
changing the root/shoot partitioning in response to water stresses. In other areas and soils, such as
the Dundee silt loam of the Mississippi Delta, it appears that compaction generally reduced yields.
The erosion and tillage studies could only be done in a meaningful and quantitative way by using
a process-level model such as GOSSYM. Thus, Whisler et al. (1993) concluded that the model,
GOSSYM, could be used to show the interaction of soils and weather on crop yields.

In addition to tillage and erosion, soil temperature is another important factor affecting cotton
growth, development and lint yield. The empirical soil temperature subroutine (TMPSOL) of the
GOSSYM did not perform well under bare and cotton-cropped surface conditions in the field. A
more mechanistic soil temperature subroutine of a soybean growth simulator (GLYCIM) was
incorporated into GOSSYM (Khorsandi and Whisler, 1996). The resulting new soil temperature
subroutine was called HEAT. Under bare surface conditions, HEAT underpredicted the average
daily soil temperatures at all locations and depths (Khorsandi et al., 1997); however, under cotton
cropped surface conditions, HEAT calculated the soil temperature adequately, especially after
canopy closure. Thus, incorporation of HEAT into GOSSYM improved the accuracy of cotton lint
yield predictions.

Insect Damage Assessment

Validation of GOSSYM against a commercial crop grown in 1976 (Baker et al., 1993) revealed
that a 32% yield loss occurred due to lygus (Lygus lineolaris) damage to squares and to fruiting
branch development at the eighth and ninth nodes on the plant. Along with lygus, more than
20 species of arthropods attack cotton beltwide. In the Mississippi Delta, the estimated average
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cost of insecticides was $131 U.S. ha–1 (Mississippi Cooperative Extension Service, 1990). The
GOSSYM can determine the need for insect control or recommend the best control strategy by
inputting plant maps that reflect the location and degree of fruit loss caused by insects. Advances
in understanding the pest attack and population build-up processes in cotton led to the compilation
of models that predict pest population and damage. The COTFLEX (Stone and Toman, 1989; Stone
et al., 1987), CALEX/Cotton (Plant, 1989, Plant et al., 1987), CIC-EM (Bowden et al., 1990),
WHIMS (Olson and Wagner, 1992), TEXCIM (Willers et al., 1990), HELDMG (Thomas, 1989),
MOTHZV (Hartstack and Witz, 1983), TEXCIM (Witz et al., 1990), and CIM (Brown et al., 1983)
are some of the cotton pest models that were linked to GOSSYM to predict reduction in yield due
to insect pests. These models were also helpful in designing control measures.

The insect models use information about the pest damage rate, the spatial distribution of damage,
and the plant’s response to damage. Among these models, the HELDMG (Thomas, 1989) differ-
entiates damage caused by different larval stages of Heliothis as well as the damage based on the
fruit position on the plant. Therefore, estimating the value of each fruit on the plant and the
probability of valuable fruit being damaged makes it possible to dynamically quantify the economic
loss caused by the pest, thus leading to improved pest management decisions. Another well
developed and tested pest model is rbWHIMS (Olson and Wagner, 1992). It contains about 700 rules
and formulates recommendations for 11 species including boll weevil, thrips, whiteflies, aphids,
cutworms, and armyworms. The rules in the model also account for the seasonality of occurrence
of these various pests, as different pests occur at different developmental stages of the crop. Insect
input for the model is from weekly scouting information obtained in the field. The model gives
three recommendations:

1. Spray with appropriate insecticide (larvicide or ovicide or both).
2. Scout in three days (indicates that insect population is at potential economic damage levels).
3. Scout in seven days (no immediate pest damage).

Effective integration of such an insect model with a physiology–based cotton model such as
GOSSYM greatly improves the management decisions made by cotton farmers and farm managers.

Cultivar/Genetics Improvement Research

Several opportunities are available for improving crop performance and productivity through
optimization of cultural practices, plant breeding, and new technological developments including
biotechnology. A number of plant breeders have envisioned models as tools for predicting the
effects and economic benefits of various genetic combinations. Breeders are also interested in
predicting the responses of particular genotypes to specified environments and how the crop can
be best managed to maximize yields (Landivar et al., 1983a, 1983b)

GOSSYM was used to investigate the lingering question of why the okra type (deeply lobate
leaf-type) of cotton underperforms compared to other types of cotton even though it produces more
bolls per plant. Landivar et al. (1983a), using GOSSYM, tried to analyze the inconsistencies in lint
yield of okra type of cotton by varying nitrogen application rates and plant carbohydrate supply.
They concluded that higher irrigation and nitrogen supply are required for the plant to supply
sufficient carbohydrates to maintain the fruit load. Thus, in the Mississippi cotton-growing areas,
normal leaf-type cotton varieties perform better as the crop is grown under rainfed conditions.
Increased carbohydrate supply through increased photosynthetic efficiency also retained a higher
percentage of fruits at all N application rates, which suggests that photosynthesis is the critical
known limiting factor in okra leaf type cotton.

Specific leaf weight (SLW) has been used as a criterion to select for improved photosynthetic
performance in crops (Barnes et al., 1969; Dornhoff and Shibles, 1970; Kerby et al., 1980). The
GOSSYM model was used in the selection of physiological characters for yield improvement
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(Landivar et al., 1983b) and to determine whether SLW can be used to predict higher photosynthetic
efficiency. In this study, an increase in lint yield of 54% was obtained by increasing the photosyn-
thesis by 30%, if adequate N and water were available. Increase in SLW did not improve crop yield
as most of assimilates produced were simply utilized for increasing the leaf thickness. Thus,
increased photosynthesis is a superior yield selection criterion compared to specific leaf weight.

Future Climate Scenarios

Increased precision in predicting future climates is used by crop models to predict plant growth,
development, and yield more accurately under anticipated conditions. Working Group I of Inter-
governmental Panel on Climate Change (IPCC) in its recent report (IPCC, 2001), Climate Change
2001: The Scientific Basis, concluded that surface temperatures increased globally by an average
of 0.6 ± 0.2ºC in the 20th century. The IPCC suggests that by 2050, surface temperatures will
likely increase by 0.8 to 2.6ºC, CO2 concentration in the atmosphere is expected to rise to 463 to
623 µL L–1, sea level will likely rise because of melting ice and water expansion by 50 to 320 mm
(IPCC, 2001). Crop models have been used to predict the impact of these climate changes on
agriculture. Even though increased CO2 in the atmosphere is known to increase crop yields, the
interaction of crop, genotype, soil, nutrients and atmosphere would modify the CO2 effects.

Simulation studies with GOSSYM conducted with increased atmospheric CO2 and O3 (V.R.
Reddy et al., 1989; V.R. Reddy and Baker, 1990) have shown that cotton yields varied with location
and there was considerable interaction with soil, plant, and nutrient variables. Based on the simu-
lation results, the authors concluded that at sufficient soil N levels, an increase in 10% of cotton
lint yield would occur under predicted atmospheric CO2 concentrations. At Stoneville, Mississippi,
with current practices, the crop could not utilize the increased CO2 concentration due to N stress.
They also concluded that yield decreases in Phoenix, Arizona, and Fresno, California, were due to
the increased of O3 concentrations. Results from a 30-year simulation study (Prashant, 2000) show
that increase carbon dioxide had a positive effect on cotton production. There was a 54% increase
in cotton lint yield with increase in CO2 concentration from 200 µL L–1 to 900 µL L–1 (Figure 3.5)
due to increased carbon availability.

In the cotton growing delta region of Mississippi, an increase in CO2 concentration along with
increased air temperatures averaging 4ºC is predicted in future climates (National Center for

Figure 3.5 Cotton response climate change: simulated lint yield response to carbon dioxide enrichment. The
data are means of 30-year simulations (1964–1993). (From Prashant, R.D., Simulating the impacts
of climate change on cotton production in Mississippi Delta (thesis), Mississippi State University,
Mississippi State, MS, 2000. With permission.)
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Atmospheric Research, Boulder, CO). In this study, the future climate scenarios were generated
by adding the predicted changes in mean monthly temperature (minimum and maximum) and
rainfall to the daily values of the past 30 years, based on the assumption that changes in daily
weather parameters will be constant for each month (Prashant, 2000). The overall effect of such a
climate change for the Mississippi delta was a 6% decrease in cotton lint yield. Simulated lint yield
in different climate scenarios is presented in Figure 3.6. Increased temperature reduced the crop-
growing period by 11 days. Also, a decrease in number of days with temperatures less than 15ºC
increased the number of growing days available per season in future weather. Altering the planting
date and providing irrigation would mitigate the negative temperature and water stress effects on
crop growth and yield (Prashant et al., 2000).

Educational Applications

Models have a useful role to play as tools in education, both as aids to learning principles of
crop and soil management, and in helping students and commercial users develop a “systems” way
of thinking that enables them to appreciate their specialty as part of a larger system (Matthews
et al., 2000). They listed the following as strengths of a model:

1. Provides a framework for understanding a system and for investigating how manipulating it affects
its various components.

2. Evaluates long-term impact of particular interventions.
3. Provides an analysis of the risks involved in adopting a particular strategy.
4. Provides answers more quickly and cheaply than is possible with traditional experimentation.

Crop models are the outcome of sustained integration of research by agricultural scientists.
These models are used in university education systems in different parts of the world to provide
students a holistic understanding of plant growth and development. They are also used to explain
and solve simple problems like selecting a seeding rate for a given field or soil type and to understand
complex phenomenon such as flower production and responses of growth and development to

Figure 3.6 Cotton response to climate change: simulated yields for different years with varying weather
patterns including current weather with ambient CO2, current weather with elevated CO2, and future
weather with elevated CO2. (From Prashant, R.D., Simulating the impacts of climate change on
cotton production in Mississippi Delta (thesis), Mississippi State University, Mississippi State, MS,
2000. With permission.)
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various environmental factors. Such an education system will breed a research community that can
integrate various fields of agriculture and use the advances in computer hardware and software for
the benefit of the farming community.

The main sources for improvement of crop models have been the postgraduate research students
of the university system. Supervised by the research staff, studies were conducted to fill knowledge
gaps in crop models and improve model performance. Since 1979, Mississippi State University has
accepted a total of 22 theses (15 Ph.D. and seven M.S.), which have contributed to the continuous
improvement of GOSSYM model, for research degrees in agriculture and other related disciplines.
The research topics encompassed fields of agricultural engineering, agronomy, climate change,
computer science, economics, entomology, and extension education, meteorology, and soil science.
The GOSSYM model is also being used to create better understanding of environmental plant and
crop physiology concepts. Improvements in crop model performance along with the ability to
graphically present the changes in plant growth and development makes the model an inseparable
part of classroom teaching.

The GOSSYM model is already being used to educate farmers to improve farm productivity
and crop consultants to provide valuable information to farmers for reaping richer harvests.

CONCLUSIONS

The availability of computers has made it feasible to make many calculations rapidly. Other
technologies such as rapid availability and automation of weather information facilitates the infor-
mation gathering process essential to simulating real time crop growth. Several USDA scientists
and colleagues from state universities developed a cotton crop model, which they deemed mecha-
nistically realistic. It was validated with the assistance of agricultural scientists from around the
world encompassing different cotton production practices. The model was released to U.S. farmers
on a limited basis in 1984 and gradually extended to wider applications. The producer found it to
be helpful for a number of preseason applications as well as in-season applications. The in-season
model applications involved the timing and amount of N fertilizer application, the timing of
irrigation, the timing and amount of plant growth regulator and mature crop termination chemical
applications. Perhaps equally important to producers, the model helped growers to examine their
crop in a more timely manner and in ways they had not previously considered.

Scientists and production-support infrastructure personnel also found the model educational,
providing insight into crop responses to environmental conditions in a more fundamental way than
was previously feasible. Agricultural scientists studied the impact of various environmental condi-
tions in ways considered impossible with any other techniques. As more is learned, the possibilities
and opportunities for model applications for providing production solutions as well as providing
insight into the physical and physiological processes associated with crop responses to the envi-
ronment appear limitless.
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INTRODUCTION

Agricultural producers need to make informed decisions in order to manage their enterprises
efficiently. These decisions are based on experience and available information as well as on input
from agricultural consultants. As their enterprises grow in size and complexity, it becomes more
difficult for growers to manage large amounts of information. Furthermore, uncertain weather
conditions increase risk. As personal computers have become more widely available, there has been
an effort among agricultural researchers to provide computer-based tools to help manage and
synthesize information. The main reason for using tools such as computer models on farms is to
increase profit and manage resources, although learning more about how crops respond to envi-
ronmental factors, and help in complying with governmental regulations are also important. Fur-
thermore, the ability to compare the probable outcomes of different decisions can help a producer
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make a more informed choice and reduce risk in the face of future uncertainties. These computer-
based tools have become known as decision support systems (DSS).

Early DSS tools, known as expert systems (McKinion and Lemmon, 1985), resulted from an
effort to encapsulate information and experience so that the computer program could answer
questions by synthesizing heuristic information that had been input and choosing the correct answer
from a knowledge base. Crop simulation models were incorporated in DSS to account for dynamic
seasonal and interannual interdependencies of weather, plant characteristics, and soil. Computer
simulation models mimic crop response to environmental variables because they calculate photo-
synthesis, carbon partitioning, water and nutrient uptake, and yield using equations developed from
experimental data. The level of detail varies from empirical/mechanistic (Hammer et al., 1995;
Jones and Kiniry, 1986) to highly mechanistic models [GOSSYM (Baker et al., 1983)]. Crop
simulation models can estimate the growth of a crop from emergence to maturity, account for major
physiological and morphogenic processes, and describe primary relationships in the
soil–plant–atmosphere system.

GOSSYM was one of the first simulation model-based DSS for crops. Since the early 1980s
it has been widely used by cotton producers for water and nitrogen management as well as for
timing harvest operations (Baker et al., 1983; Landivar et al., 1989). GOSSYM was also combined
with an expert system and called GOSSYM-COMAX (Lemmon, 1986), where rule-based reasoning
was used to interpret simulation results.

The soybean model, GLYCIM, was developed after GOSSYM and shared some design com-
ponents and modules. GLYCIM has highly mechanistic, dynamic representations of plant growth,
development and yield, and soil and weather processes. The mechanisms involved in the physical
and physiological processes in soybean and its environment are mathematically described in
GLYCIM (Acock et al., 1985). These processes include light interception, carbon and nitrogen
fixation, organ initiation, growth and abscission, and flows of water, nutrients, heat and oxygen in
the soil. GLYCIM is organized into modules in accordance with a generic modular structure and
runs in hourly time steps. Documentation, including the FORTRAN listing, definition of variables,
description of theory, and details of input and output files has been published elsewhere (Acock
et al., 1985; Acock and Trent, 1991).

The model GLYCIM has been designed to simulate the growth of any cultivar on any soil and
at any location and time of year. Simulations are initiated at the cotyledonary stage with appropriate
data on the number, size, and weight of organs on the plant. Plant growth in size and phenological
stage are predicted by the model. During the simulation, GLYCIM provides predicted values for
most of the physiological variables. It also simulates nitrogen contents of various organs on the
plant and water and nitrogen status of the soil. The model provides the dry weights of all plant
parts and final seed yield.

The environmental inputs necessary to run GLYCIM are solar radiation, maximum and mini-
mum air temperature, rainfall, and wind speed. The model also uses wet and dry bulb temperature
if available and has the capability to use either hourly or daily data. GLYCIM also needs information
on the physical and hydraulic properties of the soil, maturity group of the cultivar, latitude of the
field, date of emergence, row spacing, plant population within a row, row orientation, irrigation
amount, method and date, and CO2 concentration in the atmosphere.

Currently, 26 parameters define growth and development rates, and yield components
(Table 4.1). Three parameters define the rate of vegetative development, 12 parameters define the
rates of reproductive stage progress from R0 (floral initiation) to R8 (podset), six parameters define
the rate of stem extension and number of branches, one parameter defines root growth, and four
parameters define dry matter partitioning.

Since the 1991 growing season, GLYCIM has been used by farmers for crop management and
input optimization in the Mississippi Valley. The model is being used for selecting cultivar, row
spacing, plant population and planting date prior to planting, and for post-planting decisions such
as irrigation scheduling, insect control, harvest timing, and forecasting of final yield (Reddy et al.,
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1995). The model helps farmers to optimize inputs and maximize profits. Since 1991, USDA
scientists have collected 156 data sets on soils, crop growth and development, weather, and man-
agement conditions (planting and harvest date, and irrigation). These data come from the fields of
cooperating growers and include numerous cultivars grown under various soils, and weather and
management conditions. As GLYCIM was used on-farm, an interface was developed and evolved
over time. This paper describes the experiences of the cooperating growers and researchers involved
in the GLYCIM on-farm project, and the current interface (GUICS — Graphical User Interface for
Crop Simulators) developed to facilitate use of GLYCIM by the growers.

ON-FARM TESTING OF GLYCIM

GLYCIM was originally evaluated using data collected on the soybean cultivar “forrest” at the
Plant Science Farm at Mississippi State University (Acock, et al., 1985; Gertis, 1985). All model
equations and parameters came from experiments in growth chambers and greenhouses; soybean
plants were mainly grown in pots and in small plots. On-farm testing began in 1991 when a soybean

Table 4.1 Vegetative and Reproductive Development Rate and Yield Component 
Parameters Used in GLYCIM

Vegetative

Slope of the vegetative (V) stage dependence on growing degree days (GGD day–1)
Maximum vegetative (V) stage
Correction factor for the early vegetative stage progress rate to account for clay content

Reproductive

Progress rate toward floral initiation (R0) at solstice (day–1)
Daily rate of the progress to R0 before solstice (day–1)
Daily rate of the progress to R0 after solstice (day–1)
Progress rate from R0 toward R2 (day–1)
Slope of the dependence between the end of R2 and emergence date
Intercept of the dependence between the end of R2 and emergence date
Progress rate from R2 toward R6 (day–1)
Length of the plateau R5 (day)
Length of the plateau R6 with no water stress (day)
Rate of decay of the R6 plateau as the water stress increases (day–1)
Rate of the progress toward R7 (day–1)
Reproductive (R) stage to stop vegetative growth

Stem Elongation and Height

Potential stem elongation per dry weight increase of petioles (cm g–1)
a in the dependence (h = a(v)b) between height and vegetative stages
b in the dependence (h = a(v)b) between height and vegetative stages
Stem weight per unit stem elongation (g)
Increment in leaf area per increment in vegetative stage
Number of branches per unit plant density

Roots

Potential rate root weight increase (g day–1)

Yield Components

Increase in pod weight as a function of progress in R stages
Increase in seed weight per seed fill rate
Number of seeds per bushel
Seed fill rate g day–1
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grower, Kenneth Hood of Pershire Farms, Gunnison, Mississippi, agreed to allow researchers to
plant strips of different soybean cultivars and take measurements on growth, development and yield.
The purpose of the field trials was to collect data on phenology, dry matter production, and yield
to validate the model.

On-farm research with GLYCIM was expanded to the Mississippi Delta farms of Edward Hester
and Jay Mullens in 1992 and to the Fletcher Clark farm in 1993. Because two of these growers
had been involved in the project to evaluate the use of GOSSYM/COMAX, they had weather
stations close by and some familiarity with simulation models for irrigation scheduling. An ongoing
program to characterize soil hydraulic properties for the cotton model, GOSSYM was continued
for the GLYCIM testing (Whisler, 1982). Soil samples have been taken across the Cotton Belt and
analyzed for their physical and hydrological properties. After 1993, additional growers from Mis-
sissippi, Alabama, Missouri, Louisiana, Tennessee, and Arkansas joined the project. Some of these
growers had experience with GOSSYM. Others came by word of mouth based on contact with
growers already using GLYCIM. By 1997, we had 12 growers in the program, and all requested
the model again the next year. This allowed us to test GLYCIM at a wide variety of locations.

Participants represented a variety of farm operations for the Mississippi Valley (Reddy et al.,
1997). Farm size ranged from medium (300 ha) to large (6000 ha), and ages from 23 to 75. All
operations were family farms where cotton and rice were the primary crops. Soybeans were usually
a secondary crop.

Field Sampling Protocol

The sampling program was carried out to collect data on vegetative and reproductive stages,
dry matter and yield. Most of the plots were irrigated because that was the growers’ practice, but,
as researchers, we tried to include non-irrigated plots, when available, in order to compare irrigated
and non-irrigated yields. Data were also collected on as many soybean varieties as possible to
provide a wide variety of input data for growers.

The field plots were laid out in the spring of each year after the soybean plants emerged. The
plots were usually 12.1 m wide and 176.8 m to 192 m long (0.12 to 0.16 ha) in the form of a
transect. Three replicates (transects) were laid out in each field. Crop management was the same
at all plots but different varieties were planted. Planting dates were also varied. This allowed data
collection for a number of different varieties in the same location. Sampling was bi-weekly to
weekly depending on growth stage. Height and developmental stages were measured on the same
plants to minimize variability due to soil and plant. Destructive samples for dry matter determination
were taken from outside the plots. A 7.6 m (25 ft) strip was harvested from each transect using a
plot combine trailered from Mississippi State University.

Modifications to GLYCIM Based on On-Farm Testing

The on-farm experience with GLYCIM in farmers’ fields helped identify several weaknesses
in the model from 1991 to 1993. These weaknesses were in the prediction of soybean phenology,
especially floral initiation and anthesis and soybean response to short-term cold injury. A series of
experiments were conducted in controlled-environment plant growth chambers and in the field to
supplement data collected from growers’ fields. As a result, we incorporated new algorithms in the
model that improved GLYCIM’s predictive capability for phenology (Reddy et al., 1995; Acock
et al., 1997; Reddy et al., 1998) and yield under a range of conditions. More than 80 data sets were
assembled during the period of 1993 to 1996.

Initially, GLYCIM had only two user-selectable parameters for crop growth and development.
These were parameters for maturity group and determinacy. Parameters for growth, development,
and yield processes such as progression of vegetative stages and seed fill rates were hard coded in
the program. There were a total of 24 of these. In 1993, many of the parameters were made into
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variables and grouped by plant cultivar (Reddy et al., 1995). The number of user-selectable param-
eters was reduced to 18 (PARM1 to PARM18 in Reddy et al., 1995) of which only 15 were varied
among cultivars (Table 4.1). The remaining three parameters included an evapotranspiration pan
factor, and parameters that defined the number of branches per unit plant density, and root growth
rate that are not varied unless data are available. The use of cultivar related parameter files allowed
us to simulate cultivar specific rate processes better and easily modify parameters for new cultivars.
Later, after 1996, based on results in growers’ fields, four new parameters were added. One was
used to adjust the vegetative stage for soil clay content and another three were used to calculate
floral initiation (R0) based on summer solstice (Table 4.1) (Acock et al., 1997).

Other modifications were made to GLCYIM to adapt the model better to user requirements as
the project progressed. Irrigation was originally simulated by augmenting the rainfall data. Several
growers used flood or furrow irrigation that was not compatible with the capacitance-based infil-
tration component of GLYCIM. When infiltration is modeled this way, water input as rainfall or
irrigation fills the surface soil layer instantaneously to some upper limit, usually termed field
capacity. Additional water moves to the next layer finally becoming drainage if the soil’s water-
holding capacity is exceeded. To handle furrow or flood irrigation, the water infiltration code was
modified to include gradient-driven infiltration using the Green-Ampt equation (Pachepsky and
Timlin, 1996).

Several growers preferred to plant narrow row soybeans with a grain drill but the model could
not simulate the yields and phenology well. Two years of experiments used different population
densities (10 to 60 plants per m2) to develop equations to describe the effects of plant population
density on branching (Reddy et al., 1999). These were added to GLYCIM and several growers now
experiment with row spacing in the simulations to evaluate planting strategies for different soils.

The GLYCIM validation study was an on-farm trial, not a complex research-designed experi-
ment. On-farm experiments can be difficult to manage with potential problems in logistical support,
analytical needs and farmer participation (Lightfoot and Barker, 1988). The farmers were left to
experiment with GLYCIM, and the research goal was to collect validation data sets and improve
the model. Researchers monitored the irrigation schedules closely and duplicated model runs of
GLYCIM made by the farmers and conveyed the results back to them. Meetings were held with
the participants to insure that improvements in GLYCIM performance would be relevant to their
needs.

Graphical User Interfaces

GLYCIM was used on farms in 1991, before it had a user interface. The model ran from a
command line, and input and output data were supplied in files edited by a simple text editor. The
primary use of GLYCIM was to provide a tool for growers to estimate yield using current weather
data and a standard weather file for forecasting, and to gain further data for GLYCIM with different
soils and varieties. Initially the intended use of GLYCIM was to predict crop yield and harvest date.

Developed as a research model, the initial version required a user to edit the input files manually
and did not provide a visual representation of the output or easily interpreted tables. There was an
obvious need to develop a user interface. Without the interface, the potential of a model may be
lost and assembling input data can be formidable. Most users would probably have neither the time
nor inclination to learn and/or perform tedious procedures for entering data and displaying results.

In 1993, a Microsoft Windows™ 3.1-based user-friendly interface, called WINGLY, with a
“point and click” design was released to the growers. There was little user input. Most of the input
in the WINGLY design was through manually editing files. The interface managed the arrangements
of the input files to allow a user to run simulations with different soils and varieties. It was also
programmed to call the weather station, and download and manage the weather data, and it had a
simple graphical output interface to assemble tables and summary data that allowed users to view
the output information in a readily understandable format.
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WINGLY was also designed as a simple DSS. Each day during the growing season a grower
would begin by downloading daily weather data over a telephone line. Then WINGLY would add
weather data from a standard weather file that contained averages of 20 years of daily weather data
for a nearby location. These average weather data were used to fill in rainfall, radiation and air
temperature for the remainder of the season. The grower would enter the file name corresponding
to the proper cultivar, initialization, soils, and irrigation data. These files were prepared by the
authors, the model developers. GLYCIM would predict yield given the weather data to date, no
rainfall in the next five days, and a selected year’s rainfall until the end of the season. This would
allow the grower to project yield given no irrigation and to decide when to irrigate.

An alert to the user would be triggered if a rule-based analysis of the simulation results detected
moisture stress. This expert rule was developed from field trials of GLYCIM on farms in the
Mississippi Valley and grower experience from 1991 to 1993. While running the command-line
version of GLYCIM, grower Kenneth Hood noticed that one of the output files contained informa-
tion on water stress and tried to irrigate according to the indication of stress. He found this was
successful. Based on this experience, the model developers defined a trigger point based on a period
when the plant could not take up sufficient water to meet transpiration needs for three or more
consecutive hours and continuing for three or more consecutive days. If irrigation were necessary
within the next five days, the model would alert the user: “Irrigate before mm/dd if there is no
rainfall in the next three days.” The grower would add the irrigation amount to an irrigation file
and rerun the model with varying irrigation amounts until the water stress was alleviated. Additional
information provided by WINGLY included warnings of the time to harvest and a summary of the
seasonal simulation that a grower could use to evaluate an irrigation or other management strategy
such as cultivar selection or row spacing.

In 1995, the authors began development of a new interface, GUICS (Graphical User Interface
for Crop Simulators) (Acock et al., 1998). Previously, WINGLY relied on entering text and not on
drop-down menus, and could not manage multiple scenarios nor easily allow a user to make
comparisons of scenarios. It was a product of Microsoft Windows 3.1, 16-bit technology and was
also limited to one model — GLYCIM. Surveys of on-farm use of computerized DSSs, both
simulation- and nonsimulation-based, have shown that the complexity of DSS use is one of the
most limiting factors (Greer, 1994). Furthermore, the Microsoft Windows 95 operating system
provided a new environment for data management and visualization as well as 32-bit processing.

GUICS was designed as a usable generic user interface that could manage several models. The
ability to manage several different models provides a tool to study the effects of crop rotations, or
to compare models. The usability paradigm includes features such as:

1. Effectiveness of task performance or user productivity
2. Learnability, including the primary learning time and relearning time in intermittent use
3. Flexibility, adaptable to changing tasks or a changing environment
4. Attitude, defined in terms of the users liking or disliking the interface (Acock et al., 1999)

Icons help users recognize by pattern rather than by recalling information. Wizards are used to
guide the user through the task of assembling data into a scenario and making a simulation run.
One data category is shown at a time. The interface also features forgiveness to facilitate exploration,
allowing a user to back out of a selection without losing information. Further, the interface has
automated weather data downloading and a minimum number of active buttons to reduce memo-
rization and display a minimum amount of text to reduce clutter.

The data presentation in GUICS is greatly simplified over that presented in WINGLY. Output
is presented in tables and summary files rather than a detailed listing used for research and
debugging. GUICS also stores the output from the scenarios separate from the input data. In order
to run the model, the user selects the button for “View Results.” There is no “Run” button; the path
to view the output or run the model is the same button. This was an attempt to isolate the user
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from the mechanics of running the model and decouple the concepts of a simulation run and
simulation result. The results would be available only after the simulation ended.

GUICS has tools to help a user to obtain weather data through phone lines, assemble a simulation
scenario and view results. Developing GUICS involved research in the hierarchies (i.e., projects
contain scenarios and scenarios contain model runs) of information use in simulators, and in system
requirements for different groups of users. GUICS has a fully object-oriented design and imple-
mentation (Acock et al., 1999). It is open to enhancements, e.g., using maps, using databases to
store datasets, and working with suites of models. Users of crop simulation models often need to
work with several models to study the effects of crop rotations, to compare models, or to obtain
information for decision making within a farm operation.

A survey was carried out during the early design stage of GUICS (Reddy et al., 1997) to:

1. Assess user satisfaction with WINGLY.
2. Predict user acceptance of the new interface.
3. Research future user needs.

Hand-drawn panels of the interface’s initial screen design were prepared to help evaluate the
appearance of the interface. Later, a computer mockup was designed and presented to users while
the program itself was plastic enough to allow major changes without requiring extensive modifi-
cations to code. The GUICS prototype was evaluated by giving hands-on experience to a group of
end users, including seven farmers from five southern states who already had experience with
WINGLY.

Evaluation of the GUICS Interface

Employing the general guidelines of usability testing (Rubin, 1994), the authors evaluated
GUICS. In observational interviews (Martin and Eastman, 1996), they

1. Outlined the new features of the interface.
2. Demonstrated how to get warnings of stress effects on yields.
3. Asked the users to go through the whole process of crop simulation on their own and recorded all

difficulties experienced.
4. Asked users to point out any inconveniences and discussed with them the usability of GUICS.
5. Asked whether the users would prefer to keep WINGLY or to use GUICS.

Acceptance was of concern, because users often prefer a familiar interface to the one that is
supposedly improved (Rudisill et al., 1996). The interviewers also asked about the need for mapping
tools for input and output, and about the need for resources to be accessed through the Internet.

GUICS was amended as a result of these interviews, and the amended version was used on
15 farms in 1997 and 1998. The only serious problems encountered were errors in downloads of
weather data leading to faulty weather files being used in simulations.

GROWERS’ EXPERIENCES

Experience with the Interface, GUICS

Two of the growers were able to put together a scenario and obtain simulation results imme-
diately after the demonstration. Wizards appeared to be a big help. Lack of consistency in imple-
menting Windows shortcut conventions and not including consistent error messages in the wizards
were reported as problems by the growers. Two users found the icons confusing. Guidelines on
naming datasets and scenarios and on writing memos were requested. None of the users saw an
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advantage in combining various scenarios into projects for on-farm use. One of the users indicated
that the accumulation and collection of garbage data might become an issue as data manipulation
becomes easier. The ability to have several crop models running under the same interface was
welcomed (although this has not been implemented yet). None of the users objected to replacing
WINGLY with GUICS, provided they were given a converter to transform WINGLY data files to
GUICS data files.

Many of the requested enhancements centered around the need to manage weather files. An
automated update of ASCII weather files was requested. Tools to generate several predicted weather
files were desired. Most users felt an advisory system on weed control would be useful. Some of
the growers had yield monitors and all the growers agreed there was a need for mapping tools in
the DSS. A mapping unit from NRCS soil survey reports could be used as a kernel to link soil,
weather, management, and cultivar data.

Discussion of the need for mapping tools revealed a variety of interests, mostly related to the
familiarity of the users with precision farming technology. All agreed it would be convenient to
use a mapping unit as the kernel of a project relating soil, weather, management, and cultivar data.
Two users thought soil mapping units could be kernel units, whereas one thought a field might be
the more appropriate unit. Three users had yield monitors and thought that crop simulation should
be related to yield map analysis, and that the appropriate tools should be integrated into GUICS.
One user pointed out that the accumulation of data eventually might make desirable a database to
support complex queries. None of the users were aware of Internet resources that could help them
use GUICS as a decision support tool, although all them expressed interest in information on such
resources.

Despite the development of GUICS, many users still find the output too time-consuming to
interpret. There is still, probably, too much reliance on graphs displaying a time course of the
simulation, a holdover from the paradigm of research and a scientist’s eye toward information. The
problem is time, and most growers are limited in the amount of time they can devote to under-
standing all the information. Growers are also looking for diagnostics and other information that
will help them meet specific goals. Based on results of a survey carried out with the participating
growers (Reddy et al., 1997), the output variables given of most interest were irrigation timing,
yield, and maturity date. The preferred output was a single number. A short summary of the main
parameters of crop development was the second choice, and the full model output was least desired.
The users mentioned that the percent canopy and early warning of impending moisture stress would
be useful but are not now available in the graphical and summary output of the DSS. GLYCIM
gives output data on more than 20 characteristics of the developing crop, but only one grower was
interested in this information. Two users expressed interest in seed protein content. Economic
information was mentioned but the users were not enthusiastic about bookkeeping with a DSS.
Heavy users of GLYCIM/GUICS felt that graphs were useful as they allowed a user to compare
scenarios. The users were primarily concerned that the initial compilation of the information needed
for a simulation would be beyond the resources of most farmers.

On-Farm Applications of GLYCIM/GUICS

The growers use GLYCIM for preplant (strategic) planning decisions such as the selection of
cultivar/soil type combination, planting date, row spacing, and postplant (tactical) decisions such
as irrigation scheduling, harvest timing, and yield prediction. Researchers did not envision the use
of GLYCIM for cultivar selection in the early project development stages. One grower found that
the interface allowed him to make yield and growing season comparisons among varieties and soils
and began using the model to make preplant decisions (Remy, 1994). Another grower reported he
does not plant a field that he has not tested with model runs beforehand (Remy, 1994). He runs
scenarios and compares estimated yields and harvest dates to test for soil, cultivar, and row spacing
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interactions. The grower uses different weather records and irrigation schedules from his farm to
optimize simulated production.

According to the cooperating growers, the use of the GLYCIM/GUICS for crop management
decision making, and input optimization has increased profits and resulted in more efficient water
use by the growers (Remy, 1994). In a survey by Mississippi State University, the soybean growers
using GLYCIM/GUICS attributed an increase in soybean yields of up to 29% and irrigation use
efficiency of up to 400% to the use of GLYCIM (Remy, 1994). Many of the soils in the Mississippi
Valley are shrinking and swelling clays (i.e., Sharkey series, very fine smectitic thermic Chromic
Epiaquerts). Large cracks form as these soils dry. Traditionally, growers would not irrigate until
they began to observe cracks, although the soybean plants were already beginning to be stressed.
The model alerts the farmers to irrigate earlier than their traditional practice. Growers reported that
before using GLYCIM to schedule irrigation they started watering too late and quit too early
(Manning, 1996). By irrigating earlier, water stress to the soybeans is alleviated and less water is
lost to deep drainage through the cracks. The soil also wets up faster and takes less time to irrigate;
this increases irrigation efficiency. One grower reported that irrigation time on a cracking clay soil
went from 4 to 5 days to 30 hours by irrigating earlier as recommended by GLYCIM/GUICS.
Another grower, after noticing how much yield loss the model was predicting due to moisture
stress, purchased an additional irrigation system realizing that it would pay for itself through
increased yield.

An interesting side benefit of the DSS was that it provided incentive to the growers to go out
to their fields and critically observe their soybean plants. Many growers, after viewing simulation
results during the growing season, would go to their fields often to check their crop growth stage
and compare to GLYCIM’s predictions of phenology. As a result, they would be more aware of
details of their fields and crops, and the crops’ responses to the environment. There is also a learning
component to using the DSS this way. After time, growers would recognize plant stress stages and
critical soil moisture levels where irrigation would be necessary. A DSS might be less important
for management at this stage.

RESEARCH EXPERIENCES

Phenology predictions for two farms in the Mississippi Valley are given in Figures 4.1 and 4.2.
The data in Figure 4.1 are from 1997, 4 years after we calibrated the soybean cultivar files.
Predictions of vegetative (Vstage) and reproductive (Rstage) stages are close to the measured values.
The error bars suggest the wide range in variability in phenological development on the farms.

Figure 4.1 Predicted and measured phenology data for irrigated soybeans grown on the Hester farm in 1997.
The cultivar is DPL3588 and soil is Sharkey clay loam (very-fine smectitic thermic Chromic
Epiaquerts).
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Plant height seems to be the most difficult variable to capture. In some cases, GLYCIM overesti-
mates plant height. These data are typical of most of the measurements collected on the farms. The
cultivar parameters also appear to be stable over years and sites. Predictions of pods per plant for
a number of varieties and sites for 1997 are given in Figure 4.3. The variation for the GLYCIM
calculated numbers appear to be less than for the measured values and some predicted values are
outside the range of the measured. Nevertheless, GLYCIM does a reasonably good job of prediction
especially given the range in varieties and farms (Reddy et al., 1995).

Predicted and measured soybean grain yields are shown in Figures 4.4 to 4.6. These data
represent 3 growing seasons, six to 10 varieties, and 12 growers. In some cases, predicted yields
are close to measured, in others they are off by as much as 50%. The relative variation in measured
yields appears to be considerably less than that of the phenology data. On the whole, GLYCIM is
more likely to overestimate soybean yield than underestimate it. In recent years weather was warmer
than usual, and GLYCIM yield estimates were generally much higher than the measured yields.
GLYCIM appears to estimate biomass correctly and seed number per pod (Figure 4.3) but has

Figure 4.2 Predicted and measured phenology data for irrigated soybeans grown on the McCain farm in 1997.
The cultivar is Asgrow 4922 and soil is Dubbs sandy loam (fine silty, mixed, active, thermic Typic
Hapludalfs).

Figure 4.3 Simulated and measured pods per plant for seven different soybean varieties grown at various
locations in the Mississippi Valley.
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problems simulating the correct seed weights. This may indicate a problem with carbon allocation
and is currently being investigated.

Currently, measured soil hydraulic and physical properties are used in GLYCIM. These prop-
erties include saturated hydraulic conductivity, parameters to describe the relationship between soil

Figure 4.4 Simulated and measured yields for soybean varieties grown in 1994 on several farms in the
Mississippi Valley; and differences in predictions using measured and simulated plant populations.

Figure 4.5 Simulated and measured soybean yields for several varieties grown on three farms in the Mississippi
Valley in 1995.
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matric potential and water content, and sand and silt percentages. Timlin et al., 1996 investigated
the use of soil hydraulic properties that were estimated from soil texture. They reported large
differences in yields predicted using measured and estimated soil hydraulic properties for single
season simulations. Differences in long term averages of simulated yields were less. GLYCIM was
most sensitive to the value used for available water content (currently the difference between the
30 kPa and 1500 kPa water contents) and less sensitive to saturated hydraulic conductivity.

Understanding the uncertainties involved with the model, the growers were not overly concerned
with the quality of the predictions by GLYCIM/GUICS as long as the differences between simulated
and observed yields were not too large. They were mainly concerned with how well the model
predicted relative effects of water stress and the other variables to allow them to evaluate compar-
ative management strategies. Irrigation timing predictions seemed to be correct, within 1 to 2 days,
and were considered to be satisfactory. The maturity dates were correct about 80% of the time,
though the worst error was 10 days. If parameters were not available for a particular cultivar, the
use of parameters for a similar cultivar resulted in increased error.

ROLE OF CONSULTANTS

An early assumption of the research team was the expectation that the grower or a member
of the family and/or associates would run the model. As farm operations are becoming larger
and more complex however, the grower does not have time to make the many runs and analyses
necessary to get the most benefit from the model. It would appear that, a consultant advisor
could be a target group to service growers by delivering and interpreting the model’s output.
Cotton growers are accustomed to having such advisors for pest management and do not hesitate
to use them for plant growth regulator and irrigation advice. That is not the case, however, for
soybean and other small grain producers. In the mid-South, generally, a cotton grower also is a
soybean and small grain producer and therefore is likely to use the services of consultants. North
of the Cotton Belt, however, small grain producers are less likely to use consultants. At this
point, costs cannot be realistically supported by user fees since the economic benefits are not
always clear. About 50% of consultants and agricultural extension agents in the Great Plains believe

Figure 4.6 Simulated and measured soybean yields for the varieties tested on the cooperating farms in 1997.

1997

M
cC

ai
n 

A
sg

ro
w

 4
71

5
M

cC
ai

n 
D

P
L3

47
8

M
cC

ai
n 

A
sg

ro
w

 4
92

2
G

an
dy

 M
an

ok
in

R
ag

sd
al

e 
P

io
ne

er
 9

50
1

H
ar

dw
ic

k 
A

sg
ro

w
 5

90
1

H
es

te
r 

D
P

L3
58

8
H

oo
d 

N
k6

50
3

M
ul

le
ns

 H
ut

ch
es

on
S

at
te

rf
ie

ld
 A

sg
ro

w
 5

90
1

B
ra

gg
 H

ut
ch

es
on

M
ad

is
on

 H
ut

ch
es

on
W

at
ki

ns
 A

sg
ro

w
 4

92
2i

W
at

ki
ns

 A
sg

ro
w

 4
92

2u
W

ild
er

 H
z5

08
8

0

1000

2000

3000

4000

5000

6000

OBS ± STD DEV

 Y
ie

ld
 (

K
g

/h
a

)

SIMULATED
© 2002 by CRC Press LLC



      
that growers would pay for the service of running a simulation model and managing input (Ascough
et al., 1999).

Another area of concern is reliance upon the Extension Service or agricultural consultants in
each state to train model users. Computer use among agricultural consultants in the Great Plains
area of the U.S. is high at 94% but only 79% use computers for their clients (Ascough et al., 1999).
Models such as GLYCIM/GUICS are very different from WordPerfect, Excel, or most of the other
computer tools that are rarely updated and even more rarely changed in format of input and output.
Plant growth models, however, will probably be updated regularly and input and output requirements
changed as new information from research on the target crop is integrated into the model. This
seems to be a difficult concept to grasp for trainers who are used to the other types of computer tools.

Use of an Intermediary

Much of the progress and success of the GLYCIM/GUICS project could be traced to the presence
of an intermediary to facilitate communications between the researchers and the growers. Whisler,
one of the authors of this chapter, was such a facilitator. He had developed a trust relationship with
the growers through the previous GOSSYM/COMAX project, and that trust was extended to
GLYCIM/GUICS. He and his students were geographically close enough to carry out extensive
data collection necessary to improve the model. Because they were close to the farms, they could
maintain the consistent and frequent grower contact which helped the project avoid stagnation. The
facilitator also often ran the model for the growers and many of the enhancements were made to
ease the use of the model by the facilitator for a number of growers.

SUMMARY AND CONCLUSIONS

The USDA research team worked with soybean growers in the mid-south region of the U.S.
for 10 years collecting data for model testing and evaluation, and developing a decision support
tool for soybean management. The decision support tool included a simulation model (GLYCIM)
and an interface (GUICS), an intuitive, easy–to–use tool to assemble the relative data and run the
simulation model. The interface also served as an expert system to summarize important information
from the simulations, allowing growers to make informed preplant decisions on cultivar selection
and row spacing or postplant decisions on irrigation and harvest scheduling. Researchers found
that growers preferred to view results of the simulations in terms that are most meaningful such
as simple graphs and short, succinct tables.

The absolute estimates of yield by GLYCIM were sometimes very different from measured
yields and often too high. The relative responses of GLYCIM to row spacing differences, varieties
and irrigation, however, were reported to be realistic and useful. Growers reported a 14 to 24%
increase in yields and up to 400% increase in water use efficiency by using GLYCIM/GUICS.
Experience with the model encouraged the growers to visit their fields more often which provided
important feedback to them.

On-farm research is critical to model development efforts and should not be delayed until the
final stages of model development. The development of a working relationship with the growers
early in the program helped the team develop a relevant interface. At the early stages the design of
the interface was still plastic and modifications did not require major structural changes in the design.
Most of the features and uses of GLYCIM/GUICS came not from developers, but from the growers,
and were incorporated into the design of the DSS during development. In retrospect, the importance
of involving extension agents and consultants in modeling work, especially at the design stage, is
crucial. They could then become intermediaries between the growers and the DSS developers.

Decision support systems are very complex, and it is still difficult to promote their widespread
use among growers. They are still not easy enough for growers, who have many other tasks
© 2002 by CRC Press LLC



                          
competing for their time, to use. The growers most often involved in the use of models are those
who are early adapters of technology and are willing to accept more risk. Agricultural extension
agents and consultants still do not appear to be very supportive of simulation-based DSSs, as their
use grows and agents become more familiar with them perhaps their acceptance will also grow.
From the researcher’s standpoint, it is difficult to find time for support, providing help with
problems, and updating cultivar and soil files. At this point it is not clear if the costs of these models
can be realistically supported by user fees.

Nevertheless, DSS systems, such as GLYCIM/GUICS, have been useful and therefore have
definite potential to increase profits and reduce resource use. The future still holds promise as
computers become faster and software technology allows developers to design “smart” systems
that can reduce the complexity of the interfaces. At the same time, researchers are increasing their
knowledge of plant growth and development and improving their models.
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INTRODUCTION

The evolution of modern agricultural research into disciplines has resulted in major advances
in understanding plant and animal processes at plant, organ, cellular, and biochemical levels of
detail; however, this specialization resulted in scientists who know a lot about components but
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lacked an understanding of production systems as a whole. This led to a gap between research
produced by disciplinary scientists and its application to improve production systems. More applied
agricultural research efforts did not fully benefit from this disciplinary knowledge; they relied on
costly trial and error tests and analysis methods to determine whether one management approach
was better than another. One aberration of this situation was that production management trials
were repeated continually to test technology because of differences in climate, soil, and pests, and
other factors that vary over space and time. New methods were needed to help researchers transfer
production technology to speed up the process and reduce the costs of repeating trials everywhere
that new technology was needed.

During the 1980s and early 1990s, the IBSNAT project was created with the aim of accelerating
the transfer of agrotechnology to increase food security and minimize environmental degradation.
Systems analysis and simulation were the methods implemented and tested by this project. Principal
products of the IBSNAT project were its global network of collaborators and the decision support
system software referred to as DSSAT. Examples of its post facto applications at local levels in
Albania, South Africa, Thailand, and Hawaii, and in studies of potential impacts of climate change
on agriculture at the global level are presented. Output from the systems approach allowed scientists,
educators, extension specialists, and other decision makers to analyze technology options and better
enable them to match the biological requirements of crops to land characteristics.

Following the end of this project, global cooperation continues to increase, confirming the value
of the approach and adding new tools for widespread use.

Methods for Agrotechnology Transfer

Agrotechnology transfer was a commonly used term by the international agricultural research
community in the 1970s and 1980s. The term generally referred to taking technology and/or
knowledge developed in one location and applying it in another location where it had not been
used before. The transfer was generally effected from the industrialized countries in the upper or
temperate latitudes to locations in the lower or tropical latitudes with varying degrees of success.

The principal issue in the transfer process is how to best match the biological requirements of
a crop to the biophysical characteristics of the land. A successful match implies measurable
production increase as a result of the use and adoption of transferred technology. Three methods
are available to accomplish this transfer.

Trial-and-Error

The first is the traditional trial-and-error method. This method has provided agricultural scien-
tists with a wealth of information and data on crop responses to application of varying rates of
fertilizers from field trials conducted at their respective research sites; however, this method requires
much time and money to implement, and the results are principally applicable only to the site
where the experiment was installed. Results from such studies generate data and information for
our understanding of processes such as photosynthesis and water and nutrient uptake. Much of the
postWorld War II efforts could be categorized as outcomes from trial-and-error methods.

Analogy

A second method, transfer by analogy, was critically examined by the Benchmark Soils Project,
a program of the U.S. Agency for International Development (USAID) implemented by both the
University of Hawaii and the University of Puerto Rico, Mayaguez, in the mid-1970s. The purpose
of that project was to determine the feasibility of transferring agrotechnology (management prac-
tices related to fertilizer N and P for maize and soybeans) from one location to another on the basis
of similarly classified soils and climate (Silva, 1985). The soil family category of a hierarchical
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system, Soil Taxonomy (Soil Survey Staff, 1975), served as the level at which soils with similar
chemical, physical and mineralogical characteristics were grouped. The nomenclature of this cat-
egory also included characteristics on the specific ranges of both the soil temperature and soil
moisture regimes for a given soil family.

Three soil families were determined to be the minimum necessary to test the concept of
transferability (Silva and Beinroth, 1975). At that time, the three soil families had the following
taxonomic nomenclature (Ikawa et al. 1985):

1. The thixotropic, isothermic Hydric Dystrandepts
2. The clayey, kaolinitic, isohyperthermic Tropeptic Eustrustox
3. The clayey, kaolinitic, isohyperthermic Typic Paleudults 

With the addition of two soil orders, Andisols and Gelisols, in soil taxonomy (Soil Survey Staff,
1999), the nomenclature for these soil families has been modified.

Experimental sites were established only after characteristics of the soil pedon at a potential
site were verified as having common taxonomic properties of a typical member of a soil family.
Besides Hawaii and Puerto Rico, sites were identified in Brazil, Cameroon, Indonesia, and the
Philippines. A total of 25 experimental sites representing three soil families became the network
of soil family sites. A quantitative evaluation of transfer by analogy using the soil family concept
was reported by Wood et al. (1985) and Cady et al. (1985).

Although the outcome was successful, the process to carry out tests verifying transferability
was time-consuming. Furthermore, because of the lack of a standard, universal system of soil
classification and methods of soil analysis, the task of locating and verifying the similarity of soil
properties was, at best, difficult.

Transfer by analogy was shown to be technically possible, although the probability of its
adoption as an acceptable practice was low. A more efficient method was needed.

Systems Analysis and Simulation

A third method is systems analysis and simulation. The systems approach is guided by the premise
that it is more efficient to use models to find alternative ways to improve agroecosystem performance
than to only experiment with the system itself. Improvements to one component of a system cannot
be assumed to lead to an improvement in the performance of the whole system without an
understanding of how system components interact (Uehara and Tsuji, 1993). The systems approach
to agrotechnology transfer required a balanced development of two interactive components, crop
models and databases (Nix, 1984). The systems approach is frequently used to complement field
research by reducing the number of options tested in the field to those that have been shown to be
well suited for the soil and weather conditions of that location.

IBSNAT

The IBSNAT (International Benchmark Site Network for Agrotechnology Transfer) project was
formally established as a program of USAID and implemented by the University of Hawaii through
a cooperative agreement in 1983. The project was formulated as a program to develop a method-
ology to accelerate the transfer of agroproduction technology developed in one location to any
other location in the world. An efficient method of transfer of agrotechnology would likely result
in an effective mechanism to provide options that would enable these countries attain self-sufficiency
in food production.

The systems approach was considered by the designers of IBSNAT (ICRISAT, 1984) as the
most efficient and effective means for agrotechnology transfer. Instead of focusing on similar soil
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properties, the systems approach takes into account the soil–plant–atmosphere–management inter-
actions. It relies on what we already know of individual components of the continuum and helps
identify gaps in our knowledge.

For example, trial-and-error research provided a general understanding of crop responses to
management variables for specific situations. Analog transfer provided an understanding of the role
of soil and climate as defined in soil taxonomy (Soil Survey Staff, 1975) on crop responses to
technology. A systems approach allows us to now capture, condense, and organize knowledge
generated from both transfer approaches and from disciplinary knowledge to make informed
decisions for achieving desired outcomes relative to crop production and land use. Figure 5.1 (Nix,
1984) illustrates the pathway or framework for knowledge generation for understanding of bio-
physical processes and knowledge utilization for prediction to control outcomes.  

The purpose of the IBSNAT project was to assemble and distribute a portable, user-friendly,
computerized decision support system, which enabled users to match the biological requirements
of crops to the physical characteristics of land to attain objectives specified by the user (Uehara
and Tsuji, 1993). Two products of the IBSNAT project were the global network of collaborating
scientists and organizations, and the decision support system software referred to as DSSAT for
Decision Support System for Agrotechnology Transfer. This chapter presents post facto case exam-
ples of user applications of DSSAT. Before doing so, we present a brief background and description
of DSSAT and its components.

IBSNAT PRODUCTS

The Global Network

Members of the global network had a shared vision and understanding of their roles in the
application of a systems approach to achieve project objectives. The network collaborators con-
tributed resources, both human and capital, and information in their roles as model developers,
data generators, and systems users. In many instances, collaborators had roles in more than one of
these areas. More than 75 countries were represented in the IBSNAT network.

Figure 5.1 Diagram outlining the systems approach to developing and testing models. (From Nix, H.A.,
Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer,
ICRISAT Center, Patancheru, India, 1984. With permission.)
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The diversity of scientific disciplines involved in the IBSNAT network can be best expressed
by those who served as members of the Technical Advisory Committee or TAC. Table 5.1 lists the
individual, home country, and discipline.

Members of the TAC met annually to provide advice and counsel to the network and to the
IBSNAT principal investigator at the University of Hawaii. Members of the network understood
their roles in the overall scheme for the development and subsequent testing of components of what
was eventually to become DSSAT.

A systems approach was agreed upon conceptually as the methodology to effect efficient transfer
of agrotechnology. To implement the concept, general agreement was reached on the use of process-
based models to simulate crop growth and development for 12 food crops — wheat, maize, rice,
sorghum, millet, barley, soybeans, peanut, dry beans, potato, cassava, and aroids (ICRISAT, 1984).
For members of the IBSNAT network, model developers were to establish a standard programming
structure to develop additional simulation models for other crops not listed and both data generators
and model developers had to agree on the data requirements to test the efficacy of the models.
Finally potential and prospective users of the technology needed to have a “menu” of data necessary
to the run the models for their respective purposes. This set of data was referred to as a minimum
data set (MDS) (Nix, 1984).

The minimum data set was defined as the minimum input necessary to operate each of the crop
simulation models. Daily maximum and minimum air temperatures, rainfall, and solar radiation
were the minimum set of weather data required. For soils, the minimum set included the following
by horizon or depth: texture, bulk density, organic carbon, soil pH, and surface albedo. Crop growth
and development data included information such as the number of days from planting to flowering
or to tassel initiation or to physiological maturity under optimum conditions, seed yield, above-
ground biomass, and grain or tuber size. Management data included information such as date of
planting, timing, kind, and amounts of N fertilizer applied, and irrigation amounts and dates
(IBSNAT, 1986; IBSNAT, 1990; Jones et al., 1998).

The Decision Support System for Agrotechnology Transfer (DSSAT)

The DSSAT is a software system that serves as a shell to integrate three principal components:
the database management system, the crop models, and application programs. (Jones et al. 1998)
The shell was written in the C programming language, the database management system in dBaseIV,
the models in FORTRAN, and application programs in BASIC and FORTRAN. The first version
was released in 1989 as DSSAT v2.1 (IBSNAT, 1989). For the first time, scientists, educators, and
other users had access to a system where any one of the models used a common database system.
This allowed users to conduct ex ante experiments to assess a range of “What if?” questions that
would take the lifetime of a research agronomist to do in the field.

Initially, there were simulation models for 10 food crops in DSSAT v2.1. In the later version
of DSSAT, v3 (Tsuji et al., 1994; Jones et al. 1998), application programs for single season
(Thornton and Hoogenboom, 1994) and multiple season crops (Thornton et al., 1995) were included.

Table 5.1 Members of the IBSNAT Technical Advisory Committee 
Represented the Global Community and Many Disciplines

Name Country of Residence Discipline

Juan A. Comerma Venezuela Pedology
J. Barry Dent Scotland Agricultural economics
L. Anthony Hunt Canada Plant breeding
Henry A. Nix Australia Agroecology
Joe T. Ritchie U.S. Soil and water sciences
Paul S. Teng U.S. Plant pathology
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The current version, DSSAT v3.5, has 17 crop simulation models (Hoogenboom et al., 1999) as
listed in Table 5.2.

The crop models in DSSAT are characterized by their portability, i.e., they are applicable
globally. They are site-specific and local when the minimum data set for a specific location is used
to operate the models. To be able to use DSSAT as a matching tool, the user will need to assemble
the minimum data set of biophysical information on soils and weather (Hunt and Boote, 1998).
Each of the crop models in DSSAT incorporate coefficients that account for the way in which
genotypes differ from each other in the duration of development phases of growth, in their response
to specific environmental factors, or in morphological characteristics (Hunt et al., 1989; Ritchie,
1991).

ACCEPTANCE AND ADOPTION

Research methodologies have high probability of acceptance if they can adequately meet the
three purposes of research. The first purpose is to advance our understanding of the processes of
a system. For example, knowledge of the processes of photosynthesis is important to our under-
standing of growth and yield of most crops. The second purpose is prediction. If the knowledge
and information generated permits us to understand the processes of a system, we should be able
identify or diagnose probable causes of problems within the system and prescribe a range of options
as remedies. Hence, if we understand the processes of a system and can prescribe remedies or
solutions to problems or deficiencies within the system, we should be able meet the third purpose
of research, to control outcomes.

The systems approach allows integration of our state of knowledge and understanding of
processes to make predictions that enables the user to choose options to control outcomes. The
DSSAT software continues to be an open-ended system that attempts to capture the essence of the
systems approach.

The decade of the IBSNAT project, from 1983 to 1993, coincided with the evolutionary
growth of the computer industry. The acceptance and adoption of DSSAT as a research and
planning tool by users can be traced to the ready access to computers ranging from the
mainframes to the desktops and eventually to the laptop and notebooks. To assess the accep-
tance and adoption of the systems approach in 1993 would have been premature. Today, nearly
a decade later, we may be able to address the question of adoption and impact with a number
of case examples.

From 1989 (v2.1) to 2000 (v3.5), nearly 1000 copies of DSSAT have been distributed to
individuals/organizations in 83 countries and listed in Table 5.3.

Table 5.2 Listing of the Crops That Can Be 
Simulated in DSSAT v3.5 and the 
Model Used to Simulate Each

Crop Model Crop Model

Maize CERES Soybean CROPGRO
Wheat CERES Peanut CROPGRO
Rice CERES Dry bean CROPGRO
Sorghum CERES Chickpea CROPGRO
Millet CERES Tomato CROPGRO
Barley CERES Bahia grass CROPGRO
Potato SUBSTOR Fallow CROPGRO
Sunflower OILCROP Cassava CROPSIM
Sugarcane CANEGRO

Source: From Hoogenboom, G. et al., DSSAT v.3.5,
DSSAT version 3, vol. 4, ICASA, Honolulu, HI, 284.
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Acceptance and adoption of DSSAT by a range of users for application at the global level
relative for climate change studies to local application and adaptation of crop models in four widely
separated geographic regions, South Africa, Thailand, Albania, and the U.S. are reported in the
following sections.

Global Application

Global climate change and its impact on food production and global trade were, and continue
to raise concern about food security and environmental sustainability of the planet. Global circu-
lation models (GCMs) were commonly used tools of scientists to demonstrate the impact of rising
atmospheric carbon dioxide and other so-called greenhouse gases on possible increases in global
temperatures and changes in rainfall patterns over time and space; however, in order to relate global
climate change to crop production, models to simulate the impact of rising temperature and
increased CO2 on crop production were required.

The crop models in DSSAT were selected for use in a global study supported by the U.S.
Environmental Protection Agency titled “Climate Change and World Food Supply” (Rosenzweig
and Parry, 1994). A description of the linkage of DSSAT to the GCM with a special version of
DSSAT (version 2.5) was reported by Hoogenboom et al., (1995). The later version, DSSAT v3,
was then used by Rosenzweig and Iglesias (1998) to assess the potential impacts of climate change
on world food crop production using GCM scenarios affecting water availability and with and
without direct physiological effects of carbon dioxide on crop growth. For details of this global
application study, readers are referred to authors cited in this chapter.

Table 5.3 List by Countries of Registered Users of DSSAT in the IBSNAT Network 
of Model Developers, Data Generators, and Users

Africa and 
Middle East

Asia and 
Near East Europe The Americas The Pacific

Benin Bangladesh Albania Antigua Australia
Botswana China Austria Argentina Guam
Burkina Faso India Belgium Brazil New Zealand
Cameroon Indonesia Bulgaria Canada
Cote D’Ivorie Japan Czech Republic Chile
Egypt Malaysia Denmark Colombia
Ghana Nepal France Costa Rica
Iran Pakistan Germany Dominican Republic
Israel Philippines Hungary Ecuador
Kenya South Korea Ireland Guatemala
Lesotho Taiwan Italy Guyana
Malawi Thailand Netherlands Lesser Antilles
Mali Vietnam Norway Mexico
Mauritius Poland Nicaragua
Mozambique Romania Panama
Namibia Spain Peru
Niger Switzerland Trinidad and Tobago
Nigeria Turkey Uruguay
Senegal United Kingdom United States
South Africa Venezuela
Syria
Tanzania
Uganda
Zambia
Zimbabwe
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Local Examples

Although DSSAT found application for policy decisions at the global level relative to studies
on the potential impact of global climate change, the DSSAT system became widely available to
researchers with the rapid advances in computer technology. What were once considered “computer
toys,” crop models became computerized tools, helping researchers organize data and information
into electronic databases for easier access. Furthermore, it soon became apparent that the ability
of the models to predict outcomes was as good as the knowledge of the infinite number of
combinations that affect plant growth and development. Hence, the models became tools to help
identify gaps in the knowledge base and allow improved design of more efficient and effective
experiments.

The first such case study is from South Africa where the CERES-Maize model was modified
to suit local farmer practices and cultivars. The second is from Thailand where researchers collab-
orated with modelers from South Africa and the U.S. in the development, testing, and application
of a crop model for a nonfood crop, sugarcane. The third is from Albania. The CERES-Wheat
model was used to provide information on the impact of delaying nitrogen fertilizer on grain yield
for a crop that was already planted. A final example, derived from research activities in Hawaii,
demonstrates the linkage of crop model outputs from DSSAT to GIS software for spatial analyses
and the potential application of DSSAT on the Internet.

Potchefstroom, South Africa

In the early 1990s, the Agricultural Research Council-Grain Crops Institute (ARC-GCI) maize
modeling group at Potchefstroom considered using a modified version of CERES-Maize (De Vos
and Mallet, 1987) and PUTU for maize (De Jager, 1989) to study genotype and management
practices used in the region. CERES-Maize (Jones and Kiniry, 1986; Ritchie et al., 1998) was
developed for crop production practices distinctly different from those in the western Highveld of
South Africa, where the combination of very low plant populations (2.0 plants m–2) and wide rows
(2.1 m) are standard. Local cultivars provide adequate grain yields to compensate for a low plant
population and the practice of having wide rows contributes to sustainable yields under both drought
and nondrought conditions (Du Toit, 1991).

Suggested modifications to improve the simulation of silking date for CERES-Maize v2.1 were
included in a later version, CERES-Maize v3 in DSSAT v3 (Tsuji et al. 1994). The simulation of
the silking date allowed a better estimate of the level of yield compensation that will likely occur
with wide row spacing.

The ARC-GCI maize modeling team used a correlation matrix to quantify the error (observed —
simulated values). Linear regression (y = a + bx) was determined between climatic and stress data
during different growth stages (x) with the error (y). Using this method, Du Toit et al. (1994)
reported that 44% of the error in yield could be explained by water stress during silking, and 30%
of the error by water stress before silking. This analysis was conducted on a cultivar x planting
date trial at Potchefstroom, South Africa. Hence, the ARC-GCI team was able to identify gaps in
our understanding of maize growth and development under conditions considered extreme relative
to those used in the development of CERES-Maize. They were then able to demonstrate causes of
the poor match between observed and simulated grain and kernel numbers and modify the DSSAT
maize model to accommodate their local needs. The feasibility of using fitted genetic coefficients
for the simulation of yield compensation was determined for different cultivars. Differences in yield
compensation among cultivars were quantified; results were then used to develop regression equa-
tions for simulating differences in yield compensation among cultivars.

An important characteristic of the local maize cultivar is the production of tillers at low plant
populations. Functions for tiller simulation were developed and included in the modified version of
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CERES-Maize v3 by the ARC-GCI team. This modification resulted in an improved capacity of the
model to simulate tiller production and, hence, improved accuracy in simulating yield compensation.

Modifications made to CERES-Maize v3 were tested using a historical field trial, as well as
commercial data in order to determine whether the modifications were site specific. Outcomes from
these tests ascertained that the modified CERES-Maize retained its portability for application
elsewhere. The ARC-GCI maize modeling team, in 1996, prepared an interface between the
modified CERES-Maize v3.0 and the Free State Department of Agriculture geographic information
system (GIS). This made it possible to add a spatial component to outputs derived from DSSAT v3
and make them widely available to users.

Chiang Mai, Thailand

Systems modeling and simulation are now commonly accepted methods for assessing the match
between the biological requirements of crops and the biophysical characteristics of the land in
Thailand. This acceptance was demonstrated by the institutionalization of the systems approach by
the Thailand Department of Agriculture, the research unit of the Ministry of Agriculture and
Cooperatives. The process of introducing the approach and proving its utility to researchers and
policy makers was made simpler by the parallel success of computer and software technology over
the past 15 years. Furthermore, advancement of computer technology made it possible to introduce
courses on crop models and system simulation into the core curriculum of the Multiple Cropping
Centre at Chiang Mai University in the early 1990s.

Recognition for increased capacity building in systems research led to support for a project
titled “Estimating Sugarcane Yield of a Large Scale Production Area Using Information Technol-
ogies” by the Thailand Research Fund (TRF) to the Faculty of Agriculture of Chiang Mai University
in 1993. Model development and testing, spatial and attribute database development, and interface
shell development for sugarcane were the principal components to this project. Training was an
essential output of the project.

From 1993 through 1998, Thai scientists collaborated with developers of the CANEGRO model
in South Africa (Inman-Bamber, 1991) to test it under localized conditions and with local cultivars.
An improved version of CANEGRO (Inman-Bamber and Kiker, 1999), patterned after the CROPGRO
models (Jones et al., 1998), was installed in DSSAT v3.5 (Hoogenboom et al. 1999). This linkage
was made possible through members of the IBSNAT network and serves as an example of the
growing partnerships among network members.

Thai scientists used the earlier versions of the model to assess the effects of planting dates on
cane and sugar yields in the Northeast region of Thailand (Jintrawet et al. 2001). Even with the
preDSSAT version of CANEGRO, outputs from the exercise were encouraging. Results helped
Thai scientists identify gaps in their knowledge and understanding of the effects of inter-nodal leaf
development from different planting dates on stalk and sugar yields.

The crop simulation model for sugarcane in Thailand was developed through a participatory
effort involving collaborators from the industry and scientists affiliated with research institutions.
CANEGRO is a good example of a model initially programmed and calibrated for application in
South Africa that is now portable and applicable globally. With the limited amount of data available
to test the model at any one geographical area (relative to food crops), the availability of CANEGRO
globally as part of DSSAT should accelerate its testing.

Lushnja, Albania

Immediately after the collapse of the Soviet Union, several Eastern European countries that
relied on economic trade with them faced a food shortage crisis. In 1991, after 45 years of
Communist rule, Albania began the transition to democratic pluralism and a market economy. 
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During this early period, the U.S. Agency for International Development forwarded a request
received from the Albanian government for assistance in determining to what extent wheat imports
might be offset with emergency nitrogen fertilizer imports. The request asked if the timely impor-
tation and distribution of nitrogen fertilizer would result in improved grain yield forecasts. If so,
then the demand for emergency wheat aid imports would be substantially reduced. The Bureau for
Europe and the Near East (ENE) of USAID asked the IBSNAT project for assistance in late October
1991.

Using its network of collaborators, a systems scientist member of the IBSNAT network from the
International Fertilizer Development Center (IFDC) traveled to Albania in November 1991. A meeting
with Albanian scientists and officials of the Ministry of Agriculture and AID/ENE was arranged to
demonstrate the capacity of a systems approach using DSSAT and the CERES-Wheat model.

After that initial meeting, Albanian scientists organized results from earlier studies and provided
soil and weather data sets for the Lushnja, an important winter wheat growing area in Western
Albania. Initially, the CERES-Wheat model was calibrated with data from an earlier 3-year study
(Figure 5.2). Then, simulated outputs from DSSAT using a single top dressing of nitrogen on
different dates showed the outcomes of applying two rates of nitrogen at 2, 3, 4, 5, and 6 months
after planting (Figures 5.3 and 5.4).

The Ministry of Agriculture, in consultation with USAID/ENE, reviewed the simulated out-
comes and decided to import N-fertilizer instead of wheat. If a similar request were received from
USAID 10 years earlier, a similar response would have been unlikely. Through the systems analysis
and simulation, data input and information from a specific site were used to calibrate the crop
model with field data and observations of the local wheat cultivar. Trial-and-error field trials to
determine outcomes of fertilizer trials would require more human and fiscal resources, and the
outcomes would not have been available to support decisions at the national level.

The long-term impact of this action was not easily assessed then, although we are aware of a
subsequent request from USAID to the International Fertilizer Development Center (IFDC) to assist
in developing small business enterprises to handle the marketing and distribution of fertilizers in
Albania. Since then, IFDC has reported how local small enterprises evolved successfully in a free
market environment.

Figure 5.2 (a) Comparison of observed and simulated winter wheat grain yields with 5 rates of N fertilizer in kg
ha–1 averaged over a 3-year study period. (From Bowen, W. and Papajorgji, P., Agrotechnology
Transfer, 16, 9–12, 1992. With permission.) (b) Observed and simulated winter wheat grain yields
with 5 rates of N fertilizer treatments. Observed values are average values from the 3-year study.
(From Bowen, W. and Papajorgji, P., Agrotechnology Transfer, 16, 9–12, 1992. With permission.)
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Figure 5.3a Simulated expected winter wheat grain yields for a crop planted on November 15 with a single
top-dressing of 100 kg N ha–1 fertilizer at 2, 3, 4, 5, and 6 months after planting. (From Bowen,
W. and Papajorgji, P., Agrotechnology Transfer, 16, 9–12, 1992. With permission.)

Figure 5.3b Simulated expected winter wheat grain yields for a crop planted on November 15 with a single
top-dressing of 50 kg N ha–1 fertilizer at 2, 3, 4, 5, and 6 months after planting. (From Bowen, W.
and Papajorgji, P., Agrotechnology Transfer, 16, 9–12, 1992. With permission.)
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Figure 5.3c Simulated expected winter wheat grain yields for a crop planted on December 15 with a single
top-dressing of 100 kg N ha–1 fertilizer at 2, 3, 4, 5, and 6 months after planting. (From Bowen,
W. and Papajorgji, P., Agrotechnology Transfer, 16, 9–12, 1992. With permission.)

Figure 5.3d Simulated expected winter wheat grain yields for a crop planted on December 15 with a single
top-dressing of 50 kg N ha–1 fertilizer at 2, 3, 4, 5, and 6 months after planting. (From Bowen, W.
and Papajorgji, P., Agrotechnology Transfer, 16, 9–12, 1992. With permission.)
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Figure 5.4a and 5.4b Simulated winter wheat grain yield for two dates of planting as affected by dates and
rates of N fertilizer application. (From Bowen, W. and Papajorgji, P., Agrotechnology
Transfer, 16, 9–12, 1992. With permission.)
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Hawaii, U.S.

Two case examples are presented involving the application of the systems approach and DSSAT.
The first involves alternative crops for lands formerly planted with sugarcane, and the second
involves site selection for cabbage production to minimize insect damage.

Options to Replace Sugarcane

Global economic changes resulted in changes in the agricultural landscape in Hawaii from the
mid-1980s to the mid-1990s. Sugar was the leading agricultural commodity and occupied a major
portion of the arable land in the state. By 1995, the number of sugar plantations declined from
23 to 2 within a period of a decade. Sugarcane was grown in a range of environmental conditions
on the islands of Kauai, Oahu, Maui, and Hawaii. Areas planted with sugarcane included dry and
warm coastal areas with mean annual rainfall of 1600 mm and mean annual temperature of 23°C
to the cool and wet mountainous locations (up to 600 m elevation) with mean annual rainfall of
2800 mm and a mean annual temperature of 17°C

With the demise of sugarcane, government decision makers faced a major dilemma or a major
opportunity for the economic and environmental well-being of the state if the right choices were
made on land use. Information and knowledge to make those decisions to explore options, however,
were not readily available or limited.

Taro (Colocasia esculenta L.), an aroid, was considered a prime candidate as a replacement
crop for sugarcane in the Hamakua district of the island of Hawaii. Scientists linked to the former
IBSNAT network collaborated on a proposed project to test the efficacy of a prototype aroid model
(Singh et al., 1998) to match crop requirements with land characteristics in the Hamakua district.
Network members represented the Universities of Hawaii and Puerto Rico, the Agricultural
Research Service, U.S. Department of Agriculture, Tropical Agricultural Research Station, Maya-
guez, Puerto Rico, and the International Fertilizer Development Center.

A comparison between simulated and observed taro corm yields from the lower to higher
elevation experimental sites along an elevation transect on the slopes of Mt. Haleakala was carried
out. The model was able to mimic the longer maturation period (more than 18 months) for plants
grown at higher elevations versus the nine months at the warmer lower elevations.

Currently, taro is grown in the lower elevations of the Hamakua District with eucalyptus trees
commonly planted in the cooler higher elevations in a diversified agricultural plan for the county
of Hawaii. We are not aware if decision makers at the government level or at the farm level used
any of the outputs or recommendations from the research project. Creating awareness and/or
conditions for adoption of research outputs and products are issues researchers will have to confront
in response to new GRPA or government reporting and performance act.

Site Selection for Cabbage Production

Cabbage is the principal vegetable crop planted all year round on the slopes of Mt. Haleakala
on the island of Maui. Repeated spraying to control the diamond back moth gradually lost its
impact with the increasing resistance of the moth to the insecticide Bt. The result of this growing
resistance was major crop failures in the early 1990s. One of the options considered was to move
cabbage production to another location where the potential for crop failure was low.

An efficient and low cost method was needed to assess cabbage performance over a range of
environments. The typical cabbage growing area on the slopes of Mt. Haleakala has a mean annual
rainfall that ranges from 508 mm to 6096 mm with mean annual temperatures of 8°C to 24°C.

Scientists from the Universities of Hawaii and Florida, who were part of the IBSNAT network,
collaborated in the development of a simulation model for cabbage (Ogoshi et al., 1997) using the
programming framework established for the CROPGRO models in DSSAT (Boote et al., 1998).
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The model was then linked to a geographical information system (GIS) database that included
attribute soils and weather data from the island of Maui. With management input data such as
variety, planting date, irrigation regime, nitrogen fertilizer rate and schedule, and plant density for
the cabbage model, outputs from DSSAT v3 were linked to a GIS database. This linkage offers
“point-and-click” access to information on potential performance at any location on the island. The
user can expect to obtain simulated outcomes of crop performance over a five year period and be
provided with information on crop yield, crop duration, irrigation required, and nitrate leached.
Expansion of the program sometimes referred to as “DSSAT on the Web” to the other islands would
be possible if similar attribute datasets are readily available.

Prior to conclusion of this effort, it was learned cabbage growers were adopting a new pesticide
to control diamond-back moths. Economics of acquiring new land versus purchasing a new pesticide
or a new more resistant cabbage variety made the simulated outcomes meaningless to the grower
or to the extension agent. The utility of the spatial component to DSSAT will be to a hypothetical
new cabbage grower who is interested in determining which land area he currently owns is best
suited to grow cabbage.

Outcomes from the collaborative research were presented in the final report (Ogoshi and Uehara,
1997) of the project to sponsoring agency, USDA/T-STAR (Tropical-SubTropical Agricultural
Research). Training on utilization of products for stakeholders were not included in this research project.

LESSONS LEARNED

There is widespread agreement that a systems approach based on interdisciplinary effort is
needed to address agricultural and environmental issues, however, large scale implementation of
this approach is constrained by the inability of the development community to field the necessary
interdisciplinary teams. One important lesson learned during the IBSNAT project was that better
integration of effort offers the easiest and most cost-effective way to increase research efficiency.
Unfortunately, although many researchers have embraced the application of the systems approach
over the past decade, most research institutions are organized and administered in a way that fosters
continued reliance on disciplinary research for prestige and scholarly excellence. The reward
systems and the research and publications standards set by disciplinary scientists also contribute
to perpetuation of the existing situation (IBSNAT, 1993).

The IBSNAT experience provides evidence that establishment of multidisciplinary, international
collaborative research networks composed of individuals with the following characteristics is
possible and essential. The individuals should be:

• Mission- and goal-oriented
• Committed to systems-based interdisciplinary research
• Able to set research priorities based on client needs
• Prepared to develop tools to empower clients to diagnose and solve problems
• Product-oriented
• Process-oriented and understand the value of basic research
• Able to share a common vision of the purpose of research
• Eager to form networks that enable them to attain higher goals that are otherwise unattainable

With these characteristics, it is not only possible and worthwhile, it is essential to have a global
participatory network for dealing with systems problems. The four examples briefly described here
were selected to demonstrate the utility of a research network. Accomplishments at the local levels
would not have been possible without the network and a portable computerized tool, DSSAT. By
portability, we mean the software is globally applicable for any location on Earth.

Collectively, the network of collaborators contributed information and data for a global assess-
ment of the impact of increased carbon dioxide levels on food production and trade. The data sets
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and outputs from global circulation models (GCM) were used as inputs to crop simulation models
in DSSAT for a range of crops (Rosenzweig et al., 1995).

ICASA (International Consortium for Agricultural Systems Applications)

The acceptance of systems-oriented methodologies in agriculture and natural resources is the
focus of a network of like-thinking systems scientists referred to as ICASA for International
Consortium for Agricultural Systems Applications. Former members of the IBSNAT project and
systems scientists from the Wageningen Agricultural University in the Netherlands joined in for-
mulating the network in 1991. In 1994, ICASA was formally established as a nonprofit corporation.
In 1998, systems scientists from the APSRU (Agricultural Production Systems Research Unit)
group in Towoomba, Australia, joined the network.

One of the early accomplishments of ICASA was the collaborative organization of three
international symposia on Systems Approaches to Agricultural Development (SAAD) in Bangkok,
Thailand in 1991 (Penning de Vries et al., 1993), in Los Banos, the Philippines, in 1995 (Teng
et al., 1997), and in Lima, Peru, in 1999 (Bowen et al, 2001). These symposia provided systems
scientists with an international forum to share results and information on advances in systems
analysis and simulation. By the end of the third symposium, an international set of data standards
for a range of systems tools was established. Such standards should result in a more cost-effective
generation, recording, and storage of data sets for universal application (Hunt et al. 1999). In a
memorandum of understanding with Global Climate Change and Terrestrial Ecosystems (GCTE)
of International Geosphere-Biosphere Project (IGBP) (Ingram, 2000), scientists involved in that
program adopted the ICASA data standards for their global program. These data standards are
intended to be specific guides for data collection and handling to narrow the gap between the
growing paucity of quality data relative to the number of models.

SUMMARY

What has been accomplished? The case examples presented here are brief reports of efforts in
Albania, South Africa, Thailand, and the U.S. to utilize systems analysis and simulation as more
efficient and cost-effective methods to improve our capacity to match crop requirements with land
characteristics. Trial-and-error and analogy are still commonly used and acceptable, although both
methods are unlikely to provide management options and conditions necessary to make decisions
in a timely manner.

When the IBSNAT project ended in 1993, it was premature then to make a statement on impact
of its network of collaborators and DSSAT. Now, almost eight years later, we are able to report on
four examples easily accessed through the Internet. Many more exist. The momentum in application
of the systems analysis and simulation approach to accelerate the transfer of agrotechnology started
with the IBSNAT project and continues to build.

The continuing growth of communications networks has complemented this momentum. Agri-
cultural scientists require access to modern information tools to address problems and issues
confronting farmers at the farm and household levels as well as those confronting policymakers at
the national and global levels. Newer information tools will eventually allow scientists and many
other users of information to seamlessly integrate outputs from crop simulation models and decision
support systems with remote sensing satellite imageries and geographical information systems to
render educated decisions on land use policies rather than on “best guesses.” Further, outputs from
biophysical models will be inputs to economic systems models to help farmers assess impacts at
the farm level and to assist policymakers to assess agricultural and environmental policies to the
economic and social well-being of their communities.
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Finally, the IBSNAT project served as a catalyst in promoting the development of user-oriented
and functional systems tools. Through IBSNAT, simulation models previously confined to labora-
tories were transformed into practical tools for use by a wide range of users. These tools can now
be operated with data sets obtained directly from farmer’s fields. Although the IBSNAT project
ended in 1993 as a program supported by USAID and by partner universities in 1993, the IBSNAT
concept and its network continued to expand and grow. The network is now a truly collaborative
partnership of system developers, data generators, and systems users. This global network and the
systems approach provide researchers, educators, and decision makers with the most efficient means
to better use our understanding of biophysical processes to match crop requirements with land
characteristics to enable stakeholders to better understand options for agricultural production and
environmental protection.
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INTRODUCTION

The need for increasing agricultural productivity on a sustainable basis is the primary concern
of the agricultural research and development community. The International Fertilizer Development
Center’s (IFDC) interest in natural resource and environmental management, specifically, efficient
and improved use of inorganic, organic, and biological sources of nutrients, led to the realization
that many of the problems in the nutrient efficiency domain can be adequately handled only by a
multidisciplinary research approach. To achieve multidisciplinarity, a switch from reductionist
scientific approach to systems approach was necessary (Figure 6.1). A systems approach is essential
in addressing agrotechnology transfer and sustainability and environmental concerns for the fol-
lowing reasons:

1. Systems approaches serve to identify the agroecological production systems that characterize
different environments, including the social, cultural, and economic components of those systems.

2. Agroecological systems theory distinguishes a hierarchy of system levels and therefore serves to
clearly define the geographic scale and the temporal dimensions of the problem to be solved.

3. Systems approaches call for greater attention to the relationships between production and the
environment, with an inventory of the environmental resources and better understanding of how
they are used.

Thus, fertilizer evaluation needed a more dynamic approach supported with information technology
development.

When agricultural research is undertaken, it tends to be highly location specific. It is impossible
to cover an entire country or region with field trials in an effort to derive appropriate cropping
practices for the range of soil types and climatic conditions that exist in the country or region.
Thus, the method of technology transfer by trial and error is ineffective. The analogue approach
whereby the experience for a particular recipient agroenvironment has been generated elsewhere
is useful, but it is qualitative and can obviously be applied only in limited situations. Statistical

Figure 6.1 Systems approach in agricultural research.
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methods are suited primarily for summarizing results and interpolation rather than extrapolation.
The use of systems simulation and decision support systems for the transfer of agricultural tech-
nology has been adopted and promoted because the trial and error and the analogy approach are
not only time consuming and costly, but often they ignore the multidisciplinary impact of the
technology. The country- and location-specificity of information availability (or lack of it) and
accessibility also calls for a systems-based approach.

Developments in computers and telecommunications is revolutionizing agricultural research.
Information and systems tools have the potential to improve the quality of agricultural research
through effective sharing and use of information and knowledge among researchers, policymakers
and farmers; however, the poor adoption of many agrotechnological innovations by the farmers in
developing countries is a serious concern that the research and development community faces. We
consider the limited information flow that typically exists between farmers, researchers, extension
workers, policy makers, and agribusiness personnel to be one of the key factors for the poor adoption
and use of innovations in developing countries. In most countries, the use of systems tools has
been negligible beyond the completion of projects. Thus, improving the availability and the acces-
sibility of information remains one of the key activities of research and technology transfer.

This chapter describes:

1. The development of soil-crop simulation models and decision support systems
2. Use of systems tools in research to improve basic understanding
3. Applications of models at the farm and global level
4. The training and confidence-building efforts that have taken place to promote the use and adoption

of the modeling approach

The chapter also discusses the importance of the information technology in agricultural research
and proposes some strategies for integrating information technology in research and decision making.

FIELD RESEARCH AND IMPROVED MODELING CAPABILITIES

In agriculture, systems analysis through modeling evolved in the late 1960s as a means of
integrating knowledge about plant physiological processes to explain the functioning of crops as
a whole (De Wit, 1965). In the early years, the models were used to gain insights to basic crop
physiological and soil hydrological processes. These comprehensive models served their purpose
as research tools — their use was limited to advanced country research institutes due to compre-
hensive and complex input data requirements.

From 1980 to 1990, the general emphasis and funding of agricultural research started to shift
from understanding and explaining to practical application of results. The U.S. Department of
Agriculture-Agricultural Research Service (USDA-ARS), Temple, Texas; the U.S. Agency for
International Development (USAID)-funded International Benchmark Sites Network for Agrotech-
nology Transfer (IBSNAT) project, University of Hawaii; and IFDC played a crucial roles in making
crop models practical and user-oriented (Tsuji et al., 1994). In 1984 IFDC established a Fertilizer
Evaluation Program and Information System (FEPIS) to promote the use of proper methodologies
for fertilizer experimentation, to provide agroeconomic evaluation of fertilizer products and prac-
tices, and to facilitate the exchange of data on fertilizer research results between IFDC and other
international agencies and national organizations. In this section, some of the model development
work and the important linkage with field experimentation will be highlighted.

Simulating Nitrogen Dynamics

Soil and fertilizer nitrogen undergoes many transformations involving numerous pathways and
states, all of which are influenced by the weather, soil properties, and management practices. The
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need for systems approach involving simulation models to appropriately manage N in a cropping
system was evident given the complexity of soil N cycle, the myriad of pathways for N transfor-
mations, and the interactions with weather. In collaboration with USDA-ARS the development of
an N model for maize and wheat was initiated (Godwin and Jones, 1991). The model simulated
the effect of genotype, weather, water availability, and soil N and fertilizer N dynamics on crop
growth, yield, N uptake, and N losses.

The N submodel for rice was inevitable because N limitation is the key yield-determining factor
for irrigated rice. The presence of floodwater in rice paddies leads to large differences in nitrogen
behavior in rice cropping systems compared to upland systems. In these systems the presence of
a shallow layer of floodwater limits oxygen transfer to deeper layers of soil. At the same time it
provides a very biologically active environment for many organisms at the soil/floodwater–atmosphere
interface. The model thus had to handle both reduced soil conditions and, on the disappearance of
floodwater, simulate aerobic soil conditions. The following N processes are simulated for both
upland and lowland rice: mineralization and immobilization, including the effect of crop residues
and pools of soil organic matter; fertilizer placement, sources, and incorporation methods; urea
hydrolysis; ammonia volatilization; nitrification; denitrification; nitrate and urea movement (leach-
ing); vegetative and grain N concentration; N uptake; plant N stress indices; and existence of
floodwater N pool, oxidized layer, and reduced soil N pools (Godwin and Singh, 1998).

The development of a lowland N dynamics model synthesized the information and process
level understanding generated by the Nitrogen Research Program at IFDC, the IFDC–International
Rice Research Institute (IRRI) Collaborative Program, and the Agronomy and Soil Divisions at
IRRI. The model development effort led to identification of knowledge gaps in the existing soil N
processes, residue incorporation, and nitrification–denitrification loss mechanisms. The model
findings also led to field verification for effect of transplanting shock on growth and development,
effect of nitrate accumulation during fallow period (Buresh et al., 1989; George et al., 1994), and
quantification of fertilizer mixing on the presence of N in floodwater (Padilla et al., 1990). The
following examples further illustrate the linkages between modeling and field research and the need
for effective transfer of information and knowledge to improve the models on one hand and identify
knowledge gaps for future research on the other hand.

Biological Inhibitors

Information on the use of biological inhibitors for improving nitrogen fertilizer efficiency for
rice has been transferred to users through publications and presentations at international meetings.
This information has also been synthesized and incorporated into the CERES-Rice model as one
of the outputs of the Special Purpose Grant from the Australian Center for International Agricultural
Research (ACIAR) (IFDC, 1997).

Transfer of these results to the agricultural industry depends on commercial production of urease
inhibitors such as cyclohexyl phosphorictriamide (CHPT) and nitrification inhibitors such as encap-
sulated calcium carbide. Future research should include testing of the inhibitor model with existing
and new data in different rice-growing soils and climate. This effort would lead to improved
prediction and identification of favorable regimes for inhibitor applications.

Deep Point-Placement of USG

Deep point placement of urea supergranules (USG) has generally resulted in increased rice
yields and improved nutrient efficiency, although field results have shown that this technology is
soil and site dependent. The CERES-Rice model was used to verify and identify key processes and
factors leading to improved N use efficiency with deep point placement (Singh and Thornton, 1992).
This effort was later expanded by Mohanty et al. (1999) to identify appropriate niches for USG
application on rainfed lowland rice in India. Results from ongoing projects on Participatory Eval-
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uation, Adaptation and Adoption of Environmentally Friendly Management Technologies for
Resource-Poor Farmers are being used to evaluate and validate niches for USG application in
Bangladesh. Economic benefits to farmers would differ under different soil-climate-management
regimes; thus, it is critical that such information is available to decision makers before recommen-
dations are passed on to farmers.

Nitrate Leaching in Soils with Variable-Charged Colloids

Simulation of nitrate leaching as described in the CERES models (Godwin and Singh, 1998)
assumes complete reservoir mixing with soil water in a given layer, and the flux of nitrate in solution
is equal to the soil water flux; however, in soils with variable-charged surfaces and anion-retention
capacity, flux of nitrate is less than soil water flux. The retention factor (ratio of nitrate flux to soil
water flux) is dependent on bulk density of the soil, soil water content above the drained upper
limit and the retention or adsorption coefficient of the nitrate ion. Bowen and Wilkens (1998)
allowed the retention coefficient to increase from 0 (no retention) to 1 × 10–3 m3 kg–1. Since the
retention coefficient of the nitrate ion is not a readily available input for simulation models, it was
estimated for subsoils with variable-charged surfaces as a function of organic matter content and
difference in pH measured in KCl and in water (Singh and Uehara, 1998).

Effect of N Stress on Phenology

Crop growth simulation models reliably predict effects of temperature and photoperiod on crop
growth stages and duration, a primary determinant of yield; but they usually ignore possible effects
of extreme high/low temperature, drought stress, or nutrient deficiencies on duration. Drought stress
and N and P deficiencies during the vegetative phase can delay floral initiation and anthesis.
Similarly, stresses during the ripening stage can cause early senescence and maturity.

Based on field results from sub-Saharan Africa (SSA), India, Hawaii, and Florida, the CERES-
Maize model was modified to accommodate the effect of N stress on phenological development in
maize (Singh et al., 1999). The average N stress effect over the reproductive period was used to
modify the anthesis to silking interval (ASI), which, in turn, affects the number of grains per ear.
The phyllochron, or leaf appearance rate, is least affected by N deficiency; as a result, the final
leaf number changes only slightly. Under N limiting conditions, the model captures the effect on
growth, grain number, and the shortened duration of the grain-filling stage to contribute to lower
grain yield.

Simulating N Supply from Organic Sources

N release from organic sources depends on their nutrient content, quality, and the environmental
and management factors. Combating Nutrient Depletion Consortium (CNDC), in partnership with
National Agricultural Research Systems (NARS), is synthesizing information generated from inte-
grated nutrient management trials in SSA and Latin America. Field results linked with the Organic
Resources Database and Agricultural Production Systems Simulator (APSIM) and Decision Support
System for Agrotechnology Transfer (DSSAT) models are being used to develop and test a model
that captures N dynamics in an integrated nutrient management system. The standard DSSAT and
APSIM models simulate the effects of N supply from different organic sources based on their N
(or C:N ratio), carbohydrate, cellulose, and lignin content. The models reliably simulate N miner-
alization and immobilization for organic sources with varying C:N ratios. On the other hand, the
decomposition rates of the organic materials were not as sensitive to the carbohydrate, cellulose,
and lignin content.

Field and laboratory results have shown that high polyphenolic content reduces decomposition
rate of organic materials even for those having similar N content. Based on these data the N model
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in DSSAT has been modified. Work is in progress to develop decomposition rate modifiers for use
in the APSIM and DSSAT based on the polyphenolic content of the organic materials as available
from the Organic Resource Database. The modified decision support tools would offer researchers
and farmers in the region the options to choose appropriate local materials to increase crop yields
and improve soil fertility.

New Methodologies for Use with Models

Although accuracy is a desirable attribute of decision support systems (with initial emphasis
on model validation and refinement), the authors emphasize that the primary objective is to use
model outputs to make better choices. This is reflected in some of the methodologies developed to
make simulation models and databases more practical for decision making.

Climate Analysis and Synthetic Weather Generation

The critical analysis of climatic variability over time and its consequences for management
requires that we have tools to statistically evaluate historical weather and to generate synthetic
weather sequences. Typically, when addressing the impact of temporal variability within the context
of the impact assessment of new methodologies, the availability of appropriate climatic data is
limited. Several tools have been developed to address these data gaps.

MarkSim (Jones and Thornton, 2000a) is a software package designed to generate daily weather
data for much of the arable surface of the earth, given inputs of latitude, longitude, and elevation
of a given point. The methodology for the development of the system has been well documented
(Jones and Thornton, 1993; Jones and Thornton, 1997; Jones and Thornton, 1999). The third-order
Markov rainfall model, which was utilized, has been extensively tested and works well for given
climate stations. Errors in interpolation in the climate surfaces can be natural to such a system, but
it has been proven to be a useful tool in modeling climatic risk (Jones and Thornton, 2000b).

A second climate characterization tool utilized in crop modeling is WeatherMan (Pickering
et al., 1994), a component of the DSSAT (Tsuji et al., 1994). International Consortium for Agri-
cultural Systems Applications (ICASA) has specified a minimum daily weather data set and format
for use with the crop models. The required daily variables are solar radiation (MJ m–2d–1) and
maximum and minimum temperature (°C), and rainfall (mm). The extended climate data set includes
optional variables of photosynthetically active radiation (PAR, mol m–2d–1), dew point (°C), and
wind speed (m s–1). The WeatherMan program is designed to simplify or automate many of the
tasks associated with handling, analyzing, and preparing weather data for use with crop models or
other simulation software. WeatherMan can also generate complete sets of weather data using
historic data or synthetically generated records (Geng et al., 1988; Richardson and Wright, 1984).
Research priorities into large-scale atmospheric circulation patterns such as the El Niño-Southern
Oscillation (ENSO) have led to the development of methodologies in WeatherMan to generate
synthetic weather sequences to match monthly target goals along with the incorporation of improved
weather generation capabilities (Hansen, 1999; Hansen and Mavromatis, in press; Mavromatis and
Hansen, in press).

Risk Analysis Associated with Weather

Nutrient losses, fertilizer recovery, grain yield, and the processes affecting these vary greatly
from year to year in any location. To develop optimal management strategies in any location, it
would be desirable to have experiments conducted over many years (although costly and time
consuming). Field experiments are rarely conducted for more than two seasons, and thus long-term
data providing insights into the nature of temporal variability are usually not available. Procedures
were developed for DSSAT models (Thornton and Hoogenboom, 1994; Thornton et al., 1994a)
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with long-term weather data or using stochastic generation of weather data for quantification of
variations in yield, fertilizer recovery, and nutrient losses associated with weather. In addition to
the biophysical outputs, the system also generates an analysis of gross margin of production based
on expected product values and production costs. The risk analysis procedure allows for the selection
of strategies under conditions of uncertainty and provides due recognition to farmers’ attitudes to
risk and mean outcome (Thornton and Wilkens, 1998).

Sustainability of Cropping Sequences

Improving our understanding of long-term, sustainable productivity of cropping systems
requires an integration of field experimentation, resource monitoring, and the capability to simulate
and analyze long-term cropping sequences. The crop models distributed in DSSAT have the
capability to be linked together in a rotation or a continuous sequence of crops and for the results
of these simulations to be analyzed in both graphical and tabular fashion (Thornton et al., 1994b,
1995a). Using different weather years or stochastically generated weather sequences, the cropping
sequence effect may also be optimized and risk quantified (Bowen et al., 1998). The linkage of
multiple cost–price scenarios and a series of stochastic weather sequences permits the user to
explore many possible scenarios beyond yield sustainability, and allows the assessment of economic
risk with cropping systems.

Information and Decision Support Tools (IDST)

The influence of agricultural research and development is usually measured via testable,
quantifiable impacts on the biophysical characteristics of a system; however, it is often difficult
to assess the economic impacts of agricultural development that arise from technology-induced
changes in yield potential and/or production costs at the farm level. These broader economic
effects depend upon a range of biophysical, social, and market factors. To address this problem,
we developed an information and decision support tool (IDST) linking a geographic information
system (GIS), a crop simulation modeling system (Singh et al., 1993a; Baethgen et al., 1999;
Wilkens et al., 2000), and the DREAM (Dynamic Research EvaluAtion for Management) eco-
nomic model (Alston et al., 1998; Wood et al., 2001). Long-term, sequential cropping simulations
at different technology levels can be compared with the analysis of the biophysical sustainability
of a system coupled with the generation of relevant and structured economic information to
support decision makers implementing agricultural policy, assigning priorities, and allocating
limited resources over a large area.

In a test case in Carimagua, Colombia, system development included the calibration and
application of a phosphorus-enabled version of the DSSAT crop models for the evaluation of an
improved maize (Sikuani)/soybean (Soyica altillanura) rotation designed to provide a higher and
more sustainable level of agricultural production on the highly weathered Oxisol and Ultisol soils
of the Eastern Plains (Llanos Orientales) of Colombia. These soils exhibit Al-toxicity and high
levels of P fixation. The DSSAT CERES-Maize and CROPGRO soybean models were calibrated
using field trial data from the CIAT/CORPICA experimental station at Carimagua. The calibrated
DSSAT crop models were then used to test alternative crop residue, fertilizer, and liming manage-
ment practices to find options that may increase long-term stability in yield and income. The analysis
was conducted within the framework of the IDST spatial interface to crop modeling.

The IDST interface is based on soil and climate coverages as the basis of crop simulation.
Unique combinations of soils and climate produce unique model outcomes with given technology
inputs. All unique polygons are then simulated based on criteria established in the selected ICASA
experimental file, either in seasonal mode to examine year-to-year variability of a system or in
sequential mode, where long-term sustainability of a given cropping rotation can be analyzed within
the context of a spatial database.
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The generation of DREAM input files involves the selection of a baseline technology scenario
and a prototype simulation where model parameters have been adjusted to reflect known or likely
effects of new technology or some intervention. A DSSAT-DREAM linkage file documenting the
differences between the baseline scenario and the prototype technology is then generated. The data
generated by the IDSS is being used to compare divergent technologies (baseline vs. prototype) to
test the biophysical and economic sustainability of alternate systems on both a temporal and spatial
basis. The scope, flexibility, and reliability of technology evaluation analysis is enhanced several
ways:

• Providing the capacity to evaluate a broad range of technology and natural resource management
options

• Explicit modeling of the soil water, P, N, and OM to provide improved assessment of natural
resource impacts of technological change

• Linkage of plot-scale crop simulation to market-scale analysis
• Support of nested analyses across a broad range of geographic scales

The initial success of the IDST effort is evident from application of simulation models-GIS for
projects in Malawi (Thornton et al., 1995b), Albania (Tsuji et al., 1994), Burkina Faso (Thornton
et al., 1997), and Uruguay (Baethgen et al., 1999). Additional case studies of IDST applications
for Chhattisgarh, India, and Colombia are presented later in the chapter.

TECHNOLOGY TRANSFER FOR SMALLHOLDING FARMERS

It is essential to identify and quantify the relative importance of key sources of current yield
gaps in farmers’ fields in relation to potential production (nonlimiting water and nutrients and no
production losses due to pests and diseases) and rainfed potential production (limited only by
rainfall and water availability). Such analyses would help implementation of appropriate policies
regarding infrastructure, credit, extension services, and others that may be required to increase and
rationalize input use and the adoption of productivity-enhancing technologies. The question, “Could
risks associated with rainfall be reduced by identifying low-risk planting windows, appropriate
crops and genotypes that would be less prone to drought stress or simply complete their life cycle
before the onset of a drought spell?” was explored in the three case studies presented. The technical
problems of agriculture in much of SSA with respect to population growth, resource base depletion,
and weather risks are such that all available tools should be brought to bear in attempts to find
solutions.

Agrotechnology Transfer Using Biological Modeling in Malawi

The primary objective of the case study conducted from 1990 to 1993 was to validate the
CERES-Maize model through a series of field trials carried over three seasons at a number of
locations in the mid-altitude and lower-altitude maize ecologies of Malawi. The rationale was to
determine if simulation techniques had potential to enhance the efficiency of the research and
development process by helping relieve the pressure on scarce research resources using a computer
model to screen large numbers of production alternatives. Promising alternatives identified in this
way could then enter field testing for eventual transference to the farmer, in the search of increased
smallholder maize production to enhance food security for a rapidly growing population.

The CERES-Maize model appeared to work reasonably well by simulating a range of yields
from 0.5 to 6.5 t ha–1 over three seasons at three research stations and several farmers’ fields (Singh
et al., 1993b; Thornton et al., 1995b). A large amount of model experimentation was carried out
to investigate effects of weather, soil type, and planting date on planting windows and fertilizer
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response. For example, the complex interaction between soil moisture and nutrient rates over
25 seasons is presented in Figure 6.2. An effort was also made to link the model to the spatial

climate and soils databases of a GIS for a small area in Kasungu Agricultural Development Division,
primarily to illustrate the potential for regional analysis using these tools (Thornton et al., 1995b).

The small start made in modeling activities in Malawi provided a base on which to build for
the future. The rapid expansion in the availability and use of computers and expertise of staff in
using them over the period of the project and later is clear evidence that there are little inherent
barriers to the use of what are often perceived as relatively sophisticated technology to attack
research problems in Malawi. In the last 10 years, the soil resources of Malawi have been digitized,
and the models and GIS have been applied to address issues relating to agricultural production and
the environment. The Department of Meteorology now e-mails weekly weather summaries for the
entire country on a regular basis in contrast to the 1990s when none of the meteorological data
was in an accessible format.

Soil Fertility and Climatic Interactions

Rainfall variability plays a dominant role in the use of inorganic fertilizers for small-scale maize
production in Kenya. Soils are being mined of the essential nutrients (Stoorvogel and Smaling,
1990). An integrated nutrient management approach requires the use of crop simulation models
that allow the extrapolation of biophysical performance of the maize crop across time and space
in response to climatic and management inputs. During the past 10 years, various projects have
used different maize models to address the above issues (Keating et al., 1991, 1993; Rotter, 1993;
Wafula, 1995).

The models have:

• Highlighted and quantified the risks associated with smallholder maize production in Kenya
• Improved understanding of the interactions between soil, management, and weather for more

productive systems
• Showed the importance of soil fertility and fertilizer applications for stable and increased production
• Identified constraints associated with water logging, aluminum toxicity, and striga for different

areas.

Figure 6.2 Water and nitrogen interaction effects on maize grain yield (mean 0 and variance.
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These constraints also led to the improvement and inclusion of water and nutrient stress effects on
phenology, simulation of water table depth, and the effect of oxygen stress due to water logging,
and in case of severe water stress that forces the model to kill crops (Carberry and Abrecht, 1991).

Combating Nutrient Depletion Consortium (CNDC)

Inefficient use of nonrenewable resources, destruction of ecosystem and overexploitation of
renewable resources have led to the general agreement that the current human-environment rela-
tionship may be untenable. In confronting this dilemma, CNDC is working with farmers, research-
ers, and the ecoregional programs in West Africa and East African Highlands to reverse the
degradation of tropical soils through identification of sustainable practices for managing soil, water,
and nutrients. The challenge of CNDC is to develop methodologies that allow nutrient management
technology to be transferred effectively from one area to another, given the limitations of time,
money, and resources that all research and donor organizations face. Although the primary research
thrust of CNDC is on soil fertility improvement through an integrated use of organic/inorganic
fertilizers and amendments, the approach is not so much to initiate new research as to achieve
greater impact from present knowledge. The primary focus is therefore to use tools such as
simulation models and decision support systems that synthesize available information and make it
accessible to a wide range of clients.

Yield-Gap under Water and Nutrient Limitation

Long-term historical weather data for 12 years from Koukombo, Togo, was used with the
CERES-Maize model to determine the rainfed potential yield — with rainfall and soil water-holding
capacities influencing maize yield. As evident from the mean-variance (E-V) plot, the ideal planting
timeframe for rainfed-maize at Koukombo is the period May–August (Figure 6.3a). During this
period more than 85% of the potential yield is reached under rainfed conditions (Figure 6.3b). A
sharp drop in yield is associated with late planting. Maize planting before May would result in
increased risk associated with lower mean yields and increased variance. With additional limitation
of N and P (only 20 kg N ha–1 and 15 kg P2O5 ha–1), simulated mean yields under May-August
plantings ranged from 1.5 to 3.2 t ha–1. These amounted to less than 30% of the potential grain
yield for each of the planting dates (Figure 6.3b). The simulated results show that in contrast to
what is often stated, nutrients may be more limiting than water in SSA. With external nutrient input
and appropriate planting date and genotype, maize grain yields could be increased by 2–4 times
the current farmers’ yields.

Nitrogen Fertilizer Economics

Because fertilizer response is dependent on seasonal weather variation, investigators used the
past 12 years of weather data to capture the mean N response and the standard deviation at
Koukombo. Even in the P-deficient soils of SSA, adequate N application is necessary to achieve
the full benefits of P application. The P rate was set at 45 kg P2O5 ha–1 and other nutrients were
assumed nonlimiting. Based on field observations, the soil hospitality factor that allows for root
growth in the model was set to zero (no root growth) below 45 cm. The apparent N recovery
simulated by the model ranged from 30-35%. Based on the current prices of inputs and products
and costs of production, the mean-Gini efficient N rate was determined at 155 kg N ha–1 with the
monetary returns of $566 ha–1. With improved recoveries of applied fertilizer (50%), the mean-
Gini efficient N requirement rate will drop to 110 kg N ha–1 with the monetary returns of $644 ha–1.
Figure 6.4 further illustrates the dependence of optimum N rates on fertilizer-related costs and
maize grain price.
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It is envisaged that the model applications described previously would lead toward soil fertility
improvement and overcoming the key constraints that result in nutrient mining. The major con-
straints to the use of inorganic fertilizers are:

1. Limited accessibility
2. High prices
3. Poor nutrient recoveries
4. Lack of market and price stability for excess production beyond the farmer’s need

SUSTAINABILITY OF RICE–WHEAT SYSTEMS

Rice followed by wheat is a dominant cropping sequence under a wide range of management
regimes across some 26 million hectares in South and East Asia with variable productivity. The
rice–wheat rotation provides food and livelihood for millions of people. Both rice and wheat are
exhaustive feeders, and the double cropping system is heavily depleting the soil of its nutrient content.
The continuing degradation of resources threatens food security for an ever-expanding population.

Figure 6.3 Optimum planting window (A) and yield gaps due to water and nitrogen limitation (B) at Koukombo,
Togo, as simulated by long-term simulation with CERES-Maize model.
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The rice–wheat rotation system has developed by the introduction of rice into traditional wheat
areas (Punjab, India, and Pakistan) and wheat into traditional rice areas (Bangladesh, Eastern India).
Consequently, wide variation in growing conditions due to soil and climatic factors prevails. In the
rice–wheat system each crop is affected by a multitude of environmental and management factors.
The dominant feature is the repeated transitions from the anaerobic conditions with rice to aerobic
regime in wheat. In addition cultural practices of one crop affect the other: the effect of soil puddling
in rice influences the establishment of the wheat crop; the changes in planting date of wheat due
to method of rice planting (transplanted versus direct-seeded), and tillage practice on wheat (min-
imum versus conventional); and the varietal differences.

It is therefore imperative to apply a systems approach to understand processes in such systems
(Singh and Timsina, 1994). Simulation models provide the best option with which to quantify
sustainability of a rice–wheat system and technology transfer across a diverse region (Timsina
et al., 1995, 1997, 1998). Validation of both the CERES-Rice and CERES-Wheat models has been
carried out in collaboration with the Wheat Research Center, Bangladesh and G.B. Pant University
of Agriculture and Technology, India (Timsina et al., 1995, 1998). In some cases, simulated results
were not in close agreement with observed field results (Figure 6.5) because the model did not take
into account many biotic factors that influenced the crop’s performance, e.g., pest damage.

Using results from the long-term rice–wheat experiments at G.B. Pant University, an attempt
was made to validate the rice–wheat sequence model (Timsina et al., 1997). In the sequence model
the soil water, residual N, and organic matter status at harvesting of one crop becomes the starting
conditions for the next. Figure 6.6 shows the results for continuous rice–wheat cropping without
N fertilizer application at Pantnagar, India from 1979 to 1993. The long-term yield trends based
on the observed data indicated nonsignificant changes in rice yield; however, wheat yields showed
a significant increase over the time of study. The model was able to capture the trends in both the
crops. With the help of a cropping sequence model, compounding effects of weather variability,
varietal changes, planting date shifts, and failures of the irrigation system on yield, trends in long-
term trials were eliminated by running the model in sequence over multiple years with the same

Figure 6.4 Effect of grain price, N fertilizer cost, and seasonal differences (12 years) on optimum N rate for
maize.
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Figure 6.5 Rice and wheat grain yields, Nashipur, Bangladesh.

Figure 6.6 Observed and simulated yield trends for rice-wheat sequence at Pantnagar, India.
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variety and planting date and under rainfed and fully irrigated conditions. Much more effort is
required to comprehend the processes leading to the current yield trends. The rice–wheat sequence
model has contributed toward identifying the knowledge gap by focusing the attention of the
researchers on key processes. Further refinements of the existing models and simulation of pest
and disease effects, tillage options, and nutrients other than N and P are required to assist research
and technology transfer in the rice–wheat cropping systems.

CLIMATIC VARIABILITY AND GLOBAL CLIMATE CHANGE

Climate variability measured in the interannual and interseasonal scales is one of the key factors
affecting agricultural production. Crop and pasture productivity greatly depend on the environmental
conditions during the growing season including temperature regime and extremes, total rainfall,
onset of the rainy season, rainfall during critical growth stages, etc. Variability in these environ-
mental conditions inevitably results in variable yields and economic returns. Although often public
or media attention is focused on extreme events, climate variability can also have subtler conse-
quences but with significant economic impacts. Under the most commonly expected scenarios of
climate change — increased temperatures and increased rainfall variability — such systems are
likely to become even more vulnerable.

Model Applications with Seasonal Climate Forecasts

Two strategies are possible to diminish the climatic variability: reduce risks by controlling the
limiting factors (e.g., introducing irrigation in water-limited environments), and adjust production
management practices that consider information about the most likely environmental conditions
expected for the upcoming growing season. Early warning of impeding poor crop harvests in
variable environments can allow policy makers the time they need to take appropriate actions to
ameliorate the effects of regional food shortages on vulnerable rural and urban populations. His-
torically the main limitation to define a priori adjusted management practices has been the lack of
means to predict climate conditions (e.g., precipitation, temperature) with sufficient skill and lead-
time. In some regions of the world, this situation has started to change due to recent advances in
the capacity to predict climate anomalies linked to the onset and intensity of a warm or cold event
as part of the El Niño/Southern Oscillation (ENSO) phenomenon. ENSO is the main source of
interannual climate variability in many parts of the world.

In recent years, the scientific community has started using this knowledge to issue probabilistic
climate forecasts, i.e., define the likelihood of expected rainfall and temperature scenarios (normal,
below normal or above normal) for the following 3 to 6 months. Studying the effects of climatic
variability and identifying adequate management responses would require many decades of exper-
imentation, particularly in areas where such variability is high. Alternatively, well-tested crop
simulation models are being used to assess the effect of varying temperatures and precipitation in
different crop growth stages, to better identify the most vulnerable periods of the growing season
and to establish climatic thresholds. The models are also being linked to weather generators
conditioned to ENSO phases and used to determine crop management practices that will minimize
negative expected weather conditions and take full advantage of expected favorable conditions.
Simulation modeling is particularly useful to quantitatively compare alternative management
options in areas where seasonal climatic variability is high, such as Australia, Southeast Asia,
Africa, and Latin America (Meinke et al., 2001; Travasso et al., 1999; Keating and Meinke, 1998;
O’Meagher et al., 1998; White et al., 1998).
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An Application in Southeastern Latin America

The research approach used in southeastern Latin America for developing applications of climate
forecasts in the agricultural sector started with the identification and description of the ENSO
impacts on rainfall and temperature anomalies. Then the researchers identified crops with the highest
sensitivity to these ENSO-related anomalies and quantified the impact of the anomalies on the
obtained crop yields. Finally, simulation models and decision support systems were used to evaluate
the ability of agronomic practices to reduce risks and/or increase farmers’ profits (Baethgen and
Magrin, 2000; Podestá et al., 1998).

The first detailed studies conducted in southeastern Latin America revealed the existence of a
near symmetry between impacts of El Niño and La Niña on precipitation and on crop productivity.
Positive rainfall anomalies prevail in El Niño years, and negative rainfall anomalies prevail in
La Niña years, during the austral spring and summer months. Some research results also suggested
that the impacts of La Niña were stronger and less variable in both rainfall and crop yields than
the impacts of El Niño.

Once the effects of ENSO-related anomalies on crop production were characterized, simulation
models were used to explore the best-adapted management practices. One of the limitations that
were often found for this analysis was the relatively small number of years with available daily
weather data that is required by the simulation models. The analyses require the separate consid-
eration of El Niño and La Niña years, which occur every 5 to 7 years, and therefore, the number
of years for each ENSO phase is typically reduced. To overcome these limitations, scientists
improved existing or developed new weather generators conditioned to ENSO (or SOI) phases
(e.g., Grondona et al., 1999). These weather generators produce synthetic weather data sets with
similar statistical properties of the observed data for each ENSO (or SOI) phase.

For example, Baethgen (1998a) found that the probability for obtaining low maize yields in
Uruguay is about twice as high in La Niña years than in normal years. A large number of crop
management practices were then explored using the CERES-Maize simulation models and a
conditioned weather generator. As evident from Figure 6.7, using short-season maize hybrids and
delaying the planting date by 2 months could minimize the yield losses in La Niña years.

In Argentina, several activities were carried out to evaluate the acceptance and value of ENSO-
based climate forecasts for agricultural decision making. In a preliminary study, Hansen et al.
(1996) found that predicted benefits of tailoring soybean planting dates to forecasted ENSO phases
ranged from U.S. $2.40 to $32.40, according to location and soybean prices. Messina (1999) found
optimal crop combinations for each ENSO phase in different Pampas locations that depend on
location, risk aversion, and initial wealth. On the other hand, Magrin et al. (1999) concluded that
the best management option in La Niña years for both maize and soybean was to delay the planting
date. Inversely, early sowings were more likely to optimize yields and incomes in El Niño years.
These researchers also found that nitrogen rates in maize should be higher during El Niño events
to maximize expected maize yield and profit; however, due to important intraphase climate vari-
ability (e.g., rainfall during flowering is not always lower in La Niña years), making crop manage-
ment recommendations based on mean values may still lead to negative results (Magrin et al., 1999).

Effective application of climate forecasts must frame the climate information in broader decision
support tools that also include data on prices, land use feasibility, evaluation of technologies, etc.
With this challenge in mind, researchers in the region have been developing an information and
decision support system (IDSS) for the agricultural sector (Baethgen et al., 1999).

Expected Impact of Climate Change

The vulnerability of the agricultural sector in any region to future possible climate change
scenarios is determined largely by the vulnerability of the sector to current climatic, economic, and
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policy scenarios. Most agricultural systems are currently subject to severe climatic interannual
variability (e.g., drought, flood, storms, etc.). Such systems are likely to become even more
vulnerable under the most commonly expected scenarios of climate change (i.e., increased tem-
peratures, increased rainfall variability). Similarly, agricultural systems that are currently subject
to drastic changes in economic and policy scenarios are also prone to become more vulnerable
under climate change conditions.

The few theoretical studies conducted to specifically assess the impact of future climatic change
on agriculture revealed expected reductions and increased variability in crop productivity. Possible
scenarios of increased atmospheric CO2 concentration were generated with different General Cir-
culation Models (GCMs) including National Aeronautics and Space Agency/Goddard Institute of
Space Studies (NASA/GISS), United Kingdom Meteorological Office (UKMO) Model, and General
Fluid Dynamics Laboratory (GFDL). Additional scenarios were generated modifying observed
long-term weather data by increasing temperatures or varying precipitation (sensitivity analysis).
These modified climate data were then used with the DSSAT models to estimate the expected
impact of climate change on the production of key food crops: rice, wheat, sorghum, maize, millet,
and soybean (Hoogenboom et al., 1995; Rosenzweig and Iglesias, 1998; Singh and Ritchie, 1993).

Figure 6.7 Simulated maize yield distribution for El Niño and La Niña years in Uruguay for normal planting on
September 15 with medium-duration maize and late planting with short-duration maize.
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The impact based on simulated outcomes for winter crop production in Argentina and Uruguay
was 10 to 30% crop yield reductions (Baethgen and Magrin, 1995; Baethgen 1994). Climatic impact
studies in Southeast Asia on rice (Singh and Padilla, 1995) and the Oceania–Fiji Islands (Singh
et al., 1990) also revealed yield reductions of 10 to 35% and a lower response to nitrogen fertilizer
application with the consequent negative effects on economic returns for farmers with existing
varieties. Based on these studies the potential impacts and possible adaptations of climatic change
on world food supply, demand and trade were presented (Reilley et al., 1996). A common conclusion
was that globally, the expected impact of climate change on crop production was small; however,
under all simulated scenarios possible negative impacts were mostly observed in low latitudes
where the majority of developing countries are located, thus tending to increase the disparity
between developed and developing countries.

The Global Change and Terrestrial Ecosystems (GCTE) Project under Focus 3 — Agroecol-
ogy and Production Systems — also uses soil-crop simulation models to assess the impact of
climate change and identify possible adaptive measures. Focus 3 includes a network for wheat,
rice, rice–wheat, pests and diseases, pastures, soil organic matter roots, roots and tubers, grain
legumes, and tropical cereals. One of the objectives of the network is to provide relevant models
for global change studies by validating the models with good quality data under existing climatic
conditions.

REGIONAL APPLICATION OF INFORMATION AND DECISION SUPPORT TOOLS

IFDC has been finding increased interest in the public and private sectors of different countries
to develop and establish information and decision support tools (IDST). In addition to taking
advantage of the large volume of information generated in the past by the research institutes, IDSTs
provide excellent support for the decision-making process in public institutions, private companies,
and research centers.

IDST for Resource Management in Chhattisgarh

An IDST, which interfaces DSSAT crop models with GIS, is illustrated for Chhattisgarh State,
India, where large amounts of relevant information have been generated (Patil et al., 2001). The
IDST is based on prototype developed by IFDC for sorghum in the semiarid tropics of India (Singh
et al., 1993a) and for wheat in Uruguay (Baethgen, 1998b). The complexity of agroecosystems,
the need for taking a long-term view of biophysical processes to assess sustainability, and the
limited availability of research resources also support the notion of an IDST.

The Chhattisgarh state represents the rainfed, lowland rice–growing area of eastern India. This
predominantly tribal area (14.4 million ha) has highly variable soil types and climatic conditions.
The region provides complex microclimatic and soil conditions and offers a unique opportunity of
applying simulation GIS–integrated IDST in decision making to ensure sustainable and environ-
mentally safe resource management. The agricultural intensification activities are increasing due
to population pressure and to making the area double-cropped. These have caused changes in the
socioeconomic status of the farmers.

Identification and screening of suitable management strategies and their adoption by farmers
requires consideration of soil, climate and socioeconomic factors. An IDST helps in organizing the
information in a database that can be used by a simulation model or for answering queries as
specified by the user. A soil, weather and agricultural characteristics database for the eight districts
of Chhattisgarh was created in the form of soil maps using Arc View (v3.0). The weather coefficients
for each of the weather stations were interpolated to form grid maps of weather parameters using
spatial analysis of Arc View 3.1 (ESRI, 1996). 
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Using soil and weather parameters from Chhattisgarh, suitability of areas for wet- and dry-
season crops (Figure 6.8) were determined. Such delineation helped identify areas that should be
targeted for increasing production. The criteria chosen for delineating the area into classes of
suitability were soil depth, texture, slope, and rainfall (June to September). The rainfall map
prepared from recent weather data (1988 to 1998) was used for the purpose. The criteria for dry
season (October to January) included soil depth, texture, slope, dry season rains, and groundwater
table depth in dry season. The rainfall map for October to January prepared from weather data of
1988 to 1998 was used. The water table map for the month of November was considered while
identifying suitable areas for dry season crops. The maps so derived may be very useful in crop
planning and identifying the priority areas that can be targeted for increasing production and crop
diversification. Such analyses can be extended to individual crops by considering their specific soil
and climatic requirements. 

The CERES-Rice model was used to derive the relationships between soil-climate parameters
and rice crop yield. These relationships were used to prepare rainfed potential yield maps and

Figure 6.8 Crop suitability map for wet-season (Kharif) crops in Chhattisgarh, India.
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identification of the yield-gaps for rainfed rice (Figure 6.9). The IDST is a very effective aid for
researchers and extension workers in identifying proper crop planning and better soil management
practices. It will also be very useful in agrotechnology transfer.

The slow rate of technology transfer and subsequently poor adoption by the farmers is one of
the most important bottlenecks for the development of agriculture in Chhattisgarh. Therefore, the
agriculture of the region is relatively less developed as compared to most of the Indian states. One
of the most important considerations for adoption of research results is identifying areas where the
technology can be most effective and appropriate modifications for changing local needs can be
implemented so that the risks associated with soil and climatic variability, pest and disease inci-
dence, and price fluctuations can be minimized. Using the IDST, technology packages can be
designed and assessed quickly and efficiently using computers on a district-wide basis. This ensures
that only the most promising research results enter into the field-testing program. Further, the

Figure 6.9 Existing yield gaps in dry-seeded rice as determined from potential rainfed yield (simulated) and
yields limited by nutrient stress and management (based on observed and simulated data) at
Chhattisgarh, India.
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suitability of the same management appropriate for one district can be pretested in other districts
by simply changing the model inputs (soil and weather) and the technology can be fine-tuned
accordingly. The stability of the technology in a particular area can be identified using historical
or generated weather. A decision support system can therefore help in identification and transfer
of the most effective nutrient management technologies to the farmers.

METHODOLOGIES FOR HARMONIZING AND PROMOTING USE 
OF SYSTEMS TOOLS FOR DECISION MAKING

For more than 20 years, researchers have attempted to introduce modeling as a tool for decision
making related to a sustainable agriculture in sub-Saharan Africa (SSA). During that period, several
systems tools were developed from econometric and mathematical models at regional levels to crop
growth simulation and nutrient management models. Although these efforts have resulted in a large
number of publications, these models have had limited uses in agricultural decision making
(Breman, 1995; Matthews et al., 2000; Newman et al., 1999; Parker, 1999).

Causes of Limited Adoption in Sub-Saharan Africa (SSA)

First, a set of hypotheses regarding the lack of adoption was developed based on literature and
discussions with knowledgeable persons and with members of the AGMODELS discussion group
on the Internet. Then, a number of persons and organizations, who were known to have been
exposed to models, were visited and interviewed. Countries visited were Mali, Burkina Faso,
Nigeria, Niger, Kenya, Malawi, and Zimbabwe.

Several modeling projects were discontinued during the phase of data collection. This related to
the problem that data collection required more time than anticipated and that the planning of such
projects had been too optimistic in terms of time and money. Availability of reliable data is a general
problem in many developing countries; by the time the data are collected, the situation may have
changed in such a way that the models are not relevant anymore. In the case of large interdisciplinary
models, completion was sometimes hampered by the incompatibility of the methodologies that were
used by the different disciplines. It also appeared that most modeling projects did not have a follow-
up. An important reason for this was the fact that model development was very often initiated in donor
countries that would like to try out a model or a modeling approach for a concrete case — searching
a problem case for a model instead of searching for a model that can help solve the problem. In such
a case, the potential user was hardly involved in the development of the model. This may reduce the
confidence of the local user in the appropriateness of the model to address the problems that are deemed
essential by him or her. The recent initiatives in Mali to orchestrate the modeling efforts better and to
screen the projects as to their utility for decision making may serve as an important step forward.

Local scientists were sometimes used to collect data but were rarely involved in model devel-
opment. Once the project ended, local scientists were left behind with a model they might be able
to use as a black box but with limited understanding on adjusting the model sensibly. On the other
hand, several projects did involve local scientists in model development, often enabling them to
obtain a Ph.D. within the framework of the project. Although this certainly contributed to an
improvement in modeling skills of local scientists, these skills were not always implemented
because there was often no opportunity to use the models developed, either because of lack of
funds or because of a lack of interest by potential users.

The reluctance to use models is also caused by lack of knowledge, as modeling is only included
in the curricula of the universities to a very limited extent. In addition, the complexity of some
models constitutes a barrier; it is important that models are kept simple and that their results are
presented in a comprehensible way to the decision makers. On the other hand, there were also
complaints that the models were not realistic, which would call for more complex models.
© 2002 by CRC Press LLC



     
Opportunities

What are the lessons to be learned from this inquiry, and what should be done to enhance the
use of models in decision making in agriculture? It seems imperative to include the envisaged users
to a much larger extent in the development and selection of models; in other words, a much more
participatory approach is required.

Though large interdisciplinary models are interesting from a holistic point of view in the sense
they allow insight into the relations between the various aspects of the problem studied, they also
have a number of drawbacks, as indicated above. These drawbacks, along with the frequently heard
call for simple models, suggest it is preferable to use models that do not cover a wide range of
disciplines. In this respect, the ideas of Newman et al. (1999) appear to be very useful. They propose
a “hybrid” approach to DSS development that recognizes the need for simultaneous application of
hard and soft systems approaches. In West Africa, a similar approach could be followed, using models
as a learning and discussion tool rather than for direct recommendations. Because simple models
address only a limited number of aspects, it is also possible to use a number of complementary models.

The inquiry also suggested a lack of knowledge and awareness regarding models and their use.
Ph.D. scholarships, related to a particular project, are unlikely to be sufficient to create a critical
mass for the use of models. It is therefore necessary to include systems approaches and modeling
in university curricula and to train national research and extension staff in the use of models. Such
training should not be limited to how to handle the models but, more important, how to use them
to help solve problems.

The COSTBOX Approach

The Client-Oriented Systems Tool Box for Agrotechnology Transfer (COSTBOX) project has
embarked on a number of activities to promote the use of models in agricultural decision making
in a number of west African countries, while trying to avoid the pitfalls described earlier (IFDC,
1999). The project focuses on the introduction of relatively simple models that address problems
at the field level. To be able to cater to the clients’ needs, a toolbox of various models is developed
comprising models such as DSSAT (Tsuji et al., 1994), Cotton model–COTONS (Jallas, 1998),
Qualitative Evaluation of the Fertility of the Tropical Soils–QUEFTS (Janssen et al., 1990), and
Nutrient Management Support System–NuMaSS (Osmond et al., 2000). DSSAT and COTONS are
crop growth models. QUEFTS and NuMaSS are models that provide decision support in nutrient
management. It is possible to use combinations of these models, e.g., DSSAT and QUEFTS–DSSAT
takes climate, water, N, and P into consideration, whereas QUEFTS considers N, P, and K, and
their interactions. Other models may also be considered for inclusion in the toolbox, e.g., models
predicting the evolution of soil organic matter.

To acquire an understanding for the possibilities and the limitations of the different models in
“real-life” conditions, a village was selected where a number of farmers were monitored in collab-
oration with the Togolese Agricultural Research Institute and the Togolese Agricultural Extension
Service. Two plots per crop were monitored per farmer — a plot where the advice of the extension
service was followed and a plot where the farmer used the local practice. Crop, soil, and meteo-
rological data were collected. The meteorological data were collected by means of a solar- powered
weather station, and the crop and soil samples were analyzed at the soil laboratory of the Togolese
Agricultural Research Institute.

Although the models correctly predicted the trends, precision was low, partly due to factors that
were executed such as plot variability caused by the presence of trees, less than perfect weeding,
insects and diseases. Another problem was the reliability of the soil data. Soil laboratories in these
countries are often poorly equipped, and the results of analyses are not always reliable, a fact confirmed
by comparing results with those obtained by other laboratories. This suggested that researchers should
use more reliable laboratories and improve models to fit the conditions better; however, this would
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require a lot of time and funds beyond the resources available in these countries. It is therefore more
useful to explore how models can be used knowing that model results are less then perfect.

In addition to field activities, workshops were organized for research and extension staff to become
acquainted with models and to discuss the possibilities and the limitations of these models, to determine
usefulness to their research programs and integration of models in their work. Workshop participants
revealed a great interest in the use of models and learned of many opportunities to apply these models
in their work. Results of the workshop pointed to the necessity of developing a unit that is acquiring
and maintaining models of interest, promoting the use of models by the research staff, providing support
to researchers who want to make use of models, as well as developing and maintaining a database on
climate, soils, and crop varieties. It was suggested that the unit could be organized in a similar way as
the existing units within the agricultural research institutes that provide support to the researchers
regarding statistics. An additional conclusion was that more training is required and that modeling
ought to be part of the curriculum of the university to create a critical mass of scientists in a country
that is familiar with models. Similar workshops were later organized in Benin and Nigeria.

These conclusions resulted in the following activities:

• Short introductory courses were organized at the universities of Togo, Benin, and Ghana to acquaint
students and staff with simulation modeling and to explore the possibility of including the subject
in the regular course program.

• Modeling units will be established within the national agricultural research institutes of Togo and
Benin, and further training will be provided in GIS and the application of models. Similar activities
are envisaged in Ghana and Nigeria.

• The national research institutes were invited to identify existing research topics that may benefit
from the use of models, which resulted in some interesting examples in cotton and maize production.

Balanced Fertilizer for Cotton

In Togo, the Society Togolese for Cotton Growers (SOTOCO) is responsible for the input supply
for cotton. Until recently, the SOTOCO advised the farmers to apply compound fertilizer as a basal
dressing followed by topdressing of urea, although farmers often fail to apply the top dressing,
resulting in lower yields. The SOTOCO therefore decided to increase the N content of the compound
fertilizer and to cancel the topdressing; however, during the tests only one formulation was used,
implying a fixed relationship between N, P, and K. To evaluate the appropriateness of this relation-
ship the QUEFTS model (Janssen et al., 1990) was used, using existing soil data of various areas
in Togo and the minimum and maximum concentrations of N, P, and K found in cotton. The results
suggested that the compound fertilizer is not well balanced and that a relative increase in N would
benefit the areas in the center and the northern part of Togo. The new option is being tested in a
few areas.

Maize Varieties and Sowing Time

The southern part of Togo experiences two rainy seasons; thus farmers can grow two crops of
maize per year. Average rainfall varies from 700 to 1000 mm in the southern region and strongly
varies from year to year; the rainfall in the second (short) season is especially unreliable. Most of
the farmers cultivate local varieties although improved varieties are becoming more popular. The
growth duration of these varieties is approximately 100 days. A problem here is that late sowing
or an early onset of the (short or long) dry season may seriously affect production. In such cases,
the availability of an earlier maturing variety could be helpful.

Recently, new maize varieties with a growth duration of 85 to 95 days were released. The
question then is when farmers in a particular area should sow which variety. In case of early sowing,
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they should use the late-maturing variety for a high yield, but after a certain date it may be wise
to use an earlier maturing variety to reduce the risk of a low yield caused by an early onset of the
dry season. To assist in advising farmers in a particular area with planting date and varietal selection,
researchers used DSSAT to calculate the yields for the different varieties over a large number of
years in different areas. At the same time, trials were being conducted in two different villages
(high and low rainfall), comparing the performance of the varieties at different sowing dates.

It should be emphasized that this is different from other research that aims at determining
optimum sowing dates for maize (e.g., Wafula, 1995). That research seems less relevant since labor
and other constraints often force farmers to sow on suboptimal dates. The present research does
not advise the farmer when to sow but rather which variety to sow at a particular date.

SUMMARY

The IFDC focuses on increasing and sustaining food and agricultural production in developing
countries through the establishment and transfer of effective and environmentally sound plant
nutrition technology and agribusiness. To that end, the research priorities at IFDC have focused on
the creation of sustainable technologies for the developing world and the transfer of that technology.
A multidisciplinary research team approach was implemented at IFDC, utilizing agricultural econ-
omists, biometricians, crop physiology, and soil fertility modelers, and GIS specialists. The transfer
of the work product technology from research activities was largely through systems analysis and
modeling, via the IBSNAT project and associated global network of collaborators within the context
of a decision support system, DSSAT. In this chapter, researchers have outlined efforts involved in
the development of soil–crop simulation models and decision support systems, the use of these
system tools in research to improve basic understanding, their applications at farm and global levels,
and the training events that have taken place to promote the use and adoption of these approaches.

The research initiatives and case examples presented in this chapter represent only a sampling
of the different types of applications that have been implemented by IFDC in conjunction with
research partners. The significant effort involved in the development of soil-crop simulation models
and decision support systems, the use of these system tools in research to improve basic under-
standing and the application of models at the farm and global level have been focused on training
events that have promoted the use and adoption of the modeling approach. Although the use of
models for decision making in agriculture has been limited in sub-Saharan Africa and South Asia,
there is increasing scope and interest for further application of systems research; however, the
introduction of this technology should consider the prevailing conditions in the countries such as
limited knowledge of models, limited data availability, limited quality of data, limited resources,
and the fact that environmental factors in agriculture are less well controlled.

The authors therefore postulate that the emphasis should be placed on the inclusion of system
modeling in the regular curricula of the universities, coupled with the use of simple models, oriented
toward an awareness of the limitations of the models, and using the models as a generator of ideas
and insights, instead of uncritically using the results. It is important to use a variety of comple-
mentary models in order to allow users to appropriately address specific problems. It is essential
that systems units be created at the research institutes that develop and maintain the toolbox, and
that these units promote the use of models by the research staff and provide support to them.

DSSAT v3.5 with a CD User's Guide can be ordered from http://www.icasanet.org/dssat/
getdssat.html. DREAM may be downloaded at http://www.ifpri.org/dream.htm. Information and
support services on nutrient modeling, as well as information and decision support tools, can be
obtained from research@ifdc.org. For information on modeling training programs, please contact
hrdu@ifdc.org or visit http://www.ifdc.org/.
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INTRODUCTION

Simulation of crop production is one of the most difficult tasks in agricultural system models
because of its dependence on simulations of soil water, soil nutrient, diseases, and weeds. When
there is a disagreement between simulated and observed crop production, it can be difficult to
identify the source of the problem(s). Discrepancies may be due to:

1. Inaccurate soil water and nutrient simulation
2. Lack of model sensitivity to plant environmental stresses
3. Unrecorded damage from natural disasters, extreme weather events, pests, diseases, and weeds
4. Variability in field measurements
5. Lack of accuracy in model parameters or processes simulation

Based on the understanding of a biological process, data availability, and experimental conditions,
there can be more than one modeling approach to describe an experimental phenomenon. One
approach may work better than another for certain experimental conditions. Crop modeling has not
matured to a point where one model can be used for all combinations of environmental and
experimental conditions.

Because plants are a central component of an agricultural production system, all models have
plant growth components that are either simple or complex, and either generic or crop specific. For
example, the USDA-ARS Root Zone Water Quality Model (RZWQM), which is available through
the Water Resources Publications (www.wrpllc.com), was developed primarily for water quality
applications in the 1990s. It has a generic crop growth component so that management effects on
both water quality and crop yield can be simulated. Although this crop growth component does not
predict detailed phenology and yield components, it does divide plant growth into seven stages:
dormant seeds, germinating seeds, emerged plants, established plants, plants in vegetative growth,
plants in reproductive stage, and senescent plants (Hanson, 2000; Hanson et al., 1999). Another unique
feature of the generic plant growth model is that it assumes nonuniform plant population development.
In other words, not all the plants in a field are at the same growth stage. Another group of agricultural
system models is more focused on crop production, such as the CROPGRO and CERES family of
models. These models have detailed plant growth processes and simulate each yield component.
CROPGRO is for legume crops and CERES is for cereal crops (Boote et al., 1998, Ritchie et al.,
1998). The CROPGRO and CERES models are distributed through the DSSAT (Decision Support
System for Agrotechnology Transfer) package (www.icasanet.org/dssat/getdssat.html).

The objective of this chapter is to compare RZWQM, CERES, and CROPGRO for simulating
crop production in the Central Great Plains of the U.S.A. The second objective is to determine how
much benefit we gain from added details in crop growth and development components (e.g.,
CROPGRO and CERES-Maize) or soil water balance components (e.g., RZWQM). Applications of
the three models for other aspects of agricultural systems are available from Ma et al. (2000), Ma
et al. (2001), Singh et al. (2002), Kiniry et al. (2002), and Tsuji et al. (1998, 2002). CROPGRO has
the most detail for simulating biological processes. RZWQM has the most detailed components for
simulating soil water, nutrients, pesticides, and management practices (Ahuja et al. 2000). CROP-
GRO and CERES share the same soil water and nitrogen components (Ritchie, 1998). For the
processes considered in all of the three models, methods for simulating the processes differ (e.g.,
photosynthesis, water uptake, and N uptake). Also, the response of plants to environmental stresses
is simulated differently among the models, both in the way of quantifying stresses and in the way
the processes are affected by the stresses (Ritchie et al., 1998; Boote et al., 1998; Hanson, 2000).

Data sets for corn and soybean from the USDA-ARS, Central Great Plains Research Station
in Akron, CO, were used to evaluate the three models. These data were collected from 1984 to
1986 under different irrigation treatments (e.g., gradient line source, drip, and rain shelter system).
Because RZWQM has a generic crop growth component and is parameterized for both corn and
© 2002 by CRC Press LLC
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soybean, it was compared to CROPGRO for soybean production and CERES-Maize for corn
production. All the models were run under an assumed nonlimited nitrogen condition. An evaluation
for different N conditions is reported in Ma et al. (2002). The purposes of the evaluations presented
in this chapter are to:

1. Compare plant responses to water stress simulated in the three models.
2. Demonstrate the applications of agricultural system models for field research.

EXPERIMENT DESCRIPTION

Maize Experiment Design

Gradient Line-Source Irrigation System

Studies were conducted during the 1984, 1985, and 1986 growing seasons at the USDA Central
Great Plains Research Station, 6.4 km east of Akron, CO (40° 9′ N, 103° 9′ W, 1384 m elevation).
The soil type is a Rago silt loam (fine smectitic, mesic Pachic Argiustolls). Soil texture was analyzed
with the hydrometer method (Gee and Bauder, 1986) (Table 7.1). Although it is called a Rago silt
loam, measured soil texture indicates that the soil is closer to a loam than a silt loam. Therefore,
when using soil texture to estimate hydraulic properties, we used the measured soil texture (loam)
rather than the soil mapped texture.

Corn was planted on May 14, 1984, May 3 1985, and May 1, 1986, with corresponding seeding
densities of 72,400; 76,100; and 76,100 seeds/ha. Prior to each planting, the plot area was fertilized
with ammonium nitrate at a rate of 168 kg N/ha. Corn (Pioneer Hybrid 3732) was grown under a
line-source gradient irrigation system, with full irrigation next to the irrigation line, and linearly
declining water application as distance increased away from the line. Details regarding the irrigation
system can be found in Nielsen (1997). Four replications of four irrigation levels (only three levels
in 1984) existed along the line-source system, with a soil water measurement site and irrigation
catch gauge at each of the 16 locations (12 locations in 1984). Irrigations were initiated just prior
to tasseling (stage VT, Ritchie et al., 1986) in each year. A total numbers of five irrigation events
were run from July 20 to September 2, 1984; 11 from June 29 to August 22, 1985; and 10 from
July 21 to August 26, 1986. Total irrigation water applied ranged from 2.3 to 10.6 cm in 1984,
7.1 to 18.9 cm in 1985, and 14.6 to 30.0 cm in 1986 (Table 7.2). Corn was harvested on October 1,
1984; September 27, 1985; and October 15, 1986.

Table 7.1 Measured Soil Texture of the Rago Silt Loam

Soil Depth
(cm)

Bulk Density
(g/cm3) Sand

Silt
(%) Clay

Drainage Limita Saturated Hydraulic Conductivity
(cm3/cm3) (cm/hr)

Upper Lower Soil Textureb Effective Porosityc

0–30 1.33 39.0 41.7 19.3 0.224 0.092 1.32 10.67
30–60 1.33 32.3 44.3 23.3 0.236 0.104 1.32 9.32
60–90 1.36 37.0 40.7 22.3 0.230 0.098 1.32 10.04
90–120 1.40 45.7 36.7 17.7 0.221 0.090 1.32 9.80

120–150 1.42 45.7 42.3 12.0 0.215 0.084 1.32 8.75
150–180 1.42 48.0 41.7 10.3 0.212 0.081 1.32 8.20

a Calculated from Ritchie et al. (1999), Trans ASAE 42:1609–1614, the upper limit was assumed as soil
water content at 33 kPa and the lower limit as soil water content at 1500 kPa in RZWQM.

b Estimated from Rawls et al. (1982), Trans ASAE 25:1316–1320, and used for soybean field.
c Estimated from Ahuja et al. (1989), Soil Sci. 148:404–411, and used for corn field.
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Soil water content was measured at planting and harvest and at several intermediate dates during
the growing season in 1985. These measurements were made at 15, 45, 75, 105, 135, and 165 cm
depths below the soil surface with a neutron probe calibrated against soil water samples taken at
the time of access tube installation. Crop water use was calculated as the difference between
successive soil water measurements plus precipitation and irrigation during the sampling interval.
Deep percolation and runoff were assumed to be negligible.

Leaf area measurements were made periodically during the growing season by destructively
sampling a 1-m row, separating leaves from the stalks, and measuring the leaf area with a leaf area
meter (LI-Cor LI-3100, Lincoln, NE). An automated weather station recorded air temperature, wind
run, solar radiation, rainfall, and humidity. Total annual rainfall was 47.2, 45.4, and 33.0 cm for
1984, 1985, and 1986, respectively. Total growing season rainfall (May through September) was
29.9, 31.7, and 20.5 cm for the 3 years.

Drip Irrigation System

This study was conducted only in the 1985 growing season. The plot area was fertilized prior
to planting with 184 kg/ha N. Corn was planted similarly to the gradient line-source irrigation area.
Corn was planted on May 9, 1985, and the final population was 74,100 plants/ha. Irrigations were
applied according to four levels of the Crop Water Stress Index (CWSI) as determined by canopy
temperature (Nielsen and Gardner, 1987). Irrigations were applied through drip tubing at a rate of
0.32 cm hr–1 when CWSI exceeded levels of 0.1 0.2, 0.4, or 0.6 (where 0.0 = no water stress, 1.0 =
maximum water stress) (Table 7.3). Plants were harvested on September 27, 1985.

Soybean Experiment Design

Studies were conducted during the 1985 and 1986 growing seasons at the same station in Akron,
CO. Three experiments were conducted to provide a range of available water conditions in which
to evaluate water stress effects on soybean productivity. The experiments varied in the method of
water application, and will be referred to as the gradient line-source irrigation experiment (LS),
the rain shelter experiment (RS), and the drip irrigation experiment (Drip). Details of some cultural
practices are given in Table 7.4 and irrigation amounts are shown in Table 7.5. Other details for
each experiment are provided below. In all experiments the soybean variety was Pioneer Brand
9291 (late-maturity group II).

Table 7.2 Irrigation Timing and Amount (cm) for the Line-Source (LS) Gradient Irrigation System in Corn 
Production from 1984 to 1986

Date
(1984)

Irrigation Level Date
(1985)

Irrigation Level Date
(1986)

Irrigation Level 
1 2 3 1 2 3 4 1 2 3 4

7/20 0.61 1.98 3.05 6/29 0.33 0.28 0.36 0.48 7/21 1.19 1.83 2.36 2.79
7/30 0.43 1.22 2.03 7/30 3.40 3.35 5.84 7.62 7/23 1.27 1.96 2.44 2.84
8/20 0.43 1.07 1.68 8/8 0.28 0.46 0.71 0.86 7/25 1.19 1.68 2.34 3.10
8/25 0.25 0.81 1.37 8/9 0.08 0.13 0.18 0.23 7/29 1.22 1.55 1.85 2.08
9/21 0.58 1.73 2.49 8/12 0.79 1.35 2.08 2.54 8/4 1.80 2.26 2.59 2.54

8/14 0.30 0.53 0.84 1.02 8/6 1.75 2.49 3.02 3.02
8/15 0.53 0.89 1.40 1.68 8/12 1.17 1.52 1.96 2.26
8/17 0.28 0.48 0.74 0.91 8/19 1.32 1.88 2.62 3.33
8/19 0.38 0.64 0.99 1.19 8/20 1.55 1.91 2.79 4.01
8/20 0.36 0.61 0.97 1.14 8/26 2.18 3.23 3.81 4.04
8/20 0.38 0.64 0.99 1.19

Total 2.30 6.81 10.62 7.11 9.38 15.04 18.85 14.64 20.31 25.78 30.00
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Gradient Line-Source Irrigation System

This experiment was conducted as a limited irrigation study, with irrigations applied from
June 23 to August 28 in 1985, and from June 26 to August 25 in 1986. Most of the irrigations were
applied in the last half of the growing season (flowering and grain-filling). Irrigations were applied
with a line-source gradient irrigation system, with full irrigation next to the irrigation line, and
linearly declining water application as distance increased away from the line. Details regarding the
irrigation system can be found in Nielsen (1997). Four irrigation levels existed along the line-source
system. These four levels were replicated twice in 1985 and four times in 1986. A soil water
measurement site and irrigation catch gauge was located at the center of each plot. There were
seven irrigations in 1985 and nine irrigations in 1986 (Table 7.5).

Rain Shelter and Drip Irrigated Experiments

Details for these experiments are found in Nielsen (1990). Briefly, both experiments had four
levels of irrigation determined by four threshold levels of the CWSI, which was computed from

Table 7.3 Irrigation Timing and 
Amount (cm) for the Drip 
Irrigation Study for Corn 
Production in 1985

Irrigation Level
Date 1 2 3 4

7/9 — 0.48 0.48 0.48
7/10 — 2.26 2.26 2.26
7/13 — — — 1.55
7/14 — — — 1.12
7/15 — — 1.30 —
7/16 — 1.30 2.46 1.30
7/25 — — 0.91 0.91
8/6 — 1.07 1.07 1.07
8/8 1.57 — 1.57 1.57
8/14 — — 1.60 1.60
8/15 0.94 0.94 — 0.94
8/16 1.47 1.47 — 1.47
8/21 — — 2.06 2.06
8/27 2.46 2.46 2.46 2.46
8/29 — — 2.31 2.31
8/30 — 1.19 — —

Total 6.44 11.13 18.48 20.70

Table 7.4 Cultural Practices for Soybean Experiments

Experiment Year
Planting 

Date
Population
(plants/ha)

Irrigation 
Method

Harvest 
Date

Row 
Spacing

(m)

Plot 
Dimensions

(m)

Solid Set 1985 23 May 03 Oct 0.76 4.1 × 12.2 375,600 Overhead impact 
sprinklers

Solid Set 1986 20 May 25 Sep 0.76 4.1 × 12.2 262,200 Overhead impact 
sprinklers

Rain Shelter 1985 28 May 31 Sep 0.53 2.7 × 2.7 331,100 Flood
Rain Shelter 1986 20 May 25 Sep 0.53 2.7 × 2.7 397,600 Flood
Drip 1986 20 May 25 Sep 0.76 4.6 × 9.0 271,100 Drip
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Table 7.5 Irrigation Seasonal Amounts (cm) in the Akron, Colorado Soybean 
Study in 1985 and 1986

Irrigation Amount (cm)
Irrigation Time 1 2 3 4

Gradient line-source 
irrigation system (1985)

6/22 0.00 1.64 3.47 4.20
8/17 0.00 0.61 1.54 3.64
8/21 0.17 0.60 1.07 1.50
8/23 0.10 0.05 0.90 1.27
8/26 0.00 0.06 1.04 1.31
8/28 0.01 0.42 0.85 1.00
Total 0.28 3.38 8.86 12.92

Gradient line-source 
irrigation system (1986)

6/25 0.07 0.83 2.56 3.33
6/27 0.07 0.83 2.56 3.33
7/01 0.08 0.83 2.56 3.34
7/30 0.23 0.77 1.71 2.41
8/07 0.06 0.56 1.16 1.85
8/11 0.04 0.35 0.71 1.13
8/15 0.08 0.77 1.74 3.05
8/21 0.45 1.15 2.07 3.30
8/25 0.45 1.13 2.04 3.25
Total 1.55 7.22 17.11 24.98

Rain shelter irrigation 
system (1985)

5/29 5.08 5.08 5.08 5.08
6/24 1.69 3.39 5.08 1.69
6/25 3.39 1.69 0.00 3.39
7/10 5.08 5.08 5.08 5.08
7/24 0.00 0.00 2.54 5.08
7/30 2.54 2.54 2.54 5.08
8/06 1.69 1.69 2.54 0.85
8/08 0.00 0.85 0.00 1.69
8/09 3.39 2.54 4.23 3.39
8/12 0.85 0.85 0.85 0.85
8/14 0.00 0.00 0.85 0.00
8/15 1.69 1.69 0.85 2.54
8/16 0.00 0.00 0.85 0.00
8/20 1.69 1.69 1.69 2.54
8/21 0.00 0.85 0.00 0.85
8/23 2.54 1.69 3.39 1.69
8/26 0.00 0.85 0.85 0.85
8/27 0.00 0.85 0.00 0.85
8/28 0.85 0.00 0.85 0.00
8/29 1.69 0.85 0.00 0.00
8/30 0.00 0.00 2.54 5.08
9/05 2.54 2.54 1.69 2.54
9/06 0.00 0.00 0.85 0.85
Total 34.71 34.71 42.33 49.95

Rain shelter irrigation 
system

6/19 5.08 5.08 5.08 5.08
7/02 5.08 5.08 5.08 5.08
7/11 5.08 5.08 5.08 5.08
7/15 0.00 0.00 5.08 5.08
7/18 5.08 5.08 0.00 0.00
7/23 0.00 0.00 5.08 5.08
7/25 5.08 5.08 0.00 0.00
7/29 0.00 0.00 5.08 5.08
8/01 5.08 5.08 0.00 0.00
8/04 0.00 0.00 0.00 5.08
8/06 0.00 0.00 5.08 0.00
8/11 5.08 5.08 0.00 5.08
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crop canopy temperatures measured daily with an infrared thermometer. In both experiments, the
irrigation treatments were laid out in a randomized complete block, with three replications in the
rain shelter and five replications in the drip irrigated experiment. Irrigations were flood-applied in
the rain shelter. In the drip-irrigated plots, irrigations were applied through drip irrigation tubing

Table 7.5 (continued) Irrigation Seasonal Amounts (cm) in the Akron, 
Colorado Soybean Study in 1985 and 1986

Irrigation Amount (cm)
Irrigation Time 1 2 3 4

8/14 0.00 0.00 5.08 5.08
8/21 5.08 5.08 0.00 0.00
8/25 0.00 0.00 5.08 0.00
8/27 0.00 0.00 0.00 5.08
8/28 5.08 5.08 0.00 0.00
9/03 0.00 0.00 5.08 5.08
9/04 0.00 5.08 0.00 0.00
Total 45.72 50.8 50.8 55.88

Drip irrigation system 
(1986)

7/18 0.00 0.00 0.00 1.32
7/21 0.00 0.00 0.00 1.17
7/23 2.26 2.26 2.26 2.26
7/25 0.00 3.33 3.32 0.00
7/30 0.00 0.00 0.00 2.90
8/01 1.96 1.96 1.96 0.00
8/08 2.64 0.00 2.64 2.64
8/12 0.00 4.65 0.00 0.00
8/18 2.62 0.00 2.62 2.62
8/26 2.54 2.54 2.54 2.54
9/04 0.00 2.69 2.69 2.69
9/05 2.51 0.00 0.00 0.00
Total 14.52 17.42 18.02 18.13

Table 7.6 Calibrated Plant Model Parameter Values of RZWQM for Corn and Soybean. (Parameters 
with asterisk are suggested calibration parameters by the model developers.)

Parameter Name Corn Soybean

Minimum leaf stomatal resistance (s/m)a 100 100
Proportion of photosynthate lost to respiration (dimensionless)a 0.28 0.17
Photosynthesis rate at reproductive stage compared with vegetative stagea 61 69
Photosynthesis rate at seeding stage compared with vegetative stagea 61 69
Coefficient to convert leaf biomass to leaf area index, CONVLA (g/LAI)a 15.5 1.9
Plant population on which CONVLA is based (plants/ha)a 68,992 370,137
Maximum rooting depth (cm)a 300 300
Maximum plant height (cm) 210 70
Aboveground biomass at  maximum height (gm) 60 4
Aboveground biomass of a mature plant (gm) 152 13
Minimum time needed from planting to germination (days) 5 3
Minimum time needed from planting to emergence (days) 20 7
Minimum time needed from planting to 4-leaf stage (days) 35 22
Minimum time needed from planting to end of vegetative growth (days) 75 62
Minimum time needed from planting to physiological maturity (days) 115 92
Growth stage advanced from planting to germination (dimensionless) 0.0356 0.0356
Growth stage advanced from planting to emergence (dimensionless) 0.065 0.065
Growth stage advanced from planting to 4-leaf stage (dimensionless) 0.20 0.20
Growth stage advanced from planting to end of vegetative growth 
(dimensionless)

0.75 0.75

Growth stage advanced from planting to physiological maturity (dimensionless) 0.90 0.90

a Model developers’ suggested calibration parameter.

1
2
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laid on the surface of every other interrow space. Timing and amount of each irrigation event are
shown in Table 7.5.

Data Needed for the Three Models

RZWQM

RZWQM requires daily weather data for minimum and maximum daily temperature, wind run,
solar radiation, relative humidity, and rainfall. These data were available from an on-site weather
station. Soil texture and bulk density were determined from soil samples taken in the field
(Table 7.1). The model requires a minimum input of soil water content at 33 kPa suction, which
is estimated from Ritchie et al. (1999) by assuming that it is the drained upper limit. Saturated soil
hydraulic conductivity was calculated from effective porosity (Ahuja et al., 1989) for the corn fields
or soil texture mean values (Rawls et al., 1982; 1998) for the soybean fields. RZWQM uses the
Brooks–Corey equations to describe the soil water retention curve, and the required parameters
were estimated from soil texture classes (Rawls et al., 1982) and scaling with respect to bulk density
and 33 kPa water content (Ahuja et al., 2000). Corn growth parameters were based on Farahani
et al. (1999), with slight modification (Ma et al. 2002). Soybean parameters were based on model
testing in Ohio (Landa et al., 1999), Missouri (Ghidey et al., 1999), and Iowa (Jaynes and Miller,
1999). Initial soil water content in the profile was assumed to be at field capacity, and the models
were run from January 1 to December 31 every year.

CERES-Maize and CROPGRO-Soybean

Researchers used the versions included in the Decision Support System for Agrotechnology
Transfer (DSSAT) family models (version 3.5) (Hoogenboom et al., 1999; Tsuji et al., 1994).
CERES-Maize and CROPGRO-Soybean use the same soil water balance component, which requires
weather data of minimum and maximum daily temperature, solar radiation, and rainfall. Measured
soil texture and bulk density were used (Table 7.1). Drained upper and lower limits were calculated
as suggested by Ritchie et al. (1999). Required corn and soybean growth parameters were calibrated
as suggested in the DSSAT manual (Boote, 1999, Hoogenboom et al., 1994). Initial soil water
content in the profile was assumed to be at field capacity and the models were run from January 1
to December 31 every year.

APPLICATIONS OF RZWQM AND CERES-MAIZE FOR CORN

Calibration of RZWQM and CERES-Maize

Calibration of RZWQM for Corn

Calibration of RZWQM followed the methods suggested by Hanson et al. (1999) and Rojas
et al. (2000). Data from the 1985 line-source irrigation system were used for calibration because
of its frequent soil water measurements. As suggested by Boote (1999), the authors selected data
from the highest irrigation level (or least stress) as the calibration dataset (level 4 in Table 7.2),
although all irrigation levels were not irrigated for full crop water use. In addition, they assumed
that corn was not under N stress. Goodness-of-fit for the model calibration was based on a
comparison of measured and simulated soil water content, estimated evapotranspiration (ET), leaf
area index (LAI), plant height, plant biomass, and harvest grain yield. Root mean square errors
(RMSE) were also calculated as an indication for model accuracy.
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Table 7.1 lists the measured soil texture, bulk density, and estimated 33 kPa soil water contents
from Ritchie et al. (1999). Estimated 33-kPa soil water contents were very close to the 33 kPa
value of 0.233 cm3 cm–3 given by Rawls et al. (1982) for a loam soil. In addition, the RMSE
indicated that soil water contents were better predicted with saturated soil hydraulic conductivity
estimated from effective porosity (Ahuja et al., 1989). Plant growth parameters were calibrated
from previous work in Colorado (Farahani et al. 1999), and calibrated values are listed in Table 7.6.
Minimum leaf stomatal resistance was set from 250 s/m to 100 s/m based on literature reports
(Fiscus et al., 1991, Bennett et al., 1987). Aboveground biomass for a mature plant changed from
70 to 152 g, based on experimental measurements. Maximum rooting depth extended from 180 cm
to 300 cm to accelerate root growth without changing other model parameters. Maximum plant
heights were 210 cm instead of the 250 cm as calibrated by Farahani et al. (1999). Minimum days
from planting to physical maturity was set to 115 in the model under optimal growth conditions,
which was reasonable compared to observed actual life spans of 127 to 158 days under semiarid
Colorado conditions.

Predicted soil water content and soil water storage are shown in Figure 7.1 with RMSE of
0.023 cm3 cm–3 and 2.82 cm, respectively. In general, RZWQM over predicted soil water contents,
but, as shown in Ma et al. (2002), soil water contents were more accurately predicted if the calibrated
33 kPa soil water contents were used. Predicted ET from June 13 to September 25, 1985 was 51.4
cm, which is very close to the estimated ET of 50.6 cm, based on soil moisture contents (changes
in soil water storage + rainfall + irrigation water). The model simulated a 0.7 cm of surface runoff
and a 0.4-cm deep percolation in 1985.  

LAI was adequately simulated whereas plant height was underpredicted in the early growth
stage and aboveground biomass was overpredicted in later growth stage (Figure 7.2). Simulated
corn grain yield was 9813 kg/ha, which was similar to measured yield of 9854 kg/ha. At the
observed silking date of July 26, 1985, when reproductive growth was initiated, RZWQM also
simulated 20% of the plant population in the field entering reproductive growth. During model
calibration, we put more weight on ET, LAI, and grain yield. We tolerated small errors in plant
height and biomass simulations as long as they were within reasonable ranges of measured values.
In addition, we tried to use as many default values as possible and used the same values in both
RZWQM and CERES-Maize models without in-depth calibration so that bias on model calibration
was minimized. Alternatively, we could have calibrated the 33 kPa soil water contents in both
models, but we would end up with different calibrated 33 kPa soil water contents in the two models
for the same soil.

Calibration of CERES-Maize for Corn

CERES-Maize was calibrated using the same irrigation treatment (line-source, irrigation level 4
in Table 7.2) in 1985 as RZWQM. The same soil hydraulic properties were used in the CERES-
Maize model. CERES-Maize requires the drained upper and lower limits (Table 7.1). The model
produced the same results with saturated hydraulic conductivity estimated from either Ahuja et al.
(1989) or Rawls et al. (1982). Figure 7.3 shows simulated soil water storage and soil moisture
contents. Simulated soil water contents are more scattered compared to that of RZWQM with
RMSE of 0.036 cm3 cm–3; however, RMSE for CERES-Maize simulated water storage was 2.39 cm,
which was better than that from RZWQM. Simulated ET from June 13 to September 25, 1985 was
48.0 cm, which is slightly lower than the observed 50.6 cm. CERES-Maize also simulated a 3.1 cm
runoff and 2.0-cm deep percolation of water in 1985, which were higher than we would expect
under the semiarid Colorado conditions with minimum irrigation, but neither were measured in the
field plots.

Six cultivar-related parameters can be defined by the model user and the values used for this
experiment are listed in Table 7.7. Species-specific parameters were not calibrated as suggested by
the model developers. As shown in Figure 7.4, CERES-Maize provided reasonable simulations of
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LAI and aboveground biomass, with a slight overprediction of biomass at later growth stages. Plant
height was not simulated in CERES. Leaf number was overpredicted, although the phylochron
interval (PHINT) was increased from 38.9 to 50. Growth stages were adequately simulated
(Figure 7.5). Simulated corn yield was 9882 kg/ha compared to observed yield of 9854 kg/ha.

Evaluation of RZWQM and CERES-Maize

After calibration, both models were used to predict corn production for other field experiments,
including the irrigation levels in 1985 that differed from the dataset used for calibration, irrigation
studies in 1984 and 1986 under line source irrigation system, and drip irrigation in 1985. Because
RZWQM does not simulate leaf number and CERES-Maize does not simulate plant height, both
models are only used to evaluate field results in terms of common simulated variables, such as
yield, biomass, LAI, phenology, and ET. CERES-Maize correctly predicted corn growth stage in
1984 except for a slight delay of stages 3, 5, and 6 (Figure 7.5). RZWQM predicted a 15% plant
population entering the reproductive growth stage at the observed silking date of August 6, 1984.
No phenology data were available for 1986. ET data were only available for 1985. Both models
showed the capability to accurately predict ET (Figure 7.6), although ET for CERES-Maize did

Figure 7.1 Predicted soil water storage and soil water contents with RZWQM-corn for the wettest irrigation
level (level 4) in the 1985 growing season under the gradient line-source irrigation system.
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not respond well to the irrigation water levels. For the 1985 gradient line-source irrigation system
where soil water measurements were available, RZWQM simulations of soil water content were
more accurate (Figure 7.7) than CERES-Maize simulations, based on RMSE.

RZWQM predicted the yield responses to irrigation water better than CERES-Maize, especially
for the year of 1985 (Figure 7.8). Although RZWQM underestimated corn yield for the 1985 drip
irrigation and 1986 line source irrigation experiments, the model correctly predicted relative
increases in yield with irrigation water. CERES-Maize overpredicted corn yield in all years and
did not respond to irrigation water treatments. It is interesting to note that when we calibrate
CERES-Maize model using the lowest irrigation level in 1985 (level 1), the plotted data points will
shift to the right with almost the same scattering pattern as shown in Figure 7.8, the 1:1 line will
go through the middle of the scattered data points, and no obvious bias will be observed. RMSE
of simulated yields was 1381 kg/ha for RZWQM and 3609 kg/ha for CERES-Maize (Figure 7.8).

Both models provided good predictions of LAI for 1985 with comparable RMSE of 0.3 for
RZWQM and 0.32 for CERES-Maize (Figure 7.9); however, both models overpredicted LAI for
the 1984 growing season, with slightly better prediction from CERES-Maize model. Similarly,
aboveground biomass was better predicted for the various irrigation levels in 1985 by both models
than in 1984 (Figure 7.10). RMSE of simulated biomass for RZWQM was lower than that of
CERES-Maize for the 1984 growing season.

Figure 7.2 Simulated leaf area index (LAI), plant height, and biomass with RZWQM-corn for the wettest
irrigation level (level 4) in the 1985 growing season under the gradient line-source irrigation system.
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To evaluate how both RZWQM and CERES-Maize simulated soil water stress, the measured
CWSI for the drip irrigation system from canopy temperature (Nielsen and Gardner, 1987) was
compared with the water stress factor calculated by the models. RZWQM predicts a water stress
factor of (1-EWP), where EWP is the ratio of actual transpiration to potential transpiration (Hanson,

Figure 7.3 Predicted soil water storage and soil water contents with CERES-Maize for the wettest irrigation
level (level 4) in the 1985 growing season under the gradient line-source irrigation system.

Table 7.7 Cultivar-Specific Parameters Used in the CERES-Maize Model and Their Calibrated Values

Symbol Description Calibrated Values

P1 Thermal time from seedling emergence to the end of the juvenile phase 
during which the plant is not responsive to changes in photoperiod (thermal 
days above 8oC)

245

P2 Extent to which development is delayed for each hour increase in 
photoperiod above the longest photoperiod at which development 
proceeds at a maximum rate (days)

0.8

P5 Thermal time from silking to physiological maturity (thermal days above 8oC) 680
G2 Maximum possible number of kernels per plant 860
G3 Kernel filling rate during the linear grain filling stage and under optimum 

conditions (mg/day)
9.5

PHINT Phylochron interval between successive leaf tip appearances (thermal days) 50
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2000), and the water stress factor in CERES-Maize is calculated as (1-SWDF1), where SWDF1 is
the ratio of potential uptake to potential transpiration (Ritchie, 1998). As shown in Figures 7.11
and 7.12, simulated water stress levels decreased with the amount of irrigation water applied in
both models, although simulated water stress was better correlated to CWSI in RZWQM than in

Figure 7.4 Simulated leaf area index (LAI) and biomass with CERES-Maize for the wettest irrigation level
(level 4) in the 1985 growing season under the gradient line-source irrigation system.

Figure 7.5 Simulated growth stage with CERES-Maize for 1984 and 1985 growing season under the gradient
line-source irrigation system.
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CERES-Maize. RZWQM simulated little stress from July 13 to August 11, 1985 where CWSI
indicated considerable stresses. CERES-Maize did not predict water stresses from July 16 to
September 12, 1985. Thus, for this application, RZWQM simulated water stresses better than
CERES-Maize, which explains the better yield prediction by RZWQM.

APPLICATIONS OF RZWQM AND CROPGRO FOR SOYBEAN

Calibration of RZWQM and CROPGRO-Soybean

Calibration of RZWQM for Soybean

Researchers also used the highest irrigation levels (level 4 in Table 7.5) of the 1985 gradient line
source irrigation system to calibrate the RZWQM and CROPGRO models for soybean. Soil texture

Figure 7.6 Simulated evapotranspiration (ET) (June 13 to September 25) with RZWQM-corn and CERES-
Maize during 1985 growing season under the gradient line-source irrigation system (LS). See
Table 7.2 for irrigation treatments.

Figure 7.7 Root mean square errors (RMSE) of predicted soil water contents in various layers of the soil
profile for the 1985 gradient line-source irrigation system of corn production. RMSE was averaged
across treatments for each year and each irrigation system. The bars are one standard error around
the means. RMSE of each soil layer is plotted at the lower soil boundary of the soil layer. 
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and 33 kPa soil water contents in Table 7.1 were used and soil hydraulic properties were based on
soil texture class (Rawls et al. 1982). Although both corn and soybean fields were classified as Rago
silt loam, different saturated soil hydraulic conductivities for corn and soybean were used because
saturated hydraulic conductivity varies spatially in the field and depends on management practices
(Benjamin, 1993; Lal, 1999; Rodriguez et al., 1999, van Es et al., 1999). In addition, another similar
soil series named Weld (fine smectitic, mesic Aridic Argiustolls) was mixed with Rago in some
fields. The Weld series has a clay loam layer at 15 to 30 cm soil depth. Therefore, both corn and
soybean in RZWQM used the same soil properties except that a lower saturated hydraulic conduc-
tivity was used for soybean field, which provided better soil water content simulations.

Figure 7.13 shows simulated soil water storage and soil water contents for the calibrated data
set. In general, the model simulated good soil water storage and no biased soil water content with
RMSEs of 1.28 cm and 0.027 cm3/cm3, respectively. RZWQM adequately simulated ET from
July 10 to September 9, 1985, at 37.4 cm versus 39.0 cm estimated from the soil water balance
(Figure 7.14); however, better agreement between the simulated (40.1 cm) and estimated ET
(40.5 cm) was obtained from July 10 to September 25, 1985. Therefore, goodness of model
simulations also depends on the accuracy of estimated ET that has directly inherited errors from
the measured soil water contents. RZWQM also simulated 2.0 cm of runoff and 0.7 cm of deep
seepage in 1985, which were assumed to be zero when estimating ET from the soil water balance;

Figure 7.8 Predicted corn grain yields with RZWQM-corn and CERES-Maize. LS: line source irrigation system;
Drip: drip irrigation system.
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however, surface runoff would be considerably reduced if a higher saturated hydraulic conductivity
were used (Ahuja et al. 1989). Therefore, depending on which criterion was selected for model
calibration, a different saturated soil hydraulic conductivity might be used for soybean simulation
in this study. In addition, it may not be valid to use a constant soil hydraulic conductivity for all
the years and for all management practices because of its dependency on soil dynamics (van Es
et al. 1999).

Calibrated plant parameters were based on parameters derived from RZWQM applications for
soybean in the midwest of the U.S. (Table 7.6) (Hanson et al., 1999; Landa et al., 1999; Ghidey
et al., 1999; Jaynes and Miller, 1999). For this experiment, the minimum leaf stomatal resistance
was modified to a value of 100 s/m, based on the study of Nielsen (1990), and aboveground biomass
of a mature plant was set at 13 g, based on experimental measurements. The rest of the parameters
in Table 7.6 were either default or calibrated values. Although plant phenology is not the focus of
RZWQM, the model also showed that 84% of plants reached maturity on September 16, 1985 at
the field observed date for the R8 stage; however, the model simulated the initial reproductive
growth on July 30, 1985, which was delayed according to the observed R1 stage date of July 19,
1985. The delay may have been a result of the indeterminate variety used in this study, where there
was no definite flowering period. The model overpredicted LAI in the later development phases

Figure 7.9 Predicted leaf area index with RZWQM-corn and CERES-Maize for 1984 and 1985 growing season
under the gradient line-source irrigation system.
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and plant height during the middle of the growing season (Figure 7.15). RZWQM also under-
predicted plant height during the early growth phases. Aboveground biomass was adequately
simulated, however. Simulated grain yield was 2686 kg/ha compared to a measured yield of 2678 kg/ha
(Figure 7.16).

Calibration of CROPGRO-Soybean

The wettest treatment in 1985 line-source irrigation system was used to calibrate CROPGRO-
Soybean. The soil properties shown in Table 7.1 were used without modification. Generally the
model underpredicted soil water contents (Figure 7.17), which cannot be improved except by
changing the upper and lower drained limits. The model provided the same results using saturated
hydraulic conductivities from either method in Table 7.1. Experimentally, we observed more soil
water storage in the soil profile during the soybean growing season than during the maize season
(Figures 7.1, 7.3, 7.13, and 7.17). CROPGRO-Soybean simulated an ET of 31.1 cm from July 10
to September 9, 1985, which is lower than the estimated ET of 39.0 cm. The model also simulated
3.2 cm of surface runoff and 3.0 cm deep percolation. RMSEs for simulated soil water storage was
5.5 cm and for soil water contents was 0.038 cm3/cm3.

Figure 7.10 Predicted biomass with RZWQM-corn and CERES-Maize for 1984 and 1985 growing seasons
under the gradient line-source irrigation system.
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Plant growth was calibrated based on recommendations published by Boote (1999). Plant
parameters were calibrated based on the default parameters for maturity group 2 as distributed with
the model (Hoogenboom et al., 1994). Table 7.8 lists the calibrated values for this experiment and
default values for maturity group 2. Simulated V-stage and reproductive growth stage are shown
in Figure 7.18. CROPGRO-Soybean has a more accurate LAI simulation than RZWQM
(Figure 7.15); however, because LAI data were not collected during leaf senescence, the model
prediction of LAI during this stage is unable to be verified. Aboveground biomass simulations from
both models were similar. Although CROPGRO simulated a more accurate plant height for the
early growth phase, it overpredicted plant height in general (Figure 7.15). Simulated grain yield
was 2647 kg/ha, which was very close to the measured yield of 2678 kg/ha (Figure 7.16).

Evaluation of RZWQM and CROPGRO-Soybean

The calibrated models were then used to predict soybean production for the other irrigation
levels and the 1985 and 1986 experiments (Table 7.5). RZWQM simulated ET adequately in 1985
for the gradient line-source irrigation system after it was calibrated for the wettest treatment
(Figure 7.14). Although the model generally overpredicted ET for the remaining treatments, sim-

Figure 7.11 Measured crop water stress index (CWSI) and simulated water stress in RZWQM (1-EWP) for
corn under the drip irrigation system in 1985. EWP is the ratio of actual transpiration to potential
transpiration.
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ulated ET responded correctly to irrigation water amounts. CROPGRO showed the most accurate
simulation of ET for the drip irrigation system (Figure 7.14), although CROPGRO-simulated ET
did not respond to amount of irrigation for the rain shelter irrigation system. Overall RMSEs of
simulated ET among all the treatments and years were comparable, 7.3 cm for CROPGRO and
7.8 for RZWQM.

RZWQM simulated more accurate soil water contents for the 0 to 30, 30 to 60, and 60 to 90 cm
soil profile for the 1985 and 1986 line-source irrigation system than CROPGRO (Figure 7.19);
however, CROPGRO predicted equal or better soil water contents beyond the 90 cm soil profile
except for the 120 to 150 cm layer in 1985. For the rain shelter system, CROPGRO also provided
better predictions of soil water contents in soil profiles below 90 cm. RZWQM simulated more
accurate soil water contents for the 30 to 60 cm soil layer. Goodness of model prediction for the 0 to
30 and 60 to 90 cm soil layers depended on the year of study. RZWQM simulated better soil water
contents in 1986, whereas CROPGRO predicted better soil water contents in 1985. Overall, the
differences between the two models were insignificant for the rain shelter system. For the drip system,
RZWQM was better for the 0 to 30 and 30 to 60 cm soil layers, whereas CROPGRO was insignif-
icantly better beyond 60 cm soil depth. Both models predicted soil water contents better for the rain
shelter irrigation system than for the other two irrigation systems in terms of RMSE (Figure 7.19).

Figure 7.12 Measured crop water stress index (CWSI) and simulated water stress in CERES-Maize (1-SWDF1)
for corn under the drip irrigation system in 1985. SWDF1 is the ratio of potential uptake to potential
transpiration. 



    
RZWQM accurately predicted good yields for all the treatments except for the 1986 drip system.
CROPGRO, on the other hand, predicted yields most accurately for the 1986 drip system
(Figure 7.16). RZWQM responded to irrigation water better under the rain shelter system than
CROPGRO. RMSEs of simulated yields were 295 kg/ha for CROPGRO and 432 kg/ha for
RZWQM. Both models adequately predicted plant canopy height for 1985, but underpredicted
canopy height for 1986. Maximum canopy height was overpredicted by 30 to 100% by both models,
suggesting that the models failed to account for drought effects on plant height in 1986 after model
calibration in a relatively wet year of 1985.

Simulated water stresses were compared with the CWSI values as determined by Nielsen (1990).
For the drip irrigation system, both RZWQM and CROPGRO simulated water stresses that
responded to irrigation amount (Figures 7.20 and 7.21). RZWQM-simulated water stress matched
the measured CWSI well, except for the early part of the growing season. CROPGRO simulated
greater water stress than CWSI during the early growing season but less water stress in later growing
season. Both models failed to simulate water stress for the rain shelter system. CROPGRO did not
predict any water stress under all irrigation amounts in both 1985 and 1986, which may be
responsible for the lack of response in simulated ET and yields (Figures 7.14 and 7.16). RZWQM

Figure 7.13 Predicted soil water storage and soil water contents with RZWQM-soybean for the wettest irrigation
level (level 4) in the 1985 growing season under the gradient line-source irrigation system.
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simulated some water stress later during the growing season but failed to predict water stress for
the early growth phase (data not shown). The simulation of stress effects in RZWQM was attributed
to its better ET and yield simulations in Figures 7.14 and 7.16.

SUMMARY AND DISCUSSION

An agricultural system model is generally derived from knowledge gained in different disci-
plines of science and is designed to integrate the interactions among agricultural processes that
have been studied individually in different scientific disciplines. Due to limited understanding and
diversified theories on these processes, an agricultural system model can be developed quite
differently by individual model developers. For the three models tested here, RZWQM was origi-
nally developed as a water quality model, and the generic plant growth component was used to
predict biomass and yield production and interaction between plants and soils. Predictions of
phenology and yield components were not the original goal of the RZWQM. On the other hand,
the CERES-Maize and CROPGRO-Soybean models were developed specifically to simulate corn
and soybean production, including phenology, biomass, and yield components. The soil water
component was simply a medium for the plant to extract water and nutrients.

Figure 7.14 Predicted evapotranspiratioin (ET) with RZWQM-soybean and CROPGRO-Soybean (dates). LS:
line-source irrigation system; RS: rain shelter irrigation system; and Drip: drip irrigation system.
ET was from July 10 to September 9 for 1985 LS; from June 20 to September 10 for 1986 LS;
from May 20 to September 16 for 1985 RS; from June 6 to September 12 for 1986 RO; and from
June 24 to September 12 for the 1986 Drip.
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The CERES-Maize and CROPGRO-Soybean models were easy to use because of their simple
soil water balance components and only a few cultivar-specific plant parameters required calibration
(Tables 7.7 and 7.8; also see Ahuja and Ma, 2002). These few soil and plant parameters generally
were able to provide good calibration of phenology, biomass, LAI, and yield. In addition, both
models included a database with plant parameters categorized by cultivars (Hoogenboom et al.
1994). RZWQM, on the other hand, required more detailed soil hydraulic parameters, which may
be obtained from soil texture based default values. In many cases, these default values provided
reasonable soil water prediction (Ma et al., 1998; Nielsen et al., 2002). In addition, the detailed
approach for soil water movement gave greater flexibility in calibrating soil water contents. Because
RZWQM has a generic plant growth component, it did not have a database for each cultivar; rather
it provided default plant growth parameters for tested cases in the U.S. Midwest. Therefore, users
may have to calibrate additional parameters in the database besides the ones suggested by model
developers (Table 7.6).

There was no objective optimization algorithm for calibrating an agricultural system model.
Parameters were calibrated more or less by trial and error. CROPGRO and CERES-Maize emphasizes
phenology and development, whereas RZWQM concentrates more on crop production. The soil
water balance in CROPGRO and CERES-Maize was mainly calibrated through the upper and lower

Figure 7.15 Simulated leaf area index (LAI), plant height, and biomass with RZWQM-soybean and CROPGRO
for the wettest irrigation level (level 4) in the 1985 growing season under the gradient line-source
irrigation system.
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drained limits, whereas RZWQM had a series of soil hydraulic properties that may be calibrated
(Ahuja and Ma, 2002). In addition, because RZWQM has its strength in soil and water simulation,
users have to be aware of the soil nitrate and chemicals in percolation and runoff waters. For the
same data sets, different users may calibrate the models differently. For example, in this chapter, we
used the upper and lower drained limits from Ritchie et al. (1999) for CERES and CROPGRO and
interpreted as 33 kPa and 1500 kPa soil water content values to be used in RZWQM. Default 33 kPa
and 1500 kPa soil water content values in RZWQM based on soil texture class would be used and
interpreted as upper and lower drained limits to be applied in CERES-Maize and CROPGRO as
done by Nielsen et al. (2002). Many other ways (or even better ways) can be used to calibrate the
data sets. As shown in Figure 7.19, given a fixed set of soil hydraulic properties, RZWQM provided
overall better soil water content prediction than CERES-Maize and CROPGRO-Soybean.

All the models could be calibrated satisfactorily, but applications depended on year and irrigation
methods. For corn yield, RZWQM provided more accurate simulations and responded better to
irrigation than CERES-Maize (Figure 7.8). For corn LAI, CERES-Maize predicted better than
RZWQM (Figure 7.9). For corn biomass, RZWQM predictions were better in 1984 but worse in 1985
than those of CERES-Maize (Figure 7.10). Although both RZWQM and CROPGRO simulated ET
equally well, RZWQM-simulated ET responded better to irrigation than CROPGRO-Soybean
(Figure 7.14). For soybean yield, RZWQM provided the worst yield prediction, whereas CROPGRO
provided the best yield prediction for the drip irrigation study in 1986 (Figure 7.16); however, for the
rain shelter irrigation study, RZWQM predicted yield better than CROPGRO (Figure 7.16), although

Figure 7.16 Predicted soybean yields with RZWQM-soybean and CROPGRO. LS: line source irrigation system;
RS: rain shelter irrigation system; Drip: drip irrigation system.
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overall RMSE was larger for RZWQM than for CROPGRO. Therefore, the benefits of devel-
oping complex and crop specific growth models, such as CROPGRO-Soybean and CERES-
Maize, were minimized if other components of the agricultural systems, such as water, ET,
and nutrient, were not comparable. There is a need to improve these components in CROPGRO
and CERES.

All the models served the purposes for which they were designed. The crop growth component
in RZWQM was designed to provide biomass and yield prediction for an agricultural water quality
model. As shown in this chapter, its simulations of corn and soybean yields were adequate, once
it was calibrated (Figures 7.8 and 7.16). Simulations of biomass were also reasonable (Figures 7.10
and 7.15). CERES-Maize and CROPGRO-Soybean were designed to simulate many agronomic
attributes, such as phenology, leaf number, and yield components. As shown in Figures 7.5 and
7.18, both models were able to simulate the various growth and developmental stages fairly well.
CROPGRO also simulated the number of leaves correctly, although CERES-Maize overestimated
leaf number. CROPGRO also predicted soybean yields adequately except for the rain shelter
experiments (Figure 7.16). Unfortunately, there was no experimental data to validate kernel number,
kernel weight, pod number, pod weight, seed number, and seed weight as simulated by both CERES-
Maize and CROPGRO-Soybean.

Figure 7.17 Predicted soil water storage and soil water contents with CROPGRO for the wettest irrigation level
(level 4) in the 1985 growing season under the gradient line-source irrigation system.
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Table 7.8 Cultivar-Specific Parameters Used in CROPGRO-Soybean Model and Their Calibrated 
and Default Values for Maturity Group 2

Parameter Name
Calibrated 

Value
Default 
Value

CSDL: Critical day length for crop development (hr) 13.59 13.59
PPSEN: Sensitivity to photoperiod (1/hr) 0.249 0.249
EM-FL: Time from end of juvenile phase to first flower in photothermal days 20 17.4
FL-SH: Time from first flower to first pod greater than 0.5 cm (photothermal days) 6 6
FL-SD: Time from first flower to first seed (photothermal days) 13.5 13.5
SD-PM: Time from first seed to physiological maturity (photothermal days) 20 33
FL-LF: Time from first flower to end of leaf growth (photothermal days) 26 26
LFMAX: Maximum leaf photosynthesis rate (CO2/m2/s) 0.92 1.03
SLAVAR: Specific leaf area (SLA) (cm2/g) 250 375
SIZLF: Maximum size of fully expanded leaf (cm2) 180 180
XFRUIT: Maximum fraction of daily available photosynthate to seeds plus shells 
(dimensionless) 

1.0 1.0

WTPSD: Maximum weight per seed (g) 0.19 0.19
SFDUR: Seed filling duration for a cohort of seed (photothermal days) 20 23
SDPDV: Average seed per pod 2.2 2.2
PODUR: Time for cultivar to add full pod load under optimal conditions (photothermal 
days) 

8.0 10.0

Figure 7.18 Simulated leaf number and growth stage with CROPGRO for the wettest irrigation level (level 4)
in the 1985 growing season under the gradient line-source irrigation system.
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All the models were run without nitrogen stress, which may not be true in the case of corn.
The models could have responded differently if nitrogen stress had been simulated in addition to
water stress (Ma et al., 2002). RZWQM included very detailed soil carbon–nitrogen components
and suggested methods of initializing the soil organic carbon pools (Ahuja and Ma, 2002). RZWQM

Figure 7.19 Root mean square errors (RMSE) of predicted soil water contents in various layers of the soil
profile for different irrigation systems of soybean production. RMSE was averaged across treat-
ments for each year and each irrigation system. The bars are one standard errors around the
means. RMSE of each soil layer is plotted at the lower soil boundary of the soil layer. 
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can also be run for multiple years to initialize the pools. CERES-Maize and CROPGRO-Soybean
can only run on a yearly basis, although with the DSSAT framework, the models can simulate crop
sequences and rotations (Thornton et al. 1995). RZWQM also emphasizes management practices,
such as tillage, crop residue management, tile drainage, manure application, and crop rotation.
Thus, RZWQM has the advantage of simulating environmental impacts of agricultural systems in
addition to crop production, in terms of nitrate and pesticide.

In conclusion, with simple parameterization of the models, this study compared three models
for their predictions of corn and soybean production, with the same data sets, using similar initial
conditions. It was also a unique study because the models were calibrated for one irrigation level
in 1985 and evaluated for other irrigation levels in the same year, so that the responses of models
to water stresses could be fully tested. Also, model calibration was kept to a minimum and default
values were used to avoid biasing the results toward any one model. Simulation results showed
that each model can be calibrated to a certain level of satisfaction, but applications of the models
to other conditions, such as water amount, irrigation methods, and weather, depend on the model.
Overall, RZWQM provided satisfactory yield predictions for both corn and soybean. RZWQM was
better at simulating soil water contents than CROPGRO-Soybean and CERES-Maize. CERES-

Figure 7.20 Measured crop water stress index (CWSI) and simulated water stress in RZWQM (1-EWP) for
soybean under the drip irrigation system in 1986. EWP is the actual transpiration to potential
transpiration.
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Maize-simulated corn yields did not respond to irrigation adequately. CROPGRO predicted soybean
yields better in terms of RMSEs, but it did not respond to irrigation under the rain shelter irrigation
system. RZWQM predicted water stresses better than CROPGRO-Soybean and CERES-Maize,
based on CWSI.

So far, CERES-Maize and CROPGRO-Soybean have been used worldwide by international
agencies and organizations. Through efforts of the IBSNAT project, the two models were adapted
by and subsequently released as part of the DSSAT product. Although the IBSNAT project ended
in 1993, the international collaboration has continued through the International Consortium for
Agricultural Systems Applications (ICASA; www.ICASAnet.org). Through this international effort
the visibility and utility of the models were considerably improved, with the distribution of DSSAT
in more than 90 countries worldwide. Within the DSSAT package (a DOS-based user interface),
the two models represent the grain legumes and grain cereals as part of a suite of models for more
than 17 different crops. They are very easy to calibrate for crop production and generally give
model users satisfaction. At present, model users are satisfied if they can only calibrate their data
adequately with a few steps. Use of the models for technology transfer has limited success so far.

On the other hand, RZWQM was developed and tested mainly in collaboration with the Management
Systems Evaluation Areas (MSEA) project. It has been used in only a few countries (Ma et al., 2000).

Figure 7.21 Measured crop water stress index (CWSI) and simulated water stress in CROPGRO (1-SWDF1)
for soybean under the drip irrigation system in 1986. SWDF1 is the ratio of potential uptake to
potential transpiration.
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Also, its application was mainly on soil water quality. This chapter is the first study to systematically
evaluate the generic crop growth components in RZWQM against the more widely used crop growth
models. The development of a Windows-based user interface has promoted the use of RZWQM, and it
can be downloaded free from http://arsagsoftware.ars.usda.gov. Although conclusions were drawn only
from this particular study in the Central Great Plains of the U.S., more comparison studies will be needed
for other experimental conditions. This study clearly showed the weaknesses and strengths of each
model, and should help and encourage field scientists to use models as a tool with the analysis of their
experimental results and promote technology transfer via system models.
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INTRODUCTION

Farmers, their advisors, and agricultural researchers face the challenge of understanding farms
and the broader systems in which they reside well enough to make innovations appropriate to
maintaining or improving system performance. In a complex, dynamic environment, “appropriate
innovation” is a moving target as more efficient technology becomes available, prices shift, new
knowledge about the state of the system emerges, market and environmental regulatory standards
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and procedures evolve, etc. Although the ability to cope with these challenges is much of what has
long constituted expertise in farm management, such complexities and uncertainties of modern
farming have constituted much of the case for computer models and decision support systems (e.g.,
Wagner and Kuhlmann 1991; Ikerd 1991; Parker, 1999)

For nearly 20 years, champions of decision support systems have tended to explain low farmer
adoption and use by the low ownership of computers in the farming community. But recent studies
show that farmers are no longer lagging behind the general community in computer ownership. In
1999, computers were in use on approximately half of Australian farms and one in five were using
the Internet — comparable usage to people in metropolitan areas (Australian Bureau of Statistics,
1999). Personal computers have become integral to farm business financial accounting and record
keeping, and when connected to the Internet, by facilitating information gathering and diverse types
of transactions. But this has not been accompanied by similar growth in the use of decision support
systems (Hoag et al. 1999; Parker, 1999).

Because many agricultural decision support systems rely on an underlying simulation model
of a production system, this has implications for model research and development. Since their
origin in the late 1940s, these models of physical and biological processes in and around agricultural
production have been integral to enormous progress in understanding of agricultural production
processes and environment. Models have played significant roles in research problem setting and,
occasionally, in applying scientific understanding to public policy. But expectation of eventual
benefits to farmers of the decision support system has been a significant basis of financial support
for modeling during the 1980s and into the 1990s. Although evidence is diffuse, our perception is
that this support has faded since the mid-1990s with the failure of any significant market to emerge
among farmers or their advisors.

More conspicuous has been the experience of ICASA (International Consortium for Agricultural
Systems Applications), formed in 1995 to aggregate and position elite modeling groups to market
a service to international agricultural research and development organizations (www.icasanet.org).
Most observers would agree that there has been a disappointing level of financial support for ICASA
among agencies expected to benefit from further development of models and applications in systems
research.

In Australia, where demand for decision support systems has been no greater than elsewhere,
significant support for modeling has been part of a major institutional shift away from research
stations to research with a farming systems perspective and whose conduct involves farmers
(Carberry, 2001). In addition to this driver of research reform, i.e., relevance to efficient farm
management, there is the increasingly important driver of pressing environmental problems. On
both fronts, the adequacy of traditional agricultural research approaches is being questioned, and
there seems to be a new recognition by research stakeholders that simulation modeling, imbedded
in the appropriate methodology, may be an important element of needed RD&E innovation.

This chapter summarizes the collective and ongoing experience of a group of researchers
concerned with exploring how simulation may benefit the management of dryland farming systems
in Australia. Over 15 years much change has taken place both in the models and in the ways in
which researchers are using them. The primary aim here is to relate and reflect upon two intertwining
threads of learning:

1. What capabilities in a simulator are important and feasible to develop and maintain?
2. In using simulation to aid farmers, and other system managers who influence or are influenced by

farm production system performance, what are the keys to genuine usefulness that creates an
ongoing demand for simulation?

Although major activities and learnings have not always been strictly sequential, it is convenient
in telling the story here, to organize experience as phases. In the initial phase the team used what
they judged at the time to be the most appropriate crop model for research aimed at contributing
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to better farming practices in semiarid dryland farming systems. This was a period in which both
the power of dynamic simulation models in enhancing management research and the limits of the
existing models for dealing with important phenomena in such systems became apparent. This
phase was followed by one of rethinking and re-engineering models to overcome significant model
limits. Overlapping with this phase was one that focused on using models for aiding farm decision
making by working closely with farmers and their advisors on farms. What was learned in this
activity has led, in a current phase, to diversification of the way simulation models are used to
assist client managers and to new markets for simulation-aided services. In this ongoing phase,
simulator development continues in response to expanding diversity of crops and practices and
demand by users for features that aid effective and efficient data management, simulation, presen-
tation, and Internet transmission. Demands from important “system analysis and design” activities
now compete with demands from “management discussion facilitating” and “farm management
consulting” activities as well.

FIRST PHASE: USING CROP MODELS TO DESIGN BETTER FARMING 
PRACTICES AND DISCOVERING MODEL LIMITATIONS

Research on Semiarid Dryland Farming Systems

In the decade of the 1980s, simulation modeling became important to research on dryland
farming systems in semiarid, tropical regions of Australia and Kenya. Although very different
socioeconomic systems, they were similar in two important ways:

1. Economic feasibility of investment and intensification for greater production was made problematic
by climatic risk.

2. Testing feasibility, either in practice or in an experimental research program, was problematic due
to high rainfall variability.

Feasibility of Cropping in Semiarid Northern Australia

Until recent years, the agricultural development potential of northern Australia has been uncer-
tain, and this uncertainty allowed rapid recovery of optimism following failed development ventures
(Chapman et al., 1996). A sufficient lapse of time, favorable economic conditions, and a conspicuous
run of good seasons seem to have been sufficient to conclude that earlier failures were due mainly
to factors other than an unsuitable climate. During the period 1978 to 1992, a significant research
effort was made to reevaluate the potential for cropping in the Australian semiarid tropics. Previous
failed initiatives had highlighted climatic risks, but there was disagreement about the importance
of low rainfall versus the affordability of adequate soil conservation measures and the importance
of these in relation to infrastructure constraints. Annual crops in this climate are at high risk
especially during establishment and anthesis due to highly variable rainfall and high radiation load
resulting in high evaporative demand and high soil and air temperatures (Abrecht and Bristow,
1996). The potentially arable soils are of low fertility, low water holding capacity and of poor
structural stability, and, under conventional tillage, highly vulnerable to serious water erosion
(Dilshad et al., 1996).

In the Northern Territory (NT), this research initially concentrated on soil management systems,
but later expanded to include climatic variability and production risk. In 1985, we undertook
simulation modeling to complement field research on the climatic and soil constraints to dryland
cropping and to develop and evaluate cropping practices that reduced risks and costs. This research
was in three key areas:
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1. Quantifying the yield and economic returns from conventional dryland maize and sorghum enter-
prises (Muchow et al., 1991)

2. Testing the feasibility of a new dryland cropping system which centered on the use of no-tillage
technology and the integration of livestock into the cropping system with the inclusion of pasture
legumes as leys and intercrops (McCown et al., 1985)

3. Exploring the potential for a pulp and paper industry based on a totally new crop, kenaf (Hibiscus
cannabinus L.) (Carberry et al., 1993a)

In addition, models developed in the NT were used to explore dryland cropping prospects on the
dryer margins of established cropping regions in north Queensland (Carberry et al., 1991a).

Based on the criteria of being conceptually appropriate to the research issue, of having affordable
input requirements, and capable of realistic simulation of performance, CERES-Maize (Jones and
Kiniry, 1986) was initially selected in 1985 and tested for northern Australia (Carberry et al., 1989).
After testing in this severe environment, CERES-Maize was modified to improve simulation of the
effects of soil water deficit and extreme temperatures on crop establishment, phenology, leaf area
development, grain set, and plant mortality (Carberry and Abrecht, 1991). The nitrogen supply
routines were also modified with a number of improvements, principally to permit the simulation
of surface residue dynamics (Dimes et al., 1996).

As part of this early phase of model evaluation and development, new models for sorghum
(Birch et al., 1990; Carberry and Abrecht, 1991), kenaf (Carberry and Muchow, 1992), and
Stylosanthes hamata (cv. Verano) (Carberry et al., 1992) were developed and validated for use in
northern Australia. Together with the modified CERES-Maize, these enabled a systems analysis
approach to evaluation of prospects for cropping in northern Australia. For maize and sorghum,
these studies include the simulation of yields and assessment of risks to cropping at different
locations, for different genotypes, for a range of planting times, and for different tillage strategies
(Cogle et al., 1990; Carberry and Abrecht, 1991; Muchow and Carberry, 1991; Carberry et al.,
1991b; Muchow et al., 1991). These evaluations provided a sobering picture of low expected
economic returns. The prospects for intensive dryland cropping in semiarid northern Australia
appeared bleak unless the cost–price situation for coarse grain crops changed dramatically.

But the hypothetical integrated crop-beef grazing system under evaluation recognized the viability
of the existing local beef production system based on extensive natural pastures as well as the success
of crop-sheep grazing systems based on legume pasture leys in Australia’s Mediterranean climatic
regions. This hypothetical system for the Australian semiarid tropics (SAT) featured legume pastures
grown in rotation with crops of maize and sorghum, which were used to fatten cattle (McCown et al.
1985). Crops were sown directly into chemically killed pastures that provided both protection from
high soil temperatures and a source of mineralizable nitrogen. An understory of volunteer legume
was permitted to establish from hard seed to form an intercrop with the grain crop. Cattle grazed
native grass pastures on surrounding land during the wet season and were brought back to the cropland
to graze crop residues and the volunteer legume pasture during the dry season. Although most aspects
of the proposed integrated system were tested in agronomic experimentation over several years
(McCown, 1996; Carberry et al., 1996a), the long-term potential under this system was also tested in
simulation analyses (Carberry et al., 1993b, 1996b; Jones et al., 1996). Such analyses indicated that
a combination of legume pasture and sorghum grain production was superior in terms of both gross
margin returns and long-term soil fertility status compared with conventional coarse grain production.

Another regional development proposal has been for a pulp and paper industry based on the
fiber crop, kenaf, but there has been uncertainty about effects of weather on long-term continuity
of adequate supply of fiber to mills. A major feasibility study, funded by the NT government, was
undertaken to assess the climatic risks to dryland kenaf production, using a simulation model of
kenaf developed and validated for this task (Carberry et al., 1993a). The kenaf model was run,
using long-term historical weather data, to determine optimal sowing strategies and expected yields
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at four representative sites in the NT. A conflict existed between sowing early, with resulting long
duration and high yield potential but high probability of plant mortality, and sowing later, with
more reliable plant population but shorter duration and lower yields.

Since the late 1980s, ex ante analyses of the climatic risk to innovative production systems
using locally specified and validated simulation models have contributed to development of policy
both by government and private investors for dryland cropping industries in the semiarid tropics
of northern Australia. The cautionary results of the analyses have complemented other cautionary
information, and no such industries of national significance have yet been established (Chapman
et al., 1996). The analyses have provided an enhanced understanding of the climatic realities, largely
based on simulation with well-tested models (validated, in part, by failed commercial ventures).
The models are a resource to assist future evaluations of new, inevitably risky, development
propositions in the future.

Feasibility of Purchased Fertilizer in Smallholder Crop Production in Kenya

In 1985, in conjunction with the Australian Centre for International Agricultural Research
(ACIAR), we began working with researchers from KARI (Kenya Agricultural Research Institute)
on prospects for improvement in food security in semiarid eastern Kenya (McCown et al., 1992).
The focus was on maize production strategies on smallholder farms where traditional soil fertility
management systems had broken down due to population growth and farm fragmentation. Was
there a place for commercial fertilizer inputs in these areas where the climatic risk was generally
seen to preclude this option for soil fertility maintenance in a predominantly subsistence system?
Over the next 6 years, we sought to answer this central question as well as explore a range of other
management issues relevant to productivity in the maize-based farming systems of the region.

As we experienced the dominance of rainfall variability in this 500 to 700 mm bimodal rainfall
environment (where two maize crops a year are attempted) on experimental results and the overall
performance of different technologies, we realized that a maize model would be a valuable first
step. The reasoning that had led to the selection of CERES-Maize (Jones and Kiniry 1986) for
analysis of system performance in northern Australia appeared equally valid in Kenya. This model
addressed a range of factors that were generally important in maize production (plant population,
genotype characteristics, time of sowing, and water and nitrogen constraints), but a model of this
type had not been “stretched” to mimic conditions in a smallholder agriculture setting in such a
harsh environment before. In common with the work proceeding in parallel in northern Australia,
the abiotic environment placed more severe constraints on crop growth and yield than was the case
for high-input systems in temperate and humid tropical environments, which provided much of the
basis for CERES-Maize initial development.

A major on-station experimental program over the 1985 to 1989 period resulted in many changes
to CERES-Maize that improved its predictive performance in these semiarid, low-input environ-
ments (detailed in Keating et al., 1992a). Important changes included:

• Development of plant mortality routines to capture severely limiting water and nitrogen effects
during vegetative growth

• Making the phenology model more sensitive to extreme water and nitrogen stress
• Making the grain number model better reflect yield response to plant population, and in particular

the low plant populations that characterized resource-poor systems
• Redesign of the leaf area determination routines (Keating and Wafula, 1991) to improve perfor-

mance over a diverse range of maize maturity classes
• Development of genotype parameter coefficients and related algorithms that were effective for the

germplasm under consideration, which were generally outside the range then covered by
CERES-Maize
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The model that emerged from this testing and revision (referred to as CM-KEN to distinguish
it from its parent CERES-Maize) provided a good overall predictive capability. Of special impor-
tance for our main objective of evaluating the economics of purchased fertilizer in this farming
system was its competence in simulating the interactions between the management factors of plant
population, water supply, and nitrogen supply. Over the period 1988 to 1992, this model proved
to be a core tool in exploring implications of innovative management options, complicated by
interactions between N fertilizer inputs and water climate. The first use of a simulation model to
explore plant density effects under variable climates was reported by Keating et al. (1988), and the
first application of this generation of simulation model to N fertilizer use studies in smallholder
agriculture was reported by Keating et al. (1992b, 1991). This work showed that good long-term
returns appeared to be possible, but the fact that N fertilizers were moderately high-risk in the
season of fertilizer application was inescapable; and much depended on in-season management
control in relation to an uncontrollable water supply.

A major part of the work in Kenya evaluated a tactical planning and fertilizing strategy called
“response farming” as a means of reducing risk associated with crop production. This strategy
involved adjusting plant populations and nitrogen fertilizer inputs in “response” to the timing and
amount of early season rainfall. The concept had been developed earlier in this district (Stewart
and Faught, 1984), and while intuitively appealing, there was no way of evaluating its efficacy in
reducing risk without an adequate simulation capability. This required a maize model capable of
processing complex management rules concerning events and actions in advance of crop planting,
and subsequently imposing management actions such as thinning or fertilizer side dressing during
early crop development. All these management actions needed to be conditional on the timing,
pattern, and level of early season rainfall. CM-KEN and a visual and interactive version of CERES-
Maize, CERES V/I (Hargreaves and McCown, 1988) were elaborated to enable them to be used
to explore the benefits and risks associated with response farming. Analysis of individual seasons
showed important benefits from tactical adjustments in response to goodness of season. But if the
time scale of analysis was extended to sequences of seasons, the most important benefit was from
routine use of some N fertilizer (Wafula et al., 1992; McCown et al., 1991). The most important
tactical benefit of response farming was the saving of costs by the withholding of fertilizer
application in those seasons where indicated prospects were poor (Keating et al., 1992b).

Despite what appeared to be a desirable and feasible production strategy, researchers were
increasingly conscious of the social, economic, institutional, and cultural factors that were likely
to be inhibiting fertilizer usage in these systems (McCown et al., 1992). These realizations were
important in shaping later work to include a much greater emphasis on the human side of the
farming system, and to be more measured in our expectations for biophysical simulation modeling
and decision support systems to underpin useful change in real-world practice (McCown et al.,
1993). We return to this shift of emphasis after discussion of how this experience influenced
simulation software development.

Lessons for Model Development

By 1990, a comprehensive crop modeling capability for the semiarid tropics had been developed.
It was done cost effectively by appropriate modification of an established product, i.e., CERES
Maize; however, coverage of the major crops was limited (maize, sorghum, kenaf, and the forage
legume, Stylosanthes hamata cv.Verano), and we could not address key “systems issues” such as
tillage, erosion, nutrients other than nitrogen, crop rotations, and competition between intercrops
or crops and weeds.

These systems issues revealed inadequacies of the scope and architecture of the model of a
crop. By the late 1980s, researchers became increasingly cognizant of the limitations of their
© 2002 by CRC Press LLC



      
approach of continuously elaborating the code of a model of a crop to address systems issues. They
were interested in interactions between crops sequentially and spatially and wanted to properly
account for the effect cropping was having on the soil. In addition, they were increasingly ambitious
in the conditional management strategies and tactics that they wanted to represent within the models.
Their software was evolving in ways that made maintenance and further development awkward
and costly. Adding each extra item of functionality caused ripples to go through the entire model
code, necessitating an infeasible level of testing and repairs to ensure prior functionality was
maintained. It was hard to see how continuation could deal with new needs, and by 1990, they
opted for fundamental reengineering.

PHASE OF SOFTWARE REDESIGN AND REDEVELOPMENT

A major lesson from the efforts in Phase 1 was the discovery of the limitations of good crop
simulation models when taken so far from the environmental and research domains in which they
were developed. Research in Kenya and northern Australia provided grounds for key modifications.
Modifications to CERES-Maize were sufficiently numerous and substantial to justify recognizing
the derivative CM-Ken and CM-Sorghum (SAT) as distinct products (Keating et al., 1991; Carberry
and Abrecht, 1991). A particularly important bridge to the subsequent phase of developing a
cropping systems simulator, the early term used by Baker and Curry (1976), was the reengineering
of CERES-Maize to enable interactive simulation. In Visual-Interactive (V/I) CERES-Maize, events
and trends of state variable are dynamically displayed and runs can be interrupted at any time in
order to interrogate output files, change settings, etc. (Hargreaves and McCown, 1988). The expe-
rience using V/I CERES-Maize to deal with complex management rules helped shape approaches
in later manager modules.

Reengineering efforts progressed in the late 1980s to design a cropping systems simulator that
overcame limits of existing available software. The assessment was that existing models fell into
two distinct classes (McCown and Williams, 1989). One class was crop-oriented and aimed at
accurate simulation of crop yields over a wide range of environmental conditions and genetic
attributes, e.g., the CERES family of models.

The focus of the second class of software was on simulation of soil processes and management,
e.g., EPIC (Williams, 1983) and NTRM (Shaffer et al., 1982). Between them, EPIC and NTRM
simulated soil erosion and sedimentation, organic matter changes, nutrient dynamics, and they were
actively expanding capabilities for dealing with other soil phenomena. The absence of such soil
management orientation in our adapted CERES models was a severe limitation. A further attractive
feature of both EPIC and NTRM was provision of a wide range of crops that could simulate diverse
crop sequences. But the crucial deficiency was that this comprehensiveness and flexibility was
achieved by use of simplified crop routines that did not have the degree of sensitivity to environmental
extremes required for risk analysis in our climates (Williams et al., 1989; Steiner et al., 1987).

A peculiar need arose from the fact that, although analysis of risk in dryland cropping required
high crop model sensitivity to environmental extremes, management of the risk to a crop generally
involves actions or events that take place well prior to the planting of the crop, and indeed may be
associated with the previous crop. (DSSAT later provided a framework for efficiently and flexibly
accessing a suite of environmentally sensitive crop models as well as parameter and input data
[Uehara and Tsuji, 1991], but failed to achieve the required ‘systems’ functionality of the soil-
oriented simulators.) A simulator that combined the strengths of both classes of models was needed,
and to get this, it appeared that the team had to make it.

McCown and Williams (1989) reported plans and progress concerning a design that featured
three attributes:
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1. Crop models with sufficient sensitivity to extremes of environmental inputs to predict realistic
yield variation for risk analyses

2. Models to simulate trends in soil productivity as influenced by management, including crop
sequences, intercropping, and crop residue management

3. Modular software that enables efficient evolution of the simulator by research teams

The core need was for an architecture that overcame the conflict between comprehensive system
representation (agronomically important soil phenomena and a wide range of crops, as in EPIC
and NTRM) and comprehensive treatment of crop physiology that conferred sensitive prediction
of crop yield as in CERES. Because any given run configuration would require only a fraction of
the total code, in the interest of minimizing run time the structure needed to be such that only
required code would be processed. This was achieved by the concept of “plug-in, pull-out” mod-
ularity. The basic system being simulated is the soil profile as influenced by weather, crops, and
management. Even when primary interest is in crop production, this architecture is advantageous
because of the simplicity with which bare fallows, crop sequences, or crop mixtures can be
configured by controlling only what crop modules are plugged in when. Multiple crop modules
plugged in together compete for light, water, and nutrients using only the code for each crop
behaving singularly and with access to resources regulated by a simple “arbitrator.”

The formation of the Agricultural Production Systems Research Unit (APSRU) in 1991 brought
together a CSIRO cropping systems team with a team at the Queensland Department of Primary
Industries that had developed PERFECT (Littleboy et al., 1992). PERFECT combined a soil-
oriented system with crop models sufficiently elaborate to have the desired sensitivity for risk
analysis but, similar to CSIRO software, suffered a lack of good design and engineering process.
The resultant and ongoing joint venture has produced APSIM (Agricultural Production System
sIMulator) (McCown et al., 1996).

APSIM v.1 was designed around the plug-in, pull-out modular concept, shown as a “hub–spoke”
construct in Figure 8.1. All modules communicate with each other only by messages passed via
the “engine” at the hub. Crops appear in the system as a consequence of management decisions,
find the soil in some state, expire as a matter of course or are terminated by the manager, leave
residues, and leave the soil in a different state. Using a standard interface protocol, this design
enables easy removal, replacement, or exchange of modules without disruption to the overall
operation of the system. It surpasses its predecessors in ease of representation of complex crop
sequences or mixtures and dynamic simulation of the temporal and spatial interactions. From 1991
to 2001, and as a result of substantial investment, APSIM has developed in multiple directions.
Space does not allow a historical account of these developments, but in a later section, an overview
of APSIM as it stands in 2001 is provided.

PHASE OF REENGINEERING MODEL-BASED DECISION 
SUPPORT FOR FARMERS

In 1991, interest in decision support systems was at its zenith, and it was expected that a major
focus of this new APSRU modeling team would be to produce appropriate decision support software
for farmers. The starting point for this activity was a workshop with a group of elite farmers and
extension experts. A surprising degree of skepticism and criticism expressed by farmers about the
relevance of models to their management made this event a profoundly sobering experience. It
appeared that the gap between farmers’ management techniques and scientists’ visions of the
potential for simulation in management might be too wide to be bridged by mere talking. The
stakes were too high to stop short of testing the hypothesis about the utility of simulation for farm
management in real management situations.
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The focus for this phase of research had shifted to the subtropical Darling Downs region of
northeast Australia, characterized by intensive commercial dryland farming systems on productive
self-mulching vertisols and in a highly variable rainfall regime. This trial was structured as a
program of action research with the aim to find a way to use simulation in risky farm management —
a methodical trial and error development of a methodology (in the manner of Checkland, 1981).
The essential features of the situation were:

• Management dominated by uncertain rainfall
• An information technology with potential to alleviate this problem
• Weak farmer enthusiasm for the existing methodology for using this technology (the decision

support system)
• Researcher conviction that a successful methodology was most likely if simulation modeling was

researched in the context of farm management practice

Significantly, the activities did not initially feature simulation, but centered on reducing man-
agement uncertainty by enhanced monitoring of soil water and nitrogen (Dalgliesh and Foale,
1998). Measurements were often in the context of simple management experiments using treatment
strips in commercial crops. This focus, besides capturing the farmers’ attention regarding matters
of perceived importance and managerial deficiencies, provided researchers with data needed for
subsequent simulation of specific farms and fields. The soil data often provided satisfying expla-
nations of differences in crop performance. But the inevitable question of “What if we had done
this last year?” highlighted the limitation of this approach and opened the door for answering the
“What if?” question using simulation. The subsequent evolution of simulation-aided group discus-
sions about farm management is the core element of a methodology that evolved over a period of
several years, i.e., the FARMSCAPE approach (Farmers, Advisors, Researchers, Monitoring, Sim-
ulation, Communication, And Performance Evaluation) (Hochman et al., 2000).

Figure 8.1 APSIM hub–spoke architecture with plug-in, pull-out modules. More than one crop module plugged
in invokes aboveground competition via “Canopy” and belowground competition for water and N.
APSwim is based on the Richards equation.
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The FARMSCAPE approach departs radically from the traditional concept of scientific decision
support for farmer practice. Of operational significance, the simulator is “run” by an intermediary —
a facilitator or service provider — not by the farmer. Departures of a conceptual nature can be seen
with the aid of the representation of a farm system in Figure 8.2. Of the several subsystems that
could be depicted as comprising a farm, only two are shown here. Agricultural science and
simulation models are about the production system. Decision support is about what managers should
do with regard to the production system, informed by scientific understanding. But in Figure 8.2,
the operational emphasis is on the cybernetic relationships between the management system and
the production system, characterized by actions to control production, feedback from the production
system gained by monitoring in various ways, and further adjusting actions. The monitoring and
site-specific simulations in the FARMSCAPE approach reflect the local and responsive nature of
management and the need for simulation to capture this if it is to be seen by farmers as relevant
to their management situations. The most significant learning by researchers from the FARMSCAPE
experience concerns the importance to farmers of simulations being situated in their practice to be
meaningful. An important aspect of this is specification of the simulator using local soil and climate
data. Equally important is the origin of the simulation as an inquiry by a farmer seeking under-
standing or foresight. “Policies” in Figure 8.2 indicate the reality of a context of high order
personal–household–cultural guides and constraints for management of production systems.
Although well outside the boundaries of simulators of production systems and decision support
systems, their influence in real decision making is implicit in the dynamics of the participatory
“What if…? Analysis and Discussion” (WifAD) sessions.

For a simulation to be taken seriously by a farmer, it must be more than notionally relevant; it
must be seen as significant for changed management action. But for this to happen, the action–outcome
inferences must be credible. Every farmer with whom the scientists worked had to establish the
simulator’s credibility before enthusiasm and strong demand for WifADs developed. In the main, this
was achieved by demonstration of successful simulation either using special collaborative projects to
collect the necessary data from relevant commercial crops (often overlaid by simple treatment

Figure 8.2 A simplified model of the farm system, depicting management as normative, instrumental, and
cybernetic. (After Sorensen, J.T. and Kristensen, E.S., Global Appraisal of Livestock Farming
Systems and Study on Their Organizational Levels: Concept, Methodology and Results, Commis-
sion of European Communities,Toulouse.)
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comparisons) or by simulations that matched with either farm records or memory of past crop yields
(Carberry and Bange, 1998); however, with time, there appears to be an increasing readiness of farmers
to accept as meaningful the validating experiences of respected farmer colleagues in their district.

The reluctance and skepticism of farmers to take simulations seriously and participate in their
practice highlights deficiencies of the typical decision support system. For reasons of economy in
the overall process, these are generally not designed to fit real situations, but only deal with the
logic of situations (Checkland, 1981). Even if the scientific and economic logic of such products
is sound, if farmers do not find treatments of issues locally meaningful, the products will not be used.

Finally, the FARMSCAPE approach represents a paradigm shift in interfaces between scientific
knowledge and practical knowledge. The main process in a decision support system is intervention
in farmer practice with a science-based recommendation for best practice. The main process in a
WifAD is very different. If a production system simulator can be conditionally accepted as a
substitute for a real production system in Figure 8.2, then management possibilities can be tested
virtually very quickly and cheaply. Figure 8.2 can be seen as a learning cycle: starting on the left
and moving counter-clockwise, actions as adjustments, or, alternatively, deeper structural changes,
are taken. Production System consequences of the action are simulated, outcomes observed, overall
implications deliberated in the management system, and a new priority for action constructed. This
is similarly tested in the next cycle.

This use of a simulator in action learning has been described by Bakken et al. (1994), p. 246:

The goal of a learning laboratory is to provide an environment that will help enrich managers’ mental
models using tools such as the management simulators. Learning laboratories help managers leverage
their domain-rich knowledge by allowing them to play through simulated years, reflect on their actions,
modify their mental models, then repeat the process. By compressing time and space, flight simulators
can accelerate learning by enabling them to conduct many cycles of action and reflection.

Formal evaluation of participants’ experiences in the FARMSCAPE research program has indi-
cated farmers appreciate that this is the nature of WifADs (Coutts et al., 1998). This learning from
the behavior of the production system (Figure 8.1) places great importance on simulated behavior
being realistic, and prior investment in establishing this for the situation in question is indispensable.
Researchers also found that farmers often benefit from analyses and discussions that make the
functioning of the production system more intelligible. Just as stated by Bakken et al. (1994, p. 250):

The simulator also demands structural explanations of the “action → result” link that will force
participants to search for a better understanding of the underlying forces that produce a given set of
outcomes.

WifADs are free-flowing discussions that follow the directions of farmers’ interests within the
domains of the system represented in the simulator. Four functional types have been distinguished:

1. Yield benchmarking
2. Production decision support
3. Marketing decision support
4. Analysis of consequences of possible management change (Hochman et al., 2000)

These simulator applications address variously the two types of complexities (Senge, 1990).
The contribution to yield benchmarking is reduction of detail complexity. This serves to aid insight
(the reduction of detail that masks structure) that helps explain why the crop did what it did and
what effects altered management actions could have made. In the last three types of WifADs, the
function is reduction of dynamic complexity (Senge, 1990, p. 71) — complexity that includes
variable outcomes from the same action taken repeatedly in the same circumstances. Instrumental
to the contribution of simulation in reducing this complexity has been an emergent method in
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climate forecasting based on the Southern Oscillation Index (Stone et al., 1996). Additional atmo-
spheric pressure information, available for all years of weather records, provides a basis for
identifying a set of “analog years” in which simulated outcomes for a specified action are more
homogenous than for the entire population of years (Hammer et al., 2000).

Shifting from the notion of producing decision support systems for farmers to use of situated
simulation in a FARMSCAPE approach is in line with a major paradigm shift in systems thinking
from “hard” to “soft” (Checkland, 1981). It is also in line with a shift in cognitive science from
using computers mainly to compensate for managers’ cognitive deficiencies in their decision making
to mainly using computers to aid in constructing new understandings and new possibilities for
future management (Clancey, 1997; Winograd and Flores, 1986). Such a shift to the FARMSCAPE
approach has resulted in significant and demonstrable achievements in bringing benefits to farmers,
broader agriindustries and the research community in northern Australia (Carberry, 2001).

Another general lesson that emerged in this phase of using and adapting existing models was the
importance to the value of simulation in real farm management research that data for parameterization,
initial conditions, and weather inputs are from the site. In contrast with much modeling in crop
physiology research in which environmental settings can be abstracted to “scenarios,” simulations
were used primarily to virtually enlarge the sample size of years in which field monitoring and
experimentation were conducted. There was recognition that efficient systems of weather monitoring,
soil characterization, and soil monitoring needed to evolve together with simulation capability.

These developments in the use of the simulator to enable farmer education and management
have placed a number of calls upon the model development effort. The demand for a comprehensive
simulator, addressing the major crops and constraints in the farming system in realistic ways, is
something that is needed in both management support and systems analysis and design applications.
The reengineered approach to decision support that FARMSCAPE represents has placed additional
demands on user interfaces, graphics tools, and database resources. The APSIM suite of tools
contains a user-friendly interface, a flexible graphics tool, and a database tool for storing, manip-
ulating and sharing soil properties data. These interface tools have much in common with the
interface trappings of some decision support systems; however, because they are designed for a
trained intermediary in the FARMSCAPE application instead of casual use by an untrained user,
the interfaces can generally be more flexible and powerful.

THE CURRENT PHASE: MULTIPLE THEMES FOR ENHANCING SIMULATION 
OF PRODUCTION SYSTEMS

Since 1995, four themes have characterized CSIRO’s research and development:

1. Continued development of APSIM as software in response to needs arising from different appli-
cations, from opportunities and investment aimed at improving its science base and from growing
experience in software engineering

2. Continued use of APSIM in R&D for functional design of potentially superior agricultural systems
by identifying feasible or optimal strategies from a larger set of possibilities

3. Development of a delivery system for farm-situated simulations — FARMSCAPE training and
accreditation for agribusiness consultants

4. FARMSCAPE Online — Development of Internet video-conference interactions between research-
ers and farmer groups centered on “What if?” analysis and discussion for specific situations of
farmer participants

APSIM Development: 1995 to 2000

By 2000, APSIM had reached version 1.6. Vegetation modules had been developed for barley,
canola, chickpea, cowpea, fababean, mungbean, navy bean, hemp, wheat, lucerne, maize, peanut,
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millet and pigeonpea (in association with ICRISAT), sorghum, sunflower, sugarcane, and cotton (the
OZCOT model in association with CSIRO Plant Industry). A FOREST module has been used for
Eucalyptus, Pinus, and other woody vegetation. A MICROMET module is available for treatment
of energy and water fluxes in mixed canopy situations. Soil and related modules include models for
soil water, nitrogen and phosphorus balance, soil surface residue decomposition, soil erosion and
soil acidification. In some cases, alternative model representations are available as options. For
instance, SOILWAT is a layered tipping bucket soil water balance model (Probert et al., 1997), and
SWIM (in association with CSIRO Land and Water) is an implementation of Richard’s Equation
for water movement and the Convection–Dispersion Equation for solute movement (Verburg, 1996).
APSIM vegetation modules generally include water and nitrogen as limiting factors, with phosphorus
limitation currently under development and, at present, only operational for maize. Powerful and
flexible control of management in the simulation remains a feature in APSIM, with a pedigree that
traces back to the Response Farming rules in CM-KEN and V/I CERES-Maize. The MANAGER
module in APSIM utilizes a custom-built script language and compiler that enables users to com-
prehensively specify complex and conditional management rules for all aspects of a simulation.

Investment in software engineering process for the APSIM effort was stepped up in the mid-
1990s. This was in recognition of the complexity of the task of managing a large software project
that involved simultaneous development efforts by different programmer and modeling teams. A
version control and regression testing system is central to the software engineering process. This
system enables any past version of APSIM to be recreated and ensures code changes take place in
an ordered way. Regression tests are automatically run every evening and reports provided on any
changes in system performance. When unexpected or undesirable changes in performance are
detected, action is taken immediately to investigate the causes. Other key aspects of APSIM software
engineering process include formal documentation and peer review procedures, code analysis tools,
code auto-documentation tools, as well as Web-based defect reporting and change request logging
procedures. An APSIM support web site (www.APSIM-Help.tag.csiro.au) provides assess to doc-
umentation and other support materials for users as well as restricted access to software engineering
support materials for developers.

APSIM has been made available to individuals and groups via a license system that ensures
and orderly development and support effort. As of February 2001, over 250 such licenses have
been issued and the model has been used in all Australian States, and with national and international
agencies in Africa and Asia.

Version 2 of APSIM was released in February 2001. The key new capability is support for the
development of multipoint simulations, as the underlying software infrastructure can create multiple
instances of any module. This new capability is starting to be applied to the simulation of multi-
paddock crop-livestock systems and the simulation of agroforestry systems. APSIM v2 infrastruc-
ture is written in C++ and modules are contained within dynamic linked libraries (DLLs). These
developments mean that modules written in different programming languages can generally be
linked into the software system. The latter infrastructure developments are part of a joint effort
with the GRAZPLAN/GrassGro developers in CSIRO Plant Industry (Donnelly et al., 1997) to
develop a common modeling protocol to facilitate linkages between different modeling software
entities. This protocol will be available on www.APSIM-Help.tag.csiro.au from June 2001.

APSIM in Farming Systems Analysis and Design: 1995 to 2000

As APSIM has developed from a limited single crop simulator to a comprehensive simulator
of farming systems, the scope of the issues to which it has been applied has widened. All applications
are characterized by an intent of system analysis to identify some feasible or optimal strategies or
designs from a larger set of possibilities. This is policy research (Figure 8.3) and is quite different
from the action research that characterizes the FARMSCAPE approach. Some key applications of
APSIM in formal diagnosis and design are summarized in Table 8.1.
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This portfolio of applications continues to grow as new needs arise. The important finding is
that, unlike our experience in the late 1980s, the integrity of the simulator software is maintained
as additional capability is added. Software maintenance costs have not blown out as the model’s
scope has broadened. If anything, these costs have been reduced in recent years as the benefits of
investment made in the mid-1990s in improved software engineering process have manifested
throughout CSIRO’s software development and maintenance activity.

FARMSCAPE Training and Accreditation

By 1998, over 230 farmers had engaged in FARMSCAPE research activities, the research had
created a market demand by farmers for such interactions, and the systems research priority had
shifted to development of a sustainable system for delivery of a customized service. It became
necessary to scale up a FARMSCAPE service fast enough to prevent farmer disillusionment due
to unmet high expectations, but at the expense of the quality of system simulation and human
interactions necessary to retain the level of interest and confidence that created the demand.

Implicit in this mode of using simulation is a professional who is skilled in using the simulator
and interpreting simulations of real farming situations, and who, generally, (but not necessarily)
leads the “What-if?” discussions with farmer groups. Evolution in this direction has taken place in
a farm service environment characterized by decline in publicly funded extension and increase in
various forms of commercial consulting. Farmers who were enthusiastic about FARMSCAPE were
prepared to pay for a service. In order to pilot the feasibility of provision of such a service, an in-
business action research activity, analogous to earlier on-farm research with farmers was initiated.
Researchers worked for a period within a commercial advisory firm that had an interest in gearing
up to provide a FARMSCAPE service to farmers. The aim was for researchers and consultants to
learn together in order to invent together feasible approaches for commercial service provision as
well as training and support by researchers for service providers.

Figure 8.3 Different ways to conduct research to achieve different types of knowledge. (The four-category
typology is from Oquist, P., Acta Sociologica, 1978.)
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The outcome of deliberations on training and support was a plan to:

1. Establish a FARMSCAPE training, accreditation, and support program to provide both the scientific
and technical training and on-going support for advisors to provide a service enhancement based
on competent APSIM simulations.

2. In collaboration with accredited advisors, continue to learn and develop more cost-effective and
sustainable mechanisms for delivery of the FARMSCAPE approach in assisting farmers’ learning,
planning, and decision making.

3. Progress FARMSCAPE tools and methods to suit a range of industry users.
4. Evaluate the success of and learn from the FARMSCAPE approach to RD&E delivery and its

impacts on management decisions.

Two aspects of commercial consultant situations strongly influenced the choice of methodology:

1. Trainees are already accomplished professionals in their businesses, and their inputs, drawing on
their expertise and experience, were an important determinant of the adapted service product

2. Trainees are busy practitioners in a highly competitive environment.

The research approach that nicely maps onto these realities is that of action research (Figure 8.3),
which features learning-in-action rather than being trained by instruction (Schon, 1983). Learning
projects are collaboratively designed and conducted within the consultant’s practice, with the high
degree of mentoring and support required initially declining over time. The research team treats
each individual project as a case study, which is documented, evaluated, discussed, and compared

Table 8.1 Summary of Major Applications of APSIM to the Design or Enhanced Performance 
of Agricultural Systems

Application Reference

Assessment of long term consequences of crop-pasture rotations, including 
changes in soil C/N status

Carberry et al., 1996b

Assessment of long-term impacts of tillage and fertilizer management on crop 
productivity and soil fertility

Probert et al., 1995

Assessment of management and climate on soil acidification Hochman et al., 1998b
Assessment of long-term impacts of residue retention on sugarcane 
productivity and soil organic matter dynamics

Thorburn et al., 1999

Identification of optimal crop management practice to minimize nitrate 
leaching to groundwater from fertilizer in irrigated sugarcane production 
systems

Keating et al., 1997

Assessing water balance of cereal-lucerne systems Dunin et al., 1999
Design of strategies to address soil structure degradation in cereal–pasture 
rotations

Connolly and Freebairn, 1996

Maize-weed interactions in relation to fertilizer effectiveness in smallhoder 
systems in Zimbabwe

Shamudzaria et al., 1999; 
Keating et al., 1999

Optimizing irrigation inputs in sugarcane production systems Muchow and Keating, 1998
Design of on-farm water storage in sugarcane production systems Lisson et al., 2000
Assessment of nitrogen fertilizer strategies in sugarcane systems Verburg et al., 1996
Design of effluent irrigation practices for sugarcane, pastures and tree crop 
systems

Snow et al., 1999

Assessment of severity of drought for government policy implementation on 
assistance under exceptional circumstances

Keating and Meinke, 1998

Evaluation of seasonal climate forecast systems Meinke et al., 1996
Evaluation of cropping potential in new regions Cogle et al., 1990
Assessing the benefits associated with intercropping systems Carberry et al., 1996c
Design of farming systems to minimize deep drainage below root zones to 
restrict development of dryland salinity

Paydar et al., 1999; 
Ringrose-Voase et al., 1999; 
Asseng et al., 1998

Assessing the erosion and productivity impacts of maize/shrub legume hedge-
row cropping in the Philippines

Nelson et al., 1998a,b
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with others as a way of learning how FARMSCAPE suits consulting, what adaptations consultants
make to the approach, and what changes might be needed in APSIM or in the training program.

After publicly advertising, four companies were selected from eight applicants to participate
in the initial training and accreditation program now in progress, each with two participants. The
training program and associated on-going support was designed to provide:

• A high level of expertise in the use of APSIM and a sound appreciation of the underlying science
• Internet access to weather data for regions of interest in the Australian cropping belt that is both

long-term and updated regularly enough for yield forecasting
• Internet access to a GIS of measured soil properties needed for APSIM and the means to add

significant locations to this database
• The ability to measure initial soil conditions cost-effectively

The training program consists of the following modules/competency areas.

1. Soil monitoring and data management — principles, techniques, and quality assurance
2. Weather monitoring and data management — principles, techniques, and quality assurance
3. APSIM — the program and the science
4. Simulation applications in farm management
5. Analysis of simulation results and quality assurance
6. Flexible representation of results and communication with decision makers

The core of the program consists of on-farm projects negotiated with trainees and built around
trainees’ services to selected farmer clients. The initial project was the systematic monitoring of a
crop or crops that enabled project participants to track soil water and nitrogen supply and crop
growth through the season, providing the data needed to simulate the crop using APSIM and to
test model performance. Procedural manuals and interactive coaching from APSRU staff, often
through Internet video conferences, enabled trainees distributed over a large geographic area to
carry out their projects with a high degree of success. This provided a practical, experience-
producing framework within which the formal technical and theoretical training modules were
flexibly presented to maximize practical relevance and significance. For the researchers pioneering
a novel activity, it provided a valuable suite of case studies whose analysis will guide the program
redesign for the next intake of trainees. Case data include logs of all soil monitoring advisory
activity and APSIM simulations applied to clients’ problems. In addition, regular review of trainee
logs aid the trainers in insuring that trainees get the required experience with FARMSCAPE tools
and techniques, assist in assessing the progress of trainees, and to learn how they adapt the
FARMSCAPE approach to their business situations.

At the time of this writing, the first trainees were halfway through the program. Key research
findings included:

• Some individuals were experiencing periodic difficulties meeting the demands of training in
competition with urgent demands from their clients.

• Trainees were generally demonstrating high levels of competence in assessing tasks and involving
clients in them.

• Job mobility for trainees and changing company ownership has proved to be a challenge for
retaining the same trainees through a prolonged training program.

• Both trainees and their employers reported high levels of satisfaction with the program.

A critical, but subtle, lesson was that, in order for training activities to compete for attention
in a high pressure commercial environment, an ongoing need exists for nurturing and reinforcement
of the early expectations of trainees and their managers regarding valuable new service to farmer
clients.
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FARMSCAPE Online

In parallel with training and accreditation of intermediaries, means of conducting FARMSCAPE
interactions with farmers using Internet conferencing are being developed (Hargreaves et al., 2001).
Importantly, the latter is not in competition with the training and accreditation of intermediaries,
but, instead, exploration of a medium that may prove to be valuable to the trained intermediaries,
as well as valuable for interactions by researchers with farmers on matters outside technical and
business consulting. The key research question concerns the degree of loss in value of online
WifADs relative to face-to-face meetings. The approach is one of action research in which research-
ers play the role of a commercial advisors.

As described previously, although the FARMSCAPE approach features simulation of production
system behavior using abstract models, experience has shown that effective interactions begin with
concrete management issues and actions whose treatment is later enhanced in interactions using
simulation. The most common starting point involved practical means of reducing uncertainty about
soil water and nitrogen supply. One of the challenges of the online project has been to provide this
through a combination of a soil-monitoring workshop followed by support for soil and weather
monitoring for a season.

Team involvement typically begins with researchers conducting a face-to-face soil workshop
for farmers in a district. The workshops are a mixture of instruction about local landscape geo-
history and hands-on activities in practical soil sampling, processing soil cores, and calculations
and data processing. A central aim is to provide farmers with the opportunity to appreciate their
soil resource in new ways. The cores allow participants to see soil properties at depths not often
accessed and the utility of measurements beyond those made normally in their practice. Simply
breaking cores sequentially down the profile to trace rooting depth and feeling the relative wetness
or dryness throughout the profile is a start to new appreciations for many. Researchers report back
on data in an online meeting at a later date and implications are discussed. Measurements are a
combination of what is valuable in its own right for decision making and what enables specification
of APSIM for the situation (Dalgliesh and Foale, 1998).

The aim is to engage farmers in a process of active learning. Evaluation shows that most farmers
who attend these workshops have mental models of soil water congruent with the prevailing
technique for measurement — the pushing of a pointed steel rod about a meter long into the soil
as far as the farmer can push it. This measures the depth of wet, i.e., soft soil, following a rainfall
event. The activity undertaken during the soil workshop provides the opportunity for farmers to
evaluate an alternative to this representation of the soil water environment — one that features a
“water budget” concept with water stored in the empty volume of the soil “sponge.” This concept
leads logically to plant available water capacity (PAWC), which links with the way APSIM simulates
soil water change. We have found that many farmers find the storage concept and the metaphor of
the soil as a bucket, with a capacity and a content that varies from empty to full, is more useful
than the depth of wet soil. “How big is the bucket?” is an increasingly common question in farmers’
discussions of their soils. (Probes, nevertheless, continue to be valuable for quick checks after a
rainfall event.)

Evaluations undertaken after the half-day soil workshops reveal that many participants are
motivated to increase monitoring activity. The team’s research program has followed this energy
by providing support of a limited number of enthusiastic farmer groups for a cropping season in
monitoring soil and weather, including access to a hydraulic soil-coring rig, an automatic weather
station, and an electronic balance. Monitoring programs have been developed jointly with these
farmers and are centered on issues of significance nominated by them. Issues suggested by farmers
include evaluating the variables of row spacing, planting rate, nitrogen application, and planting
date, as they relate to yield and gross margins, particularly via effects on the often scarce resource
of soil water.
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An online meeting using Microsoft NetMeeting™ takes place between a group of farmers
assembled around a host farmer’s computer and a researcher at his or her office. This technology
supports audio and video communication as well as computer screen sharing. Bandwidth limitations
in rural Australia generally require the use of separate audio via a simultaneous telephone connection
with hands-free speakers. The researcher shares graphs of field data using specifically designed
Excel spreadsheets. Farmers discuss these, often in relation to their personal and practical experi-
ences with a particular crop, soil state, and weather.

How severe is the loss in quality of experience in an online meeting relative to a face-to-face
meeting? This has been posed in evaluation interviews as “If an online meeting was free, how
much extra would you pay for a face-to-face meeting?” The characteristic answer has been “Why
would I pay more when this is as good as?” This response has been somewhat surprising to the
researchers, because some exercise of tolerance with technical problems and effort in repairing
human communications is often required. But aside from early problems attributable to inexperi-
ence, all concerned expect that most problems will be solved by increased telecommunication
bandwidth for rural areas in Australia in the future.

DISCUSSION

Most researchers would agree with the proposition that agricultural systems research is a
distinctive form of agricultural science. But there would probably be less agreement on what makes
systems knowledge distinctive. The simple dichotomous structure of human knowledge proposed
by Ryle (1949) appeals to us as the basis for a significant distinction. Ryle distinguished between
“knowing that something is the case in the world” and “knowing how to bring about, or maintain,
a desired state in the world.”

The importance of both types of knowledge in a farm system can be discussed in terms of
Figure 8.2. The analytical knowledge of agricultural science concerning the nature of the production
system exemplifies “knowing that.” The focus of systems research is on “knowing how” to achieve
and maintain the desired state of the production system. Although this distinction is useful, it is
not absolute. There is interaction and overlap between the two in both research and farming practice.
These days, the ways that high-performing farmers see and think about their production systems
is strongly influenced by knowing that production systems are structured as science claims them
to be. This theoretical knowledge augments the primary structure of management that is based on
feedback linkages (monitoring and action in Figure 8.2) underpinned by know-how, based on the
historical patterns of system behavior (Senge, 1990).

In their 15-year systems research experiment, the authors found simulation modeling can
provide a unique bridge between the knowledge of agricultural science and the know-how of farming
practice. Effective bridging depends on good science, embodied in good process models. But in
this role, good systems practice requires good compromise of both comprehensiveness of process
treatment and the practicalities of model specification and testing. This results in models that are
more often functional than scientifically mechanistic (Simon, 1996). Practicalities also drive the
need for adding value to models by imbedding them in simulators (Baker and Curry, 1976; Banks
et al., 1991), which make data management, model reconfiguration, and simulation output reporting
efficient and effective.

Simulators convert modeled relationships to meaningful, albeit virtual, histories of system
behavior. Such artificial histories have proved of particular value in providing a sort of artificial
experience to both professionals and farmers. Whereas a farmer has some cumulative actual
experience of the nature and variability of his or her environment, creation of a simulated history
can provide advisors and researchers seeking to service the farmer with a helpful substitute. In
highly variable climates, patterns are hard to perceive and a sense of “how often” or rules of thumb
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for action concerning weather tend to be weakly developed [a possible example of the Outcome-
Irrelevant Learning Structure (OILS) of Einhorn (1982)]. Using a simulator and local climatic
records, patterns in local histories are arguably more readily perceived than in real farming life,
which is protracted and largely undocumented. Team members found that farmers value simulated
histories, appropriately analyzed and graphed, as a means of evaluating the prospects of a contem-
plated management change (Hochman et al., 1998a).

In an entirely different arena, that of public policy, descriptions of problems and their back-
grounds have been created that enable policy analysts to view certain simulated histories as relevant
and, possibly, significant to actual futures, and expansion of this role for simulation is of high
priority in our research on sustainable ecosystems (Table 8.1).

In real life, there is no substitute for experience gained through encounters with system behavior.
Simulation can sometimes enhance this experience, through artificial experience, as described
previously, but it can also enhance it by providing insight to deep structure — theory valuable in
explaining behavior and in anticipating future behavior. When system simulation is providing a
(partial) substitute for actual (risky) experience, a good simulator makes it easy to look inside to
see how it works, and such understanding is often highly valued by farmers and advisors.

This involvement in human learning and planning practice is a long way from our starting
points in crop and soil process research. How does simulation based on abstract models play these
various roles in the representation of “knowing that,” and in the construction of both of new
knowledge and enhanced know-how? This is a systems question, but it is at a level of abstraction
such that answers must be expected to be largely philosophical. Although an answer at this level
has not proved to be essential prior to conduct of the research, it takes on greater significance as
we try to make holistic sense of this new model-based research and justify it in a modeling
community that is expecting something quite different. It involves both deeper understanding of
the natures of both simulation and management or an actual family farm.

Although an instantiation of the production system in Figure 8.2 would refer ultimately to a
set of soils, crops, etc., somewhere in the world as a framework for discussing models and
simulation, its reference is more directly an abstract set of such objects and their relationships to
one another (Kleene, 1952 quoted by Kliemt, 1996, p. 15):

By a system S of objects we mean a set D of objects among which are established certain relationships.
The system is abstract if the objects of the system are known only through the relationships of the
system. [ ] …what is established in this case is the structure of the system, and what the objects are,
in any respects other than how they fit into the structure, is left unspecified. Moreover, any further
specification of what the objects are gives a representation (or model) of the abstract system, i.e., a
system of objects which satisfy the relationships of the abstract system and have some further status
as well.

This construction of the theoretical structure of the system (creating subsets of objects identified
only by parsimonious mathematical relationships) is the essence of nomothetic research (Oquist,
1978). This activity creates smaller, intelligible worlds, in part by abstracting away detail complexity
(Senge 1990) to provide general structure, and, in part, by selecting only relevant objects and
aspects to study (Schutz, 1963, quoted by Blaikie, 1993, p. 42).

It is up to the natural sciences to determine which sector of the universe of nature, which facts and
events therein, and which aspects of such facts and events are… relevant to their specific purpose…
Relevance is not inherent in nature as such; it is the result of the selective and interpretive activity of
man [sic] within nature or observing nature.…

Agricultural scientists seek to understand “what is the case” in production systems, focusing
on “what is relevant to the activity of agriculture,” in principle. Models of the production system
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represent elements whose structural relationships, provided with Kleene’s “further status” by
appropriate specification, are capable of mimicking relevant facts and events. This capability then
provides a double-sided capability — to explain and to predict the behavior of the abstract system S,
which represents, in principle, real production systems. The fact that a structural–functional model
can be specified for local conditions provides a systems research tool for partially bridging the gap
between scientific knowledge and the know-how in farming practice. In the typology of research
of Oquist (1978), depicted as the gray portions of Figure 8.3, nomothetic research, which creates
relevant abstract systems and models based on “knowing that,” contribute to policy research, applied
scientific research, and engineering design. The latter two are aimed at contributing to the “knowing
how” of practice. Whereas agricultural science is concerned with descriptive, nomothetic and
applied research, systems research extends beyond these in the direction of management know-how.

According to Checkland (1981), “hard” systems research embraces engineering design and
policy research aimed at optimizing the logic of human activity, or practice. As hard systems
activities, operations research and decision support systems provide guides to practice that are
structured by the underlying abstract models — logic for action based on theory about the nature
of the external environment as constructed by science. Taylor and Evans (1985) termed this
“potentially knowing how.” Recommendations for optimal action, explicit or implicit, so derived,
are scientifically normative. They represent the best efforts of a scientific design approach to real
world practice from outside the problem context, using the logic of the situation. But actual know-
how has passed the filter of meaningful practical experience in the management situation. The
profound nature of the gap between such external, potential know-how and internal, actual know-
how is only beginning to be appreciated by hard systems researchers (McCown, 2001). Good
science studies the local out of necessity, but uses clever techniques to move beyond the local to
make general statements. But, perversely, this very abstraction contributes to the gap that is often
lamented. The biologist and philosopher, Gregory Bateson, saw this as one of the most profound
aspects of the distillation process of history as well as science: “…there is a deep gulf between
statements about an identified individual and statements about a class. Such statements are of
different logical type, and prediction from one to the other are always unsure” (Bateson, 1980).

The FARMSCAPE approach uses nomothetic research and the hard systems tool of production
system simulation to deal realistically with the structure of the production system. But instead of
using science to design optimal practice, the simulator is used to enable meaningful and adaptive
experience of managers — a soft systems approach to construction of managers’ “knowing how”
(but often with a by-product of “knowing that” insights by participants). The paradigm shift is
epitomized by the fact that soft systems knowledge is structured, not by abstract biophysical
relationships, but by the intentionality of the manager (Caws, 1988) — implicit in the policies
portion of the management system of Figure 8.1. One of the main arguments for the superiority of
the decision support system over previous operations research optimization for managers was that
the former recognized that many management problems were less than fully structured and so could
not be adequately modeled. This lack of structure referred to the degree to which managers’ policies
included deviations from the striving for maximum profits — deviations that are important in
farming practice (Frost, 2000).

Decision support systems in the hands of farmers notionally allowed other preferences to be
exercised, guided by knowledge of structure as revealed in simulated events and patterns of events.
Although this rationale was a step in situating models within the management system (Figure 8.2),
our work with farmers in FARMSCAPE indicates that a central reason for the low use of decision
support systems was the failure of simulations to be adequately situated in local practice physically
or a lack of means for the user to test if this was the case. There is a substantial cost to specifying
a model to simulate a real situation, and this cost has been considered by many to be prohibitive
(e.g., Boote et al., 1996). Such costs include not only the demands of creating data of adequate
quality but, generally, operating the model in this more open, flexible mode with acceptable risks
of operator error. FARMSCAPE addresses this by having a flexible simulator operated by a
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professional intermediary trained in its operation, pragmatic data requirements, and efficient field
measurement systems. This investment in physical situatedness is complemented by socially situ-
ating simulations in WifADs. One aspect of this social situating is analysis and discussion of
farmers’ perceived problems; another is the satisfaction of farmers’ needs for evidence that the
simulated system performance conforms to their own experienced performance or performance
records.

It is important that justifiable criticism of the logic of applying models to design of decision
support systems for individuals not detract from the justified logic of using of models in nomothetic
and policy research when the aim is general knowledge and public policy. This was the original
logic of hard systems that grew out of a World War II need for more rational plans for responding
to enemy air attacks. This was followed in peacetime by enormous contributions by operations
research and systems engineering to design of better policies and physical systems in industry and
government. This intellectual and technological movement diffused into agriculture in the late
1940s. (In an interview with the late Professor C.T. DeWit shortly before his death, the pioneer of
modeling in agriculture said he was strongly influenced as a graduate student by a new professor
who had come from Shell Oil — an expert in simulating petroleum distillation.) Enormous progress
has been made in the past 50 years in the ability to simulate agricultural production systems,
building on the experience from industrial systems. Competent models imbedded in efficient
simulators will undoubtedly be even more important in the future to enable learning from virtual
mistakes instead of costly real ones. But systems researchers face a public application context that
has become increasingly complex and problematic.

This trend can be tracked by two successive books with the same title: Operational Research
and the Social Sciences, which are proceedings of conferences that brought together operations
researchers and social scientists — first, in 1964 (Lawrence, 1966) and again in 1989 (Jackson
et al., 1989). At the time of the first conference, hard, scientific modeling efforts concerning
important systems problems were attracting criticism for work that ignored or underestimated the
social nature of most problems of importance. By the time of the second conference, it was noted
by the editors that (Jackson et al., 1989, p. v):

Few, these days, regard OR [operational research] as being simply applied mathematics. The recog-
nition that OR is a process of intervention in organizations and human affairs is now wider and more
explicit. There has been a penetration and diffusion of ideas from the social sciences into OR, reflected
most strongly in the body of writing about soft OR methods and soft systems thinking. Social and
political skills are now recognized as critical to the success of OR practice and this is particularly so
as operational researchers have sought to extend their client base outside that conventionally served.
The rise of computer technology, embraced by OR, has required some thought to be given to its
powerful impact on and consequences for organizations, people, and processes of decision. As a
consequence, perhaps, of broadening its methodological base in attempting to extend its impact, OR
has encountered the problem of competing “paradigms” — a condition long experienced by the social
sciences.

Systems activities in agriculture have historically often lagged behind the main systems move-
ment by a decade or two. During the past 10 years, CSIRO’s own hard systems team has become
very cognizant of the soft paradigm, and its thinking about systems and research and intervention
practices have changed significantly. Although the team experienced paradigm competition (Ridge
and Cox, 2000; Woods et al., 1997), members are impressed with what might be called the paradigm
cooperation of Mingers and Gill (1997), which offers, in the metaphor of Sellars (1963), “stereo-
scopic vision.” The aim is to use the best hard tools and methods science can provide in a “soft”
philosophical and communication matrix that will enable appropriate response to the human setting
of the problem and our own inescapable inclusion in this setting.

The authors find that scientists commonly perceive their program of soft and hard systems
approaches as an unconventional mix of research and extension. They assert it is more helpful to
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see it as a way of doing research differently in an age when scientific knowledge is increasingly
expected be directly linked to, and justified by, relevant and significant new know-how in practice.
The exciting new realization for us is that a simulator based on scientific knowledge can be
instrumental in enabling and facilitating situated cooperative learning by practitioners and researchers.
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INTRODUCTION

The World Atlas of Desertification (UNEP, 1992) defines semiarid regions as the areas where
the ratio of mean annual rainfall (R) to mean annual potential evapotranspiration (PET) varies
between 0.2 to 0.5. In an assessment of population levels in the world’s drylands, the Office to
Combat Desertification and Drought (UNSO) of the United Nations Development Programme
(UNDP) showed that the semiarid regions account for approximately 18% of the total area in the
world and are inhabited by 874 million people or approximately 16% of the world’s population.
The world’s semiarid regions are home to about 18% of the total population in Africa, 14% in the
Americas and the Caribbean, 18% in Asia, 5% in Australia and Oceania, and 5% in Europe (UNSO,
1997). Population growth rates are high in the semiarid regions, and hence, the need to develop
effective strategies to improve and sustain agricultural productivity in these regions is of paramount
importance.

The low, variable, and undependable rainfall and the relatively poor soils with their inherently
low soil nutrients needed by plants that characterize the semiarid regions call for efficient soil and
water management strategies to achieve good yields at the farm level. Although drought occurs
during periods of insufficient rainfall, water logging can occur during periods of excessive rainfall.
Crop drought stress occurs in the crops grown in these semiarid regions due to many factors
including high reference ET (ETo), low extractable soil water in the root zone, poor root distribution,
restricted canopy size, and other plant and environmental factors. A range of pests and diseases
attack these crops in the semiarid regions, and effective and timely crop protection strategies are
crucial to reduce the yield losses that occur frequently. Hence, the tasks of finding an ideal
crop/cropping system, and suitable soil and water management strategies that can increase and
sustain high levels of crop productivity in the semiarid regions, should take into account a number
of soil, climate and crop factors that interact in different ways.

Scientists have traditionally approached the above task by designing field trials that examine
the impact of one or more factors on crop productivity; however, given the complexity of factors
involved and the possible combinations that need to be studied in the semiarid agriculture, such
traditional experimental approaches can indeed be quite expensive and time-consuming. As it is
not feasible to study the full range of crop–soil–weather–management interactions in experiments,
applications of models based on concepts of systems analysis (De Wit, 1982) has been a promising
alternative (Penning de Vries, 1994). A model is defined as a simplified representation of a system,
and a system is a distinct part of presumed reality that contains interrelated elements (De Wit,
1982). Sinclair and Seligman (1996) defined crop modeling as the dynamic simulation of crop
growth by numerical integration of constituent processes with the aid of computers. It is described
as a technology used to construct a relatively transparent surrogate (or substitute) for a real crop,
one that can be analysed or manipulated with far greater ease than the complex and cumbersome
real crop. Time and expense are the prime considerations (Roberts, 1976) in addition to the
introduction of systemic errors in experiments.

Crop modeling evolved in the late 1960s as a means of integrating knowledge about plant
physiological processes in order to explain the functioning of crops as a whole (Bouman et al.,
1996). Insights into various processes were expressed using mathematical equations and integrated
in so-called simulation models. In the early years of crop simulation models, much euphoria
surrounded the initial excitement and the perceived potential of crop models and claims of the crop
models were made that crop models could present effective solutions to various strategic and tactical
questions concerning on-farm crop management. By 1996, a more realistic appraisal of the potential
of crop-growth models was made, and it was concluded that there is much we do not know about
the mechanistic structure of the workings of plants and their interactions with their environment
(Passioura, 1996). In a thought-provoking article on “The Quest for Balance in Crop Modelling,”
Monteith (1996) pointed out that model building can draw attention to gaps in understanding and
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thereby stimulate new experimental or theoretical work. He also explained that models can provide
a framework for interpreting the output from field experiments in different environments, and that
they can be used to explore, with due caution, ways of improving management or minimizing risk.
Sinclair and Seligman (1996) went a bit further and concluded that user-friendly models can fulfill
a vital heuristic function in teaching, research, and management planning.

Following development of object-oriented programming and the recent advances in internet
applications, Pan et al. (1997) developed an object-oriented and Internet-based generic plant growth
simulator for research and educational purposes on the World Wide Web. With a Java-embedded
Web browser, the user can link to the run-time model from the Web site of the authors.

Despite the rapid advances described previously, providing a comprehensive description of the
applications of crop growth models in the semiarid regions is not an easy task. In this chapter, we
have attempted to describe some of the salient features of the climate, soils and crops in the semiarid
regions of the world. This is followed by a brief description of the potential for use of crop growth
models for practical applications in the semiarid regions. Needless to say, in this short chapter it
is rather difficult to do justice to applications of crop growth models in the vast area of semiarid
regions. Nonetheless, we have attempted to describe the current applications of crop growth models
in the semiarid regions with suitable examples, especially from the semiarid tropics.

AGROCLIMATIC CONDITIONS IN SEMIARID REGIONS

Climate

The semiarid climates usually constitute a transition between desert and sub-humid to humid
climates and are characterized by a short period of rainfall during the year. It is this brief period
of seasonal rain, which causes them to be semiarid, instead of arid (Trewartha,1968). The semiarid
regions are characterized by a low and highly variable rainfall and a high demand for water imposed
by the consistently high temperatures and solar radiation. The annual potential evapotranspiration
demand (PET) at the land–water surface exceeds the annual rainfall amount; the actual ET is, of
course, less than rainfall.

The semiarid regions of northern Australia, west Africa, southwestern Africa and northwestern
India-Pakistan receive their maximum rainfall during summer. In contrast, the semiarid regions of
North Africa, southern Australia, southern Iran, western Asia, northwestern Mexico, and adjacent
parts of the southwestern U.S. are dominated upon by westerlies with their cyclones and fronts in
winter. Because of the cool season, evaporation is less, and consequently the modest amount rain
that falls is relatively more effective for plant growth. Semiarid regions in the middle latitudes are
found in the deep interiors of the continents with relatively severe seasonal temperatures and thus
large annual ranges.

Rainfall in the semiarid regions has to be characterized not only by average behaviour but by
interannual and interseasonal variability. In low-rainfall years, there may be droughts; in high-
rainfall years or even for short periods in low-rainfall years there may be floods or excessive rainfall.
Deficient rainfall years may be followed by similar years or by years with excess rainfall.

The scale of rainfall variability in the semiarid regions determines to a large extent the kind of
crops/cropping systems that can be grown and the magnitude of their vulnerability to the rainfall
vagaries. Temporal or time-dependent variations in rainfall are common, and can be represented
by three time scales: annual, monthly, and daily. The coefficient of variation of annual rainfall
ranges between 15 and 30%. Variability in monthly rainfall is larger, because the rainfall is usually
limited to 3 to 5 months. Rainfall variability reaches its maximum at the level of daily rainfall.
Rainfall in the semiarid regions is also characterized by high spatial variability. Few intensive
studies on this aspect in the semiarid regions are available. Sivakumar and Hatfield (1990) reported
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that over a 500-ha research farm in Niger (West Africa) deviations of the order of 30 to 40% in
individual raingages from the central observatory were observed in isolated cases, deviations up to
80% were noted.

In certain semiarid regions, persistence in the rainfall deviations is significant. For example, in
the semiarid West Africa rainfall shortages persisting over one to two decades were observed
(Nicholson, 1982). Rainfall fluctuations are also associated with a geographic pattern. Sivakumar
(1989) showed that the reduction in mean annual rainfall in both Niger and Burkina Faso after
1969 was characteristic of the entire region. After 1969, the rainfall isohyets were displaced further
south showing that the rainfall changes affect large areas.

Because the semiarid climates are found in such a wide variety of latitudes and continental
locations, few valid general comments can be made concerning their temperature regimes. In
general, the clear skies and dry atmosphere tend to make them severe for their latitude, with
relatively extreme seasonal temperatures and thus large annual ranges (Swindale, 1982).

Soils

The effectiveness of the low and variable rainfall in the semiarid regions is further determined
by the soil type and its physical and chemical properties. There are many kinds of soils in the
semiarid regions. As Swindale (1982) described, not all of them have ustic soil moisture regimes
and not all have isohyperthermic or hyperthermic soil temperatures. Many are unsuited for agri-
culture. The brief description of the soils of the semiarid regions presented below is taken mainly
from the publications on soils of the semiarid tropics.

Arenosols or coarse textured soils containing more than 65% sand and less than 18% clay
comprise 11% of the arable soils in the semiarid tropics. Luvisols, soils with base-rich argillic B
horizons, occupy 15% of the semiarid tropics, occurring in wetter climates than the arenosols.
Vertisols occupy 7% of the arable soils in the semiarid tropics. Ferralsols are the most weathered
and extensive soils of the semiarid tropics, occupying 33% of the region. Acrisols occur mainly in
regions where seasonal rainfall is high, or in humid areas occurring within the semiarid regions.

Arenosols or the sandy soils are characterized by low fertility, low water-holding capacity and,
hence, lack of water, and poor physical conditions. These soils are generally also low in organic
matter, nitrogen and phosphorus (Jones and Wild, 1975). Luvisols or alfisols are low in nitrogen
and phosphorus and have problems with surface crusting which reduces infiltration, affects seedling
emergence, and reduces plant stand. The poor structural stability at the surface also makes them
quite susceptible to erosion by water when tilled for cropping. Vertisols have a high available water-
holding capacity, but are very susceptible to erosion on tillage.

Analysis of 31 soil samples from the major millet growing regions of the semiarid regions of
West Africa showed that the total sand content varied from 71 to 99% with a mean of 87% (Bationo
et al., 1993). These soils have production constraints imposed by physical and climatic processes,
e.g., crusting, drought, erosion by wind and water, and high soil temperatures. One striking feature
of these soils is the inherently low soil fertility, which is expressed through their low levels of
organic matter, total nitrogen, and effective cation exchange capacity.

Much of the recent research in the Sahel indicates that rainfall per se is not necessarily the
crucial limiting factor to agricultural production. Rather it is the proportion of rainfall which enters
the soil water reservoir and its subsequent utilization by plants. Arenosols have a low water-holding
capacity, which imposes a severe drought risk if extended dry periods occur during the crop growing
season. On the other hand, luvisols present a different management problem because of their
tendency to form a hard crust on the surface resulting in reduced infiltration and increased runoff.
Charreau (1974) showed that as much as 32% of the mean annual rainfall could be lost as runoff
on a well-tilled, cropped luvisol while on a bare soil the losses could be as high as 60%.
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It is common knowledge that similar amounts of rainfall, on dissimilar soil types, could lead
to different levels of available water for crop growth. At Bengou in southern Niger, measured soil
water profiles in two soil types, a loam and a sandy loam, at the time of planting and harvesting
of millet during the 1986 growing season (Sivakumar and Wallace, 1991) showed important
differences with the same seasonal rainfall of 784 mm. Hence, strategies for sustainable agriculture
may have to be site-specific.

Crops

Sorghum (Sorghum bicolor L. Moench), pearl millet (Pennisetum glaucum L. R. Br.) and maize
(Zea mays L.) are the major rainfed cereals grown in the semiarid regions. Sorghum is an important
and widely adapted small grain cereal grown between 40ºN and 40ºS of the equator. It is mainly
a rainfed crop in the lowland, semiarid areas of the tropics and subtropics, and a post-rainy season
crop is grown principally on residual soil water, particularly in India (Craufurd et al., 1999), with
limited rainfall. Pearl millet is widely grown as a food crop in subsistence agriculture in Africa
and on the Indian subcontinent. Pearl millet has a number of advantages that have made it the
traditional staple cereal crop in subsistence or low resource agriculture in hot semiarid regions like
the West African Sahel and Rajasthan in northwestern India. These advantages include tolerance
to drought, heat, and leached acid sandy soils with very low clay and organic matter content
(Andrews and Kumar, 1992). Generally, it is grown on sandy soils in association with cereals such
as sorghum and/or with legumes such as cowpea (Vigna unguiculata).

Rice (Oryza sativa L.) and sugarcane (Saccharum officinarum L.) are grown under irrigation
and in the river deltas and wheat (Triticum aestivum L.) is grown under irrigation in the winter
season mainly at higher latitudes. Wheat is also grown as a rainfed crop in the semiarid zone
(Anon., 1981). Under these conditions, drought accompanied by high temperatures occurs fre-
quently later in growth and the post-anthesis water shortages drastically reduce the grain yield.

The major grain legumes grown in the semiarid regions are pigeonpea (Cajanus cajan L.
Millsp.), chickpea (Cicer arietinum L.), cowpea (Vigna unguiculata L. Walp.) and mung bean
(Vigna radiata L. R. Wilcz.). Pigeonpea is an important tropical grain legume commonly inter-
cropped with cereals. For example, in the semiarid regions of India, it is predominantly intercropped
with sorghum, but in the lower rainfall areas with lighter and shallower soils it is grown with pearl
millet. In the uplands, it is grown in combination with rice. Chickpea is grown over a wide range
of agroclimatic environments in the arid and semiarid regions and is traditionally grown in the
northern hemisphere mostly between 20°N and 40°N latitudes. It is best adapted to the cool winter
temperatures of the semiarid tropics and the spring to early summer seasons of the Mediterranean
region and has considerable importance as food, feed, and fodder.

Cowpea is an important seed and fodder crop commonly grown in agriculturally difficult
conditions in the diverse cropping systems of both the semiarid and the humid tropics (Steele et al.,
1985). Most farmers in West Africa grow medium- to long-duration, photoperiod-sensitive cultivars,
usually in association with cereals such as pearl millet or sorghum. Cowpea is also an important
grain legume grown in South and Southeast Asia, to meet the protein requirements of small farmers,
forage requirements of ruminants and to improve the soil fertility of rice lands. Comparitive studies
of species performance (Muchow, 1985a, b, c) showed that cowpea is a drought-avoiding species,
whereas soybean (Glycine max L. Merr.) has high yield potential but has only a limited capacity
to avoid drought in African conditions.

Groundnut or peanut (Arachis hypogaea L.), soybean, safflower (Carthamus tinctorius L.),
sesame (Sesamum indicum L.), and mustard (Brassica juncea) are the main oilseed crops grown
in the semiarid region, while cotton (Gossypium hirsutum L.) is the main fiber crop. Groundnut is
grown in diverse agroclimatic environments in the semiarid regions. Soybean is a major crop with
an increasing worldwide value as animal feed and human food source.
© 2002 by CRC Press LLC



     
POTENTIAL FOR USE OF CROP GROWTH MODELS FOR PRACTICAL 
APPLICATIONS IN THE SEMIARID REGIONS

The summary of climate, soil, and crop characteristics described earlier shows that the farmers
in the semiarid regions have the rather difficult task of managing their crops on generally poor
soils in harsh and risky climates. Scientists and research managers striving to find solutions to the
complex problem of soil and crop management in the unreliable semiarid climates also need tools
that can assist them in taking an integrated approach to finding solutions. Policy makers and
administrators need simple tools that can assist them in policy management. In this regard, a systems
based effort can assist in understanding, predicting, and manipulating the outcomes from agricultural
systems for ecological, agricultural, and economic gains (Singh et al., 1999).

Crop growth models can serve as effective tools in problem solving for the different user groups
listed above: the farmers, scientists and policy makers. The applications that they seek vary.
According to Boote et al. (1996), there are three primary uses or reasons for crop modeling —
research knowledge synthesis, crop system decision management, and policy analysis. They
believed that only recently have crop models been used as grower decision support tools.

Hoogenboom (2000) defined the management applications of crop simulation models as stra-
tegic applications, tactical applications and forecasting applications. Strategic applications were
explained as those where crop models are run prior to planting of a crop to evaluate alternative
management strategies in contrast to tactical applications, which are run before planting or during
the crop-growing season. In forecasting applications, the crop models are used to predict yields
either prior to planting or during the growing season. To the different applications listed by
Hoogenboom, one can add research management applications. Depending on their needs, the
different user groups could seek either one or more of the different applications, i.e., strategic,
tactical, forecasting, and research.

Model Applications for On-Farm Decision Making

A number of decisions have to be made at the farm level such as which crop/cropping system
to chose, which variety, when to cultivate the soil, when to sow, when to weed, when to fertilize,
when to apply pesticides and insecticides, when to schedule irrigations, what depth of irrigations,
when to harvest, etc. Crop growth models can be effectively used to derive simple decision rules
for farmers in a decision support system framework to provide answers to these questions. As Tsuji
et al. (1998) explained, models allow evaluation of one or more options that are available with
respect to one or more management decisions.

Crop growth models can be used to predict crop performance in regions where the crop has
not been grown before or not grown under optimal conditions. As shown by van Keulen and Wolf
(1986), such applications are of value for regional development and agricultural planning in
developing countries. Modeling is efficient since time frames of many years can be simulated
quickly and inexpensively for many locations and management strategies (ARS, 1993). In addition,
an unlimited number of management strategies can be considered.

A crop model can calculate probabilities of grain yield levels for a given soil type based on
fall and winter rain and probabilities of these climatic conditions for the upcoming season, before
investing in fertilizer (Kiniry and Bockholt, 1998). Assessments of the consequences of different
timings and dosages of fertilizer applications can also be conducted. This kind of application is
very important for improving the efficiency of fertilizers and biocides for specific cases, and for
reducing environmental pollution. Model based management strategies, such as these, are already
in use on large scales for optimising fungicide application in crops (Zadoks et al., 1984; Rosa et al.,
1992). In addition, the biological outputs and management inputs can be combined with economic
factors to determine the risk associated with the various management practices that are being
evaluated (Lansigan et al., 1997; Thornton and Wilkens, 1998). Applications can also include
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investment decisions, such as those related to the purchase of irrigation systems (Boggess and
Amerling, 1983).

The main goal of most modeling applications is to predict final production in the form of either
grain yield, fruit yield, root or tuber yield, biomass yield for fodder, or any other harvestable product
(Hoogenboom, 2000). Simulation models were used to predict crop yield, to extrapolate and to
interpolate crop performance over large regions and to create links with other sciences. Maas (1988)
showed that updating the initialization of a simple crop model with accumulated remote sensing
data provided improved estimates of final yield than updating based on crop measurements.

Model Applications for Research

Although farm level applications are clearly the most important ones for crop-growth models,
they are also widely used in research. Given the need for increased and sustained agricultural
productivity in the semiarid regions, especially in the developing countries, efforts are being made
to increase the research investment. In most developing countries, however, financial and human
resources limit the number and the quality of experiments, and soils and weather change over short
distances. Hence, Timsina et al. (1993) stated that conclusions from such experiments have only
limited applicability, no matter how carefully they have been conducted. In this regard, crop models
are particularly valuable for synthesizing research understanding and for integrating up from a
reductionist research process (Whisler et al., 1986).

As Penning de Vries (1977) explained, the use of a simulation model of a system contributes
to our understanding of the real system because it helps to integrate the relevant processes of the
system studied and to bridge areas and levels of knowledge. The task of building models demands
more complete acquisition and assimilation of knowledge. Conversion of conceptual models into
mathematical simulation models reveals gaps in our knowledge of agricultural processes. Hence
the interdisciplinary nature of simulation modeling efforts leads to increased research efficiency
and improved research direction through direct feedback.

In the last two decades, simulation models have been principally used to determine the potential
growth and establish the biological limits of agricultural production. A good example of how
modeling helped research comes from the Wageningen Agricultural University in The Netherlands.
In the 1960s, the first attempt to model photosynthetic rates of crop canopies was made (De Wit,
1965). Results obtained from this model were used among others, to estimate potential food
production for some areas of the world and to provide indications for crop management and breeding
(De Wit, 1967; Linneman et al., 1979). This was followed by the construction of an ELementary
CROp growth Simulator (ELCROS) by De Wit et al. (1970). This model included the static pho-
tosynthesis model and crop respiration was taken as a fixed fraction per day of the biomass, plus
an amount proportional to the growth rate. In addition, a functional equilibrium between root and
shoot growth was added (Penning de Vries et al., 1974). The introduction of micrometeorology in
the models (Goudriaan, 1977) and the quantification of canopy resistance to gas exchanges allowed
the models to improve the simulation of transpiration and evolve into the BAsic CROp growth
Simulator (BACROS) (De Wit and Goudriaan, 1978). BACROS model was subsequently used as
a reference model for developing other models and as a basis for developing summary models such
as SUCROS (Simple and Universal CROp growth Simulator) (van Keulen et al., 1982).

One of the first application-oriented research challenges for modeling was the Dutch/Israeli
project titled “Actual and Potential Production of Semiarid Grasslands,” which was initiated by
De Wit in 1970 (Alberda et al., 1992). In this project, crop modeling was used to quantify and
formalize, as far as possible, the relevant processes involved in water-limited production, and to
extrapolate and apply the resultant knowledge to agricultural production systems (van Keulen et al.,
1982). ARIDCROP (van Keulen, 1975), which was based on the concepts elaborated in ELCROS
and BACROS, was developed to simulate the growth and water use of fertilized natural pastures
in the Mediterranean region. This model was successfully incorporated into an integrated model
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of grazing system comprising separate management and biological sections, which was used to
examine the consequences of contrasting management strategies in intensive agropastoral systems
in a semiarid region (Ungar, 1990).

For prediction of annual pasture production in semiarid conditions in which growth is limited by
rainfall and nitrogen, a preliminary model PAPRAN (Production of Arid Pastures limited by RAinfall
and Nitrogen) was developed (Seligman and van Keulen, 1981; van Keulen, 1982). This model
development was based on the combination of a relatively simple set of supply and demand functions
giving the description of N uptake and redistribution in plant tissue with those of ARIDCROP.

Another very useful research application of crop growth models is in the domain of crop
breeding strategies. Models can be used to examine the sensitivity of crop response to changes in
plant characteristics so as to better define breeding strategies and goals. Accordingly breeders can
survey the impact that breeding may have for specific characteristics (Landivar, 1979; Ng and
Loomis, 1984). O’Toole and Stockle (1987) described the potential of simulation models in assess-
ing trait benefits using the case of winter cereals which have a wide genetic base and physiological
features that enable the crop to survive and reproduce in stress-prone environments. Crop simulation
models provide the breeders with an analytical tool for integrating and quantifying the knowledge
embodied in conceptual models. Crop growth models have been used in plant breeding to simulate
the effects of changes in the morphological and physiological characteristics of crops and thus to
aid in the identification of ideotypes (Donald, 1968) for different environments (Dingkuhn et al.,
1993; Hunt, 1993; Kropff et al., 1995). Crop growth models that have been parameterized for new
cultivars in field experiments can be used to simulate the long-term yield stability of these cultivars
at a location under the expected range of climatic conditions (Hunt, 1993; Palanisamy et al., 1993).

The combination of crop growth models with pest, disease, and weed models can be used to
investigate interactions between both systems (Rabbinge and Rijsdijk, 1983). Strong interactions
between crop growth and disease or pest development make it potentially interesting for crop
management, for example in the appropriate choice of spraying insecticides and fungicides and in
avoiding unnecessary treatments. Kiniry et al. (1991) described the ALMANAC (Agricultural Land
Management Alternatives with Numerical Assessment Criteria) model which contains a general crop
growth model in which genotype-specific coefficients describe differences in the growth of different
crops and crop cultivars. These coefficients control the simulation of development and senescence
of leaf area, conversion of intercepted photosynthetically active radiation to biomass, growth of the
root system, nutrient composition of the tissue, development of economic yield, and sensitivity of
the crop to temperature, water, and nutrient stresses. ALMANAC simulates the water balance, nutrient
balance, and plant growth, and additional detail for light competition, population density effects,
and vapor pressure deficit effects which enable it to simulate the growth and seed yield of two
competing plant species in a wide range of environments. Kiniry et al. (1991) showed that for maize,
both simulated and measured mean yields with weeds are 86% of the weed-free yields.

Coop et al. (1991) developed a decision support system linking simulation models, databases
and a user interface for benefit cost analysis of chemical treatment of the Senegalese grasshopper,
Oedaleus senegalensis Krauss, to assist in the training, analysis, and management of grasshopper
treatment programs. The analysis indicated that optimal timing was 5 to 10 days earlier than the
actual treatments. Crop yield reports from treated and nontreated areas, a crop loss assessment
conducted in Batha, Chad, in October 1987, and a breakeven analysis provided further evidence
that the campaign was successful and cost effective at most sites, as indicated by the model results.

Model Applications for Policy Management

One very useful application of crop simulation models is for policy management. The issues
for policy could range from global issues such as climate change impacts to field-level issues such
as the effect of crop rotation strategies on the long-term changes in soil quality. Typical applications
include agroecological zonation, regional yield forecasting and scenario studies for exploring the
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effects of environmental or socioeconomic changes on agriculture (Bouman et al., 1996). World
food production studies (Buringh et al., 1979; Penning de Vries et al., 1995), agroecological zona-
tion (Aggarwal, 1993; van Keulen and Stol, 1991) and explorations of the effects of climate change
on crop production (Wolf, 1993; Matthews et al., 1995) employed crop growth models. Boote et al.
(1996) concluded that a number of policy uses have been made in the areas of climate change,
water use, erosion, soil nutrients, and pesticide use. Thornton et al. (1997) showed that in Burkina
Faso, crop simulation modeling using satellite and ground-based data could be used to estimate
millet production for famine early warning which can allow policy makers the time they need to
take appropriate steps to ameliorate the effects of regional food shortages on vulnerable urban and
rural populations. Some of the important policy management issues in agriculture include resource
allocation, land use planning and environmental protection. The Decision Support System for
Agrotechnology Transfer (DSSAT) developed by the International Benchmark Sites Network for
Agrotechnology Transfer (IBSNAT) helps in seeking solutions to such specific issues (IBSNAT,
1988a). The DSSAT itself (IBSNAT, 1988b; Jones, 1993; Tsuji et al., 1994) is a shell that allows
the users to organize and manipulate crop, soils, and weather data and to run crop models in various
ways and analyze their outputs. Among the semiarid crops included in the DSSAT are the CERES
cereal model for maize, sorghum, pearl millet, rice, and wheat as well as the CROPGRO model
for groundnut, soybean, and peas (Tsuji et al., 1994).

In the semiarid regions, climatically induced production uncertainties also cause concern after the
produce leaves the farm gate. Processing and marketing bodies require information that enables them
to plan strategically for the season ahead (Meinke and Hammer, 1997). Using groundnut as an
example, Meinke and Hammer (1997) presented a generic methodology to forward-estimate regional
crop production and associated climatic risks based on phases of the Southern Oscillation Index (SOI)
in Australia. Combining knowledge of SOI phases in November and December with output from a
dynamic simulation model allows the derivation of yield probability distributions based on historic
rainfall data. This information is available shortly after planting a crop and at least 3 to 5 months
prior to harvest. Meinke and Hammer (1997) showed that in years when the November to December
SOI phase is positive, there is an 80% chance of exceeding average district yields. Conversely, in
years when the November to December SOI phase is either negative or rapidly falling, there is only
a 5% chance of exceeding average district yields, but a 95% chance of below average yields. This
information allows the industry to adjust strategically for the expected volume of production.

The repercussions of global changes for agriculture and natural ecosystems are potentially
serious and simulation models are appropriate tools to explore these effects. Models used in these
studies range from descriptive models that couple the information from general circulation models
(GCMs) with the current knowledge regarding the environmental constraints that limit the area of
cultivation of crops (Bindi et al., 1992; Parry et al., 1990), to explanatory models that predict the
more detailed effects of warming and of increasing CO2 on crop development and yield (Adams
et al., 1990; Miglietta and Porter, 1992). Simulation models can be used to explore the effects of
the increase in temperature and CO2 concentrations on crop development, growth and yield, harvest
index and water use, and can help breeders to anticipate future requirements (Goudriaan et al.,
1984). In evaluating long-term sustainability issues, models such as CropSyst (Donatelli et al.,
1997) and Erosion Prediction Impact Calculator (EPIC) of Jones et al. (1991) were found useful.

CURRENT APPLICATIONS OF CROP GROWTH MODELS 
IN THE SEMIARID REGIONS

Maize

Most of the applications of simulation modeling thus far for maize were centered around the
CERES-Maize model, while models such as EPIC, ALMANAC, CropSys, ADEL-Maize, WOFOST,
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and PUTU-Maize have also been used to simulate the growth and yield of maize. A brief description
of these applications is presented below.

The model CERES-Maize (Crop Environment REsource Synthesis), first published by Jones
and Kiniry (1986), was included in DSSAT. It has been also integrated into the higher level modeling
environment CropSyst (Crop Systems) as described by Gommes (1999). Hodges et al. (1987) tested
the ability of the CERES-Maize model to estimate annual fluctuations in maize production for
51 weather stations in the 14 states of the Corn Belt in the U.S. for the years 1982 to 1985. Their
results indicated that the model might be used for large area yield and production estimation in the
U.S. with minimal regional calibration.

The CERES-Maize model was used by Jagtap et al. (1998) for testing six different crop
densities, at Ibadan in southwestern Nigeria, because of its relatively limited requirements of
computer resources and data while presenting enough sensitivity for environmental factors. The
analysis of planting densities ranging from 2.96 to 13.3 plants per m2 showed that the optimum
density for highest for LAI was 9.4 plants m2, with a linear decrease of the absolute growth rate
with higher densities. The use of the model in sub-saharan Africa, however, could have constraints
related to the need to feed daily weather data in the model and access to soil data and IT equipment.

Another application of the CERES-Maize model was made in southern Africa. The model was
tested for examining the vulnerability of maize yields to climate change in different farming sectors
in Zimbabwe (Muchena and Iglesias, 1995). Maize crop production was simulated under different
climate scenarios generated by General Circulation Models (GCMs) and the sensitivity was tested
by 2° and 4°C increase in the daily temperature, including the impact of higher levels of CO2 in
the climate change scenarios, as the model includes an option to simulate the physiological effects
of CO2 on photosynthesis and water use efficiency. This study concluded that maize yields decrease
significantly under all scenarios of warming tested (GISS, GFDL, and UKMO), even when the
direct beneficial effects of increased CO2 and water use were included.

Climate data from four different agroecological zones in Zimbabwe were analyzed with respect
to ENSO phases and used to drive the CERES-Maize model, parameterized for soil conditions
typical of the zones, using two nitrogen fertilizer treatments and three planting dates (Phillips et al.,
1998). Their study showed that while average simulated maize yields were generally lowest in
El Niño years, variability in rainfall pattern and standard deviation of yields at the site level was
high within each ENSO phase, indicating that more precise seasonal climate predictions would be
necessary for forecasts to be valuable in crop management decisions in Zimbabwe; however,
simulation results pointed toward the relative importance of predicting favorable cropping seasons
as opposed to poor ones with respect to better nitrogen management and yield improvement for
the more marginal sites.

An innovative use of CERES-Maize was made for predicting crop response to salinity stress
in southern Italy by Castrignanò et al. (1998) by integrating a new saline stress index related to
the predawn leaf water potential. After calibration of the crop-specific model to adapt to the peculiar
environmental conditions of the Mediterranean region (salinity and water stress, high evaporation
demand), the model calculated the final grain yield and the seasonal evaporation correctly, but was
underestimating aboveground biomass and maximum LAI.

Furthermore, the CERES-Maize model was evaluated for its predicting capacity of the effect
of nitrogen deficiency on crop growth duration and yield by Singh et al. (1999). The authors
proposed to enhance the sensitivity of the N stress indices with a modified version of the model,
which simulates the effect of N deficiency on the phyllochron (leaf appearance rate) and pheno-
logical stages. The results were compared with field trials in tropical locations and showed the
effect of N management on yield and risk prevention.

A modified version of CERES-Maize, which included the effects of limited soil aeration on
crop growth and development by a root distribution weighting factor, was tested to improve the
simulation of site-specific crop development and yield by Fraisse et al. (1999) in seven environ-
mentally diverse sites in the U.S.
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Paz et al. (1999) employed the CERES-Maize model-based technique to determine variable
rate nitrogen for maize. The model used to characterise spatial maize yield variability was reported
to give good predictions after a calibration process of three years in the U.S.

As CERES-Maize was designed mainly for simulation of hybrid maize, it has been further
developed into the CERES-IM model in the U.S. for specific simulations of seed-producing inbred
maize which takes into account the inbred specific field operations and traits (Rasse et al., 2000).

The model EPIC-phase is the result of the modification of the EPIC model for the simulation
of effects of water and nitrogen stress on biomass and yield (Cabelguenne et al., 1999). It takes
into account the sensitivity of the crops to water and N stress during the course of their development
cycle. A 9-year validation process, using experimental data from a long term cropping systems
experiment, was carried out at three levels of cropping intensity. Although the same input data was
used, the results showed that EPIC overestimates crop production, in particular in conditions of
severe water stress. Crop parameters were introduced in the model related to the water extraction
capacities peculiar to each crop, the growth period was divided into four phases and the conversion
efficiency of intercepted radiation was made a function of biomass, and the sensitivity of the harvest
index to water and N stress was introduced for each phase of growth. The simulations were then
close to the measured values. These trials were carried out in southwest France. In another study,
Cabelguenne et al. (1996) described the use for tactical irrigation management by combining real-
time, EPIC-phase with weather forecasts.

A study was undertaken by Dhakhwa et al. (1997) to assess the effects of global warming and
CO2 fertilization on maize growth with crop models. CERES-Maize and EPIC were used for
simulating the yield and biomass of maize under projected future climate change scenarios derived
from two GCMs, the GFDL, and UKMO. Both models were modified to account for the beneficial
physiological effects of increased CO2 concentration on crop growth and transpiration. The CERES,
unlike EPIC, simulates different plant components such as stem-biomass, leaf-biomass, and ear-
biomass at various phases of the growth stages. When only the direct effects of CO2 were considered,
the CERES predicted yield increases of about 14 to 18%. Simulated yield and biomass decreased
under both GCM scenarios, mainly due to the effects of the higher temperature. Both models could
be modified to reflect changes in biomass, yield, root, and WUE (water use efficiency) response
of direct and indirect effects of climate change. The positive effects of the hypothesized differential
day–night warming were more pronounced when EPIC was used than when CERES was used to
simulate various plant components.

EPIC-phase was tested together with CROPWAT for their ability to simulate maize grain
reduction caused by water stress under semiarid conditions by Cavero et al. (2000). The simulation
of evapotranspiration, harvest index, leaf area index and final biomass was evaluated. The results
showed that EPIC-phase overestimated the biomass in the more water stressed treatments, due to
overestimation of LAI; however, following improvements made especially with regard to the effect
of water stress on LAI growth, the model became more consistent for calculating yield reduction
due to water stress and hence for semiarid regions.

The CROPSYST (cropping systems simulation model) simulates the growth of a variety of
crops on a daily base, which can be linked to GIS software and a weather simulator (Stockle et al.,
1994). It calculates the soil water budget, soil–plant–nitrogen budget, crop phenology, crop canopy,
root growth, biomass production, crop yield, residue cycle, soil erosion by water, and pesticide
fate. In the trials Stockle carried out, the crop water use was calculated properly, while the predicted
nitrogen did not exactly match measured values from leaching experiments. Nevertheless, the
simulated biomass and yield of corn indicated the potential of CropSyst, provided it is validated,
as a promising tool to analyse management practices for water and nitrogen.

Fournier and Andrieu (1999) proposed a new simulation model based on L-system. The
L-system formalism is a language to perform visual simulations of plant growth; it codes plant
development as the parallel functioning of plant subunits (the modules) and enables production of
dynamic three-dimensional (3-D) outputs of plants. ADEL-Maize combines a 3-D model of maize
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development with physical models computing the microclimate on the 3-D structure. The 3-D
architectural and process-based ADEL (architectural model of development based on L-systems)
simulates the development of maize as function of the temperature of organs. The time scale varies
from a few hours to one day, enabling the mechanistic description of both the physiological process
and the changes in the plant environment. The previous version of ADEL, which simulated devel-
opment as a function of temperature, was complemented with a module for the regulation of growth
by dry matter availability. The dry matter production is based on the concept of light use efficiency
and allocation and is a function of the sink strength of each organ. It is therefore calculated according
to organ size and temperature. In ADEL-Maize the canopy is considered as a set of individual
plants. Fournier and Andrieu (1999) found the simulation of the effects of plant density with this
model of dry matter management promising. The model requires only three parameters obtained
from direct measurements. The modular approach and the 3-D representation allow an accurate
calculation of the light interception by single plants.

Choudhury (2001) carried out research on the simulation model RUE (radiation use efficiency)
calculating gross photosynthesis and net carbon accumulation by wheat before anthesis. He assessed
the applicability of the RUE model to study the radiation–and–carbon–use efficiencies of maize,
sorghum and rice, with regard to their growth in different environmental conditions and also to C3
crops such as rice (while maize and sorghum are C4 crops). Although most calculated RUE appeared
to be consistent with the observations, for sorghum the RUE was about 20% lower than for maize.
Therefore, the model needs to be further improved.

A methodology for assessing risks associated with crop production and fertilizer use in the
tropics using statistical methods combined with crop modeling was developed by Rötter et al.
(1997). It was aimed at quantifying yields and financial risks and opportunities for crops cultivated
in different agroecological zones. The different production goals for non-irrigated maize, a ranking
of the severity of damages and farmers’ attitudes toward risk were taken into account in the risk
assessment approach. Subsequently, Rötter and van Keulen (1997) studied the maize yield response
to fertilizer application in arable land in Kenya in different agroecological zones and under different
management practices, specially regarding the nitrogen and phosphorus inputs. The assessment of
potential risks by using crop growth models was aimed at providing advice to smallholders for
their farming management choices, in particular concerning the fertilizer application and the
rentability of custom applications.

The model WOFOST (World Food Studies) calibrated to Kenyan maize cultivars was used on
eight study sites, with data from the Fertiliser Use Recommendation Project (FURP) database and
with climatic data from the Kenyan Meteorological Department and soil data from the Kenya Soil
Survey (Rötter and van Keulen, 1997). The authors concluded that techniques to minimize farming
risks such as the recommended “response farming” (adjusting cultivation practices to rainfall
conditions early in the season), was beneficial in reducing losses. The use of the El Niño Southern
Oscillation (ENSO) index was found more promising for predicting water- and nutrient-limited
maize yields. The experimental period of 4 years was considered too short for giving indications
with respect to the effects of fertilizer applications on the sustainability of the production system.
Moreover, the farmer time scale of experiences with these risks are about 30 to 50 years, in which
time other factors intervene, such as the increasing population pressure on the arable land. In order
to obtain complete information on the economic benefit derived from the fertilizer application, the
experiments should include trials of maize intercropped with legumes and rotations with other crop.
Rötter and van Keulen (1997) recommended also taking into account the uncertainty associated
with the unforeseeable price variations, in particular under semiarid conditions.

A trial using the WOFOST model to quantify agricultural resources was carried out by Shisanya
and Thuneman (1993) in Machakos District of southern Kenya. The study was aimed at addressing
the problem of increasing food production on marginal land with small holder farms and with low
external inputs. WOFOST calculated the crop production for different zones, all characterized by
a maize–bean intercropping pattern, by testing different planting dates for maize varieties adapted
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to dry conditions in order to provide technical advise to farmers. This model was used for a dynamic
crop production simulation and as a explanatory tool for the higher crop failure and lower yields
observed during long rainy season (March to May) compared to the short rainy season (October
to December). Within this bimodal rain pattern, the short rainy seasons appeared to be more reliable
and the results confirmed the advantage of early planting.

An attempt to build a framework for forecasting the extent and severity of drought in maize
was made in a semiarid region in South Africa by de Jager et al. (1998). This system, already in
use since 1994 in the Free State Province of South Africa, is based upon the phase of the SOI and
has been applied to quantify and map drought hazard in maize by running maize crop growth
models in a GIS framework. The data were grouped into 9800 homogenous natural resource zones.
For each zone, the computed maize grain yield forecasts were compared to long-term cumulative
probability functions of yield to determine their probabilities of nonexceedance, which were then
used to identify drought severity areas (de Jager et al., 1998). To ensure climate, soil and crops
specificity, the two crop growth models CERES-Maize and PUTU-Maize (previously developed
by de Jager) and weather data were used. For a user-friendly access to information on drought
conditions for farmers and decision makers, a specific GIS was developed for drought monitoring.
This system is widely accepted and well received by the users; however, no test of accuracy had
yet been carried out, but was planned for the near future.

Sorghum

Modeling applications with sorghum were initially made using SORGF model and subsequently
with the SORKAM model. Limited applications were also made with other models such as
ALMANAC and SorModel. A brief description of these applications is given below.

The first attempt at modeling the growth and yield of sorghum was made by Maas and Arkin
(1978) from Temple, Texas, in their description of SORGF, a dynamic grain sorghum growth model.
The initial testing phase of SORGF in Texas was followed by multi-locational trials in the semiarid
regions of India conducted by the International Crops Research Institute for the Semiarid Tropics
(Huda et al., 1980, 1982). It was shown that there is a good agreement between simulated and
measured sorghum yields.

In tests of SORGF model to simulate growth of sweet sorghum under Australian conditions,
Ferraris and Vanderlip (1986) concluded that SORGF underpredicted yield under good growing
conditions and overpredicted yield when water stress limited plant growth. They concluded that
tillering was predicted poorly by SORGF and that overestimation of leaf senescence resulted in
erroneous prediction of leaf area index, particularly late in the growing season or under conditions
of water deficit.

Subsequently, the Temple, Texas group developed an improved grain sorghum growth model
SORKAM (Rosenthal et al., 1989). Differences in management practices, cultivars and locations
were accounted for by SORKAM through the use of a number of input parameters. Management
inputs included planting date, plant population, seeding depth, row spacing, and irrigation. Cultivar
input parameters in the model were number of leaves, maturity class, photoperiod sensitivity, and
tillering and seed number coefficients. Climatic data requirements included solar radiation, maximum
and minimum temperatures, and precipitation. Soil data inputs included maximum and plant available
water by soil layer, Stage 1 and Stage 2 soil water evaporation coefficients, soil albedo, maximum
rooting depth, runoff curve number, field slope, and potential evapotranspiration correction factor.

Heiniger et al. (1997a) made improvements in the tillering (nonlinear temperature function)
and grain production (linear function of plant growth) routines in SORKAM. In tests of the ability
of SORKAM model to simulate forage sorghum yields for a wide range of environmental conditions,
Fritz et al. (1997) found that the model generally overpredicted grain and total drymatter yields.
They concluded that the inability to simulate phenological development accurately under water-
deficit conditions and to partition dry matter into grain and stover are additional weaknesses in the
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model. In studies of the use of SORKAM to develop guidelines for replanting grain sorghum,
Heiniger et al. (1997b) found that SORKAM could capture only 27 to 79% of grain yield variability.
Yield predictions from different plant populations within a planting date were particularly inaccu-
rate. They concluded that poor yield predictions were the result of improper computation of tiller
number and faulty partitioning of biomass to caryopsis weight and to use SORKAM to generate
replant guidelines, the authors recommended that improvements must be made in modeling the
relationships among yield components and the source-sink relationship that determines caryopsis
weight. To address this problem, Heiniger et al. (1997c) developed a new grain growth equation
that relates grain filling rate to the rate of change of plant dry matter per caryopsis during the
effective grain filling period. The revised model accounted for 48 to 72% of the observed variability
as opposed to 15 to 57% for the original model.

Kiniry and Bockholt (1998) evaluated the ability of the ALMANAC model to simulate plot grain
yields of sorghum at eight locations under diverse weather conditions and soils in Texas. Model
inputs included parameters for the soil type, planting dates, planting rates, and locally measured
weather data. Mean simulated grain yield for each site was within 10% of the mean measured grain
yield in all cases. The narrow range of measured yields was given as the reason why the models did
not account for a significant amount of the year-to-year variability in measured grain yield.

Baez-Gonzalez and Jones (1995) developed SorModel, a dynamic and deterministic growth
model for sorghum based on plant growth and water flow relationships. The growth and development
process of the crop was mainly based on the SUCROS developed by van Keulen et al. (1982).
Because SUCROS calculated potential crop production when water or plant nutrients were not
limiting factors, Baez-Gonzalez and Jones (1995) interlinked it with soil water flow processes to
make it possible to calculate dry matter production under conditions that are not always optimum
for the growth and development of the plants. The SorModel was used to predict forage dry matter
production in semiarid Mexico and the results showed reasonable agreement between the observed
and simulated dry matter production.

Apart from the full growth simulation models, such as SORGF and SORKAM, simple models
have also been developed for addressing specific tasks of sorghum crop management.

Hodges et al. (1979) modeled dry matter accumulation of a grain sorghum crop with photo-
synthesis and respiration equations requiring only daily meteorological variables, leaf area index
and stage of development. Reduction of rate of photosynthesis due to high temperature and water
stresses was included in the model. They showed that dry matter predicted by the model was within
10 to 15% of the dry matter measured in Kansas, Texas, and Nebraska. Grain yield, which was
assumed to be 80% of the panicle weight, was related to measured grain yield (R2 = 0.58).

Sinclair et al. (1997) developed a simple, mechanistic model to interpret measurements of the
growth and yield of sorghum at different levels of nitrogen and water supply. The nitrogen model
was developed considering experimental results obtained in the tropical climate of Katherine,
Australia. Comparison of the model results with those obtained in an irrigation-nitrogen application
experiment conducted in Hyderabad, India, led to two interesting hypotheses. First, the irrigation
level of the well-watered treatment appeared to be inadequate to avoid drought stress at the end of
the growing season. Second, about 4 g N m–2 of soil N was unavailable to the crop in each of the
irrigation treatments. This hypothesis was based on the observation that at high applications of N,
the model predicted yield well, but at low applications predictions substantially exceeded measure-
ments and the uptake of N was also overestimated. Muchow et al. (1994) assessed climatic risks
relative to planting date decisions for sorghum in a subtropical rainfed region.

Pearl Millet

The most common growth model in use for simulating the growth and yield of pearl millet is
the CERES-Pearl Millet model. Limited applications have also been reported using the CROPSYST
and PmModels.
© 2002 by CRC Press LLC



        
Ritchie and Alagarswamy (1989a, 1989b, 1989c) described the CERES-Pearl Millet model, in
particular the genetic coefficients and simulation of phenology and growth and development. Ritchie
et al. (1998) elaborated the procedures used in CERES crop models, including pearl millet, to
estimate crop growth, development, and yield.

Thornton et al. (1997) developed a prototype pearl millet yield estimation system for
30 provinces of Burkina Faso using the CERES-Pearl Millet model and remotely sensed estimates
of rainfall in real-time, embedded in a geographic information system. They showed that early
warning of impending poor harvests in this manner were useful for policy makers to take appropriate
action to ameliorate the effects of regional food shortages on vulnerable rural and urban populations.

Ram Niwas et al. (1996) tested the CERES-Pearl Millet model using three pearl millet cultivars
at New Delhi, India. The predicted days for anthesis showed a deviation from 1 to 4 days, with a
mean deviation of 2.3 days for all the varieties and 2 seasons. The number of days required for
maturity varied from those observed by 5 to 8 days. The predicted biomass and grain yields agreed
well with observed data. The authors concluded that CERES-Pearl Millet model can be used to
study the suitability of genotypes in a particular region.

Badini et al. (1997) used the crop growth simulation model, CropSyst, to simulate the soil water
budget components and millet production potential in Burkina Faso, both spatially and temporally,
by coupling the model with databases of soil type, long-term weather, and crop management using
a geographic information system (GIS). The model consists of several integrated components and
different management options (Stockle and Nelson, 1993). From the cropping model outputs, Badini
et al. (1997) quantified and mapped two agroclimatic indices (Aridity Index and Crop Water Stress
Index) that show the water-limited growth environment of the millet crop throughout Burkina Faso.

Baez-Gonzalez and Jones (1995) developed PmModel, a dynamic and deterministic growth
model for pearl millet based on plant growth and water flow relationships. As in the SorModel,
the growth and development process of the crop was mainly based on the SUCROS model developed
by van Keulen et al. (1982). The PmModel was used to predict forage dry matter production in
semiarid Mexico and the results showed reasonable agreement between the observed and simulated
dry matter production.

Overman and Robinson (1995) used a logistic model by coupling dry matter and plant nitrogen
accumulation of pearl millet through a common response coefficient c. The model was shown to
describe accurately the response of millet dry matter, plant N removal, and plant N concentration
to applied N. Furthermore, the model was shown to closely describe the relationship between yield
and plant N removal.

Cotton

The two most common growth models used in applications for cotton are the GOSSYM and
COTONS models. One application involved the use of AMAPpara model. These applications are
briefly described below.

The GOSSYM (GOSSYpium siMulator) model was developed initially as a physiologically
based simulation model (Baker et al., 1983), integrating all aspects related to growth, development,
physiology, and agronomy in order to be used as an experimental tool. Coupled with COMAX
(CrOp MAnagement eXpert), an expert system, it provides management recommendations for
irrigation, fertilizer, and harvest aid applications. It has been further adapted to become a crop
management tool. Reddy et al. (1997) provide a detailed description of applications of GOSSYM.

Among the recent developments, researchers of CIRAD (Centre de Coopération Internationale
en Recherche Agronomique pour le Développement) and USDA-ARS (Agricultural Research
Service) have jointly developed a model, COTONS, by combining the mechanistic-physiological
approach of GOSSYM with an architectural model (Jallas et al., 1999). It combines the functions
and concepts of a cultivated plant type model and a 3-D plant architecture visualization tool. A
large number of potential applications are seen by the authors, specifically with regard to the 3-D
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aspects that allow “virtual” cultivation, like for plant protection, plant mapping, and applications
of multifactor combinations including conversion-efficiency architecture and growth regulators.

The COTONS model enables the tactical choices that the farmer has to make during the
cultivation period in order to address the gap between the decisions adopted by the farmers within
the constraints of his farm management and the technical advice of experts. However the advice
to strategic and tactical farming decisions should be adapted to the diversity of environmental and
socioeconomic situations. In this regard, field trials have been made in western Africa by integrating
these advises in the agricultural extension services. Currently, the COTONS model is being built
in a GIS in Burkina Faso (Jallas et al., 1999), to provide predictions on a more regional level, which
could then be coupled with databases for soil, climate, etc.

Another hydraulic architecture-based growth model for cotton plants developed by a CIRAD
team is the AMAPpara model (de Reffye et al., 1999). It describes long-term plant growth as the
cumulative output of the cyclic interactions between plant physiological functioning and architec-
tural development. It is based on the classical relationship between transpiration and biomass
production, under the assumption of constant water use efficiency. Allometric rules are used to
derive the geometry of the organs as a function of their volume or biomass. The model considers
simultaneously the topological and geometrical structures of the plant and relates them to the
environmental conditions. The number of new organs is predicted from the cumulative temperature
according to the architectural model, and the volume and geometry of each organ are computed
according to biomass production and allocation, using sink-source and allometric concepts. The
feedback between plant growth and architecture is modeled through a recurrence equation, which
links successive growth cycles to each other, although this remains based only on a plant morpho-
genetic model that is not sensitive to the environment (de Reffye et al., 1999). The parameters of
the AMAP are estimated from the observation of plant architecture and morphology at the end of
their growth. Real time could be introduced into such models thanks to the strong links that exist
between the temperature and growth rate. According to the authors, the calibration of the model
for cotton as described, gave satisfactory results quantitatively and qualitatively.

Groundnut

The only groundnut simulation model that has been used in applications so far is the PNUTGRO
model which was developed and tested at the University of Florida in Gainesville (Boote et al.,
1987). It is a process-level model to simulate growth and yield of groundnut and includes vegetative
and reproductive development, carbon balance, nitrogen balance, and water balance models as the
major components. The basic structure of the model and the underlying differential equations have
been explained in detail by Wilkerson et al. (1983) and Boote et al. (1987). To simulate groundnut
response to row spacing and plant population, Boote et al. (1988, 1989, 1992) revised the light
interception and canopy assimilation subroutines to include the hedgerow approach developed by
Gijzen and Goudriaan (1989), which was simplified for inclusion in PNUTGRO. This revised model
was referred to as the PNUTGRO hedgerow version. This approach predicts canopy light intercep-
tion, projected shadow cast by the canopy, and the fractions of the leaf area that are sunlit and
shaded to estimate carbon assimilation by the crop.

Singh et al. (1994a) evaluated the performance of PNUTGRO under different levels of water
availability in various seasons and sowing dates at four locations in semiarid tropical India. The
model predicted the occurrence of flowering and podding within ±5 days of observed values at
locations where growth stages were recorded most frequently. Predictions of growth stages beyond
podding were less accurate because of difficulties, associated with the indeterminate nature of the
crop, to record growth stages after pod growth has started in the soil. Changes in vegetative growth
stages, total dry matter accumulation, growth of pods and seeds, and soil-water were predicted
accurately by the model. Predicted pod yields were significantly correlated with observed yields
(R2 = 0.90). It is interesting to note that the authors stress that PNUTGRO can be used to predict
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groundnut yields in different environments under biotic stress-free conditions; however, groundnut
grown in the semiarid regions, in the developing countries in particular, is attacked by a number
of pests and diseases that are not incorporated in the model.

The hedgerow version of PNUTGRO was evaluated (Singh et al.,1994b) for predicting pheno-
logical development, light interception, canopy growth, dry matter production, pod and seed yields
of groundnut as influenced by row spacing and plant population. The model predicted the occurrence
of vegetative and reproductive stages, canopy development, total dry matter production, and the
accurate partitioning to pod and seed. Correlation between simulated and observed pod yield was
significant (R2 = 0.61).

Chickpea

The chickpea growth models that had been developed so far include the CHIKPGRO model
and another mechanistic model, which are briefly described in this subsection. Singh and Virmani
(1996) used the hedgerow version of groundnut model PNUTGRO, earlier described by Boote et al.
(1988, 1989), to develop the chickpea model, CHIKPGRO. Major soil and plant processes included
in the model were soil water balance, root growth and extension, vegetative and reproductive
development, water stress effects on reproductive development, photoperiod response to flowering,
canopy growth and expansion of leaves, photosynthesis, respiration, partitioning of biomass to
vegetative and reproductive organs, protein mobilization, and senescence. The model does not
consider biological nitrogen fixation by chickpea and assumes soil fertility to be nonlimiting for
crop growth. The model predicted flowering, pod initiation, beginning of seed growth, and physio-
logical maturity within ±5 days of the observed values, except under extreme wet situations when
the actual seed growth and physiological maturity of chickpea occurred later than the simulated
dates. Leaf area index, total dry matter production, and partitioning to various plant organs under
irrigated and water-stressed conditions were also predicted satisfactorily by the model. Predicted
total dry matter and seed yields were significantly correlated with the observed data. The authors
concluded that CHIKPGRO could be used to predict potential and water-limited yields of chickpea
in the Indian plateau, but cautioned that further work requires inclusion of a soil fertility submodel
and model testing over a wide range of environments.

Soltani et al. (1999) developed a simple mechanistic model which simulates crop phenology,
development of leaves as a function of temperature, accumulation of crop biomass as a function
of intercepted radiation, dry matter accumulation of grains as a function of time and temperature,
and soil water balance. Phenology, leaf growth, and senescence and biomass production were made
sensitive to soil water content. Tests of the model from a range of environments in Iran showed a
good agreement between simulated and observed yield under both irrigated and rainfed conditions.

Other Crops

Wheat

Ritchie (1985) used the CERES-Wheat model to determine the expected yield variations that
resulted from weather variations at a semiarid location in Oklahoma. All of the relationships used
to calculate water balance components in CERES are quite empirical and the model has been tested
with about 300 different measured data sets from several countries to demonstrate its generality
(Ritchie and Otter, 1984). The simulation results showed that a early maturing genotype with an
earlier floral initiation date is superior, simply because it has less chance of depleting the water
supply before plant maturity. Bell and Fischer (1994) used the CERES-Wheat model to account
for weather-based potential variation in wheat yield in the Yaqui Valley region of Mexico between
1978 and 1990, assuming no change in cultivar or management. They showed that the climatic
potential yield declined because of increased temperature.
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Aggarwal and Kalra (1994) used the wheat growth model, WTGROWS to evaluate the potential
wheat yield at 138 sites across India. They concluded that yields, under optimal water and nitrogen
availability, increased with higher latitude and with more inland sites, primarily because of variation
in temperature. Predicted yields increased 428 kg ha–1 for each °C increase in temperature. They
also showed that the yield gap between potential and actual yields of wheat at New Delhi is
attributable in part to delayed sowing.

The CERES v3. model was used by Lal et al. (1998) for wheat and rice as incorporated in the
DSSAT to examine the vulnerability of wheat and rice in the semiarid region of northwest India
to projected climate change. Both the models were able to simulate observed year-to-year variations
in yield over northwest India. Acute water shortage conditions combined with the thermal stress
were projected to adversely affect both the wheat and more severely the rice productivity in
northwest India even under the positive effect of elevated CO2 in future.

Jamieson (2001) carried out a case study on modeling the response of wheat to drought using
the wheat simulation model Sirius (Jamieson et al., 1998). In most of the treatments, observed and
predicted responses were close. The exceptions were that leaf area index was overestimated late
in the life of the crop when drought stress was severe and evapotranspiration was overestimated in
the driest treatment and underestimated in the wettest treatment.

The Crop Growth Simulation System (CGMS) was developed by Vossen (1990) at the core of
which is the crop growth simulation model WOFOST (van Keulen and Wolf, 1986). CGMS operates
on grid cells of 50 x 50 km and for each grid cell the required inputs are daily weather data, soil
characteristics and management practices. Using the crop growth simulation results, planted area
to soft wheat and a trend function, Supit (1997) predicted wheat yield for 12 European countries,
including Spain. The very long and severe dry spells in the semiarid regions of Spain in the early
1990s led to water shortages that were underestimated by CGMS.

O’Toole and Stockle (1987) employed a process oriented spring wheat model for analysing the
temperature-related traits: root growth and grain filling. Simulation results indicated that tolerance
of cereal roots to cool soil temperature deserves attention given the vital role of early root system
development in the target environment. Similarly simulations with grain filling indicated that the
functional form of grain filling rate versus temperature is relatively less important than limitations
on grain filling duration in determining final grain weight. It was suggested that plant breeders and
physiologists may benefit from more in-depth study of the physiological basis for stability in grain
filling duration exhibited by adapted genotypes.

The APSIM-Wheat model was used to simulate above- and below-ground growth, grain yield,
water and N uptake, and soil water and soil-N in wheat crops in Western Australia (Asseng et al.,
1998). Grain yields were well-predicted, despite some underestimation during severe terminal droughts.

Rainfed Rice

For the drought-prone rainfed rice belt across the Gangetic Plains of Bihar and Uttar Pradesh
in India, Jones and O’Toole (1987) used the ALMANAC model to simulate rainfed rice production
for different production situations — adequate water supply and plant nutrition; near-optimum plant
nutrition and limiting water supply; and suboptimal water and nutrient supply. Results showed that
the models could be used to simulate growth of crops, and the effect of the variations in the supply
of nutrients and water.

Soybean

Patron and Jones (1989) described the Tropical Soybean Production Model (TROSOY), which
calculates the dry matter accumulation of soybean when water and nutrients are in optimal supply or
when water is a constraint to production. They applied the model as a framework to synthesize and
analyze the ecological structure of the soybean production system in southern Tamaulipas, Mexico.
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Model results showed satisfactory agreement with values obtained by field experimentation and it
was concluded that the model could be used, within reasonable limits, as an auxiliary research tool.
The model was applied to assess potential and rainfed production levels of soybean in the region and
to evaluate the prospect of using runoff farming as a strategy to stabilize and improve production.

Sinclair (1986) developed a simple and robust crop model for soybean using a phenomenological
and physiological framework. Sinclair et al. (1987) generalized this modeling approach and used
it to examine the yield potential and production risks of soybean, cowpea, and black gram under
water deficits, and to assess the importance of different physiological traits in determining the
productivity in these grain legumes. Coefficients of the relationships in the model describing leaf
growth, carbon and nitrogen input, seed growth, and the water budget were obtained from literature
and from glasshouse and field experimentation. The principal differences in input variables to model
the growth of soybean, cowpea, and black gram were those describing leaf emergence rate,
N fixation during seed filling, and the biochemical composition of the seeds. The relationship
describing the response of leaf-area growth, radiation use efficiency, and nitrogen fixation to soil
water content differed little among species.

The SOYGRO model simulates the effect of soil water on photosynthesis, leaf expansion and
leaf senescence. The user-friendliness of the SOYGRO model, which was developed by Wilkerson
in the early 1980s (Wagner-Riddle et al., 1997), contributed to its wide utilization.

Cowpea

Timsina et al. (1993) used MACROS.CSM, a mechanistic, noncrop-specific model developed
for the simulation of crop growth and development as a function of weather and soil water, to
estimate yields of partially irrigated and rainfed crops of early- and medium-maturing cowpea
cultivars in various parts of the Philippines. The comparison of the measured and the simulated
weights of the different crop parts as well as of the measured and calculated soil water content,
showed that the mechanistic simulation modeling can be a useful tool to delineate the extrapolation
domains of crops and cultivars.

Sunflower

Chapman et al. (1993) developed a sunflower simulation model, QSUN, with five interacting
modules: grain yield, biomass accumulation, crop leaf area, phenology, and water balance. Using
this model, Meinke et al. (1993) evaluated the production risks in a variable subtropical environment.

Modeling Crop Rotations and Intercropping

The diversity of crops grown is an important feature of small-holder agriculture in developing
countries of the semiarid regions. Intercropping cereal crops with legume crops is a very common
practice in the semiarid tropics and has been traditionally used by low-income farmers to make the
most of their resources and to reduce risk. Similarly crop rotations of cereals with legumes are
used to maintain soil fertility and ensure crop diversity in the risk-prone, semiarid regions. Following
the success of simulating the growth and yield of sole crops, efforts have been made to simulate
crop rotations and intercropping. Notable among such efforts is the APSIM package, followed by
some other simple approaches such as GROWIT, as described in the next subsection.

APSIM

The Agricultural Production Systems Simulator (APSIM) is a software package that is structured
around a central “engine” via which modules (crop growth, soil water, soil N and erosion) com-
municate with each other (McCown et al., 1996). Any module can, in principle, be incorporated
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in a simulation run, provided it uses the same variable as APSIM and the formats are recognized
by APSIM. This flexibility allows simulation of crop rotations or mixtures by linking two or more
crop growth modules to the engine. An innovation in APSIM, as compared to many other models,
is that it considers the soil, instead of the crop, as the central entity (McCown et al., 1996). Turpin
et al. (1992) used the APSIM model to simulate changes in soil nitrogen and effects on subsequent
cereal crops (wheat and sorghum) after the soil organic matter content had been enhanced under
a legume ley. Their results showed that the model was capable of producing sensible output for
how soil organic matter and nitrogen behave after soil fertility has been raised by a ley and the
contribution this makes to subsequent crops.

Jones et al. (1996) used the APSIM model with modules for the soil water balance (SoilWat
V1.0), soil organic matter and N transformations (SoilN V1.0), surface residue dynamics (Residue
V1.0), and for maize, sorghum, and Verano (Maize V1.0, CSSAT V0.1 and Stylo V1.0) to explore
the benefit from legume pasture leys of Caribbean stylo (Stylosanthes hamata cv. Verano) to
subsequent maize crops. The model was shown to adequately capture the principal effects, in terms
of the extra nitrogen taken up by the maize crop after stylo leys compared with the grass leys, and
the persistence of the effect of legume leys into at least the second maize crop. The authors
concluded that with some further development, it should prove useful in examining the viability
of pasture legume–cereal rotations in other environments and seasons.

The APSIM model was also used to simulate the performance of a hypothetical chickpea–wheat
rotation on clay soils in Queensland, Australia (Probert et al., 1998). The legume effect was
demonstrated by the soil nitrate available at the time of sowing of the next crop. The simulation
results also showed that soil organic matter and nitrogen declined continuously in continuous wheat
cropping for 25 years without the addition of nitrogen fertilizer. The inclusion of a legume crop
in the rotation with wheat considerably reduced the decrease of soil fertility.

GROWIT

The millet/cowpea intercrop is well adapted to the poor soils and low rainfall of the Sahelian
zone of West Africa. In Niger, over 70% of the cropland is intercropped and millet/cowpea intercrop
is the primary crop association (Lowenberg-DeBoer et al., 1991). Cowpeas are typically planted 2 to
3 weeks after millet, though the exact planting date depends on rainfall. Lowenberg-DeBoer et al.
(1991) adopted the generic plant growth model, GROWIT, in a spreadsheet format to simulate the
growth and yield of the millet/cowpea intercrop. The GROWIT model calculates daily plant growth
based on temperature, rainfall and soil characteristics. The structure of the GROWIT model was
originally developed by Smith and Loewer (1983) to simulate a wide variety of crop species. It has
been used extensively for perennial crops, but some annual crops have been simulated. In the case
of the millet/cowpea intercrop model, competition between the two crops for available sunlight was
simulated by assuming that millet was the dominant crop and cowpeas used residual space. Soil
water budget was calculated assuming that both crops draw from a common soil water resource.

CropSys

Caldwell and Hansen (1993) used the CropSys model to assess the risks associated with an
upland, rice-based cropping system involving rice and soybean. Their study showed an overall
increase in yields when upland rice was preceded by nitrogen-fixing soybean.

Coupling CERES Models

Timsina et al. (1997) coupled CERES-Rice and CERES-Wheat models and used it to identify
the causes for low, unstable yields and to quantify nutrient depletion rates in the intensely grown
rice–wheat system now common in Indo-Gangetic Plains of India.
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Singh et al. (1999) evaluated a soybean–chickpea sequencing model on Vertic Inceptisols in
Patancheru, India, and used it to extrapolate the results over 22 years of historical weather records.
Data on climate, crop, soil, and agronomic management were retrieved to create files needed for
the execution of generic versions of SOYGRO and CHIKPGRO models available in DSSAT v3.
Simulation results showed that in most years the broadbed-and-furrow (BBF) landform increased
rainfall infiltration into the soil and had marginal effect on the yields of soybean and chickpea. The
authors concluded that crop yields on Vertic Inceptisols can be further increased and sustained by
adopting appropriate rainwater management practices for exploiting surface runoff and deep drain-
age water as supplemental irrigation to crops in a watershed setting.

NEEDS AND FUTURE PERSPECTIVES

The semiarid regions, home to a large majority of the rural poor in the world, are in general
less-favored areas with low agricultural productivity and natural resource degradation. Due to the
low and variable rainfall and the poor soils, crop production in most of the semiarid regions of the
world is undertaken mainly for sustenance, with the exception of cash crops such as groundnut,
cotton, and cowpea. Agriculture is risk prone and most of the subsistence farmers are reluctant to
place large investments in the needed inputs such as improved varieties, fertilizers, and pesticides.

Given this ground reality in the semiarid regions, agricultural scientists and planners alike, are
faced with the enormous challenge of ensuring continued increases in agricultural productivity to
feed the growing populations under conditions of decreasing private and public investments to
improve the drylands of the semiarid regions. With the growing realization that public investment
in agricultural research is on a decline in many countries of the semiarid regions due to lack of
adequate financial resources, and that the traditional practice of field experimentation to find
solutions to the diverse questions concerning farming can no longer be supported as in the past,
much hope was placed on the use of crop growth models to answer both strategic and tactical
questions concerning agricultural planning as well as on-farm soil and crop management.

Although the potential for crop model applications covers at least three areas i.e., on-farm
decision making, research and policy management, this review shows that in the semiarid regions
much of the modeling applications to date have been mainly in the area of research. Many of the
crop models have been used by the researchers to investigate possible outcomes of changes in
planting dates, varieties, seeding rates, fertilizer inputs, etc. In addition, the current interest in the
impacts of global warming on agriculture and forestry led researchers to investigate the different
scenarios of the projected increases in green house gases using crop models and project likely
outcomes. Some investigations also covered the issue of climate variability by combining the
knowledge of SOI with output from crop growth models to allow derivation of yield probability
distributions based on historical data.

How good is the current state of knowledge of crop growth modeling in the semiarid regions?
A wide range of crops and cropping systems are used in the semiarid regions. Where farmers have
access to irrigation, the natural preference is toward cash crops. The review of the current appli-
cations of models for different crops shows that considerable effort was devoted to modeling
applications in maize and cotton. A beginning has been made for other cash crops such as groundnut
and cowpea, but field applications as seen in the case of maize and cotton are lacking for these
two crops. Sorghum is the predominant cereal crop in the semiarid region and some applications
of sorghum modeling have been made. Wheat is a minor crop in the semiarid regions, but the large
advances made in the modeling applications of wheat in the temperate regions carried some impact
in such applications in the semiarid regions.

Although sole cropping is the major cropping pattern in the productive farm lands of the humid
temperate regions, farmers in the semiarid regions, especially in the tropics, favor intercropping
and crop rotations. Much of the crop modeling applications in the literature are based on sole
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cropping, but in the recent past, a beginning has been made for modeling the growth and yield of
intercrops and crop rotations, particularly employing the APSIM package. A lot more work is
needed in this very important area for the semiarid regions.

The disappointing reality is that few, if any, of the modeling applications in the semiarid regions
are actually used by the farmers. Although the criticism that crop growth models have failed to
simulate reality on the ground in the semiarid regions is understandable, it is important to recognize
that there are many scientific challenges to enhancing crop modeling applications in the semiarid
regions.

First, many of the crops grown by the resource-poor farmers of the semiarid regions have not
received the kind of attention that is needed to understand fully the physical and physiological
processes that govern their growth and yield under the variable soil and climatic conditions. This
is a fundamental requirement to make progress in simulating the growth and yield of these crops.

Second, there is inadequate human resource capacity in situ to develop and validate simulation
models in the semiarid regions.

Third, many of the scientific research institutions in the developing countries of the semiarid
regions fail to promote the needed multidisciplinary research approach to develop and apply crop
models, even in the research area. Hence, it is difficult to find comprehensive soil, crop and climate
data sets to develop and validate crop models in the semiarid regions.

Fourth, the linkages between the research, teaching and extension departments in the developing
countries of the semiarid regions are most often weak or are nonexistent, hence it is difficult to
develop modeling applications that can be quickly disseminated to farmers.

Unless these challenges are addressed in earnest, it is difficult to see field applications of crop
growth models in the semiarid regions in the near future. There is no doubt that research applications
in crop modeling will continue, but such applications can not sustain long-term interest in crop
modeling unless on-farm and policy applications are vigorously developed and applied.
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INTRODUCTION

Simulation models integrate results from field research, providing valuable means of technology
transfer. User-oriented models help agricultural producers, crop consultants, and policy makers
make intelligent decisions based on current scientific knowledge and readily available soils and
weather data. Such models integrate information from a wide range of sources into easily applied
decision aids. The objective of this chapter is to describe some models of different scales, in such
a way as to help users decide which is most appropriate for their situation.

Simulation models can be grouped into three categories based on spatial scale. Single-plant
models simulate processes such as production of various yield components, leaf development, and
reproductive development. They can be used to evaluate traits for optimizing yield production at
different latitudes, in different rainfall zones, and on different soils. They can evaluate planting
densities and planting dates as part of risk assessment in different environments.
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Canopy-level, single-field models share some common applications with single plant models,
but tend to use more conservative and more general approaches to simulating plants. Leaf growth
can be simulated as leaf area index (LAI) and yield can be simulated as harvest index (HI). Although
they are often not able to describe the detailed differences among cultivars of a crop, such models
can be readily applied to several crops by deriving realistic crop parameters. Within crop species
differences may be confined to maturity types for such a model. Single field models can simulate
the impact of management systems (crop rotations, tillage, irrigation, manure and fertilizer man-
agement, and drainage) on edge-of-field sediments and pollutant loadings.

Basin scale models simulate crop growth in a more aggregated fashion, allowing reasonable
leaf area index development and reasonable biomass production in order to simulate yields of water,
sediment nutrients, and pesticides from sub-basins. Basin scale models can be used to assess off-
site impacts such as channel erosion, reservoir sedimentation, wetlands, riparian zones, water
supply, water transfer, and stream and reservoir water quality. The scale is such that plant parameters
describe generic processes of crop growth and development.

This chapter describes three models developed by USDA-ARS at Temple, TX. CERES-Maize
(Crop Environment Resource Synthesis) (Jones and Kiniry, 1986) is a maize (Zea mays L.)
simulation model for individual plants. ALMANAC (Agricultural Land Management Alternatives
with Numerical Assessment Criteria) (Kiniry et al., 1992) is a field-scale model that simulates a
wide range of plant species and simulates competition among species. The SWAT model (Soil and
Water Assessment Tool) (Arnold et al., 1998) simulates watersheds and subwatersheds and can also
simulate many plant species. SWAT is an integral part of the HUMUS (Hydrologic Unit Model for
the U.S.) (Srinivasan et al., 1993) hydrologic project. HUMUS combines SWAT with a geographic
information system and with regional databases to simulate surface and subsurface water quantity
and quality on a basin scale.

Several features shared by these models contribute to their widespread application. First, they
were all developed with a high degree of cooperation with users and, since the models were
developed by the USDA-ARS, they are available at no cost. The models, documentation, code, and
example data sets can be obtained by contacting the authors. This has encouraged widespread
application of the models and has increased feedback from users. Often users help decide which
processes need to be simulated and what output is needed. As a result of this close cooperation,
these models are easy to access and apply. They have been validated for a wide range of sites
within the U.S. and throughout the world. Feedback from such users has been an important
component of model improvement.

Second, the models rely on readily available daily weather data and on the extensive USDA-
NRCS soils data. Commonly reported values of daily maximum and minimum temperatures,
rainfall, and solar radiation are needed. This enables users to apply the models throughout the world
by using data from the nearest weather station. In cases where weather data or portions of weather
data are not available, realistic values can be generated, usually within the models themselves.

Third, the models use a daily time step, enabling rapid execution of multiple year runs. The
models do not have iterative processes such as curve fitting or solving differential equations which
can slow down execution. Users can make runs with several years of weather in a few minutes,
enabling them to efficiently simulate an extensive range of management, crop, and soil scenarios.

Finally, the models share common features in their simulation of plant growth. The models simulate
LAI, light interception with Beer’s law, and potential daily biomass increase with a species-specific
value of radiation use efficiency (RUE). The daily increases in LAI and biomass are reduced when
plant available water in the current rooting depth is insufficient to meet potential evapotranspiration.
Plant development is temperature driven, with duration of growth stages dependent on degree days.
Each plant species has a defined base temperature and optimum temperature. Parameters for describing
plant processes are easy to derive for a plant species or cultivar and easy to transfer among models.
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Crops such as maize and sorghum (Sorghum bicolor L. Moench) are grown in a wide range of
soils and climatic conditions and can be vulnerable to late-spring freezes, drought, and high
temperatures during grain growth.This sequence seemed more logical during the growing season.
Producers make decisions on planting date, maturity type, planting rate, and fertilizer rates, attempt-
ing to maximize profit and minimize risks associated with unpredictable weather conditions. Crop
models offer hope as tools to optimize such management practices. A robust crop model can provide
a quantitative means to predict crop yields under different environmental and climatic conditions.
Crop consultants, using accurate soil information and updated weather data, can provide producers
with realistic predictions on the outcome of various management alternatives. Likewise, crop
advisory information can be linked to soil type and measurements of soil layer depths in individual
fields.

ALMANAC and CERES-Maize were developed to simulate critical growth processes.
ALMANAC was developed to simulate the impacts of various field-level management on the soil
and water environment, and on crop yields. The crop model in ALMANAC was designed to simulate
a wide range of plant species efficiently. CERES-Maize was developed to simulate phenological
processes and yield components of maize and to describe accurately how different hybrids produce
grain in different environments. Adapted versions of CERES-Maize accurately simulated dryland
and irrigated maize yields in Kenya at one to nine plants m–2 (Keating et al., 1988) and reasonably
simulated maize yields with variable planting density, sowing dates, and nitrogen rates in Kenya
(Wafula, 1995). CERES-Maize was used to simulate maize yields in Kansas with weed and insect
stresses (Retta et al., 1991). The model “gave excellent predictions of yield trends” when used to
simulate variability within a field in Iowa, proving to be “a viable and powerful tool in developing
and evaluating management prescriptions across a field” (Paz et al., 1999). The model was tested
in the semiarid tropics under conditions with measured yields of 1.7 to 8.3 Mg/ha–1 (Carberry et al.,
1989). CERES failed to simulate differences among data sets for high yielding conditions in
Argentina when yields ranging from 11.7 to 16.7 Mg/ha–1, but was the mean simulated yield was
only 5% greater than the mean observed yield (Otegui et al., 1996). An adaptation of CERES-
Maize to simulate sorghum was tested in Australia using data with measured yields ranging from
1.6 to 6.3 Mg/ha–1 (Birch et al., 1990). ALMANAC and CERES-Maize accurately simulated mean
crop yields in nine states with diverse soils and climate (Kiniry et al., 1997) and at sites within
Texas (Kiniry and Bockholt, 1998). ALMANAC accurately simulated spring wheat (Triticum
aestivum L.) yields with different densities of competing oats (Avena sativa L.), oilseed rape
(Brassica napus L.), and vetch (Vicia sativa L.) in France (Debaeke et al., 1997).

To be effective as tools, crop models must be capable of simulating crop yields in average
rainfall years and in unusual rainfall years such as with drought or excess moisture. When applied
to maize at eleven sites and sorghum at eight sites in Texas for the dry conditions of 1998,
ALMANAC realistically simulated grain yields (Yun et al., 2001). In this study, the model dem-
onstrated ability to simulate site-to-site differences in grain yields under dry climate conditions,
showing it can be valuable for risk assessment of grain production.

ALMANAC is also capable of simulating grasses, both in monoculture and with multiple species
growing together. Kiniry et al. (1996) successfully simulated Alamo switchgrass (Panicum virgatum
L.) at several sites in Texas. In addition, ALMANAC realistically simulated range yields for 20
range sites representing the extremes of productivity for Texas (Kiniry et al., 2001b).

Crop models capable of accurately simulating long-term mean crop yields for diverse environ-
ments and capable of simulating annual crop yields in extreme climatic conditions would be valuable
for risk assessment and management evaluation. Such models can greatly increase confidence in
crop modeling. Of the models evaluated in this study, ALMANAC and SWAT simulate many crops
by using different parameters, while CERES-Maize simulates individual maize hybrids with
descriptive parameters.
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DESCRIPTION OF ALMANAC AND CERES-MAIZE

The ALMANAC and CERES-Maize models simulate processes of crop growth and soil water
balance including light interception by leaves, dry matter production, and partitioning of biomass
into grain. A major difference between these models is their approach to simulating grain yields.
ALMANAC simulates a grain yield based on HI, which is grain yield as a fraction of total
aboveground dry matter at maturity. CERES simulates the seed number per plant (based on plant
growth) and average mass per seed (based on potential seed growth rate).

CERES-Maize simulates phenology based on leaf development up to silking and on ear devel-
opment thereafter. Leaf area is simulated on an individual leaf basis. Plants begin with six leaf
primordia at seedling emergence and initiate an additional leaf for each 20 degree days base 8°C
up to the date of tassel initiation. Prior to tassel initiation, plants are in the basic vegetative phase
which is degree day dependent, the sum of which varies among hybrids. Plants are then in a
photoperiod sensitive phase, which can be as short as 4 days in short days and is extended when
photoperiods exceed 12.5 h. Hybrids differ in the sensitivity to photoperiod, with greater sensitivity
causing greater delays in tassel initiation in long photoperiods. At tassel initiation, final leaf number
is determined. The number of leaf tips that emerge from the leaf whorl requires 38 degree days
base 8°C, after the second leaf. The first leaf is assumed to be present at seedling emergence and
the last leaf emerges 20 degree days later. Silking is assumed to occur when the final leaf fully
emerges. The degree days from silking to maturity is input as a hybrid-specific parameter. The
effective filling period of the grain is assumed to be completed when 95% of these degree days
have accumulated.

ALMANAC includes a generic LAI function. The maximum LAI of a crop species at high
planting density is a parameter. This potential LAI is reduced as a function of planting density.
The development of LAI as a function of fraction of seasonal degree day sum follows an “s” curve,
with two input parameters defining the curve. Daily increments of LAI growth can be reduced by
water stress. At a defined fraction of the seasonal degree days, grain growth is assumed to begin.
A species specific value for HI defines the fraction of final above-ground biomass that is in grain.
This potential HI can be reduced if drought stress occurs near anthesis (from 45 to 60% of the
season degree days).

Recent improvements in the models include light extinction coefficients (k) based on row
spacing for ALMANAC and a new seed number algorithm in CERES.

For ALMANAC, the extinction coefficient equation is a linear function of row spacing for
maize and sorghum (Flénet et al., 1996):

(10.1)

where ROWS is the row spacing for maize and sorghum and k is the extinction coefficient. This
function is not included in CERES-Maize because it reduced yield simulation accuracy.

The number of seeds per plant (SEEDS) for CERES is now estimated by a linear function of
GROWTH (g plant 1 d 1) from silking to the beginning of grain growth (Kiniry et al., 2001a):

(10.2)

where SEEDS is constrained to not exceed a genotype-specific potential number of seeds per plant
(G2). Although Andrade et al. (2000) and Otegui and Andrade (2000) described nonlinear seed
number equations due to increased barrenness at abnormally high planting densities, we chose to
use Eq. (10.2), which is similar to the function of Keating et al. (1988).

Since publication of CERES-Maize in 1986, some other studies have provided basic information
about maize growth relationships described in the model. Improvements in the model based on

k ROWS= −0 685 0 209. .   

SEEDS  GROWTH,= 90
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these studies were described previously (Kiniry et al., 1997). The first change is that RUE is now
reduced as mean daily vapor pressure deficit (VPD) exceeds 1.0 kPa (Stockle and Kiniry, 1990).
Maize RUE is 4.33 g MJ-1 of intercepted photosynthetically active radiation for mean daily VPD
less than 1.0 kPa and is reduced by mean daily VPD > 1.0 as:

(10.3)

The second change is that only 0.26 g of grain is produced for each g of carbohydrate lost from
the stem and leaves (Kiniry et al., 1992b). Respiration, efficiency of conversion of glucose into
grain, and translocation costs presumably are responsible for this being less than 1.0.

Critical for yield simulation in water-limited conditions is the simulated water demand. The
three models calculate effects of soil water on crop growth and yield with similar functions. Potential
evaporation (Eo) is calculated first, and then potential soil water evaporation (ES) and potential
plant water transpiration (EP) are derived from potential evaporation and LAI. Based on the soil
water supply and crop water demand, the water stress factor is estimated to decrease daily crop
growth and yield, although some water balance equations differ between the two models. Each
model has options on which technique is used to estimate Es, but for this study, Eo was estimated
by the Penman method (1948) in ALMANAC, and by the Priestley–Taylor method (1972) in
CERES-Maize. In ALMANAC, ES, and EP were estimated by:

(10.4)

(10.5)

ES is either Eo exp(–0.1BIO) or Eo – Ep, whichever is smallest, where BIO is the sum of the
aboveground biomass and crop residue (Mg ha–1). In CERES-Maize

(10.6)

(10.7)

(10.8)

(10.9)

If Eo < EP + ES, then EP = Eo – Es.

Demonstration of CERES-Maize

CERES-Maize can simulate how changes in plant parameters affect grain yields in different
weather conditions and on different soils. By evaluating the impact of changes in a plant parameter
for a given set of conditions, users can efficiently determine how changes in hybrid characteristics
can influence grain yields. These indicate the response of yield to changes in various plant char-
acteristics. For this demonstration, we used a site near Ames, IA, on a Nicollet loam and a site
near Temple, TX on a Houston Black clay, as described in Kiniry et al. (1997). Researchers used
the weather data from 1983 to 1992 just as in the previous study and evaluated how changes in
three traits altered grain yield.

RUE  VPD= −5 05 0 72. .

E E LAI LAIP o= ( ) ≤ ≤3 0 3 0.

E E LAIP o= > 3 0.

E E LAI LAIP o= − −( )( ) ≤ ≤1 0 3 0exp .

E E LAIP o= > 3 0.

E E LAI LAIS o= −( ) ≤ ≤1 0 43 0 1 0. .

E E LAI LAIS o= −( ) >exp . . .0 4 1 1 1 0
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At 5 plants m–2, degree days base 8°C (GDD8) from silking to maturity of 685 GDD8, and a
grain filling rate of 7.8 mg per seed per day, the impact of change in number of leaves was measured
by changing the heat units from seedling emergence to end of the juvenile phase. Each 20 GDD8

increase in this “P1” causes an additional leaf primordia to be initiated and delays tasseling by
39 GDD8. Values tested were 180, 200, 220, and 240 GDD8. These allowed 9, 10, 11, and 12 leaves
to be initiated during this stage resulting in final leaf numbers of 17, 18, 19, and 20 leaves.

The impact of changes in grain filling rate on final yield was evaluated next; rates of 6, 7, 8,
and 9 mg seed–1 d–1 were tested, assuming 5 plants m–2, 685 GDD8 from silking to maturity, and
a grain filling rate of 7.8 as in the original study.

The final trait studied was the duration of grain filling, tried at values of 550, 600, 650, 700,
and 750 GDD8 from silking to maturity. All other parameters were held constant.

The relative sensitivity of these changes differed between the two sites (Tables 10.1 and 10.2).
The more drought-prone site in Texas tended to show less yield increases than the site in Iowa,
due to the dominant influence of drought stress in Texas.

At Ames, increases in number of leaves (greater P1) gradually increased mean simulated yields
up to a maximum increase of 3%. At the more drought-prone Temple site, mean yields decreased
for the largest two P1 values.

Increases in grain filling rate (G3) caused increases in mean yields at Ames of up to 40%. At
Temple, these increases were almost as large, the maximum being 39%.

Finally, increases in duration of grain filling (P5) caused increases up to 46% in Iowa. Temple
mean yields also increased, but only up to a maximum of 36%.

Demonstration of ALMANAC

Farmers face a number of management decisions when growing dryland maize. They try to
optimize their management based on past experiences and expected weather. Two known variables
on which they can base management decisions at planting time are the depth of their soil, and thus
their potential plant available water at field capacity, and how much of their soil profile has been
refilled since last year’s growing season. Researchers examined the effect of plant spacing on yields
on a deep (2.0 m) Houston black clay soil (fine, montmorillonitic, thermic Udic Palusterts) with 9
years of Temple, TX measured weather. This was repeated with a 1.5 m and a 1.0 m deep soil.
Next they looked at planting density effects on a 5 d earlier and 10 d earlier maturity maize hybrids

Table 10.1 CERES-Maize Mean Simulated Grain 
Yields (Mg ha–1) near Ames, Iowa, 
for 10 Years

P1 values 180 200 220 240
(100)a (111) (122) (133)

Mean yields 6.51 6.58 6.67 6.72
(100) (101) (102) (103)

G3 values 6 7 8 9
(100) (117) (133) (150)

Mean yields 5.23 5.99 6.72 7.33
(100) (115) (129) (140)

P5 values 550 600 650 700 750
(100) (109) (118) (127) (136)

Mean yields 5.00 5.63 6.21 6.76 7.29
(100) (113) (124) (135) (146)

Note: Crop parameters changed included the duration of
the vegetative phase (P1, in GDD8), the rate of
grain filling (G3, mg seed–1 d–1), and the duration
of grain filling (in GDD8).

a Values in parentheses are relative percentages.
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and finally simulated yields of different maturity hybrids and a sorghum hybrid when soil moisture
was not entirely replenished.

For the first set of analyses, a 2.0 m deep Houston black clay soil that could hold 0.25 m of
plant available water at field capacity was simulated. The three maturity types evaluated were
normal maturity for this region (1600 GDD8 from planting to maturity), 5 d earlier maturing (1500),
and 10 d earlier maturing (1400). This range was based on the range of maturities measured at
Temple, TX, for some hybrids of diverse maturity (Kiniry and Knievel, 1995). For each maturity
type, investigators simulated four, five, six, and seven plants m–2 plant densities for years 1991 to
2000 at Temple.

The three statistics of interest were the average for the three lowest yielding years (as an
indication of yields in dry years), the yields for the three greatest yielding years (as an indication
of yield potential), and the average yields over the 10 years.

Results with different densities of different maturity types on a 2.0 m soil (Table 10.3) showed
useful information on maturity type differences and grain yields. Optimum densities for greatest
average yields were five plants m–2 for the normal maturity, six plants m–2 for the 3 d earlier hybrid,
and seven plants m–2 for the 10 d earlier hybrid. For the normal maturity hybrid, decreasing planting
density decreased yield potential but increased yield in the 3 driest years. Using the CV as an
estimate of yield variability, CV values increased as population density increased above five plants
m–2 for the earliest maturity results and above four plants m–2 for the other two. For any given
density, earlier maturity caused a decrease in yield potential and an increase in yield stability (the
CV decreased). The greatest yields in the 3 driest years were for the four plants m–2 density for
the normal maturity, for the five plants m–2 density for the 5 d earlier maturity hybrid, and six
plants m–2 for the 10 d earlier maturity hybrid.

Decreasing soil depth to less than 1.5 m decreased overall average yield and yield in the highest
3 years (Table 10.4). The change in soil depth from 2.0 m to 1.5 m had little or no effect on maize
yields. These soil depths correspond to plant available water at field capacity of 250 mm, 206 mm,
and 147 mm. The optimum planting density based on average yield was five plants m–2 for all three
soil depths. Greater densities, although they had increased potential yields, had reduced values for
the low yielding years and reduced yield stability (as indicated by large CV values).

Analysis of 89 years of Temple, TX, weather indicated the average rainfall during the period
from maize harvest until the next year’s planting was 483 mm. Ranking the 89 years for amount
rainfall during this period, the average rainfall for the lowest 20% of these years was 254 mm. Our

Table 10.2 CERES-Maize Mean Simulated Grain 
Yields (Mg ha–1) near Temple, Texas, 
for 10 Years

P1 values 180 200 220 240
(100)a (111) (122) (133)

Mean yields 5.54 5.52 5.35 5.26
(100) (100) (97) (95)

G3 values 6 7 8 9
(100) (117) (133) (150)

Mean yields 4.39 5.07 5.63 6.12
(100) (115) (128) (139)

P5 values 550 600 650 700 750
(100) (109) (118) (127) (136)

Mean yields 4.35 4.82 5.23 5.60 5.89
(100) (111) (120) (129) (136)

Note: Crop parameters changed included the duration of
the vegetative phase (P1, in GDD8), the rate of
grain filling (G3, mg seed–1 d –1), and the duration
of grain filling (in GDD8).

a Values in parentheses are relative percentages.
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Table 10.3 ALMANAC’s Mean Simulated Grain Yields of Three Different Maturity Maize Hybrids 
on a 2.0-m deep Houston Black Clay with Temple, Texas, Weather Data from 1991 to 2000, 
with Different Planting Densities

4 Plants m–2 5 Plants m–2 6 Plants m–2 7 Plants m–2

16,200 Plants Acre–1 20,200 Plants Acre–1 24,300 Plants Acre–1 28,300 Plants Acre–1

(Mg ha–1)

Normal Hybrid

Low 3 avg. 3.5 2.7 2.4 2.5
High 3 avg. 5.0 7.4 8.4 9.2
Avg. 4.4 (83) 5.2 (97) 4.7 (89) 5.1 (96)
CV (%) 16 37 53 55

Early Hybrid

Low 3 avg. 2.6 3.1 2.6 2.6
High 3 avg. 3.6 6.2 7.5 8.1
Avg. 3.2 (61) 4.9 (92) 5.1 (97) 4.9 (93)
CV (%) 15 27 39 46

Very Early Hybrid

Low 3 avg. 1.7 3.1 3.3 2.9
High 3 avg. 2.2 4.2 5.8 6.8
Avg. 2.0 (38) 3.8 (72) 4.8 (90) 5.0 (95)
CV (%) 15 15 24 32

Note: The latter two maturity types reached maturity 5 d earlier and 10 d earlier than the common maturity type
for the region. The value in parentheses is the yield in bushels per acre.

Table 10.4 ALMANAC’s Mean Simulated Grain Yields for Three Soil Depths of a Houston Black Clay 
for a Common Maturity Maize with Temple, Texas, Weather Data from 1991 to 2000 
with Different Planting Densities

4 Plants m–2 5 Plants m–2 6 Plants m–2 7 Plants m–2

16,200 Plants Acre–1 20,200 Plants Acre–1 24,300 Plants Acre–1 28,300 Plants Acre–1

(Mg ha–1)

2.0 m Soil Depth

Low 3 avg. 3.5 2.7 2.4 2.5
High 3 avg. 5.0 7.4 8.4 9.2
Avg. 4.4 (83) 5.2 (97) 4.7 (89) 5.1 (96)
CV (%) 16 37 53 55

1.5 m Soil Depth

Low 3 avg. 3.4 2.6 2.4 2.5
High 3 avg. 5.0 7.5 8.4 9.2
Avg. 4.4 (83) 5.2 (98) 4.7 (89) 5.1 (96)
CV (%) 16 38 54 55

1.0 m Soil Depth

Low 3 avg. 2.8 2.3 2.3 2.4
High 3 avg. 5.0 6.7 7.6 7.7
Avg. 4.2 (80) 4.8 (91) 4.5 (84) 4.6 (86)
CV (%) 22 38 50 48

Note: The value in parentheses is the yield in bushels per acre.
© 2002 by CRC Press LLC



                                         
two scenarios for looking at management of maize following low winter rainfall were 254 mm and
an intermediate value of 381 mm during the period. Fallow season rainfall was adjusted accordingly,
using the growing season weather for 1991 to 2000 at Temple, as described previously.

With the lowest winter soil recharge (254 mm), there did not appear to be a benefit of reducing
planting density but sorghum showed promise as having superior yields to maize (Table 10.5).
Yields of the normal maturity maize hybrid were low, averaging 2.4 to 2.7 Mg/ha–1. Again looking
at planting densities of four to seven plants m–2, the highest average yields were at seven plants
m–2 for the normal maturity maize hybrid, at six to seven for the early hybrid, and at five for the
very early hybrid. The sorghum average yield exceeded all of the maize average yields. Sorghum
yields were more stable than those of maize, as indicated by the smaller CV values of sorghum.

With an intermediate amount of winter soil recharge (381 mm), optimum density of maize was
reduced and maize average yields were greater than sorghum yields (Table 10.6). The optimum
planting rates to achieve maximum average yields were four plants m–2 for the normal maturity
maize, and five plants m–2 for the early and very early hybrids. With such soil moisture recharge,
there appeared to be sufficient soil moisture to take advantage of reduced planting density. Yields
in the 3 years with wettest growing season conditions were greatest for these low densities. Sorghum
was not as competitive as it was with the 254 mm winter rainfall.

Table 10.5 ALMANAC’s Mean Simulated Grain Yields Following 254 mm of Rainfall during the Previous 
Fallow Period, for Three Different Maturity Maize Hybrids Simulated on a 2.0-m Deep 
Houston Black Clay with Temple, Texas, Weather Data from 1991 to 2000 with Different 
Planting Densities

4 Plants m–2 5 Plants m–2 6 Plants m–2 7 Plants m–2

16,200 Plants Acre–1 20,200 Plants Acre–1 24,300 Plants Acre–1 28,300 Plants Acre–1

(Mg ha–1)

Normal Hybrid

Low 3 avg. 1.1 1.3 1.4 1.4
High 3 avg. 3.8 3.6 3.6 3.9
Avg. 2.4 (44) 2.4 (45) 2.5 (47) 2.7 (51)
CV (%) 49 44 40 40

Early Hybrid

Low 3 avg. 1.2 1.2 1.3 1.3
High 3 avg. 3.5 3.7 4.0 3.7
Avg. 2.4 (46) 2.4 (44) 2.5 (47) 2.5 (47)
CV (%) 40 49 51 42

Very Early Hybrid

Low 3 avg. 1.7 1.2 1.2 1.2
High 3 avg. 2.2 3.8 3.7 3.7
Avg. 2.0 (38) 2.5 (47) 2.3 (43) 2.3 (44)
CV (%) 15 44 50 50

Grain Sorghum (25 plants)

Low 3 avg. 1.6
High 3 avg. 4.0
Avg. 2.8
CV (%) 38

Note: The average rainfall for this period for 89 years was 483 mm. The latter two maturity types reached maturity
5 d earlier and 10 d earlier than the common maturity type for the region. The value in parentheses is the
yield in bushels per acre.

Grain sorghum results for a common pllanting density are included for comparison.
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DESCRIPTION OF THE SWAT MODEL AND THE HUMUS PROJECT

The SWAT model simulates water quantity and quality in large, complex basins. SWAT predicts
the impact of topography, soils, land use, management and weather on water, sediment, nutrient
(nitrogen and phosphorus), and agricultural chemical yields for large watersheds with an insufficient
number of gages. To meet the design criteria SWAT:

1. Does not require calibration (which is impossible on ungaged watersheds).
2. Uses inputs that are readily available for large areas.
3. Efficiently simulates hundreds of interacting sub-basins using a daily time step.
4. Simulates hundreds of years in a continuous time model to assess long-term impacts.

The command structure routes water, nutrients and chemicals through streams and reservoirs and
inputs measured data for point sources of water and nutrients (Figure 10.1). Basins are subdivided
into grid cells or subwatersheds to increase input and output detail.

Model sub-basin components consist of components of hydrology, weather, sedimentation, soil
temperature, crop growth, nutrients, pesticides, and agricultural management. The model simulates
hydrologic processes including surface runoff estimated from daily rainfall using the USDA-NRCS

Table 10.6 ALMANAC’s Mean Simulated Grain Yields Following 381 mm of Rainfall during the Previous 
Fallow Period for Three Different Maturity Maize Hybrids Simulated on a 2.0 m Deep 
Houston Black Clay with Temple, Texas, Weather Data from 1991 to 2000 with Different 
Planting Densities

4 Plants m–2 5 Plants m–2 6 Plants m–2 7 Plants m–2

16,200 Plants Acre–1 20,200 Plants Acre–1 24,300 Plants Acre–1 28,300 Plants Acre–1

(Mg ha–1)

Normal Hybrid

Low 3 avg. 2.3 1.8 1.9 2.1
High 3 avg. 4.9 6.0 5.1 5.6
Avg. 3.8 (71) 3.6 (68) 3.4 (63) 3.6 (69)
CV (%) 32 48 46 47

Early Hybrid

Low 3 avg. 2.7 2.2 1.9 2.0
High 3 avg. 3.6 5.6 5.3 5.0
Avg. 3.3 (61) 3.9 (73) 3.3 (62) 3.2 (61)
CV (%) 15 37 48 46

Very Early Hybrid

Low 3 avg. 2.8 2.0 1.8 2.0
High 3 avg. 3.8 5.7 4.5 4.9
Avg. 3.4 (64) 3.9 (74) 3.0 (56) 3.2 (61)
CV (%) 15 38 44 46

Grain Sorghum (25 plants)

Low 3 avg. 2.2
High 3 avg. 4.3
Avg. 3.3
CV (%) 28

Note: The average rainfall for this period for 89 years was 483 mm. The latter two maturity types reached maturity
5 d earlier and 10 d earlier than the common maturity type for the region. The value in parentheses is the
yield in bushels per acre.

Grain sorghum results for a common pllanting density are included for comparison.
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curve number; percolation modeled with a layered storage routing technique combined with a crack
flow model; lateral subsurface flow; groundwater flow to streams from shallow aquifers, potential
evapotranspiration by the Hargreaves, Priestley–Taylor or Penman–Monteith methods; snowmelt;
transmission losses from streams; and water storage and losses from ponds.

Daily precipitation, maximum and minimum air temperatures, solar radiation, wind speed, and
relative humidity drive the hydrologic model. A weather generator simulates variables based on

Figure 10.1 Flowchart of SWAT model operation.
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monthly climate statistics derived from long-term measured data. Weather data can differ among
sub-basins.

SWAT computes sediment yield for each sub-basin with the modified universal soil loss equa-
tion. Soil temperature is updated daily for each soil layer as a function of air temperature; snow,
plant and residue cover; damping depth; and mean annual temperature.

The model simulates crop growth with a daily time step using a simplification of the EPIC crop
model which predicts phonological development based on daily accumulation of degree days,
harvest index for partitioning grain yield, a radiation use efficiency approach for potential biomass,
and adjustments for water and temperature stress. Both annual and perennial crops are simulated
using crop-specific input parameters.

SWAT simulates nitrate losses in runoff, in percolation and in lateral subsurface flow. The model
simulates organic nitrogen losses from soil erosion and an enrichment ratio. A nitrogen transfor-
mation model modified from EPIC includes residue mineralization, soil humus, mineralization,
nitrification, denitrification, volatilization, fertilization and plant uptake. Phosphorus processes
include residue and humus, mineralization, losses with runoff water and sediment, fertilization,
fixation by soil particles and plant uptake. Pesticide transformations are simulated with a simpli-
fication of the GLEAMS model (Leonard et al., 1987) approach and include interception by the
crop canopy; volatilization; degradation in soils and from foliage; and losses in runoff, percolation,
and sediment.

The model simulates agricultural management practices such as tillage effects on soil and
residue mixing, bulk density and residue decomposition. Irrigation may be scheduled by the user
or applied automatically according to user-specified rules. Fertilization with nitrogen and phospho-
rus can also be scheduled by the user or applied automatically. Pesticide applications are scheduled
by the user. Grazing is simulated as a daily harvest operation.

SWAT simulates stream processes including channel flood routing, channel sediment routing,
nutrient and pesticide routing, and transformations modified from the QUAL2E model (Brown and
Barnwell, 1987). Components include algae as chlorophyll-a, dissolved oxygen, organic oxygen
demand, organic nitrogen, ammonium nitrogen, nitrite nitrogen, organic phosphorus, and soluble
phosphorus. In-stream pesticide transformations include reactions, volatilization, settling, diffusion,
resuspension, and burial.

The ponds and reservoirs component includes water balance, routing, sediment settling, and
simplified nutrient and pesticide transformation routines. Water diversions into, out of, or within
the basin can be simulated to represent irrigation and other withdrawals from the system.

HUMUS was designed to improve existing technologies for making national and river basin
scale water resource assessments, considering both current and projected future climatic charac-
teristics, water demands, point-sources of pollution, and land management affecting non-point
pollution. The project was implemented as part of the U.S. Resources Conservation Act Assessment
completed in 1997. The major cooperators in the HUMUS project were the U.S. Department of
Agricultural Research Service and the Texas Agricultural Experiment Station, part of the Texas
A&M University System.

The major components of the HUMUS system were:

1. The basin-scale SWAT to model surface and sub-surface water quantity and quality
2. A geographic information system to collect, manage, analyze, and display the spatial and temporal

inputs and outputs of SWAT
3. Relational databases used to manage nonspatial climate, soil, crop and management data required

as input to and generated as output from SWAT

A SWAT/GRASS input interface (Srinivasan and Arnold, 1994) was used in this project. The
Geographic Resource Analysis Support System-Geographic Information System (GRASS) (U.S.
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Army, 1987) is a GIS system developed by the U.S. Army Corps of Engineers. The interface project
manager is used to extract, aggregate, view, and edit model inputs. This manager helps the user
collect, prepare, edit and store basin and sub-basin information to be formatted into a SWAT input
file. Most of the SWAT input data are derived from GRASS map layers. The data collected by the
interface include basin attributes such as area of the basin, its geographic location, and soil attributes
needed for SWAT. These are extracted from the STATSGO (USDA-SCS, 1992) database. Topo-
graphic attributes include accumulated drainage area, overland field slope, overland field length,
channel dimensions, channel slope, and channel length. Land use attributes include crop name,
planting and harvesting date based on heat unit scheduling, and weather station information for
the weather generator.

Digital Elevation Model (DEM) Topographic Attributes

The overland slope and slope length were estimated for each polygon using the 3-arc second
DEM data for each state. Measuring the slope using the neighborhood technique (Srinivasan and
Engel, 1991) for each cell within a sub-basin, a weighted average based on area for the entire
sub-basin was then calculated. The USLE slope length factor was computed using the standard
table from the USDA Handbook 537 (Wischmeier and Smith, 1978) and the estimated overland
slope.

Land Use Attributes

The USGS-LUDA data were used to develop crop inputs to SWAT. The land use with the
greatest area was selected for each sub-basin and the crop parameter database characterized each
crop (Williams et. al, 1990). The broad classification categories used in the LUDA were urban,
agriculture/pasture, range, forest, wetland, and water. Planting date of a land use was calculated
with a heat unit scheduling algorithm using latitude and longitude of the sub-basin, monthly mean
temperatures of the sub-basin, and land use type. This automated approach also identifies other
operations associated with a cropping system. For this study maize as used in the agricultural areas
because it is the most prevalent crop in many parts of the U.S.

Soil Attributes

The STATSGO-soil association map was used to select soil attributes for each sub-basin. Each
STATSGO polygon contains multiple soil series and the areal percentage of each. The soil series
with the largest area was selected by the GIS interface. The interface then extracted the physical
properties of the soil series for SWAT from a relational data structure and wrote them to SWAT
input files. The runoff curve number (CN) was assigned to each sub-basin based on the type of
land use and the hydrologic condition of the soil series using a standard CN table (USDA-SCS,
1972).

Irrigation Attributes

This study used the STATSGO database to identify locations using irrigation. In the STATSGO
“yldunits” table, irrigated crop yield is reported. Hence, if a STATSGO polygon had irrigated crop
yield for any crop in this table, and if the sub-basin’s land use (from USGS-LUDA) was agriculture,
then that sub-basin was simulated as irrigated agriculture. Using the irrigation map layer, the
interface created input parameters for automated irrigation application for each sub-basin. The
model automatically irrigated a sub-basin by replenishing soil moisture to field capacity when crop
stress reached a user-defined level.
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Weather Attributes

The SWAT model accessed data from 1130 weather stations in the U.S. The input interface
assigned the closest weather station for each sub-basin. The interface also extracted and stored the
monthly weather parameters in a model input file for each sub-basin.

Once the data were gathered for all the sub-basins for each state, the SWAT model was executed
for a 20-year simulation run. Using the SWAT/GRASS output interface, average annual output
were created as layers, which included rainfall, water yield, actual ET, potential ET, biomass, grain
production, water surplus (rainfall minus actual ET), and irrigation applied.

Demonstration of SWAT

The U.S. Environmental Protection Agency reported nutrient enrichment as the major cause
for impairment of lakes and other water bodies in the U.S. (USEPA, 1994). EPA’s water quality
inventory of 1996 indicated that forty percent of the surveyed rivers, lakes, and estuaries were
polluted relative to their designated uses (USEPA, 1998). To restore the quality of these water
bodies, the Total Maximum Daily Load (TMDL) process was established by Section 303(d) of the
Clean Water Act. A TMDL quantifies pollutant sources, and maximum allowable loads of contrib-
uting point and nonpoint sources so that water quality standards are attained for uses such as for
drinking water and aquatic life (USEPA, 1998). Once necessary pollutant reduction levels are
identified through the establishment of TMDLs, control measures such as best management prac-
tices are implemented. The USEPA Office of Science and Technology has developed a framework
for states to analyze impaired water bodies called BASINS (Better Assessment Science Integrating
point and Non-point Sources). BASINS consists of five components:

1. National databases
2. Assessment tools
3. Utilities
4. Watershed models
5. Post-processing and output tools

SWAT and its associated GIS interface have been integrated into BASINS and is being used in
several states for TMDL analysis.

The SWAT model was applied to the 4277 km2 Bosque River watershed in central Texas. This
river flows into Lake Waco, which is the source of drinking water for the city of Waco, TX. The
watershed is mostly range and pasture in the upper portion while cropland is widespread in the
lower portion. Manure from the 41,000 dairy cows in this watershed is applied on an area of
9450 ha. There is a strong positive correlation between elevated levels of phosphorus, the number
of cows and the total acreage of manure application fields (McFarland and Hauck, 1999). Other
sources of pollution include runoff from cropland and urban areas and effluent from wastewater
treatment plants.

SWAT was calibrated and validated at two USGS gaging stations in this watershed, at Hico
and Valley Mills (Santhi et al., 2001). After the model was validated, several management practices
were simulated to see which practices would reduce phosphorus concentrations in the river below
water quality standards.

The calibrated model was used to study the long-term effects of various BMPs related to dairy
manure management and municipal wastewater treatment plant loads in this watershed. Among
several scenarios studied, four scenarios are discussed in this paper. Detailed description of the
BMPs can be found in Santhi et al. (2002). The existing condition scenario simulates the watershed
with the present dairy herd size, the present waste application fields, the average manure application
rate of 13 Mg ha–1yr–1, the present discharge volumes from waste water treatment plants (WWTPs)
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with the current median concentrations for nutrients and present urban and cropland areas
(Table 10.7). The future condition scenario reflects the projected conditions of the watershed in
year 2020 with a projected dairy herd size of 67,000 cows, manure application in waste application
fields at the crop N requirement rate of 46 Mg of N ha–1yr–1, waste application field area calculated
at N rate requirement, maximum permitted discharge volumes from WWTPs using nutrient con-
centrations defined by current median values, urban area increased by 30% to reflect the projected
population growth in 2020, and cropland area at current levels (due to no increase in cropland over
last two decades) (Table 10.7). Three additional WWTPs with 1 mg/L concentration of total P were
input into the model as point sources along the North Bosque River to account for possible industrial
future growth outside existing communities.

Several management practices on dairy manure and WWTP effluents were simulated to study
the impact in reducing the mineral P loadings. Imposed dairy management practices included
hauling solid manure from the watershed, applying manure at crop P requirement rate (P rate) of
6.3 Mg ha–1yr–1 (because the N rate allows more applied P than crops require), and reducing the
dairy diet P to 0.4% (resulting in a 29% reducvtion in dairy manure P content as suggested by
Keplinger, 1999). The concentrations of total P in WWTP effluents were reduced to 1 mg/L–1.
Scenario E was a modification of the existing condition scenario with additional conditions imposed
on manure application rate (P rate), hauling off 38% of the manure, P diet reduction in animal
feed, and 1 mg/L–1 limits of P in WWTPs (Table 10.8). Scenario F was a modification over the

Table 10.7 Comparison of SWAT Corn Yields vs. Ag Census and National Ag 
Statistics Corn Yields (Mg ha–1)

State FIPS-id AGCENSUS (1987) NASS (20 yr avg) SWAT Yield

Illinois 17 6.6 6.0 6.7
Indiana 18 6.5 6.2 6.2
Iowa 19 6.6 6.2 6.6
Kansas 20 5.3 5.9 5.5
Kentucky 21 4.5 4.5 4.9
Michigan 26 4.0 4.5 2.9
Minnesota 27 5.1 4.5 3.6
Missouri 29 4.8 4.5 5.0
Nebraska 31 6.2 6.6 3.7
North Carolina 37 3.1 4.0 3.0
Ohio 39 5.7 5.6 5.8
Pennsylvania 42 4.9 4.9 2.6
South Dakota 46 3.3 3.1 3.6
Wisconsin 55 5.3 5.2 3.6

Table 10.8 Assumptions of BMP Scenarios in the Bosque Watershed

WWTP 
Flow Period WWTP P Limit

Dairy Manure 
Application Rate

Reduced 
P in Diet

Haul-Off 
Manure

Existing scenario 1997–1998 
(actual)

Median concentration Btw N&P rate No No

Future scenario 2020 
(permitted)

Median concentration N rate No No

Scenario E 1997–1998 All WWTPs at Median 
concentration and 
Stephenville WWTP — 
1mg/L

P rate Yes Yes

Scenario F 2020 All WWTPs with loads 
equal to Scenario E and 
Stephenville WWTP — 
with load equal to 
1mg/L of future

P rate Yes Yes
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future scenario with manure applied at P rate, hauling off 38% of the manure, P diet reduction,
and 1 mg/L–1 P limits on all WWTPs.

Mineral P loadings are displayed as probability exceedance plots to analyze the effectiveness
of BMPs. In these exceedance plots, annual mineral P loadings (y-axis) for the simulation period
(1960 through 1998) were ordered and plotted with their associated exceedance probability values
(x-axis) for Hico and Valley Mills (Figure 10.2). These plots provide information on the probability
of achieving a particular load of mineral P through a BMP at a particular location. Mineral P
loading curves for the scenarios varied from 10,000 kg to 40,000 kg at 10 probability at Hico
whereas it varied from 20,000 kg to 80,000 kg at Valley Mills. These curves showed loadings
within 10,000 kg at Hico at 90% probability and they showed loadings within 20,000 kg at Valley
Mills for the same probability.

In general, the loading curves were wider at lower probabilities and become closer as they
reach higher probabilities. The mineral P loadings were increased by about 27% at Hico and 29%

Figure 10.2 Exceedence probability of phosphorus loadings for various BMPs in the Bosque River.
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at Valley Mills in the future condition scenario as compared to the existing condition scenario.
These increases were predominantly caused by projected conditions for dairy and WWTPs in the
future scenario (Table 10.7). Scenario E showed reduction in mineral P loadings of about 67% at
Hico and 57% at Valley Mills from the future scenario. With scenario F, mineral P loadings were
reduced 54% at Hico and 48% at Valley Mills from the future scenario. Scenario E indicated that
with existing conditions, implementation of the BMPs would come closest to achieving the desired
water quality goals; however, with year 2020 growth (future) conditions, more stringent controls
will be required to meet the water quality goals.

Demonstration of HUMUS

Various hydrologic and crop growth outputs from the SWAT model simulation for the entire
U.S. for the HUMUS project are given in Arnold et al. (1998). Penman-Monteith ET methodology
was used in the simulation. Average annual ET generated from 20-year SWAT model simulations
had highs and lows in parts of Kansas and Nebraska (Figure 10.3). These were due to the irrigation
database used in this study. The high actual ET in most of Kansas was because the STATSGO
database showed most of the state as irrigated land. With irrigation automatically triggered when
plant available soil water was 50% of plant demand, irrigation of the agricultural cropland areas
were greatest in parts of California, Kansas, and eastern New Mexico (Figure 10.4). The average
annual biomass production (Figure 10.5) of irrigated cropland areas ranged from 25 to 32 Mg ha–1.
For non-irrigated cropland areas this ranged from 21 to 25 Mg ha–1. For forest land areas values
ranged from 16 to 21 Mg depending on their spatial and temporal distributions. Grains yields for
irrigated land ranged from 9 to 11 Mg ha–1, for non-irrigated land ranged from 6 to 9 Mg ha–1 in
Midwest U.S. and 3 to 6 Mg in other grain production areas. These grain yields agreed reasonably
well with state averages (Table 10.8).

Figure 10.3 ET from HUMUS project.
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Figure 10.4 Irrigation applied from HUMUS.

Figure 10.5 Biomass from HUMUS project.
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CONCLUSIONS, RECOMMENDATIONS, AND AREAS FOR FUTURE STUDY

Model development and improvement are evolving processes, driven by users’ needs while
providing direction to basic research to fill knowledge gaps on key processes. Future work on
model improvement is needed in several areas. We need to address limitations to model inputs,
including availability of input data and problems with scale. Likewise, coding improvements can
make models easier to understand and more modular. Interface tools for models and inputs of
different scale are also needed. Especially challenging is the improvement in quantification of
processes and process interactions in models. Finally, models need to be tested in environments
distinct from the ones used for model development.

Limitations to inputs often become obvious when testing a model in a diverse group of sites.
Precipitation data can be a problem because rain-gage density is insufficient to describe the spatial
variability for accurate hydrologic simulation. Radar data (NEXRAD) can provide spatially detailed
precipitation data for use in large scale models. Solar radiation data is often difficult to find, forcing
model users to rely on weather stations several kilometers from field sites. Soil profile description
can be derived from USDA-NRCS soil surveys, but actual description of layer depths within a field
requires labor intensive soil sampling.

Making models modular allows portions to be easily transferred to new models. Once a model
has been sufficiently validated and applied by many users, others may want to use only a portion,
such as the plant growth. Thus, easily read code and favorable modularity become important. Often
model developers, committed to working with users to apply models and develop reasonable inputs,
may not have the resources and time to rewrite model code to make it modular. Such efforts may
require outside funding and a special programmer to make the model code more object-oriented
and user-friendly.

Interface tools are another area of promise for future work on modeling. GIS interfaces have
been developed to automate spatial inputs and spatially display outputs of basin scale models. More
research is needed to determine better basin discretization schemes (how to subdivide a basin, such
as by sub-basins, on a grid scale, or by landuse overlays) and to assist users in developing
management scenarios.

Functions within a model that quantify processes are usually the best available approximation
at the time the model was developed and often can be improved by additional basic research. An
example, for basin scale modeling, is the simulation of surface/groundwater interaction. Since
groundwater can be a significant portion of stream flow at large scales, accurate simulation of
groundwater flow and surface interaction (recharge) is essential. Likewise, functions to simulate
bacteria fate and transport are needed for some basin scale models. Numerous TMDLs across the
U.S. involve bacteria and basin scale bacteria processes which are not well understood or simulated.
For single plant models there is a need for better description of many plant processes such as stress
effects on plant phenology. For field scale and single plant models, there is a need for better
description of root:shoot dynamics with and without drought or nutrient stress. Future research on
the phenology and growth of perennial woody species in temperate and tropical environments will
benefit application of these models to many areas.

The ultimate goal for process-based models is realistic simulation in a wide range of environ-
ments, not just those used for model development. Applying crop models developed in temperate
conditions to new regions in the tropics can cause phenological simulations to fail. Maize leaf
appearance rate as a function of degree days is much slower near the equator than in temperate
zones. Careful analysis of simulations under high evaporative demand environments can identify
weaknesses in soil water balance simulation and in plant responses to drought stress. Riparian
zones and buffers are becoming important management tools with much need for accurate simu-
lation. Realistic simulation of such zones is critical for many applications of large scale models.
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INTRODUCTION

Technical development of agricultural machinery, combined with a global positioning system (GPS)
and yield monitoring, allows farmers to consider the heterogeneity within fields for their crop manage-
ment. Site-specific crop management provides a better efficiency of applied nutrients combined with
lower emissions of agrochemicals. Especially for nitrogen, it is important that the nutrient supply closely
matches the demand of the crops because a surplus can be easily leached into the groundwater. Until
now, fertilizer recommendations for nitrogen for entire fields have usually been based on measurements
of soil mineral nitrogen content in early spring (Wehrmann and Scharpf, 1986) supported sometimes
by measurements of the crop nitrogen status by optic sensors (Leithold, 2000). Nevertheless, all mea-
surements are just snapshots of a present situation which enlighten neither the reason for an observed
phenomenon nor the probable future development. Regarding the spatial and temporal variability of
soil mineral nitrogen within fields, it is doubtful that frequent and dense soil sampling might be a realistic
approach under practical conditions for a site-specific fertilizer application. Therefore, methods are
required to estimate easily the local nitrogen demand considering the spatial variability of soil nitrogen
supply and crop yield potentials. Agricultural system models provide a tool to transfer the spatial
heterogeneity of time-stable soil and terrain attributes, which have to be estimated once for a field, into
a temporal dynamic of the relevant state variables of the soil-crop nitrogen dynamics (Figure 11.1).

To evaluate the capability of such a model-based approach, the authors investigated the spatial
structure of some relevant soil characteristics, crop yield, and mineral nitrogen content on two
fields in Germany. Spatial estimation techniques were tested for their capability to improve or to
facilitate the determination of spatial patterns. The relatively simple agricultural system model
HERMES was applied to simulate crop growth and nitrogen dynamics using different levels of
spatial information. The model has been applied successfully to calculate fertilizer recommenda-
tions for cereals for entire fields or to estimate nitrogen leaching on a regional scale (Kersebaum
and Beblik, 2001). The aim was to determine if the model approach was sensitive enough to reflect
the temporal and spatial variability of crop growth and soil mineral nitrogen within fields and,
therefore, be feasible for site-specific fertilizer recommendations. Furthermore, the model will be
applied to compare results of different fertilizer strategies between field plots.

Figure 11.1 Concept to estimate site-specific dynamics from stable spatial structures.
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METHODS

Simulation Model

The model HERMES (Kersebaum and Richter, 1991; Kersebaum, 1995) was developed for
practical purposes, which implies that relative simple model approaches were chosen to operate
under restricted data availability. The model and the concept for model-based fertilizer recommen-
dations has been described in detail by Kersebaum and Beblik (2001); therefore, only a brief
characterization of the fundamentals will be given here.

The vertical one-dimensional model operates on a daily time step using daily precipitation,
temperature, vapor pressure deficit, and global radiation. The main processes considered are nitro-
gen mineralization, denitrification, transport of water and nitrogen, crop growth, and nitrogen
uptake. A capacity approach is used to describe soil water dynamics. The capacity parameters
required by the model are attached to the model by external data files that are consistent with the
German soil texture classification and their capacity parameters. The basic values are modified by
organic matter content, bulk density, and hydromorphic indices. The latter are derived for the
investigated fields from the digital elevation model (DEM) as a topographic scaled wetness index.

Modeling of nitrogen net mineralization simulates the release of mineral N from two pools of
potentially decomposable nitrogen that are derived from soil organic matter and amounts of crop
residues related to the yield of the previous crop. Therefore, the spatial distribution of soil organic
carbon and the yield map of the previous crop have been used as input variables. Daily mineral-
ization is simulated depending on temperature and soil moisture. Denitrification is simulated for
the top soil using a Michaelis–Menten kinetic modified by reduction functions dependent on nitrate
content, water filled pore space, and temperature.

The submodel for crop growth was developed on the basis of the SUCROS model (van Keulen
et al., 1982). Driven by the global radiation and temperature, the daily net dry matter production
by photosynthesis and respiration is simulated. Dry matter production is partitioned according
to crop development stages calculated from a thermal sum (°C days) modified by day length and
vernalisation. The yield was estimated at harvest from the weight of the ears and nitrogen
recycling with crop residues is calculated automatically from the simulated crop uptake. Crop
growth is limited by water and nitrogen stress. Temporary limitation of soil air by water logging
is considered through reducing transpiration and photosynthesis according to Supit et al. (1994).
Water and nitrogen uptake is calculated from potential evaporation and crop nitrogen status,
depending on the simulated root distribution and water and nitrogen availability in different soil
layers. The different crops within a rotation are considered using crop specific parameter sets
from an external file.

Data required by the model can be separated into three parts: weather data, soil information,
and management data. The model operates on a daily weather data basis. Input data required are
precipitation, average air temperature, global radiation or alternatively sunshine duration, and the
vapor pressure deficit at 2 a.m.

Soil information is required at a resolution of 10 cm for the profile. For the plowing layer, the
organic matter content and its C/N ratio should be given. The soil texture classes of A.G. Boden
(1994) are the most important soil information required. Information of groundwater depth and
soil texture are used to calculate capillary rise if applicable. Bulk density and percentage of stones
are used to modify capacity parameters.

Mandatory data for management are crop species, dates of sowing, harvest and soil tillage,
nitrogen fertilizer, and water application (kind of fertilizer, quantity and date of application/incor-
poration). Measured vertical distribution of mineral nitrogen content and soil moisture are used as
initial values for the simulation.
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Investigation Sites

The investigations for spatial variability and its effect on crop yield and nitrogen dynamics
were carried out at two locations in Germany. For both locations, the relevant meteorological data
were recorded by automatic weather stations.

Site 1

The 20-ha field “AUTOBAHN” is located in the northwestern part of Germany in Beckum/North
Rhine-Westphalia. The texture varies from slightly loamy sand in the north to silty and clay loam with
underlying calcareous marl coming up into the root zone at the southern part of the field. The elevation
ranges from 96 to 102 m and a deciduous forest is located in the center of the field. During the
investigation period of 1999/2000, winter wheat was grown following the previous crop of oilseed rape.

Site 2

The second investigation site is located in the southeastern hummocky loess region of Luette-
witz/Saxony on a farm of the Suedzucker Company. The silty aeolian sediment of the investigated
30-ha field “SPORTKOMPLEX” varies only slightly in texture. The elevation ranges from 246 to
276 m above sea level with maximum slopes of 13°. The crop rotation under investigation was
spring barley (1997/1998), winter rye (1998/1999), and winter wheat (1999/2000).

Spatial Data Acquisition

Measurements

Site 1

Auger sampling from 0 to 90 cm was performed in September 1999 at 60 locations in a 50 ×
50-m grid mixing five auger samples at each location. Nested sampling was done at two locations
with 16 points in a 5 × 5-m grid to investigate the small-scale variability. Samples were analyzed
for three 30-cm depth increments for soil texture, soil moisture, mineral nitrogen, and organic
carbon/nitrogen (only 0 to 30 cm). Sampling was repeated at the same locations in August 2000
after harvest of winter wheat and in early Spring 2000 on 49 selected points representing the soil
map units of the field as a base for fertilizer recommendations. To evaluate the capability of remote
sensing techniques to improve soil map accuracy and to reduce laborious grid mapping, electro-
magnetic induction measurements were performed by Durlesser and Sperl (Soilinvest Company)
with an EM-38 equipment (Durlesser and Stanjek, 1997). Geo-referenced grain yields were obtained
from a combine harvester and aggregated for model validation using a 10-m radius around the
sampling locations eliminating values beyond three standard deviations (Jürschik et al., 1999).

Site 2

After harvest of triticale in August 1997, auger samples were taken for 0 to 90 cm depth on
225 locations of a 28 × 28-m grid with five samples mixed at each location. At each grid point,
the initial soil moisture and mineral nitrogen content in layers of 30-cm thickness was analyzed.
Small-scale variability of mineral nitrogen was measured by nested sampling at five locations with
25 points in a 6 × 6-m grid. Basic soil information for soil texture and organic carbon content were
obtained for every second sample of the standard grid. Soil mineral nitrogen was measured at
selected standard grid cells at different time intervals during the growing period 1998 and 1999
and after harvest of spring barley in 1998 and winter rye in 1999. Results had to be transferred in
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1999 to a new shifted 54 × 54-m grid that was the basic cell size to perform an experiment with
different fertilizer applications in the growing season 2000. For these grid cells, mineral nitrogen
content in the root zone (0 to 90 cm) was measured after harvest of winter rye as initial values for
nitrogen simulation, for selected cells in early spring as a base for the conventional fertilizer
recommendation and at all grid cells after harvest in August 2000. Grain yields were mapped every
year by a combine harvester (Claas Agromap). The raw yield data were processed using the GIS
ArcInfo according to a method described by Jürschik et al. (1999).

Terrain Analysis

Spatial variability of crop growth or soil properties often has a topographic background.
Therefore, researchers obtained topographical information for the study sites to derive spatial
patterns of model input variables such as solar irradiation or soil characteristics. For field AUTO-
BAHN (site 1) a digital elevation model was digitized from a topographical map (Scale 1:10,000).
Although the field shows no steeper slopes, the forest in the center of the field was included in the
elevation model to estimate the shading effect on the arable crops. Therefore, we include the forest
patch using an estimated height of the trees and a time-variable light permeability to consider the
seasonal fluctuations of the canopy (Erhardt et al., 1984).

For SPORTKOMPLEX, a digital elevation model was obtained by laser altimetry with a
horizontal resolution of 1 × 1 m and a vertical resolution of 10 to 15 cm. In this elevation model,
the shape of trees and buildings are included. A local filter was applied to remove small-scale noise
and resampling to a cell size of 5 × 5 m was performed.

The spatial variation of the incoming long- and short-wave radiation was estimated using the
SRAD modul from the TapesG-package (Gallant and Wilson, 1996). Irradiation for each month
was calculated for 3 days, 10 days apart in time steps of 12 minutes due to computational
limitations. Measurements of the weather station beside the field were used for parametrization.
The results were aggregated by averaging to a cell size of the 28 × 28-m grid and normalized
to the computed radiation of the weather station. For simulation, we used an average monthly
correction for each grid cell. A more detailed description of the procedure is given by Reuter
et al. (2001).

Additionally, the elevation model of SPORTKOMPLEX was used to derive the topographic
wetness index according to Moore et al. (1993). The specific catchment area (As) and the slope
(D8-method) were derived using the GRID modul of ArcInfo. The topographic wetness index was
scaled to be used as a hydromorphic modification factor for the field capacity parameter in the
HERMES model.

Spatial Estimation Techniques

Cokriging

Soil textural information is available or can be determined experimentally at spatial resolutions
that are relatively coarse, only. In order to obtain a picture about soil textural distribution at higher
resolutions, spatial estimation techniques can be applied. Values for the variable of interest can be
estimated at unsampled points. The estimation uncertainty is reduced, the more closely the “expen-
sive” variable is spatially correlated to a variable that is easier to sample, and therefore available
at a high resolution. For the AUTOBAHN site, clay content was determined at sampling locations
shown in Figure 11.4, with point separation distances of 5 m, 50 m, and 100 m. Electrical conduc-
tivity values were determined “on the go” at irregular separation distances of 1 m or less within
the management direction and approximately 20 m perpendicular to this direction.

The objective of the spatial estimation was to compare interpolation using kriging based on
clay content measurements only with a coregionalization technique (cokriging), where spatial clay
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estimation was supported by electrical conductivity values, and their spatial covariance (see, e.g.,
Alemi et al., 1988; Deutsch and Journel, 1992; Zhang et al., 1999).

First, the spatial covariances of clay content in the upper 30-cm soil layer and of electrical
conductivity were determined with univariate semivariance by:

(11.1)

where semivariance γZ(h) is calculated for a number of N(h) observations Z(x) that are separated
by a lag distance h. In order to quantify the bivariate spatial covariance behavior, the cross-
semivariance of two variables Y and Z was calculated according to:

(11.2)

As can be seen from Figure 11.4, clay contents were determined at 79 locations, whereas
electrical conductivity was determined for approximately 6400 locations. Sampling locations for
both variables were not identical. For covariogram calculation, for each of the 79 sampling locations
the electrical conductivity values obtained for the surrounding 16 m were averaged.

Variogram models were fitted to the calculated γZ(h) and ΓYZ(h) relations, respectively. Both
variogram models and the cross-variogram model are comprised of different so-called nested
structural components. These components need to exhibit the same spatial scales of correlation
structure, i.e., the range parameters of different structures have to be identical for the different
variograms and the covariogram, and each of the sill parameters represents the specific covariance
structure. In this study, variogram models were composed from an exponential part with (Deutsch
and Journel, 1992):

(11.3)

and a spherical model with:

(11.4)

In Eqs. 11.3 and 11.4, c denotes the sill, and a is the range parameter. The kriged value for an
unsampled location was estimated from observations in the spatial neighborhood, by (Yates and
Warrick, 2002):

(11.5)

where each observation contributes with a weight λi, which depends on the number of neighborhood
observations considered and their respective distance to the unsampled location, as well as the
semivariance associated with the respective distance. For a particular kriging estimation, the sum
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of respective weights equals 1. The minimization of the variance of errors is obtained from the
Lagrange multiplier α. The kriging estimation variance is calculated via:

(11.6)

An unsampled value is estimated by cokriging via:

(11.7)

where λi and ω i are respective weights for Z(x) and Y(x). Accordingly, the kriging estimation
variance is obtained from:

(11.8)

The effect of using an auxiliary variable that could be sampled with higher density, while being
spatially correlated to clay content, should be evaluated by comparing the maps of kriging and
cokriging standard deviations.

First-Order Autoregressive State–Space Analysis

The spatial association between two variables j and k is quantified in the cross-covariance
function Cjk(h) with (Shumway, 1988)

(11.9)

with means µj and µk, respectively. The cross-correlation function as the normalized cross-covari-
ance function is

(11.10)

with variances s2
j  and s2

k , respectively.
The state–space model consists of two equations. The first is the model equation, in this case

a first-order autoregressive equation relating the state vector Xs to the state vector at location Xs–1

via a matrix G of transition or autoregression coefficients.

(11.11)

The term ωs denotes the model uncertainty.
The state vector is embedded in an observation equation, because the observed vector Ys is

affected by observation and calibration uncertainty νs.

(11.12)
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For further details, the reader is referred to Shumway (1988), and Wendroth et al. (1992). For
numerical stability in the state–space estimation, observed series Z(x) are normalized Θ(x) with
respect to their mean and standard deviation by (Wendroth et al., 2001):

(11.13)

In order to evaluate whether an additional variable improves the model result, the corrected
form of the Akaike Information Criterion AICc is employed (Shumway and Stoffer, 2000):

(11.14)

with σ̂ 2
k  denoting the average of the sum of squared differences between observation and prediction

by a model with k regression coefficients and n as the number of observations.

Fertilization Strategies and Scenarios

On the two sites different fertilization strategies were applied. On the field AUTOBAHN, a
fertilizer recommendation scheme was derived by an algorithm of Wenkel et al. (2001), which
considers the mineral nitrogen content measured in early spring at different soil map units of the
field, soil type, and related yield potential estimations. This site-specific recommendation was
applied on the east side of the field AUTOBAHN, whereas on the other side of the field an average
of the recommended doses was applied uniformly over the field.

On the field SPORTKOMPLEX, four different fertilizer strategies and a zero fertilization were
applied for the winter wheat in 2000. The conventional strategy uses the average of the measured
soil mineral nitrogen content in early spring on the field to calculate the first nitrogen application
according to the Nmin-method (Wehrmann and Scharpf, 1986). The next two applications were
estimated site-specifically by the online optic Hydro-N-sensor (Leithold, 2000). The HERMES
uniform”strategy used the average of the model-based fertilizer recommendation for all grid cells
of the field (simulations used only the Nmin observations of August 1999), while on the HERMES
site-specific plots, the grid-cell-specific recommendation was applied. The HERMES + 30% strat-
egy adds 30% to the previously-mentioned HERMES uniform recommendation. Details of the
investigation plan are given by Schwarz et al. (2001).

The observations and simulations of soil mineral nitrogen residues after harvest and the yields
of the different strategies were compared. To eliminate the effects of different site conditions on
the results, scenario calculations with the model were carried out assuming the strategies would
have been applied to the same sites. For the field AUTOBAHN, the site-specific application was
simulated for the uniformly treated field section and vice versa. For SPORTKOMPLEX, the uniform
strategies are simulated for the site-specifically treated grid cells while the other way was not
realized because the estimations of fertilizer demand by the model and by the sensor were dependent
on the already applied fertilizer and the actualized weather data.

RESULTS

Spatial Distribution of Input Data

On field SPORTKOMPLEX, texture varies little within the field. Although the clay content
ranges between 12 and 23%, the texture is dominated by silt. Only two texture classes exist, and
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they are very similar in their capacity parameters. The organic matter content ranges from 0.9 to
1.7% and is correlated to the clay content. Nevertheless, soil mineral nitrogen at the beginning of
the investigations showed a very high variability (30–364 kg N ha–1) within the field (Figure 11.2).
Nested sampling gave different results for the northern and southern part of the field. While the
semivariogram of the nests B3 and K6 fits well into the variogram of the standard grid, the small
distance variations within the nests B14, D9, and L12 exceed the sill of the standard grid. Because
the variability of the standard model inputs was small compared to the observed yield and soil
mineral nitrogen variation, additional information for the model runs was derived from the DEM.
Figure 11.3 shows the digital elevation model and the resulting spatial pattern for solar irradiation
and the wetness index scaled from 0 (no wetness) to 3 (strong wetness). Irradiation is considered
in the model for photosynthesis while wetness might cause growth reduction by soil air shortage.

The spatial distribution of the main standard model input variables on field AUTOBAHN are
shown in Figure 11.4. Soil texture is very clearly structured (Figure 11.4a). The map units reflect
the average texture in 0 to 90 cm excluding stones according to the German texture classification
system (corresponding signatures according to the American soil taxonomy in brackets). Organic
matter (Figure 11.4b) is strongly correlated to the fine texture fractions and ranges from 0.9 to
3.6% Corg. Remaining mineral nitrogen content after harvest of oilseed rape in 1999 is quite high.
Most of the observations were in the range of 120 to 200 (Figure 11.4c). Measurements were used
as initial values for simulation.

Supporting Soil Information by Geoelectrical Measurements

For the 79 observations of clay content in the 0 to 30 cm soil depth, and for approximately
6400 on-the-go measurements of electrical conductivity, variograms were calculated for lag intervals
of 10 m. The resulting variograms for clay content and electrical conductivity and their crossvar-
iogram are shown in Figure 11.5. As described earlier, variogram models with a common set of
two different structures were fitted according to Eq. 11.4 and the variogram and covariogram model
parameters are shown in Table 11.1. The exponential part of the model exhibits a range of 50 m

Figure 11.2 Spatial distribution of soil mineral nitrogen in the root zone of field SPORTKOMPLEX in August
1997 for standard grid and nested sampling grid.
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Figure 11.3 Digital elevation model of field SPORTKOMPLEX and derived wetness index (scaled) and spatial
distribution of relative solar radiation in 1998.

Figure 11.4 Spatial distribution of some relevant model inputs on field AUTOBAHN nesting sampling location
not shown: (a) average texture class in the upper 90 cm (German soil texture classification and
corresponding texture of soil taxonomy); (b) Corg-content in 0–30 cm; and (c) soil mineral nitrogen
(Nmin) in 0–90 cm (initial observation September 15, 1999).
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whereas the range in the spherical model is 150 m. Based on the variogram in Figure 11.5a, clay
contents were kriged. The resulting map is displayed in Figure 11.6a. The map of kriging standard
deviation is shown in Figure 11.6c. It is obvious that close to sampling points, the kriging standard
deviation decreases. On the other hand, in the southern part of the field, where observation density
is lower than in the northern part, kriging standard deviation generally increases.

Clay contents were cokriged with electrical conductivity measurements, based on both vario-
grams and the covariogram shown in Figure 11.5. The pattern of cokriged clay contents
(Figure 11.6b) becomes more pronounced compared to the kriged clay contents (Figure 11.6a) due
to the close spatial association of electrical conductiviy and clay content. Moreover, the cokriging
standard deviation of clay content (Figure 11.6d) is lower in general compared to the kriging
standard deviation (Figure 11.6c). The lower standard deviation around the sampling locations for
clay content ranges over a wider sphere than in the kriging case. Due to the coarser sampling of
clay content in the southern part of the field, highest cokriging standard deviations appear in this

Table 11.1 Variogram Model Parameters for Variograms in Figure 11.5

ce ae cs as

Variogram: clay content 0.63 50 m 43.28 150 m
Cross-variogram: clay — electr. conductivity –3.74 50 m 55.05 150 m
Variogram: electr. conductivity 22.07 50 m 70.00 150 m

Note: The parameters for the exponential and spherical part of the model are
denoted by indices of e and s, respectively.

Figure 11.5 Variograms and covariogram for clay content and electrical conductivity for kriging and cokriging
analyses at the field site AUTOBAHN in Beckum, Germany.
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region; however, the area with high cokriging standard deviations was smaller and limited to narrow
bands at half distance between sampling locations.

Hence, due to the relatively coarse sampling of clay content associated with a relatively high
analytical effort and the indirect, relatively cheap measurements of electrical conductivity taken
across the entire field at a high resolution, the estimation of the spatial pattern of clay content could
be improved and its accuracy increased.

Spatially Distributed Simulation

Model runs, with their individual combination of input data, were performed for each grid cell.
Validity of the model is proved using observed soil moisture, mineral nitrogen contents, and crop
yield mapping. For SPORTKOMPLEX, the model runs from August 1997 to August 1999 without
any reset to observed data. Crop residues for the second simulation period were generated auto-
matically at harvest from the simulated yield and N-uptake of the spring barley. Figure 11.7
demonstrates the time course of the simulated mineral nitrogen in the root zone of selected grid
cells compared to the corresponding observations. Until May 1999 the simulation reflects the
temporal dynamics of the mineral nitrogen within the standard deviations of the observations.
Remaining mineral nitrogen after harvest in 1999 was underestimated while crop yield was over-
estimated (observed: 6.4 t ha–1, simulated: 6.8 t ha–1).

Figure 11.6 Kriged and cokriged map of clay distribution (Figures 11.6a and 11.6b) and the respective (co-)kriging
standard deviations (Figures 11.6c and 11.6d) at the field site AUTOBAHN in Beckum, Germany.
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In Figure 11.8, simulated and observed yields of the spring barley in 1998 are compared for
every second column/row of the standard grid. The error bars indicate the standard deviation of
the recorded yields within the 10-m radius circle around the grid points. On average, the coefficient
of variation of all grid points was 0.15, which is composed of small-scale spatial variability and

Figure 11.7 Simulated and observed soil mineral nitrogen content in 0–90 cm of all measured grid points
including their standard deviation at field SPORTKOMPLEX from August 1997 to August 1999
(arrows indicate date and amount of nitrogen fertilization in kg N ha–1).

Figure 11.8 Simulated and observed (including standard deviation) yields (dry matter) of spring barley in August
1998 on a double-spaced grid (56 × 56 m) on field SPORTKOMPLEX.
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the technical estimation error. Due to this high variability within the grid cells compared to the
total field variability, only very low coefficients of determination (r2 = 0.09) were achieved. Of the
simulations 53% (1999: 92%) were within these error bars. While the yield depression in row 13,
which corresponds to the hollow across the field, is well reflected in most cases, there is a bigger
area of overestimation in the southeast (O10 to O14) which can also be seen in the 1999 yield data
of the winter rye. This might be due to a former pasture area that can be identified on older field
maps.

Figures 11.9a and 11.9b show the effects of different spatially variable inputs on the variation
of the model output for soil mineral N (Figure 11.9a) and crop yield (Figure 11.9b) after a one-
year simulation at harvest 1998 on field SPORTKOMPLEX. Also shown are the corresponding
correlation coefficients between simulations and observations. For this analysis, the spatial vari-
ability of only one input parameter was considered, while averages of all the others were used.
From the results, it can be seen that texture has only a minor effect on soil mineral nitrogen within
this field as can be expected from its low variability. Organic matter content and initial soil mineral
nitrogen had no effect on crop yield due to the high level of nitrogen supply but the highest effects
on the residual nitrogen contents in the next year. In contrast, bulk density class and wetness index,
both influencing the amount of air filled pores at field capacity, had the largest effects on yield but
not on mineral N content. The variable solar radiation does not influence soil mineral N. The effect
on yield variability is in the same order of magnitude as from texture but shows the highest
correlation. The effect of solar radiation on crop yield of winter rye is somewhat higher because

Figure 11.9 Separated effects of different spatial variable input parameters on the variation of (a) soil mineral
nitrogen after harvest 1998 on SPORTKOMPLEX; (b) yields of spring barley in 1998 on field
SPORTKOMPLEX; (c) soil mineral nitrogen after harvest 2000 on AUTOBAHN; and (d) yields of
winter wheat in 2000 on field AUTOBAHN (bar labels show correlation coefficients).
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the main differences in irradiation occur during the end of autumn and beginning of winter. The
last column shows the combination effect of all input variables on the output variation.

A similar procedure was done for field AUTOBAHN (Figures 11.9c and 11.9d), but researchers
did not take an average of the texture for the analysis of the other inputs because this would have
caused artificial effects in some combinations, e.g., if the initial water content on a clay loam site
exceeded the water holding capacity of the averaged texture class. So investigators used the
variability of the texture as basic information, adding one of the other inputs for simulation each
time. The pictures in Figures 11.9c and 11.9d are completely different from that of SPORTKO-
MPLEX. Texture and organic matter content play the major roles for the variation of mineral
nitrogen (Figure 11.9c) and yield (Figure 11.9d); the topographic wetness index has no influence,
and irradiation only affects yield at two grid cells in the direct neighborhood of the forest. Leaching
is generally higher on AUTOBAHN, which limits the effect of initial soil mineral variability on
the variation of the following year. The small effect on yield indicates that the winter wheat is
sufficiently supplied with nitrogen. The higher stone content in the subsoil of the southern part of
the field reduces the differences between the water holding capacity of the different textures and
the corresponding variability of yield and mineral N. Again, bulk density has the highest effect
altering the texture-induced variance of yield and soil mineral nitrogen.

Figure 11.10 shows the simulation of the temporal dynamics of soil mineral nitrogen in the
root zone of field AUTOBAHN for 49 grid points in comparison to the observations. Starting from
a very high level after harvest, the mineral N content decreases until spring mainly due to nitrate
leaching. Absolute variation also decreases until spring. Then, the site-specific fertilization on one
side of the field leads to an increase of the variability in the simulation results again. On average,
the model results agree well with the observations.

Due to the distinct differences in soil texture and the clear spatial structure of the field,
relationships between measured and observed state variables are generally closer on field AUTOBAHN.
The high differences in water holding capacity lead to a narrow spatial relationship (Figure 11.11a)
between measured and simulated soil moisture contents of the root zone in summer 2000 (r2 =
0.79). The correlation between observed and simulated grain yield (r2 = 0.2) is much lower than
for moisture content. Regarding the variability of the yield detection around the grid points
(Figure 11.11b) this low correlation is not surprising. Nevertheless, 63% of the simulated yields

Figure 11.10 Simulated and observed soil mineral nitrogen 0–90 cm of all measured grid points including their
standard deviations from September 1999 to August 2000 on field AUTOBAHN (arrows indicate
date and average amount of nitrogen fertilization in kg N ha–1).
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are within one standard error of the measurement. The simulation of grain yield reflects the general
trend between the observations at different locations, which explains the similarity of observed and
simulated yield maps (Figure 11.12). Although the temporal dynamics of mineral nitrogen is well
described by the model, high deviations occur at single locations (Figure 11.11c). Still, the trends
between the differently managed field sides can be described by the model (see Table11.2).

Figure 11.11 Observations and simulations in August 2000 on field AUTOBAHN of (a) soil moisture content
(0–90 cm); (b) yield of winter wheat (error bars indicate standard deviations of recorded yields
within 10 m radius); and (c) soil mineral nitrogen content (Nmin) in 0–90 cm.

Figure 11.12 Spatial distribution of observed and simulated grain yield of winter wheat on field AUTOBAHN
in August 2000.
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Comparison of Fertilization Strategies

Table 11.2 shows the results of measured and simulated yields and residual soil mineral nitrogen
after harvest of winter wheat in August 2000 for both fields under investigation. For AUTOBAHN,
the measurements show that the site-specific management results in slightly higher yield than the
uniform application. This is also indicated by the simulation if the real management is considered.
Using the model to transfer both management strategies virtually to the other side, it is apparent
that the observed differences in yield between both sides were mainly caused by site effects.
Moreover, the site-specific management scheme seems to leave behind higher amounts of mineral
nitrogen after harvest, which is at risk to be leached out during the next winter period. Regarding
the high spatial variability and the uncertainty of the model calculations, the differences in residual
soil mineral nitrogen between both sides of AUTOBAHN cannot be stated as significant.

On field SPORTKOMPLEX, the application of different fertilization rates, especially the zero
fertilization plots, led to an increase of yield variability (Figure 11.13) which improved the corre-
lation (r2 = 0.4) between observations and simulations. For 89% of the grid cells, yield estimation
deviates less than 15% from the observations. Again, the correlation between measured and sim-
ulated mineral nitrogen is poor (r2 = 0.17) due to the very high small-scale variability within the
grid cells (average coefficient of variation = 0.3).

Looking at the averages of the fertilization variants (Table 11.2), the model results reflect the
yields and residual mineral nitrogen content satisfactorily. For the zero fertilized plot, the earlier
senescense of the winter wheat due to nitrogen deficiency was not sufficiently considered, which
led to an overestimation of yield and nitrogen uptake and a corresponding underestimation of
mineral nitrogen content at harvest. The observations as well as the simulations indicate that the
yields of the fertilization strategies are not significantly different. Instead, there is a slight tendency
to higher residual mineral nitrogen contents after harvest for the higher fertilized strategies

Figure 11.13 Simulated and observed values on field SPORTKOMPLEX at harvest of winter wheat in August
2000 at differently fertilized grid cells for a) grain yield (dry matter) and b) soil mineral nitrogen
0–90 cm.
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HERMES + 30% and conventional, which received about 40 kg N ha–1 more than the two other
strategies. Transferring the uniform application strategies to the other grid cells show that there is
nearly no effect on residual mineral nitrogen after harvest between uniform and site specific
application if a similar amount (strategy HERMES) would have been fertilized, but an increase of
remaining nitrogen if the higher amount (HERMES + 30%) would have been applied to the cells
of the variants HERMES and HERMES site-specific. Scenario calculations for the following winter
period indicate that at single locations, especially in the hollow area where crop growth is limited
by site conditions, a reduction of nitrogen leaching with site specific fertilization can be achieved
(Kersebaum et al., 2001). This shows that the concept of site-specific fertilization has the potential
to reduce nitrogen leaching although the average results do not reflect this due to the small
contribution to the area of the investigated fields.

Spatial Crop Yield Estimation with Autoregressive State–Space Models

A set of different variables observed in the year 1998 in the field site SPORTKOMPLEX should
be evaluated, i.e., to what extend different variables supported spatial estimation of crop yield. For
this estimation, these variables were crop yield itself (Yi), normalized difference vegetation index
(NDVI), crop-nitrogen status for May 15, 1998 simulated according to Kersebaum (1995) (Crop-N),
and solar radiation for the month of April 1998 as mentioned above (Sol-Rad). The normalized
difference vegetation index (Baret, 1995) is assumed to integrate patterns of soil properties and
biomass that are related to the yield at the end of the growing season. The simulated crop-nitrogen
status was chosen as a variable because, recently, sensors have been developed that allow for
chlorophyll activity mapping, underlying nitrogen fertilizer recommendation records. Under field
conditions, such a variable would not have to be simulated but would be available from a sensor.
The solar radiation and its variation in space and time proved to have a significant impact on the
deterministic modeling in this study. Therefore, it should be evaluated for the empirical autoregres-
sive approach in the state–space analysis. These four variables were measured along a 15 by 15
grid with separation distances of 28 m. Because this methodology considers only a one-dimensional
array of data, measurements were treated as if they were taken across a transect in a string-type
arrangement, i.e., values were taken along a row in a west–east direction followed by the next row
in an east–west-direction, and so on.

The spatial distributions of the four variables are shown in Figure 11.14. The measured yield
and NDVI exhibit patterns with local fluctuations smaller than general variation indicating structured
variation (Figure 11.14a). For calculated crop-nitrogen status (Crop-N), many locations yield the
same value (Figure 11.14b). Lower crop-nitrogen levels are calculated at those locations where
mineralization and growing conditions were unfavorable. The spatial pattern of solar radiation
reflects the surface relief and exposure properties.

Crosscorrelation functions for yield and the other three variables are shown in Figure 11.15.
The crosscorrelation coefficient at lag h = 0 equals the ordinary correlation coefficient. Although
rxy (0) are close to or below 0.5, the structured variation and spatial association between the respective
variable pairs is manifested by the smooth decay in the crosscorrelation functions.

Spatial process of crop yield was modeled in three scenarios with different combinations of
variables (Table 11.3). In each of the scenarios, the input information of crop yield itself was varied,
i.e., with all yield observations considered in the estimation (a), with every other yield value
considered in the estimation (b), and with every fourth value, only (c).

The transition or autoregression coefficients are shown in Table 11.3. In all models except for
scenario 3c, the yield value at the previous location has the highest weight in the estimation. The
impact of the other variables changes for the respective scenarios. For the same number of obser-
vations considered in the estimation, the AICc criterion provides information on the suitability of
the model. If all yield observations are considered, the four variables combined in scenario 3 yield
© 2002 by CRC Press LLC



the best description; however, if the number of observations considered is reduced to 50% and
25%, respectively, scenario 2 with crop yield, NDVI, and Crop-N status yields the most promising
result. For this analysis, the AICc was based on all 225 values, regardless of how many were
considered in the estimation, in order to reflect how well the model reflected the values at those
locations that were not considered in the estimation. The spatial yield process for the three cases
in scenario 2 is shown in Figure 11.16. From case a to b, the 95% confidence range increased
considerably; however, reducing input information of yield to 25% did not increase the confidence
range strongly. Fluctuations in the yield series are conserved by the model only when extreme yield
observations are included in the considered data. For example, the low values at positions 175 to
177 are still kept moderately in scenario 2b. In scenario 2c, however, the low level of yield values
at these locations is ignored. The similarity in the description of local fluctuations between scenario
2b and 2c is manifested in the similar state covariance between Yii and Yii–1 (Table 11.3). In the
other scenarios, the state covariance decreases when observation frequency is reduced from 50%
to 25%.

CONCLUSIONS

The investigations on two fields in different landscapes have shown that grain yield formation
is determined by various factors differing in their relevance from site to site. To benefit from the
potential of precision farming technologies in terms of increasing nitrogen fertilization efficiency,
it is important to consider spatial variability of the most relevant influences of a specific site. This
requires more detailed and accurate spatial information and a better knowledge of the interactions
between site conditions and yield formation. Quality of traditional soil maps is often insufficient
and needs to be improved by investigations of higher resolution. Grid sampling data to be used for
geostatistical interpolation methods are too time-consuming and expensive for practical purposes.
Results of easy on-the-go electric conductivity measurements with a high spatial resolution can be

Figure 11.14 Measured spring barley (Yield, a), (NDVI, a), simulated crop nitrogen status at 15 May 1998
(Crop-N, b), and calculated solar radiation in April 1998 (Sol-Rad, b) at the field site SPORT-
KOMPLEX in Luettewitz, Germany.
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combined with information of a coarse grid sampling by cokriging to improve the spatial resolution
and accuracy of soil maps if texture varies enough within a field.

For the site AUTOBAHN, most of the grain yield variation can be reflected by the deterministic
simulation using the spatial variation of basic soil analysis data. For the field SPORTKOMPLEX,
soil texture variation is small and topographical impact on yield formation seems to be much higher.
Although we use some topographical information to alter the model input, we have to consider
that yield variability can only be partly explained by the simulation. This might be caused on one
side by lateral processes, which cannot be considered by the chosen approach yet and, on the other
side, by secondary effects, e.g., weed competition, which enhances yield depression caused by
primary stress factors. It is interesting to note that solar radiation was very helpful to improve the
deterministic model calculations when it was embedded in a set of bio-geochemical and physical
equations. If, on the other hand, it was used in an empirical fashion in the autoregressive state–space
analysis, solar radiation pattern cumulated for the month of April did not improve the model result.
Moreover, the results of the autoregressive state–space analysis indicate that measurements of the
crop-nitrogen status in May and of NDVI might be useful to predict the final spatial yield distri-
bution.

For both sides, it has to be concluded that model validation based on yield mapping is limited
by the small-scale variability of detected grain yields induced by various technical errors (Blackmore
and Moore, 1999) and the inherent spatial variability. Although sensitivity of the model has to be

Figure 11.15 Cross-correlation function for variable pairs: (a) spring barley grain yield and normalized difference
vegetation index; (b) yield and crop nitrogen status on 15 May 1998; and (c) yield and solar
radiation integrated for the month of April 1998 in the field site SPORTKOMPLEX in Luettewitz,
Germany.
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improved for site-specific fertilization recommendations, the results indicate that the general concept
to derive fertilizer recommendations works quite well. It is evident that a beneficial effect in terms
of higher efficiency and lower emissions can only be achieved if fertilizer supply is just at the
threshold of yield reduction and meets the crop demand very closely. Agricultural systems models
play an important role to achieve this aim.

ACKNOWLEDGMENTS

The authors thank the German Research Foundation and the Federal Ministry for Research and
Technology for their financial support, the Suedzucker AG for their financial and practical engage-
ment, the Claas Company and the Amazone Company for their financial and technical support, and
the farmers, Steigerwald and Luedeke. The authors also thank Michael Baehr, Norbert Wypler and
Michael Heisig for their technical and sampling assistance.

Table 11.3 Model Evaluation for Different Scenarios of Spatial Yield (Yi) Estimation

Yii–1 NDVIi–1 Crop-Ni–1 Sol-Radi–1 AICc

Covariance of normalized original data 
Yii 0.0457 0.0317 0.0193 0.0234 —

+ + — + —

Scenario 1a: all observations considered 
Autoregr. Coeff: Yii 0.7307 0.1276 — 0.1318 –3.569
State Cov.: Yii 0.0174 0.0056 — 0.0001
Scenario 1b: 50% of observations considered 
Autoregr. Coeff: Yii 0.8924 0.0412 — 0.0625 –2.711
State Cov.: Yii 0.0050 0.0029 — –0.0002
Scenario 1c: 25% of observations considered 
Autoregr. Coeff: Yii 0.9623 –0.0252 — 0.0611 –2.306
State Cov.: Yii 0.0013 0.0021 — –0.0009

+ + + — —

Scenario 2a: all observations considered 
Autoregr. Coeff: Yii 0.6880 0.0874 0.2233 — –3.577
State Cov.: Yii 0.0174 0.0052 –0.0011 —
Scenario 2b: 50% of observations considered 
Autoregr. Coeff: Yii 0.7633 0.0641 0.1783 — –2.882
State Cov.: Yii 0.0091 0.0033 –0.0008 —
Scenario 2c: 25% of observations considered 
Autoregr. Coeff: Yii 0.7906 0.0111 0.2070 — –2.564
State Cov.: Yii 0.0089 0.0054 –0.0020 —

+ + + + —

Scenario 3a: all observations considered 
Autoregr. Coeff: Yii 0.6794 0.0959 0.1759 0.0476 –3.584
State Cov.: Yii 0.0174 0.0052 –0.0013 –0.0000
Scenario 3b: 50% of observations considered 
Autoregr. Coeff: Yii 0.7901 0.0531 0.1526 0.0088 –2.817
State Cov.: Yii 0.0075 0.0032 –0.0009 0.0001
Scenario 3c: 25% of observations considered 
Autoregr. Coeff: Yii 0.2249 0.1505 0.8891 –0.2182 –2.280
State Cov.: Yii 0.0030 0.0014 0.0009 0.0041

Note: NDVI denotes normalized difference vegetation index; Crop-N denotes the simulated nitrogen in the
crop on May 15; and Sol-Rad denotes the solar radiation calculated for the month of April.
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REFERENCES

AG Boden. 1994. Bodenkundliche Kartieranleitung, 4th ed., Schweizerbarth, Stuttgart.
Alemi, M.H., M.R. Shahriari, and D.R. Nielsen. 1988. Kriging and Cokriging of soil water properties, Soil

Technol., 1:117–132.
Baret, F. 1995. Use of spectral reflectance variation to retrieve canopy biophysical characteristics. In Advances

in Environmental Remote Sensing, F.M. Danson and S.E. Plummer, Eds., John Wiley and Sons,
Chichester, 33–51.

Blackmore, B.S. and M.R. Moore. 1999. Remedial correction of yield map data, Precision Agric., 1, 53–66.
Deutsch, C.V. and A.G. Journel. 1992. GSLIB, Geostatistical Software Library and User's Guide, Oxford

University Press, New York.
Durlesser, H. and H. Stanjek. 1997. Capability and limits of a DGPS supported EM38 survey for the fast

estimation of the spatial variation of clay and water contents of soil. In Field Screening Europe, J.
Gottlieb et al., Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 73–76.

Erhardt, O. and F.P. Riedinger. 1984. Zum Strahlungshaushalt eines Buchenwaldes, Proc. Int. Symp. in Memory
of F. Sauberer, Vienna, Universität für Bodenkultur, Vienna, Oct. 23–25, 1984. 125–127.

Jürschik, P., A. Giebel, and O. Wendroth. 1999. Processing of point data from combine harvesters for precision
farming. In Proc. 2nd Europ. Conf. Precision Agric., J.V. Stafford, Ed., Odense, Sheffield Academic
Press, 297–307.

Gallant, J.C. and J.P. Wilso
n. 1996. TAPESG: a terrain analysis program for the environmental sciences, Computers and Geo-
sciences, 22:713–722.

Figure 11.16 Autoregressive state–space analysis of spring barley grain yield in the year 1998 for the field
site SPORTKOMPLEX in Luettewitz, Germany. The scenarios 2a, 2b, and 2c are explained in
the text and in Table 11.3.

0 60 120 180 240

-0.5

0.0

0.5

1.0

1.5

a

Scen. 2a:     Yii = 0.69Yii-1+0.09NDVI i-1+0.22Crop-N i-1+ω

0 60 120 180 240

-0.5

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 Y
ie

ld

Yield considered
Yield measured
95% Conf. range b

Scen. 2b:     Yii = 0.76Yii-1+0.06NDVI i-1+0.18Crop-N i-1+ω

0 60 120 180 240
Position

-0.5

0.0

0.5

1.0

1.5

c

Scen. 2c :   Yii = 0.79Yii-1+0.01NDVI i-1+0.21Crop-N i-1+ω
© 2002 by CRC Press LLC



Kersebaum, K.C. 1995. Application of a simple management model to simulate water and nitrogen dynamics,
Ecol. Modelling, 81:145–156.

Kersebaum, K.C. and A.J. Beblik. 2001. Performance of a nitrogen dynamics model applied to evaluate
agricultural management practices. In Modeling Carbon and Nitrogen Dynamics for Soil Management,
M. Shaffer, L. Ma, and S. Hansen, Eds., CRC Press, Boca Raton, 551–571.

Kersebaum, K.C., K. Lorenz, O. Wendroth, H.I. Reuter, J. Schwarz, and P. Jürschik. 2001. Effects of site-
specific nitrogen fertilization on nitrogen leaching–comparison of different strategies in arable fields
based on observations and simulations. In Proc. 3rd European Conf. on Precision Agric., June 18–20,
2001. G. Grenier and S. Blackmore, Eds., Montpellier, 683–688.

Kersebaum, K.C. and J. Richter. 1991. Modelling nitrogen dynamics in a soil-plant system with a simple
model for advisory purposes, Fertilizer Res., 27:273–281.

Leithold, P. 2000. Der Hydro N Sensor bestimmt den Stickstoffbedarf von Getreide, Neue Landwirtschaft,
1:56–57.

Moore, I.D.. 1993. Soil attribute prediction using terrain analysis, Soil Sci. Soc. Am. J., 57:443–452.
Reuter, H.I., O. Wendroth, K.C. Kersebaum, and J. Schwarz. 2001. Solar radiation modelling for precision

farming — a feasible approach for better understanding variability of crop production. In Proc. 3rd
European Conf. on Precision Agric., June 18–20, 2001. G. Grenier and S. Blackmore, Eds., Montpellier,
845–850

Schwarz, J., K.C. Kersebaum, H.I. Reuter, O. Wendroth, and P. Jürschik. 2001. Site specific fertilizer appli-
cation with regard to soil and plant parameters. In Proc. 3rd European Conf. on Precision Agric., G.
Grenier and S. Blackmore, Eds., Montpellier, 713–718.

Shumway, R. H. 1988. Applied Statistical Time Series Analysis, Prentice Hall, Englewood Cliffs.
Shumway, R.H. and D.S. Stoffer. 2000. Time Series Analysis and Its Applications, Springer, New York.
Supit, I., A.A. Hooijer, and C.A. van Diepen. 1994. System description of the WOFOST 6.0 crop simulation

model implemented in CGMS, Vol. 1: Theory and Algorithms, EC Publication EUR 15956, Luxem-
burg.

van Keulen, H., F.W.T. Penning de Vries, and E.M. Drees. 1982. A summary model for crop growth. In
Simulation of plant growth and crop production, F.W.T. Penning de Vries and H.H. van Laar, Eds.,
PUDOC, Centre of Agricultural Publishing and Documentation, Wageningen, The Netherlands, 87–97.

Wehrmann, J. and H.C. Scharpf. 1986. The Nmin-method — an aid to integrating various objectives of nitrogen
fertilization, Z. Pflanzenernaehr. Bodenk, 149:428–440.

Wendroth, O.., A.M. Al-Omran, C. Kirda, K. Reichardt, and D.R. Nielsen. 1992. State-space approach to
spatial variability of crop yield, Soil Sci. Soc. Am. J., 56:801-807.

Wendroth, O., P. Jürschik, K.C. Kersebaum, H. Reuter, C. Van Kessel, and D.R. Nielsen. 2001. Identifying,
understanding, and describing spatial processes in agricultural landscapes — four case studies. In
Special issue: landscape research — exploring ecosystem processes and their relations at different
scales in space and time, C. Van Kessel and O. Wendroth, Eds., Soil Till. Res., 58:113-128.

Wenkel, K.-O., S. Brozio, R.I.B. Gebbers, K.C. Kersebaum, and K. Lorenz.2001. Development and evaluation
of different methods for site specific nitrogen fertilization of winter wheat. In Proc. 3rd European Conf.
on Precision Agric., June 18–20, 2001. G. Grenier and S. Blackmore, Eds., Montpellier, 743–748.

Yates, S. R. and A.W. Warrick. 2002. Geostatistics. In Methods of Soil Analysis, ASA Monograph, 3rd ed.,
Agron. Monogr. ASA and SSSA, G.C. Topp and J.H. Dane, Eds., Madison, WI.

Zhang, R., P. Shouse, and S. Yates. 1999. Estimates of soil nitrate distributions using cokriging with pseudo-
cross-variograms, J. Environ. Qual., 28:424–428.
© 2002 by CRC Press LLC



        
CHAPTER 12

Addressing Spatial Variability
in Crop Model Applications

E. John Sadler, Edward M. Barnes, William D. Batchelor, Joel Paz, and Ayse Irmak

CONTENTS

Introduction
Spatial Modeling

Conventional Method
Remote Sensing Methods
Objective Parameterization Methods

Conclusions
References

INTRODUCTION

The topic of this chapter, addressing spatial variability in crop model applications, comes from
the logical combination of two trends in agricultural research. The first trend dates to the 1950s
when Monsi and Saeki (1953) published the first known application of physical models to explain
processes important to agricultural production. During the succeeding years, many models have
been developed for research purposes, including those discussed later in this chapter. The second
trend is the more-recent development of site-specific or precision agriculture, the formal start of
which is often attributed to the granting of a patent for a device to apply dry granular fertilizer on
a site-specific basis (Ortlip, 1986), followed soon by the development of combine-mounted yield
monitors (Vansichen and De Baerdemaeker, 1991).

The ability to custom-apply fertilizer immediately generated the need for site-specific fertilizer
recommendations, and the yield variation observed in yield maps immediately suggested a need
for explanations of causes of variation. For both theoretical and empirical reasons, however,
traditional statistical methods are not well-suited to address spatial problems. Seeking new tools
to meet both these needs, researchers logically embraced process-oriented crop models, although
for reasons discussed below, applying existing models proved not to be a simple task. Handling
spatial variability in models, which were usually one-dimensional (1-D) in the vertical soil profile
direction, embodied accounting for two additional horizontal dimensions. This added at least an
order of magnitude greater complexity than simply increasing the resolution in the vertical dimension.
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The remainder of this chapter describes the current state of the art in applying models to site-
specific agricultural problems, using three approaches. The first is an extension of conventional
methods, the second applies remote sensing tools to provide input data, and the third employs
inverse modeling to generate spatially distributed inputs that produce the best description of the
spatially distributed yield. Before starting on the spatial modeling, a discussion of temporal vari-
ability and how it is handled in dynamic models is useful.

During development, a model’s structure depends upon the modeler’s compromises between
the objective and what knowledge can be encoded into the model. In simple terms, these are what
can be predicted and what can be described. Although lack of suitable input data can constrain the
choices, for the most part, the objective defines the time basis for the prediction. For example,
predicting canopy temperature during cloud passage requires a time basis ranging from seconds to
minutes, while predicting organic matter contents under decades or centuries of conservation tillage
may require a time basis ranging from months to years. Common examples of several varying
temporal scales include the Root Zone Water Quality Model (RZWQM, Ahuja et al., 2000) at sub-
hourly time steps (for hydrology), the CERES (Jones and Kiniry, 1986) and CROPGRO models
(Hoogenboom et al. 1994; Boote et al., 1998a) at daily time steps, and the CENTURY model
(Parton et al., 1992) at monthly time steps. The remainder of this chapter discusses daily time step
models, often using the CERES-Maize or CROPGRO-Soybean models as examples.

If one concludes that increasing the temporal resolution of a model requires a smaller time
step, then it is possible that this will eventually require alterations in the model structure. This
happens if empirical approximations break down under a smaller time step. For instance, a daily
time step model cannot, by definition, handle diurnal patterns except by using approximations based
on daily averages, ranges, or other statistical descriptions. In most such cases, the empirical
approximation must be replaced by a module somewhat more mechanistic in nature to describe
the time-sensitive processes at the smaller time step.

Often, temporal and spatial problems, and the programming solutions to them, are linked. In
the case of the soil water balance, many models, including the DSSAT suite, currently use the SCS
Curve Number method (USDA-SCS, 1972) to compute runoff and infiltration, which is desirable
because the temporal scale is daily, corresponding to widely available daily total rainfall data. In
order to adequately simulate runoff and redistribution within a field in a two- or three-dimensional
(2-D or 3-D) soil water balance model, more accurate predictions of runoff and surface flow are
needed. Better methods are available, but require shorter time steps and intra-day (or even sub-
hour) rainfall data. As described in the next section, this topic poses yet another challenge to spatial
modeling.

SPATIAL MODELING

Prior to widespread use of spatial tools, models were (usually):

1. Dynamic, meaning they accounted for temporal variability
2. One-dimensional in the vertical soil profile dimension
3. Sensitive to large differences in cultivars, soils, and weather
4. Validated with plot averages

To apply to spatially variable applications, however, they must retain their dynamic nature, as well
as:

1. Add two horizontal dimensions.
2. Account for subtle differences in, primarily, soils, with secondary differences in weather.
3. Predict the variance as well as the mean.
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These additional requirements deserve considerable thought. Within a field, the soil texture and
chemical component (nutrients, salinity, etc.) variation might be significant, but certainly less so
than differences across states, countries, or continents. Weather variability is very much reduced
(and in some models, not a spatial input at all at the field scale, despite many meteorological
parameters being known to have significant spatial variation), and cultivar characteristics are usually
constant across a field. Despite the apparent reduction in these known sources of variation, the
yield variability within a single field can be as large or larger than the yield variability measured
between fields or counties within a state. Even though the soil types may not vary as much within
a field as from field to field or county to county, there is still tremendous variability within the
field that these models must address. Furthermore, if these models are to be reliable for evaluating
variable rate decisions within a field, they must not only be able to provide good predictions of
mean yield, but also of within-field variation in yield, as a response to highly spatially variable
factors that affect yield. Mathematically stated, to use the results in an optimization algorithm, not
only must the mean be predicted well, but also the partial differential with respect to all the important
inputs. These criteria for success are severely stringent.

For a model to be successful, all important variations must be reflected in the model processes
and associated variables established as model inputs. For some situations where mixed results have
been obtained, variations in the observed data may not have been reflected in either one or both
of the model’s processes or of the model’s inputs. For instance, if a model predicts phenology as
a function of air temperature collected at a weather station several kilometers away, it is not likely
that the observed spatial variation in canopy temperature, and hence energy balance and associated
processes, will be modeled correctly within the field. Another example comes from the use of plot
averages during model validation — observed high-yield spots within a field have been observed
to exceed the model-allowed limit for harvest index, which had been chosen based on plot averages
(Paz et al., 2001). These are clearly cases where simply adding finer-scale input data will not
guarantee success. On the other hand, if a model were to have sufficient detail, but require
correspondingly higher resolution of spatial soils data, then increasing the resolution of inputs
might be productive, but it will almost certainly be expensive. The increase in expense can be easily
proven — doubling the spatial resolution of a measurement means that the number of samples is
doubled in both directions, with four times the cost for sampling.

One can speculate on what model processes and inputs would be necessary to fully characterize
spatial yield variation in typical cropped fields, but both the availability of data and knowledge of
the basic processes are usually quite severely limited (e.g., Robert, 1996). For instance, high-
resolution spatial and temporal variation in soil physical and chemical properties would be prohib-
itively expensive to characterize. Some progress has been made in using terrain analysis and
hydrologic modeling to predict within-field redistribution of runoff (e.g., Simmons et al., 1989;
Moore et al., 1993; Kaspar et al., 2001), although transient effects of spatially variable evapotrans-
piration on soil water content and the several feedbacks into crop water stress, future infiltration,
and eventual crop yield appear to be significant (Sadler et al., 2000a). Beyond these effects within
the framework of the isolated monoculture are an entire litany of “external” factors including weeds,
insects, nematodes, diseases, and other landscape-level ecological factors that so far have not been
integrated completely into many crop models.

In our collective experiences, we have modeled spatially variable crop growth using three
general approaches. The first approach is essentially a brute force method, acquiring inputs and
running the model conventionally at multiple points in space (e.g., Sadler et al., 1998, 1999, 2000b).
A second approach (e.g., Barnes et al., 1997, 2000; Jones and Barnes, 2000) used remote sensing
to either augment inputs or test outputs and change state variables iteratively. The third approach
(e.g., Irmak et al. 2001; Paz et al., 2001) employed objective parameterization, using optimization
routines or database searches, to solve for spatially variable inputs that minimize errors between
simulated and measured yield across seasons. In all three cases, the models used were 1-D models
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repeated in space rather than fully 3-D models of crop growth and yield. These latter, although
desired, are not yet available.

Conventional Method

The conventional method approach was designed simply to acquire input data at more points
than in an otherwise traditional way, either on grids or in management zones, and then to run the
model conventionally at each point. The state of this art in 1995 was catalogued by Sadler and
Russell (1997), who described approximately 20 such efforts, including AEGIS (Papajorgji et al.,
1993; Engel et al., 1995) and other model-running shell programs (e.g., Han et al., 1995). Depending
on the circumstances and how far removed the simulation was from typical conditions, these efforts
suggested two things. First, success was mixed. Some of the work provided acceptable results, but
other results were disappointing (see Sadler and Russell, 1997; Sadler et al., 1998, 1999, 2000b).
Second, acquiring the extensive input data encouraged the search for more efficient procedures.

The usual procedure has been to obtain input values for soil parameters from soil surveys and
typical pedon descriptions at the county level (~1:24000) or from similar techniques employed at
a fine scale (~1:1200 – 1:5000). These have been supplemented occasionally with physical property
measurements for profiles on transects and grids. In nearly every case, however, there existed
additional variations not captured in the soil data collected (e.g., Sadler et al., 1998, 1999, 2000b).
Despite the amount of data employed, it did not appear to be sufficient. Increasing the resolution
using standard survey techniques appeared to be neither feasible nor productive, because even the
finer scale approaches have not met with unambiguous success. Making the extensive measurements
deemed necessary has been attempted at considerable effort in research settings, but it is not
generally considered economically feasible in production settings.

The foregoing has dealt with traditional data that has had location added to it. There exists a
data type that is acquired literally en masse (such as via photography), or practically so (such as
with a scanning sensor in remote sensing or an on-the-go yield monitor). One characteristic that
distinguishes such data from the traditional data mentioned above is that where the above is usually
data-starved, these inherently spatial data sets are data-rich. This distinction allows several addi-
tional uses, some of which are worthwhile either in isolation or as a contribution to other spatial
modeling efforts.

Spatial sensors were cited as one of the primary research needs to help solve the lack-of-data
problem at several of the early Precision Agriculture Conferences (Schueller, 1993; Robert, 1996),
and this may still be the primary bottleneck. Where such data have been obtained, they have been
applied in modeling applications in one of three general ways. The first use has usually been to
define areas where variation occurs in soil properties and crop development, illustrating areas that
need to be managed or, in this context, modeled separately. Where one is fortunate enough to have
spatial data for outputs of models, using them for validation of models is quite valuable. Where
the observations are intermediate or state variables in models, in-season adjustments can improve
the performance of models under certain conditions. Where the observations correspond to model
inputs, these can be considered traditional data collected much more efficiently in space. Examples
of such data include depth to clay layer, organic matter, plant population, and topography and
terrain attributes (see review by Sudduth et al., 1997). One particular type of such data is the basis
of the second approach for modeling spatial variation.

Remote Sensing Methods

The particular example of inherently spatially variable data is by remotely sensed (RS) obser-
vations, usually corresponding to intermediate variables. One of the most commonly cited uses of
RS to provide a linkage with crop models has been to estimate leaf area index (LAI; Weigand et al.,
1979). One method is to relate LAI and RS data with a radiative transfer model (RTM; e.g., Asner
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and Wessman, 1997) used in either direction. An RTM can be used to calculate LAI based on the
radiometric characteristics of the field for comparison to the model, or the LAI output from the
model can be used to calculate the scene reflectance for direct comparison to the RS data (Guérif
and Duke, 2000). An advantage of this method is that it is not extremely dependent on site-specific
relationships between the crop and RS data. A disadvantage is that the input data requirements for
some RTM models are themselves quite severe. A second method is to use a locally determined,
empirical relationship between the RS data and variable of interest (e.g., a simple linear regression
with LAI as the independent variable and vegetation index, as in Jones and Barnes, 2000). Other
crop parameters that have been estimated from RS data and incorporated into crop models include
crop water status (Barnes et al., 2000), evapotranspiration rates (Moran et al., 1995), and canopy
chlorophyll content (Weiss et al., 2001).

Exactly how the link is made between RS data and a model has varied according to the objectives
of the researchers involved, but can be grouped by method. In a review on the topic, Moulin et al.
(1998) placed methods to integrate RS data and models into four categories:

1. Inputting a variable estimated from RS data
2. Updating a state variable in a model from an RS estimate
3. Adjusting model’s initial conditions
4. Calibrating parameters to produce better agreement between RS estimates and model predictions

during the season

A fifth category uses remotely sensed data to identify areas where crop development is significantly
different from surrounding areas and, thus, requires independent simulation (Jones and Barnes,
2000).

For category 1, it is theoretically possible to build a model that accepts the state variable as an
input rather than as a computation from other inputs. This requires that a sufficiently intensive time
series of spatial data could be obtained for a state variable. There are no known practical examples
of such an application using remotely sensed data directly at daily time steps; however, estimates
of state variables have been interpolated between image acquisitions to derive daily values to drive
a model (examples cited in Moulin et al., 1998).

An example of updating a state variable (category 2) in CERES-Wheat is taken from Barnes
et al. (1997), who modified the LAI predicted by the model based on remotely sensed estimates.
LAI was replaced by a RS estimate when an estimated LAI was available for a particular day and
the model’s predicted LAI was outside of a predefined tolerance from the RS estimate. If the
prediction was outside of the tolerance, the model’s predicted LAI was set to the RS estimate by
adjusting the model’s prediction of accumulated green leaf area and leaf weight to match the RS
estimate. The simulation then would continue until the next RS observation or end of the simulation.
This approach is illustrated in Figure 12.1a, which shows a ratio vegetation index (RVI = ratio of

Figure 12.1 Maps of a wheat field derived from March 31, 1966, image data (a) RVI and (b) LAI classification.
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near-infrared to red reflectance) image acquired from an aircraft on March 31, 1996, near the time
of anthesis. In the image, the bands of increased RVI running left to right correspond to a high
nitrogen treatment. The circles apparent in the image were from pipes that were used to inject
carbon dioxide (see Kimball et al., 1999, for a description of the experiment). CERES-Wheat was
used to simulate the field conditions, assuming adequate nitrogen and water were present. On the
date the image was acquired, the LAI classes from the RVI image (Figure 12.1b) were input to the
model and then the simulation was resumed, still assuming adequate nitrogen and water. Reasonable
yield predictions were obtained with this particular image, because it was near the time of anthesis
(see Table 12.1); however, this approach is subject to several limitations. Accuracy decreased for
LAI modifications more than ~10 days before or after anthesis. This method also did not work as
well if the “base” model run was underpredicting LAI (i.e., it was easier to lower the model’s
predictions than to raise them). Difficulties obtaining near-real-time data limit the application of
this particular technique for real-time farm management, and the need for data near the time of
anthesis significantly limits the amount of corrective action available to a farm manager.

An example that uses a combination of categories 3 and 4 is the approach used by Maas (1988,
1993) to calibrate model parameters initially based on LAI. This approach was later expanded by
Moran et al. (1995) to consider RS estimates of evapotranspiration (ET). A flow diagram of their
approach is illustrated in Figure 12.2. The model’s initial condition of water content and field
capacity were adjusted based on the difference between RS-estimated and model-predicted ET. To
match RS estimates of LAI, leaf span or biomass partitioning was changed through adjustments
of the model’s calibration parameters. The approach provided accurate simulation for growth and
yield of grain sorghum, corn, spring wheat (Maas, 1993) and alfalfa (Moran et al., 1995).

Table 12.1 Predicted and Observeda Wheat Yields 
Corresponding to the LAI Classes of Figure 12.1b

LAI Class in 
Figure 12.1b

Yield (kg ha–1)
Observed Predicted % Difference

>5 8000 7454 6.8
4–5 7500 7417 1.1
3–4 7000 7366 5.2
2–3 6500 7008 7.8
0–2 5700 6045 6.0

a Observed is the approximate yield determined for the various
treatments during the 1995–1996 experiment, which has been
assigned to an LAI class based on the LAI of that treatment during
the time the image was acquired.

Figure 12.2 Schematic of approach developed by Maas. (Agron. J., 85:354-358, 1993.)
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Objective Parameterization Methods

The third approach described in this chapter uses an inversion of modeling, which was developed
more recently, and which, because of the complexity of the method, requires somewhat more
explanation than the prior two approaches. It uses the relationships embodied in models to simul-
taneously derive the spatial array of input values that produces the best match to the observed data.
The impetus to this work is that specific values for some critical spatial model inputs, especially
soil properties and rooting depth, are not available at the desired spatial resolution within a field
to adequately predict yield variability. Often, these properties are available only at the soil type
scale, estimated years ago using techniques that provide typical ranges of values within the soil
type. Using values estimated or measured at this larger resolution introduces unacceptable error
for precision farming applications.

To refine the spatial estimates of the selected critical inputs, this approach uses the model with
a range of the chosen critical inputs to predict yield or some other factor of interest, such as temporal
soil water content, and minimizes the error between the set of predicted and measured values. The
idea is that, if these critical parameters are estimated correctly, the model should perform well
across seasons (temporally). Typically, this approach is applied to small homogeneous areas within
a field, and the analysis is conducted independently for each area.

This method, objective parameterization, has been approached in two ways. Both require an
objective function be defined, usually to minimize error between simulated and measured yield.
One method links a classical optimization algorithm, such as Simulated Annealing (Goffe et al.,
1994) or the AMOEBA method (Nelder and Mead, 1965; Press et al., 1992), to the model. Then,
the optimizer runs the model multiple times while incrementally varying the chosen critical inputs
within a reasonable range, and searches for the values of the input parameters that satisfy this
objective function. The second approach constructs a database by running the model with the
selected spatial inputs varied in a linear fashion over the expected range of variation and searching
the database for combinations of inputs that minimize error according to the objective function.

The result from both approaches is a field of spatial inputs calibrated, or fine-tuned, to improve
model performance. The key to success for both is to correctly identify a limited number of key
spatial inputs that are uncertain, and calibrate those inputs within a realistic range. All other
important inputs must be known with reasonable certainty.

The first example of objective parameterization is outlined in Paz et al.(2001). The goal of this
work was to use the CROPGRO-Soybean model (Hoogenboom et al., 1994; Boote et al., 1998b)
to determine causes of spatial soybean yield variability and to estimate the impact of different
yield-limiting factors on yield variability for a field in Central Iowa. In this example, they identified
water stress, soybean cyst nematodes (SCN), and weeds as the major yield-limiting factors. They
built on previous work with modifications of the model to account for SCN damage (Fallick et al.,
2001), incorporated the effects of tile drainage and nutrient movement (Shen et al., 1998), and then
added the effects of weed damage using a separate model. They divided the 50-ha field into 77
grids and developed the appropriate model inputs for each grid for three seasons. Next, they linked
the simulated annealing algorithm (Goffe et al., 1994) to the model for parameter estimation. Finally,
they solved for the values of tile spacing, saturated hydraulic conductivity of the impermeable layer,
and root depth distribution using the simulated annealing process. They were able to explain
approximately 80% of the spatial yield variability over the 3-year period (Figure 12.3) caused by
water stress, weeds, and SCN.

Once calibration was completed, the model could be used to study the relative effects of the
different yield-limiting factors. They used the calibrated parameters in the model to calculate the
yield loss caused by SCN, weeds, and water stress for one year. Figure 12.4 shows the predicted
yield potential for each grid when all stresses were turned off. Each data point represents the
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predicted yield potential for a grid. The yield potential differs in each grid because of differences
in measured soybean plant population for this season. A sequence of model runs was made by
turning off each stress individually to predict the yield reduction due to water stress, SCN, and
weeds in each individual grid. Table 12.2 shows a summary of the results when averaged over all
grids. Water stress caused approximately 709 kg ha–1 in yield loss averaged over all grids. Some
grids had large yield reductions due to water stress, while other grids experienced small yield
reductions. Similarly, SCN and weeds caused average yield reductions of 119 and 20 kg ha–1,
respectively. The interaction among the three yield-limiting factors caused an additional 93 kg ha–1

of yield loss over the field.

Figure 12.3 Predicted vs. measured yield calibrated for 3 seasons for the McGarvey field near Perry, Iowa.
(Paz et al. 2001. A modeling approach to quantify the effeds of spatial soybean yield-limiting
factors. Trans. of the ASAE 44(5):1329–1334. With permission.)

Figure 12.4 Example for effect attributed to water stress, weeds, and soybean cyst nematode, using 1997
yield data. (Paz et al. 2001. A modeling approach to quantify the effeds of spatial soybean yield-
limiting factors. Trans. of the ASAE 44(5):1329–1334. With permission.)
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The second example used the database search method outlined by Irmak et al. (2001). The goal
of this work was to use the CROPGRO-Soybean model to determine causes of yield variability in
a 30-ha field in eastern Iowa. Similar to the previous method, they divided the field into 48 grids,
and developed the appropriate crop model input files for each grid for a 2-year period. Upon
analyzing the data, they concluded that water stress and soil fertility were the likely causes of yield
variability. Thus, their focus was to calibrate several uncertain model inputs dealing with the soil
water balance and soil fertility for each grid. They used the same modified version of the CROP-
GRO-Soybean model used by Paz et al.(2001), adapted for tile drainage conditions found in the
Midwest. They ran the model for all possible combinations of saturated hydraulic conductivity of
the impermeable layer, a soil productivity factor that reduces yield based on soil fertility and other
unknown factors (Paz et al., 2001), maximum rooting depth, tile spacing, and SCS runoff curve
number, all within accepted ranges of values for each parameter. They conducted this analysis for
each of the 48 grids and two seasons of data, totaling nearly 75,000 model runs. Each combination
of model parameters and corresponding predicted yield was entered into a large database. An
objective function was developed and the database was searched to determine the combination of
parameters that minimized the error between predicted and measured yields in each grid over the
2-year period. The database search procedure took about half the time required by the simulated
annealing approach.

Figure 12.5 shows the predicted and measured yield for the five-parameter calibration for 1996
and 1998. Each data point represents yield in a single grid. Using this approach, they were able to
explain more than 90% of the yield variability within the field. Figure 12.6 shows the spatial pattern

Table 12.2 Predicted Yield Loss Due to 
Water Stress, Soybean Cyst 
Nematodes and Weeds for 
the Mcgarvey Field in 1997

Stress Yield Loss (kg ha–1)

Water stress 709
SCN 119
Weeds 20
Interactions 93

All stresses 941

Figure 12.5 Results of case 4 scenario. (Irmak et al., 2001, Estimating spatially variable soil properties for
application of crop models in precision agriculture, Trans. of the ASAE 44(5):1343–1353.  With
permission.)
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for the SCS curve number and soil fertility factor produced by this technique. The model estimates
of these five parameters consisted of a realistic spatial structure, further adding credibility to this
approach.

CONCLUSIONS

Several conclusions can be drawn from the foregoing. First, the three approaches, both individually
and collectively, contributed significantly to the body of knowledge about applying models to spatial
applications. Conventional methods have helped define both strengths and critical gaps in basic
knowledge to be incorporated into models. Remote sensing methods have employed high-resolution
data to refine model estimates and in some cases, to reset the model during a season’s run. Objective
parameterization has shown how multiple years of data can be analyzed to provide the best set of
spatial inputs for a field, and also to calibrate the model for those conditions. In all cases, the success
of the models illustrated the potential for either further use or refinement of the models.

The choices of critical inputs to be measured, evaluated, or solved for in these approaches
collectively illustrate the opinions and the conclusions reached by the researchers involved. These
critical variables included plant population, LAI, fertility, rooting depth, and several soil physical
properties, particularly surface runoff characteristics, water holding capacity, and hydraulic con-
ductivity. One case, the simulated annealing example, also included tile spacing, weeds, and soybean
cyst nematode infestation. These latter studies indicate one modeling need — pests are known to
affect yield, and spatial variation in pests would then need to be accounted for. Nonetheless, for
all examples, the importance of soil water and crop water stress is evident.

Extending that thought suggests future directions for improvement in spatial modeling might
profitably concentrate on implementing 3-D modeling of water flow, particularly runoff and lateral
subsurface flow. Such transfers of water in the horizontal directions are well known to occur under
common weather, soil, and terrain conditions. As such, they are difficult to handle with 1-D models,
even used at multiple points in space as described herein. Judging from the importance attributed

Figure 12.6 Example of spatial inputs from the database search routine. (Irmak et al., 2001, Estimating spatially
variable soil properties for application of crop models in precision agriculture, Trans. of the ASAE
44(5):1343–1353. 
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to water-related soil parameters in the several modeling studies described here, the additional effort
to implement and the additional computer resources to run 3-dimensional models may be justified.
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INTRODUCTION

Topography is an important factor to consider in land management systems. Through its effects
on long-term soil formation and short-term seasonal effects, the topography greatly influences the
spatial variability of soil properties, soil processes, and their interaction with variable weather
conditions. With the availability of high precision global positioning systems, a landscape’s topography
can be determined to within a few centimeters. This chapter explores the hypothesis that accurate
topographic analysis, available soil map data, and process-level agricultural ecosystem models can
be combined to improve spatial characterization of soils and soil processes on a landscape, and
this characterization can then be used to evaluate and guide spatial and temporal land management.
The authors also review the literature on the relationship of certain topographic attributes (elevation,
slope, aspect, contributing or catchment area, and their combinations) with the variability of soil
properties (e.g., texture, depth, organic matter content), soil processes (soil water and related
variables), and crop growth. Contributing area, slope, and curvature may be used to delineate
subunits of land for differential management, and then appropriate models can be used to evaluate
their responses to alternate management practices or land uses under varying weather conditions
during a season and from year to year.
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The soil properties and their hydrologic responses to weather conditions, such as infiltration,
runoff, and soil water storage, vary spatially and temporally over a landscape, even at a field scale.
As a result, crop production and environmental impacts, such as soil erosion, nutrients and pesticides
in runoff and groundwaters, vary spatially and temporally even under uniform management. The
environmental consciousness, global competition, and advances in global positioning systems (GPS)
and computer technologies have generated an interest in precision agriculture worldwide. Precision
agriculture aims to vary management (e.g., fertilizer, seeding rates, and irrigation) spatially within
a field and between fields with varying soil water and other conditions, so as to optimize production
while enhancing water quality. For this purpose, researchers need to develop a sound scientific
basis to delineate spatial subunits based on topographic and soil variabilities that determine their
hydrologic status and production potential in response to variable weather conditions. In this chapter,
a hypothesis is posed that a combination of topographic analysis, scaling of soil properties, and
models will provide such a scientific basis to evaluate spatial and temporal variability of landscape
processes and spatial management. This framework will also accomplish important related objec-
tives — to transfer improved management results from plots to large variable fields and farms by
aggregating or scaling up through distributed modeling. This transfer will also be essential for
managing off-site effects, including the TMDL (total maximum daily load) of pollutants in surface
waters.

Many attempts have been made in the last three decades to characterize the spatial variability
of soil properties and crop yield using geostatistics (e.g., Webster, 1985; Warrick et al., 1986; Jaynes
and Colvin, 1997). These attempts have enabled the determination of statistical patterns of variabil-
ities and unbiased interpolations of values rather than linking of these patterns to causative factors
and processes. The use of topographic attributes may help address these factors and processes.

This chapter is divided into three sections:

1. Topography in relation to soil variability
2. Topography in relation to crop yield variability
3. A framework for scaling and modeling landscape and climate variability to evaluate and

enhance site-specific agricultural management

TOPOGRAPHY IN RELATION TO SOIL VARIABILITY

Jenny (1941) presented a system of pedology by which the soil formation is a function of five
factors:

(13.1)

Therefore, on field or farm scales and assuming generally uniform climate, parent material and
biota, geomorphic stability, and minimal and uniform human disturbance:

(13.2)

Milne (1936) explained this concept using a soil catena on a hillslope of uniform parent material.
The topography determines the flow paths of water over the surface that causes a soil texture
variation over the landscape, and determines the amount of water available for infiltration at different
points that cause variability in soil profile development.

The topography is generally quantified in terms of a number of attributes. The most commonly
used topographic or terrain attributes are: elevation, slope, aspect, curvature (plan and profile),
specific catchment area, and wetness index (ln[specific catchment area/slope] following Beven,

Soil Formation  climate,  parent material,  topography,  biota,  time= ( )f

Soil Formation topography~ f ( )
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1986). For describing spatial variability of soils, soil processes, and plant growth on an agricultural
landscape (probably at scales greater than 5 or 10 m), topographic attributes provide a continuous
and quantitative approach. These attributes can now be economically and accurately measured with
GPS technology. The topographic analysis should be combined with available soil survey data and
measured on-site soils data. It can also be combined with kriging, fractal, or other types of
geostatistical spatial analysis (Odeh et al., 1994). Some typical examples from the literature,
presented below, provide the current state-of-science on relating topographic attributes to soil
variability at field and farm scales.

Moore et al. (1993) presented a study on soil attribute prediction using topographic analysis on
one of our cooperative research sites near Sterling, CO. This 5.4-ha area is a sloping landscape
with a catena of three soil types along the slope as mapped by soil survey. The topographic attributes
were computed from 15.24-m grid-based elevation data. The distributions of slope and wetness
index on this site are shown in Figure 13.1. The figure shows how the slope convergence in the
middle part of the terrain results in a tongue of high values of the wetness index. Step-wise multiple
regression relations of topsoil properties with topographic attributes showed that the A-horizon
depth was significantly (P < 0.01) related to the slope and wetness index; organic matter to wetness
index, stream power index, and aspect; and sand and silt contents to slope, wetness index, and
profile curvature. The coefficients of determination (R2) varied from 0.48 to 0.64. Measured and
predicted A-horizon depth distributions are presented in Figure 13.2. The A-horizon depth generally
increases down slope. Based on the literature, the authors felt that it may be possible to improve
the predictions if a 5-m grid digital elevation data were used instead of 15.24-m grid; however, the
R2 will probably always be <0.70 (Walker et al., 1968).

Moore et al. (1993) also presented a method of enhancing conventional soil survey maps using
topographic attributes in a simple way, without the availability of the regression relations. As a first
approximation, soil properties are assumed linearly related to selected terrain attributes, and the

Figure 13.1 Topographic slope and wetness index computed from 15.24-m grid digital elevation data for the
Sterling, CO, site. (From Moore et al., 1993. With permission.)

Figure 13.2 Measured A-Horizon depths and A-Horizon depths predicted from the regression relations with
topographic attributes at Sterling, CO, site. (From Moore et al., 1993. With permission.)
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< 0.10
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maximum range of variation of the soil properties are assumed known. The terrain attribute
distributions on the landscape are then used to scale the known range of soil properties to obtain
spatially distributed estimates of soil properties within a field or map unit.

Odeh et al. (1994) also reported highly significant multilinear regression relations between
several soil variables and certain topographic attributes, with R2 values that range from 0.45 to
0.75. They also showed that there was a clear advantage for combining the geostatistical kriging
technique with the regression method for predicting soil attributes that had a small correlation with
topographic attributes. The kriging methods proposed by Delhomme (1978, 1979) and Ahmed and
DeMarsily (1987) — kriging with uncertainty due to regression (Model A) and kriging with a guess
field (Model B) — were used for this purpose. A comparison of prediction root mean square error
(RMSE) from a multilinear regression and several methods of kriging are presented in Table 13.1.
In the regression-kriging Model A, the regressed value of the soil property was kriged. In Model B,
ordinary kriging was done for both this regressed value and the regression error at points where
both are measured. The sum of these two kriged values gave the final estimate. The results in
Table 13.2 show that except for topsoil gravel, the soil properties were predicted best by Model B,
followed by Model A. In a subsequent paper, Odeh et al. (1995) showed another model, Model C,
was even better overall than Model B. In Model C, regression relations were used to predict soil
attributes at a finer grid at which the landscape attributes were determined (this grid being finer
than the grid at which soil attributes were measured for use in regression). Then, an ordinary kriging
of regression errors was conducted from available data to predict errors at the finer grid. The sum
of the predicted soil property and regression error at this finer grid gave the final estimate.

Zhu et al. (1997) presented a fuzzy inference scheme for estimating spatial distributions of soil
properties in a landscape. This scheme was based on the Soil–Land Inference Model (SOLIM)
given earlier (Zhu et al., 1996). The word “fuzzy” implies that this scheme is based on expert
knowledge of the factors of soil formation in a landscape. It is assumed that in a given landscape,
there are a number of soil series present, where each series is an ideal concept, and for each ideal
concept there is an associated set of environmental factors which are clearly defined by an expert.
At any given point on the landscape (i,j) the soil may not be the same as any of the ideal series,
but may bear some resemblance to each of these series. These partial resemblances are expressed
as a soil similarity vector at point (i,j, which represents a point). The values of this vector are
determined by comparing the similarity of environmental factors of soil formation (mainly topo-
graphic attributes) at point (i,j) with these factors associated with each of the ideal series concepts.
The minimum value of similarity among these factors gives the similarity vector value for that
series. Zhu et al. (1997) showed that A-horizon depths and transmissivities inferred from this model
on two different catchments were closer to measured values than the mapped values based on a
soil survey. Lark (1999) has presented a conceptually similar approach, called the continuum
classification or the fuzzy c-mean classification, for estimating soil–landscape relationships.

Several other investigators have tried to relate soil water storage directly with topographic
attributes, with generally good results (Tomer and Anderson, 1995; Zheng et al., 1996; Western
et al., 1999). Zaslavsky and Sinai (1981) measured soil water content and elevation on a grid over
a hillslope area (70 × 70 m) at two depths (20 or 40 cm) and found that the topographic curvature
explained much of the variability (R2 = 0.81). Tomer and Anderson (1995) reported high R2 values
(0.52 to 0.77) between soil water storage and topographic attributes in a sand plain hillslope. Zheng
et al. (1996) reported that the R2 value increases if the data were aggregated over larger areas.
Western et al. (1999) showed that, under dry conditions, much of the variation in soil moisture in
the surface 30-cm layer was random. Spatial patterns of soil moisture were apparent under wet
conditions, with the wettest areas in areas of high local convergence of flow paths. The log-
transformed specific contributing area (ln a) showed the highest correlation with soil moisture under
wet conditions, whereas a combination of ln a and a potential radiation index was best over all
seasons. 
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Based on this review, an appropriate combination of topographic indices may explain between
50 to 65% of the variability in soil attributes at scales greater than 10 m (or perhaps 5 m). Smaller
scale variability, caused by microtopography, plants, management, and measurement errors or other
factors, is not as predictable. Large human-induced changes will also be difficult to predict.

TOPOGRAPHY IN RELATION TO CROP YIELD

A number of investigators have related crop yield variability within a field to topographic
attributes. For example, Simmons et al. (1989) found that corn yield of three different tillage
treatments was correlated most strongly with in-row curvature. The second significant attribute was
the slope in two cases and specific contributing area in the third case. With two attributes, the R2

ranged from 0.57 to 0.68. Kaspar et al. (2000) found that the correlation of average corn yield for
6 years with topographic attributes was poor; however, the correlation was high when dry years were
separated from wet years (which caused water logging), with R2 = 0.66 with a pothole area included
and R2 = 0.78 without the pothole area. The significant attributes were elevation, slope, plan curvature,
and profile curvature. Specific catchment area and wetness index were not included in their analyses.

Our own results for a field in Sterling, CO, are shown in Figure 13.3. Winter wheat yield
variability seems to be significantly related to soil wetness index based on visual similarities in
thespatial patterns, but univariate point-to-point linear regressions leave much uncertainty (R2 =
0.37). Detailed multivariable nonlinear regression analysis is still in progress. Differences in mea-
surement scale and accuracy of measurement influence such results.  

A FRAMEWORK FOR SCALING AND MODELING LANDSCAPE AND CLIMATE 
VARIABILITY TO EVALUATE AND ENHANCE SITE-SPECIFIC MANAGEMENT

A computer simulation framework is needed to integrate the type of spatial prediction based
on landscape topography, outlined above, with spatial scaling and distributed modeling of the
variables of interest. A program to develop such a framework is being initiated by the authors. The
framework would have broad applicability, but is initially targeted at agricultural management.
Integration of geospatial data and computer technology is an important part of the framework
development. Gaps also exist in scientific knowledge of property and process scaling, parameter
estimation and field-scale distributed modeling that need to be addressed in this context.

Four major steps in the scaling and modeling are:

Table 13.1 Prediction Root Mean Square Error for Predicting Certain Soil Properties from a Multilinear 
Regression with Topographic Attributes and from a Variety of Kriging Methods

Soil Variable

Prediction Method
Multi-
linear 

Regres-
sion

Ordinary 
Kriging

Univer-
sal 

Kriging

Isotopic 
Co-

Kriging

Hetero-
topic 
Co-

Kriging

Regres-
sion-

Kriging 
Model A

Regres-
sion-

Kriging 
Model B

Regres-
sion-

Kriging 
Model C

Depth of solum 
(cm)

11.92 15.76 13.89 15.70 21.74 8.45 11.20 10.01

Depth to bedrock 
(cm)

21.04 26.71 26.43 24.86 22.45 20.22 19.89 16.51

Topsoil gravel 
(%)

4.97 12.82 10.31 8.98 3.72 9.65 4.54 5.01

Subsoil clay 
(%)

10.22 15.20 14.63 10.24 5.89 9.11 9.26 8.04

Source: From Odeh et al., 1995. Models A, B and C use combinations of regression and Kriging.
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Step 1: Subdivide a landscape into modeling units based on topographic attributes and available
soil information. A detailed elevation survey will be conducted for the landscape at 5m grid using
a sensitive, survey-grade GPS unit. These data will be used to compute selected topographic
attributes, such as the slope, specific contributing area, and profile curvature. Using maps of these
attributes, the landscape will subdivided into several units. Within each unit, the soil profile will be
sampled on a coarse grid for soil horizons, their textural class, and soil moisture by quick field
methods. For soil moisture, it may be best to do the sampling 2 to 3 days after a rainfall.

Step 2: Determine the model-input soil properties within each unit using simple scaling
approaches. The most important soil properties are the soil bulk density, texture, organic matter
content, and hydraulic properties of each horizon. A first estimate of these properties will be obtained
from the soil textural class information and soil survey data. The first estimates may be refined by
measurements made on a few places over the landscape. For soil hydraulic properties, measurements
of bulk density and field capacity (100-kPa, 333-kPa, or field value) greatly improve the estimation
of water retention curves (Ahuja and Williams, 1991; Williams and Ahuja, 1992) and saturated
hydraulic conductivity (Ahuja et al. 1984, 1989, 1993).

Step 3: Model soil–water–nutrient–plant processes accounting for surface and subsurface water
flow processes. In each spatial unit, a model such as the Root Zone Water Quality Model (RZWQM)
(Ahuja et al., 2000), enhanced by linking the best available crop growth modules to it, will be used
to model soil–water–nutrient–plant growth processes under a given set of management practices
and climate data. Overland flow can be routed from one land area (simulation unit) to another using
a simple cascade approach.

Step 4: Evaluate and identify the best management practices. For each unit, a variety of management
alternatives will be evaluated using Step 3 for a number of climate years. A set of best management
practices will be identified for average climatic conditions and for 25% and 75% probability levels
of rainfall.

SUMMARY

Based on the literature and on-going research, landscape topography can explain much of the
spatial variability in soil properties and crop yield, if topographic attributes are analyzed and
combined appropriately. The authors believe the proposed combination of topographic analysis,
scaling, and models can be used to evaluate the spatial/temporal variability of landscape processes
and help identify an appropriate spatial management scheme. This scheme will recognize the
variabilities and achieve management goals of crop production and environmental quality. This

Figure 13.3 Topographic patterns of the (a) computed wetness index and (b) measured winter wheat yield for
1997 in bushels per acre, at Lindstrom Farm near Sterling, CO. Topographic attributes were
computed from a 10-m grid digital elevation data obtained using a survey-grade global positioning
system.
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combination framework should help scale the management effects from small plots to field and
farm scales, as well as improve spatial predictions at different management scales.
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Parameterization of Agricultural System Models:
Current Approaches and Future Needs
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INTRODUCTION

Determining the correct parameters for different components of a system model is a major and
difficult task that currently restricts the widespread application of models in field research and
technology transfer. Several reasons account for these difficulties. For theoretical process-level
modules, most of the required parameters are specific to soil type or to a particular plant variety
and species. Measured values of these parameters are generally limited or unavailable for different
soils and plants, because measurements are expensive and time consuming. Examples include soil
physical and hydrologic properties, evapotranspiration parameters and crop growth parameters.
Values of these basic parameters may depend on environmental factors, which require additional
sub-parameters for further characterization. For example, soil hydrologic properties vary with soil
temperature and crop growth parameters can vary with temperature and with stresses due to water
or nutrient deficiencies.

On the other hand, some modules in a system model are currently a simplified version of reality,
either because of limited theoretical understanding or because of the high level complexity that is
difficult to execute. In such cases, the model parameters reflect a simple chosen concept and thus
they are difficult to measure. Examples of such simplified, conceptual models are the partitioning
of soil organic matter and crop residues into a number of pools (e.g., slow, medium and fast) and
then simulating the mineralization and immobilization of carbon and nitrogen in each pool, while
doing some accounting for interpool transfers. In reality, all the soil organic components comprise
a single continuum. Even in such simplified conceptual modules, the parameters may strongly
depend upon environmental factors, which need to be characterized with additional but immeasur-
able sub-parameters.

For both the previous cases, parameterization is further complicated by the spatial and temporal
variability of the land area simulated. For application at the field scale, spatial variability of the
soil within the field causes variability in soil physical, chemical and biological parameters that can
result in nonuniform plant growth or development. Depending upon the purposes of simulation,
one may attempt to find average values of these parameters in modeling (lumped parameters), use
probability distributions of the parameters in modeling (stochastic simulation), or run the model
for several parts of the field separately (distributed simulation) with spatial and temporal integration.
This latter distributed modeling option may be the only choice if the purpose is to evaluate site-
specific management. For this option, water and other mass transfers between different parts of the
field have to be a part of the simulation.

Temporal variability of soil parameters is caused primarily by land management practices, such
as tillage and subsequent reconsolidation, no-tillage and plant-residue cover changes, macropore
dynamics, drying and cracking of clayey soils, implement wheel compaction during various farm
operations and compaction or disturbances from grazing livestock. These practices change the
physical and energy transfer properties at the soil surface and physical, chemical and biological
properties of the upper horizons. Weather conditions may enhance or moderate soil surface changes.
For example, high intensity rainfall causes surface crusts to form on bare soil surfaces, whereas
freezing and thawing tend to relieve surface compaction as well as drying and cracking on heavier
texture soils. Model users have to define how these management practices change the soil’s physical,
chemical and biological parameters initially and how subsequent changes occur temporally.
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Current approaches to parameterization include:

1. Using measured values where available
2. Estimating values from available simple properties based on established empirical relationships

or by assuming simple conceptual or heuristic relationships
3. Creating databases of measured or estimated parameter values from the literature for various soils,

plants and conditions and using values selected from the databases
4. Calibrating or refining the initial selection of parameters by comparing the model results with a

set of observed data

The major problems associated with the fourth approach to parameterization, model calibration,
are that:

1. Models are mostly partially calibrated due to lack of experimental data for all the system components.
2. No standards (e.g., procedure and statistics) are established for model calibration.
3. Calibration depends on the purpose and experience of model users and it is by trial and error.
4. Parameters are time- and location-dependent.
5. Not all the calibrated parameters are reported in the literature and, therefore, results are generally

not reproducible by other users.
6. Model users are generally not sure whether the calibrated parameters are the true representation

of their experimental results.
7. Validation of the calibrated parameters are not extensive.
8. No applicable range and sensitivity of the calibrated parameters are given.

This chapter presents current approaches and future research needs to improve these approaches
for the selected, most commonly needed set of required parameters. Not all agricultural system
models have incorporated detailed processes as described in this chapter, nor do they use the same
approaches in simulating various components of agricultural systems. The presentation of this
chapter is organized into seven sections:

1. Soil physical parameters
2. Soil hydrologic parameters
3. Evapotranspiration parameters
4. Soil carbon/nitrogen dynamics parameters
5. Crop growth parameters
6. Soil-pesticide parameters
7. Statistical methods for model calibration

Finally, two examples on how to parameterize agricultural system models are presented. Other
processes and parameters not covered in this chapter are overland flow, soil erosion, chemical (N and
P) movement, parameters related to rangeland and grazing processes, dairy models, insect damage,
weed damage and effects of natural disasters. Interested readers may refer to other system models
in the literature, such as GLEAMS (Leonard et al., 1987), Opus (Smith, 1990), WEPP (Flanagan
and Nearing, 1995), EPIC (Sharpley and Williams, 1993), CENTURY (Parton et al., 1994), SPUR2
(Foy et al., 1999), APSIM (McCown et al., 1996) and GRAZPLAN (Donnelly et al., 2002).

SOIL PHYSICAL PARAMETERS

The main soil physical parameters of interest are: soil horizon delineation by depth; soil texture
as sand, silt, clay and organic matter contents; soil bulk density; and soil porosity. Information on
these properties, as well as soil structure, pH and cation exchange capacity (CEC) for major soil
series is available in the soil characterization pedon database of the Natural Resources Conservation
Service (NRCS). The common 1:200,000 soil survey reports provide general ranges in values of
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these properties for the soil series and, as a result, are less definitive. Even in the pedon database,
the information is generally not site-specific for a given farm or field. Hence, for field research
applications the user may want to take a few soil core samples of the soil profile in the experimental
field to obtain or verify this information. Recommended methods of determining these parameters
are given in the monograph on Methods of Soil Analysis, Part 1, published by the Soil Science
Society of America (Klute, 1986). Large spatial variability of these soil parameters may require
division of the field into a few subunits. Soil core sampling will also identify the long-term effects
of tillage practices on the changes in the surface soil horizons, such as the existence of a plow pan
and in texture and density of the modified horizons.

The total soil porosity, generally denoted by φ, is related to soil bulk density as:

(14.1)

where ρ is the soil bulk density and ρp is the soil particle density (g cm–3 or Mg m–3). The ρp varies
somewhat with soil type and should be determined in the laboratory by standard methods (Klute,
1986); however, a commonly accepted average value of ρp is 2.65 g cm–3.

For field conditions, it is becoming important to separate the total porosity, φ, into soil matrix
porosity, φs and soil macroporosity, φm. In this context, the macropores are defined as large voids
in a soil, such as decayed root channels, worm holes and structural cleavages or cracks with radii
≥0.25 mm. Under surface ponded conditions, the continuous macropores allow a rapid downward
movement of water that bypasses the soil matrix. This bypass or preferential flow is not considered
in classical soil physical models of water flow in the soil matrix. Continuous macroporosity in the
field is very difficult to determine (Ma and Selim, 1997). The best way might be to estimate it
indirectly from infiltration measurements, which will be discussed in the section on Soil Hydrologic
Parameters.

Temporal Changes Due to Tillage and Other Management Practices

Tillage decreases soil bulk density of the tilled zone (one or two thin horizons), which later
gradually reverts back to the original state due to reconsolidation by natural forces. These changes
depend upon soil type and implements used for tillage. No information exists in the literature on
quantifying these changes. An approximate empirical equation used in the EPIC model (Williams
et al., 1984) is:

(14.2)

where ρt is the bulk density after tillage, ρt–1 the bulk density before tillage (g cm–3), ρc the consolidation
bulk density at 33 kPa pressure (g cm–3) and Ii is the tillage intensity (a 0-1 factor) that depends on
the implement used and crop residue type on the soil surface. Williams et al. (1984) provide values
for the tillage intensity for 29 different tillage implements for corn and soybean residues (Table 14.1).
The ρc may be set equal to the bulk density after complete natural reconsolidation.

The bulk density after tillage increases due to natural reconsolidation during cycles of wetting
and drying (Cassel, 1983; Onstad et al., 1984; Rousseva et al., 1988) in an asymptotic manner.
Onstad et al., (1984) gave the following empirical equation to describe changes in bulk density of
a tilled soil over time:

(14.3)

where ρt is the bulk density just after tillage, ρat is the bulk density over time, P is the cumulative
rainfall or applied water (cm) and a is an empirical constant. Thus, time is expressed in terms of

φ ρ ρ= −1 p

ρ ρ ρ ρt t t c iI= − −( )[ ]− −1 1 0 667.

ρ ρat t a P P= + +( )[ ]1
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cumulative rainfall. Comparison of Eq. (14.3) with data showed that the increase in bulk density
reached a near maximum value at about 10 cm of simulated rainfall application. Results of Rousseva
et al., (1988) showed that bulk density did not reach a plateau even at much higher amounts of
rainfall. Equation (14.3) can be modified to allow this behavior by replacing the term (1 + P) by
(b + P) where b is another constant. Linden and Van Doren (1987) gave another algorithm for
change in total porosity φ (directly related to bulk density) of a tilled soil as a double exponential
function of cumulative rainfall energy, E and cumulative rainfall amount, P:

(14.4)

where φΙ is the initial porosity just after tillage and φc is the final stable porosity. This equation has
given reasonable results in the Root Zone Water Quality Model (RZWQM) applications (Ahuja
et al., 2000).

SOIL HYDROLOGIC PARAMETERS

Application of soil water flow theory to describe water flow, soil water storage and plant uptake
in the soil matrix requires knowledge of two basic soil hydrologic relationships (Ahuja et al., 2000):

Table 14.1 Tillage Implements and Parameters

Implement Name
Tillage Intensity (Ii) Effective 

Depth (cm)Corn Soybeans

1 Moldboard plow 0.93 0.96 15
2 Chisel plow, straight 0.25 0.45 12.5
3 Chisel plow, twisted 0.45 0.65 12.5
4 Field cultivator 0.25 0.35 10
5 Tandem disk 0.50 0.65 10
6 Offset disk 0.55 0.70 10
7 One-way disk 0.40 0.50 10
8 Paraplow 0.20 0.25 15
9 Spike tooth harrow 0.20 0.25 2.5

10 Spring tooth harrow 0.30 0.45 5
11 Rotary hoe 0.10 0.15 2.5
12 Bedder ridge 0.75 0.80 15
13 V-blade sweep 0.10 0.15 7.5
14 Subsoiler 0.20 0.30 35
15 Rototiller 0.55 0.70 7.5
16 Roller package 0.10 0.10 0
17 Row planter w/smooth coulter 0.08 0.11 0
18 Row planter w/fluted coulter 0.15 0.18 0
19 Row planter w/sweeps 0.20 0.30 0
20 Lister planter 0.40 0.50 0
21 Drill 0.15 0.15 0
22 Drill w/chain drag 0.15 0.15 0
23 Row cultivator w/sweeps 0.25 0.30 0
24 Row cultivator w/spider wheels 0.25 0.30 0
25 Rod weeder 0.15 0.20 0
26 Rolling cultivator 0.50 0.55 0
27 NH3 applicator 0.15 0.20 0
28 Ridge-till cultivator 0.60 0.75 0
29 Ridge-till planter 0.50 0.70 0

From Williams, J.R. et al., Trans. ASAE, 27(1):129–142, 1984.

φ φ φ φ= − −( ) −( ) −( )− −
I I c

E Pe e2 0 01 0 25. .
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1. Volumetric soil water content (commonly denoted as θ) as a function of soil-matric pressure (h)
or soil water suction (τ); i.e., θ(h) or θ(τ), with τ = –h. The units of h or τ are kPa or meters. The
θ(h) relationship is commonly called the soil water retention curve.

2. Soil hydraulic conductivity (K) as a function of soil water content, matric pressure, or suction;
i.e., K(θ), K(h) or K(τ). The hydraulic conductivity when the soil is saturated (θ = θs = φ) is called
the saturated hydraulic conductivity, Ksat. The commonly used units are cm hr–1, that correspond
to dimensionless units of gradients of pressure head in Darcy’s equation.

Standard methods for measuring these basic soil hydrologic properties in the laboratory and
field are detailed in the Klute (1986). Knowledge of these parameters at matric pressures between
0 and about –100 kPa is very important because significant water movement occurs only in this
range. Perhaps the most reliable method for determining hydraulic conductivities in this pressure
range, for field conditions, is the Darcian analysis of in situ tensiometric measurements made during
infiltration and the subsequent drainage, using the water content matric pressure relationships
(Richards et al., 1956; Ogata and Richards, 1957; Nielsen et al., 1964; Rose et al., 1965; Watson
1966; van Bavel et al., 1968; Flühler et al., 1976). This method is the instantaneous profile method
(Green et al., 1986) in which a water content/matric pressure relationship can be obtained by
periodic measurement of soil water content during the drainage phase by gravimetric, neutron
thermalization, or time domain reflectrometry (TDR) techniques with the soil surface covered to
minimize evaporation.

More commonly, however, the relationship between θ and h is measured in the laboratory on
undisturbed soil cores for hydrostatic conditions. In general, methods for determining soil hydraulic
and water storage properties are time-consuming, tedious and expensive, especially because a large
number of measurements are required to characterize the combined effects of inherent and man-
agement-induced spatial variability of these properties in a field. Innovative approaches that require
less time and effort are needed to increase applications of the theory.

Ahuja et al. (1999) presented a summary of recently proposed methodologies for determining
soil hydrologic properties using simpler measurements and less data. For θ(h), the methods included
estimation from soil composition and bulk density using regression equations and more recent
scaling approaches using soil bulk density and –33 kPa (one-third bar) or –10 kPa soil water content.
For the important property of saturated hydraulic conductivity (Ksat), a major new development
involved estimation from effective porosity, obtained from bulk density and –33 kPa soil water
content. This method, as well as the estimation of Ksat from the pore-size distribution based on
further development of the Marshall (1958) approach, were described. For unsaturated hydraulic
conductivity (K(h) for h < 0), the methods included simplified field measurement methods, such
as the unit-hydraulic gradient approach and a simplified functions technique involving only field
tensiometric data, as well as the estimation of K(h) from θ(h) and Ksat. Temporal changes in θ(h)
and K(h) brought about by tillage, residue management and cropping practices can be important,
but were only briefly addressed because of limited knowledge of these changes available at present.

For use in models, each of the basic hydrologic relationships is fitted with a suitable mathe-
matical equation or function. Three commonly used mathematical representations of θ(h) relation-
ship proposed by Brooks and Corey (1964), Campbell (1974) and van Genuchten (1980), respec-
tively, are shown in Table 14.2, along with the definition of their parameters and the correspondence
among them. Each of these models are based upon some simplifying assumption, such as isothermal
conditions and no drying–wetting hysteresis. Only the van Genuchten model prescribes a smooth
curve for the entire range of θ(h), assuming the saturated water content, θs, occurs at h = 0. The
other two models assume θs occurs at the air-entry pressure, hb and that water content is equal to θs

between h = hb and h = 0. The corresponding forms of K(h) functions are presented in Table 14.3.
The parameterization problem then is to determine or estimate the independent parameters of a set
of water retention and hydraulic conductivity functions in Table 14.2 and 14.3.
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Determining Parameters of θ(h) Curve

Perhaps one of the best ways to determine these parameters will be to fit Brooks–Corey or
one of the other two equations in Table 14.2 to the measured θ(h) data; however, the measurements
are expensive and time-consuming. In the absence of measured data, some simpler methods of
estimating these parameters are given in the following subsection, in a hierarchical order of
increasing accuracy.

From Textural Class

Rawls et al. (1982) collected measured data for 500 soils with a total of about 2453 horizons
from 18 states. From these data, they calculated mean Brooks–Corey parameters and related
information for 11 USDA textural classes. These average values by textural class are presented in
Table 14.4. Clapp and Hornberger (1978) and DeJong (1982) reported similar sets of textural class
mean values for the Campbell water retention function (Table 14.2) based on smaller datasets.
Unfortunately, there was a considerable variation of parameters from the three sources (Ahuja et al.,
1999). Nonetheless, in the absence of any other relevant information, the textural-class mean values
in Table 14.4 provide the simplest estimates of the required θ(h) parameters.

Table 14.2 Commonly Used Soil Water Retention Models

Soil Water Retention Parameters
Parameter Correspondence 
with Brooks–Corey Model

Brooks–Corey (1964)

θ = volumetric water content λ = λ
θs = saturated water content hb = hb

λ = pore size distribution index θr = θr

h = soil water pressure head θs = φ
hb = bubbling pressure or air entry pressure head
θr = residual water content
φ = total porosity

Campbell (1974)

θs = saturated water content θs = φ
Hb = bubbling pressure or air entry pressure head Hb = hb

b = constant

van Genuchten (1980)

θs = saturated water content θ = φ
θr = residual water content θr = θr

α = constant α = (hb)–1

n = constant n = λ + 1
m = constant

From Rawls, W.J. and D.L. Brakensiek, Prediction of soil water properties for hydrologic modeling, in Proc.
Watershed Manage. in the Eighties, ASCE, New York, 1985.
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From Soil Texture, Organic Matter and Bulk Density

Rawls et al. (1982) used their national database to develop 12 separate multiple linear
regression equations to relate percent of silt, clay, organic matter and bulk density to soil water
retention at 12 matric pressures within the range from –4 to –1500 kPa. Two further regression
equations were provided for 10 pressure heads which included either one or two measured soil
water content values, θ at –1500 kPa pressure or θ at –33 and –1500 kPa pressures as additional
variables. Later, Rawls and Brakensiek (1985) developed regression equations for Brooks–Corey
parameters applicable over the entire range of matric pressures, in place of one equation for each
matric pressure. These regression equations are presented in Table 14.5, along with the regression
equations for the van Genuchten (1980) model parameters derived by Vereecken (1988) based
on a more limited dataset.

There is no independent validation of the regression equations in Table 14.5 available and no
information exists on the uncertainty associated with the equations introduced; however, the original
12 sets of regressions equations, one for each matric pressure, were tested against experimental
data for silty clay loam soils (Ahuja et al., 1985) and for sandy to sandy clay type soils (Williams
et al., 1992). Because of the many more overall parameters and degrees of freedom, the resulting
12 sets of equations should be much more accurate than the regression equations in Table 14.5.
Even so, the validation tests described previously showed that the regression equations for individual
matric pressures based only on soil texture, organic matter and bulk density generally overpredicted
soil water contents at various pressures. The mean relative error ranged from 8 to 29%, with standard
deviation of errors ranging from 17 to 36%. The equations that incorporated the measured –1500 kPa
water content value, as an additional variable, did not improve the results, but the equations that
also incorporated –33 kPa values improved the estimates considerably.

Table 14.3 Commonly Used Hydraulic Conductivity 
Functions, K(�) and K(h)

K(�) K(h) Comments

Brooks–Corey (1964)

Campbell (1974)

van Genuchten (1980)

Note: Parameters are the same as those in Table 14.2.
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Table 14.4

 

Hyd

  

 Size Distribution Index (

 

�

 

)

Texture Class

   
     

ithmetic Geometric

Saturated Hydraulic 
Conductivity (Ks) 

(cm/h)

Sand  0.694 0.592 21.00
98–1.090) (0.334–1.051)

Loamy sand  0.553 0.474  6.11
34–0.872) (0.271–0.827)

Sandy loam  0.378 0.322  2.59
40–0.616) (0.186–0.558)

Loam  0.252 0.220  1.32
86–0.418) (0.137–0.355)

Silt loam  0.234 0.211  0.68
05)–0.363) (0.136–0.326)

Sandy clay loam  0.319 0.250  0.43
79–0.559) (0.125–0.502)

Clay loam  0.242 0.194  0.23
70–0.414) (0.100–0.377)

Silty clay loam  0.177 0.151  0.15
39–0.315) (0.090–0.253)

Sandy clay  0.223 0.168  0.12
48–0.398) (0.078–0.364)

Silty clay  0.150 0.127  0.09
40–0.260) (0.074–0.219)

Clay  0.165 0.131  0.06
37–0.293) (0.068–0.253)

a First line is the 
b Second line is ±

From Rawls, W.J.
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Bubbling Pressure (hb) Pore

Sample 
Size

Total Porosity (�s)
cm3/cm3

Residual 
Saturation (�r)

cm3/cm3

Arithmetic
(cm)

Geometric
(cm) Ar

762 0.437a 0.020 15.98 7.26 
(0.374–0.500)a (0.001–0.039)  (0.24–31.72) (1.36–38.74)  (0.2

338 0.437 0.035 20.58 8.69
(0.368–0.506) (0.003–0.067)  (0.0–45.20) (1.80–41.85)  (0.2

666 0.453 0.041 30.20 14.66
(0.351–0.555) (0.0–0.106) (0.0–64.01) (3.45–62.24)  (0.1

383 0.463 0.027 40.12 11.15
(0.375–0.551) (0.0–0.074) (0.0–100.3) (1.63–76.40)  (0.0

1206 0.501 0.015 50.87 20.76
(0.420–0.582) (0.0–0.058) (0.0–109.4) (3.58–120.4)  (0.1

498 0.398 0.068 59.41 28.08
(0.332–0.464) (0.0–0.137) (0.0–123.4) (5.57–141.5)  (0.0

366 0.464 0.075 56.43 25.89
(0.409–0.519) (0.0–0.174) (0.0–124.3) (5.80–115.7)  (0.0

689 0.471 0.040 70.33 32.56
(0.418–0.524) (0.0–0.118) (0.0–143.9) (6.68–158.7)  (0.0

45 0.430 0.109 79.48 29.17
(0.370–0.490) (0.0–0.205) (0.0–179.1) (4.96–171.6)  (0.0

127 0.479 0.056 76.54 34.19
(0.425–0.533) (0.0–0.136) (0.0–159.6) (7.04–166.2)  (0.0

291 0.475 0.090 85.60 37.30
(0.427–0.523) (0.0–0.195) (0.0–176.1) (7.43–187.2)  (0.0

mean value.
 one standard deviation about the mean.

 et al., T

r
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.
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From a One-Parameter Model

A one-parameter model is based on a strong linear correlation (R2 > 0.95) observed between
the slope b and intercept a of a log–log linear form of the Brooks–Corey or Campbell water retention
equation (Gregson et al., 1987; Ahuja and Williams, 1991). Either of these equations may be written
in the form:

(14.5)

(14.6)

where a is a lumped constant and b = –1/λ (Table 14.2). For the Campbell equation, θr = 0.

Furthermore, a vs. b linear relationships for a group of soils merged very nicely into one common
relationship (Gregson et al., 1987; Ahuja and Williams, 1991):

Table 14.5 Equations for Estimation of Water Retention Model Parameters

Brooks–Corey Model Parameters (Rawls and Brakensiek, 1985)

hb = Brooks–Corey bubbling pressure head (cm)a

hb = exp[5.340 + 0.185(C) – 2.484(φ) – 0.002(C2) – 0.044(S)(φ)– 0.617(C)(φ)+ 0.001(S2) (φ2) – 0.009(C2)(φ2)
– 0.000 01(S2)(C) + 0.0009(C2)(φ) – 0.0007(S2)(φ) + 0.000 00(C2)(S) + 0.500(φ2)C]

λ = Brooks–Corey pore size distribution index
λ = exp[–0.784 + 0.018(S) – 1.062(φ) – 0.000 05(S2) – 0.003(C2)+ 1.111(φ2)– 0.031(S)(φ) + 0.000 3(S2)(φ2) 

– 0.006(C2)(φ2) –0.000002(S2)(C)+ 0.008(C2)(φ) – 0.007(φ2)(C)]
θr = Brooks–Corey residual water content (m3m–3)
θr = –0.018 + 0.0009(S) + 0.005(C) + 0.029(φ) – 0.000 2(C2) – 0.001(S)(φ) – 0.0002(C2)(φ2) + 0.0003(C2)(φ) 

– 0.002(φ2)(C)

van Genuchten Model Parameters (Vereecken, 1988)

θr = 0.015 + 0.005(C) + 0.014(Ca)
α = 10[–2.486+0.025(S)–0.351(Ca)–2.617(bd)–0.023(C)]

n = 10[0.053–0.009(S)–0.013(C)+0.00015(S2)]

m = 1 – 1/n

a C = % clay, S = % sand, Ca = % carbon, φ = porosity (m3m–3), bd = bulk density.

From Ahuja, L.R. et al., Determining soil hydraulic properties and their spatial variability from simpler
measurements, in Agricultural Drainage, Agronomy Monograph No. 38, ASA, Madison, WI, 1999.

Table 14.6 Groups of Soils from the U.S. and Their Average p and q Valuesa

Group Soils Textural Groups
Average p Value

ln(kPa)
Average q Value

ln(m3m–3)

1 Oxisols, Kirkland
Renfrow, Pima

Loam-silty clay; loam-clay loam 1.415 0.839

2 Norfolk, Teller,
Bernow (45–90 cm)

Sandy loam; sandy clay loam 0.343 1.072

3 Lakeland, Bernow
(0–45 cm)

Sand 0.541 1.469

— Australian
and British soils

A mixture of textures –0.982 0.585

a Average p and q values for several Australian and British soils pooled together, reported by Gregson et al.
(1987), are given in the same units for comparison.

From Ahuja, L.R. and R.D. Williams, Soil Sci. Soc. Am. J., 55:308–319, 1991.

ln lnh a b r= + −( )θ θ

a h bb s r= − −( )ln ln θ θ
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(14.7)

where p and q are constants for all soils in a group. Substituting Eq. (14.7) into Eq. (14.5) yields a
one-parameter model, provided that θs (porosity) or bulk density and an approximate value of θr for
the soil type under consideration are known or can be estimated from other information in the literature:

(14.8)

This equation can be used to estimate the parameter b of the h(θ) or θ(h) function simply from
one measured value of the h(θ) curve and given p and q values for the soil group. Then, from
Eq. (14.6) the parameter hb

 can be found because b, θs and θr are now known. The average values
of p and q for soil groups based on the experimental data analyzed by Ahuja and Williams (1991)
and Gregson et al. (1987) are given in Table 14.6 for general application. In comparison with other
methods, this one-parameter model gave better results for several soils (Williams and Ahuja, 1992).

Determining Parameters of K(θ) or K(h) Curve

Again, the best way to determine the parameters of K(θ) or K(h) function, such as the forms
given in Table 14.3, will be to fit these functional forms to field measured data on these properties;
however, field measurement of this function is extremely tedious and time consuming. Accepting
the premise of the commonly used K(θ) or K(h) functions given in Table 14.3, it turns out that all
the parameters are the same as for the corresponding θ(h) functions, except for Ksat. Hence, the
issue addressed here is the estimation of Ksat.

Estimating Ksat

Saturated hydraulic conductivity (Ksat) is probably the most critical soil hydraulic parameter in
soils, although K(h) under unsaturated condition may yield much more realistic results (Ehlers,
1977). This parameter is difficult to obtain since it is highly dependent on soil conditions, such as
compaction, soil aggregates, macropores, sample size, temperature and entrapped air and thus is
highly variable. In a field, Ksat may vary between one to two orders of magnitude. Because of this,
it is much more meaningful to try to determine reasonably accurate spatial distribution of Ksat

 (e.g.,
mean and standard deviation) in a field, rather than highly accurate point values. Using textural-
class mean values, such as given in Table 14.4, gives a general idea of the magnitudes. The simplified
methods based on soil texture and bulk density have failed to yield more accurate results.

Recent studies have shown that Ksat is strongly related to an effective soil porosity, φe (Ahuja
et al., 1984). In these studies, φe of a soil was defined as total porosity minus the volumetric soil
water content at 33 kPa suction and was related to Ksat by a generalized Kozeny–Carman equation:

(14.9)

where B and n are constants. Figure 14.1 shows a combined relationship for nine soils combined
(473 data points). These soils came from diverse locations in Hawaii, Arizona, Oklahoma and
several states of the southeastern U.S. The strength of this relationship in Figure 14.1 is that it was
as good for all soils as for any one soil individually, which indicates that Eq. (14.9) is applicable
across soil types. Realizing that the measurement of Ksat can be subject to an error as large as one
to two orders of magnitude, due to unknown effects of entrapped air and macropores, the empirical
equation given in Figure 14.1 is useful in estimating Ksat from the simpler measurements of effective
porosity for a soil. Tests of this equation against carefully measured field data for several Indiana
soils and core data for several Korean soils, have shown good results (Franzmeier, 1991; Ahuja
et al., 1989). Equation (14.9) also can be used to estimate the spatial distributions (cumulative

a p qb= +

ln lnh p b qr= + −( ) +[ ]θ θ

K Bsat e
n

e s kPa= = −φ φ θ θ  and  33
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frequency distributions) of Ksat from spatial distributions of effective porosity (Ahuja et al., 1984,
1989). Rawls et al. (1998) found that n = 3 – λ for their textural class mean values, where λ is the
Brooks–Corey pore size distribution index.

Determining Flow through Soil Macropores

As noted earlier, macropores can cause tremendous amounts of preferential water movement
during ponded infiltration conditions in the field. Connectivity and continuity of macropores with
depth are critical factors for this flow. No simple ways are available to estimate continuous macro-
porosity and the magnitude of flow through them. Some specialized measurements of infiltration
in the field are the only method available at this time.

Watson and Luxmoore (1986) measured infiltration under ponded-water conditions and under
conditions where water was applied at a small negative pressure (–3 cm for macropore radius
≥0.5 mm) to separate the macropores and soil matrix flow. The latter measurements have to be
made within a small ring, 10 to 20 cm in diameter. The technique works well, but the small area
of measurement may not meet the minimum representative volume requirement for all soil-
macropore situations. To allow for a large sample volume, Timlin et al. (1993) have shown that the
contribution of continuous macropores to field Ksat can be obtained from measurements of ponded-
water infiltration rate in a large ring and tensiometric data during redistribution of water immediately
following infiltration. The soil-matrix Ksat

 at a given depth is obtained from redistribution data
obtained near saturation. The difference between this Ksat and the steady-state infiltration rate gives
the contribution of macropores at this depth.

Changes in Soil Hydraulic Parameters Due to Tillage Practices

The tillage and subsequent reconsolidation by natural forces cause temporal changes in soil
hydrologic properties. Wheel track compaction enhances the temporal changes in the tilled zone,
but it may also cause permanent changes in properties of the subsoil beneath the tracks.

Tillage Effects on the �(h) curve

Very limited quantitative data are available in the literature on this subject. Based on limited
data, Ahuja et al. (1998) have presented two semiempirical algorithms for determining changes in

Figure 14.1 Saturated hydraulic conductivity as a function of effective pore porosity for nine soils. The middle
line is the best-fit line and the other two lines are ±1.0 RMSE around the fitted line. (From Ahuja,
L.R. et al., Soil Sci., 148:404–411, 1989.)
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θ(h) parameters caused by tillage and subsequent natural reconsolidation, for the Brooks–Corey
form of θ(h) curve. The simpler of the two algorithms is summarized below:

1. The change in soil bulk density and hence soil porosity, φ or θs, due to tillage are assumed known
from Eq. (14.2) presented earlier.

2. The residual water content, θr and the bubbling pressure head parameter hb
 of the soil on tillage

stay the same as ones before tillage or at full natural reconsolidation.
3. The parameter λ increases on tillage in the wet range only, between h = hb and h = 10 hb. In this

range of h, the tilled soil value, λtill, is computed from tilled soil saturated water content, θstill:

(14.10)

4. Below the h range, i.e., for h values >10 hb, the λ value does not change.

The effectiveness of the previously outlined algorithms is shown for four cases in Ahuja et al.,
(1998). These equations can also be used to estimate curves for partially reconsolidated soil
conditions, with the corresponding transient soil bulk density calculated from Eqs. (14.3) or (14.4).

Effects on Ksat Parameter

Once the θ(h) curve of the tilled soil is obtained from the previous equations, the new θs and
θ33kPa are used to obtain the new φe in Eq. (14.9). Substituting the φe in Eq. (14.9) then provides the
new Ksat. The other parameters of the K(h) curve of the tilled soil are determined from the parameters
of the new θ(h) curve of the tilled soil, from relationships shown in Tables 14.2 and 14.3.

Surface Sealing–Crusting

Tillage tends to destroy the soil surface cover. Rainfall on a freshly tilled soil generally results
in formation of a dense surface seal. On drying, this seal becomes a mechanical crust. Saturated
hydraulic conductivity for a 2- to 5-mm thick seal-crust can be 5- to 100-fold smaller than that of
the original soil (McIntyre, 1958; Tackett and Pearson, 1965; Sharma et al., 1981); the most common
range is 5- to 20-fold. A thin seal-crust gets quickly saturated at the start of rainfall; therefore, its
unsaturated hydraulic conductivity and θ(h) can be neglected and only the Ksat needs to be deter-
mined. Some measurements for a given soil will be the best way to determine this Ksat. A first
estimate may be 1/10th of the Ksat of the underlying soil. Details of the temporal changes in seal-
crust Ksat are given in Ahuja et al. (1999).

Often, tillage does not bury all the crop residues that are on the soil surface. The residue cover
then protects a part of soil from sealing–crusting. Recent studies indicate that for practical purposes,
hydraulic conductivity of a partially formed crust layer can be estimated as an area-weighted mean
Ksat of crusted and uncrusted areas of the soil surface (Ruan et al., 2001). The burial of residues is
generally assumed proportional to the tillage intensity Ii in Eq. (14.2) (Wagner and Nelson, 1995).

EVAPOTRANSPIRATION PARAMETERS

Modeling of evapotranspiration (ET) in agricultural systems is generally divided into two parts:

1. Modeling of potential evapotranspiration (PET), defined as “the amount of water transpired in a
unit time by a short, green crop, completely shading the ground, of uniform height and never short
of water” (Penman, 1948)

2. Modeling of actual ET (AET) when the above conditions are not satisfied, such as with incomplete
cover and limiting soil moisture

λ
θ θ θ θ
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Modeling Potential ET

Methods of modeling the potential ET (PET) available in the literature range from simple
empirical methods, that require fewer parameters, to more mechanistic methods based on energy
balance and aerodynamics of vapor and heat transfer, requiring more parameters. Thornthwaite
(1948) related monthly PET to mean monthly air temperature for a large number of locations in
the east-central U.S. and provided fixed empirical values of coefficients or parameters in the
equation. The value of PET is modified by an additional factor of mean monthly percentage of
annual daytime hours. Blaney and Criddle (1962) refined the above method for Western U.S.
conditions. Jensen and Haise (1963) derived an equation based on air temperature and mean daily
solar radiation and provided empirical methods of determining the parameters from local metero-
logical data. As discussed by Monteith (1998), the equations based on mean monthly temperature
do not give correct estimates of daily PET values.

Other empirical methods may provide good daily values only if local data are used to calibrate
parameters (Hatfield, 1990). Because most agricultural system models operate on a daily level,
they generally utilize the more mechanistic methods to estimate PET. These mechanistic models,
of course, also use some empirical methods to obtain driving variables and parameters. The
commonly used mechanistic-empirical models of PET are Penman (Penman, 1948), Penman–Monteith
(Monteith, 1965), Priestley–Taylor (Priestley and Taylor, 1972) and Shuttleworth–Wallace, an
expansion of the Penman–Monteith model (Shuttleworth and Wallace, 1985). Hatfield (1990) and
Monteith (1998) describe these methods in detail.

In the Penman (1948) method, PET is obtained from net radiation at the evaporating surface,
mean relative humidity deficit of air, known thermodynamic constants and an empirical wind
function to represent vapor and heat transfer coefficients. Heat stored in the soil or vegetation is
neglected. Penman also provided empirical equations to calculate net radiation from its components:
(1) short-wave solar radiation estimated from hours of sunshine; and (2) net long-wave radiation
estimated from air temperature and vapor pressure. Besides the meteorological data, the Penman
method requires seven empirical parameters in all; however, all these parameters are fixed and
given, except a parameter to estimate PET for a soil or vegetation from the PET for open water.
The user may calibrate this parameter for specific soil–crop conditions.

In the Penman–Monteith equation, the empirical wind function used in Penman’s equation was
replaced by the reciprocal of an aerodynamic resistance and a surface or stomatal resistance.
Monteith and Unsworth (1990) also made some improvements in calibrating net radiation. For
simplified, ideal conditions of soil or crop canopies in the field, Monteith (1998) described methods
to calibrate aerodynamic resistance from wind speed profile above the canopy and crop height or
leaf area index, along with some suggested values of unknown constants. For best results, however,
the user has to calibrate the values of both aerodynamic and surface or stomatal resistances for the
site-specific conditions. The latter resistance is also a function of weather conditions and soil water
contents.

Priestley and Taylor (1972) simplified the Penman equation for PET for conditions where the
saturated deficit of air above the wet surface is constant with height or the air above the wet surface
is saturated. The PET then becomes independent of the wind speed. The previously described
conditions are, however, seldom met and the user has to be careful in using this approach. This
approach is generally considered applicable in humid climate zones only.

Shuttleworth and Wallace (1985) removed the constraint in the Penman–Monteith model that
the vegetation completely covers the ground. They constructed a two-dimensional network of
resistances to account for separate contributions from soil and foliage. The various resistances are:
a soil surface resistance and an aerodynamic resistance for transfer between soil and mean canopy
levels; an aerodynamic resistance between mean canopy level and screen (measurement) height;
and an aerodynamic and a surface resistance within the canopy. The authors provide equations or
values for these resistances. The user is advised to calibrate some of these values.
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The Shuttleworth–Wallace model has been extended to a layer of residue cover above the
surface, with the resistances then operating between the soil surface and residue plane and between
the residue plane and canopy (Farahani and Ahuja, 1996). The values of additional resistance used
in RZWQM model are provided by Farahani and DeCoursey (2000).

Modeling Actual ET

The PET models of Penman–Monteith and Shuttleworth–Wallace allow modeling of actual ET
(AET) through the adjustment of soil surface resistance, residue surface resistance and stomatal or
canopy resistances. In this approach, the root zone of the soil is treated as one uniform layer. Root
distribution with depth and water movement within the soil are neglected. Most agricultural system
models, therefore, use the above models to compute only PET and link this to detailed models of
root growth, root water uptake and soil water movement. For incomplete canopy cover conditions,
the PET is divided into potential transpiration (PT) and potential residue and soil evaporation (PE),
based on an empirical function of leaf area index (LAI) and residue cover. The PT then serves as
an upper boundary condition for a root water uptake model, such as Nimah and Hanks (1973) and
PE from soil as the upper condition for solution of the Richards’ equation for evaporation flux at
the soil surface.

Surface Residue Cover

Crop residues on the soil surface play an important role in protecting the surface against
sealing–crusting by raindrop impact; hence, maintaining high infiltration rates into the soil. Between
rains, they also influence the rate of soil evaporation. The main residue parameters that affect these
processes are residue mass per unit area and percent cover. Each of these parameters may be further
apportioned into flat and standing residues. These parameters generally have to be estimated based
on some measurements. For a given type of crop residues, percent cover and mass may be related.
For example, Gregory (1982) derived the following empirical relation between percent cover (Cr)
and mass (Mr) for residues:

(14.11)

where F is a constant. The standing residue cover may be estimated based on stubble population
per unit area and average basal area per stubble. For soil evaporation modeling, the surface residue
mass, cover and thickness are utilized empirically to estimate the solar radiation absorbed by the
residues and aerodynamic resistance of the residue layer.

SOIL CARBON/NITROGEN DYNAMICS PARAMETERS

In all major system models, such as Century (Parton et al., 1983); Phoenix (Juma and McGill,
1986); and RZWQM (Shaffer et al., 2000), the soil organic matter transformations, i.e., mineral-
ization and immobilization, are simulated by dividing the soil crop residues and humus organic
matter into a number of pools. The pools are commonly based on carbon/nitrogen (C/N) ratios of
the components. Soil microbial population is also divided into pools based on their functional
activities, such as aerobic heterotrophs, autotrophs and facultative heterotrophs. Each organic matter
pool is assumed to undergo a first-order decay, facilitated by aerobic heterotrophs. Mass transfers
between the pools, including the active microbial pool. The primary products of decay (e.g., NH4)
are subject to further nitrification by nitrifier microbes under aerobic conditions, or to denitrification
under anaerobic conditions. An example schematic diagram of the soil organic matter pools, primary
transformations and interpool transfers is pictured in Figure 14.2. It is generally recognized that

C er
F Mr= −( )−100 1
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the organic matter in soil is, in fact, a continuum and its division into pools for modeling is an
approximate arbitrary approach.

Based on Figure 14.2, the following sets of parameters are required to model both primary and
secondary transformations of soil organic matter:

1. Soil surface crop residue decomposition parameters
2. Pool sizes for incorporated residues, humus organic matter; and microbial pools
3. Transformation rate coefficients and rate constants for primary transformations and coefficients

for their strong dependence upon soil temperature, moisture content, O2 concentration, ion strength,
pH and microbial populations

4. Interpool transfer coefficients
5. Rate coefficients and rate constants for nitrification and denitrification and their dependence upon

environmental factors

Decomposition of Surface Residues with Time

Ma et al., (1999) reviewed and evaluated the models that have been used to describe the
decomposition of surface crop residues. Douglas and Rickman (1992) assumed a first-order decay
with respect to daily growing degree-days. In this model, the decomposition coefficient is a multiple
of three factors — fN, fw and k accounting for initial crop residues N, soil moisture effects and a
rate constant, respectively. Douglas and Rickman (1992) provide fixed equations or values for these

Figure 14.2 A schematic diagram of residue and soil organic matter pools, transformation and interpool transfer.
R14, R23, R34 and R45 are interpool mass transfer coefficients. BM is microbial biomass. (From Ma,
L. et al., Soil Sci. Soc. Am. J., 62:1006–1017, 1998a. With permission.)
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factors, which are assumed to apply universally. Gregory et al. (1985) used a second-order decay
equation, but the parameters can still be determined from fixed equations from weather data and
initial C/N ratio of the residues. Other models used in the literature have similar parameters.

Determining Soil Organic Matter Pool Sizes

When there are only two pools, such as for the incorporated crop residues in Figure 14.2, the
pool sizes can be obtained approximately if the average C/N ratio of the total material in both pools
is known, as well as the assumed average C/N ratio within each pool (Ma et al., 1998a). When
they are more than two pools, however, such as for the humus (OM) pools in Figure 14.2, deter-
mining pool sizes is a very difficult problem. To our knowledge, no laboratory procedures have
been developed to determine the sizes of these pools. The potentially mineralizable N frequently
mentioned in the literature may cover more than one pool, such as both fast and medium OM pools
(Landa et al., 1999). The pool sizes are greatly influenced by the past management practices. Based
on our experience with RZWQM (Ma et al., 1998a), our recommendation is to start with a first
guess for the three humus OM pool sizes, such as 5, 10 and 85%, respectively, for fast, medium
and slow pools and set the microbial pools at a minimum level of 50,000, 500 and 5,000 organisms/g
soil respectively, for aerobic heterotrophs, autotrophs and facultative heterorophs. Then run the
model for 10 to 15 years with past management and climate conditions to obtain stabilized size
for all pools and their distribution with depth in the soil. Measured total organic matter of the soil
serves as a check on the derived stable values. Other suggested methods of partitioning organic
carbon pools are the lignin content (CENTURY model) and years of cultivation of the soil (EPIC
model) (Ma and Shaffer, 2001).

Application and incorporation of animal manures, compost and other organic waste changes
the soil residue pools. Solid components of these materials are generally divided into organic waste
and bedding, based on their C/N ratios. Each of these is then partitioned into the existing soil
residue pools of prescribed C/N ratios (Rojas and Ahuja, 2000). Incorporation of surface crop
residues by tillage is treated in the same way as manures. Earthworms and other soil fauna also
bring about some incorporation of decomposed surface residue and manures to soil residue pools.

Determining Rate Coefficients and Interpool Transfer Coefficients

A limited amount of laboratory-measured data is available for mineralization and nitrification
rates with time for certain soils, management and environmental conditions. From these data, initial
guesses of the rate coefficients for available soil and management conditions and their dependencies
may be made. These guesses are then refined by calibration of model results against measured field
data. With time, we hope to have a database of these parameters for different soils, climates and
management practices assembled for future model users.

For interpool transfer coefficients, the only method appears to be to calibrate these parameters.
Ma et al. (1998a) parameterized the interpool transfer coefficients through calibrating corn yield
and crop N uptake in a manure study in Colorado. Jaynes and Miller (1999), on the other hand,
adjusted these interpool coefficients by assuming that total soil organic matter content remains
stable and should be equal to the measured organic matter content in soils under consistent long-
term management.

Most agricultural system models simulate mineralization/immobilization, nitrification, denitri-
fication, urea hydrolysis and ammonia volatilization. Ma and Shaffer (2001) summarized these
processes in nine major U.S. models and McGechan and Wu (2001) reviewed the same processes
for several European models. Each process may be simulated as zero-order, half-order, first-order,
Michaelis–Menten, or Monod kinetics (Ma and Shaffer, 2001) and the rate coefficients depend on
the type of kinetics. Rate coefficients may be derived from experimental data, literature values, or
by calibration. For simple models, such as NLEAP and NTRM, most of the parameters are from
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some experimental results and fixed (Shaffer et al., 1991). For more complex models, such as
RZWQM and ecosys, parameters have to be derived from literature and refined by calibration (Ma
et al., 2001, Grant, 2001).

Rate coefficients depend on how the organics are partitioned and whether soil microbial activ-
ities are included in model simulation (Ma and Shaffer, 2001; McGechan and Wu, 2001). Rate
coefficients for mineralization also depend on how environmental factors (e.g., temperature and
soil moisture) are considered in the process. In the various models reviewed by Ma and Shaffer
(2001) and McGechan and Wu (2001), temperature and water effects are treated very much
differently and, therefore, the rate coefficients can be considerably different from each other. As a
result, it is meaningless to compare rate coefficients from different models and to use rate coeffi-
cients from another model without knowing the exact definition of the rate coefficients. For example,
RZWQM includes five soil organic C pools — two for surface residue (fast and slow) and three
for soil humus pools (fast, intermediate and slow). Decomposition of soil organic C is simulated
individually for each pool with a first-order kinetics (Ma et al., 2001).

(14.12)

where ri is the decay rate of ith pool (µg C/g/d) [i = 1 for slow surface residue pool; i = 2 for fast
surface residue pool; i = 3 for fast humus pool; i = 4 for intermediate humus pool; i = 5 for slow
humus pool]. Ci is carbon concentration (µg C/g soil) and ki is a first-order rate coefficient (1/d)
and is calculated from:

(14.13)

where Ai is the rate constant for pool i, [O2] is O2 concentration in the soil water with assumption
that oxygen in soil air is not limited (moles O2/liter pore water), H is the hydrogen ion concentration
(moles H/liter pore water), γ1 is the activity coefficient for monovalent ions (1/γ1

kh = 3.1573 × 103

if pH > 7.0 and 1/γ1
kh = 1.0 if pH ≤ 7.0), kh is hydrogen ion exponent for decay of organic matter

(= 0.167 for pH ≤ 7.0 and = –0.333 for pH > 7.0), Phet is the population of aerobic heterotrophic
microbes [no. of organisms/g soil, minimum 50,000], kb is the Boltzman constant (1.383 ×
10–23 J/K), T is soil temperature (K), hp is the Planck constant (6.63 × 10–34 J.s), Rg is the universal
gas constant (1.99 × 10–3 kcal/mole/K), Ea [= 15.1 + 12.3 U; U is ionic strength (mole)] is the
apparent activation energy (kcal/mole) and faer is a soil aeration factor and is estimated from Linn
and Doran (1984).

Based on Eqs. (14.12) and (14.13) and assigned value for each variable in the equations, the
model developers derived a set of rate constants (Ai). A1 and A2 are derived from measured residue
decomposition data and A3, A4 and A5 are derived by assuming a turnover time of 5, 20 and 2000
years for the fast, intermediate and slow humus pools (Ma and Shaffer, 2001). The derived Ai values
with a derived unit of s/d (second/day) are A1 = 1.67 × 10–7, A2 = 8.14 × 10–6, A3 = 2.5 × 10–7, A4

= 5.0 × 10–8 and A5 = 4.5 × 10–10. These values depend on the previous equation and have no
meaning to other models of a different structure. The total amount of decayed organic C/N is either
transformed into another C pool, released as inorganic CO2 and NH4, or assimilated into microbial
biomass (immobilization) based on calibrated partitioning fractions.

Similarly, rate constants for nitrification, denitrification, ammonia volatilization and urea hydrol-
ysis are model dependent (Ma and Shaffer, 2001; McGechan and Wu, 2001). McGechan and Wu
(2001) compiled a list of model parameters for C/N dynamics and found that their values varied
from model to model and from author to author. Obtained values from one model may be used as
reference only in the context of model structure. For example, in RZWQM, a zero-order kinetics
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is used for nitrification and a first-order kinetics for denitrification. The corresponding zero- and
first-order rate coefficients are:

(14.14)

and

(14.15)

where Paut is the autotrophic microbial population (nitrifiers) [number of organisms/g soil, minimum
500]; Pana is the population of anaerobic microbes for denitrification [number of organisms/g soil,
minimum 5000]; Ean and Eden are the apparent activation energy for nitrification and denitrification
processes; Cs is a weighted soil organic C in the soil; and faer and fanaer are the water effects (Ma
et al., 2001). The rate constants, Anit and Aden, have calibrated values of 1.0 × 10–9 and 1.0 × 10–13

second/day/organism. Again, these A values are dependent on Eqs. (14.14) and (14.15) and they
are only approximated within an order of magnitude.

Urea hydrolysis is not a major concern in most models (Ma and Shaffer, 2001). For those
models that simulate urea hydrolysis such as CERES and RZWQM, urea hydrolysis is simulated
as a first-order kinetics. The first-order rate coefficient for urea hydrolysis in RZWQM is written as:

(14.16)

where Eu is the activation energy for urea hydrolysis (12.6 kcal/mole). Aurea is rate constant for
urea hydrolysis (2.5 × 10–4 second/day).

Ammonia volatilization is usually simulated as first-order kinetics and its rate depends on wind
speed, soil CEC, soil pH and air temperature (Ma and Shaffer, 2001). In RZWQM, ammonia
volatilization is simulated based on partial pressure gradient of NH3 in the soil (PNH3

, atm) and air
(P′NH3

, 2.45 × 10–8 atm):

(14.17)

where CNH4
 is the concentration of NH4 in the soil (mole N/liter of pore water). Kv is a volatilization

rate coefficient affected by wind speed (W, km/d) and soil depth (z, cm):

(14.18)

The temperature factor, Tf is calculated from:

(14.19)

where T is soil temperature (°C). PNH3
 is calculated from equilibrium chemistry between soil NH4

and NH3.
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Some simpler models do not simulate all the soil C and N processes and thus require fewer
model parameters. For example, the CENTURY model does not simulate nitrification process and
nitrate is only inorganic N form. Similarly, NTRM does not simulate denitrification and ammonia
volatilization processes. NLEAP and CENTURY models do not simulate urea hydrolysis. In case
of urea application, the models assume equivalent NH4 application. Although ammonia volatiliza-
tion was simulated as first-order kinetics in most models, volatilization loss of N is assumed to be
5% of total N mineralized in the CENTURY model. Some simpler models, such as NTRM, use
regression equations to calculate all the processes (Table 14.7). Although these equations may be
experiment dependent and may not be applicable to other conditions, this type of model does release
the burden of obtaining model parameters from model users.

Environmental Stress Factors

As shown previously, the C and N soil processes are affected by a variety of environmental
factors, such as soil water, soil temperature, soil pH and soil aeration. The Arrhenius equation was
used to describe various C and N dynamics in RZWQM as described in Eqs. (14.13) to (14.16);
however, these factors and their interactions are simulated differently in different models (Ma and
Shaffer, 2001; McGechan and Wu, 2001). Most models use a 0-1 factor to reduce an “ideal” rate
constant under no stress conditions (e.g., CERES and EPIC). These factors may affect a process
independently (multiply the factors), such as in EPIC (Williams, 1995), or dependently (the most
stressful factor prevails), such as in CERES (Godwin and Jones, 1991; Godwin and Singh, 1998).
Parameters associated with each stress factor are generally calibrated and experiment dependent
(McGechan and Wu, 2001).

CROP GROWTH PARAMETERS

Process-level plant growth models have a large number of parameters that control plant growth
and development processes, such as photosynthesis, respiration, carbon allocation, phenology,
development and yield, as well as their dependence on temperature, water and nutrient stresses.
These parameters are generally crop species and variety specific. For simple models developed for
environmental quality purposes, such as NLEAP, a plant growth curve based on yield goal and

Table 14.7 Regression Variables and Constants for Various N Processes in NRTM

Urea Hydrolysis Equationa

Urea hydrolysis rate (ppm/day) = Con + b1 log10(Ts) + b2 log10 (Urea-N)
Con = 4.13 102 b1 = –1.56 102 b2 = –1.53 102

Minearlization–Immobilization Equation

Mineralization–immobilization rate (ppm/day) = Con + b1 Ts + b2 (Organic-N) + b3 log10 (NH4-N)
Con = 8.92 10–1 b1 = 2.16 10–3 b2 = 2.70 10–2 b3 = 3.92 10–1

Nitrification Equation

Nitrification rate (ppm/day) = Con + b1 Ts (NH4-N) + b2 log10(NH4-N) +b3 log10(NO3-N)
Con = 4.64 b1 = 1.62 10–3 b2 = 2.38 10–1 b3 = –2.51

Nitrate-N Immobilization Equation

Nitrate-N immobilization rate (ppm/day) = Con + b1 Ts/(organic-N)2 + b2 exp (Ts) + b3 (Ts (organic-N) 
– (NO3-N))/(organic-N)

Con = 0.0 b1 = 1.52 b2 = 3.23 10–15 b3 = –4.90 10–3

a Ts is soil temperature.

From Dutt, G.R. et al., Tech. Bull., 196, Arizona Agricultural Experiment Station, Tucson, 1972.
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growth duration is used only for water and nitrogen uptake purposes (Shaffer et al., 2001). Another
simple plant growth model is used in the EPIC model (Williams, 1995), where phenological
development is solely based on heat units and potential growth is calculated from canopy-intercepted
solar radiation. The EPIC model has simple ways to calculate plant biomass, leaf area index (LAI)
and root growth. Crop yield is estimated from the harvest index (Williams, 1995). This type of
model does not require extensive model parameterization.

More complex models, such as the CERES family model (Ritchie et al., 1998), CROPGRO
(Boote et al., 1998), RZWQM (Hanson, 2000) and ecosys (Grant, 2001), have more detailed
process-based crop growth components and, thus, require more parameters. Model developers,
however, have made extraordinary efforts to reduce the number of model parameters that require
calibration by the user. For example, RZWQM includes ten crop related parameters for users to
calibrate plant growth (Table 14.8) and the rest are either hard coded in the model or in a text file
called PLGEN.DAT. Table 14.9 gives calibrated values for the five most sensitive parameters for
corn in the Midwestern states of the U.S. Experienced users may modify sections in the
PLGEN.DAT file for further model calibration (Hanson et al., 1999; Hanson, 2000). 

The CERES-Maize model includes six crop parameters for users to calibrate (Table 14.10).
These six parameters are cultivar related and the species-specific parameters are available in a

Table 14.8 Crop Growth-Related Model Parameters for Users to Calibrate RZWQM

Parameter 
Name Definition

CNUP1 Maximum daily N uptake (g/plant/day) used in the Michaelis–Menten equation — Increasing 
this parameter causes an increase in active uptake, which will result in an increase in yield.

ALPHA Proportion of photosynthate used for maintenance respiration — Increasing this parameter 
results in a decrease in biomass.

CONVLA Conversion factor from biomass to leaf area index (g/LAI) — Increasing this parameter causes 
a decrease in total plant production.

CLBASE Plant density on which CONVLA is based (no. of plants/ha)
SLA3 Factor to reduce photosynthetic rate at propagule stage (0-1) — This parameter along with 

SLA4 will adjust harvest index.
SLA4 Factor to reduce photosynthetic rate at seed production stage (0-1) — It is the same as SL3, 

which is used to adjust harvest index.
RDX Maximum rooting depth under optimal conditions (cm) — Increasing rooting depth will promote 

early penetration of roots and generally increase total plant production.
RST Minimum leaf stomatal resistance (s/m)
SUFNDX Nitrogen sufficiency index threshold below which automatic fertilization is triggered (0-1)
EFFLUX Plant luxurious nitrogen uptake efficiency factor (0-1)

Table 14.9 Parameter Estimates for Field Corn and Summary Statistics for the Five Regional 
Parameters of the RZWQM Generic Crop Growth Component 
for the Five Primary MSEA Sites and Colorado

CVb

Parameter IA MN MI NE OH COd COi Mean SDa (%)

CNUP1 1.5 1.5 2.0 1.5 2.5 1.5 1.5 1.71 0.39 23.0
ALPHA 0.15 0.25 0.008 0.19 0.29 0.3 0.28 0.21 0.10 49.9
CONVLA 10.0 10.0 9.5 9.5 11.50 24.0 12.0 10.42 1.07 10.3
SLA3 0.90 0.90 0.97 0.85 0.85 0.92 0.78 0.88 0.06 6.9
SLA4 0.85 0.85 0.95 0.64 0.70 0.94 0.78 0.82 0.12 14.2

Note: COd
 is dryland agriculture in Colorado and COi is irrigated agriculture in Colorado.

a Standard deviation of the mean.
b Coefficient of variation.

From Hanson, J.D. et al., Agron. J., 91:171–177, 1999.
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species file with extension of SPE (Tsuji et al., 1994). Table 14.11 gives calibrated values of the
six parameters for typical corn cultivars. The model also provides a database of the six parameters
for all the cultivars tested.

The CROPGRO-Soybean model has 15 crop parameters that can be modified by users for each
cultivar (Table 14.12) and the model also provides a database for tested cultivars. In addition, one
file contains parameters specific to soybean (with extension SPE) and another file contains param-
eters for each ecotype (maturity groups) with an extension of ECO (Tsuji et al., 1994). Table 14.13
gives the 15 calibrated parameters by maturity groups. Experienced users may modify these two
files to achieve better model calibration. Model developers are trying to keep these minimum sets
of parameters for any future release of CERES-Maize and CROPGRO models.

Environmental Stress Factors

One of the most difficult areas of agricultural system modeling is how to quantify environmental
stresses and their effects on various biological processes. Various biological processes are affected
by water, nitrogen and temperature stresses. Examples of these processes are photosynthesis, leaf
expansion, root growth, carbon allocation/partitioning, tillering, internode elongation, phenology
development, grain filling, seed growth rate, pod/grain number and senescence (Hanson, 2000;
Ritchie et al., 1998; Boote et al., 1998). The responses of individual processes to these stress factors
may be different; for example, in CROPGRO and CERES models, two water stress factors are
used — one for leaf expansion, tillering and internode elongation and one for photosynthesis and
transpiration (Ritchie, 1998). Similarly, RZWQM includes two N stress factors — one for photo-
synthesis and vernalization and one for carbon allocation and plant development (Hanson, 2000).
In addition, different stress factors are used for above- and belowground processes. For less process-

Table 14.10 Crop Growth-Related Model Parameters for Users to Calibrate CERES-Maize

Parameter 
Name Definition

P1 Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree 
days above a base temperature of 8°C), during which the plant is not responsive to changes 
in photoperiod

P2 Extent to which development (expressed as days) is delayed for each hour increase in 
photoperiod above the longest photoperiod at which development proceeds at a maximum rate 
(which is considered to be 12.5 hours)

P5 Thermal time from silking to physiological maturity (expressed in degree days above a base 
temperature of 8°C)

G2 Maximum possible number of kernels per plant
G3 Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day)
PHINT Phylochron interval — the interval in thermal time (degree days) between successive leaf tip 

appearances

Table 14.11 Default Parameters for Maize in CERES-Maize Model

Variety P1 P2 P5 G2 G3 PHINT

Long season 320.0 0.520 940.0 620.0 6.00 38.90
Medium season 200.0 0.300 800.0 700.0 8.50 38.90
Short season 110.0 0.300 680.0 820.4 6.60 38.90
Very short season 5.0 0.300 680.0 820.4 6.60 38.90

Note: See Table 14.10 for definitions of parameters.
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based models where crop yield is converted from aboveground biomass using a harvest index, the
environmental effect may be added directly onto the harvest index (Williams, 1995).

The way in which stress factors are quantified and applied in various models significantly affects
the values and applicability of model parameters. The following subsection describes how these
stress factors are calculated and used in RZWQM as a demonstration. Further research is needed
to improve the stress responses of plants and their parameterization.

Belowground Processes

Root growth is an important aspect of soil–plant interactions. The amount of photosynthate
partitioned into root depends on environmental stress factors (water, temperature, light, nitrogen,
etc.). In RZWQM, daily photosynthate is partitioned between root and shoot based on a root/shoot
ratio (RATRS):

(14.20)

where RATRS and RATRS* are the root/shoot ratio with and without water stress. PNS is whole
plant nitrogen stress factor and EWP is water stress factor, which are defined by:

(14.21)

(14.22)

Table 14.12 Crop Growth-Related Model Parameters for Users to Calibrate CROPGRO-Soybean

Parameter Name Definition

CSDVAR/CSDL Critical daylength below which reproductive development proceeds unaffected by 
daylength and above which development rate is reduced in proportion to hours above 
CSDVAR (hr)

PPSEN Slope of relative rate of development for daylength above CSDVAR or sensitivity to 
photoperiod (1/hr)

PH2T5/EM-FL The time from end of juvenile phase to first flower in photothermal days under optimal 
conditions (photothermal days)

PHTHRS(6)/FL-SH The time from first flower to first pod greater than 0.5 cm in photothermal days, under 
optimal conditions (photothermal days)

PHTHRS(8)/FL-SD The time from first flower to first seed in photothermal days under optimal conditions 
(photothermal days)

PHTHRS(10)/SD-PM The time from first seed to physiological maturity in photothermal days, under optimal 
conditions (photothermal days)

PHTHRS(13)/FL-LF The time from first flower to end of leaf growth in photothermal days, under optimal 
conditions (photothermal days)

LFMAX Maximum leaf photosynthesis rate at saturated light level, optimal temperature and CO2

SLAVAR Specific leaf area (SLA) for new leaves during peak vegetative growth
SIZLF Maximum size of fully expanded leaf on the plant under optimal conditions (cm2)
XFRUIT Maximum fraction of daily available gross photosynthesis (PG) that is allowed to go 

to seeds plus shells
WTPSD Maximum weight per seed under non-limiting substrate (g)
SFDUR Seed filling duration for a cohort of seed (photothermal days)
SDPDVR/SDPDV Average seed per pod under standard growing conditions
PODUR Photothermal days for cultivar to add full pod load under optimal conditions (used to 

compute rate of pod and flower addition)

RATRS
RATRS

EWP PNS
=

( )( )
*

. , ,max min0 5

PNS
N N

N N
dmd

dmd

= −
−

−
1 0.

min

EWP
AT
PT

= + ×0 15 0 85. .
© 2002 by CRC Press LLC



Table 14.13 Default Mod PGRO Model

Maturity 
Group CSDL PPS F LFMAX SLAVR SIZLF XFRT WTPSD SFDUR SDPDV PODUR

0 14.10 0.17 1.030 375 180 1 0.19 23 2.20 10
1 13.84 0.20 1.030 375 180 1 0.19 23 2.20 10
2 13.59 0.24 1.030 375 180 1 0.19 23 2.20 10
3 13.40 0.28 1.030 375 180 1 0.19 23 2.20 10
4 13.09 0.29 1.030 375 180 1 0.19 23 2.20 10
5 12.83 0.30 1.030 375 180 1 0.18 23 2.05 10
6 12.58 0.31 1.030 375 180 1 0.18 23 2.05 10
7 12.33 0.32 1.030 375 180 1 0.18 23 2.05 10
8 12.07 0.33 1.030 375 180 1 0.18 23 2.05 10
9 11.88 0.34 1.030 375 180 1 0.18 23 2.05 10

10 11.78 0.34 1.030 375 180 1 0.18 23 2.05 10

See Table 14.12 for definiti

© 2002 by CRC Press LLC
el Parameters for Soybean Provided in the CRO

EN EM-FL FL-SH FL-SD SD-PM FL-L

1 16.8 6 13.0 31.00 26
3 17.0 6 13.0 32.00 26
9 17.4 6 13.5 33.00 26
5 19.0 6 14.0 34.00 26
4 19.4 7 15.0 34.50 26
3 19.8 8 15.5 35.00 18
1 20.2 9 16.0 35.50 18
0 20.8 10 16.0 36.00 18
0 21.5 10 16.0 36.00 18
0 23.0 10 16.0 36.50 18
9 23.5 10 16.0 37.00 18

ons of parameters.



where AT is actual transpiration and PT is potential transpiration, Ndmd is plant nitrogen demand,
Nmin is the minimum N concentration below which the plant will not grow and N is current nitrogen
concentration in the plant. PNS and EWP are fitness indices, where 1.0 means optimal growth
condition and 0.0 reflects maximum stresses.

In RZWQM, the effect of environmental stresses on root growth per se is adapted from the
CERES-Maize model (Jones et al., 1991). In the model, calcium and aluminum stresses are con-
sidered also, which will not be discussed here. Interested readers may refer to Jones et al. (1991)
or Hanson (2000) for further discussion. Other than the effects on carbohydrate supply (Eq. 14.20),
the soil water content influences root growth in two ways: soil strength and soil aeration. The first
effect is incorporated into the layer strength stress factor (SST):

(14.23)

where SBD is the soil bulk density, SWC is current soil water content in a soil layer and UL and
LL are the upper and lower drain limits and are set to 1/3 bar and wilting point water contents,
respectively, in RZWQM. Another soil water related factor is the soil aeration index (SAI):

(14.24)

where GMN is fraction of normal root growth at saturation, WFP is water filled pore space in a
soil layer and CWP is critical water filled pore space at which root growth stops. CWP is estimated
from the clay content of a soil layer (CLA) as:

(14.25)

The SST and SAI factors affect rooting depth but also root length/weight ratio, root weight
accumulation and root senescence (Jones et al., 1991). Daily rooting depth (DRD) increment is
calculated by:

(14.26)

where STP is soil temperature stress:

(14.27)

where Ts is soil temperature in a soil layer, TOP and TBS are the optimum and base temperature
for root growth, RDX is maximum rooting depth, GSR is the growth stage at which maximum
rooting depth reaches and GS and GSY are growth stages of current and previous days, repectively.

Root length/weight ratio (LWA) is calculated from:

(14.28)
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where LWN is the root length/weight ratio under normal conditions as determined by growth stage.
Potential root growth in a soil layer (DPL) is a function of soil plasticity, soil thickness, amount

of biomass partitioned to root system daily and environmental stress factors.

(14.29)

where WCP is a weighting coefficient for plasticity, DMDRT is the amount of biomass partitioned
to root system daily and THF is a coefficient to adjust soil layer thickness.

Daily root death in a soil layer is calculated from existing root biomass and daily biomass
increment.

(14.30)

where DWL is daily root death rate, RWL is root weight in the layer, RTMNT is root maintenance
requirement, RGA is actual root growth in the layer and ETP is whole plant temperature stress factor:

(14.31)

where z is a constant and a value of 1.328 is used in RZWQM and a1, a2 and a3 are functions of
soil temperature (T). Also,

(14.32)

where T is the soil temperature. Tmax, Topt and Tmin are the corresponding maximum, optimum and
minimum temperatures for growth. Parameters associated with root growth are in the PLGEN.DAT
file.

Aboveground Processes

Environmental stress (temperature, water and nitrogen) effects on various aboveground pro-
cesses can vary considerably from model to model. In simple models such as EPIC, stresses mainly
affect biomass, leaf area index, plant height and harvest index (Williams, 1995). In more complex
models such as CERES and CROPGRO, stresses can affect other processes such as internode
enlongation, pod addition and grain filling (Ritchie et al., 1998; Boote et al., 1998). Parameterization
of stress effects on each individual process is more difficult for detailed modeling approaches, since
all measurable experimental observations result from multiple processes. Default values are usually
provided in a database distributed with the model (Tsuji et al., 1994).

RZWQM has a generic crop growth model that has a complexity inbetween EPIC and CROPGRO.
It simulates biomass, leaf area index, plant height, yield and plant population development (Hanson,
2000). Plant growth and development are based on calendar days and the temperature stress factor
(ETP) is used to incorporate the heat effect. For example, the photosynthesis rate is calculated by:

(14.33)

where PLPROD and PLPROD* are daily photosynthesis rates with and without stresses, respec-
tively. ENP is another N stress factor used in RZWQM:
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(14.34)

where EFFN is nitrogen use efficiency coefficient and SPECTN is nitrogen concentration in leaf
and stem above minimum value required for growth.

In RZWQM, shoot death may also be initiated at water stress:

(14.35)

where DS1 is daily shoot death due to water stress, SDWMAX is maximum death in percentage
of shoot biomass and BIOSHT is biomass of shoot.

In RZWQM, not all the plants are advancing at the same speed throughout the growing cycle.
The model divides a plant cycle into seven phenology stages:

1. Dormant
2. Germinating
3. Emerged
4. Established
5. Vegetative
6. Reproductive
7. Senescent

Plants in one stage may stay in that stage or advance to the next stage. A probability function P(i,j)
is used to represent the percentage of plants in stage j advanced to stage i. When i = j, plants are
staying at stage j. Probability P(i,j) may be modified based on environmental fitness. P(2,1) is based
on germination rate after the seeds encounter with certain ten-day average soil temperature and
five-day average soil moisture content. For j = 2, 3, 4, 5, or 6, P(j+1, j) is modified as:

(14.36)

where P* is the probability without environmental stresses. When vernalization is required, P(4,3)
is calculated as:

(14.37)

where FV is a vernalization factor. Parameters required to quantify the stress effects in RZWQM
are provided in the PLGEN.DAT file.

PESTICIDE PARAMETERS

Simulation models for pesticide processes in soils have been developed for more than two
decades because of its importance in environmental protection. It could be one of the few areas
where simulation models have extensive impact on policy makers. The U.S. Environmental Pro-
tection Agency (EPA) has officially used PRZM to register pesticide usage in agriculture (Carsel
et al., 1985). The common parameterization needs in pesticide chemistry are for adsorption–des-
orption, degradation, volatilization, leaching and losses to runoff water. Depending on the time
scale of intended use of a model, these processes may be simplified and combined.

Extensive studies have been conducted on adsorption equilibrium, kinetics and hysteresis (Ma
and Selim, 1994; 1996; Ma et al., 1993; Cheng, 1990; Linn et al., 1993). For most agricultural field
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scale models, an equilibrium adsorption of pesticide onto soil is assumed in the form of the
Freundlich or Langmuir equation (Ma and Selim, 1996). The Freundlich equation can be reduced
to a linear adsorption isotherm when the exponential constant (n) equals unity:

(14.38)

or

(14.39)

where Kf and n are Freundlich constants and Kd is the distribution coefficient. These parameters
are usually obtained through batch experiments, although column studies have also been used to
derive these parameters (Ma and Selim, 1996; Lion et al., 1990; Green and Karickhoff, 1990).
Many studies have been conducted to relate Kd to soil properties, such as soil organic carbon, soil
clay content and soil specific surface (Ma and Selim, 1996; Green and Karickhoff, 1990) and found
that Kd is highly correlated to soil organic carbon. Therefore, a Koc [= Kd /(% of soil organic carbon)]
value is defined to normalize pesticide adsorption among different soils.

For soils where no experimental data are available, Koc values may be estimated from pesticide
physical properties. These properties include octanol-water partition coefficient (Kow), aqueous
solubility, molecular surface area, melting point and pure pesticide molar volume (Green and
Karickhoff, 1990; Gerstl, 1990). Table 14.14 shows some of the semiempirical equations from the
literature compiled by Green and Karickhoff (1990). Koc values for commercial pesticides are listed
by Wauchope et al. (1992) and Hornsby et al. (1996). It should be noted that Koc for a pesticide is
not a constant for a given soil, because factors other than soil organic carbon, such as clay content
and soil specific surface, may also be important in pesticide adsorption (Ma and Selim, 1996; Green
and Karickhoff, 1990). It is always recommended to measure Kd for each pesticide–soil combination.

Table 14.14 Semiempirical Equations for Estimating Koc from Solute Physical Properties

Calibration Koc No. of
Compoundsa Range Compounds r2 Reference

Log Koc = –0.68 log S(µg/ml) + 4.273 pn, ha, aa, ch 10–106 23 0.930 Hassett et al., 1980
Log Koc = –0.557 log S(µmol/L) + 4.277 ch 10–105 15 0.990 Chiou et al., 1979
Log Koc = –0.83 log S(mole fraction)b 

–0.01 (mp – 25ºC)c – 0.93
pn, ch, ct, cb, 
op

102–106 47 0.930 Karickhoff, 1984

Log Koc = –0.729 log S(molar) 
–0.0073 (mp – 25ºC) + 0.24

pn, ch 10–105 12 0.996 Chiou et al., 1983

Log Koc = –0.808 log [vS(molar))]d 
–0.0081 (mp – 25ºC) – 0.74

pn, ch 10–105 12 0.997 Chiou et al., 1983

Log Koc = 0.904 log Kow – 0.539 pn, ch 10–105 12 0.989 Chiou et al., 1983
Log Koc = 1.029 log Kow – 0.18 ch, ct, cb, op, 

ur, pa
10–105 13 0.910 Rao & Davidson, 1982

Log Koc = log Kow – 0.317 pn, ha, aa, ch 10–106 23 0.980 Hassett et al., 1980
Log Koc = 0.72 log Kow + 0.49 cb, mb 102–104 13 0.950 Schwartzenbach and 

Westall, 1981

a pn = polynuclear aromatic hydrocarbons; ha = heteronuclear aromatic hydrocarbons; aa = aromatic amines;
ch = chlorinated hydrocarbons; ct = chloro-s-triazines; cb = carbamates; op = organophosphates; ur = uracils;
pa = phenoxy acids; mb = methylated benzenes.

b For hydrophobic compounds, the solubility, S(mole fraction) ≈ S(molar) × 18/1000.
c mp = melting point in degrees (Celsius; reference temperature 25ºC; for liquids mp set at 25ºC, crystal term

vanishes).
d v = pure solute molar volume (L/mol).

From Green, R.E. and S.W. Karickhoff, Sorption estimates for modeling, in Pesticides in the Soil Environment:
Processes, Impacts and Modeling, SSSA, Madison, WI, 79–101, 1990.
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For a more mechanistic pesticide model, adsorption kinetics may be needed. The most com-
monly used assumption is that two types of adsorption sites are located in the soil — one has a
fast adsorption rate and the other has a relative slow rate. The fast adsorption site is assumed to
be in equilibrium with pesticide in the soil solution and the slow site is kinetic in nature (Ma and
Selim, 1994, 1996). In formulating reaction rate equations for the two sites, one can assume that
the reaction rates are only functions of pesticide concentration in the solution phase, or functions
of both pesticide concentrations in the liquid phase and adsorption sites on the soil. Ma and Selim
(1998) compared these two approaches and found that the latter is better in predicting pesticide
retention in soils. When multiple reaction site models are used for pesticide adsorption/desorption,
one needs to partition the total adsorption sites between the two sites. Ma and Selim (1994) proposed
a new model formulation that does not need such a partitioning parameter. Selim et al. (1999)
further compared the new formulation with the ones in the literature with different recommended
partitioning parameter values and found that the new model provided better pesticide retention and
transport in soils. Parameters for kinetic reactions are largely obtained from individual experiments
(batch or column) by fitting the model to measured pesticide in soil solution with time in batch
slurry or column effluent (Ma and Selim, 1994, 1996), although efforts have been seen in the
literature to use directly measured pesticide adsorbed on the soil solid phases (Gaston and Locke,
1994).

Pesticide degradation in soils may be from the solution phase or the adsorbed phase depending
on the mechanism (chemical or biological) (Ma and Selim, 1994; Xue et al., 1995). The pesticide
degradation constant is expressed as a half-life (t½) based on pesticide disappearance from the soil
system. Apparent half-lives in the field for most pesticides are documented in Wauchope et al.
(1992) and Hornsby et al. (1996). When a first-order kinetics is used, one can estimate a disap-
pearance rate constant (kt) from the half-life:

(14.40)

Pesticide volatilization process and associated parameters have been reviewed by Taylor and
Spencer (1990). Pesticide water solubility and vapor pressure are the determining factors for
pesticide volatilization, as described by Henry’s law. Databases for pesticide solubility and vapor
pressure are available in Taylor and Spencer (1990), Wauchope et al. (1992) and Hornsby et al.
(1996). As with the degradation process, volatilization is usually treated as first-order kinetics. Field
measured disappearance rates (kt) are usually the sum of degradation and volatilization rates (Taylor
and Spencer, 1990).

Wauchope et al. (2000) presented the most comprehensive discussion of modeling pesticide
processes to date, which has incorporated into RZWQM. This pesticide model takes into account
pesticide application efficiency, washoff from foliage and crop residue, volatilization, degradation,
multiple-site pesticide adsorption, pesticide plant uptake, multiple pesticide species (neutral, cat-
ionic and anionic) and pesticide extraction into runoff water. In Table 14.15, we present a list of
all possible parameters that could be used in their pesticide model, but all are not required to run
the model.

The so-called “Molecular Parameters” listed in Table 14.15 are available from a handbook of
chemistry and are hard-coded into the model including their associated temperature or other
dependencies. Most other parameters listed vary with the soil type, climate and cropping systems
and they have to be measured for each specific location. For the parameters listed in boldface,
several authors have assembled available values in pesticide databases (Wauchope et al., 1992;
Hornsby et al., 1996; Kellog et al., 1994). The databases provide the range of values for any given
parameters reported in the literature. They are not likely to be accurate for any specific location,
but serve as a starting point for further refinement by calibration. For other parameters not available

k
tt = 0 6932

1 2

.

/
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in the databases but essential to run the model, Wauchope et al. (2000) gave default values. Some
of the parameters are not essential but are listed in Table 14.15 only for advanced users who may
want to try advanced algorithms for certain processes.

STATISTICAL METHODS OF MODEL CALIBRATION

The goodness of model parameterization by calibration is largely based on data availability and
tolerance of model users. It depends on how representative measurements are in space and time
against measurements in which the model is calibrated. Optimization algorithms have been devel-

Table 14.15 Pesticide Parameters Used in R2WQM

Identity Soil “Surface” Parametersd

Name Runoff mixing constant
Ancestry Code Volatilization half-lifee

Transformation Process Code Photodegradation half-life

Molecular Paramenters Soil Subsurface Parametersd

Molecular weight (g mol–1) Soil organic carbon sorption constant (ml g–1)
Aqueous solubility (mg L–1) pH of source soil for organic carbon sorption constant 
Aqueous diffusion coefficient (cm2/h) Freundlich organic carbon sorption constant
Vapor pressure (mm Hg) Freundlich isotherm exponent
Henry’s Law Constanta Anion organic carbon sorption constante

Octanol/water partition coefficient Cation organic carbon sorption constante

Acid dissociation constantb (mg L–1) Fraction of kinetic sorption sites
Base dissociation constantb (m L–1) Soil desorption half-life

Soil binding half-life
Application Parameters Optimal parameters:
Application method Aerobic biodegradation references half-life
Application rate (kg ha–1) Reference moisture content for reference aerobic half-life
Application deposition efficiency (%) Reference temperature of reference aerobic half-life
Controlled-release rate (kg ha–1 day–1) Activation energy for aerobic half-life (KJ/mol°C)

Activation energy for anaerobic half-life (KJ/mol°C)
Foliage Parameters Walker constant for soil moisture effects on aerobic degradation
Half-life (d) Maximum factor for half-life change with depth
Washoff fraction (%) Anaerobic soil degradation half-life
Washoff power term (mm–1) Abiotic or user-defined degradation half-life
Photodegradation half-life Daughter or granddaughter transformation process code
Abiotic or user-defined degradation half-life Daughter or granddaugher formation yield fraction

Plant Residue Parametersc

Half-life
Washoff fraction (%)
Washoff power term (mm–1)
Photodegradation half-life
Abiotic or user-defined degradation half-life

Note: Most may be replaced or adjusted by the user. Not all are required to run the model. Parameters that are
in the database are indicated by boldface. All half-lives are in days.

a Calculated from pesticide vapor pressure, molecular weight and aqueous solubility.
b Value in database only if applicable
c Set by default to foliar values
d All subsurface parameters except anaerobic half-life also apply to soil surface layer.
e Calculated by a standard equation or user input.

From Wauchope, R.D. et al., Pesticide processes, in Root Zone Water Quality Model, Water Resources Publications,
Highland Ranch, CO, 163–244, 2000.
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oped for models where only one or two parameters need to be calibrated (Toride et al., 1995).
Problems in using an optimization scheme for agricultural system models include:

1. Too many model parameters/processes and difficulty to deciding which one to optimize
2. Too few complete experimental data sets that can be used to parameterize all the components of

a system model
3. Too much uncertainty in field measurements
4. Measured heterogeneous data range from physical, chemical, to biological attributes
5. Ill-Defined initial and boundary conditions and difficulty differentiating simulation errors due to

model parameters from those due to initial and boundary conditions

As a result, agricultural system models are usually parameterized by trial-and-error or iterative
processes.

In most model parameterization processes, researchers try to match simulated and experimental
results as closely as possible, regardless of experimental error, by adjusting a few critical model
parameters. They may also play with the initial conditions within a reasonable range when initial
conditions are not defined or measured. The goodness of model parameterization is quantified by
some statistical indices and judged by model prediction for other experimental conditions. One of
the most commonly used statistical indices is the root mean square error (RMSE). For a data set
with M measured points, RMSE is defined as:

(14.41)

where wi is the weight factor often set equal to 1.0 and Pi and Oi are the model predicted and
experimental measured points, respectively. The M observed data points may be from one treatment
or multiple treatments (Ma and Selim, 1994). The RMSE reflects a magnitude of the mean difference
between experimental and simulation results. A normalized objective function (NOF) may be
calculated from RMSE as (Ma et al., 1998b):

(14.42)

where Oavg is the averaged observed value. NOF = 0 indicates a perfect match between experimental
and modeling results. NOF < 1 may be interpreted as simulation error of less than one standard
deviation around the experimental mean. Another index is the mean bias error (ME) (Shen et al.,
1998):

(14.43)

The value of ME indicates whether there is a systematic bias in the prediction. A positive value
means an over prediction and a negative value indicates an overall under prediction. Another
commonly used approach is to conduct regression analysis between measured and predicted outputs.
A coefficient of determination (r2) is then calculated as:

(14.44)
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The r2 value ranges from 0 to 1. r2 = 1 indicates a perfect correlation between experimental
and simulation results and r2 = 0 means no correlation between the two results. The r2 approach
alone can be misleading as it does account for a systematic bias. Some model users simply use the
percentage difference between simulated and measured results as a criterion for goodness of model
parameterization (Hanson et al., 1999). Wu et al. (1996, 1999) used three other statistical indices
to compare RZWQM simulation results with measured ones. They are the maximum difference
(MD), the modeling efficiency (EF) and the D-index, which are defined by:

(14.45)

(14.46)

(14.47)

EF is a measure of the deviation between model predictions and measurements in relationship
to the scattering of the observed data. EF = 1 indicates a perfect match between simulation and
observed results. The D-index is similar to EF but more sensitive to systematic model bias. It also
has values ranging from 0 to 1, where D = 1 means perfect simulation. A slight different version
of MD is to add all the absolute differences between the simulated and observed results (Johnsen
et al., 1995). Loague and Green (1991) used a coefficient of residual mass (CRM):

(14.48)

The coefficient of residual mass (CRM) tests more of integrated values. It may be used for
chemical load to groundwater.

Paired t-test has also been used to assess model accuracy in the literature. Ma et al. (1998c)
applied the paired t-test to evaluate RZWQM simulations of surface runoff. The t-statistic was
calculated by:

(14.49)

where M is the number of measurements, tM-1 is the calculated t-statistic with M-1 degrees of
freedom, Dm is the mean of the differences between measured and predicted results, De is the
expected difference (zero) and SED is the standard error of the paired difference.

Comparison of multiple models for their accuracy in simulating a common data set is rather
difficult at this time. One method would be to conduct a paired t-test for each individual model
and find out which one provides better simulation results compared with observed data (Ma
et al., 1998d). When the models are only different in the number of parameters, an F test may
be applicable to test significant improvement by adding more model parameters (Amacher et al.,
1998).
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(14.50)

where p is the number of model parameters and rss is residual sum of squares. The subscripts 1
and 2 represent the two models.

Besides these statistical indices, simulation results may be compared to observed values in
graphical displays (Loague and Green, 1991) or simple tables (Singh and Kanwar, 1995). Graphic
displays can intuitively show trends, types of errors and distribution patterns. Graphics may be
plotted as linear scale, semi-log scale, or log–log scale depending on how the authors want to
present the data (Ma et al., 1995). A table presentation may be good for data with only a few
measurements. It is also worthwhile to mention that observed data can be represented in many
ways. For example, for a data set with pesticide concentration measurements in a soil profile, one
can compare pesticide concentrations in the soil profile, center of mass of pesticide movement,
total pesticide leached, maximum depth of pesticide leaching, total pesticide amount in the soil
profile, maximum pesticide concentration in the soil profile and average pesticide concentration in
the soil profile (Loague and Green, 1991; Ma et al., 2000). Statistical methods may vary with type
of observed data.

EXAMPLES OF MODEL CALIBRATION

Efforts needed to parameterize a model largely depend upon the complexity of the model. Some
models have detailed simulation of all the processes in an agricultural system, e.g., RZWQM (Ahuja
et al., 2000) and ecosys (Grant, 2001), while others have only simplified approaches to some
processes. For example, the CERES and CROPGRO family of crop growth models have been used
in many parts of the world for their detailed plant growth components, but they use a simple soil
water balance routine, which requires only saturated soil water content and the drained upper and
lower limits of soil water contents (Ritchie, 1998). Thus, it is relatively easy to parameterize the
soil water component of CERES and CROPGRO. Also, because many of the processes are related,
calibration of one component will affect others in the agricultural system. Therefore, model cali-
bration is usually an iterative process.

The Root Zone Water Quality Model (RZWQM)

Parameterization of RZWQM has been outlined by Hanson et al. (1999) and Rojas et al. (2000).
This model provides default values for most of the model parameters (e.g., soil hydraulic properties
for each soil class, plant growth, C/N soil dynamics, etc.), although it does require minimum data,
which users must supply (Table 14.16). It is recommended to calibrate soil water and chemical transport
first, then soil C/N dynamics and finally plant growth (Hanson et al., 1999; Rojas et al., 2000). The
process is then iterated a couple of times to obtain final calibration. The model has different debug
flags allowing users to check on detailed water, nitrogen and pesticide information (Rojas et al., 2000).

Hanson et al. (1999) has laid out the detailed calibration procedures for RZWQM and potential
effects of calibrated model parameters. Table 14.17 shows how to calibrate the water balance
component of RZWQM and the processes that need to be calibrated for selected soil properties.
In most cases, calibrating the 1/3 bar soil water content has a major effect on soil water balance.
Figure 14.3 shows the calibration procedure for soil C/N dynamics submodel. Hanson et al. (1999)
also suggested adjusting five plant parameters to match measured plant growth data (Tables 14.8
and 14.9). Pesticide parameters are calibrated after soil water balance. Model users need to iterate
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2 2

− −( ) =
−( ) −( )

−( ),
© 2002 by CRC Press LLC



the procedure a few times to make sure all the components are balanced since these components
are related. For example, nitrate leaching is affected by water movement, N soil dynamics and
plant N uptake. Similarly, pesticide fate is affected not only by pesticide parameters (e.g., equilib-
rium and kinetic rate constants, degradation, etc.), but also by soil water movement, soil organic

Table 14.16 Minimum Data Required to Run RZWQM

Data Type Minimum Data Required

Break-point rainfall Breakpoint rainfall data with a minimum of two pairs of rainfall amounts and times
Daily meteorology Daily meteorology data (minimum and maximum air temperature, wind run, solar radiation 

and relative humidity)
Site description Soil horizon delineation by depth

Soil horizon physical properties — bulk density, particle size fractions for each horizon
Optional — soil horizon hydraulic properties: 330- or 100-cm suction water content and 
saturated hydraulic conductivity if available for each horizon

Estimate of dry mass and age of residue on the surface
General pesticide data such as common name, half-life, K, dissipation pathway (this 
information can be found in the ARS pesticide database)

Specifying a crop from supplied database with regional parameters
Management selections and additions as needed

Initial state Initial soil moisture contents
Initial soil temperatures
Initial soil pH, CEC (cation exchange capacity) values
Initial nutrient model inputs (soil residue, humus, microbial populations, mineral NO3-N, 
NH4-N; use RZWQM98 wizards to determine)

From Ahuja, L.R. et al., Root Zone Water Quality Model, Water Resources Publications, Englewood, CO, 1–360,
2000.

Table 14.17 Helpful Steps in Calibrating Soil Water Balance Components of RZWQM

Water Balance 
Component Adjustment

Precipitation No adjustment-driving variable.
Runoff Add a crust, if there was an evidence for it.

Change crust conductivity until the system responds as expected.
Add macropores, if there was an evidence for them.
If macropores are already present, change the geometry of the radial pores to change 
the maximum flux of the pores.

Change the field saturation fraction to match the soil water content during infiltration.
Change the soil albedo to modify the loss of water due to evaporation and match 
antecedent water contents.

Evapotranspiration Change the field saturation fraction to match soil water contents.
Change the soil albedo to modify the loss of water due to evaporation and match 
antecedent water contents.

Verify that the rooting depth of the crop is correct so that water extraction from soil layers 
is correct.

Modify the bottom boundary condition to allow the water content in the soil change based 
on the nature of drainage.

Seepage Add macropores, so that any generated runoff water would be diverted down the pores.
Modify the bottom boundary condition to allow the water content in the soil change based 
on drainage.

Generally, decrease or increase the effect from runoff and evapotranspiration to make 
more or less water available in the soil profile to seep.

Storage Adjust runoff, evapotranspiration and seepage to achieve a balance of inputs and losses 
and the storage will fall in line.

From Hanson, J.D. et al., Agron. J., 91:171–177, 1999.
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carbon content and macropore flow. Also, crop yield depends on correct soil water prediction and
soil nitrate content in addition to crop growth parameters, Therefore, it is essential to follow the
iterative calibration steps for a model such as RZWQM.

The DSSAT Family Models (CERES and CROPGRO)

Model calibration is facilitated through a simple disc operating system (DOS) interface in the
DSSAT (Decision Support System for Agrotechnology Transfer) family of models. It has several
good features that help users to calibrate the DSSAT models, such as graphing simulated against
experimental data; crop genetic coefficient calculator; and sensitivity analysis (Hoogenboom et al.,
1994; Hunt and Pararajasingham, 1994; Boote, 1999). As in other models, soil and weather data
are required to run the DSSAT models. The DOS interface will guide users step-by-step on model
input, but users have to provide their best estimates for required soil, weather and management
information (Hunt et al., 1994). Once users go through all the steps, they can run the model and
compare simulation results with experimental data in table or graphic forms. If discrepancies exist,
users may conduct a sensitivity analysis for some model parameters (Hoogenboom et al., 1994).
When good experimental data are available, the users may also use the Genotype Coefficient
Calculator to optimize selected plant parameters (Hunt and Pararajasingham, 1994). Table 14.18
shows the data needed to calculate genotype coefficients.

Calibrating DSSAT family of models is also an iterative process. Because DSSAT put main
emphasis on crop production with less consideration of environmental quality, soil water balance
and crop production are the two major goals in model calibration. Boote (1999) has outlined ten
steps in calibrating CROPGRO and corresponding parameters for each step (Table 14.19). Along
with the ten steps to parameterize plant growth, model users should also constantly check soil water
and nitrogen balances by matching soil N concentration, plant N uptake, crop water stress and soil
water profile (Boote, 1999). The calibration process is not completed until all the observed values
are predicted to the user’s satisfaction.

Figure 14.3 Procedures for calibrating the nitrogen submodel of RZWQM. “SOM” is soil organic matter. (From
Hanson, J.D. et al., Agron. J., 91:171–177, 1999. With permission.)
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FUTURE NEEDS FOR PARAMETERIZATION

Parameterization of agricultural system models is a forbidding task for many model users.
Model developers are looking for a balance between simple models with less parameters and
mechanistic models with more parameters. Although parameters for a more mechanistic model
should be less dependent upon experimental conditions, in reality, most calibrated parameters are
more or less experimentally dependent. Such dependency is most often due to lack of a complete
dataset for calibration; it is also due to an incomplete understanding of all the processes in an
agricultural system. Ideally, a system model need not be calibrated except for the inputs to correctly
characterize the soil, weather and management practices. For each of the components discussed in
this chapter, further research and development are needed in the following areas:

1. Develop new simple methods to determine the required critical parameters and their dependencies.
These parameters should be based on knowledge of the process and independent of a particular
experimental setting. Also, guidelines and standardized methods of parameterization should be
developed for different interacting components of system models. When there is a correlation
between model parameters, efforts should be made to reduce unnecessary model parameters.

2. Make parameter determination a regular part of field research. There is generally a mismatch
between collected experimental data and data required to run a system model. Model developers
generally have to work with available data and conduct an incomplete model calibration due to
lack of quality data. On the other hand, experimental scientists complain about the number of
parameters needed to run a system model and they may not have heard about some of the parameters
at any point in their careers. This miscommunication should be corrected.

3. Expand and improve existing parameter databases. To help users, parameter databases or default
values are distributed along with system models; however, these databases contain parameters
measured or calibrated from selected experimental sites or conditions. Therefore, they should be
used, at most, as guidelines by users. These databases need to be expanded beyond the original
sites or conditions and need to be better documented as to how they are derived and how they
may be correlated to experimental conditions.

4. Improve the scientific concepts underlying the models, so that the parameters have a clear physical
meaning and are measurable. For crop varieties, effort should be made to relate the variety-specific
parameters to genetic characteristics and markers used in plant breeding. The most troublesome

Table 14.18 Data Required to Calculate Crop Genotype Coefficients

Crop Required Data Crop Required Data

Peanut Flowering date Soybean Flowering date
Maturity date Maturity date
Seed yield Grain yield
Biomass at maturity Biomass at maturity (no leaves)
Seed number/m2 Grain number/m2

Seed number per pod Grain number per pod
Seed dry weight Grain dry weight
First pod date Wheat Anthesis date
Full pod date Maturity date
Pod yield (dry) Grain yield (dry)

Maize Silking date Biomass at maturity
Maturity date Grain number/m2

Grain yield (dry) Grain number per spike
Biomass at maturity Grain dry weight
Grain number/m2

Grain number per ear
Grain weight (dry)

From Hunt, L.A. and S. Pararajasingham, Genotype coefficient calculator, in 1994 DSSAT
version 3, vol. 3, University of Hawaii, Honolulu, HI, 1994.
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parameters are those that are immeasurable experimentally. Efforts are needed to better define
these parameters and design experimental methods to estimate them independently and directly
or indirectly. Because measured crop variables (e.g., yield, plant biomass and phenology) are
environmentally dependent, calibrated crop parameters are an expression of a genotype under
certain experimental conditions. Extra efforts are needed to differentiate which crop parameters
are due to the genotype and which ones are due to changes in experimental conditions.

5. Further research to understand and quantify the effect of water, nitrogen and temperature stresses
as well as their interactions on different plant growth processes, in order to derive improved stress
factors. Experimental conditions affect genotype expression through a series of stresses. Most of
these environmental stresses are simulated empirically and have not incorporated any of the new
findings in plant sciences on stresses at the molecular level, such as changes in hormone and
enzyme levels during stress, reposition of plant cells and adaptability of plants to stresses.

6. Further research on how management practices cause changes in soil properties and processes in
order to define and determine the parameters better. Management practices have profound effects
on soil properties and plant growth and are mainly responsible for human-induced temporal

Table 14.19 Steps to Parameterize Crop Growth in CROPGRO

Steps Related Model Parameters

1. Crop life cycle The first step should be to simulate crop development by initially selecting a 
maturity group of the cultivar. Then, adjust EM-FL and SD-PM to match flowering 
and maturity dates. It may be necessary to adjust CSDL and PPSEN. Maturity 
date is also affected by FL-SD.

2. Dry matter 
accumulation

This step simulates the rate of dry matter accumulation and also looks at LAI 
and specific leaf area (SLA). The two primary parameters to adjust are SLPF 
and LFMAX.

3. LAI and SLA Parameters to be adjusted at this step are SLAVR, FL-LF, SIZLF, FL-SH and FL-
SD. Increase SLAVR to increase SLA if needed. Then, increase FL-LF to delay 
LAI peak if necessary. The parameter SIZLF can be used to limit leaf area 
expansion. For dwarf cultivars, it may be necessary to adjust some parameters 
in the ecotype database (with extension ECO).

4. Recalibrate dry matter 
accumulation

Use the calibrated SLA and leaf area timing aspects from step 3 and recalibrate 
dry matter accumulation in step 2.

5. Species parameters “Species” parameters that affect photosynthesis and dry matter accumulation 
include temperature and N effects on photosynthesis, rate of canopy expansion, 
degree of vertical layering of specific leaf weight, partitioning to root, nodule 
growth and N-fixation. Users should not change these parameters unless solid 
information is obtained.

6. Initial calibration for 
seed size, seeds per 
pods and seed filling 
duration

Parameters that need to be evaluated are WTPSD, SDPDV and SFDUR. SFDUR 
should be proportional to, but less than SD-PM.

7. Initial timing and initial 
rise in pod and seed dry 
weight

Now adjust FL-SH, FL-SD and PODUR to get the correct timing to the initial rise 
in pod dry weight and seed dry weight. Move FL-SH and FL-SD in the same 
direction.

8. Recalibrate time from 
first seed to maturity

If FL-SD is calibrated, adjust SD-PM to correctly predict the observed date of 
physical maturity.

9. Seed size, shelling 
percentage and seed 
filling duration

Now, go back to fine-tune seed size and final shelling percentage. Increase or 
decrease WTPSD to match the seed size. Adjust SFDUR to correctly predict 
shelling percentage.

10. Reevaluate total dry 
matter accumulation 
and relative partitioning 
between vegetative and 
reproductive stages

Are seed size, shelling percentage, pod addition and phenology timing correct? 
If so, reevaluate dry matter accumulation in seed mass and total aboveground 
biomass, as well as the relative partitioning between seed and shoot mass. If 
both seed and total biomass accumulation are too rapid or too slow, then adjust 
SLPF or LFMAX to attain the correct slopes of aboveground dry matter and 
seed dry weight, as well as final seed yield. If the fit is good, the calibration 
process is completed.

Note: See Table 14.12 for parameter names.

From Boote, K.J., Concepts for calibrating crop growth models, in DSSAT version 3, vol. 4, University of Hawaii,
Honolulu, HI, 1999.
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variability in model parameters. Several empirical equations have been used to simulate manage-
ment effects, but more efforts are needed to improve and integrate these effects into system models.

7. Quantify and employ spatial and temporal variability of parameters. Most models are one-dimen-
sional and do not take into account the change of model parameters in space and time. For model
applications under field conditions, system models should accommodate this variability, such as
multiple model inputs and multiple model runs across a field.

In conclusion, more efforts have been made on developing system models and less efforts have
been made on how to parameterize the models. Thus, a system model can be released and used
without rigorous parameterization. Most of the time, a system model is released with one test case
for selective model components and further tests are left to model users. To improve model param-
eterization process and promote better model use in agriculture, model developers should work more
closely and actively with field scientists to conduct a more complete model parameterization and
define the applicable range of derived model parameters. On the other hand, field scientists should
voluntarily collaborate with model developers to collect and document as complete data sets as
possible, so that the data can be used to better synthesize and transfer knowledge.
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INTRODUCTION

The problems facing both users and developers of natural resource models are becoming much
more complex. Understanding human management issues such as farming practices, erosion control,
pesticide and fertilizer application, reservoir management and habitat restoration become com-
pounded when viewed within the physical, hydrological, chemical and biological responses of the
natural world. Computer simulations for conceptualization, prediction and management of agricul-
tural areas, watersheds, water supply and environmentally sensitive sites are likewise becoming
more complex. The interdisciplinary nature of these problems usually requires taking into account
a significant number of different models, alternatives, data sources and domain experts.

Much domain-specific disciplinary expertise has been developed and captured in the form of
computer simulation models. These models usually represent the efforts of an individual or a small
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group of scientists and are consequently very focused in their scope. Several of these models must
often be applied within the context of a single project application. Although these models may
share much in common, there may be conflicting data, scales, methodologies, file formats, or even
computer hardware and software requirements for these models. To overcome these limitations
they are often rebuilt to meet an appropriate system delineation.

On the other hand, some large, monolithic process models have been designed and implemented
to cover a range of simulation alternatives (Abel, 1994). Many of these models are closed, stand-
alone systems. They require fixed input/output data format with no capability to interface with
other models. Many of these models are still operating in batch mode. Modifications and extensions
to a model are often handled as additions made to the main body of code developed years ago.
Such a tightly wrapped structure limits this integration with other models and makes their update
and maintenance difficult.

An important effort in environmental simulation model design, therefore, is to enhance modu-
larity, reusability and interoperability of both science and auxiliary components. Leavesley et al.
(2002) pointed out that models applied for different systems or sub-systems required different levels
of detail and comprehensiveness, which are driven by problem objectives, data constrains and
spatial and temporal scales of application.

Reusability can be increased by establishing standard simulation module libraries. These librar-
ies are comprised of components of simulation models and provide basic building blocks for a
number of similar applications. They are designed to allow interoperability, which is essential for
the incorporation of various scientific disciplines. Module libraries have been successfully applied
in several domains such as manufacturing systems, transport and other systems (Top et al., 1997;
Breunese et al., 1998; Praehofer, 1996). An advanced modular modeling framework based on the
creation of a library of science and utility modules offers an exciting possibility for developing
customized agricultural system models in the 21st Century. These models will use the best science
available for their purpose and will be easy to update and maintain. The library may lead to
standardization of science, tools and interfaces and will serve as a reference and coordination
mechanism for model developers and future research.

This chapter gives an overview of the efforts made in adopting modular modeling principles
for the construction and application of natural systems models through the Object Modeling System
(OMS) framework. The chapter presents:

1. OMS project background and objectives
2. Basic OMS principles
3. OMS architecture and implementation
4. Results of a model application example

Background and Objectives of the OMS Project

The OMS Project is an interagency project between the USDA-ARS (Agricultural Research
Service), USGS (U.S. Geological Service) and USDA-NRCS (Natural Resource Conservation
Service). The past experiences of the agencies indicated that the development of comprehensive,
multidisciplinary simulation models was a very expensive process ($15 to $30 million per model).
Many development activities were duplicated among different modeling projects; for example, the
hydrologic components in crop models, water quality models and erosion models. The duplicated
components generally used different levels of detail and time scales, whereby they did not give the
same results in hydrology and, thus, other outputs. Furthermore, the maintenance of several large,
monolithic models has been a problem. These considerations led to the initiation of the OMS Project.

The overall project goal is the development of OMS, an integrated modeling framework, which
allows integration of models, founded on a standard library of components, tools and data. Models
developed within OMS will be based on representing different scientific approaches with regard
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to components that address data constrains and spatial/temporal scale of application. The objectives
of the OMS project are to:

1. Identify modeling library parts (modules or components) and glean them from existing nonmodular
simulation models.

2. Formalize the linkages between these components to support model building.
3. Develop generic software tools to support models and modeling.
4. Develop the framework which supports these objectives.

To provide comprehensive modeling assistance, the following functional components will be
part of the framework:

1. A module-building component that will facilitate the integration of existing (legacy) code into the
framework (this adaptation support will simplify the technical procedure for module implementation)

2. A module repository that will contain modules that can be readily utilized to assemble a working
model (types of modules in the library will include science-, control-, utility-, assessment-, data
access- and system modules)

3. A model builder that will assemble modules from the module library into executable models and
verify data connectivity and compatibility in scale and comprehensiveness

4. A dictionary framework that will manage extended modeling data type information and provide
extended semantics checking for module connectivity verification

5. An extensible user interface that will facilitate an appropriate user interaction for general model
development and application (it will be supported by a number of contributing software packages
for database management, visualization and model deployment)

BASIC OMS PRINCIPLES

Modularity

The fundamental and underlying approach of OMS is to apply modular design to simulation
models. New scientific results are generally developed piecewise; each step is reviewed and vali-
dated by other scientists in the community. A similar approach should be taken to model software
development. Unfortunately, when formalizing scientific methods and research into operational
software constructs, scientists tend to start from a scratch. Moreover, when it comes to implemen-
tation there is usually a lack of understanding of appropriate software design.

It is possible that better understanding of the behavior of complex physical systems could be
gained through better software practices. Specifically, dissaggregation of large and complex systems
into components may reveal inter- and intra- relationships. This has been the interest of many authors,
most notably Zeigler (1990), who called this “modeling in the large,” and of Cota and Sargent (1992).
This is related to a more general software concept known as “programming in the large.” Earlier,
DeRemer and Kron (1976) pointed out: “… structuring a large collection of modules to form a
system is an essentially distinct and different intellectual activity from that of constructing the
individual modules.” With programming in the large, the emphasis is on partitioning the work into
modules whose interactions are precisely specified. Modularity is the overall key to coping with the
complexity inherent in large systems. Disaggregating these systems into smaller subsystems that are
easier to understand can be achieved on a “divide and conquer” (Pidd and Castro, 1998) strategy.

Modularization has not been a common technique in practical model development, although the
inherent structure of resource simulation models support modularization. Leavesley et al. (2002) pointed
out different degrees of modularization: fully process modules and models; fully coupled models;
loosely coupled models; and uncoupled models for decision support systems, which are all important
conceptualizations of model integration and must be design principles for any modeling framework.
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Several different modular approaches have been applied to watershed models (Singh, 1995). One
of the earliest modular model development efforts was done for the SHE (European Hydrological
System) Model (Abbot et al., 1986; Ulgen et al., 1991). The Precipitation Runoff Modeling System
(PRMS) (Leavesley et al., 1983) was modularized from a monolithic version and implemented in
the Modular Modeling System (MMS) (Leavesley et al., 1996). MMS was an early attempt by the
U.S. Geological Survey to support interactive model construction, requiring a specified module
structure. Recently, interest in the standardization of model software design has increased. Projects
such as APSIM (McCown, 1995) are based on these principles. Model standardization is also gaining
momentum within the environmental research and regulatory organizations and agencies (Whelan
et al., 1997).

OMS development focuses on the following points to achieve a maximum benefit from
modularization:

• Modularization is the key concept to simulation model development. OMS provides an application
programming interface (API) for creating new modules. A master library of modules is also
available for simulating a variety of water, energy and biochemical processes.

• OMS allows the interactive construction of complex models. OMS graphical user interface (GUI)
components facilitate control of module connection, validity, consistency and completeness.

• An extended interface description for modules needs to be developed to specify data semantics.
This is important for interdisciplinary module development.

• OMS supports automated module documentation generation. A module communicates with other
modules through its public interface. Documentation generated from the module interface speci-
fication is sufficient to judge its suitability in a given simulation context.

• OMS potentially supports model scenario management and model customization through module
exchangeability. This requires a set of module alternatives stored in a specific module library for that
purpose. The library must organize this information and make the model fragments available for reuse.

The validation of module compatibility requires an advanced semantic representation of data objects
(variables, parameter, etc.) used to connect modules. This leads to the concept of data dictionaries
covering extended modeling related type information such a units, value ranges and description.

OMS Framework

The OMS framework is a domain-specific, reusable architecture with a set of interdependent
classes in an object-oriented language. The primary benefits of application frameworks in general
are modularity through well-defined and stable interfaces, reusability by using generic components,
extensibility through hook methods and inversion of control through a reactive dispatching mech-
anism. The different kinds of frameworks are distinguished by the ways of adapting the framework:
“black-box” and “white-box” frameworks. The black-box framework contains abstract elements,
which needs to be specialized in the application. The white-box framework instead consists of
already implemented specific components, which needs to be selected and customized in an
application. OMS is fundamentally a white-box system as classified by the abstract hook method
(Fayad and Schmidt, 1997).

OMS SYSTEM CHARACTERISTICS

The OMS has the following characteristics:

1. OMS models are treated as hierarchical assembled components representing building blocks.
Components are independent and reusable software units implementing processing objects for
simulation models. They reside in a model library and are categorized into data access components,
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science components, control components, utility components and system components. This is
described in the “OMS Modules and API” subsection.

2. OMS is able to integrate legacy code components. Due to automated wrapper generation for legacy
code, components written in languages such as Fortran can be embedded into OMS at the function
level more easily. This is described in the “Legacy Code Implementation” subsection.

3. The “knowledge”-backbone of OMS is the dictionary framework. It enables OMS to verify state
variables and parameters according to scientific nomenclatures during model development and
application. Dictionaries are also used to specify parameter sets, model control information and
the component connectivity. They are implemented in the Extensible Markup Language (XML).
This is described in the “Dictionary Framework” subsection.

4. OMS is extensible. Extension packages exist for different aspects in model development and applica-
tion. Extension packages are used for visual model assembly, model application, an interface to the
dictionary framework and GIS. This is described in the “Modeling System GUI Design” subsection.

5. OMS scales from a full-featured, stand-alone development system with tools for model assembly,
visualization and analysis to a runtime Web service environment. This is described in the “OMS
Model Views” subsection.

The approach being used for component definition is based on modular, hierarchical system
modeling. It is an approach to complex dynamic system modeling where modular building blocks,
i.e., system components with a well-defined interface in the form of input and output ports, are
coupled in a hierarchical manner to form a complex system (Zeigler, 1990; Praehofer, 1996).
This conceptual approach was implemented by using object-oriented programming paradigms.
Because objects lack an explicit output interface the concept of input and output ports representing
data flow was applied. An application programming interface (API) was designed to implement
hierarchical modules.

OMS Modules and API

An OMS module is a piece of software implementing a specific function. This function might
be complex or a single equation. The scope and complexity of the module depends on the problem
the module will address. An OMS module is implemented as an object-oriented class that defines
data objects, which are manipulated by the module’s methods. A module has a public interface
defining the interaction of the module with its environment. All communications must go through
this interface. An OMS module has a single purpose, so it is restricted to a fixed set of interface
methods. It consists of the following components:

• The OMSComponent class of the OMS core library provides the API for custom module imple-
mentation based on inheritance.

• A module encapsulates modeling objects. These data objects can be input data objects, output data
objects and other submodules. The data objects are variables or parameter that are used for
intermodule communication. The module can be the creator and owner of the data object or it
may obtain a data object from other parts of OMS.

• A module encapsulates modeling logic. OMS provides the tools to implement the code in the Java,
Fortran, or C programming language.

• Each OMS module must implement the following interface methods:
• Init — The init method initializes the modules data objects. It is used to set the initial state of

the data objects. This method is called prior to a model simulation run.
• Run — The run method implements the computational part of a module. It operates on all data

objects and components with the results of the module processing. This method is called during
the simulation run and implements the process logic.

• Cleanup — The cleanup method performs finalizing tasks for the module. It will release system
resources (i.e., memory and sockets). It can also be used for writing summary reports. This
method is called past model simulation run.
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This OMS module definition API is implemented in the Java programming language (Arnold et al.,
2000).

From an OMS framework point of view, a module consists of several components important
for model development. The two main parts of a module include (see Figure 15.1):

• Module Interface Specification — This is represented by an XML descriptor (Figure 15.1a), the
public interface is exposed. This includes the input and output data as specified by the data
dictionary (Figure 15.1b), a reference to the module implementation component (Figure 15.1c)
and sub-module descriptors (Figure 15.1e).

• Module Implementation — The implementation of the Java OMSComponent class (Figure 15.1c)
and the native libraries (Figure 15.1d) if there is a legacy code attached to the module.

This design has several implications:

1. Module connectivity can be validated by using its interface only. Because modules are referencing
data dictionary entries (e.g., parameter or variables), two modules can be connected if both are
referencing the same entry. In addition, an extended “type” verification of data objects allows a
more semantic type verification of proper data references among modules extending a simple “data
type-based” verification (Figure 15.1g).

2. Because the module interface is expressed in XML, modules can be implemented in different
programming languages. The design also takes architecture-dependent variations of resources
belonging to the model into account. Native libraries are referenced for different operating systems
and architectures (Figure 15.1h).

3. OMS uses automated documentation generation for the module interfaces based on XML style
sheets into HTML (Figure 15.1f).

In summary, the benefit for an XML/Java combined description of modules results in sophisticated
system handling of this module for verification, architecture adaptation and documentation based
on a common resource.

Module data objects reside as attributes of each module. A module may encapsulate a number
of data objects depending on its complexity. Several factors need to be taken into considerations
when adding data objects to a module:

Figure 15.1 Module components and relations in OMS.

(a) OMS Module XML
Descriptor
(XML)

(f) Documentation
(HTML)

(e) SubModules (XML)

(b) Data Dictionary Entries (XML)

(c) Java OMS Component
Class (Class)

- Module Meta Information
- Resource references

- Input/output slots
- Classification
- Default values

- Data object referencing
- Process implementation

- Legacy code bridge
- System dependent

(g)

(h)
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• Data objects may be declared either private or public. Accessibility and visibility is realized by
publishing these data objects to the OMS framework.

• Public data objects can be shared among different modules. In this case a module is referencing
a previously published data object. The module is responsible for requesting the data object from
the modeling framework. If a data object is not shared, it is local only to the module.

The declaration of data objects in a module is shown in Figure 15.2. Objects are generated
based on OMS API system calls. The identifiers must match the data dictionary entries (see example
in Figure 15.4).

Legacy Code Implementation

Wrapping is a technique to embed existing nonobject-oriented software into an object-oriented
architecture. Mapping interfaces of conventional systems into an object-oriented syntax enables
the access to this legacy code. This mapping procedure can be supported by wrapper generation
tools, which generate glue code for both software “worlds.” Wrapping provides some general
advantages:

• Keeping and reusing the existing software infrastructure as much as possible
• Moving step by step toward object orientation
• Accelerated introduction of object orientation
• “Separation of concerns” (graphical user interface vs. number crunching part, etc.)

A module contains a set of methods. Some of them are inherited from the super class OMSCom-
ponent. A module may implement additional methods. A module has to override the methods init(),
run() and cleanup() for interface functionality. A method for customization is used to provide
specific editors for setting up the module data objects. Such editors may be applications imple-
menting a kind of preprocessing prior model run.

OMS uses a sophisticated method to integrate native languages such as Fortran and C. Some
OMS framework tools support the integration of native code into modules. The example given in
Figure 15.3 shows how module data objects (input/output/local data objects) are mapped to Fortran
variables and parameters by mapping Java object properties to Fortran variables.. 

Dictionary Framework

The OMS dictionary provides and manages dictionary resources for model construction like
model data, model parameters, modules and models. In addition, during the model development
phase, it provides and manages parameter scenarios, time series data in model application. It also

Figure 15.2 Data object declaration and system initialization.

/ /   Declares basin and HRU physical parameters.
public class basinprms extends OMSComponent   {
. . .
OMSDouble o_basin_area = getOMSDouble (“basin_are”);
OMSDoubleArray o_hru_area = getOMSDoubleArray (“hru_area”, “nhru”)
OMSDoubleArray o_hru_imperv = getOMSDoubleArray (“hru_imperv”, nhru”)
OMSDoubleArray o_hru_percent_imperv = getOMSDoubleArray
                   (“hru_percent_imperv”, “nhru”)
OMSDoubleArray o_hru_perv = getOMSDoubleArray (“hru_perv”, “nhru”);
OMSDimension o_nhru = getOMSDimension (“nhru”);
. . .
}

Module Declaration

Declared objects.
Initialized with data

generated by
OMS system

calls based on
data dictionary content
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handles the interaction between several dictionary data sources with database management systems
and the modeling system. OMS dictionaries are written in XML.

The OMS dictionary design addresses two major issues:

1. The OMS dictionary XML resource file structure defines a generic and open scheme for describing
and processing sets of (heterogeneous) dictionary content.

2. The OMS dictionary GUI tool operates with dictionary XML resources and manages its content
in coordination with the other OMS components of the framework to construct and apply a model.

Figure 15.3 Legacy code integration.

Figure 15.4 Data dictionary element.

Intialization routine
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connects Java data

objects to FORTRAN
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public native int init ( )   /*@F77
      @propertymap o_basin_area.value
      @propertymap o_hru_area.value1D
      @propertymap o_hru_imperv.value1D
      @propertymap o_hru_percent_imerv.value1D
      @propertymap o_hru_perv.value1D
      @propertymap o_nhru_value

-> basin_area;
-> hru_area;
-> imperv;
-> percent_imperv;
-> hru_perv;
-> nhru

@{
     real *8 totarea
     integer i
     real *8 diff

totarea = 0.
do 100 i = 1, nhru

hru_imperv (i) = hru_percent_imperv (i)  * hru_area (i)
hru_perv (i) = hru_area (i) - hru_imperv (i)
totarea = totarea + hru_area (i)

100 continue
diff = (totarea - basin_area)/basin_area
if (abs (diff).ge. .01) then
  omsExeption (‘Sum of hru areas is not equal to basin area’)
  return
end if
init = 0   @}

*/ ;

Data dictionary entry ID
Description

Version

Data category, range and
default value

Data type and unit

Author reference

<coms: data id=“hru_elev”>
    <oms:descrption>
          <oms:short>Mean elevation</oms:short>
          <oms:full>Mean elevation for each HRU </oms:full>
    </oms:description>
    <oms:version>
          <oms:cdate>2001-08-15 02:24:39</oms:cdate>
          <oms:mdate>2001-08-15 02:24:39</oms:mdate>
          <oms:revision>1.0</oms:revision>
    </oms:version>
    <oms:value cat=“par am”>
          <oms:min>-300.</oms:min>
          <oms:max>30000</oms:max>
          <oms:default>0.</oms:default>
    </oms:value>
    <oms:unit cat=“length”>feet</oms:unit>
    <oms:type>float*8</oms:type>
    <oms:author href=“rojas” />
<oms:data>
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Figure 15.4 shows a dictionary element, which encapsulates all meta-information and informa-
tion about the parameter “hru_elev.” Based on this record the system is able to instantiate objects
requested by modules (see Figure 15.1) and initialize them properly.

OMS Dictionary Framework Architecture Design Considerations

A major dictionary design goal was to maximize transparency, openness and extensibility.
Format is available for data, module, parameter, or scenario dictionaries. The preferred solution
for handling dictionaries is a generic scheme where all of these special dictionaries could be mapped.
These issues were taken into account when designing the overall dictionary architecture:

• A dictionary consists of data sets, which may be either homogenous or heterogeneous. Because
the dictionaries are written in XML, data sets are not document-oriented and should not limited
to a tabular view.

• A permission scheme is required to control the operations associated with the dictionary. Dictionary
developers have the responsibility to set up appropriate permissions.

• Dictionaries may contain large sets of XML entries. Well-known approaches such as the XML
query language can filter information from an XML data set. A dictionary must deal with this
feature. Each dictionary must provide applicable queries to filter specific information. The use of
XML as the primary dictionary data format opens a wide range of other data sources. The system
should be able to generate XML dictionary documents from relational database management
systems. There must also be uniform and transparent support for local, remote (via a URL) and
database dictionaries.

• Dictionaries should be self-describing in terms of their data structures. The dictionary data content
must drive the behavior of any GUI tools.

• The dictionary GUI tool should be able to operate with other tools in OMS in an easy way. A bi-
directional interaction should be supported, so dictionary entries may be “dragged” into other tools
to construct or run the model. New entries, such as modeling results, may be “dropped” into the
dictionary as modeling results.

• The logical structure of a dictionary must be mapped into a physical tool representation.

Other design considerations including keeping the dictionary file as simple and as transparent
as possible, both for humans and for processing in the OMS framework. By using XML as dictionary
resource definition format and XPath for accessing elements of a dictionary, a slim architecture for
OMS tools is possible.

Modeling System GUI Design

The OMS framework uses a common core user interface (CommonUI). The CommonUI
supports different types of OMS extensions. Extensions implement different tools for model devel-
opment and application. OMS is open and configurable through the extension package. OMS comes
with a basic set of extensions, but also offers system developer an API to implement custom
extensions.

The OMS CommonUI provides the following functionality for all extension: GUI resource han-
dling of common elements; system logging; and a console interface to interact with the system by
using a python shell. The CommonUI enables extensions with slim implementation overhead, common
look and feel but also provides maximum flexibility to adapt the overall appearance of the system.
One powerful feature of the CommonUI is the python-scripting interface. It allows the dynamic
interaction of the CommonUI with extensions, based on shell commands.

OMS extensions implement the toolbox elements that can be used to customize the CommonUI
according to modeler needs. OMS comes with a basic set of extensions dealing with various facets
of modeling:
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• Development Extension — allows the interactive assembly of models based on a module library.
It provides support for module search, module retrieval and module integration from local and
remote sites according model requirements. It allows the validation of module connectivity using
input/output data constraints graphically. This extension delivers runable models.

• Application Extension — deals with the interactive model application of runable models. It
provides automatically generated GUI elements for model parameterization, output customization,
graphical components for visualization of variables and parameter scenario management. This
extension delivers model results in terms of graphs and numbers.

• Dictionary Framework Extension — manages the modeling dictionaries. They are used to handle
the following modeling resources: module interfaces; parameters and variables; parameter sets;
and meteorological data set descriptors. Other extensions use this extension to validate the proper
module connectivity (development extension) or for parameter value assignment (application
extension).

Other types of extensions could be developed for post-run results analysis, GIS connectivity,
legacy code integration and model deployment using Web services. Figure 15.5 shows the OMS
CommonUI loaded with the extensions for model development, model application and the dictionary
framework. Each extension appears as a folder node in the model resource tree on the left side of
the window. All extension related resources are sub-nodes of their folder. The common logging
panel and the console command line interface appear as tabbed panels on the bottom of the window.
The main part of the CommonUI occupies the extension desktop in the center of the window. The
desktop is customized according to the extension implementation purpose.

OMS Model Views and Deployment

Enabling simulation models to run under different architectures and computing environments
becomes more and more important, especially with the increasing demand for Web-based applica-
tion of simulation models. OMS is designed to cover a variety of application and deployment and
execution paradigms:

• The OMS application gets deployed by Java Web Start Technology over the Internet. This ensures
the local client installation, automated update and security of OMS. Models being developed with
OMS in such a scenario are running within OMS. This setting is typical for a development
application, where the modeler needs flexibility to change the models module structure, parameter
sets, as well as input data.

• The application of OMS models as canned models is required when validated OMS models are
applied in projects or application scenarios. There is no need to change the structure of the model

Figure 15.5 OMS CommonUI and extensions.
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or have the flexibility of automatically generated GUI components for parameterization. The usage
of an adaptive, model-specific GUI directs the model user.

• OMS models can be executed in a server-centric environment. Handled by a Web server, an OMS
runtime environment produces a generic Web interface to enable a Web browser application of
models. Preconfigured parameter and data sets can be accessed at the server side, whereas the
client site deals only with a Web browser for model input and output.

Within OMS it is possible to transfer an existing model to different execution schemes without
changing the model structure. Models being developed with the OMS environment are capable to
run under a Web-only environment.

EXAMPLE APPLICATION OF PRMS

For proof of concept, a prototype model was developed to test component integration and
interaction. The hydrological model PRMS, (Leavesley et al., 1983) was selected for integration into
OMS. The goal was to transform the model structure into OMS modules and their related XML
resource descriptors and compare the model output with the validated version of the model in MMS.

PRMS is a deterministic, distributed, continuous hydrological model (Leavesley et al., 1983).
A watershed is divided into homogeneous hydrological response units (HRUs). The modular
conceptualization of PRMS is reflected by simulating the hydrological system as a vertical series
of interlinked reservoirs. Each hydrological process is represented as a separate module. Variants
of PRMS reflect the variable characteristics of different catchments. The basic PRMS model (as
tested) consists of 14 process modules (Figure 15.6).

The test application for OMS also contained a meteorological data and a parameter set for the East
River basin, a subcatchment of the Gunnison River basin in Colorado. A 20-year set of climate data
was used for validation. The East River parameter set was preprocessed and generated by the GIS–Wea-
sel tool (Leavesley et al. 1997). Both, the parameter set and the time series input where in MMS formats.

Figure 15.6 shows OMS with modules forming the PRMS model. The Component Development
node in the resource tree contains the PRMS OMS model build upon the 14 sub-modules. The
loaded PRMS runtime was configured with the East-River Parameter Set. OMS is automatically
generating GUI elements for parameter input such as spreadsheets for one-dimensional arrays.

Although the PRMS source code was already modularized for MMS, some recoding was
required for the Java environment. PRMS modules are implemented in Fortran77. Automated code
generation could prevent many of the errors that were introduced by the manual procedure. The
following steps in code migration were performed:

Figure 15.6 Loaded PRMS modules and PRMS generic parameterization GUI.
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1. The MMS runtime library was modified for capturing each modules interface calls (reading/writing
to variables/parameter/dimensions). XML-intermediate module descriptors for this information
were generated.

2. The Java OMSComponent file and the XML component descriptor were generated from the
intermediate descriptor. Data objects referenced by MMS system calls in MMS/PRMS modules
resulted in OMS/PRMS data objects referencing data dictionary elements. This transformation was
done automatically.

3. The Java OMSComponents were extended with Fortran science code, embedded into the initial-
ization, processing and cleanup section of each component. Local variables were identified (com-
piler test run) and added to the code.

4. OMS tools and compiler were used to generate binary executable code (Java class files, dynamic
link libraries).

5. A total of 456 parameters, variables and dimensions were identified and generated. For each of
them, an XML data dictionary element was generated and added to a PRMS data dictionary.

6. The East River parameter set was converted into an XML OMS parameter file and added to a
parameter dictionary.

The modules were loaded into a running OMS framework. The driving variables were traced
for each component to verify the input. The output variables were plotted and compared with
corresponding MMS/PRMS variables. Finally, the simulated basin runoff for the OMS and the
MMS version of PRMS was plotted with the observed runoff. Figure 15.7 shows the result, matching
graphs for MMS and OMS values for the basin runoff.

CONCLUSION

The OMS introduced in this chapter is a framework that facilitates the development of custom-
ized models from a library of science, data and utility modules, as well as their testing, application
and deployment. OMS features component integration techniques, graphical user interface compo-
nents, graphical visualization features and other utilities supporting model construction and appli-
cation. The design of OMS was influenced and driven by the needs of agricultural and natural
resource agencies to optimize the models, development process and maintenance. Due to the
increasing complexity of the simulation problems encountered in natural resource and environmen-
tal management model development can only be efficient by using methods and tools such as OMS.
Due to its dedication to modularized model development, OMS offers the potential for science
building block reuse and easy update and maintenance.

Model management and transfer practices from the research unit development level to the field
office application level were considered in OMS design. Hence, the goal of this project is the design

Figure 15.7 PRMS run in OMS — comparison of basin runoff from OMS vs. MMS and observed data.
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and implementation of a modeling system that emphasizes interoperability, connectivity, scalability
and reuse of environmental simulation modules. The PRMS model was adapted into OMS, which
lead to a significant reduction of module implementation code. Results showed that a major fraction
of GUI components for model parameterization could be generated automatically from module
data components. Researchers are in the process of disaggregating another large model, the Root
Zone Water Quality Model (RZWQM), into OMS modules.

Future Developments

Future OMS development efforts will be leveraged by application and project demands. The
integration of GIS capabilities by means of an OMS extension will enable interactive geo-processing
in the context of model application. GIS implementation efforts are underway. The overall focus
of the GIS extension will be driven by the need of modeling related features. This comprises model
parameterization in terms of spatial parameter sets as well as spatial visualization of model progress
and results.

Another major OMS effort will focus on a deployment of simulation models using Web services
and Universal Description Discovery and Integration (UDDI). This will enable simulation models
to be discoverable and directly callable by other simulation environments. Other efforts include
post-run analysis extensions that will be integrated with descriptive statistics.
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INTRODUCTION

Simulation models of agricultural systems have been developed over the past 40 to 50 years.
These models have ranged in complexity describing physiological, soil, or atmospheric processes
within the soil–plant–atmosphere continuum across a range of spatial and temporal scales. Output
generated from a wide variety of models has had an impact on our ability to capture the dynamics
of processes and to be able to extend this information into other scales. A decade ago, Hanks and
Ritchie (1991) assembled the current state of knowledge on models in the plant and soil system.
Since that time there has been continual progress on the further refinement and development of
models for agricultural systems. There still remains a challenge; however, in determining how the
perfect model is to be constructed that will mimic agricultural systems. In this chapter we will
explore some of the challenges that future research will face in the refinement of agricultural
systems models.

Models are representations of systems. Mathematical representations of physical systems behave
with much more predictability than biological systems. For example, we can construct a model to
predict the trajectory of an object in space accurately as evidenced by our ability to fire a rocket
into space and to intercept the moon. Likewise, a high degree of predictability exists for many
chemical reactions because we are able to estimate their yield and products, although our ability
to predict biological systems is much less certain. Models themselves are systems and are aggre-
gations of our understanding of biological systems represented by a combination of empirical
equations. We learn from the process of assembling models in advancing our understanding of the
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interactions among parameters that we can easily obtain or infer and those responses which we
can also observe. Models have existed throughout the history of modern science. Rossi (1968)
describes that Galileo in the 16th century was a proponent of constructing models to describe the
behavior of physical systems. Mankind has had a quest to be able to describe all of the phenomena
surrounding everyday life.

This chapter represents our examination of the current state of models from the view of looking
at models with a goal of providing a challenge. We will admit that is impossible to trace the
shortcomings in current models by examining their geneology and philosophy and our goal is to
create some imaginative thought in this quest of building better models that describe
plant–soil–atmosphere interactions.

APPLICATION OF CURRENT MODELS

One of the long-term goals of agricultural models is to simulate the potential effects of various
changes in agricultural systems due to genetics, management, or weather. A number of current
agricultural models attempt to describe complex agricultural systems. One major contrast is the
acknowledgment of genetic diversity in simulation models. Models such as CERES-Wheat or
CERES-Maize incorporate genetic diversity within the physiological functions of the model (Jones
and Kiniry, 1986) and are described as genetic variations within phenological and physiological
processes. Predicted results from these models provide a glimpse into potential genetic variation
on crop growth and yield. In contrast, RZWQM uses a generic crop production model built around
a primary production model, constructed from carbon and N budgets, that predicts the responses
of plants to environment changes (Hanson, 2000). The purpose of the plant component within
RZWQM is to simulate a large number of plant species rather than diversity within a species
whereas CERES-Maize accounts for differences within species. Both of these types of models have
broad applications to many studies associated with agricultural systems; however, these are not
intended to replace one another.

Current agricultural system models are often used to predict the potential impact of future
scenarios on crop production. An example of large-scale application of CERES-Wheat (Godwin
et al., 1990) and I-Wheat (Meinke et al., 1998) has been to evaluate the potential impact of the
El Niño Southern Oscillation (ENSO) on wheat production in the U.S., Canada and Australia (Hill
et al., 2000). Rosenthal et al. (1998) has shown that simulation model output from specific sites
can be aggregated into an estimate of regional production and this approach was used in the
aggregation of crop yield estimated with these models. Another example of aggregation of outputs
from individual site simulations to create regional and state level yield estimates has been provided
in research by Haskett et al. (1995) who used the GYLSIM model to estimate soybean (Glycine
max L. Merr.) yields for Iowa.

Models have been evolving over time to replace some of the original interdependence among
processes into a modular form. The RZWQM has been developed as a modular system that consists
of six submodels. These submodels represent the: physical; soil chemical; nutrient; pesticide; plant
growth; and management components within an agricultural system. The input requirements and
the output are described in Ahuja et al. (2000b). RZWQM is constructed as a one-dimensional
model that places some restriction on large-scale application; however, this was not the intended
use of the model in the initial stages of development and implementation. Nevertheless, the model
does allow components of agricultural systems to be evaluated.

One important aspect of current models is their range of scales and applications. For example,
GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) (Leonard et al.,
1987), CERES (Crop-Environment Resource Synthesis) (Hanks and Ritchie, 1991), CENTURY
(Parton et al., 1994), DSSAT (Decision Support System for Agrotechnology Transfer) (Tsuji et al.,
1998), GPFARM (Great Plains Framework for Agricultural Resource Management) (Ascough et al.,
© 2002 by CRC Press LLC



                     
1998), ECOSYS ecosys (Grant, 1995), EPIC (Erosion Productivity Impact Calculator) (Sharpley
and Williams, 1993), SPUR (Simulation of Production and Utilization of Rangeland) (Foy et al.,
1999), ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Cri-
teria) (Kiniry et al., 1992), SWAT (Soil Water Assessment Tool) (Arnold et al., 1998), HUMUS
(Hydrologic Unit Model for the U.S.) (Srinivasan et al., 1993), AGNPS (Agricultural Nonpoint
Pollution Sources) (Young et al., 1987), GOSSYM (Cotton simulation and management model)
(Baker et al., 1983) and DAISY (Hansen et al., 1991) have all been used in different applications
for specific agricultural systems. The range of application of these models has been from individual
soils within a field to large watersheds. Models are continually being developed and applied in
attempts to represent agricultural systems. It is not our intent in this chapter to review each of these
models and to compare among models, but instead we use the current state of information as a
springboard into identifying knowledge gaps.

SOIL COMPONENTS

Soil components included in most models treat hydrologic, chemical and biological processes
in a series of layers within the soil profile. These layers are defined either by soils information
gleaned from soil survey information available in county soil survey reports or at the regional scale
through the STATSGO database (USDA-SCS, 1992). Interrelationships among soil layers are treated
through a variety of computational methods. One of the largest gaps that exist in the use of
agricultural systems models is the characterization, quantification and simulation of the upper soil
layer as affected by tillage and crop residue management. As an example, the NTRM (Nutrient,
Tillage, Residue Management) model described by Shaffer and Larson (1987) was one of the first
to try and simulate the interactions among tillage and residue management. Williams et al. (1984)
has proposed a simple relationship between soil bulk density and tillage for use in EPIC as

(16.1)

where ρt is the bulk density after tillage (Mg m–3), ρt–1 is the bulk density before tillage, ρc is the
consolidation bulk density at 33 kPa pressure (kg m–3) and Ii is the tillage intensity value (0–1)
and varies with type of equipment. This is an empirical model assembled from observations;
however, the change in bulk density after tillage due to rainfall events or subsequent tillage is not
well defined. We assume in many of the current models a very limited temporal interaction of
management effects. One of the primary limitations to Eq. 16.1 is that these changes in bulk density
are assumed to be uniform across the soil surface and therefore, they do not account for some of
the modern tillage equipment, which till only a small portion of the soil surface. These types of
tillage systems induce a spatial pattern onto the soil surface, which requires a three-dimensional
treatment of the soil surface in order to be realistic. Such consideration of the dynamics of the soil
surface has been based on adaptation of limited empirical observations; yet, it has beenapplied
across an extremely wide range of soils and management systems.

The temporal dynamics of this upper surface layer are critical to linking agricultural manage-
ment practices to the water flow, gas exchange, biological activity and carbon sequestration. Bresler
(1991) outlined some approaches in a chapter on soil spatial variability and concluded that chemical
reaction, chemical decay, adsorption and exclusion, soil structural changes and the influence of
root uptake were viable research needs in perfecting models that simulate soil processes. Of these
topics, the quantification of soil structural changes at the surface seems to be most elusive. There
is little quantitative understanding of the management effects on soil properties and processes at
the surface or throughout the soil profile that provides enough information to guide incorporation
into existing models.

ρ ρ ρ ρt t t c iI= − −( )[ ]− −1 1 0 667.
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Soil water dynamics within models is one of the critical factors because of the role in the
transport of nutrients and chemicals and supplying water for the transpiration requirements of the
crop. Incorporation of water into models has been built around the Richards equation. Feddes et al.
(1978) documented one of the earlier soil water balance models constructed as a multilayer model
that could handle movement into field drain lines and downward movement through the soil profile.
Lascano and van Bavel (1986) developed a soil water evaporation model that used multiple layers
and solved for closure of the energy balance through surface temperature. Various forms of soil
water models are being used in various simulation models and the results are fairly realistic. One
critical aspect of model development is to compare the soil water change patterns over time, space
and depth for different soils within fields to determine how realistic their performances are for
complex terrain. One of the major limitations in soil water components has been the treatment of
macropore flow and how to describe the continuity of these macropores through the soil profile.
There is qualitative evidence for these processes but little quantitative evidence. Macropores may
be a good example of how management practices might disrupt macropore continuity, but little is
known about how these macropores change over time.

Lascano and Hatfield (1992) measured soil water evaporation from bare soil in transects across
a field. In this study, they were able to measure the spatial variation of the soil properties and also
the variance of the evaporation rates within the field. Evaporation rates varied across the field due
to small differences in topography and surface roughness. When the CONSERVB model (Lascano
and van Bavel, 1986) predictions were compared with measured values of soil water evaporation
the predicted values were within one standard deviation of the measured mean when average soil
hydraulic properties were used in the model. Comparisons of this type across larger transects within
fields would help evaluate soil water models; however, these data are not often available for many
sites and site variability is difficult to assess a priori.

Ahuja et al. (2000a) stated that theories of soil water movement and transport of heat and
chemicals are understood for simple soil systems; however, for complex soil systems, several aspects
are not treated mechanistically. They stated that research should address several gaps including:

1. Role of macropores on water and chemical flow from the surface to deeper layers
2. Role of surface aggregates on the water transport in the upper soil layers
3. Role of inter-aggregate, immobile pore space and chemical kinetics in the soil matrix
4. Changes in soil properties, continuity of macropores and aggregation bought about by tillage
5. Reconsolidation of soil surface after tillage due to drying and rewetting
6. Role of high water table and drainage systems on water and chemical transport

These soil structural aspects have not been considered in many of the models, even though they
can profoundly affect most soil processes. These parameters, if available, would help in developing
improved models. One area, in addition to these needs is to develop a quantitative understanding
of the changes in surface roughness and surface detention of water across slopes or landscapes that
could be used to model infiltration, runoff and chemical transport. Continual development of
improved models of water dynamics at the soil surface will improve many soil transport models.

For some aspects, far more is known experimentally than has generally been incorporated into
the models. For example, P and K concentrations are listed on every commercial fertilizer bag and
farmers apply these nutrients to improve crop growth on soils where these elements are limiting,
yet N is the main soil nutrient simulated by most of these models. Although, N, P and K are
considered the dominant nutrients limiting plant growth, a major void in the soil component is the
treatment of micronutrients in the soil profile, changes of pH due to liming, changes in cation
exchange capacity (CEC) over time and movement of heavy metals or other organic compounds
through the soil profile. All these areas will require more quantitative understanding before impact-
ing the current models.
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The recent concerns about global climate change and the possibility of trading carbon credits
(whereby power companies pay farmers to sequester carbon in their soil organic matter) has
highlighted gaps in knowledge with respect to predicting C storage in soils. These include:

1. How will possible changes in elevated CO2 and climate affect plant residue quantity and quality
inputs to the soil?

2. How will C sequestration be affected by different cropping systems across a range of soils and
climates? Some evidence is available, but more is needed to help determine a wider range of
expected changes in C due to agricultural practices.

3. How fast will various fractions of plant residue and soil organic matter change from one pool to
another, classified according to residence time, as affected by crop species, environmental condi-
tions, soil properties and tillage management practices?

These needs have not been considered in many of the models; however, they represent the conditions
in which soils play a role in agricultural system simulation.

Concerns about global climate change have also stimulated interest in emission and consumption
rates of soil gases, especially radiatively active (i.e., greenhouse) gases such as CO2, N2O and CH4.
Emissions from soils have been studied in different settings and management practices; however,
an analysis of the factors that affect these emissions on a year-round basis is lacking. Conrad (1996)
provided a review of the role of soil microorganisms as controllers of atmospheric trace gases. On
the other hand, soil microbiological components in agricultural systems models are treated in
relatively gross terms. For example, recent studies by Wagner-Riddle and Thurtell (1998) suggest
that N2O emissions from soils increase in the spring because of the build-up of the gas levels in
the upper soil layers, so that when spring thaw occurs, the movement of gases into the atmosphere
increases. They suggested that management practices that would alter the N pools would have a
significant impact on N2O emissions. Another another practice that affects N2O emission is manure
application. For example, Ferm et al. (1999) observed large fluxes immediately after application.
Soil management effects, e.g., tillage coupled with either manure or fertilizer application, need to
be understood if agricultural systems models that estimate global impacts are to be developed.
Development of simulation models that could accurately assess the interactions of variables across
a range of soils, management practices and weather scenarios would be an advance in the soil
component.

Soil biological processes, particularly the distribution and activity of microbial and mesofaunal
populations throughout the soil profile and over the course of time, is another aspect that is affected
by changes in soil management, but sufficient knowledge is lacking to improve the soil component
of models. Mycorrhyzal infections are known to improve phosphorous and water uptake by many
plant species, but modeling this interaction is problematic. Recently, Rillig et al. (2001) reported
that elevated CO2 concentrations, such as expected near the middle of this century, doubled the
length of hyphae of arbuscular mycorrhizal fungi and increased aggregate water stability 20 to 40%
in soil samples taken from a sorghum field exposed to free-air CO2 enrichment. Predicting the
extent of such changes in soil structure and how they will affect future water permeability and
runoff is beyond our current capability.

Another large knowledge gap in the soil component of agricultural systems models is the
incorporation of the variation of soil properties in a field into the model. As an example, a description
of a typical central Iowa field is shown in Figure 16.1. Examining soil property values as reported
by USDA-SCS, reveal a variance associated with each property (Table 16.1). Proper accounting of
such variable soil properties by the simulation models will be required in order to obtain any
meaningful regionally averaged information. One of the primary questions to be addressed is
whether it is best to simulate field variation by averaging across soil properties or by averaging
after simulating for each soil.
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PLANT COMPONENTS

Within agricultural systems, plants are critical factors because crop production is one of the
endpoints simulated. The initial development of the CERES-type models was built around accurate
simulation of phenological stages of plant development. The philosophies of the phenological
models were described for corn (Kiniry, 1991), wheat (Ritchie, 1991) and soybeans (Jones et al.,

Figure 16.1 Spatial variation of soil types across an agricultural production field in central Iowa.

Table 16.1 Variation in Surface Soil Properties for Four Soils form Story County, Iowa

Soil
Percent Clay Permeability Available Water Capacity

Soil pH
Organic Matter

(%) (Mm/hr) (Mm/mm) (%)

Clarion 18–24 15–50 0.2–0.22 5.6–7.3 1–3
Webster 26–36 15–50 0.19–0.21 6.6–7.3 6–7
Nicollet 24–35 15–50 0.17–0.22 5.6–7.3 5–6
Okoboji 35–42 5–15 0.21–0.23 6.6–7.8 9–18

Source: USDA-SCS, Soil Survey of Story County, Iowa, 1984.
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1991) to show how temperature had to be adjusted to predict the development of the different crops.
Using the phenological approaches provided a basis for continued addition of other factors that
affected growth, e.g., solar radiation, soil water, nutrients and carbon dioxide. Specific crop growth
models utilize a basic foundation of development as influenced by temperature, light interception,
photoperiod, carbon dioxide uptake and adjustment of these factors by soil water or nutrient supply.
Partitioning of carbon allocations within the plant into roots and shoots and then further partitioning
into reproductive organs, is controlled by the onset of phenological stages. Phenology and parti-
tioning are generally handled empirically in the models, but a huge knowledge gap exists in
understanding the fundamental controls within the plants for these important aspects. For example,
water stress accelerates the rate of development in wheat, whereas it slows development in sorghum
before anthesis, but no one knows why. Progress is being made by plant physiologists in under-
standing gene expression and hormonal signaling among plant organs (e.g., Beveridge, 2000), but
we are far from being able to utilize such information for prediction. Nevertheless, the research
community has had success in developing plant growth models that are able to estimate the
development, total biomass and yield of several major crops.

The research community associated with plant-growth models appears fairly confident that
current models are able to estimate the development of crops, total biomass and yield. A number
of other knowledge gaps still present challenges for plant-growth modelers. These challenges can
be expressed as a series of research needs.

1. Incorporation of the genetic diversity into crop models in terms of phenology and partitioning, as
mediated by environmental conditions — Many of the current approaches used in changing
phenological response use simple linear models to account for the effect of environmental stresses.
For example, time within a phenological stage increases or decreases linearly with exposure to
stress. Observations would suggest a more complex interaction with environmental conditions and
even changes throughout the life cycle of a plant.

2. Quantitative understanding of root growth and development due to genetic differences and envi-
ronmental conditions — Root-shoot partitioning in different genetic material and the interaction
of this partitioning with environmental conditions. Often, these relationships are driven by soil
temperature but do not incorporate water or nutrient interactions. These observations are difficult
to collect under experimental studies and incorporation of these interactions into simulation models
will require continued feedback to plant physiologists.

3. Controls on root growth as affected by both plant and soil characteristics — Simple descriptions
are available regarding the effect of soil temperature on root growth. These need to be expanded
to include the effects of water, nutrient and potentially even agricultural chemical responses.

4. Estimation of the role of root exudates and root mortality on the soil biological component and
nutrient cycling in the soil profile — The feedbacks and interactions of root exudates and decay
on soil biological populations remain large challenges for simulation models. Estimates of root
turnover during the growing season and after harvest of annual crops will require understanding
the temporal and spatial dynamics.

5. How root mechanical restrictions, nutrient limitations, or conditions that slow translocation within
a plant feed back on photosynthetic processes.

6. How humidity, as well as light, CO2 concentration and root signaling, control stomatal conductance
(e.g., Jarvis and Davies, 1998).

7. Quantify how stress conditions due to water, temperature, light, or nutrients affect vegetative
growth, photosynthesis, C:N allocation among plant components, or root: shoot ratios across a
range of growth stages and varieties within a species.

8. Interactions among plant growth and other biotic factors, e.g., insects diseases, weeds, etc. —
Weeds offer a unique competition with plant growth because early in the growing season they
complete for light, soil water and nutrients. Late-season weeds, however, provide more of a
competition for light because the plant is established and near maturity. The amount of total weed
biomass may be the same but the effect on the crop many be entirely different. Likewise, insect
populations will have a differential temporal effect on plant growth. Simulation models will have
© 2002 by CRC Press LLC



           
to account for the differences among competitors in plant communities and their interactions with
plants.

9. Quantification of the competitive component to allow for better estimation of the effect of varying
plant population on plant growth and partitioning or the competitive aspects of weed–crop mixtures.

10. Quantification of the effect of stresses and management on the quality of grain (protein, oil, starch)
or forage — Observations of grain or fiber quality have been somewhat empirical, although as
interest increases in examining product quality, simulation models will have to begin to incorporate
these components and characteristics.

Similar to the soil component, knowledge gaps also exist about how to account for variation
of individual plants. Plant growth models predict phenology, biomass, or leaf area accumulation
without an estimate of the variance of response among plants. Within this description of variation
is the genetic diversity that exists within species and within hybrids, cultivars, or varieties of
agricultural crops in responding to changes in temperature or the effect of stress (nutrient or water)
on phenological stages, growth rates and partitioning. Plant sampling within the field from the same
treatment will have a given amount of error associated with each measurement, which might simply
reflect measurement errors or “real” plant differences caused by many factors. Comparison of these
measured data with simulated results can be made by ensuring the simulated results fit within the
variance and/or that the simulated variances match those found in the field. Most models, however,
do not simulate the variances expected for various management scenarios.

ATMOSPHERIC CONSTITUENTS

Within agricultural systems models the major component that describes the atmosphere is the
evapotranspiration (ET) models. The bridge among the soil–plant–atmosphere components is
through the water loss or ET from the soil or plant surface as estimated through a variety of methods.
Agricultural systems models vary in the method that is used to estimate ET from very simple
monthly average models such as Blaney–Criddle (Blaney and Criddle, 1950) to the treatment of
sparse canopies as described by Shuttleworth and Wallace (1985). Hatfield and Allen (1996) showed
that many of the current ET models are well suited to estimation of potential ET (unlimited soil
water supplies) but have problems when applied to deficit soil water conditions. Part of this difficulty
is in quantifying how the plant canopy responds to deficit soil water conditions. Continual mea-
surements of the flux rates of latent heat, sensible heat, or carbon dioxide fluxes over an agricultural
surface have shown large amounts of variation within short time intervals. As an example, one of
the major factors within the Shuttleworth–Wallace model is the inclusion of a canopy resistance
term. It is assumed that this term is relatively constant; however, observations of the energy balance
over crop canopies that permit the calculation of canopy resistance have revealed how this changes
throughout the day and across days, due to crop growth and soil water conditions (Hatfield, 1985).
Variations from 10 to 1000 m s–1 have been observed within a five-day period. Large variations in
surface resistance were observed immediately after tillage operations and quickly changed as the
soil surface dried. We have observed differences within fields in the drying rate due not only to
varying water holding capacity of the soil but also to differing amounts of residue on the soil
surface. We can describe these processes with simulation models, but accounting for the spatial
and temporal responses to various conditions is not done very well within the current models.

Atmospheric components into agricultural systems models include air temperature, solar radi-
ation and precipitation as the minimum data set, although the more sophisticated models also need
humidity and wind speed. These data are often used from observational sites within an area and
there have been extensive efforts to develop tools to estimate weather parameters. An example of
this approach is described by Yu (2000) for CLIGEN. The values generated through this method
represent the general conditions for a site and do not account for the small variations that may be
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induced by microtopographic effects on air temperature, soil temperature, windspeed, or solar
radiation. Variations in air or soil temperature can be quite large over small distances, although
little quantitative evidence has been assembled to guide the development of submodels that would
estimate this variation. It is often assumed that in the energy balance that soil heat flux is relatively
constant over small areas. This energy balance component varies greatly over due to microtopo-
graphic effects as shown by Kustas et al. (2000). They found that differences at midday on the
order of 200 W m–2 were not uncommon in the sparse mesquite dune canopies. Hatfield and Prueger
(2001) found that within a corn (Zea mays L.) canopy the variation among 20 soil heat flux
measurements in a 1.5 by 4 m area was 100 W m–2 when the canopy was small and variation
decreased as the canopy developed. Likewise, soil temperature in the upper 10 cm of the soil profile
also showed a large variation with differences at midday of nearly 10°C. This example demonstrates
the potential variation that exists in one component of the energy balance that would be critical
for simulation of plant water use. We expect less difference in air temperature across this same
distance because air is more fluid and has a greater degree of mixing. Most models would assume
a single value of soil heat flux or predict a single value. This degree of variation would have a
large impact on nutrient cycling, chemical reactions and biological activity.

Water budget methods have been combined with soil variation to estimate corn yields. Timlin
et al. (2001) used a water budget from the PLANTGRO model to calculate grain yield as a function
of soil water. They incorporated spatial variation of rooting depth into this model and then simulated
grain yield. This effort was an expansion of earlier work by Timlin et al. (1986), which defined
how soil water variation affected crop production. This type of approach integrates several different
components of the soil–plant–atmosphere continuum into a yield assessment tool.

The atmospheric component of agricultural system models needs improvement in the following
ways:

1. Quantification of the variation in atmospheric parameters required in agricultural system models —
Variations exist in time and space. These variations are often assumed to be small; however, as
with soil heat flux or air temperature across small distances, they could be quite large. One example
of the variation expressed in most models is the effect of slope and azimuth on the solar radiation
input.

2. Incorporation of realistic atmospheric variation induced by microtopographic changes within the
field — Tillage induces change in the surface roughness and at the same time changes the
microtopography of the soil surface. This affects the surface energy balance. Evidence for this
affect is easily seen when the south facing sides of ridges have a large plant growth than the north
side of the ridge even when the ridge is only 25 cm wide. Most models assume a level soil surface
and do not account for the changes in surface roughness after tillage.

3. Incorporation of realistic atmospheric parameters that represent changes within the field micro-
climate — Often, meteorological data are used from nearby weather stations that are not repre-
sentative of the microclimate induced by the developing crop or soil management treatment zones.

4. Utilization of improved simulation modules that represent actual conditions rather than potential
conditions — Realistic simulations of ET deficit under less-than-full soil water conditions need
to be developed. Several models can estimate potential ET (PET) and these work reasonably well
for a variety of conditions. The main limitation is how we adjust PET to estimate ET through
some type of canopy parameterization process.

5. Incorporation of sufficient detail of the microclimate within and around agricultural systems that
would link with other biotic models (insects, weeds, or diseases) — This remains one of the largest
challenges for models because of the number of interactions that are required to understand and
quantify.

6. Agronomic practices, such as row spacing and row direction, affect the microclimate — Although
some evidence exists regarding the degree of influence of these changes on the soil–plant–atmo-
sphere interaction, there remains a lack of quantitative understanding of these changes throughout
the growing season.
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Atmospheric components in the models must address a number of challenges. For many of
these needs, some qualitative evidence can be used to begin the development of process models,
but little quantitative evidence has been collected over a range of environments or cropping systems.
Incorporation of these factors into the current models would improve performance and reliability
in estimating agricultural systems.

ISSUES IN SCALING

The largest challenge in the further refinement of agricultural systems models is the issue of
scaling. As an example, RZWQM is a one-dimensional model, while SWAT is constructed to
simulate watershed scale processes using lumped parameters. Each model has its own utility and
purpose; however, scaling becomes an issue on agricultural system models because results from
fields or portions of a field need to be extrapolated to another scale. This transfer of information
across scales (time and space) may be the greatest research need for agricultural systems models.
Bierkens et al. (2000) describes a philosophy and process for scaling that provides some useful
insights for agricultural systems models. As an illustration, if we use precipitation in a surface
runoff model for a watershed then we have to account for the spatial variation in precipitation. For
most watersheds, this is unknown. In a study in central Iowa, Hatfield et al. (1999) showed that
for individual storms there was a large variation among rain gauges across a 5400 ha watershed in
nearly level terrain and during individual convective storms the variation was tenfold of the mean
for the storm, but there were no significant differences in the annual totals among the 25 rain
gauges. The method of accounting for or understanding spatial and temporal variation will be
critical in moving among scales with models. A single rain gauge would not provide an adequate
estimate of the variation across the watershed during the times of the year in which estimating the
impact of surface runoff would be critical. Using lumped data into a model to estimate surface
runoff or water distribution in a watershed is not appropriate.

The ability to move across scales is an assumption that most users make about models.
Increasing aggregation size (time or space) can be accomplished by two methods: averaging the
model inputs across the desired intervals (lumping) and using those averages as inputs for a single
run of the model; or, running the model many times with the individual input data points (distrib-
uting) and then integrating the outputs over the desired aggregation scale. Using Figures 16.1 as a
case study, we could either run a model with individual values for each soil or compute the weighted
average across the field as inputs. Each approach has advantages and disadvantages. Averaging the
inputs and running the model once is less time consuming, but nonlinearities in the responses to
the inputs would likely reduce accuracy of the overall field estimate. Analyses need to be conducted
for a number of models to determine the potential problems in scaling issues. A primary issue will
be the method of handling variation within a soil type, as depicted in Table 16.1. One of the most
important issues is to determine the scale appropriate parameters for different components of the
model. Incorporation of a quantitative treatment of variability within the unit area of the simulation
model needs to be evaluated and more importantly compared to observed results to determine if
the model treatment of variability is adequate. For example, if a field average determination of
leaching losses of a pesticide is required, what would be the difference between simulating a field
average set of soil parameters compared with averaging the results for the individual soils within
the field? Assessment of the impact of different methods of scaling relative to model inputs and
outputs will require data sets collected specifically for this type of model validation study. Devel-
opment of sampling methods for fields that address both spatial and temporal variation are being
undertaken as continuation of the geostatistical approach described by Journel and Huijbrechts
(1978).

Problems of this nature have been addressed in several of the models. Haskett et al. (1995) used
an aggregation of the input parameters by county across Iowa as input into GYLSIM to estimate
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regional scale soybean yields. Predicted yield values at the regional and state scale agreed reasonably
with reported yield from statewide surveys. To estimate surface and subsurface water quality, the
SWAT model has been combined with HUMUS using GIS and regional databases to provide
aggregate input into the SWAT model (Srinivasan et al., 1993). Development of GIS layers for
different parameters has helped to provide a more realistic regional scale assessment. Spatial
patterns are represented in this way for basin and regional scale estimates; however, the greatest
challenge may be at the field scale in which crop growth and yield differences are responding to
microscale variations. Another approach to scaling within agricultural systems models is to utilize
remote sensing inputs as a representation of spatial scale and also feedback into the model predic-
tion. Maas (1988 a, b) described an approach to incorporate remotely sensed observations into crop
growth and yield models. Crop growth models were coupled with remotely sensed observations of
leaf area index and plant biomass to provide spatial feedback into the model to accommodate
periodic calibration of model performance. This technique has a large amount of potential utility
for application to crop management models, although the value to the decision making process has
yet to be demonstrated.

There remain a number of challenges with scaling. Properties have been estimated with geo-
statistical methods in order to provide estimates of soil parameters at different locations within a
field or management unit. Development in interpolation methods continues to take observations
into another representation. Methods such as jackknifing, bootstrapping and kriging have become
routine words in many scientists’ vocabularies as well as in statistical analyses (Journel and
Huijbrechts, 1978). We would suggest that, in the next decade, refinement of these methods should
continue as more spatial data are collected that permit rigorous evaluation of these techniques.

CONCLUSIONS

A number of challenges for the future of agricultural system models must be addressed by
researchers, both experimentalists and modelers, over the next decade. The authors’ goal has been
to provide a spark of interest in areas that increasing the value of the current and the next generation
of models. These can be examined through the components of current models that express the soil,
plant, or atmospheric parameters. On examination, the changes that occurred in agricultural models
over the past 10 years, resulted in large strides being made in the assessment of different scales.
The primary questions are “Who is the intended user of the model output?” and “What type of
decision will be made with the output?” It is unreasonable to assume that the current models will
address all of the needs or expectations from a wide range of users. The scientific community has
been developing models that accurately simulate single agricultural systems. Few models truly
allow for diversity in crop rotations or feedbacks among changes induced by management and the
long-term effect on varying cropping or livestock systems.

Future research will have to focus on quantifying the interactions among system components.
Endless challenges exist in this area and increased maturity of our understanding of these interac-
tions will help guide our process. The world of decision making and artificial intelligence will
provide opportunities for us that we can not imagine today.
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