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Preface

This textbook has been prepared for graduate students and professionals keeping up
with recent technological developments in the field of sedimentation engineering.
This text is not a voluminous encyclopedia; it is rather a concise digest to be found
in the briefcases of students and professionals. It scrutinizes selected methods that
meet learning objectives, underlining theory and field applications.

The material can be covered within a regular forty-five-hour graduate-level
course at most academic institutions. Colorado State University offers several
graduate courses in hydraulics, sedimentation and river engineering, and stream
rehabilitation. Two advanced courses CIVE716 Erosion and Sedimentation and
CIVE717 River Mechanics are offered in sequence. This book has been prepared
for the first course and the author’s companion book entitled River Mechanics, at
Cambridge University Press, has been tailored to the needs of the second course.
The prerequisites include undergraduate knowledge of fluid mechanics and basic
understanding of partial differential equations.

The chapters of this book contain a variety of exercises, examples, problems,
computer problems, and case studies. Each type illustrates a specific aspect of
the profession from theoretical derivations through exercises and derivations, to
practical engineering solutions through the analysis of simple examples and com-
plex case studies. Most problems can be solved with a few algebraic equations; a
few require the use of a computer. Problems and equations marked with a single
diamond (�) are important; those with a double diamond (��) are considered most
important. The answers to some problems are provided to check calculations. Tests
and homework assignments can include problems without answers.

Recent technological developments in engineering encourage the use of com-
puters for quantitative analyses of erosion, transport, and sedimentation. Numerous
algorithms in this text can be easily programmed. No specific computer code or
language is emphasized or required. Instead of using old software packages, the

xi



xii Preface

textbook promotes student creativity in developing their own tools and programs
with the best software available at any given time.

This second edition has been significantly revised and improved. Specific goals
with the revisions have been twofold: (1) clarify and reinforce the most important
concepts and principles through added explanations, figures, examples, and new
homework problems; and (2) expand and update the technical content in the light
of recent developments in the literature and engineering practice. Throughout the
revisions, the main objectives have been to keep this text: (1) concise and effective
when learning new concepts and derivations; and (2) helpful as a reference for
future use in engineering practice. A major concern throughout the revisions has
been to keep this textbook light and affordable.

I am grateful to my own teachers and professors at Laval University, and par-
ticularly to my advisors M. Frenette, J. L. Verrette, Y. Ouellet and B. Michel.
I am also grateful to my mentors at Colorado State University, and specifically to
D. B. Simons, H. Rouse, E. V. Richardson, and my esteemed colleagues. Many grad-
uate students offered great suggestions for improvement to this textbook. Jenifer
Davis diligently typed successive drafts of the manuscript and Jean Parent pre-
pared professional figures. Finally, it has been a great pleasure to collaborate with
the Cambridge University Press production staff.



Symbols

Symbols

a,ax acceleration
a thickness of the bed layer
A surface area
AT ,AU ,AG,AB gross, upland, gully, and bank erosion
At basin drainage area
B constant of the resistance formula
B bulking factor
c� bedform celerity
c0 integration constant
cBd ,ccl coefficients
C Chézy coefficient
Ca near-bed sediment concentration
Co= lc/

√
la lb Corey particle shape factor

Cv,Cw,Cppm,Cmg/l sediment concentration by volume, weight, in parts per
million, and milligrams per liter

Ct ,C∀,Cf time-, spatial-, and flux-averaged concentration
CD,CE drag and expansion coefficients
Ĉ cropping-management factor of the USLE
d10,d50 grain size with 10%, or 50%, of the material finer by weight
ds sediment size
d∗ dimensionless particle diameter
D molecular diffusion coefficient
e void ratio
eB Bagnold coefficient
E specific energy
Eb near-bed particle pick-up rate
f Darcy–Weisbach friction factor E = 2ds/h

xiii



xiv List of symbols

F force
Fr Froude number
Frd densimetric Froude number
F1,F2,J1,J2, I1, I2 components of the Einstein integrals
g gravitational acceleration
G specific gravity
Gr gradation coefficient
h flow depth
hc, hn critical and normal flow depth
H Bernoulli sum
He Hedstrom number
i rainfall intensity
I universal soil-loss equation rainfall intensity
ks, k ′

s boundary and grain roughness height
K consolidation coefficient
K̂ soil erodibility factor of the USLE
Kd dispersion coefficient
� liter
�a, �b , �c particle dimensions
�1 , �2 , �3 , �4 moment arms for particle stability analysis
�m mixing length
l,L lengths
Lb,Ls,Lt bedload, suspended load, total load
L̂ field length factor of the USLE
m,M mass
M,N particle stability coefficients
M ′

D, M ′′
D moments

n Manning n
�n vector normal to a surface
p pressure
p0 porosity
P wetted perimeter
P̂ conservation practice factor
q unit discharge
qb,qs,qt unit sediment discharge (bed, suspended, total)
Q total discharge
Qb,Qs,Qt sediment discharge (bed, suspended, total)
r radial coordinate
R radius of a sphere
R̂ rainfall erosivity factor of the USLE
RT sampler lowering rate



List of symbols xv

Re, ReB, Red, Rep Reynolds numbers
Re∗ = u∗ds

ν
grain shear Reynolds number

Rh = A/P hydraulic radius
Ro Rouse number
Sh Shen–Hung parameter
Sp = (�b�c/�

2
a)

1/3 sphericity of a particle
S0,Sf ,Sw bed, friction, and water surface slopes
Ŝ slope steepness factor of the USLE
SF particle stability factor
SDR sediment-delivery ratio
t,T time
td , tt , tv dispersion, transversal, and vertical time scales
T sediment transport parameter
Tc consolidation time
TE trap efficiency
TR life expectancy of a reservoir
Tw wave period
T˚C, T˚F temperature in degrees Celsius and Fahrenheit
u,vx,vy,vz velocity
u∗ shear velocity
V depth-averaged flow velocity
∀ volume
W channel width
x,y,z coordinates
XC settling distance
XD total rate of energy dissipation
Xr runoff length
Y sediment yield
ẑ upward vertical direction
zb bed elevation
z0 elevation where the velocity is zero
Z dependent variable

Greek symbols

αe energy correction factor
β, δ, λ, θ angles of the particle stability analysis
βm momentum correction factor
βs ratio of sediment to momentum exchange coefficient
γ specific weight
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∂ partial derivative
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�, dune height and wavelength
�pi sediment size fraction
ε turbulent mixing coefficients
εm eddy viscosity
ζ turbulent-dispersive parameter
η0, η1 particle stability number
θ angular coordinate
� angle
ϑ mixing stability parameter
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λ linear concentration
μ dynamic viscosity
υ kinematic viscosity
ξ = z/zm normalized depth
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ΠW wake strength
σ normal stress components
σ standard deviation for sediment diffusion
σ g gradation coefficient
σ t mixing width
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τ ∗ Shields parameter
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ṁ, Ċv point source
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1

Introduction

Erosion and sedimentation refer to the motion of solid particles, called sediment.
The natural processes of erosion, transportation and sedimentation, sketched in
Figure 1.1, have been active throughout geological time and have shaped the present
landscape of our world.Today, they can cause severe engineering and environmental
problems.

Human activities usually accelerate the processes of erosion, transport, and sed-
imentation. For instance, soil erodibility is enhanced by plowing and tillage. The
protective canopy is weakened by grubbing, cutting, or burning of existing veg-
etation. Besides producing harmful sediment, erosion may cause serious on-site
damage to agricultural land by reducing the productivity of fertile soils. Under
some circumstances, the erosion rate can be 100 to 1,000 times greater than the
geological erosion rate of 0.1 ton/acre year (25 ton/km2 year).

Severe erosion can occur during the construction of roads and highways when
protective vegetation is removed and steep cut and fill slopes are left unprotected.
Such erosion can cause local scour problems along with serious sedimentation
downstream. Approximately 85% of the 571,000 bridges in the United States are
built over waterways. The majority of these bridges span rivers and streams that
are continuously adjusting their beds and banks. Bridges on more active streams
can be expected to experience scour problems as a result of stream realignment.
Local scour at bridge piers and erosion of abutments are the most common causes
of bridge failure during floods.

Mining operations may introduce large volumes of sediment directly into natural
streams. Mine dumps and spoil banks often continue to erode by natural rainfall
for many years after mining operations have ceased. For example, some drainage
and flood problems in the Sacramento Valley, California, as well as problems of
construction and maintenance of navigation channels, can be traced directly to
mining activities that took place more than a century ago at the time of the gold

1



2 Introduction
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Figure 1.1. Processes of erosion, transport, and sedimentation

rush. Gravel stream mining can cause severe channel instabilities such as upstream
headcutting, which may trigger instability problems at highway bridges.

Stream and river control works may have a serious local influence on channel
erosion. Channel straightening, which increases slope and flow velocity, may ini-
tiate channel and bank erosion. If the bed of a main stream is lowered, the beds
of tributary streams are also lowered. In many instances, such bed degradation is
beneficial because it restores the flood-carrying capacity of channels.

Sediment transport affects water quality and its suitability for human consump-
tion or use in various enterprises. Numerous industries cannot tolerate even the
smallest amount of sediment in the water that is necessary for certain manufactur-
ing processes, and the public pays a large price for the removal of sediments from
the water it consumes every day.

Dam construction influences channel stability in two ways. It traps the incoming
sediment, and it changes the natural flow and sediment load downstream. As a net
result, degradation occurs below dams and aggradation might increase the risk of
floodingupstreamofthereservoir.Severeproblemsofabrasionof turbines,dredging,
andstreaminstabilityandpossible failureareoftenassociatedwith reservoiranddam
construction. Damage can be observed downstream from dam failure sites. In recent
years,damremovalhasbecomeincreasinglypopular.Theredistributionofsediment,
at times contaminated, after dam removal will foster new research developments.

Sediment not only is the major water pollutant, but also serves as a catalyst,
carrier, and storage agent of other forms of pollution. Sediment alone degrades
water quality for municipal supply, recreation, industrial consumption and cooling,
hydroelectric facilities, and aquatic life. In addition, chemicals and waste are assim-
ilated onto and into sediment particles. Ion exchange occurs between solutes and
sediments. Thus, sediment particles have become a source of increased concern as
carriers and storage agents of pesticides, residues, adsorbed phosphorus, nitrogen,
and other organic compounds, heavy metals, actinides and radioactive waste, as
well as pathogenic bacteria and viruses.

The problems associated with sediment deposition are varied. Sediments
deposited in stream channels reduce flood-carrying capacity, resulting in more
frequent overflows and greater floodwater damage to adjacent properties. The
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Figure 1.2. Learning erosion and sedimentation

deposition of sediments in irrigation and drainage canals, in navigation channels and
floodways, in reservoirs and harbors, on streets and highways, and in buildings not
only creates a nuisance but inflicts a high public cost in maintenance, removal,
or in reduced services. Sedimentation is of vital concern in the conservation,
development, and utilization of our soil and water resources.

As sketched in Figure 1.2, learning sedimentation involves three major ele-
ments: (1) observation; (2) physics and; (3) mathematics; these elements may seem
disjointed at first. In the classroom, we develop the ability to: (1) make good obser-
vations; (2) understand the mechanics of the problem; and (3) find appropriate
engineering solutions. Competence is developed through the skills in these three
areas. The course CIVE716 aims at developing observational skills through a field
trip and the analysis of laboratory and field data. Physical understanding is pro-
moted through the in-depth analysis of the equations governing sediment transport.
The mathematical skills are also developed through multiple exercises, calculation
examples, homework, and computer problems. Altogether, these skills are dis-
played in numerous case studies illustrating solutions to sedimentation engineering
problems.

This book rests on Newtonian mechanics and integrates concepts from fluid
mechanics and sediment transport theory. Chapter 2 outlines the physical proper-
ties of sediments and dimensional analysis. Chapter 3 presents the fundamental
principles of fluid mechanics applied to sediment-laden flows. Chapter 4 explains
the concept of lift force and describes the motion of single particles in inviscid
fluids. Chapter 5 analyzes viscous fluids and explains the concept of drag force.
Applications of the concept of turbulence to sediment-laden flows are summarized
in Chapter 6. Chapter 7 extends the analysis of the beginning of motion of single
particles to complex three-dimensional cases with applications to stable channel
design. The complex topics of bedform configurations and resistance to flow are
reviewed in Chapter 8. The general topic of sediment transport is divided into three
chapters: bedload in Chapter 9, suspended load in Chapter 10, and total load in
Chapter 11. Sedimentation is covered in Chapter 12 with emphasis on reservoirs.



2

Physical properties and dimensional analysis

The processes of erosion, transport, and deposition of sediment particles introduced
in Chapter 1 relate to the interaction between solid particles and the surrounding
fluid. This chapter describes physical properties of water and solid particles in terms
of dimensions and units (Section 2.1), physical properties of water (Section 2.2)
and of sediment (Section 2.3). The method of dimensional analysis (Section 2.4) is
then applied to representative erosion and sedimentation problems.

2.1 Dimensions and units

The physical properties of fluids and solids are usually expressed in terms of the
following fundamental dimensions: mass (M ), length (L), time (T ), and temper-
ature (T◦). The fundamental dimensions are measurable parameters which can be
quantified in fundamental units.

In the SI system of units, the basic units of mass, length, time, and temperature
are the kilogram (kg), the meter (m), the second (s), and the degree Kelvin (◦K),
respectively. Alternatively, the Celsius scale (◦C) is commonly preferred with the
freezing point of water at 0◦C, and the boiling point at 100◦C.

A newton (N) is defined as the force required to accelerate one kilogram at one
meter per second squared. Knowing that the acceleration due to gravity at the Earth’s
surface g is 9.81 m/s2, the weight of a kilogram is obtained from Newton’s second
law: F = mass × g = 1 kg × 9.81 m/s2 = 9.81N. The unit of work (or energy)
is the joule (J) which equals the product of one newton times one meter. The unit
of power is a watt (W) which is a joule per second. Prefixes are used to indicate
multiples or fractions of units by powers of 10.

μ(micro)= 10−6

m(milli) = 10−3

c(centi) = 10−2

⎫⎬
⎭
⎧⎨
⎩

k(kilo) = 103

M(mega)= 106

G(giga) = 109

4



2.1 Dimensions and units 5

Table 2.1. Geometric, kinematic, dynamic, and dimensionless variables

Variable Symbol
Fundamental
dimensions SI Units

Geometric variables (L)
length L,x,h,ds L m
area A L2 m2

volume ∀ L3 m3

Kinematic variables (L,T )
velocity V ,vx,u,u∗ LT−1 m/s
acceleration a,ax,g LT−2 m/s2

kinematic viscosity v L2T−1 m2/s
unit discharge q L2T−1 m2/s
discharge Q L3T−1 m3/s

Dynamic variables (M ,L,T )
mass m M 1 kg
force F = ma,mg MLT−2 1 kg m/s2 = 1 Newton
pressure p = F/A ML−1T−2 1 N/m2 = 1 Pascal
shear stress τ , τxy, τo, τc ML−1T−2 1 N/m2 = 1 Pascal
work or energy E = F•d ML2T−2 1 Nm = 1 Joule
power P = E/t ML2T−3 1 Nm/s = 1 Watt
mass density ρ, ρs ML−3 kg/m3

specific weight γ , γs = ρsg ML−2T−2 N/m3

dynamic viscosity μ= ρv ML−1T−1 1kg/ms = 1Ns/m2 =
1 Pas

Dimensionless variables (−)
slope So,Sf – –
specific gravity G = γ s/γ – –
Reynolds number Re = Vh/v – –
grain shear Reynolds
number

Re∗ = u∗ds/v – –

Froude number Fr = V /
√

gh – –
Shields parameter τ∗ = τ/(γs − γ )ds – –
concentration Cv ,Cw,C – –

For example, one millimeter (mm) stands for 0.001 m and one mega watt (MW)
equals one million watts (1,000,000 W).

In the English system of units, the time unit is a second, the fundamental units
of length and mass are respectively the foot (ft), equal to 30.48 cm, and the slug,
equal to 14.59 kg. The force required to accelerate a mass of one slug at one foot
per second squared is a pound force (lb) used throughout this text. The temperature
in degree Celsius T◦

C is converted to the temperature in degree Fahrenheit T◦
F using

T◦
F = 32◦F + 1.8T◦

C .



6 Physical properties and dimensional analysis

Table 2.2. Conversion of units

Unit kg, m, s N, Pa, Watt

1 acre = 4046.87 m2

1 acre foot (acre-ft) = 1233.5 m3

1 atmosphere = 101,325 kg/ms2 = 101.3 k Pa
1 Btu = 778 lb ft = 1055 kg m2/s2 = 1055 Nm
1 bar = 100,000 kg/ms2 = 100 k Pa
1 ◦Celsius = (T◦

F − 32◦)5/9 = 1◦K
1 ◦Fahrenheit = 32 + 1.8T◦

C = 0.555556◦K
1 day = 1 d = 86,400 s
1 drop = 61 mm3

1 dyne = 0.00001 kgm/s2 = 1 × 10−5 N
1 dyne/cm2 = 0.1 kg/ms2 = 0.1 Pa
1 fathom = 1.8288 m
1 fluid ounce = 2.957 × 10−5m3

1 foot = 1 ft = 0.3048 m
1 ft3/s = 0.0283 m3/s
1 gallon (U.S., liquid) (gal) = 0.0037854 m3

1 gallon per minute (gpm) = 6.31 × 10−5m3/s
1 mgd = 1 million gal/day = 1.55 ft3/s = 0.04382 m3/s
1 horse power = 550 lb ft/s = 745.70 kg m2/s3 = 745.7 W
1 inch = 1 in = 0.0254 m
1 in of mercury = 3386.39 kg/ms2 = 3386.39 Pa
1 in of water = 248.84 kg/ms2 = 248.84 Pa
1 Joule = 1 kg m2/s2 = 1 Nm = 1 J
1 kip = 1000 lb = 4448.22 kg m/s2 = 4448.22 N
1 knot = 0.5144 m/s
1 liter = 1l = 0.001 m3

1 micron (μm) = 1 × 10−6 m
1 mile (nautical) = 1852 m
1 mile (statute) = 1609 m
1 Newton = 1 kg m/s2 1 N
1 ounce = 0.02835 kg
1 Pa = 1 kg/ms2 1 N/m2

1 pint = 0.0004732 m3

1 Poise = 1 P = 0.1 kg/ms 0.1 Pa·s
1 pound-force (lb) = 4.448 kg m/s2 = 4.448 N
1 lb ft = 1.356 kg m2/s2 = 1.356 Nm
1 psf (lb per ft2) = 47.88 kg/ms2 = 47.88 Pa
1 psi (lb per in2) = 6894.76 kg/ms2 = 6894.76 Pa
1 pound-force per ft3 = 157.09 kg/m2s2 = 157.09 N/m3

1 quart = 0.00094635 m3

1 slug = 14.59 kg
1 slug/ft3 = 515.4 kg/m3



2.2 Physical properties of water 7

Table 2.2 (cont.)

Unit kg, m, s N, Pa, Watt

1 Stoke = 1cm2/s = 0.0001 m2/s
1 metric ton = 1,000 kg
1 short ton (2 kip mass) = 907.2 kg
1 short ton = 2,000 lb (weight) = 8900 kg m/s2 8.9 kN
1 long ton (UK) = 1016.05 kg
1 Watt US (W) = 1 kg m2/s3 1 W
1 yard (yd) = 0.9144 m
1 year (yr) 31,536,000 s

Most physical variables can be described in terms of three fundamental dimen-
sions (M,L,T ). Variables are classified as geometric, kinematic, dynamic, and
dimensionless variables as shown in Table 2.1. Geometric variables involve length
dimensions only and describe the geometry of a system through length, area, and
volume. Kinematic variables describe the motion of fluid and solid particles and
these variables can be depicted by only two fundamental dimensions, namely L
and T . Dynamic variables involve mass terms in the fundamental dimensions.
Force, pressure, shear stress, work, energy, power, mass density, specific weight, and
dynamic viscosity are common examples of dynamic variables. Several conversion
factors are listed in Table 2.2.

2.2 Physical properties of water

The principal properties of a nearly incompressible fluid like water are sketched on
Figure 2.1.

Mass density of a fluid, ρ

The mass of fluid per unit volume is referred to as the mass density. The maximum
mass density of water at 4◦C is 1000 kg/m3 and varies slightly with temperature as
shown in Table 2.3. In comparison, the mass density of sea water is 1,025 kg/m3,
and at sea level, the mass density of air is ρair = 1.2 kg/m3 at 0◦C. The conversion
factor is 1 slug/ft3 = 515.4 kg/m3.

Specific weight of a fluid, γ

The weight of fluid per unit volume of fluid defines the specific weight, described
by the symbol γ (gamma). At 4◦C, water has a specific weight γ = 9810 N/m3 or
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τzx

Surface area A 

Velocity yx

Distance z

Shear stress

Mass density r

Specific weight g

Kinematic viscosity y

Dynamic viscosity m

Force F

F
A

τzx     =      = m        = r y
 dz

dvxdvx

 dz

Figure 2.1. Newtonian fluid properties

62.4 lb/ft3 (1 lb/ft3 = 157.09 N/m3). Specific weight varies slightly with tempera-
ture as given in Table 2.3. The specific weight γ equals the product of the mass
density ρ times the gravitational acceleration g = 32.2 ft/s2 = 9.81 m/s2.

γ = ρg (2.1)

Dynamic viscosity, μ

As a fluid is brought into deformation, the velocity of the fluid at any boundary
equals the velocity of the boundary. The ensuing rate of fluid deformation causes a
shear stress τzx proportional to the dynamic viscosity μ and the rate of deformation
of the fluid, dvx/dz.

τzx =μ
dvx

dz
(2.2)

The fundamental dimensions of the dynamic viscosity μ are M /LT which is
a dynamic variable. As indicated in Table 2.3, the dynamic viscosity of water
decreases with temperature. Fluids without yield stress for which the dynamic vis-
cosity remains constant regardless of the rate of deformation are called Newtonian
fluids. The dynamic viscosity of clear water at 20◦C is 1 centipoise: 1cP = 0.01 P
= 0.001 Ns/m2 = 0.001 Pas (1 lb·s/ft2 = 47.88 Ns/m2 = 47.88 Pas).

Kinematic viscosity, v

When the dynamic viscosity of a fluid μ is divided by the mass density ρ of the
same fluid, the mass terms cancel out.

μ= ρv (2.3a)



2.2 Physical properties of water 9

Table 2.3. Physical properties of clear water at atmospheric pressure

Temperature
◦C

Mass
density ρ
kg/m3

Specific weight γ
N/m3 or kg/m2s2

Dynamic
viscosity μ
Ns/m2 or kg/ms

Kinematic
viscosity ν
m2/s

−30 921 9,035 Ice Ice
−20 919 9,015 Ice Ice
−10 918 9,005 Ice Ice
0 999.9 9,809 1.79 × 10−3 1.79 × 10−6

4 1,000 9,810 1.56 × 10−3 1.56 × 10−6

5 999.9 9,809 1.51 × 10−3 1.51 × 10−6

10 999.7 9,809 1.31 × 10−3 1.31 × 10−6

15 999 9,800 1.14 × 10−3 1.14 × 10−6

20 998 9,790 1.00 × 10−3 1.00 × 10−6

25 997 9,781 8.91 × 10−4 8.94 × 10−7

30 996 9,771 7.97 × 10−4 8.00 × 10−7

35 994 9,751 7.20 × 10−4 7.25 × 10−7

40 992 9,732 6.53 × 10−4 6.58 × 10−7

50 988 9,693 5.47 × 10−4 5.53 × 10−7

60 983 9,643 4.66 × 10−4 4.74 × 10−7

70 978 9,594 4.04 × 10−4 4.13 × 10−7

80 972 9,535 3.54 × 10−4 3.64 × 10−7

90 965 9,467 3.15 × 10−4 3.26 × 10−7

100 958 9,398 2.82 × 10−4 2.94 × 10−7

◦F slug/ft3 lb/ft3 lb·s/ft2 ft2/s

0 1.78 57.40 Ice Ice
10 1.78 57.34 Ice Ice
20 1.78 57.31 Ice Ice
30 1.77 57.25 Ice Ice
32 1.931 62.40 3.75 × 10−5 1.93 × 10−5

40 1.938 62.43 3.23 × 10−5 1.66 × 10−5

50 1.938 62.40 2.73 × 10−5 1.41 × 10−5

60 1.936 62.37 2.36 × 10−5 1.22 × 10−5

70 1.935 62.30 2.05 × 10−5 1.06 × 10−5

80 1.93 62.22 1.80 × 10−5 0.930 × 10−5

100 1.93 62.00 1.42 × 10−5 0.739 × 10−5

120 1.92 61.72 1.17 × 10−5 0.609 × 10−5

140 1.91 61.38 0.981 × 10−5 0.514 × 10−5

160 1.90 61.00 0.838 × 10−5 0.442 × 10−5

180 1.88 60.58 0.726 × 10−5 0.385 × 10−5

200 1.87 60.12 0.637 × 10−5 0.341 × 10−5

212 1.86 59.83 0.593 × 10−5 0.319 × 10−5
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This results in the kinematic viscosity ν with dimensions L2/T , which is also shown
in Table 2.3 to decrease with temperature. The viscosity of clear water at 20◦C is
1 centistoke = 0.01 cm2/s = 1 × 10−6 m2/s (1 ft2/s = 0.0929 m2/s).

v = 1.78 × 10−6m2/S[
1 + 0.0337T o

C + 0.0002217T o2
C

] (2.3b)

It is important to remember that both the density and viscosity of water decrease
with temperature. Comparatively, the kinematic viscosity of air is approximately
1.6 × 10−4 ft2/s or about 1.6 × 10−5 m2/s at 20◦C and increases slightly with
temperature.

2.3 Physical properties of sediment

This section describes the physical properties of sediment as: single parti-
cle (Section 2.3.1), sediment mixture (Section 2.3.2), and sediment suspension
(Section 2.3.3).

2.3.1 Single particle

The physical properties of a single solid particle of volume ∀s are sketched on
Figure 2.2.

Mass density of solid particles, ρs

The mass density of a solid particle ρs describes the solid mass per unit volume. The
mass density of quartz particles 2,650 kg/m3 (1 slug/ft3 = 515.4 kg/m3) does not
vary significantly with temperature and is assumed constant in most calculations.
It must be kept in mind, however, that heavy minerals like iron, copper, etc. have
much larger values of mass density.

Size ds

Volume    s
Mass density rs = Gr = Ms    s

Specific weight gs = rsg = Gg   
Specific gravity G

Mass Ms

V

V

Figure 2.2. Physical properties of a single particle
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Specific weight of solid particles, γs

The particle specific weight γs corresponds to the solid weight per unit volume of
solid. Typical values of γs are 26.0 kN/m3 or 165.4 lb/ft3 (1 lb/ft3 = 157.09 N/m3).
The specific weight of solid γs also equals the product of the mass density of a solid
particle ρs times the gravitational acceleration g, thus

γs = ρsg (2.4a)

Submerged specific weight of a particle, γ ′
s

Owing toArchimedes’principle, the specific weight of a solid particle γs submerged
in a fluid of specific weightγ equals the difference between the two specific weights;
thus,

γ ′
s = γs − γ = γ (G − 1) (2.4b)

Specific gravity, G

The ratio of the specific weight of a solid particle to the specific weight of fluid
at a standard reference temperature defines the specific gravity G. With common
reference to water at 4◦C, the specific gravity of quartz particles is

G = γs

γ
= ρs

ρ
= 2.65 (2.5)�

Specific gravity is a dimensionless ratio of specific weights, and thus its value
remains independent of the system of units. Table 2.4 lists values of specific gravity
for various minerals.

Sediment size, ds

The most important physical property of a sediment particle is its size. Table 2.5
shows the grade scale commonly used in sedimentation. Note that the size scales
are arranged in geometric series with a ratio of 2. The conversion factor is 1 in =
25.4 mm.

The size of particles can be determined in a number of ways; the nominal diam-
eter refers to the diameter of a sphere of the same volume as the particle usually
measured by the displaced volume of a submerged particle, the sieve diameter is
the minimum length of the square sieve opening, through which a particle will fall,
the fall diameter is the diameter of an equivalent sphere of specific gravity G = 2.65
having the same terminal settling velocity in water at 24◦C. Figure 2.3a shows the
mass and weight of single spherical particles at G = 2.65. Figure 2.3b shows a
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Table 2.4. Specific gravity of different materials

Material Specific gravity (G) Material Specific gravity (G)

Air 0.0012 Humus < 1.5
Alumina 3.6 – 3.9 Ice 0.9
Alumina (Kyanite) 3.58 Ilmenite 4.5 – 5
Alumina (Sandy) 3.95 Iron 7.2
Aluminum 2.69 Kaolinite 2.6
Anhydrite 2.9 Lead 11.38
Apatite 3.1 – 3.3 Limestone 2.7
Asbestos 2.4 – 2.5 Limonite 3.6 – 4
Basalt 3.3 Magnetite 5.2 – 6.5
Biotite 2.8 – 3.2 Mercury 13.57
Calcite 2.72 Mica 2.7 – 3.3
Chlorite 2.6 – 3 Muscovite 2.8 – 3.1
Chromite 4.3 – 4.6 Oil 0.9
Clay (Kaolin) 2.6 Olivine 3.2 – 3.6
Concrete 2.4 Porphyry 2.7
Copper 8.9 Pumice <1.5
Copper Pellets 8.9 Pyrite 5 – 5.1
Diabas 3.3 Pyroxene 3.2 – 3.5
Diamond 3.5 Pyrrhotite 4.6 – 4.7
Dolomite 2.87 Quartz 2.66
Feldspar 2.5 – 2.8 Sandstone 2.1 – 2.2
Ferric Oxide 4.3 Silica Sand 2.6
Fluorite 3.2 Steel 7.83
Gabbro > 3.2 Titanium 3.08
Garnet 3.5 – 4.3 Topaz 3.4 – 3.6
Glass 2.59 Tourmaline 3 – 3.3
Gold 15 – 19.3 Water (salt) 1.03
Granite 2.7 Wood (hard oak) 0.8
Hematite 5.3 Wood (soft pine) 0.48
Hornblende 3 – 3.3 Zircon 4.2 – 4.9

range of sampling mass required for the appropriate determination of grain size in
gravel and cobble-bed streams.

Sphericity, Sp

The shape of sediment particles can be described by measurements of the longest

axis �a, the intermediate �b, and the shortest axis �c. The sphericity Sp =
(
�b�c
�2

a

)1/3

is used to define the equivalent side of a cube �aSp that has the same volume as
the particle. Also, the volume of the parallelepiped particle can be calculated as
∀p = Sp3�3

a. Figure 2.4 shows the type of particle shapes given �b/�a and �c/�b.
The Corey shape factor Co = �c/

√
�a�b is always less than unity, and values of 0.7

are typical for natural particles.
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Table 2.5. Sediment grade scale

Size range

Class name millimeter (mm) micron (μm) inch (in)
US standard
sieve

Boulder Very large 4096–2048 160–80
Large 2048–1024 80–40
Medium 1024–512 40–20
Small 512–256 20–10

Cobble Large 256–128 10–5
Small 128–64 5–2.5

Gravel Very coarse 64–32 2.5–1.3
Coarse 32–16 1.3–0.6
Medium 16–8 0.6–0.3 5
Fine 8–4 0.3–0.16 10
Very fine 4–2 0.16–0.08

Sand Very coarse 2.000–1.000 18
Coarse 1.000–0.500 35
Medium 0.500–0.250 60
Fine 0.250–0.125 120
Very fine 0.125–0.062 230

Silt Coarse 62–31
Medium 31–16
Fine 16–8
Very fine 8–4

Clay Coarse 4–2
Medium 2–1
Fine 1–0.5
Very fine 0.5–0.24

2.3.2 Bed sediment mixture

The properties of a bed sediment mixture are sketched in Figure 2.5.

Particle size distribution

The particle size distribution in Figure 2.6 shows the percentage by weight of
material finer than a given sediment size. The sediment size d50 for which 50% by
weight of the material is finer is called the median grain size. Likewise d90 and d10

are values of grain size for which 90% and 10% of the material is finer, respectively.
The examples shown in Figure 2.6 are for the Mississippi River near Tarbert Landing
in suspension (A) and bed material (B). Also, the material of Little Granite Creek,
Wyoming shows bedload (C), sub-surface (D), and surface material (E).
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Figure 2.3. a) Mass and weight of a single spherical particle b) Sampling mass
versus maximum particle size (modified after Bunte and Abt, 2001)

Sieve analysis

Sieving is considered a semidirect method of particle size measurement because it
does not measure the particle size precisely for at least four reasons: (1) because of
irregularities in shape, particles larger or smaller (larger for cylinders and smaller for
disks) than the spherical equivalent diameter may pass through the sieve openings;
(2) inaccuracies in size and shape of the sieve openings; (3) the sieving operation
is for a finite duration and therefore some particles may not have an opportunity to
pass a given sieve opening; and (4) small particles may cling to large ones, thereby
changing the percentage of material reaching the sieves with smaller openings.

A wet-sieve method keeps the sieve screen and sand completely submerged.
The equipment may consist of six or more 10-cm ceramic dishes, a set of 3-in.
(7.5 cm) sieves, and a thin glass tube. All sieves are washed with a wetting solution
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∀

Figure 2.5. Properties of a sediment mixture

(detergent) and then raised gently with distilled water so that a membrane of water
remains across all openings. The first or largest sieve is immersed in a ceramic
dish with distilled water to a depth of about 1/4 in. (1/2 cm) above the screen. The
sediment is washed onto the wet sieve and agitated somewhat vigorously in several
directions until all particles smaller than the sieve openings have a chance to fall
through the sieve. Material passing through the sieve with its wash water is then
poured onto the next smaller size sieve. Particles retained on each sieve and those
passing through the 0.062-mm sieve are transferred to containers that are suitable
for drying the material and for obtaining the net weight of each fraction.

The dry-sieve method is less laborious than the wet-sieve method because a
mechanical shaker can be used with a nest of sieves for simultaneous separation of
all sizes of interest. It requires only that the dry sand be poured over the coarsest
sieve and the nest of sieves shaken for 10 min on a shaker having both lateral and
vertical movements. United States standard sieve numbers are listed in Table 2.5.



16 Physical properties and dimensional analysis

10

0

20

30

40

50

60

70

80

90

100

10–2

0.0625 2 64 256

2 3
10–1 1 10 1010

Mississippi

Sediment size, ds (mm) 

 
%

 f
in

er Little Granite Creek

Silt

V
er

y 
fi

ne

Fi
ne

M
ed

iu
m

C
oa

rs
e

Fi
ne

M
ed

iu
m

C
oa

rs
e

V
. c

oa
rs

e

V
er

y 
fi

ne

Fi
ne

M
ed

iu
m

M
ed

iu
m

C
oa

rs
e

V
. c

oa
rs

e

Sm
al

l

Sm
al

l

L
ar

ge

Sand

Transport

Transport Bed

Sub-surface Surface

Gravel Cobble Boulder

C D EBA

Figure 2.6. Particle size distribution examples

Gradation coefficients, σg and Gr

The gradation of the sediment mixture can be described by

σg =
(

d84

d16

)1/2

(2.6a)

or by the gradation coefficient

Gr = 1

2

(
d84

d50
+ d50

d16

)
(2.6b)

Angle of repose φ

The angle of repose of submerged loose material is the side slope, with respect to
the horizontal, or a cone of material under incipient sliding condition. The angle
of repose of granular material varies between 30◦ and 40◦. Specific values are
discussed in Chapter 7.
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Porosity, po

The porosity po is a measure of the volume of void ∀v per total volume ∀t = ∀v +∀s.
The volume of solid particles ∀s = Cv∀t = (1 − po)∀t , thus

po = ∀v

∀t
= e

1 + e
(2.7)

Void ratio, e

The void ratio e is a measure of the volume of void ∀v per volume of solid ∀s or

e = ∀v

∀s
= po

1 − po
(2.8)

Dry specific weight of a mixture, γmd

The dry specific weight of a bed sediment mixture is the weight of solid per unit
total volume, including the volume of solids and voids. The dry specific weight of
a mixture γmd is a function of po as

γmd = Msg

∀t
= γs(1 − po)= γG(1 − po) (2.9)

Dry specific mass of a mixture, ρmd

The dry specific mass of a mixture is the mass of solid per unit total volume. The
dry specific mass of a mixture can be defined as a function of po as

ρmd = Ms

∀t
= γmd

g
= ρs(1 − po)= ρG(1 − po) (2.10)

2.3.3 Sediment suspension

The properties of a sediment suspension are sketched in Figure 2.7, with the volume
of void ∀v equal to the volume of water ∀w, and the mass of the voids Mv equal to
the mass of water Mw.

Volumetric sediment concentration, Cv

The volumetric sediment concentration Cv of a suspension is defined as the volume
of solids ∀s over the total volume ∀t , or

Cv = ∀s

∀t
= ∀s

∀s +∀v
(2.11)�
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Figure 2.7. Properties of a suspension

Conversions to concentration by weight Cw,Cppm, and Cmg/� are presented in
Section 10.1.

Specific weight of a mixture, γm

The specific weight of a submerged mixture is the total weight of solid and water in
the voids per unit total volume. The specific weight of a mixture, γm is a function
of the volumetric sediment concentration, Cv as

γm = Mtg

∀t
= γs∀s + γ∀w

∀s +∀w
= γsCv + γ (1 − Cv)= γ (1 + (G − 1)Cv) (2.12)

Specific mass of a mixture, ρm

The specific mass of a suspension is the total mass of solid and water in the voids per
unit total volume. The specific mass of a mixture, ρm can be defined as a function
of Cv as

ρm = Mt

∀t
= γm

g
= ρsCv +ρ(1 − Cv)= ρ(1 + (G − 1)Cv) (2.13)

Dynamic viscosity of a Newtonian mixture μm

The dynamic viscosity of a Newtonian mixture,μm increases with the concentration
of sediment in suspension. Albert Einstein suggested the following function of
volumetric sediment concentration Cv:

μm =μ(1 + 2.5Cv) (2.14)

This relationship is very approximate, even at low volumetric concentrations
(Cv < 0.05). More details on the viscosity of hyperconcentrations is presented in
Chapter 10 (Section 10.6).
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Table 2.6. Properties of water–sediment mixtures

Variable M, ∀ Relationships

ρ = γ

g

Mw

∀w
Cv = 1 − po = 1/(1 + e)

ρs = γs

g

Ms

∀s
G = ρs

ρ
= γs

γ

ρm = γm

g

Mt

∀t
γm = ρmg = γCv(G − 1)+ γ

ρmd = γmd

g

Ms

∀t
γmd = ρmd g = γsCv = γs(1 − po)

po = ∀w

∀T

∀w

∀t
po = e

/
(1 + e)= 1 − Cv

e = ∀w

∀s

∀w

∀s
e = po

/
(1 − po)= (1 − Cv)/Cv

Kinematic viscosity of a Newtonian mixture, vm =μm/ρm

The kinematic viscosity of a Newtonian mixture, νm is obtained by dividing the
dynamic viscosity of a Newtonian mixture μm by the mass density of the mixture
ρm. A summary of the basic relationships for water–sediment mixtures is given in
Table 2.6.

2.4 Dimensional analysis

Dimensional analysis is a method by which we deduce information about a phe-
nomenon with the single premise that it can be described by a dimensionally correct
group of variables. Dimensional analysis meets the double objective to: (1) reduce
the number of variables for subsequent analysis of the problem; and (2) provide
dimensionless parameters whose numerical values are independent of any system
of units. Neither a complete solution to any physical investigation nor a clear under-
standing of any inner mechanism can be revealed by dimensional reasoning alone.
Dimensional analysis is, however, a useful mathematical tool in the analysis of
sedimentation problems. The following combines the contributions of Buckingham
(1914), Rayleigh (1915), Hunsaker and Rightmire (1947), Langhaar (1951), and
Sedov (1959).

Buckingham’s Π theorem allows us to rearrange n variables in which there
are j fundamental dimensions into n − j dimensionless parameters designated by
the Greek letter Π . Let the dependent variable Z1 be related by any functional
relationship F to the independent variables Z2, . . . ,Zn such that:

Z1 = F (Z2, . . . ,Zn) (2.15)
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with j fundamental dimensions involved, for example j = 3 when their n parameters
combine mass M , length L, and time T , the relation can be reduced to a function
of n − j dimensionless Π parameters in the form:

Π1 = F
(
Π2,Π3, . . . ,Πn−j

)
(2.16)

The method of determining the Π parameters is to select j repeating variables
among the Z variables such that: (1) all j fundamental dimensions can be found in
the set of repeating variables; and (2) all repeating variables must have different
fundamental dimensions. For instance, one cannot select both the width and the
length as repeating variables because both parameters have the same fundamental
dimension L.

The steps in a dimensional analysis can be summarized as follows:

(1) Select the dependent variable Z1 as a function of the independent variables Z2, . . . ,Zn

in the functional relationship Z1 = F (Z2,Z3, . . . ,Zn).
(2) Write the variables in terms of fundamental dimensions and select the j repeating

variables. These variables must contain the j fundamental dimensions of the problem
and the dependent variable should not be selected as a repeating variable. Solve the
fundamental dimensions in terms of the j repeating variables.

(3) Obtain the Π parameters by dividing the non-repeating variables by their fundamental
dimensions written in terms of repeating variables.

(4) Write the functional relation F (Π1,Π2, . . . ,Πn−j)= 0 or Π1 = F (Π2, . . . ,Πn−j), and
recombine if desired to alter the form of the dimensionless parameters Π, keeping the
same number of independent parameters.

The dimensional analysis method is illustrated in the following examples: (1) drag
force exerted on a sphere by relative fluid motion in Example 2.1; and (2) soil
erosion by overland flow in Example 2.2.

Example 2.1 Drag force on a sphere

Consider the drag force FD exerted on a sphere in motion through a homogeneous
mixture (Figure E-2.1.1). The drag force is thought to vary with the relative
velocity u∞, the spherical particle diameter ds, the mass density of the fluid
mixture ρm, and the dynamic viscosity of the mixture μm. Use the method of
dimensional analysis to identify the dimensionless parameter.

Step 1. The dependent variable FD is a function of four independent variables,
with a total of n = 5 variables:

FD = F (u∞, ds, ρm, μm)1 (E-2.1.1)

in which F represents an unspecified function.
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FD

ds

u

rm

mm

Figure E-2.1.1 Drag force on a moving sphere

Step 2. After selecting ds, u∞, and ρm as repeating variables, the three
fundamental dimensions (j = 3) are then rewritten in terms of repeating
variables:

ds = L
u∞ = L/T
ρm = M /L3

⎫⎬
⎭
⎧⎨
⎩

L = ds

T = ds/u∞
M = ρmd3

s

Step 3. After substituting the relationships for M, L, T into the non-
repeating variables divided by their fundamental dimensions, two Π terms
(n − j = 5 − 3 = 2) are obtained respectively from FD and μm:

Π1 = FDT 2

ML
= FDd2

s

ρmd3
s dsu2∞

= FD

ρmu2∞d2
s

(E-2.1.2)

It turns out that Π1 is defining the drag coefficient CD, or Π1 = π CD/8. The
dimensionless parameter for dynamic viscosity is

Π2 = μmLT

M
= μmdsds

ρmd3
s u∞

= μm

ρmu∞ds
= 1

Rep

The parameterΠ2 can be simply replaced by the Reynolds number of the particle
Rep.

Step 4. Π1 = F (Π2), or CD = F (Rep), results in

FD = F (Rep)
πd2

s

4

ρmu2∞
2

(E-2.1.3)�
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The advantage of the method of dimensional analysis in this case has been to
reduce the number of parameters from five in Equation (E-2.1.1) to two dimen-
sionless parameters, Π1 = CD and Π2 = Rep. Each of those two parameters is
dimensionless and a unique graph can be made with data from different systems
of units. The method, however, fails to provide any indication as to what kind
of relationship may exist between CD and Rep. For further analysis, the scientist
must carry out experiments and collect laboratory or field measurements of CD

versus Rep. Measurements of drag coefficients around spheres versus the par-
ticle Reynolds number Rep = u∞ ds/νm are shown in Figure E-2.1.2. Note that
a similar plot for natural sand particles is also shown in Figure 5.2. Chapter 5
shows that the flow around a particle is laminar when Rep < 1 and turbulent at
large particle Reynolds numbers.

Example 2.2 Soil erosion by overland flow

Consider the problem of sheet erosion induced by rainfall on a bare soil surface
(Fig. E-2.2.1). The method of dimensional analysis is first used to reduce the
number of variables and define dimensionless parameters.
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Figure E-2.2.1 Sheet erosion

Step 1. The rate of sediment transport by sheet erosion qsm is written as a
function of the geometric, fluid flow and soil variables:

qsm = F

(
So, q, i, Xr , ρ, ν,

τc

τo

)
(E-2.2.1)

in which qsm is the rate of mass transport per unit width, q is the unit discharge,
i is the rainfall intensity, Xr is the length of runoff, ρ is the mass density of
the fluid, v is the kinematic viscosity of the fluid, τc and τo are respectively the
critical and applied boundary shear stresses and So is the bed surface slope. The
critical shear stress τc is the applied shear stress that is required to detach soil
particles and bring them into motion.

Besides the two dimensionless variables in Equation (E-2.2.1) (Π5 = τc/τo,
Π2 = So) the remaining variables (n = 6) are functions of three fundamental
dimensions (M,L,T , thus j = 3), and can be transformed into three (n − j = 3)
dimensionless parameters. Each variable is written in terms of the fundamental
dimensions M,L, and T as follows:

qsm = M /LT ; q = L2/T ; i = L/T ;

Xr = L; ν = L2/T ; ρ = M /L3

Step 2. The fundamental dimensions can be written in terms of the repeated
variables Xr , ν, and ρ

Xr = L
ν = L2/T
ρ = M /L3

⎫⎬
⎭ thus

⎧⎨
⎩

M = ρX 3
r

L = Xr

T = X 2
r /ν
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Step 3. The three Π parameters are directly obtained from substituting the
fundamental dimensions into the relationships for qsm,q, and i, respectively

Π1 = qsm

M
LT = qsmXrX 2

r

ρX 3
r ν

= qsm

ρν

Π3 = qT

L2
= qX 2

r

X 2
r ν

= q

ν
= Re

Π4 = iT

L
= iX 2

r

Xrν
= iXr

ν

Step 4. The five dimensionless parameters can thus be written

qsm

ρν
= F

(
So,

q

ν
,
iXr

ν
,
τc

τo

)
(E-2.2.2)

The final result from this dimensional analysis is a dimensionless sediment
transport parameter function of the soil surface slope, the Reynolds number,
a dimensionless rainfall parameter, and the soil characteristics.

Further progress can only be achieved through physical understanding of the
erosion processes and through laboratory or field experiments. For instance, the
rate of sediment transport in sheet flow is assumed to be proportional to the
product of the powers of the Π parameters(

qsm

ρν

)
= e1Se2

o

(q

ν

)e3
(

iXr

ν

)e4(
1 − τc

τo

)e5

(E-2.2.3)

in which e1,e2,e3,e4, and e5 are coefficients to be determined from laboratory
or field investigations.

The first three factors (So, q, i) of Equation (E-2.2.3) represent the poten-
tial erosion or sediment transport capacity of overland flow. It is interesting to
note that for one-dimensional overland flow on impervious surfaces, q = iXr .
The sediment transport capacity is reduced by the last factor reflecting the soil
resistance to erosion. When τc remains small compared to τo and with q = i,Xr ,
Equation (E-2.2.3) can be rearranged in the following form:

qsm = ẽ1Se2
o qe3 (E-2.2.4)

The experiment on sandy soils by Kilinc (1972) at Colorado State University
showed that qsm (metric ton/ms) = 2.55 × 104 S1.66q2.035. This relationship
will be used again in Chapter 11. At a given field site (constant slope So),
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Equation (E-2.2.4) further reduces to

qsm ∼ qe3 (E-2.2.5)

This relationship defines the sediment-rating curve, and will also be used for
alluvial channels in Chapter 11. From field observations in rivers, the value of
the exponent e3 typically varies between 1.3 and 2.

Exercises

�2.1 Erosion losses from pasture areas are considered excessive when they exceed
5 tons/acre-year. Determine the equivalent annual losses in metric tons per hectare
per year and metric tons per square kilometer per year.

�2.2 A sidecasting dredge operator tries to maintain the specific weight of the dredged
material in the pipeline at 1.5 times that of water. Determine the volumetric
concentration of sediment in this short pipeline.

2.3 Long pipelines tend to plug at volumetric sediment concentrations around 0.2.
Determine the corresponding specific weight of the mixture in lb/ft3 and kN/m3.

Problems

Problem 2.1

Determine the mass density, specific weight, dynamic viscosity, and kinematic
viscosity of clear water at 20◦C: (a) in SI; and (b) in the English system of units.
Answer:

(a) ρ = 998kg/m3, γ = 9790N/m3, μ= 1.0 × 10−3Ns/m2,
ν = 1 × 10−6m2/s

(b) ρ = 1.94slug/ft3, γ = 62.3 lb/ft3,μ= 2.1 × 10−5 lb·s/ft2,
ν = 1.1 × 10−5ft2/s

�Problem 2.2

Determine the sediment size, weight, mass density, specific weight, and sub-
merged specific weight of small quartz cobbles: (a) in SI units; and (b) in the
English system of units.
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� Problem 2.3

The volumetric sediment concentration of a sample is Cv = 0.05. Determine
the corresponding: (a) porosity po; (b) void ratio e; (c) specific weight γm; (d)
specific mass ρm; (e) dry specific weight γmd ; and (f) dry specific mass ρmd .
Answer: po = 0.95, e = 19, γm = 10.6 kN/m3, ρm = 1082 kg/m3

γmd = 1.29 kN/m3, ρmd = 132 kg/m3 (see also Table 10.3 p. 240).

��Problem 2.4

A 50g bed-sediment sample from Big Sand Creek, Mississippi, is analyzed for
particle size distribution.

Size fraction (mm) mass (g) Cumulative mass (g) % finer

ds < 0.15 0.9 0.9 1.8
0.15< ds < 0.21 2.9 3.8 7.6
0.21< ds < 0.30 16.0 19.8 39.6
0.30< ds < 0.42 20.1 39.9 79.6
0.42< ds < 0.60 8.9 48.8 97.6
0.60< ds 1.2 50.0 100

(a) Plot the sediment size distribution;
(b) determine d16, d35, d50, d65, and d84; and
(c) calculate the gradation coefficients σ g and Gr.

��Problem 2.5

Consider energy losses �HL in a straight open channel. The energy gradient
�HL/Xc in a smooth channel with turbulent flow depends upon the mean flow
velocity V , the flow depth h, the gravitational acceleration g, the mass density ρ,
and the dynamic viscosity μ. Determine the general form of the energy gradient
equation from dimensional analysis.

Answer:
�HL

Xc
= F

(
Reynolds number Re = ρVh

μ
; Froude number Fr = V√

gh

)

�Problem 2.6

Consider a near-bed turbulent velocity profile. The time-average velocity u at a
distance z from the bed depends on the bed-material size ds, the flow depth h,
the dynamic viscosity of the fluid μ, the mass density ρ, and the boundary shear
stress τo. Use the method of dimensional analysis to obtain a complete set of
dimensionless parameters.
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Hint: Select h,ρ, and τo as repeating variables. Also notice that the problem
reduces to a kinematic problem after defining the shear velocity u∗ = √

τo/ρ

and ν =μ/ρ.

Answer: F

(
u
√
ρ

τo
,
ρds

μ

√
τo

ρ
,

z

h
,
ds

h

)
= 0

��Problem 2.7

Amass of 200 kg of sand is added to a cubic meter of water at 10◦C in a container
that is 0.5m × 0.5m at the base.

(a) If the sand is maintained in suspension through constant mixing, determine the fol-
lowing properties of the mixture in SI units: total volume, concentration by volume,
concentration in mg/l, mass density, and specific weight of the mixture.

(b) Stop mixing and wait until all the sediment has settled at a dry specific weight of 93
pounds per cubic foot. Determine the following properties of the sediment deposit in
SI units: height of the deposit, dry specific mass, void ratio, porosity, and volumetric
concentration.
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Mechanics of sediment-laden flows

This chapter summarizes some fundamental principles in fluid mechanics applied
to sediment-laden flows. The major topics reviewed include: kinematics of flow
(Section 3.1); continuity (Section 3.2); equations of motion (Section 3.3); Euler and
Bernoulli equations (Sections 3.4 and 3.5); momentum equations (Section 3.6); and
the power equation expressing the rate of work done (Section 3.7). Ten examples
illustrate these theoretical concepts with applications.

3.1 Kinematics of flow

The kinematics of flow describes the motion in terms of velocity and type of defor-
mation of fluid elements. The three most common orthogonal coordinate systems
are: (1) Cartesian (x,y,z); (2) cylindrical (r, θ , z); and (3) spherical (r, θ , ϕ), as
shown in Figure 3.1.

The rate of change in the position of the center point of a fluid element is a measure
of its velocity. Velocity is defined as the ratio between the displacement ds and the
corresponding increment of time dt. Velocity is a vector quantity which varies both
in space (x,y,z) and time (t). Its scalar magnitude v at a given time equals the square

root of the sum of the squares of its orthogonal components v =
√

v2
x + v2

y + v2
z .

The differential velocity components over an infinitesimal distance ds (dx,dy,dz)
and time increment dt are:

dvx = ∂vx

∂t
dt + ∂vx

∂x
dx + ∂vx

∂y
dy + ∂vx

∂z
dz (3.1a)

dvy = ∂vy

∂t
dt + ∂vy

∂x
dx + ∂vy

∂y
dy + ∂vy

∂z
dz (3.1b)

dvz = ∂vz

∂t
dt︸ ︷︷ ︸

local

+ ∂vz

∂x
dx + ∂vz

∂y
dy + ∂vz

∂z︸ ︷︷ ︸
convective

dz (3.1c)

28
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The flow is steady when the local terms are zero. Uniform flow is obtained when
the convective terms are zero.

Now consider translation, linear deformation, angular deformation, and rotation
of a fluid element as represented in Figure 3.2. The rate of linear deformation is
indicated by the quantities 	x, 	y, and 	z defined from the velocity components
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Figure 3.1. a) Cartesian and cylindrical coordinates b) Spherical coordinates

vy

vx

v   dt x
x

v   dty

2

Translation Linear deformation

Angular deformation Rotation

∂v dx dt
∂x

x

2

∂v dy
dt

∂y
x

2

∂v dy
dt

∂y

y

2

∂v dx
dt

∂x
y

2
∂v dx

dt
∂x

y

2

∂v dy

dy

dx

dt∂y

Figure 3.2. Translation, linear deformation, angular deformation, and rotation of
a fluid element
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(vx,vy,vz) as:

	x = ∂vx

∂x
; 	y = ∂vy

∂y
; 	z = ∂vz

∂z
(3.2)

The velocity gradients in transverse directions (e.g. ∂vx/∂y) represent the rate of
angular deformation of the element. The rates of angular deformation 
 in the
respective planes are


x = ∂vz

∂y
+ ∂vy

∂z
; 
y = ∂vx

∂z
+ ∂vz

∂x
; 
z = ∂vy

∂x
+ ∂vx

∂y
(3.3)

The rates of rotation ⊗ in their respective planes are defined as

⊗x =
(
∂vz

∂y
− ∂vy

∂z

)
; ⊗y =

(
∂vx

∂z
− ∂vz

∂x

)
; ⊗z =

(
∂vy

∂x
− ∂vx

∂y

)
(3.4)

The components ⊗x, ⊗y and ⊗z of the vorticity vector
⇀⊗ correspond to clockwise

rotation rates about the Cartesian axes. The differential velocity components can
be written as a function of local, linear, angular, and rotational acceleration terms

dvx = ∂vx

∂t
dt +	x dx + 
z

2
dy + 
y

2
dz + 1

2

(⊗y dz −⊗z dy
)

(3.5a)

dvy = ∂vy

∂t
dt +	y dy + 
z

2
dx + 
x

2
dz + 1

2
(⊗z dx −⊗x dz) (3.5b)

dvz = ∂vz

∂t
dt︸ ︷︷ ︸

local

+	z dz︸ ︷︷ ︸
linear

+ 
y

2
dx + 
x

2︸ ︷︷ ︸
angular

dy + 1

2

(⊗x dy −⊗y dx
)︸ ︷︷ ︸

rotational

(3.5c)

Accelerations are obtained from the time derivatives of velocity in Equations (3.1)
and (3.5).

3.2 Equation of continuity

The equation of continuity is based on the law of conservation of mass, stating
that mass cannot be created or destroyed. The continuity equation can be written
in either differential or integral form.

3.2.1 Differential continuity equation

In differential form, consider an infinitesimal control volume d∀ = dx dy dz on
Figure 3.3 filled with fluid of mass density ρm. The difference between the mass
fluxes leaving and entering the differential control volume equal the rate of increase
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Figure 3.3. Infinitesimal element of fluid

of internal mass. For instance in the x direction, the mass flux (M /T ) entering
the control volume is ρmvx dy dz. The mass flux leaving the control volume is
∂ρmvx
∂x dx dy dz in excess of the entering mass flux. This process is repeated in the y

and z directions, and the rate of increase of internal mass is ∂ρm d∀
∂t . The assumption

of a continuous fluid medium yields the following differential relationships:
Cartesian coordinates (x,y,z)

∂ρm

∂t
+ ∂

∂x
(ρmvx)+ ∂

∂y
(ρmvy)+ ∂

∂z
(ρmvz)= 0 (3.6a)

Cylindrical coordinates (r, θ , z)

∂ρm

∂t
+ 1

r

∂

∂r
(ρmrvr)+ 1

r

∂

∂θ
(ρmvθ )+ ∂

∂z
(ρmvz)= 0 (3.6b)

Spherical coordinates (r, θ , ϕ)

∂ρm

∂t
+ 1

r2

∂

∂r
(ρmr2vr)+ 1

r sin θ

∂

∂θ
(ρmvθ sin θ)+ 1

r sin θ

∂

∂ϕ
(ρmvϕ)= 0 (3.6c)

For incompressible fluids, the continuity equation reduces to

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (3.6d)

The conservation of solid mass is defined in Example 3.1. The continuity
equations for solids are identical with Equations (3.6a–c) after replacingρm with Cv.
For homogeneous incompressible suspensions without settling, the mass density is
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independent of space and time (ρs, ρ, ρm = constant), consequently, ∂ρm/∂t = 0
and the continuity equation reduces to Equation (3.6d).

It is also interesting, though far less important, to consider that the properties of

the vorticity vector
⇀⊗ and the velocity vector �v for homogeneous incompressible

fluids are strikingly similar:

div�v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0; (3.7a)

div
⇀⊗ = ∂⊗x

∂x
+ ∂⊗y

∂y
+ ∂⊗z

∂z
= 0 (3.7b)

Likewise, streamlines and vortex lines are respectively defined as

dx

vx
= dy

vy
= dz

vz
(3.8a)

dx

⊗x
= dy

⊗y
= dz

⊗z
(3.8b)

A line tangent to the velocity vector at every point at a given instant is known as a
streamline. The path line of a fluid element is the locus of the element through time.
A streak line is defined as the line connecting all fluid elements that have passed
successively at a given point in space.

Example 3.1 Differential sediment continuity equation

Derive the governing sediment continuity equation given the volumetric sedi-
ment concentration Cv. The net mass of sediment inside the control volume is
dm = ρsCv dx dy dz. Let’s also consider a possible internal source of sediment
within the control volume at a rate ṁ = M/T added to the sediment suspension
in a cubic element dx dy dz. This internal mass change can be due to a chemical
reaction, flocculation of dissolved solids, or a phase change. This analysis can
also apply to chemicals and contaminants, such that a conservative substance is
one where ṁ = 0. The total mass change per unit time inside the control volume

ṁ = (d/dt)(ρsCv)dx dy dz (E-3.1.1)

Let’s consider only advective fluxes as shown in Figure E-3.1.1. The mass flux
entering the control volume by advection in the x direction is ρsCvvx dy dz
and the mass flux leaving the control volume in the x direction is (ρsCvvx +
∂
∂x (ρsCvvx)dx)dy dz. With similar considerations in the y and z directions,
similar to the x-direction fluxes shown in Figure E-3.1.1, the rate of mass change
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Figure E-3.1.1 Differential control volume for sediment continuity

inside the control volume equals the net mass flux entering from all three
directions, thus

ṁ = ∂

∂t
(ρsCv)dx dy dz

−ρsCvvx dy dz +
[
ρsCvvx + ∂

∂x
(ρsCvvx)dx

]
dy dz

−ρsCvvy dx dz +
[
ρsCvvy + ∂

∂y
(ρsCvvy)dy

]
dx dz

−ρsCvvz dx dy +
[
ρsCvvz + ∂

∂z
(ρsCvvz)dz

]
dx dy (E-3.1.2)

∂

∂t
(ρsCv)+ ∂

∂x
(ρsCvvx)+ ∂

∂y

(
ρsCvvy

)+ ∂

∂z
(ρsCvvz)= ṁ

dx dy dz
(E-3.1.3)

which for a constant mass density of sediment ρs reduces to

∂Cv

∂t
+ ∂(Cvvx)

∂x
+ ∂(Cvvy)

∂y
+ ∂(Cvvz)

∂z
= Ċv (E-3.1.4)

where Ċv = ∀̇s∀t
= ṁ

ρs∀t
is the volumetric source of sediment per unit time.

It is important to remember that this derivation only considers advective
fluxes. In the case of sediment transport, diffusion and mixing can induce sed-
iment fluxes even when all velocities are zero. Therefore, this term Ċv can
include the following processes: (1) diffusion, mixing, and dispersion (to be
discussed later in Section 10.2); (2) phase change of the substance (e.g. change
from dissolved solids to particle solids, like flocculation); (3) chemical reac-
tions causing phase changes in the case of metal or contaminant transport; and
(4) decay functions of substances or ṁ �= 0 (e.g. radioactive material).
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3.2.2 Integral continuity equation

The integral form of the continuity equation is simply the integral of the differential
form (Eq. 3.6a) over a control volume ∀. For an incompressible fluid, the integral
form of conservation of mass is∫

∀
∂ρm

∂t
d∀+

∫
∀

(
∂ρmvx

∂x
+ ∂ρmvy

∂y
+ ∂ρmvz

∂z

)
d∀ = 0 (3.9)

This volume integral of velocity gradients can be transformed into surface inte-
grals owing to the divergence theorem applied to an argument F of a partial space
derivative ∫

∀
∂F

∂x
d∀ =

∫
A

F
∂x

∂n
dA (3.10)��

in which ∂x/∂n is the cosine of the angle between the coordinate x and the normal
vector pointing outside of the control volume as shown in Figure 3.1. Example 3.2
illustrates how the integral continuity equation can be directly applied to open
channels. Example 3.3 shows an application of conservation of sediment mass in
open channels.

Example 3.2 Integral continuity equation

Consider the impervious rectangular channel of length �X sketched in
Figure E-3.2.1. The differential continuity equation of (Eq. 3.6a) is multiplied
by d∀ integrated over the control volume ∀ = Wh�X∫

∀
∂ρm

∂t
d∀+

∫
∀

(
∂ρmvx

∂x
+ ∂ρmvy

∂y
+ ∂ρmvz

∂z

)
d∀ = 0 (E-3.2.1)

Considering that the free surface can rise at a rate dh/dt, the first integral for
incompressible fluids (ρm

∼=ρ) corresponds to the mass change inside the control
volume ρm∂(W�Xh)/∂t. The divergence theorem (Equation 3.10) is applied to
the second integral, which reduces to

ρm
∂(W�Xh)

∂t
+
∫

A

(
ρmvx

∂x

∂n
+ρmvy

∂y

∂n
+ρmvz

∂z

∂n

)
dA = 0.

The values of ∂x/∂n, ∂y/∂n, and ∂z/∂n, are the cosines of the angle between
the vector normal to the surface �n pointing outside of the control volume and
the Cartesian coordinates x,y, and z, respectively. For instance, Figure E-3.2.1
illustrates the direction cosines on the downstream face.
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Figure E-3.2.1 Rectangular open-channel flow

Thus for a channel of length�X and flow depth h, the net flux�Q leaving the
control volume in the x direction is A2V2 −A1V1. The net flux entering laterally
in the y direction is �Xq�, where the unit lateral discharge q� = hvy and the
change in control volume of fluid is �(W�Xh)

�t . The equation of conservation of
mass can be expressed as

A2V2 − A1V1 −�Xq� + �(W�Xh)

�t
= 0 (E-3.2.2)

After dividing by �X given Q = AV and the cross-sectional area Ax = Wh, this
equation reduces to

�Q

�X
+ �Ax

�t
= q� (E-3.2.3a)��

At a constant channel width without lateral inflow (q� = 0)

�h

�t
= −1�Q

W�x
(E-3.2.3b)

For steady flow without lateral inflow, �Q = 0 and

Q = A1V1 = A2V2 (E-3.2.4)�

This integral continuity equation is only applicable to steady impervious open
channels.
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Example 3.3 Continuity of sediment

In a rectangular channel reach of width W and length �X, consider sediment
transport by advection only (no molecular diffusion and no turbulent mixing) of
sediment particles (without phase change or flocculation). Couple the volumetric
settling flux Qs = volume of sediment per unit time, with the change in bed
elevation over time. Note that qsx is a volumetric sediment discharge per unit
width with dimension L2/T and qs� is the net unit sediment discharge from
lateral sources.

(a)
−�qsx�XW

�X
+ qs��X − Qsettling = �(CvW�Xh)

�t
(E-3.3.1)

(b) Qsettling = W�X
�zb

�t
(1 − po) (E-3.3.2)

Combining these two equations gives a formulation describing two-dimensional
continuity of sediment where changes in unit sediment discharges by advec-
tion fluxes correspond to changes in bed elevation or change in sediment in
suspension in the water column.

�qsxW − qs��X︸ ︷︷ ︸
advection fluxes

+(1 − po)
�(zbW�X )

�t︸ ︷︷ ︸
change in bed elevation

+ �(Cv∀t)

�t︸ ︷︷ ︸
internal mass

change in
suspension

= 0 (E-3.3.3)
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Figure E-3.3.1 Continuity of sediment
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After dividing by �X, this gives an equivalent formulation as a function of the
total volumetric sediment discharges Qsx = qsxW and Ax = ∀t/�X = Wh as the
reach-average cross-sectional area.

�Qsx

�X
+ (1 − po)

�Wzb

�t
+ �
(
CvAx
)

�t
= qs� (E-3.3.4)��

In the case of steady non-uniform one-dimensional flow in the x direction,
one can consider that qs� = 0 and dCv/dt = 0. The corresponding relationship
reduces to

�zb

�t
= −1

(1 − po)

�qsx

�X
(E-3.3.5)

This formulation is often referred to as the Exner equation. Notice that it assumes
that all the sediment in the water column will deposit within the distance �X
and qsx is a volumetric unit sediment discharge. It also assumes that there is
no lateral influx of sediment. This relationship clearly states that an increase in
sediment flux in the downstream direction results in lowering the bed elevation,
also called riverbed degradation. Conversely, a downstream decrease in sediment
flux results in riverbed aggradation and bed deposition of sediment.

3.3 Equations of motion

The Cartesian acceleration components are obtained directly after dividing the
terms of the velocity equations in Equation (3.1) by dt.

ax = dvx

dt
= ∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
(3.11a)

ay = dvy

dt
= ∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
(3.11b)

az = dvz

dt
= ∂vz

∂t︸︷︷︸
local

+vx
∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z︸ ︷︷ ︸
convective

(3.11c)

The convective terms of the acceleration Equation (3.11a) can also be separated into
rotational and irrotational terms by adding and subtracting the terms vy∂vy/∂x and
vz∂vz/∂x, and by substituting ⊗y and ⊗z from Equation (3.4). Similar substitutions
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can also be done in the y and z directions to give

ax = ∂vx

∂t
+ vz ⊗y −vy ⊗z +∂(v2/2)

∂x
(3.11d)

ay = ∂vy

∂t
+ vx ⊗z −vz ⊗x +∂(v2/2)

∂y
(3.11e)

az = ∂vz

∂t︸︷︷︸
local

+vy ⊗x −vx⊗y︸ ︷︷ ︸
convective
rotational

+ ∂(v2/2)

∂z︸ ︷︷ ︸
convective
irrotational

(3.11f)

Equations (3.11d and f) show that the total acceleration can be separated into local
and convective acceleration terms, while the convective acceleration terms can be
subdivided into rotational and irrotational components.

As sketched in Figure 3.4, the forces acting on a Cartesian element of fluid
and sediment ( dx, dy, dz) are classified as either internal forces or external forces.
The internal accelerations, or body forces per unit mass, acting at the center of
mass of the element are denoted gx, gy, and gz. The external forces per unit
area applied on each face of the element are subdivided into normal and tan-
gential stress components. The normal stresses σx, σy, and σz are positive for
tension. Six shear stresses τxy,τyx,τxz,τzx,τyz,τzy, with two orthogonal components
on each face are applied, as shown in Figure 3.4. The first subscript indicates
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Figure 3.4. Surface stresses on a fluid element
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the direction normal to the face and the second subscript designates the direc-
tion of the applied stress component. The following identities: τxy = τyx; τxz =
τzx; τyz = τzy result from the sum of moments of shear stresses around the cen-
troid. If they were not equal, these stresses would spin an elementary fluid volume
infinitely fast.

The element of fluid in Figure 3.4 is considered in equilibrium when the sum
of the forces per unit mass in each direction x,y, and z equals the corresponding
Cartesian acceleration component ax,ay, and az:

ax = gx + 1

ρm

∂σx

∂x
+ 1

ρm

∂τyx

∂y
+ 1

ρm

∂τzx

∂z
(3.12a)

ay = gy + 1

ρm

∂σy

∂y
+ 1

ρm

∂τxy

∂x
+ 1

ρm

∂τzy

∂z
(3.12b)

az = gz + 1

ρm

∂σz

∂z
+ 1

ρm

∂τxz

∂x
+ 1

ρm

∂τyz

∂y
(3.12c)

These equations of motion are general without any restriction as to compressibility,
viscous shear, turbulence, or other effects.

The normal stresses can be rewritten as a function of the pressure p and additional
normal stresses τxx,τyy, and τzz accompanying deformation:

σx = −p + τxx (3.13a)

σy = −p + τyy (3.13b)

σz = −p + τzz (3.13c)

where all shear stress components will be defined in Chapter 5.
After expanding the acceleration components ax,ay, and az from Equation (3.11),

the equations of motion in Cartesian, cylindrical, and spherical coordinates can be
written as Equations (3.14)–(3.16) in Table 3.1.

After substituting the equations of motion from Equation (3.11d–f) and the nor-
mal stresses from Equation (3.13) into Equation (3.12), the following equations
can be obtained

∂vx

∂t
+ 1

ρm

∂p

∂x
− gx + ∂

(
v2/2
)

∂x
= 1

ρm

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
+ vy ⊗z −vz⊗y

(3.17a)

∂vy

∂t
+ 1

ρm

∂p

∂y
− gy + ∂

(
v2/2
)

∂y
= 1

ρm

(
∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

)
+ vz ⊗x −vx⊗z

(3.17b)
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Table 3.1. Equations of motion

Cartesian coordinates (x, y, z)

x - component

ax = ∂vx

∂t
+vx

∂vx

∂x
+vy

∂vx

∂y
+vz

∂vx

∂z
= gx − 1

ρm

∂p

∂x
+ 1

ρm

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
(3.14a)

y - component

ay = ∂vy

∂t
+vx

∂vy

∂x
+vy

∂vy

∂y
+vz

∂vy

∂z
= gy − 1

ρm

∂p

∂y
+ 1

ρm

(
∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

)
(3.14b)

z - component

az = ∂vz

∂t
+vx

∂vz

∂x
+vy

∂vz

∂y
+vz

∂vz

∂z
= gz − 1

ρm

∂p

∂z
+ 1

ρm

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
(3.14c)

Cylindrical coordinates (r, θ , z)

r - component

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z
=

gr − 1

ρm

∂p

∂r
+ 1

ρm

(
1

r

∂

∂r
(rτrr)+ 1

r

∂τθr

∂θ
− τθθ

r
+ ∂τzr

∂z

) (3.15a)

θ - component
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r
+ vz

∂vθ

∂z
=

gθ − 1

ρmr

∂p

∂θ
+ 1

ρm

(
1

r2

∂

∂r
(r2τrθ )+ 1

r

∂τθθ

∂θ
+ ∂τzθ

∂z

) (3.15b)

z - component
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z
= gz − 1

ρm

∂p

∂z
+ 1

ρm

(
1

r

∂(rτrz)

∂r
+ 1

r

∂τθz

∂θ
+ ∂τzz

∂z

)
(3.15c)

Spherical coordinates (r, θ , ϕ)

r – component

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vϕ

r sin θ

∂vr

∂ϕ
− v2

θ + v2
ϕ

r
= gr − 1

ρm

∂p

∂r

+ 1

ρm

(
1

r2

∂

∂r
(r2τrr)+ 1

r sin θ

∂

∂θ
(τrθ sin θ)+ 1

r sin θ

∂τrϕ

∂ϕ
− τθθ + τϕϕ

r

)
(3.16a)
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Table 3.1. (Cont.)

θ - component

∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vϕ

r sin θ

∂vθ

∂ϕ
+ vrvθ

r
− v2

ϕ cot θ

r
= gθ − 1

ρmr

∂p

∂θ

+ 1

ρm

(
1

r2

∂

∂r
(r2τrθ )+ 1

r sin θ

∂

∂θ
(τθθ sin θ)+ 1

r sin θ

∂τθϕ

∂ϕ
+ τrθ

r
− τϕϕ cot θ

r

)
(3.16b)

ϕ - component
∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vθ

r

∂vϕ

∂θ
+ vϕ

r sin θ

∂vϕ

∂ϕ
+ vϕvr

r
+ vθvϕ

r
cot θ = gϕ − 1

ρmr sin θ

∂p

∂ϕ

+ 1

ρm

(
1

r2

∂

∂r
(r2τrϕ)+ 1

r

∂τθϕ

∂θ
+ 1

r sin θ

∂τϕϕ

∂ϕ
+ τrϕ

r
+ 2τθϕ cot θ

r

)
(3.16c)

∂vz

∂t︸︷︷︸
Euler

(Chapter 3)

+ 1

ρm

∂p

∂z
− gz + ∂

(
v2/2
)

∂z︸ ︷︷ ︸
Bernoulli sum
(Chapters 3&4)

= 1

ρm

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
︸ ︷︷ ︸

viscosity
(Chapter 5)

+ vx ⊗y −vy⊗x︸ ︷︷ ︸
vorticity/turbulence

(Chapter 6)

(3.17c)

The presentation of the upcoming chapters has been designed to explain the main
terms of the equations of motion. Chapter 3 will focus on the terms on the left-hand
side of Equation (3.17). The concepts of buoyancy force, momentum, and energy in
Chapter 3 will be primarily based on the analysis of the terms on the left-hand side
of Equation (3.17). The concept of lift force in Chapter 4 will involve applications
of the Bernoulli sum. The concept of drag force in Chapter 5 will involve the
shear stress terms on the right-hand side of Equation (3.17). Finally, the concept
of vorticity will be expanded into turbulence in Chapter 6 involving the rotational
terms on the right-hand side of Equation (3.17).

3.4 Euler equations

The Euler equations are simplified forms of the equations of motion (Eqs. 3.14–
3.16) for frictionless fluids. Without friction, the shear stress components due to
deformation are zero (all stress components in τ = 0) and the normal stresses are
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equal and opposite to the pressure (σx = σy = σz = −p). Substitution into the
equations of motion yields, for Cartesian coordinates,

ax = gx − 1

ρm

∂p

∂x
(3.18a)

ay = gy − 1

ρm

∂p

∂y
(3.18b)

az = gz − 1

ρm

∂p

∂z
(3.18c)

These equations, valid for inviscid fluids, are known as Euler equations, or

−∂p

∂x
= ρm (ax − gx) (3.19a)

−∂p

∂y
= ρm

(
ay − gy

)
(3.19b)

−∂p

∂z
= ρm (az − gz) (3.19c)

An example of application of the Euler equations is the buoyancy force result-
ing from the integration of the pressure distribution around a submerged sphere
for inviscid fluids without convective acceleration. The buoyancy force has three
components, FBx,FBy,FBz that can be determined as follows from the divergence
theorem Equation (3.10).

FBx =
∫

A
−p

∂x

∂n
dA =

∫
∀
−∂p

∂x
d∀ =

∫
∀
ρm (ax − gx) d∀ (3.20a)

FBy =
∫

A
−p

∂y

∂n
dA =

∫
∀
−∂p

∂y
d∀ =

∫
∀
ρm
(
ay − gy

)
d∀ (3.20b)

FBz =
∫

A
−p

∂z

∂n
dA =

∫
∀
−∂p

∂z
d∀ =

∫
∀
ρm (az − gz) d∀ (3.20c)

Example 3.4 shows an application of the Euler equations for hydrostatic
conditions and Example 3.5 is applied to an accelerated control volume.

Example 3.4. Buoyancy force on a sphere

Consider the hydrostatic pressure distribution around a sphere of radius R sub-
merged in a fluid of mass density ρm (Figure E-3.4.1). The pressure at the center
of the sphere is po and the vertical elevation ẑ at the surface of the sphere is Rcosθ .
The hydrostatic pressure thus varies as p = po − ρmgRcosθ . After considering
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Figure E-3.4.1 Buoyancy force on a sphere

z = ẑ as the vertical direction and ∂z/∂n = cosθ , it is clear that gx = gy = 0
with gz = −g and hydrostatic conditions are described by ax = ay = az = 0. The
buoyancy force FB is calculated from the surface integral of the pressure along
the surface of the sphere.

FB = FBz =
∫

A
−p

∂z

∂n
dA = −

∫
A

pcosθ dA (E-3.4.1)

The elementary surface area is dA = (Rsin θ dϕ)(Rdθ) and the integration is
performed for 0< ϕ < 2π and 0< θ < π

FB = −
π∫

o

2π∫
o

pcosθ (Rsin θdϕ)(Rdθ)

FB = 0 +ρmgR3

π∫
o

cos2θ sin θ dθ

2π∫
o

dϕ = 2πγmR3 × 2

3

We learn that the integral of a constant on a closed surface is zero. The hydrostatic
pressure distribution therefore gives the following buoyancy force.

FB = 4π

3
γmR3 = γm∀sphere (E-3.4.2)
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It is interesting that the buoyancy force in Equation (E-3.4.1) can also be
easily obtained from the divergence theorem as

FB =
∫

A
−p

∂z

∂n
dA =

∫
∀
−∂p

∂z
d∀ =

∫
∀
ρm (az − gz) d∀ = ρmg∀ (E-3.4.3)

It is important to notice that the buoyancy force is different from Archimedes’
principle when az �= 0.

Example 3.5. Buoyancy force for accelerated fluids

Consider a neutrally buoyant sphere of radius R placed in a water container
accelerated in the horizontal direction at ax = g/2. Determine the buoyancy
force on the sphere sketched in Figure E-3.5.1.

The convective acceleration terms for a neutrally buoyant sphere vanish
because the fluid does not accelerate relative to the sphere. Acceleration com-
ponents are ax = ∂vx/∂t = g/2, ay = az = 0. The gravitational acceleration
components are gx = gy = 0, and gz = −g. The buoyancy force component
FBy = 0, the others are

FBx =
∫

∀
−∂p

∂x
d∀ =

∫
∀
ρ (ax − gx) d∀ = ρg

2
∀, and

FBz =
∫

∀
ρ (az − gz) d∀ = ρ

∫
∀
(0 + g) d∀ = γ∀sphere

The net buoyancy force from these two orthogonal components is FB =√
5

2 γ∀sphere acting at an angle of 26.56◦ from the vertical. The buoyancy force
only equals the Archimedes’ force in hydrostatic fluids.

x

a   = g/2

F    = 

z

x

B

Bx

F    = F   = 
Bz

26.6°

5

2

2

sphere

γ

γ

γ ∀∀

∀
∀

Figure E-3.5.1 Accelerated control volume
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3.5 Bernoulli equation

The Bernoulli equation represents a particular form of the equations of motion for
steady irrotational flow of frictionless fluids. A gravitation potential�g = gẑ can be
defined with the axis ẑ vertical upward such that the body acceleration components
due to gravity are:

gx = −∂�g

∂x
; gy = −∂�g

∂y
; and gz = −∂�g

∂z

Since g is a constant, the directional acceleration components are g times the
cosine between ẑ and the component direction. After considering the equations of
motion (Eqs. 3.11 and 3.14), and the gravitation potential, the equations of motion
for incompressible sediment-laden fluids of mass density ρm can be rewritten as
follows, with the Bernoulli terms on the left-hand side:

∂

∂x

(
p

ρm
+�g + v2

2

)
= (vy ⊗z −vz⊗y)− ∂vx

∂t
+ 1

ρm

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
(3.21a)

∂

∂y

(
p

ρm
+�g + v2

2

)
= (vz ⊗x −vx⊗z)− ∂vy

∂t
+ 1

ρm

(
∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z

)
(3.21b)

∂

∂z

(
p

ρm
+�g + v2

2

)
= (vx ⊗y −vy⊗x)− ∂vz

∂t
+ 1

ρm

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
(3.21c)

For steady irrotational flow of frictionless fluids, the right-hand side of Equations
(3.21a–c) vanishes and the Bernoulli sum H for homogeneous incompressible fluids
is constant throughout the fluid

H = p

γm
+ ẑ + v2

2g
= ct (3.22a)�

g
∂H

∂x
= 0 (3.22b)

It is interesting to note that Equation (3.22a) describes a hydrodynamic formulation
of pressure compared to the hydrostatic formulation obtained when v = 0.

In the particular case of flow in a horizontal plane (constant ẑ) of a homogeneous
fluid (constant ρm), the pressure at any point p where the velocity is v can be
calculated from the pressure pr at any reference point given the reference velocityvr:

p = ρm

2

(
v2

r − v2
)

+ pr (3.22c)
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Accordingly, pressure is low when velocity is high and pressure is high at low
velocity.

When the flow is steady, frictionless, but rotational, the right-hand side of
Equation (3.21) equals zero only along a streamline (because of Eq. 3.8); hence for
a homogeneous rotational incompressible fluid,

H = p

γm
+ ẑ + v2

2g
= ct; along a streamline (3.22d)

For steady flow at a mean velocity V in a wide-rectangular channel at a bed slope θ ,
the first and third terms of the Bernoulli sum describe the specific energy function
E defined as:

E = p

γm
+ V 2

2g
= hcos2 θ + V 2

2g
(3.23a)

Considering the unit discharge q = Vh and the Froude number Fr defined as Fr2 =
V 2/gh = q2/gh3, the function E when θ is small is approximated by:

E = h + q2

2gh3
= h

(
1 + Fr2

2

)
(3.23b)

The properties of the function E are such that under constant unit discharge q, the
critical depth hc and the critical velocity Vc correspond to the minimum

(
∂E
∂h = 0

)
of Equation (3.23b). The minimum value Emin is found when Fr2

c = V 2
c

ghc
= q2

gh3
c
= 1.

One can easily demonstrate that q2 = gh3
c or hc = 3

√
q2

g , and Emin = 1.5hc, resulting
in the following identities for the Froude number

Fr = V√
gh

= q

h
√

gh
=
(

hc

h

)3/2

(3.24)

An open-channel flow application of the Bernoulli equation with specific energy is
presented in Example 3.6.

Example 3.6 Rapidly varied open channel flow

Consider steady flow in a wide-rectangular channel. Determine: (1) what is
the maximum possible elevation of a sill �z at section A that will not cause
backwater?; and (2) what is the maximum lateral contraction of the channel at
section B that will not cause backwater? The accelerating flow is shown with
the specific energy diagram Figure E-3.6.1.
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Figure E-3.6.1 a) Flow near sill b) and abutment

(1) The maximum elevation of the sill �zmax at section A is such that the flow will be
critical on top of the sill and �zmax + Emin = E1 or �zmax =�E = E1 − (3/2)hc;

(2) The minimum channel width W2 at section A without causing backwater is such that
the total discharge remains constant Q = W1q1 = W2q2 and the flow is critical in
the contracted section A2, or hc2 = 0.67E1 = 0.67Emin2; and Fr2

c2 = 1 = q2
2/gh3

c2, or

W2 = Q/
√

g(0.67E1)3.

3.6 Momentum equations

Momentum equations define the hydrodynamic forces exerted by sediment-laden
flows. After multiplying the equations of motion (Eqs. 3.14 to 3.16) by the mass
density of the mixture ρm, the volume integral of the terms on the left-hand side of
the equations represent the rate of momentum change per unit volume, while the
rate of impulse per unit volume is found on the right-hand side. Integration over
the control volume ∀ shows that the rate of momentum change equals the impulse
per unit time. For example, the x component in the Cartesian coordinates is:

∫
∀
ρm

(
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z

)
d∀ =

∫
∀
ρmgx d∀−

∫
∀
∂p

∂x
d∀

+
∫

∀

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
d∀

(3.25)
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The integrand on the left-hand side can be rewritten as follows:

∂ρmvx

∂t
+ ∂ρmv2

x

∂x
+ ∂ρmvxvy

∂y
+ ∂ρmvxvz

∂z
− vx

(
∂ρm

∂t
+ ∂ρmvx

∂x
+ ∂ρmvy

∂y
+ ∂ρmvz

∂z

)
(3.26)

By virtue of the continuity equation (Eq. 3.6a), the terms in parentheses in Equation
(3.26) can be dropped. The integral of the time derivative is equal to the total deriva-
tive of a volume integral. The volume integral of the remaining momentum and
stress terms can be transformed into surface integrals by means of the divergence
theorem (Eq. 3.10). The result is the general impulse–momentum relationship.

x - component

d

dt

∫
∀
ρmvx d∀+

∫
A
ρmvx

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA

=
∫

∀
ρmgx d∀−

∫
A

p
∂x

∂n
dA +
∫

A

(
τxx

∂x

∂n
+ τyx

∂y

∂n
+ τzx

∂z

∂n

)
dA (3.27a)

y - component

d

dt

∫
∀
ρmvy d∀+

∫
A
ρmvy

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA

=
∫

∀
ρmgy d∀−

∫
A

p
∂y

∂n
dA +
∫

A

(
τxy

∂x

∂n
+ τyy

∂y

∂n
+ τzy

∂z

∂n

)
dA (3.27b)

z - component

d

dt

∫
∀
ρmvz d∀+

∫
A
ρmvz

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA

=
∫

∀
ρmgz d∀−

∫
A

p
∂z

∂n
dA +
∫

A

(
τxz

∂x

∂n
+ τyz

∂y

∂n
+ τzz

∂z

∂n

)
dA (3.27c)

It is observed that momentum is a vector quantity, the momentum change
due to convection is embodied in the surface integral on the left-hand side of
Equation (3.27), and all the stresses are expressed in terms of surface integrals.
Example 3.7 provides a detailed application of the momentum equations to open-
channel flows. To conclude this section, Example 3.8 introduces the concept of
added mass.
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Example 3.7 Momentum equations for open channels

With reference to the rectangular channel sketched on Figure E-3.7.1, the
momentum relationship (Eq. 3.27a) in the downstream x direction is applied
to an open channel, now subjected to rainfall at an angle θr and velocity Vr over
the free surface area Ar , wind shear τw, upstream bank shear τs, and bed shear
τb = τo = τzx:

d

dt

∫
∀
ρmvxd∀+

∫
A
ρmvx

(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA

=
∫

∀
ρmgxd∀−

∫
A

p
∂x

∂n
dA +
∫

A

(
τxx

∂x

∂n
+ τyx

∂y

∂n
+ τzx

∂z

∂n

)
dA

Some integrals vanish for one-dimensional flow in impervious channels, vy =
vz = τxx = 0, except at the free surface where vz = −vr cos(θr + θ), leaving

ρm�X
dQ

dt
+
∫

A
ρmv2

x
∂x

∂n
dA +
∫

A
ρmvxvz

∂z

∂n
dA

+
∫

A
p
∂x

∂n
dA =

∫
∀
ρmgxd∀+

∫
A
τzx

∂z

∂n
dA +
∫

A
τyx

∂y

∂n
dA

Consider an incompressible homogeneous fluid, constant ρm, and define the
momentum correction factor βm, also called the Boussinesq coefficient, given
the cross-sectional averaged velocity Vx.

βm = 1

AV 2
x

∫
A
v2

x dA (E-3.7.1)�

For most practical applications, the value of βm is generally close to unity, the
reader can refer to Example 6.1 for a detailed calculation example. With average
values of pressure p, velocity V, and area A at the upstream cross-section 1 and
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Figure E-3.7.1 Momentum equations in open channels
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Figure E-3.7.2 Force balance in open channels

downstream cross-section 2. The integration of the momentum equation for this
control volume ∀ of length �X, width W and height h yields:

ρm�X
�Q

�t
+βmρmA2V 2

2 + p2A2 −βmρmA1V 2
1 − p1A1 −ρArV 2

r sin(θ + θr)

cos(θ + θr)= γm∀sin θ − τoW�X − τs2h�X + τwW�X (E-3.7.2a)

Notice here that on the right bank, τs = τyx but ∂y/∂n = −1, while on the left
bank, τs = −τyx but ∂y/∂n = +1. The net result is that both shear forces are
applied in the upstream (negative x) direction as shown in Figure E-3.7.2.

Assuming that the bed shear stress τ0 equals the bank shear stress τs, the
equation with negligible rainfall, Ar → 0, without wind shear, τw → 0, can be
rewritten when the channel inclination θ is small (sin θ ∼= the bed slope So) as

p2A2 +βmρmA2V 2
2 + τo(W + 2h)�X

= p1A1 +βmρmA1V 2
1 + γm

(
A1 + A2

2

)
�XSo (E-3.7.2b)

Further reduction of this equation is possible for uniform flow (A = A1 = A2), in
which case, p1A1 = p2A2, βmρmV 2

1 = βmρmV 2
2 and the friction slope Sf equals

both the water surface slope Sw and the bed slope So. The boundary shear stress
τo is thus related to the friction slope Sf in the following manner

τo = γm
A

(W + 2h)
Sf = γm

A

P
Sf = γmRhSf (E-3.7.3)��

where the hydraulic radius Rh = A/P is the ratio of the cross-sectional area
A = Wh to the wetted perimeter P = W + 2h, as shown in Figure E-3.7.3.



3.6 Momentum equations 51

Δx

s

Δx

Δx

Δx Δx

h

h
h

o

W

=

=

A
P

=or

W h 

A = W h 
P = W + 2 h 

R   = 

R  S 
A
P 

(W + 2h) sin 

sin 
o

o

o

ΔxWτ

τ

τ τ

oτ

oτ

τ

γ

γ γ

γ

sin h

h

fθ

θ

θ

~

∀

Figure E-3.7.3 Force balance for steady-uniform flow

Assuming that this shear stress relationship (Eq. E-3.7.3) is also applicable to
gradually varied flow in wide channels, the Equation (E-3.7.2) can be rearranged
for Vr = 0 and τw = 0 as follows after considering p2A2 −p1A1 = ρm gA�h and
βmρmA2V 2

2 −βmρmA1V 2
1 = ρm�

(
βmQ2/A

)
.

ρm�X
�Q

�t
+ρm�

(
βmQ2

A

)
+ρmgA�h +ρmgA�XSf = ρmgA�XSo

(E-3.7.4a)

After dividing by ρm�X , this reduces to

�Q

�t
+ �

�X

(
βmQ2

A

)
+ gA

�h

�X
= gA
(
So − Sf

)
(E-3.7.4b)�

This equation is essentially describing force balance in gradually varied flow
in a form equivalent to the Saint-Venant equations. For the particular case of
steady-uniform flow, this reduces to Sf = So and

τon = γmRhSo (E-3.7.5)

where τon is the normal bed shear stress.

Resistance to flow

The Darcy–Weisbach friction factor is defined as f = 8τo/ρmV 2, and from
Equation (E-3.7.3) one obtains τo = (f /8)ρmV 2 = ρmgRhSf , or

V =
√

8g

f
R1/2

h S1/2
f (E-3.7.6)��
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For wide-rectangular channels, W � h and Rh = h, this is equivalent to

Sf = f

8

V 2

gh
= f

8
Fr2 = f

8

q2

gh3
(E-3.7.7))��

where Sf is the friction slope and Fr = V /
√

gh is the Froude number. This
Equation (E-3.7.7) can be combined with the unit discharge q = Vh and solved
for the normal flow depth hn corresponding to Sf = So = fq2/8gh3

n, or

hn =
(

fq2/8gSo

)1/3
(E-3.7.8a)

In the case of gradually varied non-uniform flow, it is assumed that f , q, and g,
remain constant, such that at any flow depth h, the corresponding friction slope
Sf is given by Sf = fq2/8gh3, or

hn =
(

fq2/8gSf

)1/3
(E-3.7.8b)

From the ratio of h to hn at constant unit discharge q and friction factor f , one
obtains:

Sf

So
=
(

hn

h

)3

(E-3.7.9)�

The friction slope Sf in gradually varied flows with constant q and f can be
approximated by Equation (E-3.7.9) which shows that Sf < So when the flow
depth exceeds the normal depth and increases very rapidly as h< hn as sketched
in Figure E-3.7.4.

Likewise, a reasonable first approximation for bed shear stress τ0 in gradually
varied flows, with constant q and f , is compared with the bed shear stress at

(

(

(

f q

o

n

n

n

n

f

f
h
 h 

8 g S

3

3

2

2

o

on

o

=
on

 =    h   S
 =    h So

V
2 g

z

h
h   =

S

S   = S

o

o

1

1

Datum

So
1h

h

(nh
 h 

2

γ
γτ

τ
τ

τ

Figure E-3.7.4 Friction slope and shear stress relationships
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normal flow depth τ0n

τ0

τ0n

∼= γmhSf

γmhnSo
= h

hn

(
hn

h

)3

=
(

hn

h

)2

(E-3.7.10)

This shows that the bed shear stress increases (τ > τn) at flow depths less than
normal depth (h< hn).

The other important result from this analysis of gradually varied flow is that as
long as the unit discharge q is constant, Equation (E-3.7.10) shows that the shear
stress increases for converging flow (∂h/∂x < 0), and shear stress decreases for
diverging flow (∂h/∂x > 0). One can thus expect sediment transport to increase
in the downstream direction and cause degradation in converging flow, similarly
sediment transport decreases and causes aggradation in diverging flows.

Example 3.8 Concept of added mass

One important property of the solid–fluid interaction is that the solid is not
entirely free to move within the fluid. As sketched in Figure E-3.8.1, as the
solid particle moves from position (a) to (b), an equal volume of fluid must
move in the opposite direction. This implies that the motion of the particle is
constrained by the motion of the same volume of fluid in the opposite direction.
Therefore if the mass of the solid particle ms is accelerated from (a) to (b), the
mass of an equal volume of fluid mf must also be accelerated. This concept is
referred to as the added mass because the force F required to move the solid
particle at an acceleration a is equal to F = (ms +mf )a. For instance, consider a
submerged object of weight Fw = γs∀ and FB = γ∀. The acceleration from rest
is a = g(G − 1)/(G + 1).

(a) (b)

Solid

Solid

Fluid

Fluid

Figure E-3.8.1 Added mass concept
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3.7 Power equation

Power is the rate of work done by fluid motion within a control volume ∀. It
is obtained by integrating the product of the equations of force per unit volume
ρmax, ρmay, ρmaz (from Eq. 3.12) and the velocity component vx,vy,vz in the same
direction. The Cartesian components in the three orthogonal directions are then
added to give a single scalar equation of rate of work done, or power:∫

∀
ρm(axvx + ayvy + azvz)d∀ =

∫
∀
ρm(vxgx + vygy + vzgz)d∀

+
∫

∀

[
vx

(
∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
+ vy

(
∂τxy

∂x
+ ∂σy

∂y
+ ∂τzy

∂z

)

+vz

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z

)]
d∀ (3.28)

This is a lengthy derivation, but the vorticity components in the equations of motion
(Eq. 3.11d–f) cancel out and the left-hand side of Equation 3.28 can be written solely
as a function of the square of the velocity magnitude v2. The elastic energy of the
fluid per unit mass �e is defined as follows:

ρm
d�e

dt
= −p

(	x +	y +	z
)= −p

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
(3.29)

This elastic energy �e vanishes for incompressible fluids.
Using the divergence theorem, the equation of power (Eq. 3.28) is transformed to

d

dt

∫
∀
ρm

(
v2

2
+�g +�e

)
d∀

+
∫

A
ρm

(
v2

2
+�g +�e

)(
vx
∂x

∂n
+ vy

∂y

∂n
+ vz

∂z

∂n

)
dA

=
∫

A

[
(vxσx + vyτxy + vzτxz)

∂x

∂n
+ (vxτyx + vyσy + vzτyz)

∂y

∂n

+(vxτzx + vyτzy + vzσz)
∂z

∂n

]
dA

−
∫

∀

[
τxx

∂vx

∂x
+ τyy

∂vy

∂y
+ τzz

∂vz

∂z
+ τxy (
z)+ τxz

(
y
)+ τyz (
x)

]
d∀

(3.30)�

The rate of work done is a scalar quantity. Convective terms reduce to the net flux
across the surfaces. The surface integral on the right-hand side represents the total
rate of work done by the external stresses, which is conservative. The volume inte-
gral then indicates the rate at which mechanical energy gradually transforms into
heat.
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Example 3.9 applies the power equation to the rectangular open channel consid-
ered in Example 3.7. The analysis of backwater curves in Example 3.10 highlights
the application of the energy equation to gradually varied flow.

Example 3.9 Rate of work done in open channels

Consider the application of the power equation (Eq. 3.30) to the open-channel
flow illustrated in Example 3.7 (see Figure E-3.7.1). The first integral can
be dropped for steady flow. Further simplification arises for incompressible
fluids (�e = 0 from the continuity relationship) and one-dimensional flow
(vy = vz = 0). If we assume that bank and transversal shear stresses are neg-
ligible, τxx = τyy = τzz = τzy = τyz = τyx = τxy = 0, only the bed shear stress in
the downstream direction is non-zero τzx = τxz = τo = τb �= 0, and the energy
equation reduces to∫

A
ρm

(
v2

2
+�g

)
vx
∂x

∂n
dA =

∫
A
−vxp

∂x

∂n
dA +
∫

A
vxτzx

∂z

∂n
dA −
∫

∀
τxz

∂vx

∂z
d∀

The last surface integral vanishes because vx equals zero at the bed and τzx is zero
at the free surface. After combining the first two surface integrals with�g = gẑ,
one obtains the integral form of the energy equation∫

A
ρmg

(
v2

2g
+ ẑ + p

γm

)
vx
∂x

∂n
dA = −

∫
∀
τxz

∂vx

∂z
d∀ (E-3.9.1)

For one-dimensional flow, the energy correction factor αe, also called the
Coriolis coefficient, is defined as

αe = 1

V 3A

∫
A
v3

x dA (E-3.9.2)�

where V is the cross-sectional averaged velocity. The calculation example for
αe in Example 6.1 illustrates that numerical values of αe remain close to unity.
The volume integral of Equation (E-3.9.1) defines the head loss �HL

�HL = 1

γmQ

∫
A
τxz

∂vx

∂z
d∀

Assuming a hydrostatic pressure distribution, the integral form of the energy
equation (Eq. E-3.9.1) is rewritten as

γmQ

(
p2

γm
+ ẑ2 +αe2

V 2
2

2g

)
︸ ︷︷ ︸

Ĥ2

−γmQ

(
p1

γm
+ ẑ1 +αe1

V 2
1

2g

)
︸ ︷︷ ︸

Ĥ1

= −γmQ�HL
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or

�HL = H̃1 − H̃2

in which the integral form of the Bernoulli sum H̃ resembles the differential
formulation (Eq. 3.22d), except for the energy correction factor αe. This integral
form of the Bernoulli equation which includes head losses is appropriate for
open-channel flows. The integral form of the specific energy Ẽ follows

�H̃

�x
= �

�x

(
p

γm
+ ẑ +αe

V 2

2g

)
= −Sf

�Ẽ

�x
= �

�x

(
p

γm
+αe

V 2

2g

)
= −�ẑ

�x
− Sf = So − Sf

(E-3.9.3)�

in which Ẽ = p
γm

+αe
V 2

2g is the integral form of the specific energy.

Notice the similarity between Ẽ and E from Equation (3.23a), considering that
αe remains close to unity in most turbulent flows. As sketched in Figure E-3.9.1,
the flow depth is added to the bed elevation to define the free-surface elevation,
or hydraulic grade line HGL. The velocity head αeV 2

/
2g is added to the HGL

to define the energy grade line EGL. The slope of the EGL defines the friction
slope Sf .
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Figure E-3.9.1 Hydraulic and energy grade lines

Example 3.10 Backwater curves

Water surface elevation profiles commonly called backwater curves result from
a direct application of the integral form of the energy equation. In the simplified
case of steady one-dimensional flow, Equation (E-3.9.3) can be rewritten as

dẼ

dx
= dẼ

dh

dh

dx
= So − Sf
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From Equation (E-3.9.3), the derivative of Ẽ with respect to h given that p = γmh
and q = Vh is

(
1 −αe

q2

gh3

)
dh

dx
= So − Sf

After substituting the Froude number (Eq. 3.24) and αe
∼= 1, the relation-

ship describing water surface elevation for steady one-dimensional flow of an
incompressible sediment-laden fluid is

dh

dx
= So − Sf

1 − Fr2
(E-3.10.1)��

Using the properties of critical flow depth hc from Equation (3.24) and normal
depth hn from Equation (E-3.7.9), in wide-rectangular channels, Rh = h, the
governing equation for steady flow, with constant q and f , becomes

dh

dx
=

So

[
1 −
(

hn

h

)3
]

[
1 −
(

hc

h

)3
] (E-3.10.2)

where hn =
(

fq2

8gSo

)1/3

and hc =
(

q2

g

)1/3

Notice that dh/dx → 0 as the flow depth h approaches the normal depth hn, as
shown in Figure E-3.10.1. Also, dh/dx → ∞ near critical depth as h → hc. The
sign of dh/dx depends on the relative magnitude of h,hn, and hc. Five types of
backwater profiles are possible:

(1) H profiles for horizontal surfaces with hn → ∞
(2) M profiles for mild slopes when hn > hc

(3) C profiles for critical slopes when hn = hc

(4) S profiles for steep slopes when hn < hc

(5) A profiles for adverse slopes when So < 0

Typical water surface profiles for mild and steep slopes are shown in
Figure E-3.10.1.
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Figure E-3.10.1 Mild and steep slope backwater profiles

Numerical calculations using the direct step method can be initiated from a
given flow depth h1, and the distance increment �x at which h2 = h1 ±�h is
approximated by

�x ∼=
�h

[
1 −
(

hc

h

)3
]

So

[
1 −
(

hn

h

)3
] (E-3.10.3)

Alternatively, the standard step approach can be used whereby the flow depth
increment �h can be calculated at a fixed downstream distance increment �x

�h ∼=�xS0

[
1 −
(

hn

h

)3
]/[

1 −
(

hc

h

)3
]

(E-3.10.4)

Bed shear stress distributions for one-dimensional mild M and steep S back-
water curves are also sketched in Figure E-3.10.1. The analysis based on
Equation (E-3.7.10) shows that the shear stress increases in the downstream
direction for converging flows (M-2 and S-2 backwater curves), and decreases
for diverging flows (M-1, M-3, S-1, and S-3 backwater curves).
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Exercises

3.1 With reference to Figure 3.2, determine which type of deformation is obtained
when vx = 2y and vy = vz = 0.

Answer: Translation along x only; no linear deformation; angular deformation 
z = 2;

rotation, ⊗z = −2.

��3.2 Demonstrate that the equations of motion (Eqs. 3.11d and 3.11a) are identical.
Also reduce Equation (3.5a) to Equation (3.1a).

��3.3 Derive the x component of the equation of motion in Cartesian coordinates
(Eq. 3.14a) from the Equations (3.11–3.13).

3.4 Derive the x component of the Bernoulli equation (Eq. 3.21a) from Equations
(3.11d), (3.14a), and the gravitation potential.

3.5 Derive the x component of the momentum equation (Eq. 3.27a) from
Equation (3.25).

�3.6 Demonstrate, from the specific energy function E, that q2 = gh3
c and Emin =

3hc/2 for steady one-dimensional open-channel flow.

Problems

�Problem 3.1

With reference to Example 3.1, a container 1 m × 1 m at the base and 10 m high
is 90% filled with water. Sediment is added at 1 kg/minute: (a) what is the rate
of change in volumetric concentration; and (b) when the container is filled and
the sediment is well mixed, what is the sediment concentration of the overflow?

�Problem 3.2

Assuming constant depth, what is the cross-sectional average flow velocity V̄
of the main channel as a function of V on the labyrinth weir shown.

30°

60°

V
V

V

W
2

W
2

Figure P-3.2
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�Problem 3.3

Calculate the magnitude and direction of the buoyancy force applied on a neu-
trally buoyant sphere (G = 1) submerged under steady one-dimensional flow
(vy = vz = 0) on a steep slope. Assume that the particle moves with the sur-
rounding fluid of density ρm such that no shear stress is exerted at the edge
of the sphere. Compare the results with Example 3.4. (Hint: integrate the
Euler equations around the sphere from Equation (3.18) with az = ay = 0, and
gx = g sin 30◦, gy = 0 and gz = −g cos30◦).

V

V
R

x

z

30°

Figure P-3.3

Answer: FB = γm∀cos30◦ in direction z, which is less than FB in Example 3.4.
Notice that ∂p/∂x = 0, and the sphere will accelerate in the x direction at
ax = gx = g sin 30◦= 4.9 m/s2. On a spillway, the particle would accelerate until
friction forces become important and (1/ρm)(∂τzx/∂z)= −gx. In all cases, the
x component of the buoyancy force vanishes, and in contrast with Example 3.5,
acceleration is due to the body force per unit mass.

��Problem 3.4

Repeat the calculations of Example 3.5 when the sphere and the surrounding
fluid are accelerated at az = 3g upward. Finally, what is the buoyancy force
when the fluid is in free fall?

�Problem 3.5

With reference to Example 3.3 determine the rate of bed aggradation when the
volumetric flux of settling sediment is Qsettling = ωW�XCv susp, where ω is
the settling velocity and Cv susp is the volumetric concentration of sediment in
suspension.
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��Problem 3.6

With reference to Example 3.3, link the two components (a) and (b) and define
a sediment continuity relationship when the fraction TE of sediment is in the
deposit and the fraction (1 − TE) remains in suspension.

Problem 3.7

Redo the analysis of momentum equations in Equation (E-3.7.2) for steady
uniform flow in a 1V:2H trapezoidal channel. Determine the relationship for
shear stress as a function of the other variables.

��Problem 3.8

Consider a half-cylinder of radius R and length L under hydrostatic pressure
condition. If the pressure on the flat base is po, determine and plot the pressure
distribution around the surface of the object. Integrate the pressure distribution
and find the vertical buoyancy force. Also determine the horizontal buoyancy
force Fbx.

L

x

Rz

rm

Figure P-3.8 Half-cylinder

�Problem 3.9

Consider a quarter-sphere of radius R under hydrostatic pressure. Determine the
pressure distribution around the surface if the pressure on the flat base is po.
Integrate the pressure distribution to determine the buoyancy force components
in the x and z directions.

rm

x

R
z u

Figure P-3.9 Quarter-sphere
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�Problem 3.10

A plastic barrel contains 1,000 kg of water. It is neutrally buoyant, sealed, and
submerged below the free surface. If you tie the container to a boat, starting
from rest (V = 0) what force is required in the cable to accelerate the container
at a = g/4? (Hint: neglect friction on the cable but consider added mass.)

��Problem 3.11

A 30 lb fish is pulled vertically from rest (v = 0). Calculate the tension in the
line when the fish is in the water. Consider the upward accelerations 0, g/2, g,
3g/2, and 2g. Repeat the calculations when you start from rest in the air. (Hint:
consider the weight and added mass.)

a = 0 A = g/2 a = g a = 3g/2 a = 2g

air 45 lb 60 lb
water 60 lb 90 lb

�Problem 3.12

Consider an 8 m3 cubic container filled with water and placed on a scale. A
500 kg solid copper sphere is held with a thin cable without mass and lowered
in the fluid. The sphere is submerged at the center of the full container and the
excess water spills over and off the scale. Determine for each of the following
three conditions: (a) the force in the thread; (b) the hydrodynamic force on the
sphere; and (c) the weight measured on the scale. Three conditions are examined:
(1) the sphere is held stationary by the thread; (2) at the instant when the thread
is cut and the sphere has no velocity; and (3) assume that the sphere settles at
a constant fall velocity. Write the results in a table using rows for 1,2,3 and
columns for a,b,c. Neglect the mass of the thread and the container. (Hints:
consider three free-body diagrams: the sphere, the fluid only, and the container
on the scale; and also consider in (2) that if the sphere moves relative to the
fluid, an equivalent volume of fluid must move in the opposite direction.)

��Problem 3.13

Aspherical ball containing 0.1m3 of air at a density of 2 kg/m3 is held submerged
at the bottom of a pool, 5 m below the water surface. What is the force required
to hold it in place? Also, determine its acceleration when it is released from rest.
(Hint: notice that without added mass, this ball would reach an acceleration of
about 500g!)
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��Computer problem 3.1

Consider steady flow (q = 3.72 m2/s) in the impervious rigid boundary channel.
Assume a very wide channel and f = 0.03. Determine the distribution of the
following parameters along the 25 km channel reach when the water surface
elevation at the dam is 10 m above the bed elevation: (a) flow depth in m;
(b) mean flow velocity in m/s; and (c) bed shear stress in N/m2.

o

10 km 15 km

10 m

S   = 0.001
q

oS   = 0.0005

Figure CP-3.1
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Particle motion in inviscid fluids

The analysis of particle motion in inviscid fluids is important because asymmetric
objects and large sediment particles will be subjected to large lift forces. In real
fluids, the viscous effects can be ignored at large particle Reynolds numbers. At
every point on the surface of a submerged particle, the fluid exerts a force per
unit area or stress. In Chapter 3, the stress vector was subdivided into a pressure
component acting in the direction normal to the surface and two orthogonal shear
stress components acting in the plane tangent to the surface. In this chapter, the
stress vector for inviscid fluids is always normal to the surface, which means that
there is only a pressure component and no shear stress.

The flow of inviscid fluids around submerged particles may be due either to the
movement of the fluid, the movement of the particle, or a combination of both.
The following discussion considers flow conditions made steady by application of
the principle of relative motion of the fluid around a stationary particle. For steady
flow of incompressible and inviscid fluids, the Bernoulli equation is applicable
as long as the flow is irrotational. The approach in this chapter is first to define
the flow field for irrotational flow. The Bernoulli equation applies throughout the
flow field and then defines the pressure from the velocity. The lift force can then
be calculated after integrating the pressure distribution around the solid surface.
The analysis focuses on simple particle shapes, such as cylinders (Section 4.1) and
spheres (Section 4.2), to provide basic understanding of the fundamental concept
of lift force. Five examples provide applications on half-cylinders and half-spheres.

Irrotational flow properties

Irrotational flow is obtained when the rotational terms defined in Equation (3.4)
equal zero. Steady two-dimensional flow is described mathematically by potential
functions Φ and stream functions Ψ . A flow potential exists such that streamlines
Ψ are always perpendicular to potential lines Φ and form orthogonal flow nets,

64
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as shown in Figure 4.1. The velocity components vx and vy are defined from the
gradient of the velocity potential Φ and stream function Ψ as:

vx = −∂Φ

∂x
= − ∂Ψ

∂xy
(4.1a)

vy = −∂Φ

∂y
= ∂Ψ

∂x
(4.1b)

The continuity relationship for incompressible fluids
(
∂vx
/
∂x + ∂vy

/
∂y = 0

)
sat-

isfies the condition that Ψ gives an exact differential expression and Φ obeys
the Laplace equation

(∇2Φ = ∂2Φ/∂x2 + ∂2Φ/∂y2 = 0
)
. The stream function

is therefore a direct consequence of the continuity equation and is applicable
to both incompressible rotational and irrotational flows. The potential func-
tion Φ gives an exact differential expression only when the vorticity is zero(
∂vx
/
∂y − ∂vy

/
∂x = 0

)
. This potential function is thus a direct consequence of

irrotational flow and it also defines the Laplace equation (⊗z ≡ ∇2Ψ = 0).
In cylindrical coordinates, the velocity components vr in the radial direction and

vθ in the tangential direction (vθ is positive in the direction of increasing θ ) of a
system are:

vr = −∂Φ

∂r
= −1

r

∂Ψ

∂θ
(4.2a)

vθ = −1

r

∂Φ

∂θ
= ∂Ψ

∂r
(4.2b)

Equations satisfying the Laplace equation are called harmonic. Equipotential lines
(constant Φ) are orthogonal to streamlines (constant Ψ ). The sum of several har-
monic functions also satisfies the Laplace equation. This is a convenient property
because harmonic functions are linear and can be superposed. The velocity compo-
nents can thus be defined from the gradient of the sum of the harmonic functions.
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4.1 Irrotational flow around a circular cylinder

This section describes the combination of fundamental two-dimensional flow nets
which describe flow configuration around a circular cylinder. The flow field around
a cylinder is defined in Section 4.1.1 and Section 4.1.2 focuses on the calculation
of lift and drag forces.

Rectilinear flow (Fig. 4.2a)

Uniform flow velocity vx =−∂Φ/∂x = u∞ along the x direction, vy =−∂Φ/∂y = 0
and allows the definition of the flow potential from

Φ =
∫

dΦ =
∫

∂Φ

∂x
dx +
∫

∂Φ

∂y
dy = −

∫
vxdx −

∫
vydy

or:

Φ� = −u∞ x = −u∞ r cosθ (4.3a)

Similarly, the stream function is obtained from Equation (4.1) and

Ψ =
∫

dΨ =
∫

∂Ψ

∂x
dx +
∫

∂Ψ

∂y
dy = +

∫
vydx −

∫
vxdy

or:

Ψ� = −u∞ y = −u∞r sin θ (4.3b)

Source (Fig. 4.2b)

The strength of a line source is equal to the volumetric flow rate q = 2πrvr , with
vθ = 0. From Equation (4.2), one obtains:

Φso = − q

4π
ln(x2 + y2)= − q

2π
ln r (4.4a)

Ψso = − q

2π
tan−1 y

x
= − qθ

2π
(4.4b)

Sink (Fig. 4.2c)

A sink is a negative source, or:

Φsi = q

4π
ln(x2 + y2)= q

2π
ln r (4.5a)

Ψsi = q

2π
tan−1 y

x
= qθ

2π
(4.5b)
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Figure 4.2. Two-dimensional flow net: a) rectilinear b) source c) sink d) vortex
e) doublet

Free vortex (Fig. 4.2d)

The positive counterclockwise free vortex of strength %v = 2πrvθ , with vr = 0,
and center at the origin is

Φv = −%v

2π
tan−1 y

x
= −%vθ

2π
(4.6a)

Ψv = %v

4π
ln(x2 + y2)= %v

2π
ln r (4.6b)
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Dipole (Fig. 4.2e)

A dipole, or doublet, is obtained when a source and a sink of equal strength are
brought together in such a way that the product of their strength and the distance
separating them remains constant. The flow net given here without derivation is:

Φd = %d

2π

(
x

x2 + y2

)
= %d cosθ

2πr
(4.7a)

Ψd = −%d

2π

(
y

x2 + y2

)
= −%d sin θ

2πr
(4.7b)

These fundamental flow nets are combined in Section 4.1.1 to define the flow field
around a two-dimensional circular cylinder, like the near surface flow field around
a vertical bridge pier.

4.1.1 Flow field around a circular cylinder

The flow net with circulation past a circular cylinder of radius R is obtained by
combining a rectilinear flow with a doublet of constant strength %d = −2πu∞ R2

and a counterclockwise free vortex of variable strength %v. The streamlines for
flow around a cylinder without circulation (%v = 0) are shown on Figure 4.3a, the

α Γ

Γ

π

u

x

x

y

y

c

v(a) Without circulation,     = 0

(b) With circulation, sin      =  

�

v
4 u    R�

u�
c

c

θ

R

R

Lift Drag

θ
αα

Figure 4.3. Flow net around a cylinder a) without circulation, Γv = 0 b) with
circulation, sin Γv

4π u∞ R
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effect of clockwise circulation (%v < 0) is shown on Figure 4.3b.

Φcyl = −u∞
(

x + R2x

x2 + y2

)
− %v

2π
tan−1 y

x
= −u∞

(
r + R2

r

)
cosθ − %vθ

2π
(4.8a)

Ψcyl = −u∞
(

y − R2y

x2 + y2

)
+ %v

4π
ln(x2 + y2)= −u∞

(
r − R2

r

)
sin θ + %v

2π
ln r

(4.8b)

The velocity components around the cylinder are obtained after applying the
operator in Equation (4.2) to the flow net from Equation (4.8).

vr = u∞
(

1 − R2

r2

)
cosθ (4.9a)

vθ = −u∞
(

1 + R2

r2

)
sin θ + %v

2πr
(4.9b)

where x = r cosθ , y = r sin θ , and vθ is positive counterclockwise. At the cylinder
surface, the radial velocity components vr = 0, and vθ vanish only at the stagnation
points.

4.1.2 Lift and drag on a circular cylinder

The velocity at any point along the surface of a vertical cylinder results from
Equation (4.9b) at r = R. The pressure at any point in a horizontal plane is then cal-
culated from the velocity and the Bernoulli equation (Eq. 3.22a) given the reference
pressure p = p∞ where v = u∞, the relative pressure pr = p − p∞ is

pr = p − p∞ = ρm

2

[
u2∞ −

(
−2u∞ sin θ + %v

2πR

)2
]

(4.10)

With reference to Figure 4.4, the drag force FD per unit length is defined as the net
fluid force in the direction parallel to the horizontal approach velocity u∞ (toward
the viewer), while the lift force FL per unit length L is the net force in the normal
direction (positive when θ = π /2).

FL =
∫ 2π

0
−pr sin θLRdθ

= ρmLR

2

∫ 2π

0
−
[

u2∞ −
(

−2u∞ sin θ + %v

2πR

)2
]

sin θ dθ = −ρmLu∞%v

(4.11a)
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Figure 4.4. Lift and drag on a vertical cylinder

FD =
∫ 2π

0
−pr cosθLRdθ

= ρmLR

2

∫ 2π

0
−
[

u2∞ −
(

−2u∞ sin θ + %v

2πR

)2
]

cosθ dθ = 0 (4.11b)

It is concluded from this potential flow analysis for an inviscid fluid around a
circular cylinder that circulation is necessary for the occurrence of lift forces. Drag
forces cannot be generated in irrotational flows. Example 4.1 provides detailed
calculations of lift and drag forces on a half-cylindrical surface. Without circulation,
lift is caused by the symmetry of the object. Example 4.2 combines lift and buoyancy
forces on a half-cylinder.

Example 4.1 Lift and drag forces on a vertical half-cylinder

Neglect end forces and calculate the lift force per unit mass on the outer surface
of a long vertical half-cylinder of radius R, assuming potential flow without
circulation (%v = 0) (Figure E-4.1.1).

Step 1. The lift force FL 1
2

on the half-cylinder is FL 1
2

=
π∫
0
(−pr sin θ)LRdθ .

Substituting the pressure from Equation (4.10) without circulation (%v = 0)

FL 1
2
=

π∫
0

(
−ρmLR

2

)
(u2∞ − 4u2∞ sin2θ)sin θ dθ (E-4.1.1)

FL 1
2
= 5

3
ρm LRu2∞
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Figure E-4.1.1 Lift and drag on a half-cylinder
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Figure E-4.1.2 Useful sine-integrals

Some useful integrals are shown in Figure E-4.1.2 and Appendix B. Note that
the velocity along the flat face is vb = u∞. The relative pressure on the flat face
is zero and does not yield any additional force in the lateral direction.

Step 2. The drag force FD 1
2
on the half-cylinder is

FD 1
2
=

π∫
0

(−pr cosθ)LRdθ = 0 (E-4.1.2)
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Acceleration

Assuming a solid half-cylinder of radius R and mass density ρs = Gρ, the
acceleration a from the lift force per solid unit mass is:

a =
FL 1

2

mass
=

FL 1
2

ρs∀ = 5

3

2ρm LRu2∞
ρsπ R2 L

∼= u2∞
G R

(E-4.1.3)

At a given velocity, the acceleration a is thus inversely proportional to the
cylinder radius.

Example 4.2 Lift and buoyancy forces on a horizontal half-cylinder

Determine the pressure distribution and calculate the lift and buoyancy forces
on the half-cylinder under the flow conditions sketched in Figure E-4.2.1.

b b

v

v

= sin
dz
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ρ

L

x

R

v
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n

R

dA = L R d

A   = 2R L
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θ

θ

θ
dθ

dθ
θ

θ

– p dA

sinv = - 2 u� θθ

�

�

Figure E-4.2.1 Lift and buoyancy on a half-cylinder

Step 1. The flow velocity field is vb at the base and v = vθ = −2u∞ sin θ
around the curved surface.

Step 2. The Bernoulli equation can be applied between the distant point and
any point along the curved surface.

p

γm
+ ẑ + v2

2g
= p∞

γm
+ u2∞

2g

or

p = p∞ − γmRsin θ +ρm
u2∞
2

−ρm
v2

2
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At the base, the pressure pb is also obtained from the Bernoulli equation

pb = p∞ +ρm
u2∞
2

−ρm
v2

b

2

Step 3. The vertical force on the half-cylinder is obtained from the sum of the
components on the curved surface and at the base

Fz =
∫

A curved

−psin θ dA + pb Ab

= −
∫ π

0

[
p∞ − γmRsin θ +ρm

u2∞
2

−ρm
v2

2

]
RLsin θ dθ + pbAb

= −RL

⎡
⎣ π∫

o

p∞ sin θ dθ − γmR

π∫
o

sin2 θ dθ +ρm
u2∞
2

π∫
o

sin θ dθ

−ρm

4u2∞
2

π∫
o

sin3θ dθ

⎤
⎦+ pbAb (E-4.2.1)

For convenience some integrals in Figure E-4.1.2 can be used.

Fz = −RLp∞2 + γmR2L
2π

4
− ρmu2∞

2
RL 2 + 2ρmu2∞

4

3
RL

+ 2RL

(
p∞ + ρmu2∞

2
− ρmv2

b

2

)

= γm
πR2

2
L︸ ︷︷ ︸

Buoyancy
force

+ 5

3
ρmu2∞RL︸ ︷︷ ︸

Lift force on
curved surface

+ρmRL
(

u2∞ − v2
b

)
︸ ︷︷ ︸

Force at
the base

(E-4.2.2)

when vb = 0, the net lift force FL = 8
3ρmu2∞RL, and when vb = u∞ , the net lift

force FL = 5
3ρmu2∞ RL.

This example shows that the integral of a constant, like p∞, around a
closed surface is zero. This explains why the use of the reference pressure in
Section 4.1.2 and Example 4.1 are sufficient to calculate the lift and drag forces.
The elevation term ẑ of the Bernoulli equation in Step 2 resulted in the buoyancy
force as determined in Chapter 3. It is the velocity head term of the Bernoulli
equation that causes the lift force.
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4.2 Irrotational flow around a sphere

This section describes fundamental three-dimensional flow patterns which can be
combined to define the flow configuration around three-dimensional objects like a
sphere. The flow field around a sphere is discussed in Section 4.2.1 and the lift and
drag forces are presented in Section 4.2.2. The discussion pertains to axisymmetrical
patterns for which vν = 0. Flow patterns in three dimensions are more complex and
most flow potential functions of this section are given without demonstration.

Three-dimensional rectilinear flow

Uniform flow velocity u∞ along x = r cosθ in spherical coordinates (r, θ , ϕ)

Φ�3 = −ru∞ cosθ (4.12a)

Ψ�3 = −r2u∞
2

sin2θ (4.12b)

Three-dimensional source and sink

The strength of a point source is equal to the volumetric flow rate Q = 4πr2vr . The
flow net is given by

Φs3 = Q

4πr
(4.13a)

Ψs3 = Q

4π
cosθ (4.13b)

A three-dimensional sink is a negative source for which the flow net is obtained
after considering a negative discharge −Q in Equations (4.13a) and (4.13b).

Three-dimensional dipole

As in the previous two-dimensional case, the dipole is obtained when a source and
sink of equal strength are brought together in such a way that the product of their
strength and the distance separating them remains constant. The resulting flow net
is described by

Φd3 = −%d3 cosθ

r2
(4.14a)

Ψd3 = %d3sin2θ

r
(4.14b)
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4.2.1 Flow field around a sphere

For steady potential flow around a sphere of radius R in relative motion u∞,
the potential function Φ and the stream function Ψ in spherical coordinates, at
a point (r,θ), are given from inserting a dipole of strength %d3 = u∞ R3/2 in three-
dimensional rectilinear flow. The resulting flow net from Equations (4.12a,b) and
(4.14a,b) is:

Φ = −u∞ R3

2r2
cosθ − u∞ r cosθ (4.15a)

Ψ = u∞ R3

2r
sin2θ − u∞

r2

2
sin2θ (4.15b)

In three-dimensions, the velocity components vr and vθ (vν = 0), in spherical
coordinates are given by the stream function Ψ and the potential function Φ from

vr = −1

r2 sin θ

∂Ψ

∂θ
= −∂Φ

∂r
(4.16a)

vθ = 1

r sin θ

∂Ψ

∂r
= −1

r

∂Φ

∂θ
(4.16b)

The velocity field is described by

vr = u∞ cosθ − u∞
R3

r3
cosθ (4.17a)

vθ = −u∞ sin θ − u∞
2

R3

r3
sin θ (4.17b)

The velocity v at any point on the surface of the sphere (r = R) is obtained from
v = vθ because vr = 0.

v = −3

2
u∞ sin θ (4.18)�

4.2.2 Lift and drag forces on a sphere

The pressure distribution over the surface of the sphere is calculated from this
velocity distribution, knowing that the Bernoulli equation is applicable. Integrat-
ing the hydrostatic pressure distribution results in the buoyancy force obtained in
Example 3.4. The integral of a constant pressure p∞ around a closed surface is zero,
which is equivalent to assuming that the reference pressure p∞ = 0. The hydro-
dynamic pressure distribution associated with the velocity distribution around the
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Figure 4.5. Lift and drag on a sphere

sphere is given by:

pr = p − p∞ = ρmu2∞
2

[
1 − 9

4
sin2θ

]
(4.19)

With reference to Figure 4.5, the lift force FL is calculated from the integration
of relative pressure in the direction perpendicular to the main flow direction,
−pr sin θ cosϕ, multiplied by the elementary surface area RdθRsin θ dϕ and
integrated over the entire sphere, 0< ϕ < 2π , and 0< θ < π .

FL =
π∫

0

2π∫
0

−pr sin θ cosϕR2 sin θ dϕ dθ = 0 (4.20a)

The drag force FD is calculated from the integral of the relative pressure
component in the main flow direction −pcosθ ,

FD =
π∫

0

2π∫
0

−pr cosθR2 sin θ dϕ dθ = 0 (4.20b)

Irrotational flow around a sphere generates neither lift nor drag forces. Irrotational
flow around asymmetrical surfaces, however, generates lift and drag forces. An
instructive application for a half-sphere is presented in Example 4.3. The analysis
of lift forces leads to particle equilibrium in Example 4.4, and a comparison of lift
coefficients in Example 4.5.



4.2 Irrotational flow around a sphere 77

Example 4.3 Lift and drag forces on a half-sphere

Calculate the drag force and the lift force from the pressure distribution of
irrotational flow without circulation around the curved surface of a half-sphere
(Figure E-4.3.1). Consider that the flow velocity at the base of the half-sphere
is vb = u∞.

(a) (b)

γ

π

π

π

ρ
dF = – p dA

D

m

m

dF = dF cosθ
θ

LdF = dF sin    cos ϕθ

p
FL1

F =                        R

F =                R

L

F =             RB

FD

bv

u

u

p
�

�

�

θ

F = 0D

u

27
16

2
3

2

2
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2

2

3

p
�

�

R R

R d

ϕ
R sin  d

Weight

ϕθ

θ

R sinθ
θ ρm bv

2

2

Figure E-4.3.1 Lift and drag on a half-sphere

Drag force

The relative pressure component −pr cosθ in the flow direction is multiplied
by the surface area RdθRsin θdϕ and integrated over the entire surface of the
half-sphere −π/2< ϕ < π/2 and 0< θ < π .

FD =
∫

A
−pr cosθ dA

FD = −
π/2∫

−π/2

π∫
0

ρmu2∞
2

(
1 − 9

4
sin2θ

)
cosθRdθRsin θ dϕ

FD = πR2ρmu2∞[0] = 0 (E-4.3.1)

Lift force

The lift force on a whole sphere is zero because of the symmetry. It is however
instructive to calculate the lift force on a half sphere (Figure E-4.3.1). Using
Bernoulli, the pressure at the base is pb = p∞ + ρm

2

(
u2∞ − v2

b

)
.
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The pressure on the curved surface of elementary area dA = R2 sin θ dθ dϕ

is p = p∞ −γmRsin θ cosϕ+ ρmu2∞
2

(
1 − 9

4 sin2 θ
)

. The upward vertical force at

the base is

Fb = pbAb =
(

p∞ + ρm

2

[
u2∞ − v2

b

])
πR2.

The upward vertical force component on the curved surface is obtained from

Fsz =
∫

A
−pdAsin θ cosϕ

= −p∞ R2
∫ π

o
sinθ sin θ

[∫ π/2

−π/2
cosϕ dϕ

]
dθ

+ γmRR2
∫ π

o
sin3θ

[∫ π/2

−π/2
cos2ϕ dϕ

]
dθ

− ρmu2∞
2

R2
∫ π

o
sin2θ

[∫ π/2

−π/2
cosϕ dϕ

]
dθ

+ ρmu2∞
2

R2 9

4

∫ π

o
sin2θ sin2 θ

[∫ π/2

−π/2
cosϕ dϕ

]
dθ

=
(
−p∞ R2π

2
× 2
)

+
(
γmR32 × 2

3
× π

2

)
−
(
ρmu2∞

2
R2π

2
× 2

)

+
(
ρmu2∞

2
R2 9

4
× 2 × 3π

16
× 2

)

The net vertical force FV = Fb + Fsz shows that the integral of a constant
vanishes, and the remaining terms are:

FV = γm
2

3
πR3︸ ︷︷ ︸

Buoyancy
force

+ρm
u2∞
2
πR2 27

16︸ ︷︷ ︸
Lift force on

curved surface

−ρm
v2

b

2
πR2︸ ︷︷ ︸

Force at the
base

(E-4.3.2)�

The results are quite similar to Equation (E-4.2.2). The first term relates to
buoyancy, the net lift force where vb = 0 is FL = 27

32πρmu2∞R2, and when vb =
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u∞, the lift force reduces to FL = 11
32πρmu2∞R2. It is thus becoming clear that

the maximum lift force of a particle is when vb = 0.The second conclusion is
that the magnitude of the lift force depends on particle shape.

Acceleration

When considering a solid upper half-sphere, of mass densityρs =ρG and volume
∀ = 2πR3/3, the acceleration a can be determined from the lift force per unit
mass when vb = u∞:

a = FL1

ρs∀ = 11πρm

32ρs

u2∞R2

2πR3
3 = 33ρm

64ρs

u2∞
R

� 0.5
u2∞
GR

(E-4.3.3)�

This expression for the acceleration, or lift force per unit mass, resembles
that for flow around a cylindrical section (Eq. E-4.1.3). The lift coefficient and
vertical acceleration depend on particle shape. Another conclusion from this
analysis is that for a given relative velocity u∞, the lift force per unit volume
(or mass) is inversely proportional to the size of the particle. It is thus concluded
that, at a given flow velocity, fine particles are subjected to larger hydrodynamic
accelerations than coarse particles.

Example 4.4 Lift, weight, and buoyancy forces on a sphere

Consider the hydrodynamic forces exerted on the upper half of the sphere illus-
trated in Figure E-4.4.1 and determine the critical approach velocity uc at which
the sphere will be moved out of the pocket. The submerged weight FS is given
by subtracting the buoyancy force from the particle weight FS = FW − FB =
(γ s − γm)

4
3πR3. The lift force FL1 on a half-sphere from Equation (E-4.3.2)

with vb = 0 is FL1 = 27π
32 ρmu2∞R2. Equilibrium is obtained when FW = Fs,

which corresponds to u∞ = uc,

(γs − γm)
4π

3
R3 = 27π

32
ρmu2

cR2

uc =
√
(γs − γm)

4

3
R

32

27ρm

uc
∼= 1.4

√
(G − 1)gds (E-4.4.1)
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Figure E-4.4.1 Equilibrium of a sphere

This approximation is quite informative, and we will obtain very similar results
for the incipient motion of coarse particles in Chapter 7.

Example 4.5. Lift force and lift coefficient

The concept of lift coefficient can be examined from dimensional analysis (see
Example 2.1). The relationship for the lift coefficient can be defined as a function
of the base area of the object Ap as CL = FL

ρmu2∞Ap
.

The base area of a half-cylinder, Ap = 2LR and a half-sphere, Ap = πR2,
the corresponding forces, drag coefficients, and forces/volume are shown in the
table below.

Half-cylinder Half-sphere

vb = u∞ FL = 5

3
ρmu2∞LR

CL = 5

6
= 0.83

FL

ρs∀ = 10

3π

u2∞
GR

FL = 11πR2

32
ρmu2∞

CL = 11

32
= 0.34

FL

ρs∀ = 33

64

u2∞
GR

vb = 0 FL = 8

3
ρmu2∞LR

CL = 8

6
= 1.33

FL

ρs∀ = 16

3π

u2∞
GR

FL = 27πR2

32
ρmu2∞

CL = 27

32
= 0.84

FL

ρs∀ = 81

64

u2∞
GR

It can be concluded that for a given flow velocity, the lift coefficients vary largely
with particle shape and with the position relative to other particles and surfaces.
For instance, objects in suspension will have a lower lift coefficient than objects
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placed against a flat surface. As a consequence, coarse sand particles can be
ejected from the surface and then fall back from the suspension resulting in
saltation. Because of the high Reynolds requirement for this approximation, this
is in practice valid for particle sizes coarser than about 1 mm. Viscous effects
are discussed in Chapter 5.

Exercises

4.1 Calculate the angle αc from vθ = 0 in Equation (4.9b) with clockwise circulation
(%v < 0), and compare with Figure 4.3.

4.2 Derive the potential and stream functions Equation (4.4) for a source from
Equation (4.2) when vr = q/2πr and vθ = 0.

�4.3 Derive the velocity components around a sphere (Eq. 4.17a and b) from the flow
potential Φ in Equations (4.15) and (4.16).

��4.4 Repeat the calculations of Example 4.1 with FL 1
2

= ∫ πo −psin θ dA, and explain

why the use of the reference pressure pr yields the same result as pressure p.

Problems
Problem 4.1

In Example 4.5 consider added mass and estimate the vertical acceleration of a
4 mm semi-spherical gravel particle when u4 = 2uc. Once the particle is ejected,
consider that the base velocity is u∞ and determine the acceleration. (Hint:
notice the change in lift force depending on base flow conditions.)

�Problem 4.2

Calculate the lift force in SI and English units on a 4 m-diameter semi-spherical
tent under a 100 km/h wind. Compare with the lift force of a 4 m-long semi-
cylindrical tent that has the same volume. (Hint: find the mass density of air and
assume that there is no velocity at the base of the tent.)

��Problem 4.3

Plot and compare the distribution of surface velocity, relative pressure, and
boundary shear stress for irrotational flow without circulation around a cylinder
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and a sphere of radius R.

prmax = ρu2∞
2

; p
rmax

and v = 0 at θ = 0◦ and 180◦

(Answer: prmin and vmax at θ = 90◦ and 270◦; τ = 0 everywhere;

vmax cylinder = 2u∞; and vmax sphere = 1.5u∞)

(a) Cylinder (b) Sphere

u� u�

R R
uu

Figure P-4.3 a) cylinder, b) sphere

�Problem 4.4

Integrate the pressure distribution and calculate the net forces applied on a
quarter-sphere with cut planes aligned with the flow.

(a) Quarter-sphere (b) Half-sphere

FD

FD

u�

u�

Figure P-4.4 a) quarter-sphere b) half-sphere

� Problem 4.5

Afarmer covers a 30 ft-diameter pile of hay with tarp. If the long semi-cylindrical
pile is oriented N–S, what weight would anchor the top under 50 mph westerly
winds? Also, would the weight be less if the hay were to be piled in a half-
spherical shape? Finally, which option would require less tarp?

�� Problem 4.6

A semi-cylindrical tunnel is built across a large river to allow traffic of vehicles
from one side of the river to the other. If the tunnel diameter is 30 ft and the tunnel
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weighs 15 tons per linear foot of length, what is the safe operational range in
river flow velocities for this tunnel? How much weight would have to be added
when the flow velocity reaches 15 ft/s during large floods?

� Problem 4.7

The CSU-CHILL radar can be seen at the website http://chill.colostate.edu. The
radar is protected by a near-spherical vinyl-coated Dacron radome with a diam-
eter of 73 ft. The radome is inflated with air pumps and pressurized at 9.75
inches of water pressure differential when the wind speed exceeds 40 miles
per hour. Wind speeds up to 80 miles per hour have been measured at the site
in the past 10 years. Neglect the drag force and determine the lift force in the
upper half-sphere at an 80 mph wind speed. Also determine the maximum wind
speed that would tear the vinyl at the “equator” if the tear-strength of the vinyl
is 650 lb/in. (Hint: only consider the upper half of the spherical radome, also
consider ρair = 1.3 kg/m3.)

http://www.chill.colostate.edu
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Particle motion in Newtonian fluids

In contrast with Chapter 4, this chapter examines cases where viscous forces are
dominant compared to inertial forces. In sedimentation terms, this will describe flow
conditions around small particles like silts and clays.At low rates of deformation and
low concentrations, sediment-laden flows obey Newton’s law of deformation. The
governing equations of motion are called the Navier–Stokes equations (Section 5.1)
which are applied around a sphere to determine: the flow field (Section 5.2); the
drag force (Section 5.3); the fall velocity (Section 5.4); the rate of energy dissipation
(Section 5.5); and laboratory measurements (Section 5.6).

Viscosity is a fluid property that differentiates real fluids from ideal fluids. The
viscosity of a fluid is a measure of resistance to flow. The dynamic viscosity of a
Newtonian mixture μm is defined as the ratio of shear stress to the rate of deforma-
tion, thus its dimensions are mass per unit length and time. The kinematic viscosity
of a mixture vm is defined as the ratio of dynamic viscosity to mass density of the
mixture (vm =μm/ρm) and the dimensions, L2/T do not involve mass.

In a Newtonian fluid the shear stress τyx acting in the x direction is proportional
to the gradient in the y direction of the velocity component vx in the x direction:

τyx =μm
dvx

dy
(5.1)

This basic description is true for one-dimensional flow, but incomplete for two-
dimensional flow because τyx is also a function of ∂vy/∂x.

5.1 Navier–Stokes equations

Shear stresses in a Newtonian fluid equal the product of the dynamic viscosity
of the mixture μm and the rate of angular deformation defined in Section 3.1,

84



5.1 Navier–Stokes equations 85

Table 5.1. Navier–Stokes equations in Cartesian coordinates (x,y,z)

x - component
∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
= gx − 1∂p

ρm∂x
+ μm

ρm

(
∂2vx

∂x2
+ ∂2vx

∂y2
+ ∂2vx

∂z2

)

y - component
∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
= gy − 1∂p

ρm∂y
+ μm

ρm

(
∂2vy

∂x2
+ ∂2vy

∂y2
+ ∂2vy

∂z2

)

z - component
∂vz

∂t
+ vx

∂vz

∂x
+ vy

∂vz

∂y
+ vz

∂vz

∂z
= gz − 1∂p

ρm∂z
+ μm

ρm

(
∂2vz

∂x2
+ ∂2vz

∂y2
+ ∂2vz

∂z2

)

thus

τyx = τxy =μm

(
∂vx

∂y
+ ∂vy

∂x

)
=μm 
z (5.2a)

τzy = τyz =μm

(
∂vy

∂z
+ ∂vz

∂y

)
=μm 
x (5.2b)

and

τxz = τzx =μm

(
∂vz

∂x
+ ∂vx

∂z

)
=μm 
y (5.2c)

The normal stresses of isotropic Newtonian fluids also relate to pressure p, viscosity
μm, and velocity gradients. The relationships for the normal stresses σx, σy and σz

are

σx = −p + 2μm
∂vx

∂x
− 2μm

3

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
(5.3a)

σy = −p + 2μm
∂vy

∂y
− 2μm

3

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
(5.3b)

σz = −p + 2μm
∂vz

∂z
− 2μm

3

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
(5.3c)

In incompressible fluids, the terms in parentheses of Equation 5.3 can be dropped
because they correspond to the continuity equation (Eq. (3.6d)).

Substitution of these stress tensor relationships (Eqs. (5.2) and (5.3)) into the
equations of motion (Eq. (3.12)) gives the complete set of equations of motion
shown in Tables 5.1–5.3. These equations are valid for Newtonian fluids in the
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Table 5.2. Stress tensor and Navier–Stokes equations in cylindrical
coordinates (r,θ ,z)

σrr = −p +μm

[
2
∂vr

∂r
− 2

3
(∇•v)

]

σθθ = −p +μm

[
2

(
1

r

∂vθ

∂θ
+ vr

r

)
− 2

3
(∇•v)

]

σzz = −p +μm

[
2
∂vz

∂z
− 2

3
(∇•v)

]

τrθ = τθr = μm

[
r
∂

∂r

(vθ
r

)
+ 1

r

∂vr

∂θ

]

τθz = τzθ = μm

[
∂vθ

∂z
+ 1

r

∂vz

∂θ

]

τzr = τrz = μm

[
∂vz

∂r
+ ∂vr

∂z

]

where (∇•v)= 1

r

∂

∂r
(rvr)+ 1

r

∂vθ

∂θ
+ ∂vz

∂z

r-component

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z
= gr − 1∂p

ρm∂r

+μm

ρm

[
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+ 1

r2

∂2vr

∂θ2
− 2

r2

∂vθ

∂θ
+ ∂2vr

∂z2

]

θ - component

∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r
+ vz

∂vθ

∂z
= gθ − 1∂p

rρm∂θ

+μm

ρm

[
∂

∂r

(
1

r

∂

∂r
(rvθ )

)
+ 1

r2

∂2vθ

∂θ2
+ 2

r2

∂vr

∂θ
+ ∂2vθ

∂z2

]

z - component

∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z
= gz − 1∂p

ρm∂z

+μm

ρm

[
1

r

∂

∂r

(
r∂vz

∂r

)
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

]
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Table 5.3. Stress tensor and Navier–Stokes equations in spherical
coordinates (r,θ ,ϕ)

σrr = −p +μm

[
2
∂vr

∂r
− 2

3
(∇•v)

]

σθθ = −p +μm

[
2

(
1

r

∂vθ

∂θ
+ vr

r

)
− 2

3
(∇•v)

]

σϕϕ = −p +μm

[
2

(
1

r sin θ

∂vϕ

∂ϕ
+ vr

r
+ vθ cot θ

r

)
− 2

3
(∇•v)

]

τrθ = τθr = μm

[
r
∂

∂r

(vθ
r

)
+ 1

r

∂vr

∂θ

]

τθϕ = τϕθ = μm

[
sin θ

r

∂

∂θ

( vϕ

sin θ

)
+ 1

r sin θ

∂vθ

∂ϕ

]

τϕr = τrϕ = μm

[
1

r sin θ

∂vr

∂ϕ
+ r

∂

∂r

(vϕ
r

)]

(∇•v)= 1

r2

∂

∂r

(
r2vr
)+ 1

r sin θ

∂

∂θ
(vθ sin θ)+ 1

r sin θ

∂vϕ

∂ϕ

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2sin2θ

(
∂2

∂ϕ2

)

r-component

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vϕ

r sin θ

∂vr

∂ϕ
− v2

θ + v2
ϕ

r

= gr − 1∂p

ρm∂r
+ μm

ρm

[
∇2vr − 2

r2
vr − 2

r2

∂vθ

∂θ
− 2

r2
vθ cot θ − 2

r2 sin θ

∂vϕ

∂ϕ

]

θ - component

∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vϕ

r sin θ

∂vθ

∂ϕ
+ vrvθ

r
− v2

ϕ cot θ

r

= gθ − 1

ρmr

∂p

∂θ
+ μm

ρm

[
∇2vθ + 2

r2

∂vr

∂θ
− vθ

r2sin2θ
− 2cosθ

r2sin2θ

∂vϕ

∂ϕ

]

ϕ - component

∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vθ

r

∂vϕ

∂θ
+ vϕ

r sin θ

∂vϕ

∂ϕ
+ vϕvr

r
+ vθvϕ

r
cot θ

= gϕ − 1

ρmr sin θ

∂p

∂ϕ
+ μm

ρm

(
∇2vϕ − vϕ

r2sin2θ
+ 2

r2 sin θ

∂vr

∂ϕ
+ 2cosθ

r2sin2θ

∂vθ

∂ϕ

)
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laminar regime (low Reynolds numbers) and were developed by Navier, Cauchy,
Poisson, Saint-Venant, and Stokes. They are commonly referred to as the Navier–
Stokes equations.

5.2 Newtonian flow around a sphere

The vorticity components ⊗x, ⊗y, and ⊗z defined previously (Eq. (3.4)) have been
shown to satisfy Equation (3.7) which can be used to rewrite the Navier–Stokes
equations from Table 5.1 for an incompressible fluid in a form similar to Equations
(3.21a–c):

∂vx

∂t
− vy ⊗z +vz⊗y = −g∂H

∂x
+ vm∇2vx (5.4a)

∂vy

∂t
− vz ⊗x +vx⊗z = −g∂H

∂y
+ vm∇2vy (5.4b)

∂vz

∂t
− vx ⊗y +vy⊗x = −g∂H

∂z
+ vm∇2vz (5.4c)

in which H represents the Bernoulli sum from Equation (3.22a).
After elimination of the Bernoulli sum H through cross-differentiation (see

Exercise 5.3), the foregoing equations become

d⊗x

dt
= ⊗x

∂vx

∂x
+⊗y

∂vx

∂y
+⊗z

∂vx

∂z
+ νm∇2 ⊗x (5.5a)

d⊗y

dt
= ⊗x

∂vy

∂x
+⊗y

∂vy

∂y
+⊗z

∂vy

∂z
+ νm∇2 ⊗y (5.5b)

d⊗z

dt
= ⊗x

∂vz

∂x
+⊗y

∂vz

∂y
+⊗z

∂vz

∂z
+ νm∇2 ⊗z (5.5c)

These are the equations governing the diffusion of vorticity.
Irrotational flow of a viscous fluid is possible because the conditions ⊗x = ⊗y =

⊗z = 0 are also solutions to the Navier–Stokes equations from which the vorticity
equations were derived. However, such flows are only possible when the solid
boundary moves at the same velocity as the fluid at the boundary.

The equations of diffusion of vorticity are analogous to the law of conduction of
heat. It is evident from this analogy that vorticity cannot originate from the interior
of a viscous fluid, but must diffuse inward from the boundary when the fluid moves
relative to the boundary.

The vorticity transport equations can also be written in terms of the stream
function Ψ . From the definition of the two-dimensional stream function (vx =
−∂Ψ/∂y and vy = ∂Ψ/∂x) the continuity equation is satisfied and ⊗z = ∇2Ψ . The
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vorticity transport equation becomes

∂∇2Ψ

∂t
− ∂Ψ

∂y

∂∇2Ψ

∂x
+ ∂Ψ

∂x

∂∇2Ψ

∂y
= νm∇4Ψ (5.6)

This fourth-order nonlinear partial differential equation contains only one unknown
in Ψ . The inertia terms on the left-hand side are balanced by the frictional terms on
the right-hand side of the equation. The physical significance of the stream function
is that lines of constant value of Ψ are streamlines.

When the viscous forces are considerably larger than the inertial forces, the left-
hand side of Equation (5.6) vanishes and the vorticity transport equation reduces
to the following linear equation:

∇4Ψ = 0 (5.7)

Creeping motion of a small sphere of radius R in a Newtonian fluid can be obtained
by applying Equation (5.7) to the steady motion of a sphere with small relative
velocity u∞ (see Fig. 5.1). This is solved by setting two boundary conditions for
vr = vθ = 0 at the edge of the sphere (r = R), and two additional boundary conditions
for vr = u∞ cosθ and vθ = −u∞ sin θ at r = ∞.

The velocity distribution around a sphere in a creeping motion of radius R is
given by:

vr

u∞
=
[

1 − 3

2

(
R

r

)
+ 1

2

(
R

r

)3
]

cosθ (5.8a)

and

vθ

u∞
= −
[

1 − 3

4

(
R

r

)
− 1

4

(
R

r

)3
]

sin θ (5.8b)

u∞ 
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θ
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Figure 5.1. Creeping flow past a sphere
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The corresponding pressure and shear stress distributions are found analytically
from the stress tensor and the Navier–Stokes equations in spherical coordinates
(Table 5.3). The pressure can be subdivided into three components: the ambient
pressure pr , the hydrostatic pressure ph, and the dynamic pressure pd , such that
p = ph + pd .

ph = pr −ρm gRcosθ (5.9a)�

pd = −3

2

μmu∞
R

(
R

r

)2

cosθ (5.9b)�

τ = τrθ = −3μmu∞
2R

(
R

r

)4

sin θ (5.9c)�

The quantity pr is the ambient pressure far away from the sphere (θ = 90◦ or 270◦
and R → ∞) and −ρmgRcosθ is the hydrostatic pressure contribution due to the
fluid mixture weight. Shear stress is positive in the direction of increasing angle θ .

5.3 Drag force on a sphere

Besides the buoyancy force resulting from integrating the hydrostatic pressure
distribution on a sphere (Example 3.4), the drag force exerted by the moving fluid
around the sphere is computed by integrating the stress tensor over the sphere
surface. The drag force is subdivided into two components: (1) the surface drag
results from the integration of the shear stress distribution; and (2) the form drag
arises from the integration of the hydrodynamic pressure distribution.

5.3.1 Surface drag

With reference to Figure 5.1, the shear stress τ = τrθ at each point on the spherical
surface r = R is the tangential force in the increasing θ -direction per unit area of
spherical surface. The shear stress component in the flow direction, −τ sin θ , is
multiplied by the elementary area, R2 sin θ dθdϕ and integrated over the spherical
surface to give the surface drag F ′

D:

F ′
D =

2π∫
0

π∫
0

−τ sin θR2 sin θ dθ dϕ (5.10)

The shear stress distribution τ at the surface of the sphere (r = R) from
Equation (5.9c) is substituted into the integral in Equation (5.10) to give the surface
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drag force:

F ′
D = 4πμmRu∞ (5.11)�

5.3.2 Form drag

At each point on the surface of the sphere, the dynamic pressure pd acts perpen-
dicularly to the surface, of which the upward vertical component is −pd cosθ . We
now multiply this local force per unit area by the surface area on which it acts,
R2 sin θ dθ dϕ, and integrate over the surface of the sphere to get the resultant
vertical force called form drag force F ′′

D:

F ′′
D =
∫ 2π

0

∫ π

0
−pd cosθR2 sin θ dθ dϕ (5.12)

Substituting the dynamic pressure pd from Equation (5.9b) into the integral gives
the form dragF ′′

D.

F ′′
D = 2πμmRu∞ (5.13)�

Hence the total drag force FD exerted by the motion of a Newtonian viscous fluid
around the sphere is given by the sum of Equations (5.11) and (5.13):

FD = F ′
D + F ′′

D = 4πμmRu∞︸ ︷︷ ︸
surface drag

+2πμmRu∞︸ ︷︷ ︸
form drag

= 6πμmRu∞︸ ︷︷ ︸
total drag

(5.14)

The buoyancy force FB resulting from the hydrostatic pressure distribution from
Example 3.4 is added to the drag force FD from Equation (5.14) to give the total
force F :

F = FB + FD = 4

3
πγmR3︸ ︷︷ ︸

buoyancy

+6πμmRu∞︸ ︷︷ ︸
total drag

(5.15)��

The total upward force F exerted on a sphere falling at a velocity u∞ is thus the sum
of the hydrostatic (buoyancy force) and hydrodynamic (total drag) components.

Example 5.1 Particle equilibrium in viscous flow

Consider the approach velocity u∞ against the top half-sphere of radius R
(Fig. E-5.1.1). Determine from equilibrium conditions the critical velocity uc

that will move the sphere out of the pocket. Equilibrium is governed by the
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sum of moments about point 0 because the rotation about 0 is induced by hor-
izontal and vertical forces. Include both the distribution of pressure and shear
stress. Notice that the lift force vanishes in viscous flow due to the symmetrical
distribution of shear stress and pressure about the vertical axis z.

l
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= R/2O

F '
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Figure E-5.1.1 Particle equilibrium

Pressure
(b)(a)

F  = 0L

u

γ πmF   =             RB
2
3

3

R

Weight

z
y

x

θ
– p dA
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θ
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-   dAτ

R dθ

2dA = R   sin    d   dϕθθ
R

∞

∞

∞

D π mμF ' = 2          u   R 

D π mμF '' =           u   R 

Shear

Figure E-5.1.2 Half-sphere

Step 1. With reference to Figure E-5.1.2, the element of force dF ′ due to the
shear stress distribution is given by its unit vector components �i, �j, and �k in
Cartesian coordinates:

dF ′ = −(τ dAsin θ)�i + (τ dAcosθ cosϕ)�j + (τ dAcosθ sinϕ) �k

The moment arm about point 0 is

�r = (−R + Rcosθ)�i + (Rsin θ cosϕ)�j + (Rsin θ sinϕ) �k

The moment about point 0 is obtained as the determinant of the following matrix

dM ′
D =
∣∣∣∣∣∣

�i �j �k
rx ry rz

dF ′
x dF ′

y dF ′
z

∣∣∣∣∣∣
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The moment about the y-axis is obtained by the �j component, or

dM ′
Dj

= −�j (rxdF ′
z − rzdF ′

x

)
dM ′

Dj
= R(1 − cosθ)τ dAcosθ sinϕ− Rsin θ sinϕτ dAsin θ

The net moment about the y-axis is then obtained from the integral of dM ′
Dover

the surface area of the half-sphere. After substituting τ = −3
2 μm

u∞
R sin θ and

dA = R2 sin θ dϕ dθ , one obtains:

M ′
Dj = −3

2
μmu∞R2

∫ π

o
sin2 θ (1 − cosθ)cosθ

[∫ π

o
sinϕ dϕ

]
dθ

+ 3

2
μmu∞R2

∫ π

o
sin4 θ

[∫ π

o
sinϕ dϕ

]
dθ

Which reduces to

M ′
Dj

= 3

2
πμmu∞R2

Given that F ′
D = 2πμmu∞R on a half-sphere from Equation (5.11), the moment

arm of the surface drag �′ is obtained from

�′ = M ′
Dj
/F ′

D = 3R/4

Step 2. Similarly, one can demonstrate that the moment component around
the y-axis from the pressure distribution is zero, M ′′

D = 0. This can simply be
understood from the fact that the pressure always acts through the center of
the sphere, thus the form drag force F ′′

D = πμmu∞R2 on the upper half-sphere
must pass through point 0, and �′′ = M ′′

Dj
/F ′′

D = 0. Similarly, the moment arm
�= MD/FD = R/2.

Step 3. The buoyancy force FB = ρmg∀ and the particle weight Fw = ρsg∀
act vertically in opposite directions through the center of the sphere.

Step 4. Equilibrium is defined when u∞ = uc brings the sum of moments of
all forces about point 0 to vanish:∑

MD = FBR + M ′
D + M ′′

D − FW R = 0

(γs − γm)
4

3
πR4 = 3

2
πμmucR2

And solving for uc

uc = 2

9

(γs − γm)d2
s

μm

This critical velocity is proportional to the settling velocity of fine particles
in Equation (5.21).



94 Particle motion in Newtonian fluids

5.4 Drag coefficient and fall velocity

5.4.1 Drag coefficient

With reference to the dimensional analysis in Example 2.1 describing flow around a
particle of diameter ds, it was inferred in Equation (E-2.1.3) that the drag coefficient
CD could be written as a function of the particle Reynolds number Rep = u∞ds/vm.
For the laminar flow of a mixture (ρm, μm) around a sphere, this relationship is
obtained after substituting FD from Equation (5.14) into Equation (E-2.1.2):

CD = 8FD

ρmπu2∞d2
s

= 24vm

u∞ds
= 24

Rep
(5.16)�

This equation is valid when Rep < 0.1. At high Rep, from Figure E-2.1.2, the value
of CD for spheres becomes approximately 0.5,

CD � 24

Rep
+ 0.5 (5.17)

Natural particles are not spherical and several modifications have been proposed.
After Oseen (1927) and Goldstein (1929), Rubey (1933) followed with a simple
approximation of the drag coefficient CD = 2+24/Rep encompassing a wide range
of particle Reynolds numbers. When compared with the drag coefficient of large
particles in Figure 5.2a, Rubey’s equation is on the high side.

The drag coefficient is a function of the Corey shape factor Co = lc
/√

�a�b

where la, lb, and lc are the longest, intermediate, and smallest size of the particle,
respectively. The drag coefficient can be approximated by

CD = 24

Rep
+ 0.5

Co
2

(5.18)

This relationship can be useful for gravels (Rep > 200) when la, lb, and lc are known.
For natural sands and gravels, the experimental values of the drag coefficient of
Engelund and Hansen (1967), shown in Figure 5.2b, can also be used as:

CD = 24

Rep
+ 1.5 (5.19)

This corresponds to a Corey shape factor Co ∼= 0.58.

5.4.2 Fall velocity

Starting from rest, a particle of density exceeding that of the surrounding fluid
(G > 1) will accelerate in the downward direction until it reaches an equilibrium
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Figure 5.2. a) Drag coefficient of coarse particles (modified after Schultz et al.
1954) b) Drag coefficient for natural sands and gravels (modified after Engelund
and Hansen, 1967).

fall velocity ω. The equilibrium fall velocity (ω = u∞) of a small solid sphere
falling in creeping motion under its own weight (FW = γs∀) in a viscous fluid is
calculated by substituting the particle weight FW to the force F in Equation (5.15).

FW = π

6
d3

s ρs g = π

6
d3

s ρmg + 3πμm dsω (5.20)

Solving Equation (5.20) for the fall velocity ω as a function of the particle diam-
eter ds gives Equation (5.21a) in a mixture of mass density ρm and Equation (5.21b)
for the settling velocity ω0 in clear water:

ω= 1

18

(γs − γm)

μm
d2

s ; in a mixture where Rep < 0.1; (5.21a)

ω0 = 1

18

(G − 1)g

v
d2

s ; in clear water where Rep < 0.1. (5.21b)
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This equation is valid for small particles (ds < 0.1 mm in water) falling in viscous
fluids (Rep < 0.1). In a more general form, the fall velocity is expressed as a function
of the drag coefficient CD from Equations (5.16) and (5.20) after replacing FD by
FW − FB with G = γs/γ .

ω=
[

4

3

(γs − γm)

γm

gds

CD

]1/2

; in a mixture. (5.22a)�

ω0 =
[

4

3
(G − 1)

gds

CD

]1/2

; in clear water. (5.22b)�

Notice that the fall velocity of natural coarse particles (CD = 1.33, for ds ≥ 1 mm
in water) is roughly equal to ω0 ∼=√(G − 1)gds. It is also instructive to compare
this result with Equation (E-4.4.1).

Rubey’s approximate formulation (Rubey, 1933) of the fall velocity in clear water
based on CD = 2 + 24v/ωds is given by

ω0 = 1

ds

(√
2g

3
(G − 1)d3

s + 36v2 − 6v

)
(5.23a)�

or

ω0 =
(√

2

3
+ 36v2

(G − 1)gd3
s

−
√

36v2

(G − 1)gd3
s

)√
(G − 1)gds (5.23b)

Except for its use in Einstein’s bedload equation (Section 9.1.3) this formulation is
rarely seen in practice.

A similar formula based on the drag coefficient of sand particles on Figure 5.2a
with CD = C̃D + 24v/ωds gives:

ω= vm

ds

12

C̃D

⎛
⎝(1 + C̃Dd3∗

108

)0.5

− 1

⎞
⎠ (5.23c)��

where C̃D can be approximated by C̃D = 0.5/C2
o . This formulation is useful for

particles of different shapes. Finally, when C̃D = 1.5 for natural sands and gravels
as shown in Figure 5.2b, it reduces to

ω= 8vm

ds

((
1 + 0.0139d3∗

)0.5 − 1

)
(5.23d)��

where the dimensionless particle diameter d∗ is defined as

d∗ = ds

[
(G − 1)g

v2
m

]1/3

(5.23e)

Equation (5.23d) estimates the fall velocity of particles under a wide range of
Reynolds numbers. Approximate values of fall velocity in clear water are given in
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Table 5.4. Clear water fall velocity ω0 and dimensionless particle diameter d∗

Class name

Particle
diameter
(mm)

ω0 at 10◦C
(mm/s)

ω0 at 20◦C
(mm/s)

d∗ at
10◦C

d∗ at
20◦C

ω√
(G − 1)gds

Boulder
Very Large > 2,048 5,430 5,430 43,271 51,807 0.94
Large > 1,024 3,839 3,839 21,635 25,903 0.94
Medium > 512 2,715 2,715 10,817 12,951 0.94
Small > 256 1,919 1,919 5,409 6,475 0.94

Cobble
Large > 128 1,357 1,357 2,704 3,237 0.94
Small > 64 959 959 1,352 1,618 0.94

Gravel
Very Coarse > 32 678 678 676 809 0.94
Coarse > 16 479 479 338 404 0.94
Medium > 8 338 338 169 202 0.94
Fine > 4 237 238 84 101 0.93
Very Fine > 2 164 167 42 50 0.91

Sand
Very Coarse > 1 109 112 21 25 0.86
Coarse > 0.5 66.4 70.3 10.5 12.6 0.73
Medium > 0.25 31.3 36 5.3 6.32 0.49
Fine > 0.125 10.1 12.8 2.6 3.16 0.22
Very Fine > 0.0625 2.66 3.47 1.3 1.58 0.08

Silt
Coarse > 0.031 0.67a 0.88a 0.66 0.79 0.03
Medium > 0.016 0.167a 0.22a 0.33 0.395 0.01
Fine > 0.008 0.042a 0.055a 0.165 0.197 0.003
Very Fine > 0.004 0.010a 0.014a 0.082 0.099 0.001

Clay
Coarse > 0.002 2.6 × 10−3 a 3.4 × 10−3 a 0.041 0.049 4.6 × 10−4

Medium > 0.001 6.5 × 10−4 a 8.6 × 10−4 a 0.021 0.025 1.7 × 10−4

Fine > 0.0005 1.63 × 10−4 a 2.1 × 10−4 a 0.010 0.012 5.5 × 10−5

Very Fine > 0.00024 4.1 × 10−5 a 5.3 × 10−5 a 0.005 0.006 2 × 10−5

a Possible flocculation (see Section 5.4.3).

Table 5.4. The effect of particle shape on the settling velocity of coarse particles
can be estimated from C̃D = 0.5/C2

o = 0.5ab/c2 in Equation (5.23c).
It is interesting to define the ratio of the settling velocity ω to

√
(G − 1)gds,

which for natural particles
(

C̃D = 1.5
)

is approximately

ω√
(G − 1)gds

∼= 8vm

ds
√
(G − 1)gds

((
1 + d3∗

72

)0.5

− 1

)
= 8

d3/2∗

((
1 + d3∗

72

)0.5

− 1

)
(5.24)
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This ratio thus becomes solely a function of d∗. Values in Table 5.4 show that this
ratio becomes close to unity for particles coarser than 1 mm. It can be concluded that
ω∼=√(G − 1)gds for gravels and cobbles.Also, as a second practical approximation
from Table 5.4, the settling velocity of sands in mm/s is about 100 times the particle
diameter in mm. Table 5.4 clearly shows that: (1) the settling velocity of gravels
and cobbles increases with the square root of ds; (2) the settling velocity of silts
and clays decreases until the second power of ds; and (3) temperature does affect
the settling velocity of silts and clay, but does not affect gravels and cobbles.

5.4.3 Flocculation

Flocculation is the property of very fine sediments to aggregate and settle as a floc-
culated mass. In general, flocculation is enhanced at high sediment concentration,
high salt content, and higher fluid temperature. According to Migniot (1989), the
settling velocity of flocculated particles ωf can be calculated given the settling
velocity of dispersed particles ω from

ωf = 250

d2
s
ω; when ds < 40μm (5.25a)

where ds is the particle diameter in microns (1 μm = 10−6m). Combined with
Stokes law, the flocculated settling velocity is approximately 0.15 to 0.6 mm/s
and does not vary much with the particle size. This flocculated settling velocity is
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Figure 5.3. Flocculated settling velocity versus floc size (modified after Winter-
werp, 1999)
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comparable to the settling of medium to coarse silt particles. Flocculation is not
important on individual particles larger than coarse silts (ds > 0.04 mm).

Winterwerp (1999) compiled measurements of settling velocity as a function of
floc size, as shown in Figure 5.3. As a first approximation

ωf mm/s
∼= 10d3/2

floc mm (5.25b)

This requires floc size measurements but nevertheless shows that settling velocities
up to 10 mm/s are possible. Floc sizes larger than 1 mm are not common.

Deflocculation can be secured in laboratory settling experiments by adding a 1%
dilution of a dispersing agent comprised of 35.7 g/l of sodium hexametaphosphate
and 7.9 g/l of sodium carbonate. The comparison of settling with and without defloc-
culant is a useful laboratory procedure to determine whether flocculation is present.

5.4.4 Oden curve

When several size fractions are settling at the same time, the Oden curve method is
used to separate the settling proportions of different size fractions. The following
example is used to explain the process. Consider 50 g of particle size A settling in
10 seconds, and 50 g of particle size B settling in 20 seconds. When the two are
mixed, 75 g will settle in 10 seconds and 100 g will settle in 20 seconds, as sketched
in Figure 5.4a. To separate the relative masses of A and B from the total, the rate of
settling after 10 seconds needs to be subtracted from the total settling at 10 seconds.
Projecting the tangent at 10 seconds to the origin thus gives the correct proportions
of A and B in the mixture. For instance, subtracting 25 g from the 75g (tangent line
to the origin) gives the correct mass of 50 g for size A.

The Oden curve method thus requires drawing the tangent line to the settling
curve on a linear scale. The reading at the origin determines the percentage of
material for each size fraction. Care is needed in drawing the tangents to the Oden
curve on a linear scale, as the curvature greatly affects the position of the intercept
on the percentage scale. For samples containing clays, the slope of the curve does
not approach zero at the time of the last scheduled withdrawal because clay parti-
cles are still settling. Obviously, the Oden curve should have a gradually decreasing
slope. The Oden curve sketched in Figure 5.4b shows the percentage by weight of
sediment in suspension as a function of time. If tangents are drawn to the Oden
curve at any two consecutive times of withdrawal ti and ti+1 (from Figure 5.4b),
the tangents then intersect the ordinate axis at %Wi and %Wi+1, respectively.
The difference between the percentage, %Wi+1 and %Wi represents the percent-
age by weight of material in the size range corresponding to the settling times
ti and ti+1. For instance, Figure 5.4b shows that the sediment sample contains
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Figure 5.4. Oden curve example

78%–58% = 20% of coarse silt (0.0312 mm < ds < 0.0625 mm), see Problem 5.4
for details.

5.5 Rate of energy dissipation

With reference to Section 3.7, the rate of energy dissipation can be expressed in
terms of the stresses applied on a fluid element (Fortier, 1967). The rate of work
done per unit mass χ by external forces on a fluid element is the product of the
gradient of stress by the respective velocity component.

χ =
(
∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
vx +
(
∂τxy

∂x
+ ∂σy

∂y
+ ∂τzy

∂z

)
vy

+
(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z

)
vz (5.26a)
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Expanding these terms gives:

χ =
[
∂

∂x
(σxvx + τyxvy + τzxvz)+ ∂

∂y
(τxyvx +σyvy + τzyvz)

+ ∂

∂z
(τxzvx + τyzvy +σzvz)

]
−
(
σx
∂vx

∂x
+σy

∂vy

∂y
+σz

∂vz

∂z

)
− τzx(

∂vz

∂x
+ ∂vx

∂z

)
− τzy

(
∂vz

∂y
+ ∂vy

∂z

)
− τxy

(
∂vx

∂y
+ ∂vy

∂x

)
(5.26b)

The terms in brackets on the first line of Equation (5.26b) describe the rate of
increase in mechanical energy of the fluid and are not dissipative. For Newtonian
mixtures, the terms outside the brackets describe the rate of energy dissipation per
unit mass χD, which from Equations (5.2) and (5.3) can be rewritten as

χD = −p

(
∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
+ 2μm

[(
∂vx

∂x

)2

+
(
∂vy

∂y

)2

+
(
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)2
]

− 2

3
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[
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∂x
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+ ∂vz
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]2

+μm

[(
∂vy

∂x
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∂y

)2

+
(
∂vz

∂y
+ ∂vy

∂z

)2

+
(
∂vx

∂z
+ ∂vz

∂x

)2
]

(5.27)

The first term of Equation (5.27) expresses the rate at which the fluid is compressed
and vanishes for incompressible fluids. The last three terms in brackets involve the
fluid viscosity μm and their sum determines the rate at which energy is dissipated
through viscous action per unit volume of fluid. The dissipation χD for incompress-
ible Newtonian fluids in Cartesian, cylindrical, and spherical coordinates are given
in Table 5.5. In Cartesian coordinates, the dissipation function then reduces to

χD = 2μm

[(
∂vx

∂x

)2

+
(
∂vy

∂y

)2

+
(
∂vz

∂z

)2
]

+μm

(

2

x +
2
y +
2

z

)
(5.28)

Energy is dissipated through linear deformation in the first term in brackets of
Equation (5.28), and through angular deformation in the second term in brackets
of Equation (5.28).
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Table 5.5. Dissipation function χD for incompressible Newtonian fluids

Cartesian

χD = μm
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χD = μm

{
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Example 5.2 Viscous energy dissipation around a sphere

Calculate the total rate of energy dissipation χD for flow around a sphere of
diameter ds in creeping motion at a velocity u∞ in an infinite mass of fluid. The
dissipation function in spherical coordinates χD is integrated outside a sphere
of radius R = ds/2 on the elemental volume dr (r dθ)r sin θ dϕ:

XD =
2π∫

0

π∫
0

r∫
ds/2

χDr2dr sin θ dθ dϕ (E-5.2.1)

For incompressible flow around the sphere
(
vϕ = 0

)
and ∂/∂ϕ = 0 the

dissipation function in spherical coordinates from Table 5.5 reduces to

XD = 2πμm

π∫
0

r∫
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{
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(
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+
[

r
∂

∂r

(vθ
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)
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r
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∂θ

]2
}

r2 sin θ dr dθ
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which from the velocity profile in Equation (5.8) yields

XD = 3πμmu2∞ds

(
1 − 3ds

4r
+ d3

s

8r3
− d5

s

64r5

)

R * =       =
r
Rds
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Figure E-5.2.1 Total energy dissipated around a sphere

This function plotted on Figure E-5.2.1 shows that 50% of the energy is dissipated
within three times the particle diameter. The total energy dissipated at r = ∞ is,

XD = 3πμmu2∞ds = FDu∞

The total rate of energy dissipated per unit volume around the sphere ∀ is

XD

∀ = 18πμmu2∞ds

πd3
s

= 18μm

(
u∞
ds

)2

(E-5.2.2)

This equation indicates that, for creeping motion at constant velocity u∞, the total
rate of energy dissipation per unit volume of the sphere is inversely proportional
to d2

s . On the other hand, when u∞ corresponds to the fall velocity ω, the rate
of energy dissipation becomes proportional to d2

s for particles finer than silts
from Equation (5.21) and inversely proportional to ds for particles coarser than
gravels from Equation (5.22). A maximum is obtained for sand sizes. Sand-
sized particles are thus found to be most effective for dissipating viscous energy
through settling.

5.6 Laboratory measurements of particle size

Two principal functions of a sediment laboratory are to determine: (1) the particle
size distribution of suspended sediment and bed material; and (2) the concentration
of suspended sediment. Other functions include the determination of roundness
and shape of individual grains and their mineral composition, the amount of



104 Particle motion in Newtonian fluids

Table 5.6. Recommended methods for particle size distribution

Method of analysis Size range (mm) Concentration (mg/l) Sediment mass (g)

Sieves 0.062–32 – 1 g to 10 kg
VA tube 0.062–2.0 – 0.05–15.0
Pipette 0.002–0.062 2,000–5,000 1.0–5.0
BW tube 0.002–0.062 1,000–3,500 0.5–1.8

organic matter, the specific gravity of sediment particles, and the specific weight of
deposits.

There are essentially two ways to determine particle size distributions in the
laboratory: (1) direct measurement; and (2) sedimentation methods. The direct
methods, also discussed in Section 2.3, include immersion and displacement vol-
ume measurements, some direct measurements of circumference or diameter, and
semi-direct measurements of particle diameter using sieves. Sedimentation methods
relate fall velocity measurements to particle size. Standard procedures include the
visual accumulation tube (VAT), the bottom withdrawal tube (BWT), the pipette,
and the hydrometer. The VAT, used only for sands, operates as a stratified sys-
tem where particles start from a common source at the top and deposit at the
bottom of the tube, according to settling velocities. The pipette and BWT, used
only for silts and clays, operate as dispersed systems where particles begin to set-
tle from an initially uniform dispersion. For the BWT method, the distribution
is obtained from the quantity of sediment remaining in suspension after various
settling times when the coarser sizes and heavier concentrations are withdrawn
at the bottom of the tube. Table 5.6 indicates recommended size ranges, analy-
sis concentration, and weight of sediment for the sieves, VAT, BWT, and pipette
methods.

Extraneous organic materials should be removed from samples by adding about
5 ml of a 6% solution of hydrogen peroxide for each gram of dry sample in 40 ml
of water. The solution must be stirred thoroughly and covered for about 10 min.
Large fragments of organic material may then be skimmed off when they are free
of sediment particles. If oxidation is slow, or after it has slowed, the mixture is
heated to 93◦C, stirred occasionally, and more hydrogen peroxide solution added
as needed. After the reaction has stopped, the sediment must be carefully washed
two or three times with distilled water.

To ensure complete deflocculation of silts and clays when using the pipette, BWT,
and hydrometer methods, 1 ml of dispersing agent should be used for each 100 ml
sample. Adding 35.7 g/l of sodium hexametaphosphate and 7.99 g/l of sodium
carbonate is recommended to prevent flocculation.
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The following indirect methods of particle size measurement involve liquid
suspensions and fall velocity: the visual accumulation tube (VAT), the bottom
withdrawal tube (BWT), the pipette, and the hydrometer.

5.6.1 Visual accumulation tube method (VAT)

The VAT is a fast, economical, and reasonably accurate method of determining the
sand size distribution based on fall velocity measurements. Silts finer than 0.062
mm are removed by either wet sieving or by sedimentation methods, and analyzed
separately using either the pipette or the BWT method. In some instances, sieving
must be employed to remove particles coarser than 2.0 mm.

The equipment for the VAT method of analysis consists primarily of the special
settling tube and a recording mechanism shown in Figure 5.5a. The VAT analysis
results in a continuous pen trace of sediment accumulation as a function of time.
The chart is calibrated at a given temperature to give the relative amount of each
size in terms of fall diameter and percentage finer than a given size. The sediment
size distribution is corrected for the finer or coarser fractions removed prior to the

(a) (b)
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Figure 5.5. a) Visual accumulation tube b) Bottom withdrawal tube
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VAT analysis. For instance, if 30% of the original sample, finer than 0.062 mm was
removed from the VAT analysis, the percentage finer scale of the VAT analysis is
corrected to start at 30%.

5.6.2 Bottom withdrawal tube method (BWT)

The bottom withdrawal tube (Fig. 5.5b) is used where the sample contains a very
small quantity of fine sands and silts. The sands should be removed and analyzed
separately using the VAT. A 100 ml suspension is poured into a 1 m-high settling
tube and 10 m� samples are withdrawn at the lower end of the tube following the
schedule given in Table 5.7. The samples are then poured into evaporating dishes
and the sample containers washed with distilled water. The previously weighed
evaporating dishes are placed in the oven to dry at a temperature just below the
boiling point, to avoid splattering by boiling. When the evaporating dishes or flasks
are visibly dry, the temperature is raised to 110◦C for 1 hr, after which the containers
are transferred from the oven to a desiccator and allowed to cool before weight
measurements. The sediment size distribution is then calculated using the Oden
curves method of Section 5.4.4.

Table 5.7. BWT withdrawal time in minutes

Particle diameter (mm)

Temperature (◦C) 0.25 0.125 0.0625 0.0312 0.0156 0.0078 0.0039 0.00195

18 0.522 1.48 5.02 20.1 80.5 322 1,288 5,154
19 0.515 1.45 4.88 19.6 78.5 314 1,256 5,026
20 0.508 1.41 4.77 19.2 76.6 306 1,225 4,904
21 0.503 1.39 4.67 18.7 74.9 299 1,198 4,794
22 0.497 1.37 4.55 18.3 73.0 292 1,168 4,675
23 0.488 1.34 4.45 17.8 71.3 285 1,141 4,566
24 0.485 1.32 4.33 17.4 69.6 279 1,114 4,461
25 0.478 1.30 4.25 17.0 68.1 273 1,090 4,361
26 0.472 1.28 4.15 16.7 66.6 266 1,065 4,263
27 0.467 1.26 4.05 16.3 65.1 260 1,042 4,169
28 0.462 1.24 3.97 15.9 63.7 255 1,019 4,079
29 0.455 1.22 3.88 15.6 62.3 249 997 3,991
30 0.450 1.20 3.80 15.3 61.0 244 976 3,907
31 0.445 1.18 3.71 14.9 59.7 239 956 3,825
32 0.442 1.17 3.65 14.6 58.5 234 936 3,747
33 0.438 1.15 3.58 14.2 57.3 229 917 3,671
34 0.435 1.13 3.51 13.9 56.1 244 898 3,494

Note: Time in minutes required for spheres having a specific gravity of 2.65 to fall 1m in
water at varying temperatures.
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5.6.3 Pipette method

The pipette method is a reliable indirect method to determine the particle size
distribution of silts and coarse clays (ds < 0.062 mm). The concentration of a
quiescent suspension is measured at a predetermined depth (Fig. 5.6) as a function
of settling time. Particles having a settling velocity greater than a given size settle
below the point of withdrawal after a certain time determined in Table 5.8. The

Screw clamp

To vacuum pump

Vacuum bottle

Sample

Screw
clamp

Pipette

Pressure bulb

Depth of withdrawal

Water valve

Distilled water

Plastic tube

Figure 5.6. Pipette

Table 5.8. Pipette withdrawal time

Diameter of particles (mm); depth of withdrawal (cm)

0.062 0.031 0.016 0.008 0.004 0.002
Temperature (◦C) 15 15 10 10 5 5

20 44 s 2 m 52 s 7 m 40 s 30 m 40 s 61 m 19 s 4 h 5 m
21 42 2 48 7 29 29 58 59 50 4 0
22 41 2 45 7 18 29 13 28 22 3 54
23 40 2 41 7 8 28 34 57 5 3 48
24 39 2 38 6 58 27 52 55 41 3 43
25 38 2 34 6 48 27 14 54 25 3 38
26 37 2 30 6 39 26 38 53 12 3 33
27 36 2 27 6 31 26 2 52 2 3 28
28 36 2 23 6 22 25 28 50 52 3 24
29 35 2 19 6 13 24 53 49 42 3 19
30 34 2 16 6 6 24 22 48 42 3 15

Note: The values in this table are based on particles of assumed spherical shape with an
average specific gravity of 2.65, the constant of acceleration due to gravity = 980 cm/s2,
and viscosity varying from 0.010087 cm2/s at 20◦C to 0.008004 cm2/s at 30◦C.
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time and depth of withdrawal are predetermined on the basis of the Stokes law in
Equation (5.21) at a given water temperature. Samples are dried, weighed, and the
Oden curve method is applied to calculate the particle size distribution.

5.6.4 Hydrometer method

The hydrometer measures the change in immersed volume of a floating object in a
dilute suspension. The buoyancy force from Chapter 3 being equal to the weight of
the object, the time change in submerged volume corresponds to the time change
in specific weight of the mixture due to settling of particles in suspension.

Exercises

5.1 Demonstrate that τxy = τyx from the sum of moments about the center of an
infinitesimal element.

5.2 Derive the x-component of the Navier–Stokes equations in Table 5.1 from the
equation of motion in Equation (3.14a) and the stress tensor components for
incompressible Newtonian fluids in Equations (5.2) and (5.3).

� 5.3 Differentiate Equations (5.4a) with respect to y and (5.4b) with respect to x, and
subtract them to derive Equation (5.5c).

�5.4 Determine the shear stress component τrθ in Equation (5.9c) from the tensor τrθ

in spherical coordinates (Table 5.3) and the velocity relationships in Equations
(5.8a and b).

��5.5 (a) Integrate the shear stress distribution from Equation (5.9c) to determine
the surface drag in Equation (5.11) from Equation (5.10); and (b) integrate the
dynamic pressure distribution from Equation (5.9b) to obtain the form drag in
Equation (5.13) from Equation (5.12).

�5.6 Derive Rubey’s fall velocity equation in Equations (5.23a and b) from combining
Equation (5.22b) and CD= 2 + 24/Rep.

5.7 Substitute the appropriate stress tensor components for the flow of Newtonian flu-
ids in Cartesian coordinates in Equations (5.2) and (5.3) into the last four terms in
parentheses of Eq. (5.26), to obtain the energy dissipation function in Eq. (5.27).

5.8 Describe each member of the dissipation function in Equation (5.28) in terms
of the fundamental modes of deformation (translation, linear deformation, etc.).

5.9 Substitute the velocity profile around a sphere from Equation (5.8) into
Equation (E-5.2.1) to find the energy dissipation function in Figure E-5.2.1.

5.10 From Example 5.1, assume that the critical velocity uc is the flow velocity at the
top of the sphere. Assume τc =μmuc/R and calculate the corresponding Shields
parameter.
(Answer: τ∗c = τc/γs − γm)ds = 4/9, this critical shear stress practically
corresponds to the beginning of motion of fine particles (Chapter 7)).
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Problems
��Problem 5.1

Plot the velocity, dynamic pressure, and shear stress distributions around the
surface of a sphere for creeping motion given by Stokes’ law in Equations (5.8)
and (5.9) and compare with irrotational flow without circulation (Problem 4.3).
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1.5 u

u2

Pressure

Velocity

(b)(a)

1.5 u

+ +
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2 2
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p = 
1.25 u2

2

2

u2 2
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ρ

ρ

p = ρ
p = ρ

p = ρ

Figure P-5.1 Flow around a sphere

[Answer: (a) Creeping motion in a viscous fluid: v = 0 everywhere at the sphere surface,

τ �= 0 everywhere at the sphere surface except at θ = 0◦ and 180◦; pd �= 0 everywhere

at the sphere surface except at θ = 90◦, (b) Irrotational flow: τ = 0 everywhere at the

sphere surface, v �= 0 everywhere at the sphere surface except at θ = 0◦ and 180◦, and

pd �= 0 everywhere at the sphere surface except at θ = 41.8◦ and 138.2◦]

�Problem 5.2

Plot Rubey’s relationship for the drag coefficient CD on Figure 5.2. How does
it compare with the experimental measurements? At a given Rep, which of
Equations (5.17) and (5.19) induces larger settling velocities?

��Problem 5.3

Evaluate the dissipation function χD from Table 5.5 for a vertical axis Rankine
vortex described in cylindrical coordinates by:

(a) forced vortex vθ = %vr
2πr2

o
,vz = vr = 0 (rotational flow for r < ro)

and
(b) free vortex vθ = %v

2πr ,vz = vr = 0 (irrotational flow for r > ro)
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(Answer: χD = μm
(
r ∂
∂r

(vθ
r

))2
, (a) χD = 0, where the flow is rotational for r < r0; and

(b) χD = μm%
2
v

π2r4 �= 0, where the flow is irrotational for r > r0.)

��Problem 5.4

The sediment size distribution of a 1200 mg sample is to be determined using
the BWT. If the water temperature is 24◦C and the solid weight for each 10 ml
withdrawal is given, use Table 5.7 to determine the sampling times. Plot the Oden
curve, complete the table below and determine the particle size distribution.

Particle
diameter
(m)

Withdrawal
timea (min)

Sample
volume
(ml)

Dry weight
of sediment
(mg)

Cumulative
dry weight
(mg)

Percent
settled

Percent
Finerb

(%)

0.25 0.485 10 144 144 12
0.125 10 72 216 18
0.0625 10 204 420 35 78
0.0312 10 264 684 57 58
0.0156 10 252
0.0078 10 84
0.0039 10 48 1,068
0.00195 4,461 10 45

a Withdrawal times are obtained from Table 5.7
b See Figure 5.4b
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��Problem 5.5

A gravel particle is 32 mm long, 16 mm wide, and 8 mm thick. Determine the
volume, sphericity, and Corey shape factor of the particle. Estimate the settling
velocity of this particle from the results in Figure 5.2a. Compare with the settling
velocity of a sphere with equivalent volume.

�Problem 5.6

Check the BWT withdrawal time in minutes from Table 5.7 using: (1) Rubey’s
equation (5.23a); and (2) Equation (5.23d).

�Problem 5.7

Check the pipette withdrawal times in Table 5.8 using: (1) Rubey’s equation
(5.23a); and (2) Equation (5.23d).

��Problem 5.8

Determine the particle size distribution of fine sediment from the San Luis Canal
in California from the data below. The settling height is 20 cm and the experiment
was carried out at room temperature.

Time (min) % Settled

0.03 10
0.17 20
0.33 30
1 40
2 50
5 60
9 70
30 80
210 90
108,000 100

��Computer problem 5.1

Write a simple computer program to determine the particle size ds, the fall
velocity ω, the flocculated fall velocity ωf , the particle Reynolds number Rep,
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the dimensionless particle diameter d∗, and the time of settling per meter for
water at 5◦C, and complete the table below.

Class name ds (mm) ω (cm/s) ωf (cm/s) Rep d∗ Settling time

Medium clay
Medium silt
Medium sand
Medium gravel
Small cobble
Medium boulder



6

Turbulent velocity profiles

Most open-channel flows are characterized by irregular velocity fluctuations
indicating turbulence. The turbulent fluctuation superimposed on the principal
motion is complex in its detail and still poses difficulties for mathematical treatment.
This chapter outlines the fundamentals of turbulence with emphasis on turbulent
velocity profiles (Section 6.1), turbulent flow along smooth and rough boundaries
(Section 6.2), resistance to flow (Section 6.3), departure from logarithmic velocity
profiles (Section 6.4), and open-channel flow measurements in Section 6.5.

When describing turbulent flow in mathematical terms, it is convenient to sep-
arate the mean motion (notation with overbar) from the fluctuation (notation with
superscript +) as sketched in Figure 6.1. Denoting a fluctuating parameter v̂x of time,
average value v̂x, and fluctuation v̂x, the pressure and the velocity components can
be rewritten respectively as:

p̂ = p + p+ (6.1a)

v̂x = vx + v+
x (6.1b)

τ̂ = τ + τ+ (6.1c)

the time-averaged values at a fixed point in space are given by

vx = vx = 1

t1

t0+t1∫
t0

v̂xdt (6.2)

Taking the mean values over a sufficiently long time interval t1, the time-

averaged values of the fluctuations equal zero, thus v+
x = v+

y = v+
z = p+ = 0.

Likewise, the time-averaged values of the derivatives of velocity fluctuations,

113
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Figure 6.1. Velocity measurements versus time

such as ∂v+
x /∂x,∂2v+

x /∂x2,∂vxv
+
x /∂x2, also vanish owing to Equation (6.2).

The quadratic terms arising from the products of cross-velocity fluctuations

like v+
x v+

x ,v+
x v+

y ,∂v+
x v+

y /∂x, however, do not vanish. The overbar of simple
time-averaged parameters is omitted for notational convenience.

It is seen that both the time-averaged velocity components and the fluctuating
components satisfy the equation of continuity, thus for incompressible fluids,

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (6.3a)

∂v+
x

∂x
+ ∂v+

y

∂y
+ ∂v+

z

∂z
= 0 (6.3b)

This formulation of continuity indicates that the magnitude of the fluctuations in∣∣v+
x
∣∣, ∣∣v+

y
∣∣, and

∣∣v+
z
∣∣ should remain in similar proportions.

The velocity and pressure terms from Equation (6.1) are substituted into the
Navier–Stokes equation (Table 5.1a) to give the following acceleration terms

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
= gx − 1

ρ

∂p

∂x
+ νm∇2vx

−
(
∂v+

x v+
x

∂x
+ ∂v+

y v+
x

∂y
+ ∂v+

z v+
x

∂z

)
(6.4a)

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ vz

∂vy

∂z
= gy − 1

ρ

∂p

∂y
+ νm∇2vy

−
(
∂v+

x v+
y

∂x
+ ∂v+

y v+
y

∂y
+ ∂v+

z v+
y

∂z

)
(6.4b)
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(6.4c)

In addition to the terms found in the Navier–Stokes equations, three additional cross-
products of velocity fluctuations are obtained from the convective acceleration
terms on the left-hand side of Equation (6.4). This formulation is equivalent to
Equation (3.14) and Table 5.1, except that shear stresses are now composed of
viscous and turbulent terms:

τxx = 2μm
∂vx

∂x
−ρv+

x v+
x (6.5a)

τyy = 2μm
∂vy

∂y
−ρv+

y v+
y (6.5b)

τzz = 2μm
∂vz

∂z
−ρv+

z v+
z (6.5c)

and

τxy = τyx =μm

(
∂vx

∂y
+ ∂vy

∂x

)
−ρv+

x v+
y (6.5d)

τxz = τzx =μm

(
∂vx

∂z
+ ∂vz

∂x

)
−ρv+

x v+
z (6.5e)

τyz = τzy =μm

(
∂vy

∂z
+ ∂vz

∂y

)
︸ ︷︷ ︸

viscous

−ρv+
y v+

z︸ ︷︷ ︸
turbulent

(6.5f )

These turbulent acceleration terms provide additional stresses called Reynolds
stresses, or apparent stresses, which are usually added to the right-hand side of
Equation (6.4). As sketched in Figure 6.2, bed shear stress τ zx increases where v+

x
and v+

z have opposite signs.

6.1 Logarithmic velocity profiles

Consider a thin flat plate set parallel to the main flow direction x. We are interested
in describing the time-averaged velocity profile vx as a function of the distance z
away from the plate. It is first considered from continuity that the magnitude of
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Figure 6.2. Turbulent shear stresses

the transverse velocity fluctuation
∣∣v+

z
∣∣ is the same as that of

∣∣v+
x
∣∣. Drawing an

analogy with the mean free path in the kinetic theory of gases, Prandtl imagined the
mixing length concept. He hypothesized that the magnitude of velocity fluctuations
is proportional to the product of a mixing length and the velocity gradient in the form

|v+
x | ∼ |v+

z | ∼ lm
dvx

dz
(6.6a)

in which the proportionality constant lm denotes the Prandtl mixing length. Near a
plate, it is also clear that a positive value for v+

x is correlated with a negative value
for v+

z . The average products of velocity fluctuations were then formulated in terms
of the mixing length with the aid of Equation (6.6a)

v+
x v+

z ∼ −|v+
x ||v+

z | (6.6b)

v+
x v+

z ∼ − l2
m

(
dvx

dz

)2

(6.6c)

Accordingly, the turbulent shear stress depends on the magnitude of the velocity
gradient and the mixing length, or

τ+
zx = −ρmv+

x v+
z = ρm l2

m

(
dvx

dz

)2

(6.7a)

The turbulent shear stress can alternatively be written as a function of the Boussinesq
eddy viscosity εm:

τzx
∼= ρmεm

dvx

dz
= ρm l2

m

(
dvx

dz

)2

(6.7b)

von Kármán later assumed that the mixing length lm is proportional to the distance
z from the boundary,

lm = κz (6.8)

in which κ is the von Kármán constant (κ � 0.41).
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After substituting Equations (6.8) into (6.7a) and (6.5e), the viscous and turbulent
shear stress components are

τzx
∼=μm

dvx

dz︸ ︷︷ ︸
viscous

+ρκ2z2
(

dvx

dz

)2

︸ ︷︷ ︸
turbulent

(6.9)

The boundary shear stress τ o defines the shear velocity u∗ as follows:

τo = ρu2∗ (6.10)��

The shear stress τ zx in the region close to the wall is assumed to remain constant
and equal to the boundary shear stress τo = ρu2∗. After neglecting the viscous shear
stress in Equation (6.9), the turbulent velocity profile stems from τz ≡ τo = ρu2∗, or√

τo

ρm
= u∗ = κz

(
dvx

dz

)
(6.11)

Since u∗ is constant, the variables vx and z can be separated and integrated to yield
the logarithmic average velocity distribution for steady turbulent flow near a flat
boundary

vx

u∗ = 1

κ
ln z + co (6.12a)

in which co is an integration constant evaluated at a distance zo from the flat
boundary. The logarithmic velocity vxo hypothetically equals zero at z = zo, hence

vx

u∗ = 1

κ
ln

z

zo
(6.12b)

The value of zo has to be determined from laboratory experiments.

6.2 Smooth and rough plane boundaries

Since the fluid does not slip at the boundary, all turbulent fluctuations must vanish at
the surface and remain very small in their immediate neighborhood. It is clear from
Equation (6.9) that the viscous stress is dominant as z → 0. The laminar velocity
profile near a smooth boundary thus becomes linear because τ0 = τzx = ρ u2∗ =
μmdvx/dz, or

vx

u∗
= u∗z

νm
as z → 0 (6.13a)

Farther away from a plane boundary, the turbulent shear stress becomes domi-
nant and the velocity profile becomes logarithmic as described by Equation (6.12).
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Laboratory experiments show that the value of zo for a smooth boundary is approx-
imately zo= νm/9u∗. The corresponding turbulent velocity profile when z is large
on a smooth boundary is

vx

ux
= 1

κ
ln

(
9u∗z

υm

)
≡ 2.3

κ
log

(
9u∗z

υm

)
∼= 5.75log

(
u∗z

υm

)
+ 5.5 (6.13b)�

The thickness of the laminar sublayer where the flow near the boundary is laminar
is obtained from simultaneously solving Equations (6.13a) and (6.13b) at z = δ.
This defines the laminar sublayer thickness as

δ = 11.6υm

u∗
(6.14)��

With shear velocities of the order of 0.1 m/s, the laminar sub-layer thickness in
open-channel flow is typically of the order of 0.1 mm, which is the size of sands.
Generally speaking, a plane bed surface is hydraulically smooth for silts and clays.
Velocity measurements for z ≈ δ are shown in Figure 6.3. An approximation to the
velocity profile in the buffer zone between turbulent flow and the laminar sublayer
has been given by Spalding (in White, 1991)

u∗z

νm
= ũ + 0.1108

(
eκ ũ − 1 − κ ũ −

(
κ ũ2
)

2

2

−
(
κ ũ2
)

6

3)
(6.15a)

where ũ = vx/u∗.
The Spalding method is unfortunately implicit and requires iterations to find u

at a given z, u∗, and ν. Alternatively, an explicit formulation has been proposed by

z  =

u 
 =
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Figure 6.3. Velocity profile in the buffer zone
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Guo and Julien (2007)

vx

u∗
= 7tan−1

(
u∗z

7vm

)
+ 7

3
tan−3

(
u∗z

7vm

)
− 0.52tan−4

(
u∗z

7vm

)
(6.15b)

This formulation with the argument in radians is useful for 4< u∗z/v< 70 and the
logarithmic velocity profile is valid when 70< u∗z/v< 1000 offers the advantage
to explicitly define the velocity at a given z,u∗, and ν. Figure 6.4 shows a typical
velocity profile on a hydraulically smooth surface. Equation (6.15) is applicable
when u∗z/v < 70 and the logarithmic velocity profile is valid when 70< u∗z/v <
1000.

Natural boundaries are hydraulically smooth when the surface grain roughness
ds < δ/3 or Re∗ = u∗ds/νm < 4. A transition zone exists where δ/3 < ds < 6δ, or
4 < Re∗ < 70. Turbulent flows are hydraulically rough when the grain diameter
ds far exceeds the laminar sublayer thickness (ds > 6δ or Re∗ > 70). Figure 6.5
illustrates hydraulically smooth and hydraulically rough boundaries.
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In early experiments, Nikuradse glued sand particles and measured velocity pro-
files for turbulent flow over boundaries with grain roughness height k ′

s. On rough
boundaries, the corresponding value of z0 = k ′

s/30.

vx

u∗
= 1

κ
ln

(
30z

k ′
s

)
≡ 2.3

κ
log

(
30z

k ′
s

)
� 5.75log

(
30z

k ′
s

)
(6.16)�

In practice, gravel- and cobble-bed streams are considered hydraulically rough.
Compared with the particle size distribution of the bed material, the roughness
height has been shown to be approximately k ′

s
∼= 3d90 or k ′

s
∼= 6.8d50. It is interesting

to notice that z0 is always less than the surface grain diameter. The flow velocity at
an elevation z = d90 is equal to vx = 5.75u∗, and the velocity against a particle is
thus roughly vp � 6u∗. The reference velocity is the velocity at z = k ′

s or vr = 8.5
u∗. These two velocities, vp and vz, are sometimes used for the design of riprap, as
discussed in the next chapter.

6.3 Resistance to flow

In open channels, resistance to flow describes the property of the channel to reduce
the mean flow velocity. There are three commonly used parameters that define
resistance to flow: (1) the Darcy–Weisbach friction factor f ′; (2) the Manning
coefficient n ′; and (3) the Chézy coefficient C ′. Prime is used here to denote
resistance to flow on plane surfaces. The respective flow velocity relationships are

V =
√

8

f ′
√

g RhSf =
√

8

f ′ u∗ (6.17a)�

V = 1

n′ R
2/3
h S1/2

f in SI,or V = 1.49

n′ R2/3
h S1/2

f in English (6.17b)�

V = C ′R1/2
h S1/2

f (6.17c)�

Where Rh is the hydraulic radius and Sf is the friction slope. Both f ′ n′ describe
resistance to flow, but C′ describes flow conveyance. It is also interesting to note
that only f ′ is dimensionless. The fundamental dimensions for C′ = L1/2/T and
n′ = T/L1/3. However the units of Manning’s equation are in a coefficient equal to
1.49 in English units and unity in SI.

The following identities can be defined from u∗ =√g RhSf

V

u∗
= C ′

√
g

≡
√

8

f ′ ≡ R1/6
h

n′√g
(SI)≡ 1.49

R1/6
h

n′√g
(English) (6.18)



6.3 Resistance to flow 121

The mean velocity of turbulent flows can be determined from the integration of
logarithmic velocity profiles (e.g. Eq. (6.12)). The mean flow velocity is found
analytically to be at a depth z = 0.37h, which is close to 0.6 h from the surface.
The mean flow velocity Vx for hydraulically smooth and rough boundaries are,
respectively

V

u∗
≡
√

8

f ′ � 5.75 log

(
u∗h

νm

)
+ 3.25 (6.19a)

and

V

u∗
≡
√

8

f ′ � 2.3

κ
log

(
h

k ′
s

)
+ 6.25 � 5.75 log

(
12.2h

k ′
s

)
(6.19b)

For sand-bed channels, Kamphuis (1974) suggested k ′
s = 2d90. For gravel-bed

streams, Bray (1982) recommended k ′
s = 3.1d90, k ′

s = 3.5 d84, k ′
s = 5.2 d65, and

k ′
s = 6.8 d50. The relationship k ′

s
∼= 3 d90 appears frequently in the literature. The

resulting friction factor for hydraulically rough channels with a plane surface can
thus be approximated by

V

u∗
≡
√

8

f ′ � 5.75log

(
4h

d90

)
� 5.75log

(
2h

d50

)
(6.19c)��

Figure 6.6a shows the agreement between this relationship and measurements for
plane-bed channels. The Manning relationship also becomes interesting given the
Strickler relationship between n and d1/6

s in Table 6.1. For instance, the Manning–
Strickler relationship in Figure 6.6a provides satisfactory results except in very
rough mountain channels (h/ds < 10) and in deep channels (h/ds > 1000).

Whether or not sediment transport affects resistance to flow cannot be easily
answered. On one hand, the energy required to move sediment should increase
resistance to flow. On the other hand, the presence of fine sediment between coarser
bed particles may effectively reduce the roughness height and decrease resistance
to flow. Figure 6.6.b shows the experimental results for an upper-regime plane bed.
The results are quite comparable to those of Equation (6.19c).

The grain resistance equation in logarithmic form can be transformed into an
equivalent power form in which the exponent b varies with relative submergence
h/ds, √

8

f ′ = a

(
h

ds

)b

≡ â ln

[
b̂h

ds

]
(6.20)�
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Figure 6.6. a) Resistance diagram for plane bed (from Julien, 2002) b) Darcy–
Weisbach friction factor fp for upper-regime plane bed (from Julien and Raslan,
1998)

under the transformation that imposes both the value and first derivative to be
identical:

a = â

b

(
ds

h

)b

(6.21a)

and

b = 1

ln
(

b̂h
ds

) (6.21b)

The values of the exponent b are plotted in Figure 6.7 as a function of relative
submergence h/ds. It is shown that b gradually decreases to zero as h/ds → ∞,
which implies that the Darcy–Weisbach grain friction factor f ′ and the grain Chézy
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Table 6.1. Grain resistance and turbulent flow velocity over hydraulically rough
plane boundaries (C = C ′ and f = f ′)

Formulation Range Resistance parameter Velocitya

Chézy h/ds → ∞ C =
√

8g
f constant V = C R1/2

h S1/2
f

Manning h/ds>100 C ∼= a
(

Rh
ds

)1/6 ∼= Rh
n

1/6
(SI) V = 1

n R2/3
h S1/2

f (SI)

n ∼= 0.062 d1/6
50 (d50 in m)

n ∼= 0.046 d1/6
75 (d75 in m)

n ∼= 0.038 d1/6
90 (d90 in m)

Logarithmic C√
g =
√

8
f = 5.75log

(
12.2Rh

ks′

)
V =
(

5.75log 12.2Rh
k ′

s

)√
gRhSf

k ′
s
∼= 3 d90 k ′

s
∼= 5.2d65

k ′
s
∼= 3.5 d84 k ′

s
∼= 6.8d50

aThe hydraulic radius Rh = A/P is used where A is the cross-sectional area and P is the
wetted perimeter; the friction slope Sf is the slope of the energy grade line.
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Figure 6.7. Exponent b of the grain resistance equation

coefficient C ′ =
√

8g
f ′ are constant for very large values of h/ds. At values of

h/ds > 100, the exponent b is roughly comparable to 1/6 which corresponds to
the Manning–Strickler approximation (n ∼ d1/6

s ). At lower values of the relative
submergence h/ds < 100 as in gravel-bed streams, the exponent b of the power
form varies with h/ds and the logarithmic formulation is preferred.
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Example 6.1 Turbulent velocity profile

Consider the velocity profile of the Matamek River at a discharge Q = 462 ft3/s,
a width W = 170 ft. The friction slope is about 10 cm/km and the bed material
is very coarse gravel. The cross-sectional area A = 170 × 3.7 = 629ft2 and the
wetted perimeter P = 170+2×3.7 = 177.4 ft, the hydraulic radius Rh = A/P =
3.54 ft. Assume steady uniform turbulent flow in a wide-rectangular channel,
Rh = h (Fig. E-6.1.1). From two points 1 and 2 near the bed, and Equation
(6.12),

ν1 = u∗
κ

ln
z1

z0

ν2 = u∗
κ

ln
z2

z0

and estimate the following parameters assuming κ = 0.4:
Step 1. Shear velocity; from v1 and v2

u∗ = κ(v2 − v1)

ln

(
z2

z1

) = 0.4(0.85 − 0.55)

ln

(
1.5

0.5

) = 0.11ft/s = 0.0335m/s

and the velocity equation is v = 0.28ln z + 0.74 as shown in Figure E-6.1.1.

Δ

y = 0.282 x + 0.742
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Figure E-6.1.1 Measured velocity profile

Step 2. Boundary shear stress (Equation (6.10)):

τo = ρmu2∗ = 1.92slugs

ft3
(0.11)2

ft2

s2
= 0.023

lb

ft2
= 1.1Pa
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Step 3. Laminar sublayer thickness from Equation (6.14):

δ = 11.6νm

u∗
= 11.6 × 1 × 10−5ft2s

s × 0.11ft
= 0.001ft = 0.32mm

Notice that δ is usually less than 1 mm.
Step 4. Elevation z0 and k ′

s from the regression equation

0.74 = −u∗
κ

ln z0 or

z0 = e−0.74κ/u∗ = e
−0.74
0.28 = 0.07ft = 0.02m

k ′
s = 30z0 � 2.0ft = 0.6m

The flow is hydraulically rough.
Step 5. Mean flow velocity:

Vx = 1

h

N∑
i=1

vi�zi = 1

3.7ft
(0.55 + 0.85 + 1.0 + (1.1 × 0.7))

ft2

s
=

0.85ft/s � 0.23m/s

Step 6. Froude number:

Fr = V√
gh

= 0.85ft/s√
32.2 × 3.7 ft2

s2

= 0.078

Step 7. Friction slope (from Step 2):

Sf = τo

γmRh

∼= τo

γmh
= 0.023lbft3

ft262.4 lb × 3.7ft
= 1 × 10−4

Step 8. Darcy–Weisbach factor:

f = 8Sf

Fr2
= 8 × 10−4

0.0782
= 0.13

Step 9. Manning coefficient:

n = 1.49

V
R2/3

h S1/2
f = 1.49

0.85
(3.7ft)2/3

(
1 × 10−4

)1/2 = 0.042

(Note that the units of the Manning equation are in the coefficient 1 in SI or 1.49
in English units.)
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Step 10. Chézy coefficient:

C =
√

8g

f
=
√

8 × 32.2

0.13
= 44.5ft1/2/s = 24.6

m1/2

s

Step 11. Momentum correction factor (Equation (E-3.7.1)):

βm = 1

AV 2
x

∫
A
v2

x d A ∼= 1

hV 2
x

∑
i

v2
xi dhi

βm
∼= 1

3.7ft

s2

(0.85)2ft2

(
0.552 + 0.852 + 1.02 +

(
1.12 × 0.7

)) ft3

s2
= 1.07

Step 12. Energy correction factor (Equation (E-3.9.2)):

αe
∼= 1

AV 3
x

∫
A
ν3

x dA ∼= 1

hV 3
x

∑
i

ν3
xidhi

αe
∼= 1

3.7ft

s3

(0.85)3ft3

(
0.553 + 0.853 + 1.03 +

(
1.13 × 0.7

)) ft4

s3
= 1.19

6.4 Deviations from logarithmic velocity profiles

Two types of deviations from the logarithmic velocity profiles are considered: (1)
the modified log-wake law (Sections 6.4.1 and 6.4.2); and (2) sidewall correction
in narrow channels (Section 6.4.3).

6.4.1 Log-wake law

Departure from logarithmic velocity profiles are observed as the distance from the
boundary increases (see dotted lines u∗z/νm on Figure 6.4). The reason for this is
essentially related to the invalidity of the following assumptions: (1) constant shear
stress throughout the fluid; and (2) mixing length approximation lm = κz.

A more complete description of the velocity distribution vx is possible after
including the law of the wake for steady turbulent open-channel flow as suggested
by Coles (1956):

vx

u∗
=
[

2.3

κ
log

(
u∗z

νm

)
+ 5.5

]
︸ ︷︷ ︸

law of the wall

− �vx

u∗︸︷︷︸
roughness
function

+ 2Πw

κ
sin2
(πz

2h

)
︸ ︷︷ ︸
wake flow function

(6.22)
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where h is the total flow depth, �vx represents the velocity reduction due to
boundary roughness, and Πw is the wake strength coefficient.

The terms in brackets depict the original logarithmic law of the wall for smooth
boundaries from Equation (6.13b). The last two terms have been added to describe
the entire boundary layer velocity profile outside of the thin laminar sublayer. The
term �vx/u∗ is the channel roughness velocity reduction function.

The last term describes the velocity increase in the wake region as described
by the wake strength coefficient Πw. The wake flow function equals zero near the
boundary and increases gradually towards 2Πw/κ at the upper surface (z = h).
With vx = vxm at z = h, the upper limit of the velocity profile is

vxm

u∗
= 2.3

κ
log

(
u∗h

νm

)
+ 5.5 − �vx

u∗ + 2Πw

κ
(6.23)

The velocity defect law obtained after subtracting Equation (6.22) from
Equation (6.23) gives

vxm − vx

u∗
=
{

2Πw

κ
−
[

2.3

κ
log

z

h

]}
− 2Πw

κ
sin2
(πz

2h

)
(6.24)�

In this form, the term in brackets is the original velocity defect equation for the
logarithmic law. The wake flow term vanishes as z approaches zero and the velocity
defect asymptotically reaches the term in braces in Equation (6.24) as z/h dimin-
ishes. This means that the von Kármán constant κ must be defined from the slope
of the logarithmic part in the lower portion (lower 15%) of the velocity profile
as shown in Figure 6.8. The wake strength coefficient Πw is then determined by
projecting the straight line, fitting in the lower portion of the velocity profile, to
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Figure 6.8. Evaluation of κ and Πw from the velocity defect law
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z/h = 1, and calculating Πw from

Πw = κ

2

[
vxm − vx

u∗

]
at z/h = 1 (6.25)

This procedure, illustrated in Problem 6.1, generally shows that Πw increases with
sediment concentration while the von Kármán κ remains constant around 0.4.

6.4.2 Modified log-wake law

In several channels, the maximum flow velocity is observed below the free surface,
which makes the velocity profiles difficult to plot graphically (e.g. Figure 6.9).
Guo and Julien (2003) suggested a modification to the log-wake law by adding
a correction term for the upper boundary condition. The modified log-wake law
(MLWL) reads

νx

u∗
=
[(

1

κ
ln

zu∗
νm

+ B

)
+ 2Πw

κ
sin2 πξ

2

]
− ξ3

3κ
(6.26a)

where νx = the time-averaged velocity in the flow direction, u∗ = shear velocity,
κ = von Kármán constant, z = distance from the wall, νm = kinematic viscosity
of the fluid, B = additive constant that relates to the wall roughness, Πw = Coles
wake strength, and ξ = z/zm normalized distance relative to the dip position zm.
The terms in parentheses describe the log law, the terms in square brackets define
the law of the wake (Equation (6.22)), and the cubic function is the modification
for the flow condition at the upper boundary.

In velocity-defect form, this MLWL becomes a function of the maximum flow
velocity vxm at z = zm

vxm − vx

u∗
= −1

κ
ln ξ + 2Πw

κ
cos2 πξ

2
− 1 − ξ3

3κ
(6.26b)
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Figure 6.9. Modified log-wake law comparison (after Guo and Julien, 2008)
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The MLWL assumes κ = 0.41 thus leaving four parameters to be determined from
a measured velocity profile. These parameters are zm,Πw,u∗, and either vxm or B.
These four parameters can be simultaneously optimized from the measured velocity
profile (e.g. from the function “lsq curve fit” in Matlab). The procedure detailed
in Guo and Julien (2008) is shown in Figure 6.9 for the laboratory data of Coleman
(1986).

In some large alluvial rivers, the flow depth is difficult to determine because of the
presence of bedforms. In this case, the average bed elevation zo can be determined
from the velocity profile as

vx = u∗
κ

[
ln

(
z

zo

)
− 1

3

(
z − zo

(zm − zo)

)3
]

+ 2Πwu∗
κ

sin2 π (z − zo)

2(zm − zo)
(6.27a)

in which zo is the arbitrary mean bed elevation in the presence of bedforms. Note
that the constant B in Equation (6.26a) has now been incorporated into zo. Given that
κ = 0.41, there are four fitting parameters zo, zm, u∗, and Πw or vxm in Equation
(6.27), which can be determined using a non-linear optimization program (e.g.
Guo and Julien, 2008). Once the four fitting parameters have been determined, the
depth-averaged flow velocity V can be obtained from

V = u∗
κ

[(
h

h − zo
ln

h

z

)
− Πw

π

(
zm − zo

h − zo

)
sin π

(
h − zo

zm − zo

)

− 1

12

(
h − zo

zm − zo

)3

+Πw − 1

]
(6.27b)

For instance, the velocity profile of the Mississippi River in Figure 6.10 shows a
pronounced velocity dip and a value of zo = 0.33 m, which is substantially larger

     h
    z
   z
    u
 v
    U

v (m/s) v (m/s)

z 
(m

)

z 
(m

)

o

m

10

10

1
0.2 0.60.4 0.8 1.2 0.2 0.4 0.8 1.20.6 1.01.00

0

20

40

10

30

*

2

max

Mississippi river data (Gordon, 1992)
Modified log-wake law

= 33 m
= 0.335 m
= 22.2 m
= 0.121 m/s
= 1.12 m/s
= 0.973 m/s

Figure 6.10. Velocity profile of the Mississippi River (after Guo and Julien, 2008)
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than the median grain size of the bed material. This high value for zo reflects the
presence of bedforms on the bed of the Mississippi River.

6.4.3 Sidewall correction method

The sidewall correction method is essential for experiments in narrow laboratory
channels with smooth metal or plexiglass sidewalls. Consider steady-uniform flow
in a narrow open channel at a discharge Q measured from a calibrated orifice and
friction slope Sf . When the flume width W is less than five times the flow depth,
the sidewall resistance is different from the bed resistance. The Vanoni–Brooks
correction method can be applied to determine the bed shear stress, τb = ρmu2

∗b. For
a rectangular channel, the hydraulic radius, Rh = Wh

W+2h , and the Reynolds number

Re = 4VRh
νm

, are calculated given the average velocity V = Q
Wh . The average shear

velocity u∗ =√g Rh Sf computed from the slope Sf is then used to calculate the

Darcy–Weisbach friction factor f = 8u∗2

V 2 . The wall friction factor fw for turbulent

flow over a smooth boundary 105 < Re / f < 108 can be calculated from

fw = 0.0026

{
log

(
Re

f

)}2

− 0.0428log

(
Re

f

)
+ 0.1884 (6.28a)

The bed friction factor fb is then obtained from

fb = f + 2h

W
(f − fw) (6.28b)

The hydraulic radius related to the bed Rb = Rhfb/f is then used to calculate the
bed shear stress τb from τb = γmRbSf . Example 6.2 provides the details of the
calculation procedure.

Example 6.2 Application of the sidewall correction method

Consider a discharge Q = 1.2 ft3/s in a 4 ft-wide flume inclined at a 0.001 slope.
Calculate the bed shear stress τ b given the normal flow depth of 0.27 ft. The
measured water temperature is 70◦F.

Step 1. Q = 1.2ft3/s, So = Sf = 0.001, hn = 0.27 ft, vm
∼= 1 × 10−5 ft2/s
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Step 2. Hydraulic radius:

Rh = W hn

W + 2hn
= 4ft × 0.27ft

(4 + 2 × 0.27) ft
= 0.238ft

Step 3. Flow velocity:

V = Q

W hn
= 1.2ft3

s4ft × 0.27ft
= 1.11ft/s

Step 4. Reynolds number:

Re = 4V Rh

νm
= 1.06 × 105

Step 5. Shear velocity:

u∗ =
√

g Rh Sf =
√

32.2
ft

s2
× 0.238ft × 0.001 = 0.087ft/s

Step 6: Darcy–Weisbach factor:

f = 8u∗2

V 2
= 8(0.087)2

(1.11)2ft2

ft2

s2
s2 = 0.049

Step 7. Wall friction factor:

fw = 0.0026

[
log

Re

f

]2

− 0.0428

[
log

Re

f

]
+ 0.1884 = 0.021

Step 8. Bed friction factor:

fb = f + 2hn

W
(f − fw)

fb = 0.049 + 2 × 0.27ft

4ft
(0.049 − 0.021)= 0.0527

Step 9. Bed hydraulic radius:

Rb = fb
f

Rh = 0.0527

0.049
× 0.238ft = 0.255ft

Step 10. Bed shear stress:

τb = γm Rb Sf = 62.3 lb

ft3
× 0.255ft × 0.001 = 0.016

lb

ft2
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6.5 Open-channel flow measurements

Open-channel flow measurements normally include stage and flow velocity
measurements.

6.5.1 Stage measurements

Stage measurements determine water surface elevation with reference to a horizon-
tal datum such as the mean sea level, a local datum, or an arbitrary datum below
the elevation of zero flow. For instance, the Low Water Reference Plane (LWRP)
which corresponds to a stage exceeded 97% of the time cannot be used as datum
because the LWRP is not horizontal. Simple non-recording gages require frequent
readings to develop continuous water level records. Non-recording gages can either
be directly read or can provide measurements of the water surface elevation at a
fixed point.

• Staff gages are usually vertical boards or rods precisely graduated with reference to a
datum. Staff gages are not effective in cold regions because of ice.

• Point gages consist of mechanical or electromagnetic devices to locate and measure
the water surface elevation. Point gages are commonly used in hydraulic laboratories.
Measurements can be taken from a graduated rod, drum, or steel tape housed in a small box
mounted on a rigid structure directly above the water surface. Electromagnetic devices
or Lidars can be used for field measurements.

• Float gages are used primarily with an analog water stage recorder. The gage consists of
a float and counterweight connected by a graduated steel tape which passes over a pulley
assembly. A relatively large float and counterweight are required for stability, sensitivity,
and accuracy – like a 10-in. copper float and a 2-lb lead counterweight.

• Pressure-type gages use water pressure transmitted through a tube to a manometer inside
a gage shelter to measure stage. Stage can also be measured by gas bubbling freely into
a stream from a submerged tube set at a fixed elevation; the gage pressure in the tube
equals the piezometric head at the open end of the tube.

• Crest-stage gages measure maximum flood stage from granulated cork stored inside a
2-in. galvanized pipe. As a flood wave passes, the granulated cork floats as the water rises
in the pipe. When the water recedes, the cork adheres to the pipe, marking the crest stage.

• Analog recorders provide a continuous visual record of stage, useful for graphical
presentation. Analog recorders are useful in streams with flashy hydrographs.

• Digital recorders provide data in digitally coded form suitable for digital computer pro-
cessing. Digital recorders store or print out gage heights at preselected time intervals.
In many cases, digital measurements are possible at very short time intervals, e.g. 15
minutes.

• Telemetering systems using telephone, radio, or satellite communication are desirable
when current information on stage is frequently needed from remote locations. Some
telemetering systems continuously indicate or record stage at a given site, others report
instantaneous gage readings on request.
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6.5.2 Velocity measurements

Velocity measuring devices include floats, drag bodies, tracers, velocity-head
methods, rotating-element current meters, deflection vanes, optical devices, laser,
electromagnetic, and ultrasonic devices. Mechanical meters are limited at both
high and low velocities while electromagnetic meters are less so. They are
easier to use, have no moving parts, are generally more accurate, and can
indicate both velocity and direction and provide electronic readout with averag-
ing. Acoustic and electromagnetic devices have become increasingly popular in
recent years.

• Rotating current meters are based on the proportionality between the angular velocity of
the rotating device and the flow velocity. By counting the number of revolutions of the
rotor in a measured time interval, point velocity is determined. A vertical-axis current
meter measures the differential drag on two sides of cups in relative motion in a fluid.
The rotation speed of these devices, such as Price current meters, is calibrated against the
fluid velocity. Horizontal-axis current meters act as propellers in a moving fluid. Common
horizontal-axis meters include the Ott and the Neyrpic current meters. Rotating current
meters are useful to determine time-averaged flow velocities.

• Acoustic (ultrasonic) velocity meters measure velocity by determining the travel time
of sound pulses transmitted and backscattered from small particles moving with the
fluid. Ultrasonic Doppler velocimeters measure the phase shift between the signal
emitted along the upstream path and the scattered signal received in the opposite direc-
tion. Acoustic Doppler Current Profilers (ADCP) or Acoustic Doppler Velocimeters
(ADV) provide instantaneous velocity profiles in a cone from the point of measure-
ment. The accuracy is not as good very near or very far from the instrument. They
provide a digital signal that can be easily integrated as the boat crosses a given
stream. Despite the ease of providing discharge measurements, instantaneous veloc-
ity profiles can deviate significantly from the time-averaged velocity profile along a
given vertical.

• Electromagnetic flow meters are based on Faraday’s induction law stating that voltage is
induced by the motion of a conductor (fluid) perpendicular to a magnetic field. Hand-held
electromagnetic flow meters are quite popular on small streams.

• Hot film and hot wire anemometers are electrically heated sensors being cooled
by advection. The heat loss being a function of the flow velocity, this laboratory
instrument is calibrated to measure fluctuating velocities with high spatial resolu-
tion and high frequency response. Hot wires are not very effective in sediment-laden
flows.

• Laser Doppler anemometers measure the Doppler frequency shift of light-scattering par-
ticles moving with the fluid. The frequency shift provides very accurate flow velocity
measurements in the laboratory without flow disturbance.
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• The depth-averaged velocity is normally obtained from a time-averaged velocity profile.
The following approximate methods for turbulent flows can be used to determine the
depth-averaged flow velocity from point velocity measurements:

(1) The one-point method (at 60% of the total depth measured down from the water
surface) uses the observed time-averaged velocity at 0.6 h as the mean velocity in the
vertical. This method gives reliable results in uniform cross-sections;

(2) The two-point method (at 20% and 80% of the total depth measured down from the
water surface) averages the two velocity measurements;

(3) The three-point method (at 20%, 60%, and 80% of the total depth measured down
from the water surface) averages the one-point and the two-point methods. Velocities
at 0.2 h and 0.8 h are averaged, which value is then averaged with the 0.6 depth velocity
measurement to obtain fairly accurate values of depth-averaged flow velocity; and

(4) The surface method (limited use) assumes a coefficient (usually about 0.85) to convert
the surface velocity measured with a float to the depth-averaged velocity. This method
is not very accurate. Lee and Julien (2006) used an electromagnetic wave velocimeter
for the measurement of surface velocities.

Exercises

6.1. Substitute Equation (6.1) into the Navier–Stokes equations (Table 5.1) to obtain
Equation (6.4a).

��6.2. Demonstrate that Equation (6.16) is obtained from Equation (6.12b) when zo =
k ′

s/30.
��6.3. Demonstrate that Equation (6.13b) is obtained from Equation (6.12b) when

zo = νm/9u∗.
��6.4. Derive Equation (6.14) from Equations (6.13a) and (6.13b) at z = δ.

�6.5. Define the maximum velocity from Equation (6.26a) at z = zm and derive the
velocity defect form of the MLWL in Equation (6.26b).

�6.6. Plot the measurement from Example 6.1 on the resistance diagram Figure
6.6a and b. Compare with the expected value for V /u∗ and f ′ from Equations
(6.19a–c).

Problems
��Problem 6.1

Consider the clear-water and sediment-laden velocity profiles measured in a
smooth laboratory flume at a constant discharge by Coleman (1986). Notice the
changes in the velocity profiles due to the presence of sediments. Determine the
von Kármán constant κ from Equation (6.12) for the two velocity profiles below,
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given u∗ = 0.041 m/s, ds = 0.105 mm, Q = 0.064 m3/s, h ∼= 0.17 m, Sf = 0.002,
and W = 0.356 m.
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Figure P-6.1 Logarithmic velocity profiles (after Coleman, 1986)

Elevationa

(mm)
Clear-water flow
velocity (m/s)

Sediment-laden
flow velocity
(m/s)

Concentration
by volume

6
12
18
24
30
46
69
91
122
137
152
162

0.709
0.773
0.823
0.849
0.884
0.927
0.981
1.026
1.054
1.053
1.048
1.039

0.576
0.649
0.743
0.798
0.838
0.916
0.976
1.047
1.07
1.07
1.057
1.048

2.1 × 10−2

1.2 × 10−2

7.7 × 10−3

5.9 × 10−3

4.8 × 10−3

3.2 × 10−3

2.5 × 10−3

1.6 × 10−3

8.0 × 10−4

4.4 × 10−4

2.2 × 10−4

1.6 × 10−4

a Elevation above the bed.

(Answer: The von Kármán constant κ remains close to 0.4 when considering
the lowest portion of both velocity profiles. When considering the main portion
of the velocity profiles, κ reduces significantly for sediment-laden flow. Also,
the presence of sediment reduces the near-bed flow velocity, but increases the
wake-strength coefficient.)
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Problem 6.2

(a) In turbulent flows, determine the elevation at which the local velocity vx is equal to
the depth-averaged velocity Vx. (Hint: Vx = 1

(h−z0)

∫ h
zo

vxdz and
∫

ln zdz = z ln z − z.)
(b) Determine the elevation at which the local velocity vx equals the shear velocity u∗.

��Problem 6.3

From turbulent velocity measurements at two elevations (v1 at z1 and v2 at
z2) in a wide-rectangular channel, eliminate the constant in Equation 6.12 to
determine the shear velocity u∗; the boundary shear stress τ 0; and the laminar
sublayer thickness δ.

(Answer: u∗ = κ(v1 − v2)
/

ln(z1/z2),τo = ρmu2∗ = ρmκ
2[(v1 − v2)

/
ln(z1/z2)]2, and δ = 11.6νm/u∗ = 11.6νm ln(z1/z2)/κ(v1 − v2)

��Problem 6.4

With reference to Problem 6.1: (a) calculate the laminar sublayer thickness δ;
(b) compare the flow depth to the hydraulic radius; (c) determine the Darcy–
Weisbach friction factor f ; and find the mean flow velocity from: (d) the velocity
profile; (e) the integral of the log law; (f) the one-point method; (g) the two-point
method; (h) the three-point method; and (i) the surface velocity.

��Problem 6.5

Apply the sidewall correction method in Example 6.2 to the data of Problem 6.1.

�Problem 6.6

With reference to Problem 6.1
(a) evaluate the parameters κ and Πw, from the velocity defect formulation in Figure

6.8 and Equation (6.25). Compare the value of κ with the value obtained previously
(Problem 6.1) from the simple logarithmic law.

(b) Plot the experimental velocity profiles in velocity defect form (like Figure 6.8) with
and without sediment transport.

�Problem 6.7

Consider the velocity and concentration profiles in the table below for the
Yangtze River at Feng-Jie from Guo (1998). The flow depth is 42.2 m and the
river slope is 5.8 cm/km. Plot the logarithmic velocity profile and determine the
hydraulic parameters.
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z (m) v (m/s) C (mg/l)

42.1 2.82 1,410
33.8 2.82 1,700
16.9 2.46 1,830

8.4 2.22 1,930
4.2 2.03 2,260
0.5 1.63 2,260
0.1 1.43 4,930

��Problem 6.8

Consider the velocity and concentration profiles in the table below for the Mis-
souri River. The flow depth is 7.8 ft, the slope is 12 cm/km and the width is
800 ft. The suspended sand concentration is for the fraction passing the 0.105 mm
sieve and retained on a 0.074 mm sieve. Plot the logarithmic velocity profile and
determine the hydraulic parameters.

z (ft) v (ft/s) C (mg/l)

0.7 4.3 411
0.9 4.5 380
1.2 4.64 305
1.4 4.77 299
1.7 4.83 277
2.2 5.12 238
2.7 5.30 217
2.9 5.40 −
3.2 5.42 196
3.4 5.42 −
3.7 5.50 184
4.2 5.60 −
4.8 5.60 148
5.8 5.70 130
6.8 5.95 −

��Problem 6.9

Consider the velocity and concentration profiles of the Low Flow Conveyance
Channel, New Mexico in June 1999, from Baird (2004). The flow discharge is
625 ft3/s, the flow depth is 5.6 ft, the hydraulic radius is 4.03 ft, the top width is
50.1 ft and the friction slope is 38 cm/km. The bed particle size is fairly uniform
sand at d50 = 0.15 mm. Follow Example 6.1, plot the logarithmic velocity profile
and determine the hydraulic characteristics.
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Plane bed, June 1999

z (ft) v (ft/s) C (mg/l)

0.1
0.17
0.27

2.65
3.16
3.44 1,493

0.3
0.37
0.47
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.2
2.4
2.6
2.7
2.8

–
3.27
3.62
–
3.51
3.70
3.9
4.07
3.91
4.12
4.22
4.05
4.31
4.34
4.45
4.41
4.58
4.79
4.73
4.61
4.74
4.83
–
4.97

1,194
975
853

914

776

648

463

459

283

271
190

223

3
3.2
3.4
3.6
3.7
3.8
4
4.2
4.4
4.5
4.6

5.07
4.78
5.01
5.07
–
5.03
4.99
5.06
4.98
–
4.85

4.8
4.9
5
5.2
5.4
5.5
5.5

4.78
–
4.56
4.25
4.20
4.09
4.41
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Dunes, May, 2001

z (m) v (m/s) C (mg/l)

0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27
0.30
0.36
0.42

0.325
0.698
0.705
0.729
0.746
0.756
0.755
0.743
0.812
0.787
0.742
0.840

738

654

533

462
0.45
0.48
0.54
0.60
0.70
0.73
0.79
0.88
0.97

–
0.904
0.864
0.922
0.969
–
0.899
0.975
1.023

401

491

238

337

1.03
1.06
1.15
1.24
1.31
1.34
1.43
1.52
1.61
1.70
1.79
1.88
1.92
1.98
2.07
2.13
2.16

–
1.021
0.955
1.070
–
1.058
1.081
1.077
1.091
1.074
1.058
0.989
–
1.011
0.975
1.029
–
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��Problem 6.10

Consider the velocity and concentration profile of the Rhine River on November
3, 1998 in the table below (from the Dutch Rijkswaterstaat, also in Julien, 2002).
The flow depth is 9.9 m, the navigable channel width is 260 m, the discharge is
9,464 m3/s, the friction slope is 13.12 cm/km and the particle size distribution of
the bed material is d10 = 0.34 mm, d16 = 0.4 mm, d35 = 0.71 mm, d50 = 1.2 mm,
d65 = 3 mm, d84 = 9.9 mm and d90 = 12.2 mm. The bed was covered with dunes
approximately 0.87 m high and 19.8 m long. Follow Example 6.1 and plot the
logarithmic velocity profile. Determine the main flow characteristics and discuss
the results.

z (m) v (m/s) C (mg/l)

0
0.3
0.3
0.3
0.4
0.5

–
0.74
0.81
0.72
0.47
0.84

–
494
488
498
432
398

0.8
0.9
1.2
1.3
2.2
3.5
4.0
4.1
5.3
6.0
7.3
8.0
9.0
9.9

1.22
1.34
1.38
1.47
1.63
1.92
1.85
1.86
1.99
1.98
2.08
2.04
1.9
–

293
185
132
134

83
49
43
43
35
33
26
25
23

–
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�Problem 6.11

Consider the time-averaged velocity profile of the Mississippi River from
Gordon (1992), at a flow depth of 33 m. Assume κ = 0.4, plot the velocity profile
and determine the shear velocity and zo. Compare the results with Figure 6.10.

Elevation (m) Velocity (m/s)

7.32
8.47
9.38
10.30
11.45
12.59
13.74

0.88
0.91
0.96
0.98
1.00
1.03
1.04

14.65
15.34
16.48
17.63
18.55
19.69
20.61
21.52
22.44
23.58
24.73
25.42
26.33
27.25
28.39

1.06
1.07
1.07
1.09
1.10
1.10
1.10
1.11
1.11
1.11
1.10
1.09
1.09
1.08
1.08

��Problem 6.12

Consider the velocity profile of the Mississippi River in the table below, from
Akalin (2002). The instantaneous velocity profile was measured with anAcoustic
Doppler Current Profiler (ADCP) at Union Point at vertical 1648 on April 17,
1998. The flow depth is 32.2 m, the hydraulic radius is 30.4 m, the channel
width is 1,100 m, the friction slope is Sf = 3.78 cm/km and the particle size
distribution of the bed material is d10 = 0.17 mm, d50 = 0.25 mm, and d90 =
0.45 mm.
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Suspended sand % finer than

Depth
(ft)

v
(ft/s)

C
(mg/l)

Csand
(mg/l)

0.425
(mm)

0.25
(mm)

0.125
(mm)

0.062
(mm)

7.05 7.16 303 44 100 95.8 72 3.3
10.3 6.86
13.6 6.84
16.9 7.01 241 19 100 94.3 56.6 16.6
20.1 6.93
21.3 6.67
23.4 6.39 405 111 99.2 96.2 20.8 1.2
26.7 6.58
30.0 6.69
33.3 6.49 380 112 98.6 93.8 24.8 3.1
35.5 6.43
36.5 6.49
39.8 6.49 504 207 97.6 94.7 16.7 1.7
43.1 6.31 486 231 98.7 93.5 17.2 0.6
46.4 6.01
49.7 5.78
52.9 5.75
56.2 5.35
59.5 5.31
62.8 5.28
63.9 4.07
66.1 3.64
69.3 3.37
71.0 2.74
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Incipient motion

The threshold conditions between erosion and sedimentation of a single particle
describe incipient motion. The stability of granular material in air is first examined
to define the angle of repose in Section 7.1. The following sections cover submerged
particles. In Section 7.2, the simplified particle equilibrium conditions on near-
horizontal surfaces are discussed for uniform grain sizes, bed sediment mixtures,
and cohesive material. The equilibrium of particles under tridimensional moments
of forces is detailed in Section 7.3.Asimplified force balance is presented in Section
7.4. Two examples of particle stability analysis and stable channel design conclude
this chapter.

7.1 Angle of repose

The stability of a single particle on a plane horizontal surface is first considered in
Figure 7.1a for simple two-dimensional particle shapes. The threshold condition
is obtained when the particle center of mass G is vertically above the point of
contact C. The critical angle at which motion occurs is called the angle of repose
φ and equals 180◦ divided by the number of sides of the polygons. For instance,
the angle of repose φ of an equilateral triangle is φ = 180◦/3 = 60◦, a square is
φ = 180◦/4 = 45◦, and the angle of repose of a sphere is φ = 180◦/∞ = 0◦. It
is concluded that the angle of repose of particles on a flat surface increases with
angularity.

As shown in Figure 7.2, a given particle does not necessarily have a unique value
of angle of repose. For instance, it is easy to demonstrate that a simple cylinder has
an angle of repose tan φ = diameter/height when standing. It can also roll freely on
a table at tan φ= 0. The angle of repose thus depends on the position of the particle
relative to the contact surface.

Long cylinders standing piled on top of each other (Figure 7.1b) rest at an angle
of repose φ = 30◦. A sphere standing on spheres of equal diameter (Figure 7.1c)
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reaches threshold of motion atφ= 19.5◦ for three points of contact, and atφ= 35.3◦
for four points of contact. The angle of repose is thus not solely a function of the
particle. It depends on the interaction of the particle with the contact surface.

In the case of material with different diameter particles, consider a sphere of
diameter d2 resting on top of four identical spheres of diameter d1, as sketched in
Figure 7.3. Geometrically, the angle of repose is given by:

tanφ = d1√
(d1 + d2)2 − 2d2

1

=
√√√√√ 1(

1 + d2

d1

)2

− 2

(7.1a)
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The angle of reposeφ is 35.3◦ when d2 = d1; it decreases when d2 > d1 and increases
for fine particles d2 < d1 until d2 = 0.41 d1. Surface particles of diameter d1 can act
as a filter to pass particles finer than 0.41 d1 between bed particles. The sub-surface
layer of sediment mixtures may therefore tend to become well graded. For granular
material, the angle of repose empirically varies with grain size and angularity of
the material, as shown in Figure 7.4.

Figure 7.5 shows the application of a drag force FD passing through the center of
gravity of a particle of weight W on a horizontal surface. Incipient motion is defined
as the magnitude of the horizontal force FH = FD that would set the particle at the
beginning of motion obtained when the sum of moments, with FV = W , equals
zero. Accordingly, it is important to notice that the ratio of forces thus becomes
equal to tan φ.

Amore compact base material composed of equal diameter spheres in a staggered
pattern leads to the analysis of a sphere of diameter d2 resting on top of three identical
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spheres of diameter d1. From Exercise 7.1,

tanφ = 1√
3

(
1 + d2

d1

)2

− 4

(7.1b)

Same size particles giveφ= 19.5◦, and Figure 7.1c shows that compact bed surfaces
result in low angles of repose.

7.2 Submerged incipient motion

Fluid flow around sediment particles exerts forces which tend to initiate parti-
cle motion. The resisting force of non-cohesive material is the particle weight.
Threshold conditions occur when the hydrodynamic moments of forces acting on a
single particle balance the resisting moments of force. The particle is then impeding
incipient motion.

The forces acting on a non-cohesive sediment particle sketched in Figure 7.6
are the particle weight FW , buoyancy force FB, lift force FL, drag force FD, and
resisting force FR. As a first approximation it is assumed here that the lift force is
negligible. A more refined analysis is presented in Section 7.3. Further assuming
that the bed surface slope is horizontal S0 = tan θ ∼= 0, and the water surface is almost
horizontal, the buoyancy force FB acts in a vertical direction, opposite to the particle
weight FW . The submerged weight of the particle FS = FW − FB is therefore the
passive vertical force. The active horizontal force is FH = FD

∼= τod2
s = ρmu2∗d2

s .
The passive vertical force is FV = FS ∼ (γs − γm)d3

s . The ratio of forces defines
the dimensionless shear stress τ∗, called the Shields parameter:

τ∗ = τo

(γs − γm)ds
= ρmu2∗
(γs − γm)ds

(7.2a)
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where: τo = boundary shear stress
u∗ = shear velocity
γs = specific weight of a sediment particle
γm = specific weight of the fluid mixture
ds = particle size

It is interesting to consider the effect of a lift force on incipient motion. With
reference to Figure 7.6b, with moment arms l2, 13, and l4 for the submerged weight,
drag and lift forces respectively, the sum of moments about the point of contact
C gives

FDl3 + FLl4 = FSl2 (7.2b)

Given that the Shields parameter expresses the ratio of drag force to submerged
weight, the lift force will decrease the critical Shields parameter in proportion to
FLl4/FDl3, which corresponds to the ratio of lift to drag moments.

τ∗c ∼ FD

FS
= l2

l3

1(
1 + FLl4

FDl3

) (7.2c)

In Section 7.3, this ratio will be defined as M /N , and Π ld = FL/FD defines the
lift-drag force ratio. It will be found that l4/l3 ≈ 2.6 in Equation (7.14).

7.2.1 Uniform grain size

Owing to the analysis in Figure 7.5, the critical value of the Shields parameter
τ ∗c corresponding to the beginning of motion (τ o = τc) depends on tan φ. Besides
the angle of repose, one should consider the ratio of sediment size to the laminar
sublayer thickness expressed either as ds/δ, or the grain shear Reynolds number
Re∗ = u∗ds/νm (because δ = 11.6νm/u∗), the shape of the particle and the lift to
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drag ratio should also be considered.

τ∗c = τc

(γs − γm)ds
= f

(
tanφ,

ds

δ
,

lift

drag
,shape . . .

)
(7.3a)

It is interesting that Duboys (1879) first derived the Shields parameter, and defined
its proportionality with tan φ. Shields (1936) defined the relationship to Re∗. He
determined the threshold condition by measuring sediment transport for values of
τ ∗ at least twice as large as the critical value and then extrapolated to the point of
vanishing sediment transport. His laboratory experiments and those of Yalin and
Karahan (1979) and Whitehouse et al. (2000) using the median grain size for ds led
to the Shields diagram shown in Figure 7.7.At high values of ds/δ, or Re∗ = u∗ds/ν,
one obtains a constant value of τ∗c ≈ 0.047, or

τ∗c
∼= 0.06tanφ; when

u∗ds

νm
> 50 (7.3b)

The value of τ ∗c ≈ 0.047 has been widely used for single-size particles. The formu-
lation with tanφ may be preferable to describe sediment mixtures. An exact value
of the critical Shields parameter remains very difficult to define with great accuracy
because the definition of beginning of motion is subjective, and because tanφ varies
for the reasons discussed in Section 7.1.

Since the shear velocity u∗ appears both in the Shields parameter τ∗ = ρmu2∗
(γs−γ )ds

and in the grain shear Reynolds number Re∗ = u∗ds
νm

, an iterative procedure is
required to solve the Shields diagram. It is practical to replace the abscissa of
the Shields diagram after eliminating the shear velocity from Re∗ and defining the
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dimensionless particle diameter d∗ from d3∗ = Re2∗
τ∗ . Thus, the abscissa of the Shields

diagram can be replaced by the dimensionless particle diameter d∗ resulting in the
modified Shields diagram in Figure 7.8. The critical values of the Shields parameter
τ ∗c can be approximated as follows:

τ∗c ≈ 0.3e
−d∗

3 + 0.06 tanφ
(

1 − e
−d∗
20

)
(7.4)

where

d∗ = ds

(
(G − 1)g

ν2
m

)1/3

For turbulent flows over rough boundaries, large Re∗ or d∗, Equation (7.4) reduces
to Equation (7.3b). The critical shear stress becomes proportional to the sediment
size since the threshold value of the Shields parameter remains constant. Based
on a comparison of data from the Highway Research Board (1970), a graphical
relationship between critical shear stress τc and mean grain size diameter d50 on a
flat horizontal surface is shown in Figure 7.9 with equivalent values for granular
material in Table 7.1. It is interesting to notice that the critical shear stress for
beginning of motion is approximately 1 Pa per mm of grain size.

7.2.2 Sediment mixtures

The particle size distribution of bed material can vary with time depending on
the magnitude of the applied shear stress in relation to the mobility of sediment
particles of different sizes. Consider a gravel-bed mixture, identical for the three
cases illustrated in Figure 7.10, for which the applied shear stress can move: (a)
none of the particles (low shear stress); (b) the fine particles only; (c) all the particles
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Table 7.1. Threshold conditions for uniform material at 20◦C

Class name ds (mm) d∗ φ (deg) τ ∗c τ c (Pa) u∗c (m/s)

Boulder
Very large > 2,048 51,800 42 0.054 1,790 1.33
Large > 1,024 25,900 42 0.054 895 0.94
Medium > 512 12,950 42 0.054 447 0.67
Small > 256 6,475 42 0.054 223 0.47

Cobble
Large > 128 3,235 42 0.054 111 0.33
Small > 64 1,620 41 0.052 53 0.23

Gravel
Very coarse > 32 810 40 0.05 26 0.16
Coarse > 16 404 38 0.047 12 0.11
Medium > 8 202 36 0.044 5.7 0.074
Fine > 4 101 35 0.042 2.71 0.052
Very fine > 2 50 33 0.039 1.26 0.036

Sand
Very coarse > 1 25 32 0.029 0.47 0.0216
Coarse > 0.5 12.5 31 0.033 0.27 0.0164
Medium > 0.25 6.3 30 0.048 0.194 0.0139
Fine >0.125 3.2 30 0.072 0.145 0.0120
Very fine > 0.0625 1.6 30 0.109 0.110 0.0105

Silt
Coarse > 0.031 0.8 30 0.165 0.083 0.0091
Medium > 0.016 0.4 30 0.25 0.065 0.0080
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(high shear stress). It is observed that without motion of the fines, the bed surface
is comprised of the original bed material.

With motion of the finer fractions at a shear stress insufficiently high to displace
the coarse particles, the bed surface is coarsened to form an armor layer while the
fractions in motion are finer than those of the bed surface. Finally, as the shear
stress becomes sufficiently large to break the coarse armor layer, all size fractions
are brought into motion.

Gravel- and cobble-bed streams tend to have well-graded sediment mixtures.
Gradation coefficients σg > 3 are common and particle sizes can range from a
few mm to hundreds of mm. Figure 7.11 provides an example of the particle size
distribution of the bed material at Little Granite Creek (Weinhold, 2002). The dis-
tribution of the sub-surface material shows nearly equal volumes of sediment for
each size class between 1–180 mm. The thickness of the bed-surface (or pavement)
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layer is typically dmax ∼= 2−3d50 of the surface layer. The surface material distribu-
tion is skewed, the median grain diameter is approximately 100 mm and the ratio
of d84/d50 is much smaller than d50/d16. The surface layer is usually called an
armor layer when it can be mobilized relatively frequently, every year or so. The
surface layer will be paved when only an extreme event can break up the surface
layer. Bunte and Abt (2001) provide ample details on measurement techniques for
gravel-bed streams.

The mobility of the surface layer becomes interesting because incipient motion
depends on tanφ in Equation (7.3), and tanφ varies with the relative size of sed-
iment particles. For instance, the stability analysis of different particle sizes from
Equations (7.1b) and (7.3) is shown in Figure 7.12. The effect of the change in angle
of repose from Equation (7.1b) is to make it relatively easy to mobilize particles
larger than the bed material. This example shows that these three different sized
particles can be mobilized at nearly the same critical shear stress (0.857 τ c versus
1.19 τ c). This concept has been expanded to define near-equal mobility.

Armor layers can only form in graded-bed sediment mixtures. The analysis of
armor layers (Fig. 7.10) centers around the coarser fractions of the mixture which
are not moving; finer fractions will be present in the mixture as long as they are
shielded by the stable coarser particles. All particles will enter motion as soon as
the shear stress exceeds the threshold of motion of coarse particles. This concept
is referred to as the equal mobility concept for which all fractions of sediment
enter motion at the same value of applied shear stress. Equal mobility of gravel
beds implies that all size fractions of a mixture will be mobilized at the same
shear stress. It is intuitively obvious that once an armor layer can be mobilized,
all size fractions of the underlying material will also reach incipient motion at the
same shear stress. When considering size fraction di of a mixture of median grain
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diameter d50, the incipient motion of this size is defined by the Shields parameter
τ ∗c50, and the corresponding Shields parameter of fraction di is τ ∗ci. The ratio of
τ ∗c50/τ ∗ci can be plotted as a function of di/d50 to give the equal mobility diagram
shown in Figure 7.13 with experimental data from Patel and Ranga Raju (1999).
On this diagram, equal mobility is obtained when the slope of the line is −1. This
implies that all size fractions would reach incipient motion at the same shear stress.

Near-equal mobility recognizes inherent limitations of equal mobility. Even if
equal mobility implies that all size fractions found in the armor layer would move,
the fact remains that boulders will not move in a gravel-bed stream even at very
high flows. Also, Figure 7.11 clearly shows the size fractions mobilized as bedload,
and all size fractions do not move at all discharges. Obviously, these discrepancies
must be reconciled. Near-equal mobility has often been defined by exponents of
the equal mobility diagram.

τ∗ci

τ∗c50
= τci

(G − 1)γ di

(G − 1)γ d50

τc50
=
(

di

d50

)−x

or

τci = τc50

(
di

d50

)1−x

(7.5a)

where x is close to, but slightly less than, unity.
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Other methods for near-equal mobility have been available for several decades,
e.g. Egiazaroff (1965), Hayashi et al. (1980), and many others since: Parker et al.
(1982) and Klaassen et al. (1988);

τ∗ci = τ∗c50

(
log19

log (19di/d50)

)2

(7.5b)

τ∗ci = τ∗c50

(
log8

log (8di/d50)

)2

for di > d50 (7.5c)

and τ∗ci = τ∗c50

(
di

d50

)−1
for di < d50

Equations (7.1b) and (7.3b) can also be combined to give the following theoretical
relationship:

τ∗ci = τ∗c50

√
8

3(1 + di/d50)
2 − 4

;when di/d50 > 0.25 (7.5d)

In practice, armor layers can be brought into motion when the coarse fractions of
the bed-surface material reach incipient motion. This is when τ ∗c50 ≈ 0.047 based
on d50 of the armor or pavement layer, and tan φ � 0.8. Higher values of τ ∗c50

are required when the d50 of the sub-surface material is considered. When fitting
straight lines through the equal mobility diagram on Figure 7.13, values of the near-
equal mobility exponent x are typically around 0.9–1. It is important to remember
that near-equal mobility only applies to size fractions found in the bed material.
In practice this is about 5–10 times larger than d50. Also, field measurements can
provide the useful site calibration of these parameters (Bakke et al., 1999 and
Weinhold, 2002).

7.2.3 Cohesive material

Incipient motion conditions for cohesive material are more difficult to determine
because it depends on clay mineralogy, water quality, and other chemical interac-
tions, site-specific critical shear stress values can be determined from laboratory
tests.

For design purposes, values of permissible velocity Vc in canals are listed
in Table 7.2 and Table 7.3, with information from Fortier and Scobey (1926)
and Mirtskhoulava (1988) for several unusual materials and for cohesive
sediment.
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Table 7.2. Maximum permissible velocities for canals with h< 1m

Soil type Manning n

Clear water,
no detritus
(m/s)

Water
transporting
colloidal
silt (m/s)

Water
transporting
silts,
sands, or
gravels
(m/s)

Stiff clay (very
colloidal)

0.025 1.14 1.52 0.91

Alluvial silt when
colloidal

0.025 1.14 1.52 0.91

Alluvial silt when
noncolloidal

0.02 0.61 1.07 0.61

Volcanic ash 0.02 0.76 1.07 0.61
Silt loam

(noncolloidal)
0.02 0.61 0.91 0.61

Ordinary firm loam 0.02 0.76 1.07 0.69
Sandy loam

(noncolloidal)
0.02 0.53 0.76 0.61

Fine sand (colloidal) 0.02 0.46 0.76 0.46
Fine gravel 0.02 0.76 1.52 1.14
Graded, loam to

cobbles, when
noncolloidal

0.03 1.14 1.52 1.52

Graded, silt to cobbles,
when colloidal

0.03 1.22 1.68 1.52

Coarse gravel
(noncolloidal)

0.025 1.22 1.83 1.98

Cobbles and shingles 0.035 1.52 1.68 1.98
Shales and hard pans 0.025 1.83 1.83 1.52

Source: Fortier and Scobey (1926).

7.3 Moment stability analysis

Layers of large stones, commonly called riprap, are used to protect embank-
ment slopes against erosion. The stability of riprap depends on the stability of
individual particles subjected to hydrodynamic forces under various embankment
configurations and stone properties.

Figure 7.14 illustrates the forces acting on a cohesionless particle resting on an
embankment inclined at a sideslope angle Θ1, and a downstream angle Θ0. Those
are the lift force FL, the drag force FD, the buoyancy force FB, and the weight of the
particle FW (Stevens and Simons, 1971). As long as the water surface slope angle
in the downstream direction is small, the buoyancy force can be subtracted from the
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Figure 7.14. Moment stability analysis of a particle

weight of the particle to give the submerged weight of the particle FS = FW − FB.
The lift force is defined as the fluid force normal to the embankment plane and
the drag force is acting along the plane in the same direction as the velocity field
surrounding the particle.

Geometrically, the projection of the submerged weight on the embankment plane
gives tanΘ = cosΘ1sinΘ0/cosΘ0sinΘ1. Similarly, the submerged weight projec-
tion into the embankment plane is aΘ =

√
1 − cos2Θ0sin2Θ1 − cos2Θ1 sin2Θ0.

For small angles Θ0 (Θ0 < 20◦), these expressions can thus be approximated as
aΘ ≈

√
cos2Θ1 − sin2Θ0 and this corresponds to tanΘ � sinΘ0

/
sin�1. The sub-

merged weight has one sideslope component FS sin�1, one downslope component
FS sin �0, and a component normal to the plane FSa�. The streamline deviates
from the downstream direction at an angle λ along the embankment plane (λ is
defined positive downward). Once in motion, the particle follows a direction at an
angle β from the downward direction (projection of a vertical on the embankment
plane).

Stability against rotation of a particle determines incipient conditions of motion
when the equilibrium of moments about the point of rotation 0 is satisfied (see
Figure 7.14 Section A–A′).

l2FSaΘ = l1FS

√
1 − a2

Θ cosβ+ l3FD cosδ+ l4FL (7.6)

the angles δ and β, and the moment arms l1, l2, l3 and l4 are shown on Figure 7.14.
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The first two terms on the right-hand side of Equation (7.6) determine about
which pivot point particle P is to rotate. Two stability factors SF0 and SF01, against
rotation about points 0 and 0′ are respectively defined as the ratio of the resisting
moments to the moments generating motion.

SF0 = l2FSaΘ

l1FS

√
1 − a2

Θ cosβ+ l3FD cosδ+ l4FL

(7.7a)

SF01 =
l2FSaΘ + l1FS

√
1 − a2

Θ cosβ

l3FD cosδ+ l4FL
(7.7b)

Note that Equation (7.7b) is only used when FD cos δ is applied upslope (large
negative λ value). Each term in Equation (7.7) must be positive because the formu-
lation describes the ratio of positive stabilizing moment to positive destabilizing
moments.

Because the stability factor SFo equals unity when the angle Θ equals the angle
of repose φ under static fluid conditions (FD = FL = 0), it is then found that
tanφ= l2/l1. Dividing both the numerator and the denominator by l1FS , transforms
Equation 7.7 to:

SF0 = aΘ tanφ

η1 tanφ+
√

1 − a2
Θ cosβ

(7.8a)��

SF01 =
aΘ tanφ+

√
1 − a2

Θ cosβ

η1 tanφ
(7.8b)

in which, after defining M = l4 FL/l2 FS ; and N = l3 FD/l2 FS :

η1 = M + N cosδ (7.9)

The variable η1 relates to the stability number η0 = M +N for particles on a plane
horizontal surface (Θ0 =Θ1 = δ = 0) after considering λ+ δ+β+Θ = 90◦, or

η1 = η0

(
(M/N )+ sin(λ+β+Θ)

1 + (M/N )

)
(7.10)�

When the flow is fully turbulent over a hydraulically rough horizontal surface,
incipient motion corresponds to SF0 = 1, or:

η0 = τo

τc

∼= τo

(γs − γm)dsτ ∗
c

= 21τ0

(γs − γm)ds
(7.11a)�

This normalized form of the Shields parameter shows that η0 = 1 when τ ∗c = 0.047,
describing incipient motion of particles on a plane bed under turbulent flow over
hydraulically rough boundaries.
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Alternative relationships for η0 are obtained when replacing the boundary shear
stress τ o with the reference velocity vr , the velocity against the particle vp or the
average flow velocity V . The reference velocity vr = 8.5u∗ is the velocity at a
height z = k ′

s; thus, from Equation (6.16), τ o = ρmu2∗ = 0.0138ρmv2
r . Taking the

velocity against the particle vp
∼= 0.71vr = 6 u∗, τo = 0.027ρmv2

p . Finally, from
Equation (6.10), the grain shear component on a plane surface has a notation with
prime ′ as

τo = τ ′
o = ρmu′∗2 = f ′ρmV 2/8 = ρmV 2

/(
5.75 log(12.2h/k ′

s)
)2

τ ′
o = γ RhS ′

f = 0.0138ρmv2
r = 0.027ρmv2

p

and alternative equations for η0 as a function of the reference velocity vr , the
velocity against the particle vp and the mean flow velocity V are respectively:

η0 = 0.3v2
r

(G − 1)gds
(7.11b)

η0 = 0.6v2
p

(G − 1)gds
(7.11c)

η0 = V 2

(G − 1)gds(5.75 log(12.2h/k ′
s))

2
(7.11d)

The second equilibrium condition given by the direction of the particle along the
section normal to A–A′ on Figure 7.14 is:

l3FD sin δ = l1FS

√
1 − a2

� sinβ (7.12)

After writing δ as a function of λ, �, and β, and solving for β gives

β = tan−1

⎧⎪⎪⎨
⎪⎪⎩

cos(λ+Θ)

(M +N )
√

1−a2
�

Nη0 tanφ + sin(λ+Θ)

⎫⎪⎪⎬
⎪⎪⎭ (7.13)�

In summary, the stability factors for particles on sideslopes can be calculated from
Equation (7.8) after solving successively Equations (7.11), (7.13), and (7.10), with
the use of two geometric relationships, aΘ =

√
cos2Θ1 − sin2Θ0 and tanΘ = sinΘ0

sinΘ1
.

For simplified applications, one can use M = N because the stability factor is not
very sensitive to the M /N ratio.

Recent research on the lift-to-drag ratio Πld = FL/FD on spherical particles
by Lucker and Zanke (2007) shows variability of Πld relative to the grain shear
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Figure 7.15. Lift-to-drag force ratio versus Re∗ for spheres

Reynolds number Re∗. In Figure 7.15, this data can be used to fit an empirical
relationship as a function of d∗ with tanφ � 0.8 as

Πld = FL

FD
≈ −0.38 +

[
2.6e

−d∗
3 + 0.5tanφ

(
1 − e

−d∗
20

)]−1
(7.14a)

From this relationship, it is interesting that the critical value of the Shields parameter
for incipient motion on a plane horizontal surface in Equation (7.2c), given Equation
(7.9) corresponds to Equation (7.4), or τ ∗c = 0.3/(1 + (M /N )). The corresponding
ratio of moment of forces is

M

N
≈ l4FL

l3FD
= 2.6Πld ≈ −1 +

[
e

−d∗
3 + 0.2 tanφ

(
1 − e

−d∗
20

)]−1
(7.14b)

Accordingly, M /N ≈ 5 when d∗ = ds
[
(G − 1)g/v2

]1/3
> 100 and M /N

approaches zero when d∗ < 1, as expected from Chapter 5. From these empiri-
cal relationships, it can be noted that the moment arms are in the approximate
following proportion: l1 � 0.37l3, l2 � 0.3l3, l4 � 2.6l3.

Riprap is safe from failure when SF0 > 1 and particles are expected to
move when SF0 < 1. Impending motion corresponds to SF0 = 1. This analy-
sis reduces to the method of Stevens and Simons (1971) for SF0 when Θ0 = 0.
Example 7.1 provides the detailed calculations of particle stability using this
method.
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Example 7.1 Application of the moment stability of a particle

A round 5 cm (50 mm) particle stands on the bed of a channel. If the downstream
channel slope is 0.05 and the sideslope angle is 20◦, calculate:

(1) the stability factor of the particle under an applied shear τo = 1 lb/ft2 when the
streamlines are deflected downward at a 20◦ angle; and

(2) calculate the direction of the path line if the particle in (1) enters motion; and
(3) repeat the calculations for a 5 mm particle and compare the results.

(1) Stability factor
Step 1. The particle size is 5 cm = 0.164 ft, and d∗ = 0.05(1.65×

9.81 × 1012)1/3 = 1,264;
Step 2. The angle of repose is approximately φ = 37◦ from Figure 7.4;
Step 3. The lateral slope angle is Θ1 = 20◦;
Step 4. The downstream slope angle Θ0 = tan−1 0.05 = 2.86◦;
Step 5. The angle Θ = tan−1 (sin Θ0/sin Θ1)= 8.3◦;
Step 6. The factor aΘ =

√
cos2Θ1 − sin2Θ0 = 0.938;

Step 7. The deviation angle λ= 20◦;
Step 8. From Equation (7.11a)

ηo = 21 × 1lb

ft2

ft3

(1.65)× 62.4 lb × 0.164ft
= 1.24

Note that this particle would move in a horizontal plane because ηo > 1
Step 9. M /N ≈ 5 from Equation (7.14b);
Step 10. From Equation (7.13),

β = tan−1

{
cos(20◦ + 8.3◦)

/(
6

√
1 − (0.938)2

1.24 tan 37◦ + sin(20◦ + 8.3◦)
)}

= 18◦

Step 11. From Equation (7.10),

η1 = 1.24

{
5 + sin(20◦ + 18◦ + 8.3◦)

6

}
= 1.19

Step 12. From Equation (7.8a), because λ≥ 0,

SFo = 0.938tan 37◦

1.19tan 37◦ +√1 − (0.938)2 cos18◦ = 0.58

The particle is moving because SF0 < 1; and
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(2) Direction of the path line
The particle will move along a path line at an angle β = 18◦ from the vertical

in the downstream direction.
(3) Calculations for a 5 mm particle

Horizontal

Vertical

DownstreamStreamline

5 mm
particle

50 mm particle

Path lines

θ β

Figure E-7.1 Path lines for different particle sizes

In this case, φ = 31◦, SF0 = 0.07 and β = 48◦. There is a 30◦ differ-
ence between the orientation angles of these two particles as sketched in
Figure E-7.1.

7.4 Simplified stability analysis

An approximate formulation of particle stability is presented as the ratio of critical
shear stress on an embankment slope τΘc compared to the critical shear stress
on a flat surface τc. The method is simplified and uses only the magnitude of
active and passive forces, regardless of orientation. Accordingly, only the ratio of
forces is used. The angle of repose φ can be expressed as a function of the resultant
destabilizing force FR1 to the stabilizing force FSaΘ . With reference to Figure 7.16,
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Figure 7.16. Simplified stability of particle
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the magnitude of the destabilizing force is equal to the square root of the sum of
the three squared orthogonal force components:

tanφ = FR1

FSaΘ
=
[
(FD cosλ+ FS sinΘo)

2 + (FD sinλ+ FS sinΘ1)
2 + F2

L

]1/2

FSaΘ
(7.15a)

where the drag force at an angle λ can be expressed as FD = c2 τΘcd2
s .

For incipient motion (τΘc = τc) on a horizontal surface (Θ1 =Θ0 = λ= 0), the
drag force FD = c2τcd2

s , and with a constant value of the lift–drag ratio Πl d =
FL/FD, Equation (7.15a) reduces to:

tanφ =
(
c2

2τ
2
c d4

s + F2
L

)1/2

FS
= c2τcd2

s

FS

√
1 +Π2

ld (7.15b)

Equations (7.15a and b) are combined and solved for τΘc/τc

τΘc

τc
= −sinΘ1 sinλ+ sinΘ0 cosλ√

1 +Π2
ld tanφ

+

√√√√(sinΘ1 sinλ+ sinΘ0 cosλ)2

(1 +Π2
ld )tan2φ

+ 1 −
(

sin2Θ0 + sin2Θ1

sin2φ

)
(7.16)�

This equation expresses the ratio of the critical shear stress on the embankment
τΘc to the critical shear stress on a horizontal surface τc as a function of: (1) the
embankment slopes Θ0 and Θ1; (2) the shear stress direction angle λ; (3) the angle
of repose φ; and (4) the lift–drag ratio Πld . After expanding the square root term
of Equation (7.16) into a power series, it follows that

τΘc

τc
=
√√√√(1 − sin2Θ1

sin2φ
− sin2Θ0

sin2φ

)(
1 − x + x2

2
+·· ·
)

(7.17a)

where

x = cosφ(sinΘ1 sinλ+ sinΘ0 cosλ)√
1 +Π2

ld

√
sin2φ− sin2Θ1 − sin2Θ0

(7.17b)
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Consider the particular case when Θ0 = 0. As the lift forces become negligible
(Πld = 0), Equation (7.16) reduces to Brooks’ (1958) relationship. As the lift–drag
ratio goes to infinity (Πld → ∞), or when the streamlines are horizontal (λ= 0),
Equation (7.17) with x = 0 reduces to Lane’s (1953) relationship:

τΘc

τc
= cosΘ1

√
1 −
(

tan2Θ1

tan2φ

)
=
√√√√1 −

(
sin2Θ1

sin2φ

)
(7.18)�

This simple relationship has become very useful for defining the cross-sectional
geometry of straight channels.

Consider steady uniform flow in a straight trapezoidal channel for a base
width–depth ratio Wb/h > 4, as sketched in Figure 7.17. The bed shear stress
τ b

∼= 0.97γmhSo and the bank shear stress τ s
∼= 0.75γmhSo impose two conditions

for channel stability: (a) the bed particles are stable when τb <τc; and (b) the sides-
lope particles are stable when τ s < τΘc calculated from Equation (7.18). Table 7.4
suggests sideslope angles Θ1 for a variety of channel bank material. A detailed
stable channel design procedure is presented in Example 7.2.

os

1 1

= 0.75      h S~

h
W

m

b

θ θ

γτ os = 0.75      h S~
mγτ

ob = 0.97      h S~
mγτ

Figure 7.17. Applied shear stress distribution in trapezoidal channels

Table 7.4. Embankment sideslopes

Bank material Θ1 (deg) Vertical:horizontal

Rock
Smooth or weathered rock, shell
Soil (clay, silt, and sand mixtures)
Sandy soil
Silt and loam (loose sandy earth)
Fine sand
Other very fine material
Compacted clay

78
45–63
34
34
26
18
18
34

1:0.2
1:1–1:0.5
1:1.5
1:1.5
1:2
1:3
1:3
1:1.5
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Example 7.2 Design of a stable trapezoidal channel

Traditional channel design methods can be based on incipient motion; from
Lane (1953) and Simons (1957). The regime theory approach of Lacey (1929)
and downstream hydraulic geometry approaches, Wargadalan (1993) and Julien
(2002) can also be used. Design a stable straight trapezoidal channel made of
very uniform rounded gravel d50 = 1.5 in and d90 = 2 in. A total clear water
discharge Q = 1000 cfs is conveyed on a bed slope So = 0.0015.

Step 1. The angle of repose φ = 37◦ is found from Figure 7.4 for rounded
material. The flow depth is such that the bed particles are at incipient motion,
assuming Rh = h. The bed shear stress τ b equals the critical shear stress τ c at
the following flow depth h:

τb = 0.97γ hSo = 0.06(γs − γ )d50 tanφ

h = 0.06(G − 1)

0.97

d50

So
tanφ = 0.06 × 1.65 × 1.5ft × tan 37◦

0.97 × 0.0015 × 12
= 6.3ft

Step 2. The sideslope angle Θ1 is calculated to correspond to beginning of
motion, from Equation (7.18). The applied bank shear stress τ s equals the critical
shear stress τΘc at a side slope angle Θ1 given as shown in Figure 7.17

τs = 0.75γ hSo = 0.06tanφ(γs − γ )d50

√
1 − sin2Θ1

sin2φ√
1 − sin2Θ1

sin237◦ = 0.75 × 6.3ft × 0.0015 × 12in

0.06 × 1.65 × 1.5 in ft × tan 37◦ = 0.76

sin2Θ1 = sin237◦(1 − 0.762
)

,orΘ1 = 23◦

Step 3. The cross-sectional area of a trapezoidal channel is given by A =
Wbh+h2 cotΘ1 = Wbh+93.5ft2, given the base width Wb. The wetted perime-
ter P = Wb + 2hcosecΘ1 = Wb + 32.2 ft and the hydraulic radius Rh = A/P.
Using the Darcy–Weisbach friction factor from Equation (6.19), the velocity is
given by

V = Q

A
=
√

8g

f
R1/2

h S1/2
o =√gRhSo

(
5.75log

(
12.2h

3d90

))
= 2.76

√
Rh
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14.8 14.8
[ft]

14.2

6.3 7

1 = 23°θ

Figure E-7.2.1 Stable trapezoidal channel

As a first approximation, A = (Q/V ) ∼= Wbh with Rh
∼= h, gives Wb

∼= 22.9 ft.
Through iterations or goal seek functions, the base width should be Wb = 14.2 ft
for a stable channel. The cross-sectional geometry is plotted in Figure E-7.2.1.

Exercises

�7.1 Analyze the angle of repose of one sphere of diameter d2 resting on an equilateral
triangle of spheres of diameter d1. Check the angle of repose in Figure 7.1c and
Equation (7.1b).

7.2 Demonstrate that the two formulations on the right-hand side of Equation (7.18)
are identical.

7.3 Define ds/δ as a function of τ ∗ and d∗. (Answer: ds/δ = 0.086 (τ ∗d3∗ )0.5)

Problems
��Problem 7.1

Demonstrate that the critical shear stress on an incline is τcα = τc sin (φ+α)/sin
φ from Equation (7.8a). (Hint: Consider λ = 90◦, Θ1 = −α, and Θ = Θ0,
β = 0. See application to scour hole formation in a plunge pool in Bormann
and Julien (1991).)

=
sin (   +   )

sin 
cα

α

α

φ

φ
φ

τ

τ
cτ

Figure P-7.1 Threshold up an incline

�Problem 7.2

What is the sediment size corresponding to beginning of motion when the shear
velocity u∗ = 0.1 m/s? (Answer: medium gravel, ds

∼= 1cm from Table 7.1)
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��Problem 7.3

Calculate the stability factor of 8-in riprap on an embankment inclined at a
1V :2H sideslope if the shear stress τ o = 1 lb/ft2. (Answer: SF0=1.3; thus, stable.)

��Problem 7.4

An angular 10 mm sediment particle is submerged on an embankment inclined
atΘ1= 20◦ andΘ0 = 0◦. Calculate the critical shear stress from the moment sta-
bility method when the streamlines near the particle are: (a) λ= 15◦ (deflected
downward); (b) λ= 0◦ (horizontal flow); and (c) λ= −15◦(deflected upward).

��Problem 7.5

Compare the values of critical shear stresses τΘc from Problem 7.4 with those
calculated with Equation (7.16) and with Lane’s method (Eq. 7.18), given
Θ0 = 0 and Πld = 0. (Answer: at φ = 37◦, and τ ∗c = 0.047.)

Angle λ (deg)
Moment stability
(N/m2)

Simplified stability
(N/m2)

Lane’s method
(N/m2)

–15◦ up 6.6 7.2 6.3
0 5.7 6.3 6.3
15◦ down 5.0 5.4 6.3

�Problem 7.6

Design a stable channel conveying 14 m3/s in coarse gravel, d50 = 10 mm and
d90 = 20 mm, at a slope So = 0.0006.

�Problem 7.7

The riverbed of the Rio Grande is composed of a mixture of 0.2 mm sand and
10 mm gravel. At what flow depth would the riverbed armor if the slope is
0.0008?

��Problem 7.8

Repeat the calculations of Example 7.1 for λ = −20◦ for two particle sizes
(5 mm and 50 mm). Compare the particle direction angles, discuss why the
orientation angles β are different.
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��Problem 7.9

Consider the gravel transport and particle size distributions at Little Granite
Creek, Wyoming. The data were measured with a 7.6 cm-high Helley–Smith
sampler in a very steep channel in the table below (Data source from Weinhold,
2002, and Ryan and Emmett, 2002). The channel bed slope is 0.02, the top
width is 7.2 m, and the stage–discharge relationship in SI is h ∼ 0.3Q0.42.
Bankfull discharge is about 220 cfs, and the particle size distribution of the
bed material and sediment transport are shown in the table below and in Figure
7.11. Determine the following in SI units:
(a) Plot the sediment rating curve in tons per day as a function of discharge.
(b) What is the Shields value of the d50 of the surface material at bankfull discharge.

Also calculate for the sub-surface material and discuss the results.
(c) On the sediment rating curve, plot a line with a concentration of 1 mg/l.
(d) Plot the particle size distribution of the sediment transport in the Helley–Smith at

50, 100, 200, 300 and 400 cfs.
(e) Determine the threshold condition for each size fraction and plot the results on

Figure 7.13.
(f) Based on Figure 7.9 and d50 surface, determine at what discharge the bed material

would reach incipient motion.

Sediment mass retained in grams

Avg Q Total Particle diameter (mm)
cfs transport

metric t/d Pan 0.3 0.5 1.0 2.0 4.0 8.0 16.0 32 64

25 0.04 0.5 0.5 0.7 0.2 0.5 0.0 0.0 0.0 0 0
41 0.02 0.2 0.2 0.2 0.3 0.2 0.0 0.0 0.0 0 0
51 0.04 0.1 0.3 0.3 0.3 0.2 0.7 0.4 0.0 0 0
68 0.69 0.9 3.0 5.5 9.7 12.5 9.5 2.3 0.0 0 0
86 0.07 0.6 2.9 2.0 1.7 0.8 1.0 0.0 0.0 0 0
96 0.15 0.4 2.7 2.9 2.8 2.9 3.5 2.1 0.6 0 0
111 0.14 0.7 2.2 2.4 2.6 3.2 3.1 2.4 0.0 0 0
125 0.08 0.5 1.6 1.8 3.2 1.9 0.0 0.0 0.0 0 0
142 1.25 4.6 11.8 11.7 13.4 18.3 25.3 32.6 26.6 0 0
149 1.03 9.1 22.6 17.9 17.7 12.8 9.0 9.5 19.3 0 0
156 1.54 13.9 31.9 29.5 31.0 25.3 23.8 16.2 4.5 0 0
166 4.56 20.6 65.2 52.9 56.5 63.2 48.8 59.1 23.6 124 0
190 2.02 12.0 45.2 42.6 52.9 33.7 29.8 5.6 0.0 0 0
200 11.0 19.7 104 155 192 162 118 125 116 199 0
216 47.7 68.6 300 323 359 489 927 1,236 1,015 369 0
249 44.1 45.6 212 317 477 626 629 795 805 571 389
298 27.5 45.3 86.3 73.4 84.9 167 240 485 918 1,075 0
346 60.9 86.4 368 369 469 548 557 1,133 1,990 1,421 0
363 17.8 55.8 270 188 215 257 246 213.0 354 247 0
408 131 342 1,504 1,525 1,562 1,551 1,303 1,317 2,390 3,236 642
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��Problem 7.10

Based on Equation (7.2c), consider that τ ∗c = 0.03 when FL/FD = 0, then
combine FL/FD from Figure 7.15 with l4/l3 ≈ 2.6. Compare the values of τ ∗c

that are obtained with the Shields diagram value in Figure 7.8.

�Problem 7.11

Estimate the maximum permissible velocity of a consolidated stiff clay channel
at a density of 2,000 kg/m3. If the discharge is 2,000 cfs, give approximate
dimensions of a conveyance canal in terms of width, depth, velocity, sideslope
angle, and downstream slope. (Hint: consider possible velocity and embankment
sideslope angles to determine cross-section area and geometry.)
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Bedforms

As soon as sediment particles enter motion, the random patterns of erosion and
sedimentation generate very small perturbations of the bed surface elevation. In
many instances, these perturbations grow in time until various surface configura-
tions called bedforms cover the entire bed surface. The mechanics of bedforms is
presented in Section 8.1 and the classification and geometry of bedforms is covered
in Section 8.2. Resistance to flow, (Section 8.3), which depends largely on bedform
configuration, directly affects water surface elevation in alluvial channels. Changes
in bedform resistance induce shifting of the stage–discharge relationship (Section
8.4) and create problems in the determination of river discharges from water level
measurements. Two examples and one case study complete this chapter.

8.1 Mechanics of bedforms

The mechanics of bedforms is rather complex and involves the main flow com-
ponent as well as the near-bed flow conditions. The main flow characteristics can
be deduced from an analysis of the equations of motion in the downstream x and
upward z directions (Equations (3.17a and c)) for steady flow conditions

∂

∂x

(
p
ρm

+ v2

2

)
= gx +(vy ⊗z −vz ⊗y)+ 1

ρm

(
∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

)
(8.1)

∂

∂z

(
p
ρm

+ v2

2

)
= gz +(vx ⊗y −vy ⊗x)+ 1

ρm

(
∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z

)
(8.2)

Consider two-dimensional flow in a wide open channel: (1) the shear stress com-
ponents τ xx, τ yx, τ yz, and τ zz can be neglected as a first approximation; and (2) the
velocity components vy and vz are assumed negligible such that vx = v. With
the only rotation component ⊗y = ∂vx/∂z then obtained from Equation (3.4), and

the specific energy function E = p
γm

+ v2

2g from Equation (3.23a), Equations (8.1)

170
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and (8.2) respectively reduce to:

g
∂

∂x

[
p

ρm g
+ v2

2g

]
= gx + 1

ρm

∂τzx

∂z
(8.3)

∂

∂z

[
p
ρm

+ v2

2

]
= gz +vx

∂vx

∂z
+ 1
ρm

∂τxz

∂x
(8.4)

The pressure distribution remains hydrostatic when ∂τxz/∂x = 0, and Equation (8.4)
can be easily depth-integrated over hn with gz = −g cosθ to give

p = ρm g(hn −z)cosθ (8.5)

For steady uniform flow sketched in Figure 8.1a, the velocity v and the pressure p
remain constant along x and the left-hand side of Equation (8.3) reduces to zero.
The shear stress distribution τ zx is then obtained after integrating the right-hand
side of Equation (8.3) over the normal depth hn with gx = g sin θ , thus

τzx = ρm g(hn −z)sin θ (8.6)

It is noticeable that for steady uniform flow, the shear stress increases linearly
from τzx = 0 at the free surface to the boundary shear stress τo = τzx = ρmghn

sin θ = γmhnSo at the bed.
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In the case of nonuniform flow with hydrostatic pressure distribution, the gov-
erning equation describing the internal shear stress distribution (Equation (8.3))
can be rewritten as

− 1
ρm

∂τzx

∂z︸ ︷︷ ︸
uniform flow

= g sin θ − g
∂

∂x

[
p

ρm g
+ v2

2g

]
︸ ︷︷ ︸

nonuniform flow perturbation

throughout the flow (8.7)

It is becoming clear that the term in brackets of Equation (8.7) is the specific energy
E. As shown in Figure 8.1c, it should also be considered that v → 0 near the bed
and the term in brackets reduces to flow depth h in the lower part of the profile. The
cases of subcritical and supercritical flow are considered separately.

8.1.1 Lower regime

In the lower regime consider subcritical flow with a small bed perturbation of
amplitude �z, as sketched in Figure 8.2a. Two points C and D are identified where
the flow depth is hn on each side of the perturbation for comparison with shear
stresses for steady uniform flow. Considering the entire flow depth, it is shown
from the specific energy diagram in Figure 8.2b that a small perturbation�z causes
a decrease in specific energy when approaching the perturbation, thus (g ∂E/∂x
< 0 at point C). It follows that the gradient of shear stress ∂τ zx/∂z on the upstream
side becomes larger (thus increasing shear stress) than for the corresponding steady
uniform flow condition. Conversely, on the downstream side of the perturbation,
the corresponding increase in specific energy (g ∂E/∂x > 0) causes a reduction in
shear stress (reduced ∂τ zx/∂z).

Near the bed, however, the velocity term in the brackets of Equation (8.7) can
be neglected and the shear stress gradient near the bed reduces to

− 1

ρ

∂τzx

∂z
= g sin θ − g

∂h

∂x
; near the bed (8.8)

On the downstream side of the perturbation, the gradient of shear near the bed
becomes positive when ∂h/∂x exceeds sin θ , as shown in Figure 8.2c for curve
D. Integration over the entire flow depth may result in negative values of bed
shear stress τ o when ∂h/∂x becomes large. Separation occurs when τ o < 0 on the
downstream side of the perturbation as sketched in Figure 8.2d.

As a consequence of increased shear stress on the upstream face of the perturba-
tion in subcritical flows, increased sediment transport causes erosion in converging
flow. On the downstream side of the perturbation, the reduced bed shear stress
and sediment transport capacity induces sedimentation on the lee side of the per-
turbation. This mechanism causes bedforms to move downstream. Depending on
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near-bed conditions, these perturbations can amplify until ripples and dunes fully
develop.

8.1.2 Upper regime

In the upper regime, consider the case of supercritical flow and a similar analysis
is sketched in Figure 8.3. The small perturbation causes an increase in flow depth
and a reduction in specific energy near F, upstream of the perturbation. At point F,
this results in a steeper shear stress gradient in the upper part of the velocity profile
and reverse gradient near the bed (Figure 8.3c), which may induce separation of
the velocity profile near the bed (Figure 8.3d). Conversely, the downstream face of
the perturbation at G shows an increase in boundary shear stress which increases
sediment transport capacity. Because ∂h/∂x is much larger than ∂E/∂x, this pattern
can also be observed at lower values of the Froude number. Although the sediment
particles are transported in the downstream direction, bedforms in supercritical
flow can migrate upstream in shallow streams as the sediment deposition on the
upstream face combines with the rate of erosion on the downstream face of the
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perturbation. The term antidune describes bedforms and free surface oscillations
migrating upstream.

8.2 Bedform classification and geometry

The various bedform configurations depend on the main flow characteristics of
Section 8.1 as well as the bed material characteristics defined as the bed particle
size, the fall velocity, and the grain shear Reynolds number.

From extensive laboratory experiments at Colorado State University by Simons
and Richardson (1963, 1966), several types of bedforms have been identified. Flat
bed, or plane bed, refers to a bed surface without bedforms. With reference to
the bedform configurations sketched in Figure 8.4, ripples are small bedforms with
wave heights less than a few cm (∼ 0.1 ft). Ripple shapes vary from nearly triangular
to almost sinusoidal. Dunes are much larger than ripples and are out of phase with
the water surface waves. From longitudinal profiles, dunes are often triangular
with fairly gentle upstream slopes and downstream slopes approaching the angle of
repose of the bed material. The large eddies on the lee side of dunes cause surface
boils, clearly visible from bridges and river banks. The lower regime on the left-
hand side of Figure 8.4 includes plane bed (without sediment transport), ripples,
dunes, and washed-out dunes. The upper regime consists of upper-regime plane
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Figure 8.4. Types of bedforms in alluvial channels (after Simons and Richardson,
1966) a) plane bed b) typical ripple pattern c) dunes d) washed-out dunes or
transition e) plane bed with sediment transport f) antidunes, standing waves g)
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bed (with sediment transport), antidunes, breaking waves, and chutes and pools. In
the upper regime, bedforms are in phase with free-surface waves. They grow with
increasing Froude number until they become unstable and break. Chutes and pools
occur at relatively large slopes and consist of elongated chutes with supercritical
flow, connected by pools where the flow is generally subcritical.

To separate lower and upper flow regimes, the Froude number values in the
transition zone have been found by Athaullah (1968) to decrease with relative
submergence, as shown on Figure 8.5.

8.2.1 Bedform prediction

The prediction of bedform configurations has been the subject of numerous lab-
oratory and field investigations. None provides a definite classification but the
following are among the most instructive predictors. Liu (1957) used the ratio u∗/ω
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of the shear velocity u∗ to the particle fall velocity ω as a function of the grain shear
Reynolds number Re∗ = u∗ ds

νm
. His analysis in Figure 8.6 suggests that ripples and

dunes essentially cannot form in gravel-bed channels. Silts also move in suspension
rather than bedload, as will be discussed in Chapter 10.

Simons and Richardson (1963, 1966) proposed a bedform predictor encom-
passing both lower and upper regimes when plotting the stream power γ qSf as
a function of particle diameter (Figure 8.7). Accordingly, ripples cannot be found
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for ds > 0.6 mm. This bedform predictor is based on extensive laboratory experi-
ments and is quite reliable for shallow streams. However, it deviates from observed
bedforms in deep streams. Chabert and Chauvin (1963) proposed a bedform pre-
dictor based on the Shields diagram, shown in Figure 8.8. Ripples form when

d∗ = ds
(
(G − 1)g/ν2

m

)1/3
< 20, which corresponds to Re∗ < 15, or transition to

hydraulically smooth boundaries.
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van Rijn (1984a,b) proposed a bedform classification based on the dimensionless
particle diameter d∗ and the transport-stage parameter T , respectively defined as

d∗ = d50

[
(G − 1)g

ν2
m

]1/3

(8.9a)

T = τ ′∗ −τ∗c

τ∗c
= (u′∗ )2 −u2∗c

u2∗c
= ρm V 2

τc

(
5.75log 4Rb

d90

)2
− 1 (8.9b)

or

τ ′∗ ≈ 0.04

(
d50

h

)1/3 V 2

((G − 1)gd50)
(8.9c)

in which d50 is the mean bed particle diameter (50% passing by weight), G is the
particle specific gravity, νm is the fluid mixture kinematic viscosity, V is the depth-
averaged flow velocity,g is the gravitational acceleration, Rb is the hydraulic radius
related to the bed obtained from the Vanoni–Brooks method (Section 6.4.3), d90 is
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the 90% passing-bed particle diameter, and τ c is the critical shear stress obtained
from the Shields diagram. The parameters τ ′∗ and u′∗ are expanded upon in Section
8.3. van Rijn (1984b) suggested that ripples form when both d∗ < 10 and T < 3, as
shown in Figure 8.10. Dunes are present elsewhere when T < 15, dunes washout
when 15< T < 25, and the upper flow regime starts when T > 25.

Julien and Raslan (1998) found that the value of the transport-stage parameter TP

for the upper-regime plane bed increases with relative submergence. As shown in
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Figure 8.10, the upper-regime plane bed of rivers is much higher than for laboratory
data. The available data for upper regime could be found between 4 < Re∗ < 70,
which corresponds to the range from hydraulically smooth to hydraulically rough.
As shown in Figures 8.11a and b, two separate regimes could be identified for the
transition to upper regime with:

τ∗p d∗ ≈ 4 when Re∗ < 11.6 (8.10a)

τ∗p d∗ = 5.75 log0.05hp/d50 when Re∗ > 11.6 (8.10b)

In summary, ripples form when three conditions are satisfied: (1) 2 < d∗ < 6; (2)
4<Re∗ < 11.6; and (3) τ ∗ < 4/d∗ or τ ∗ < 1. Dunes form when 3< d∗ < 70, 11.6<
Re∗ < 70 and τ ′∗ <

(
5.75
/

d∗
)

log
(
h
/

20d50
)
. Temperature effects are possible for

the limited range of conditions shown in Figure 8.11a, where 3< d∗< 6 and h/d50 >

200.This corresponds to Re∗ ≈ 11.6 and τ∗ ≈ 1.This leads to the possibility that with
a slight change in viscosity bedform configurations may be in the lower or upper
regime, depending on water temperature, as observed in the field, e.g. Example 8.1.

Example 8.1 Temperature effects on bedforms, Missouri River, Nebraska

Temperature effects are possible for fine or medium sands 2 < d∗ < 6. For
instance, Julien and Raslan (1998) present the example of the Missouri River
at h = 3.07m, d50 = 0.218mm, and S = 1.42 × 10−4. Accordingly, ν = 1.58 ×
10−6 m2/s at T ◦ = 3◦C and d∗ = 4.06, τ ∗ = 1.21 and Re∗ = 9 < 11.6. The
flow depth for the upper-regime plane bed is 2.5 m and the Missouri River
should have a plane bed during the cold winter months. However, at T ◦ = 20◦C
with ν = 1 × 10−6m2/s, the parameters change to d∗ = 5.5, τ ∗ = 1.21 and
Re∗ = 14.2 > 11.6. The corresponding τ ∗p from Equation (8.10b) becomes,
τ ∗p = 2.97, and, τ ∗ < τ∗p is now in the lower regime with dunes in the Missouri
River during the summer months. At a given discharge, the bedforms for fine
and medium sand-bed rivers can change depending on water temperature with
low Manning n in winter and high Manning n in summer.

8.2.2 Bedform geometry

The geometry of dunes is a concern in engineering projects dealing with navigation,
flood control, and resistance to flow. In the lower regime, the geometry of bedforms
refers to representative dune height � and wavelength  of dunes as a function
of the average flow depth h, average bed particle diameter d50, and other flow
parameters such as the transport-stage parameter T and the grain shear Reynolds
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number Re∗ = u∗ds/νm. The dune height and steepness predictors proposed by van
Rijn (1984) are:

�

h
= 0.11

(
d50

h

)0.3(
1 − e−0.5T

)
(25 − T ) (8.11a)

and

�

Λ
= 0.015

(
d50

h

)0.3(
1 − e−0.5T

)
(25 − T ) (8.11b)

The dune length Λ obtained from dividing these two equations Λ= 7.3h is quite
close to the theoretical value Λ= 2πh proposed by Yalin (1964) and revisited by
Zhou and Mendoza (2005). The agreement with laboratory data is quite good, as
shown in Figure 8.12a,b. However, both curves tend to underestimate the bedform
height and steepness of field data as shown in Figure 8.13. The field data from
different sources including Adriaanse (1986), Neill (1969), and Peters (1978) has
been compiled by Julien and Klaassen (1995). Lower-regime bedforms can be
observed at values of T well beyond 25 in very large rivers.
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The variability of the field data is large but Julien and Klaassen (1995) proposed
a first approximation for average dune height � and wavelength Λ

�≈ 2.5h0.7d0.3
s (8.12a)�

≈ 6.5h (8.12b)�

A similar approach has been suggested by Yalin and daSilva (2001), typical values
of�/Λ< 0.1 for laboratory data and�/Λ< 0.06 for field data, which gives roughly
�/h< 0.36 for field data.

8.3 Resistance to flow with bedforms

The lower flow regime is generally subcritical (Fr < 1), as expected from Section
8.1, and the water surface undulations are out of phase with the bed waves (Figure
8.4). Surface roughness characteristics are summarized in Table 8.1. Resistance to
flow is large because flow separation occurs on the downstream side of the waves.
This generates large-scale turbulence dissipating considerable energy. Sediment
transport is relatively low because bed sediment particles move primarily in contact
with the bed.

In the upper flow regime, resistance to flow is low because grain roughness
predominates. However, the energy dissipated by standing waves and the formation
of breaking antidunes increases flow resistance. Standing waves and antidunes
are common in shallow supercritical flow (Fr > 1). Standing waves are in-phase
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Table 8.1. Typical bedform characteristics

Bedform Manning n
Concentration
(mg/l) Roughness

Surface
profiles

Lower Regime
Plane bed 0.014 0 grain –
Ripples 0.018 – 0.028 10 – 200 form –
Dunes 0.020 – 0.040 200 – 3,000 form out of phase
Washed-out
dunes 0.014 – 0.025 1,000 – 4,000 variable out of phase

Upper Regime
Plane bed 0.010 – 0.013 2,000 – 4,000 grain –
Antidunes 0.010 – 0.020 2,000 – 5,000 grain in phase
Chutes and
pools 0.018 – 0.035 5,000 – 50,000 variable in phase

sinusoidal sand and water waves (Figure 8.4) that build up in amplitude from a
plane bed and plane water surface. Resistance to flow for breaking antidunes is
only slightly larger than for plane bed because they cover only a small portion of
channel reach at a given time. Bed material transport in the upper flow regime is
high because, except when antidunes are breaking, the contact sediment discharge
is almost continuous, and the suspended sediment concentration is large.

The analysis of total resistance is somewhat analogous to the analysis of viscous
flow around a spherical particle presented in Section 5.3. The total resistance is
separated into: (1) grain resistance accounting for forces acting on individual par-
ticles; and (2) form resistance due to bedform configurations. The total bed shear
stress is the sum of two components

τb = τ ′
b + τ ′′

b (8.13a)

where τb is the total bed shear stress, τ ′
b is the grain shear stress, and τ ′′

b is the
form shear stress.

The corresponding identities using the grain shear velocity u′∗, the grain
hydraulic radius R′

h, grain friction slope S ′
f , grain Darcy–Weisbach friction fac-

tor f ′ and their corresponding values u′′∗ , R′′
h , S ′′

f , and f ′′ for the form resistance

are formulated from τ = ρu2∗ = γRhSf = f
8ρV 2 as:

u2∗ = u
′2∗ + u

′′2∗ (8.13b)

Rh = R′
h + R′′

h (8.13c)
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Sf = S ′
f + S ′′

f (8.13d)

f = f ′ + f ′′ (8.13e)

When written in terms of Shields parameters, Equation (8.13a) gives

τ∗ = τ ′∗ + τ ′′∗ ,or:
τb

(γs −γm)d50
= τ ′

b

(γs −γm)d50
+ τ ′′

b

(γs −γm)d50
(8.13f)�

where τ ∗ is the total Shields parameter, τ ′∗ is the grain Shields parameter, and τ ′′∗
is the form Shields parameter. Notice that for Manning and Chézy coefficients:
n �= n′ + n′′ and C �= C ′ + C ′′.

8.3.1 Total and grain resistance with bedforms

The total resistance to flow can be obtained from field measurements of flow depth
h, main flow velocity V, and friction slope Sf from

f = 8ghSf

V 2
(8.14)

The roughness height ks can then be obtained from√
8

f
= 5.75 log

(
12.2h

ks

)
(8.15)

In sand-bed channels with bedforms, van Rijn (1984b) showed in Figure 8.14 that
the roughness height ks depends on dune length Λ and can be as large as the dune
height �. A very crude approximation deserving further testing is

ks ≈ 1.1�
(

1 − e−25�/Λ
)

(8.16)
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Figure 8.14. Equivalent bedform roughness (after van Rijn, 1984b)
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To separate the grain resistance from form resistance, equation (6.19b) see page 121
can be used to define grain resistance, e.g.√

8

f ′ = 5.75 log

(
12.2h

k ′
s

)
(8.17)�

where k ′
s is the grain roughness such that k ′

s ≈ 6.8 d50 or k ′
s ≈ 3 d90. When using

the Manning–Strickler approximation, one obtains a simple relationship for grain
resistance, e.g. Figure 6.6a,

V

u′∗
=
√

8

f ′ ≈ 5

(
h

ds

)1/6

(8.18a)

or

f ′ ∼= 0.32

(
d50

h

)1/3

(8.18b)

Subtracting grain resistance f ′ from the total resistance f has been commonly used
to estimate the form resistance f ′′ from Equations (8.13e, 8.14 and 8.18b).

8.3.2 Bedform resistance

A different approach is discussed in this section. For instance, Engelund (1966)
used the Carnot formula to define the head loss �H ′′ from

�H ′′ = CE
(V1 − V2)

2

2g
(8.19a)

where CE is the expansion loss coefficient, V1 and V2 are the depth-averaged vel-
ocities at the crest and toe of the dune, respectively. Given the dune height �, dune
length Λ, mean flow depth h and unit discharge q, one obtains

�H ′′ = CE

2g

(
2q

2h −�
− 2q

2h +�

)2

≈ CE
V 2

2g

(
�

h

)2

(8.19b)

or

S ′′
f = �H ′′

Λ
= CE

2

�2

Λh
Fr2 (8.19c)

Accordingly, the bedform energy slope S ′′
f = �H ′′/Λ depends on the product of

dune steepness �/Λ and relative dune height �/h. However, Engelund (1977)
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Figure 8.15. Expansion loss coefficient (modified after Engelund, 1977)

later defined CE as shown in Figure 8.15

CE ≈ 2.5e
−2.5h
� (8.20)

It is interesting the CE can also be approximated by CE ≈ 0.25h
/
�, which can

be combined in Equation (8.19c) with S ′′
f = (f ′′/8

)
Fr2 to give the very simple

approximation

f ′′ ≈ �

Λ
(8.21)�

When combined with the grain resistance in Equation (8.18b), it is interesting to
find

f ′′

f ′ ≈ 3�

Λ

(
h

d50

)1/3

(8.22)

The dune steepness parameter in Figure 8.13b therefore approximately describes
the ratio of f ′′ tof ′.

In summary, despite obvious complexity, the analysis of bedform configurations
bears remarkable simplicity after considering Equations (8.12, 8.18b and 8.21), or
�̄≈ 2.5h0.7d0.3

50 , Λ̄≈ 6.5h, f ′′ ≈�/Λ. Example 8.2 provides a detailed procedure
to estimate bedform configuration, dune geometry, and resistance to flow.

Example 8.2 Resistance to flow with bedforms

Consider a 46 m-wide canal in Pakistan. The slope is 11.5 cm/km and the
bed material size is d50 = 0.4 mm and d90 = 0.65 mm. Determine the type and
geometry of bedform and estimate the discharge when the flow depth is 3 m.

Step 1. d∗ = d50

(
(G − 1)g

ν2

)1/3

= 0.0004

(
1.65 × 9.8(
1 × 10−6

)2
)1/3

= 10.1
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Step 2.a τ∗ = hS

(G − 1)d50
= 3m × 11.5 × 10−5

1.65 × 4 × 10−4
= 0.52

Step 2.b From Equation (8.9c) τ ′∗ ≈ 0.04

(
d50

h

)1/3 V 2

((G − 1)g d50)
when

velocity measurements are available.
Step 3.

Re∗ = u∗ ds

ν
=
√

g hS ds

ν
=

√
9.81 × 3 × 11.5 × 10−5 × 4 × 10−4

1 × 10−6
= 23.2

Step 4. Upper-regime plane bed when Re∗ > 11.6 from Equation (8.10b) is

τ∗p =
(

5.75

d∗

)
log

(
h

20d50

)
=
(

5.75

10.1

)
log

(
3

20 × 0.0004

)
= 1.46

τ ′∗ < τ∗p and dunes are expected, the average dune height and length are:

Step 5. �̄≈ 2.5h0.7d0.3
50 = 2.5×30.7

(
4 × 10−4

)0.3 = 0.51m from Eq. (8.12a)

Step 6. Λ̄≈ 6.5h = 6.5 × 3m = 19.5m from Equation (8.12b)

Step 7. f ′ ≈ 0.32

(
d50

h

)1/3

= 0.32×
(

4 × 10−4

3

)1/3

= 0.016 from Eq. (8.18b)

Step 8. f ′′ ≈ �̄


= 0.51m

19.5m
= 0.027 from Equation (8.21)

Step 9. f = f ′ + f ′′ = 0.016 + 0.027 = 0.043 from Equation (8.13e)

Step 10. V =
√

8

f

√
ghS =

√
8

0.043
× 9.81 × 3 × 11.5 × 10−5 = 0.79m

s
from

Eq. (8.14)
Step 11. Q = WhV = 46m × 3m × 0.79m/s = 109m3/s

8.4 Field observations of bedforms

Three examples are discussed in this section. The first example is on the Missouri
River. There is no unique relationship between channel slope, flow depth, and flow
velocity in alluvial sand-bed channels. Changes in bed configuration cause shifts
in the stage–discharge relationship. Bed configuration changes affect resistance
to flow, flow velocity, and sediment transport. There are many examples of these
changes in natural streams. On an approximately 300 mile reach of the Missouri
River from Sioux City, Iowa, to Kansas City, Kansas, the bed configurations at
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a given discharge change from large dunes in the middle of the summer, when
the water temperature is about 80◦F, to washed-out dunes or plane bed in the fall
at water temperature around 45◦F. The changes in bedform configuration at con-
stant discharge (approximately 34,000 ft3/s) decreased Manning n from 0.018 to
0.014 and reduced the average flow depth from approximately 11 ft to approx-
imately 9 ft, with a corresponding increase in average flow velocity from 4.6
ft/sec to 5.5 ft/sec. The reason for these temperature effects has been explained in
Example 8.1.

As a second example, the Rio Grande also displays a discontinuous stage–
discharge relationship, Nordin (1964) documented the change in hydraulic radius
versus mean velocity in Figure 8.16. During runoff events, the bed varies from
dunes at low flow, to plane bed, and antidunes at high flow, which causes
the discontinuity in the stage–discharge relationship. The change from dunes to
plane bed occurs at a larger discharge than the change from plane bed back to
dunes.

As a third example, the 1984 flood of the Meuse River resulted in significant
changes in bedform configuration. A sequence of bathymetric profiles is shown
in Figure 8.17, where the amplitude and wavelength of bedforms change rapidly
during floods. Soundings prior to the flood, Q = 1,434m3/s, on February 8 show
small amplitude irregularities of the bed profile similar to those after the flood,
Q = 654m3/s, on February 20.At higher discharge, the large dunes showed rounded
crests and some dunes measured up to 3 m in amplitude. Comparing results of
February 8 and February 15, at a similar flow discharge, both the dune height and
wavelength are smaller under rising discharge than falling discharge. This loop
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Figure 8.17. Dunes of the Bergsche Maas during the 1984 flood of the Meuse
river (kmr denotes river kilometer, after Adriaanse, 1986)

rating effect is expected because the time scale required for the formation of 2 m-
high sand dunes is in the order of 1–3 days in the Bergsche Maas. The following
case study illustrates the changes in bedform configuration of the Rhine during a
major flood.

Case study 8.1 River Rhine, The Netherlands

During the 1998 flood of the Rhine river, the peak discharge reached 9,464 m3/s,
and figures among the largest floods. The bedform of a relatively straight reach of
the Upper Rhine (Bovenrijn) just upstream of the Pannerdens canal was analyzed
by Julien and Klaassen (1995) and Julien et al. (2002). As shown in Figure
CS-8.1, the flow depth reached 12 m and the peak flow velocity was 1.8 m/s.
Bedform data were recorded twice daily during the flood and the primary dune
height showed a strong hysteresis effect with discharge. The average dune height
was about 1.2 m measured two days after the peak discharge. The roughness
height ks varied from 0.2 to 0.5 m during the flood without hysteresis effect.
Similarly, the Darcy–Weisbach f also gradually increased from 0.025 to 0.04
without hysteresis.
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Exercises

�8.1 Demonstrate that Equations (8.1) and (8.2) reduce to Equations (8.3) and (8.4).
�8.2 Demonstrate Equation (8.9c) from τ ′ = ρu′∗2 = f ′

8 ρV 2 and τ ′∗ = τ ′/(G − 1)γ ds

from Equations (8.18a and b) and (8.13f).

Problems
� Problem 8.1

Estimate the dune height of the Missouri River in Example 8.1 during the summer
months.

� Problem 8.2

Determine the flow regime and type of bedform in the Rio Grande conveyance
channel given: the mean velocity V = 0.5 m/s, the flow depth h = 0.40 m, the
bed slope So = 52 cm/km and the grain size distributions d50 = 0.24 mm and
d65 = 0.35 mm.
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Problem 8.3

Check the type of bedform in a 200 ft-wide channel conveying 8,500 cfs in
a channel sloping at 9.6 × 10−5 given the mean velocity V = 3.6 ft/s and the
median grain diameter dm = 0.213 mm.

�Problem 8.4

Predict the type and geometry of bedforms in a sand-bed channel d35 = 0.35 mm
and d65 = 0.42 mm sloping at So = 0.001 with flow depth h = 1 m when the water
temperature is 40◦F.

��Problem 8.5

A 20 m-wide alluvial channel conveys a discharge Q = 45 m3/s. If the channel
slope is So = 0.0003 and the median sediment size is dm = 0.4 mm, determine:
(a) the flow depth; (b) the type of bedform; (c) the bedform geometry; and (d)
Manning n.

��Problem 8.6

Dunes as high as 6.4 m and as long as 518 m were measured in the Missis-
sippi River. Given the 38.7 m flow depth, the river energy slope 7.5 cm/km,
the water temperature 3◦C, the depth-averaged flow velocity 2.6 m/s, and the
grain size d50 = 0.25 mm and d90 = 0.59 mm: (a) check the type of bedform
and compare with the predicted average dune geometry; (b) estimate S′′ from
Equation (8.19c); and (c) calculate ks from field data using Equation (8.15),
and plot the results on Figure 8.14. Could bedforms change during the summer
months?

��Problem 8.7

Measurements on the Zaïre River from Peters (1978) show dunes of 1.2–1.9 m
in amplitude and 95–400 m in length. At a flow depth of 13.2 m, the velocity is
1.3 m/s and the river slope is 4.83 cm/km. The bed material is d50 = 0.34 mm and
d90 = 0.54 mm, and the water temperature is 27◦C. Determine the following:
(a) compare the bedform type and geometry with all bedform predictors; (b)
estimate f ′′/f ′; and (c) plot the results on Figure 8.13.
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��Problem 8.8

Data from the Jamuna River in Bangladesh from Klaassen (also listed in Julien,
1992) show dunes at a discharge of 10,000 m3/s, flow depth of 11 m, velocity V =
1.5 m/s, slope S = 7 cm/km and d50 = 200μm. Measured dune heights and length
are typically 2 m and 50 m, respectively. Compare the bedform type and geom-
etry, calculate T and plot the measurement on relevant graphs in this chapter.

�Problem 8.9

The slope of the Amazon River at Obidos is 1.38 cm/km. If the width is 2,200 m,
depth h = 48.5 m and d50 = 0.12 mm, estimate the following: (a) height and
length of bedforms; (b) grain and form resistance f ′ and f ′′; and (c) flow velocity
V and discharge Q.

�Computer problem 8.1

From the Bergsche Maas bedform data given in the table below: (a) calculate the
grain Chézy coefficient C ′ and the sediment transport parameter T ; (b) plot the

Q
(m3/s)

Sf
(cm/km)

h
(m)

V
(m/s)

ds
(μm)

�
(m)


(m) T

C′
(m1/2/s)

2,160
2,160
2,160
2,160
2,160
2,160
2,160
2,160

12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5

8.6
8.0

10.5
10.0
7.6
8.4
8.7
7.5

1.35
1.35
1.30
1.40
1.40
1.40
1.70
1.55

480
410
300
500
520
380
300
250

1.5
1.0
1.5
1.6
1.4
1.5
1.5
2.5

22
14
30
32
21
22
30
50

9.09
9.05

81.6
84.2

Source: data from Adriaanse (1986), also in Julien (1992).

data on van Rijn’s dune height and dune steepness diagrams: Figure 8.12
page 182; and (c) calculate ks from field measurements and plot on Figure 8.14.

��Computer problem 8.2

Examine bedforms and resistance to flow in the backwater profile analyzed
in Computer problem 3.1. Assume that the rigid boundary is replaced with
uniform 1 mm-sand. Select an appropriate bedform predictor and determine
the type of bedform to be expected along the 25 km reach of the channel using
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previously calculated hydraulic parameters. (Check your results with a second
bedform predictor.) Also determine the corresponding resistance to flow along
the channel and recalculate the backwater profile. Briefly discuss the methods,
assumptions, and results. Three sketches should be provided along the 25 km
of the reach: (a) type of bedforms; (b) Manning n or Darcy–Weisbach f ; and
(c) water surface elevation.
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Bedload

Non-cohesive bed particles enter motion as soon as the shear stress applied on the
bed material exceeds the critical shear stress. Generally, silt and clay particles enter
suspension (see Chapter 10), and sand and gravel particles roll and slide in a thin
layer near the bed called the bed layer. The bed layer thickness is typically less
than 1 mm in sand-bed channels, up to tens of centimeters in gravel-bed streams.
Note that the bed layer thickness should not be mistaken for the laminar sublayer
thickness defined in Chapter 6. As sketched in Figure 9.1, the bed layer thickness a
is a few grain diameters thick, and a = 2 ds has been commonly used. Bedload, or
contact load, refers to the transport of sediment particles which frequently maintain
contact with the bed. Bedload transport can be treated either as a deterministic or
a probabilistic problem. Deterministic methods have been proposed by DuBoys
and Meyer-Peter Müller; probabilistic methods were developed by Kalinske and
Einstein. Both approaches yield satisfactory estimates of bedload discharge, as
discussed in Section 9.1. The characteristics of the bed layer are described in Section
9.2. Bed material sampling is discussed in Section 9.3 and bed sediment discharge
measurement techniques are summarized in Section 9.4.

Bedload Lb refers to a quantity of sediment that is moving in the bed layer, which
can be measured by volume, mass, or weight. In SI, it is usual to measure bedload
by mass in metric tons (1,000 kg), but the English system of units measures bedload
by weight in tons (2,000 lb). Conversions from volume to mass involve the mass
density of sediment ρs such that Lbm = ρs ×Lbv. Similarly, conversions from mass
to weight involve the gravitational acceleration g, such that Lbw = gLbm = γsLbv.

The bedload discharge Qb is the flux of sediment moving in the bed layer. The
bedload Lb thus corresponds to a time integration Lb = ∫ T

0 Qb dt on a daily, monthly,
or annual basis. The fundamental dimensions of Qb by volume, mass, or weight
are summarized in Table 9.1. The unit bedload discharge qb is the flux of sediment
per unit width and per unit time moving in the bed layer. The unit bedload dis-
charge can be measured by weight (M /T 3), mass (M/LT) or volume (L2/T ). The

195
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BedloadBed layer
z = a = 2 d
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s

s

Figure 9.1. Definition sketch of bedload and suspended load

Table 9.1. Fundamental dimensions of bedload

by volume by mass by weight

Bedload Lbv(L3) Lbm(M ) Lbw (ML/T2)

Bedload discharge Qbv(L3/T ) Qbm(M /T ) Qbw (ML/T3)

Unit bedload discharge qbv(L2/T ) qbm (M/LT) qbw(M /T 3)

Note: Lbw = gLbm = γsLbv , Lbm = ρsLbv

Qb = ∫ W
0 qbdW , Lb = ∫ T

0 Qbdt, or Lb = ∫ T
0

∫ W
0 qbdW dt

bedload discharge is the integral over a channel width of the unit bedload discharge,
or Qb = ∫ W

0 qb dW .
Table 9.1 summarizes the relationships between bedload, bedload discharge, and

unit bedload discharge. The fundamental dimensions for measurements by volume,
mass, or weight are also given in this table. In terms of notation, the first subscript
b refers to bedload and the second subscript refers to volume, mass, or weight,
such that qbm is the unit bedload discharge by mass in M/LT, e.g. in kg/ms in SI
units. Finally, it must be noted that only the volume of solids is considered in the
conversions.

9.1 Bedload equations

Three bedload equations are first described in this section. In the presence of bed-
forms, only the grain shear stress should be considered and for simplicity in the
notation, the shear stress in this section refers to the grain shear stress. Bedload
transport by size fractions is covered in Section 9.1.4.

9.1.1 DuBoys’ equation

The pioneering contribution of M.P. DuBoys (1879) is based on the concept that
sediment moves in thin layers along the bed. The applied bed shear stress τ0 must
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exceed the critical shear stress τ c to initiate motion. The volume of gravel material
in motion per unit width and time qbv in ft2/s is calculated from:

qbv = 0.173

d
3/4
s

τo(τo −0.0125 − 0.019ds) (9.1)

where ds is the particle size in millimeters and τ0 is the boundary grain shear stress
in lb/ft2. Note that the critical shear stress (τ c = 0.0125 + 0.019ds; τc in lb/ft2) is
quite compatible with Figure 7.9.

9.1.2 Meyer-Peter Müller’s equation

Meyer-Peter and Müller (1948) developed a complex bedload formula for gravels
based on the median sediment size d50 of the surface layer of the bed material.
Chien (1956) demonstrated that the elaborate original formulation can be reduced
in the following simple form:

qbv√
(G − 1)gd3

s

= 8(τ∗ −0.047)3/2 (9.2a)�

This formulation is most appropriate for channels with large width–depth ratios.
The corresponding dimensional formulation for qbv with dimensions of L2/T is:

qbv ≈ 12.9
γs

√
ρ
(τo −τc )

1.5 (9.2b)

The complete formulation for composite channel configurations can be found in
Simons and Senturk (1977) and in Richardson et al. (1990).

9.1.3 Einstein–Brown’s equation

H.A. Einstein (1942) made the seminal contribution to bedload sediment transport.
He introduced the idea that grains move in steps proportional to their size. He
defined the bed layer thickness as twice the particle diameter. He extensively used
probability concepts to formulate a relationship for contact sediment discharge. The
gravel sediment discharge qbv in volume of sediment per unit width and time (qbv

in L2/T ) is transformed, using Rubey’s clear-water fall velocity ωo from Equation
(5.23b), into a dimensionless volumetric unit sediment discharge qbv∗ as:

qbv∗ = qbv

ωo ds
= qbv√

(G − 1)gd3
s

{√
2

3
+ 36v2

(G − 1)gd3
s

−
√

36v2

(G − 1)gd3
s

} (9.3a)
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Figure 9.2. Dimensionless sediment discharge qbv∗ versus Shields parameter τ ∗

For very coarse sands and gravels, the fall velocity ωo �√(G − 1)g ds, and

qbv∗ � qbv√
(G − 1)g d3

s

when ds > 1mm (9.3b)

The dimensionless rate of sediment transport qbv∗ is shown on Figure 9.2 as a
function of the Shields parameter τ∗ = τo/(γ s − γ )ds, with measurements from
Gilbert (1914), Bogardi (1974) and Wilson (1966). Brown (1950) suggested the
following two relationships:

qbv∗ = 2.15e−0.391/τ∗; when τ∗< 0.18 (9.4a)

and

qbv∗ = 40τ 3∗ ; when 0.52> τ∗> 0.18 (9.4b)
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Considering sediment transport data at high shear rates τ ∗ > 0.52 one obtains

qbv∗ = 15τ 1.5∗ ; when τ∗> 0.52 (9.4c)

At such high shear rates this third approximation is not very accurate, however,
because large quantities of sediment will move in suspension as discussed in
Chapters 10 and 11.

The slope of the sediment-rating curve is usually so steep that bedload sedi-
ment transport rapidly becomes negligible at low flow. In the domain where 0.1<
τ∗ < 1, the sediment transport rates increase rapidly and Julien (2002) suggested
the following approximation for the unit sediment discharge by volume.

qbv � 18
√

g d3
s τ

2∗ 0.1< τ∗ < 1 (9.4d)

After using the resistance relationship V /u∗ � 5(h/d50)
1/6 from Figure 6.6a,

this transport equation reduces to

qbv � 0.06 hu∗ Fr3 (9.4e)

This relationship may give the impression that sediment transport solely depends
on hydraulic parameters. This may be misleading because it should be considered
that the Froude number depends on resistance to flow and grain size.

In practice, daily transport rates below 1 metric ton per day (�10 g/s) are
considered very small and difficult to measure.

9.1.4 Bedload transport by size fractions

Sediment transport calculations by size fractions are obtained as follows:

qb =
∑

�pi qbi (9.5)�

where �pi is the fraction by weight of sediment particles of the fraction i found
in the bed, and qbi is the unit sediment discharge of the fraction i. Notice that∑

i
�pi = 1, fractions in percentage are divided by 100.

In gravel-bed streams, the bedload transport rates depend on the ability of the
flow to mobilize partial areas of the bed. It is usually considered that the surface
layer (armor or surface layer) is coarser than the substrate (sub-surface layer).
Accordingly, when a small portion of the armor layer breaks, similar proportions of
finer material will also be released and transported downstream. This concept is also
somewhat related to the near-equal mobility concept discussed in Chapter 7. When
the main source of sediment is coming from an armored bed, the transport rates of



200 Bedload

sand and gravel sizes will often be in near-equal quantities. For instance, the gravel
transport data from Problem 7.9 at Little Granite Creek, Wyoming, illustrates this,
and site-calibrations of sediment transport with the methods of Bakke et al. (1999)
and Weinhold (2002) can be useful.

In the case of gravel sediment transport of paved surfaces, the sediment transport
calculations by size fractions in Equation (9.5) will largely overestimate trans-
port rates. Instead, calculations based on d50 of the armor layer are recommended
because transport rates depend on the transport rates of the armor layer rather than
on the transport capacity of each size fraction.

Example 9.1 Bedload transport on dunes

Consider dunes formed essentially by bedload sediment transport as sketched in
Figure E-9.1.1. The unit bedload discharge by volume qbv causes the downstream

Δ
φ

λ

d

bv
h

q

c

Figure E-9.1.1 Sketch of bedload transport on a dune

migration of dunes of wavelength and amplitude� at a celerity of the dune c�.
Consider that for large dunes, the sediment transport slides on the downstream
side of the dune at the angle of repose φ. Assuming a triangular dune, the volume
per unit width is�/2 and the period T for transport is given by T =/c�. The
following relationship between the bedload transport rate and bedform geometry
is the following

qbv � c��

2
(E-9.1.1)

From which an estimate for the celerity of dunes can be obtained as

c� � 2qbv

�
(E-9.1.2)

As a first approximation, when combining with the sediment transport Equation
(9.4e), constant �/h ∼= 0.3 and V � 20u∗, the following relationship has been
proposed by Kopaliani (2002)

c� � 0.02V Fr3 � 0.4u∗ Fr3 (E-9.1.3)
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Figure E-9.1.2 Dune celerity versus Froude number

The comparison with field and laboratory measurements is shown in Figure
E-9.1.2. Corresponding relationships for dune height from sediment transport
can then be defined, as shown by Kopaliani (2007):

�� qbv

0.01V Fr3
(E-9.1.4)

or

qbv � 0.01V �Fr3 (E-9.1.5)

It is interesting to note that at a given sediment transport rate higher dunes will
decrease velocity and Froude number. Conversely, at a given velocity and Froude
number, the higher dunes are the result of a local increase in sediment transport.
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9.2 Bed layer characteristics

This section covers bedload particle velocity (Section 9.2.1), near-bed sediment
concentration and pick-up rate (Section 9.2.2).

9.2.1 Bedload particle velocity

The velocity of bedload particles in the bed layer can be estimated from the veloc-
ity profile. As a first approximation, the velocity profile for hydraulically rough
boundaries from Equation (6.16) with k ′

s = 6.8 d50 and z = 2d50 gives a bedload
velocity va in the bed layer va � 5.5u∗. This is comparable to Einstein’s assump-
tion that k ′

s = d50 and va � 10u∗. A comparison with the laboratory measurement
of Bounvilay (2003) is shown in Figure 9.3a.

When the moving bedload particle has a different diameter ds than the stationary
bed particle of diameter ks, the boundary Shields parameter τ∗ks = τ0

(γs−γ )ks
can be

defined, and the bedload particle velocity va can be estimated as

va � (3.3 ln τ∗ks + 17.5)u∗ (9.6)�

Acomparison of this relationship with the experimental measurements of Bounvilay
(2003) is shown in Figure 9.3b. It is interesting to notice that coarser particles
placed on top of a rigid bed of smaller particles can move when τ ∗ks < 0.06. This
relationship can estimate the bedload particle velocity but should not be used to
define threshold conditions of motion.

9.2.2 Bed layer sediment concentration and pick-up rate

Based on the Colorado State University laboratory data (Guy et al. 1966), the near-
bed volumetric sediment concentration Cav has been analyzed by Zyserman and
Fredsøe (1994). The relationship shown in Figure 9.4 can be approximated with

Cav � 0.025qbv∗ = 0.2(τ∗ − τ∗c)
1.5 for τ∗ < 2 (9.7)�

In the case of bedforms, only the grain Shields parameter should be considered.
The maximum concentration Cav = 0.54 should be assumed when τ∗ > 2.

The pick-up rate of sediment Eb is the quantity of sediment per unit area per
unit time that moves out of the bed layer into the suspended layer. The pick-up
rate can be written by volume Ebv(L/T ), by mass Ebm(M /L2T ) or by weight Ebw

(M/LT3). Of course, conversions are obtained from Ebw = gEbm = ρsgEbv = γsEbv .
Under equilibrium conditions, the pick-up rate is equal and opposite to the settling
flux per unit area as sketched in Figure 9.5. Accordingly, Ebv = ωCa and from
Equation (9.7)

Ebv = ωCav = 0.2ω (τ∗ − τ∗c)
1.5 (9.8)
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Figure 9.3. a) Ratio of va/u∗ as a function of particle diameter ds (modified after
Bounvilay, 2003) b) Bedload particle velocity versus Shields parameter (modified
after Bounvilay, 2003)

The pick-up rate function can be plotted as Ebv/ω = Cav as shown in
Figure 9.4.

9.3 Bed sediment sampling

Bed samples are usually collected at, or slightly below, the bed surface to determine
the particle size distribution and density of sediment particles available for transport.
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Figure 9.5. Equilibrium pick-up rate

To obtain satisfactory submerged bed material samples, the samplers should enclose
a volume of sediment and then isolate the sample from currents while the sampler
is being lifted to the surface. The ease with which the sample can be transferred to
a suitable container is also important.



9.3 Bed sediment sampling 205

Shallow samples

Samplers for obtaining bed material are generally one of the following types: (1)
drag bucket or scoop; (2) grab bucket or clamshell; (3) vertical pipe or core; (4)
piston core; and (5) rotating bucket.

With the drag bucket or scoop, some of the sample material may wash away, and
the clamshell and grab bucket do not always close properly if the sample contains
gravel or clays. Accordingly, when these samplers must be used, special control is
required to ensure that the samples are representative of the bed material.

Vertical pipe or core samplers are essentially tubes which are forced into the
streambed; the sample is retained inside the cylinder by creating a partial vacuum
above the sample. Penetration in fine-grained sediment is easy, but penetration
in sand usually is limited to about 0.5 m or less. These samplers generally yield
good-quality samples and are inexpensive and simple to maintain.

The US BMH-53 is a piston core sampler consisting of a 9 in.-long, 2 in.-diameter
brass or stainless steel pipe with cutting edge and suction piston attached to a control
rod. The piston is retracted as the cutting cylinder is forced into the streambed. The
partial vacuum in the sampling chamber, which develops as the piston is withdrawn,
is of assistance in collecting and holding the sample in the cylinder. This sampler
can be used only in streams that are shallow enough to be waded in.

Deep samples

The US BM-54, US BM-60 and Shipek are rotating bucket samplers designed for
sand-bed streams. The US BM-54 weighs 100 lb and is designed to be suspended
from a cable and to scoop up a sample of the bed sediment that is 3 in. in width and
about 2 in. in maximum depth. When the sampler contacts the stream bed with the
bucket completely retracted, the tension in the suspension cable is released and a
heavy coil spring quickly rotates the bucket through 180◦ to scoop up the sample.
A rubber stop prevents any sediment from being lost.

The US BM-60 bed material sampler is similar to the US BM-54 and was devel-
oped for both handline and cable suspension. The sampler weighs 30 lb if made of
aluminum, and 40 lb if made of brass. It is used to collect samples in streams with
low velocities but with depths beyond the range of the US BMH-53 sampler.

Coarse particle samples

Materials coarser than gravel and cobble are extremely difficult to sample effec-
tively because penetration is difficult and large quantities of material must be
collected as shown in Figure 2.3. Strictly speaking, hundreds to thousands of pounds
of bed material are required for an accurate determination of the median diameter
and the particle size distribution. Manual collection and measurement is necessary
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to determine a representative sample of such material. In armored and paved gravel-
bed streams, the particle size distribution of the surface and sub-surface layers are
different, as shown in Figure 7.11, and must be sampled separately.

The recommended method for wadeable streams is to use a grid pattern to locate
sampling points. The particle at each grid point is retrieved and its intermediate
diameter measured and recorded. Where a grid point is over sand or finer mate-
rial, a small volume (about 15 ml) is collected and combined with samples from
other such points for sieve analysis. At least 200 points should be sampled for the
relative quantity of some of the coarser sizes to be accurate. In sand-bed channels,
the measurement procedures of Edwards and Glysson (1988) are recommended.
In gravel-bed streams, the report of Bunte and Abt (2001) is perhaps the most
comprehensive.

9.4 Bedload measurements

Direct bedload measurements are usually possible with samplers or other devices,
including sediment traps, bedload samplers, and vortex tubes, or other techniques,
such as tracer techniques or measurement of the migration of bedforms. Bunte
et al. (2004) provides a detailed review of bedload measurement techniques for
gravel- and cobble-bed streams. In sand-bed channels, bedload is small compared
to the suspended load, and measurement techniques for suspended sediment are
discussed in Chapter 10. Box and basket samplers and sediment traps can sometimes
be installed in small streams at a reasonable cost. These direct measuring devices
measure the volume of bed material in motion near the bed during major events.
The total volume or weight of sediment accumulated in the trap can be determined
after each event, although very little information on the rate of sediment transport
at a given discharge can be obtained.

Tracer techniques can be applied in coarse bed material streams by painting,
staining, or radio tracking coarse particles from the bed. The position of the particles
after a major event indicates the distance traveled during the flood and reflects
sediment transport. The use of radioactive tracers is discouraged, however, for
environmental reasons.

In sand-bed channels, the rate of bedload transport depends largely on the motion
of large-size bedforms such as dunes. Since large sediment volumes are contained
within dunes, their motion can be monitored and the bedload discharge corre-
sponds to the dune volume divided by the time required during a full wavelength
migration.

Bedload samplers are most useful in providing the sediment size distribution and
qualitative information on the rates of sediment transport in the layer extending
0.3 ft above the bed. The efficiency of bedload samplers such as the Helley–Smith
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sketched in Figure 9.6 depends on the size fractions: very coarse material (ds >

80 mm) will undoubtedly not enter the sampler, and very fine material (ds < 0.5 mm)
will be washed through the sample bag. Sampling over a long period of time may
cause clogging of the sample bag and bias the measurements.Also, when positioned
over gravel- and cobble-bed streams, substantial amounts of finer particles (sand
particles) will be transported underneath the sampler. The Helley–Smith sampler
seems best suited to coarse sand to fine gravel-bed streams, given the primary
advantages of low cost and great mobility, Bunte et al. (2004) and Bunte and Abt
(2005).

Another type of sampler is the vortex tube (Figure 9.7), which has proven to be
effective in the removal of bedload in narrow open channels. Some vortex tubes
have been effective in removing coarse bed material up to gravel and cobble size
in laboratories, irrigation canals, and mountain streams. The main feature of the
vortex tube is a vented circular tube with an opening along the top side mounted
flush with the bed elevation. As water flows over the tube, the shearing action

Frame

Nozzle

Sample bag

Figure 9.6. Helley–Smith bedload sampler (from Emmett, 1979)

Plan view

Profile

Flow
W

h

s

Figure 9.7. Vortex tube sediment ejector
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across the opening sets up vortex motion within and along the tube. This whirling
action pulls the sediment particles passing over the lip of the opening and carries
the particles to the outlet of the vortex tube (e.g. Atkinson, 1994). Case study 9.1
provides detailed bedload calculations using the methods described in Section 9.1.
Case study 9.2 then looks at sediment transport calculations at Little Granite Creek
to follow up on the discussion of the data presented in Problem 7.9.

Case study 9.1 Mountain Creek, United States

This case study illustrates sediment transport calculations when bedload is dom-
inant and u∗/ω < 1. Mountain Creek near Greenville, South Carolina, is a small
14 ft-wide sand-bed stream. The geometric mean sediment size is 0.86 mm with
standard deviation σg = 1.8, d35 = 0.68 mm, d50 = 0.86 mm, d65 = 1.08 mm, and
d90 = 1.88 mm. The complete sieve analysis and sediment-rating measurements
are given in the following tabulation:

Particle size
distribution Sediment-rating measurements

Sieve
(mm)

%
Finer

Flow
depth
h (ft)

Unit
discharge
q (ft2/s)

qbw
(lb/ft · s)

0.074
0.125
0.246
0.351
0.495
0.701
0.991
1.400
1.980
3.960

0.07
0.33
1.70
6.20
19.0
37.3
60.5
79.4
90.4
99.3

0.16
0.18
0.22
0.25
0.27
0.29
0.32
0.40
0.43
0.60

0.21
0.23
0.32
0.40
0.48
0.52
0.60
0.87
1.10
1.50

–
–

0.004
0.006
0.007
0.009
0.012
0.030
0.039

–

The water surface slope of Mountain Creek varied between 0.00155 and
0.0016 during the measurements. The unit discharge increased from 0.2 to
1.1 ft2/s at flow depths corresponding to 0.16 to 0.43 ft, as indicated on the
above table. Assuming water temperature at 78◦F: (1) calculate bedload from
the methods of DuBoys, Meyer-Peter and Müller, and Einstein–Brown using
the median grain size; and (2) compare calculations by size fractions with field
measurements.
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Calculations based on the median grain size.

Bedload calculations for d50 = 0.86 mm = 0.00282 ft, Sf = So = 0.0016, h =
0.6 ft, τ o = γ h Sf = 0.06 lb/ft2, T ◦ = 78◦F and ν = 1 × 10−5 ft2/s follow:
(a) DuBoys’ equation:

qbv = 0.173

d
3/4
s

τo(τo − 0.0125 − 0.019ds)

= 0.173

(0.86)3/4
0.06(0.06 − 0.0125 − 0.019 × 0.86)

= 3.6 × 10−4 ft2/s

qbw = γs qbv = 0.0595 lb/ft s

(b) Meyer-Peter Müller equation:

τ∗ = τo

(γs − γ )ds
= 0.06 lb ft3

ft2 × 1.65 × 62.4lb × 0.00282 ft
= 0.206

qhv =
√
(G − 1)gd3

s 8(τ∗ − 0.047)3/2

=
√

1.65 × 32.2 ft

s2
× (0.00282)3 ft3 × 8 × (0.206 − 0.047)3/2

= 5.5 × 10−4 ft2/s

qbw = γs qbv = 0.091 lb/ft s

(c) Einstein–Brown equation:

τ∗ = 0.206> 0.18

qbv∗ = 40τ 3∗ = 40(0.206)3 = 0.35

Xe = 36ν2
m

(G − 1)gd3
s

= 36 × 10−10 ft4 s2

s2(1.65)× 32.2ft × (0.00282)3 ft3
= 0.003

qbv = qbv∗
√
(G − 1)gd3

s

(√
2

3
+ 0.003 −√

0.003

)

= 0.35

√
1.65 × 32.2 ft

s2
(0.00282)3 ft3 × 0.763

= 2.91 × 10−4 ft2

s

qbw = γs qbv = 0.048 lb/ft s

Notice that u∗ =√g h Sf = 0.176 ft/s and ω= 0.337 ft/s, such that u∗/ω= 0.52 and
most of the sediment move as bedload.
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Calculations by size fractions

The weight fraction �pi for each size fraction is first determined from the
sediment size distribution. Calculations by size fractions for each method at
different flow depths are summarized in the following table. The calculated
results are compared with field measurements on Figure CS-9.1.1. The result-
ing transport rate qbw ≈ 0.08 lb/ft s in a 14 ft-wide channel corresponds to
Qbw = 0.08 × 14 × 86,400/2,000 tons/day = 48 tons/day, which is a relatively
low transport rate.

ds
(mm) �pi

DuBoys
qbvi �pi

(10−6 ft2/s)

MPM
qbvi �pi

(10−6 ft2/s)

Einstein–Brown
qbvi �pi

(10−6 ft2/s)

h = 0.2 ft, τ 0 = γm hS = 0.02 lb/ft2

0.074
0.125
0.246
0.351
0.495
0.700

0.0020
0.0082
0.0293
0.0865
0.1555
0.2075

0.295
0.682
0.810
0.520
0
0

0.28
1.10
3.30
8.30
11.60
9.60

0.410
1.100
1.900
3.900
4.700
2.700

0.990
1.400

0.2105
0.1495

0
0

3.20
0

0.700
0.050

1.980
3.960

0.0995
0.0515

0
0

0
0

0.001
0

Total qbv = 2.31 × 10−6 ft2/s 37.5 × 10−6 ft2/s 15.6 × 10−6 ft2/s
qbw = 0.0004 lb/fts 0.0062 lb/fts 0.0026 lb/fts

h = 0.6 ft, τ 0 = 0.06 lb/ft2

0.074
0.125
0.246
0.351
0.495
0.700
0.990
1.400
1.980
3.960

0.0020
0.0081
0.0293
0.0865
0.1555
0.2075
0.2105
0.1495
0.0995
0.0515

6.7
18.1
37.2
80.1

103.7
95.8
62.8
25.0

6.0
0

1.6
6.3

21.7
61.1

103.0
124.8
109.1

61.0
26.7

0

11.2
31.2
52.0
95.4

106.0
85.8
55.2
26.9

8.4
0.16

Total qbv = 435.6 × 10−6 ft2/s 515.5 × 10−6 ft2s 472.3 × 10−6 ft2/s
qbw = 0.072 lb/fts 0.085 lb/fts 0.078 lb/fts
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Figure CS-9.1.1 Sediment rating-curve for Mountain Creek

Case study 9.2 Little Granite Creek, Wyoming

This case study illustrates sediment transport calculation near incipient motion,
or u∗/ω< 0.5. Little Granite Creek is a steep cobble-bed stream with gravel trans-
port during floods. The author is grateful to S. Ryan, K. Bunte, and M. Weinhold
for the discussions on data collection and analyses at the site (Weinhold, 2002).
The main characteristics have been presented in Problem 7.9, with a bed slope of
0.02, top width of 7.2 m, stage–discharge hm∼ 0.3Q0.42

m3/s
and bankfull discharge

Q = 6.22 m3/s. Based on d50 of the pavement layer shown in Figure 7.11, calcu-
late the daily bedload in metric tons per day at bankfull discharge calculations
based on the median grain size. Bedload calculation for d50 = 110 mm, Sf = 0.02,
h = 0.3 6.220.42 = 0.65 m, d∗ = 2,800 and ω50 ≈ 1.25 m/s from Chapter 5.
τ 0 = γ hSf = 127 Pa = 2.66 lb/ft2, v ∼= 1×10−6 m2/s, u∗ =√ghSf = 0.35 m/s,
and u∗/ω50 ≈ 0.28, thus bedload is dominant.
(a) DuBoys’ equation:

qbv = 0.173

1103/4
2.66(2.66 − 0.0125 − 0.019 × 110)

= 0.0076ft2/s = 0.0007m2/s
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Qbm = qbvWρs = 0.0007
m2

s
× 7.2m

× 2.65 metric ton

m3
× 86,400 s

day
= 1,157 metric tons

day

(b) MPM with τ ∗c = 0.047:

τ∗ = τ0

(γs − γ )ds
= hS

(G − 1)ds
= 0.65m × 0.02

1.65 × 0.11m
= 0.0716

qbv =
√
(G − 1)g d3

s 8(τ∗ − 0.047)3/2

=
√

1.65 × 9.81m2/s × (0.11m)38(0.0716 − 0.047)3/2

= 0.0045m2/s

Qbm = 7,480 metric tons/day

(c) Einstein–Brown:

d∗ = ds

(
(G − 1)g

ν2

)1/3

= 0.11

(
1.65 × 9.81(
1 × 10−6

)2
)1/3

= 2,782

ω= 8ν

ds

{(
1 + d3∗

72

)0.5

− 1

}
= 8 × 1 × 10−6

0.11

m

s

{(
1 + 2,7823

72

)0.5

− 1

}

= 1.26m/s

Notice here that u∗/ω= 0.35/1.26 = 0.28, which is very low and close to incipient
motion.

qbv∗ = 2.15e−0.391/0.0716 = 0.0091

qbv = qbv∗ωds = 0.0091 × 1.26m/s × 0.11m = 0.00127m2/s

Qbm = 2,088 metric tons/day

(d) Equation (9.4d) should not be used because τ∗ = 0.0716< 0.1.

The calculated sediment loads from these methods are fairly consistent around
2,000 metric tons/day. However, field measurements from the data in Problem
7.9 are about 4–40 metric tons/day. Calculations far exceed measurements
because the coarser fractions of this cobble-bed stream do not move, and equal
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mobility cannot be extrapolated to the coarser fractions of the bed material. It
is clear that a much higher value of the critical Shields parameter (τ ∗c > 0.047)
would have to be used to match the field measurements. Site calibration using the
Bakke et al. (1999) procedure would be possible as shown by Weinhold (2002).

Exercise

9.1 Consider the angle of repose of a spherical particle on top of three spheres of equal
diameter from Figure 7.1c. Estimate the critical Shields parameter from Equations
(7.1b and 7.3b). Compare the results with the data in Figure 9.3b when ks = ds.

Problems

�Problem 9.1

Calculate the unit bedload discharge for a channel given the slope So = 0.01, the
flow depth h = 20 cm and the grain size d50 = 15 mm. From DuBoys’ equation,
calculate qbw in lb/ft.s, and qbv in ft2/s. (Answer: qbw = 0.17 lb/ft.s; qbv = 1.03×
10−3 ft2/s.)

�Problem 9.2

Use Meyer-Peter and Müller’s method to calculate qbm in kg/ms and qbv in m2/s
for the conditions given in Problem 9.1.

Problem 9.3

Use Einstein–Brown’s method to calculate the bedload transport rate in a 100 m-
wide coarse sand-bed channel with slope So = 0.003 when the applied shear
stress τ o equals τ c. Determine the transport rate Qbv in m3/s and in ft3/s. (Answer:
Qbv = 3.27 × 10−8 m3/s = 1.15 × 10−6 ft3/s.)

�Problem 9.4

Use Einstein–Brown’s bedload equation to calculate qbm in kg/ms and qbw in
lb/ft.s for the conditions given in Problem 9.1. Estimate the bedload particle
velocity and estimate the near-bed sediment concentration.

��Problem 9.5

Use the methods detailed in this chapter to calculate the daily bedload in metric
tons in a 20 m-wide medium gravel-bed canal with a slope So = 0.001 and at a
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flow depth of h = 2 m. Compare Qbm the results in metric tons per day. (Answer:
DuBoys −Qbm = 791 tons/day; MPM −Qbm = 2,431 tons/day; Einstein–Brown
−Qbm = 884 tons/day.)

�Problem 9.6

Which bed sediment sampler would you recommend for the canal in Problem
9.5?

�Problem 9.7

With reference to the Bergsche Maas bedform data given in Computer problem
8.1: (a) calculate the bedload sediment transport; and (b) estimate the time
required for the bedload to fill the volume of a representative dune. Compare
with the celerity from the method of Example 9.1.

��Problem 9.8

With reference to Case study 9.2 and Figure 7.11: (a) use the d65 of the surface
layer (pavement) and calculate the sediment transport rates in tons per day using
DuBoys, MPM and Einstein–Brown at discharges 100, 200, and 400 cfs; and
(b) repeat the calculation with sub-pavement material.

��Problem 9.9

Consider the field measurement in the table below for the North Fork of theToutle
River at Hoffstadt Creek Bridge (Pitlick, 1992). Calculate τ 0, τ c, τ 0/τ c, σ g , and
h/d84, Darcy–Weisbach f and Manning n. Compare resistance to flow measure-
ments and Figure 6.6a, and calculate transport rates based on the methods from
this chapter.

h (m) V (m/s) S d50 (mm) d84 (mm) Cs (mg/l) qbm (kg/ms)

0.91 2.96 0.010 26 66 5,950 6.8
1.17 3.75 0.011 18 62 12,000 19.9
0.77 2.81 0.0057 12 53 6,760 13.2
0.83 3.06 0.0077 15 55 8,230 11.4
0.55 2.35 0.0068 8 36 3,020 6.2
0.70 1.96 0.0074 16 37 1,700 0.25
0.47 1.94 0.0078 8 33 690 3.6



9.4 Bedload measurements 215

�Problem 9.10

Combine Equation (9.7) with qbv∗ (Equation (9.3a)) and qbv = ava Cav to
determine the thickness of the bed layer a when u∗ ≈ ω.

��Computer problem 9.1

Consider the channel reach analyzed in Computer problems 3.1 and 8.2. Select
an appropriate bedload relationship to calculate the bed sediment discharge in
metric tons/m•day for the uniform 1-mm sand in Computer problem 8.2. Plot the
results along the 25-km reach and discuss the method, assumptions, and results.

�Computer problem 9.2

Write a computer program to calculate the bedload transport rate by size fraction
from the methods of DuBoys, Meyer-Peter and Müller, and Einstein–Brown,
and repeat the calculations of the tabulation in Case study 9.1 at h = 0.4 ft
and τ 0 = 0.04 lb/ft2. (Answer: DuBoys: qbv = 122 × 10−6 ft2/s, qbw = 0.0202
lb/ft s; Meyer-Peter and Müller: qbv = 221 × 10−6 ft2/s, qbw = 0.036 lb/ft s;
Einstein–Brown: qbv = 140 × 10−6 ft2/s, qbw = 0.023 lb/ft s.)
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Suspended load

As the hydraulic forces exerted on sediment particles exceed the threshold condition
for beginning of motion, coarse sediment particles move in contact with the bed
surface as described in Chapter 9. Finer particles are brought into suspension when
turbulent velocity fluctuations are sufficiently large to maintain the particles within
the mass of fluid without frequent bed contact.

This chapter examines the concentration of sediment particles held in suspen-
sion (Section 10.1). The governing equations of turbulent diffusion are presented
in Section 10.2 leading to turbulent mixing of washload in Section 10.3. Equilib-
rium vertical concentration profiles in Section 10.4 serve the analysis of suspended
load in Section 10.5 and hyperconcentrations in Section 10.6. Field measurement
techniques are covered in Section 10.7. Five examples illustrate the computation
procedures.

10.1 Sediment concentration

The term sediment concentration deserves clarification to avoid misinterpretations.
The units used in the measurement of sediment concentration vary with the range
of concentrations and the standard measurement techniques utilized in different
countries. The most commonly used unit for sediment concentration is mg/l which
describes the ratio of the mass of sediment particles to the volume of the water–
sediment mixture. Other units include kg/m3 (1mg/l = 1g/m3), the volumetric
sediment concentration Cv, the concentration in parts per million Cppm, and the
concentration by weight Cw:

Cv = sediment volume

total volume
= ∀s

∀t
= 1 − po (10.1a)

Cw = sediment weight

total weight
= WS

WT
= CvG

1 + (G − 1)Cv
(10.1b)�

216
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Table 10.1. Equivalent concentrations and mass densities

Cv Cw Cppm Cmg/l

ρm
(kg/m3)

ρmd
(kg/m3)

Suspension
0.0001
0.0005
0.001
0.0025
0.005
0.0075
0.01
0.025

0.00026
0.0013
0.00264
0.00659
0.01314
0.01963
0.02607
0.06363

265
1,324
2,645
6,598

13,141
19,632
26,069
63,625

265
1,325
2,650
6,625

13,250
19,875
26,500
66,250

1,000.2
1,000.8
1,001.6
1,004.1
1,008.2
1,012.4
1,016.5
1,041.2

0.26
1.32
2.65
6.65
13.3
19.9
26.5
66.3

Hyperconcentration

0.05
0.075
0.1
0.25
0.5
0.75
1.0

0.12240
0.17686
0.22747
0.46903
0.72603
0.88827
1.0

122,401
176,863
227,467
469,027
726,027
888,268

1,000,000

132,500
198,750
265,000
662,500

1,325,000
1,987,500
2,650,000

1,083
1,124
1,165
1,412
1,825
2,237
2,650

133
199
265
662

1,325
1,987
2,650

Note: Calculations based on mean density of water of 1 g/ml and
specific gravity of sediment G = 2.65.

in which G = γs/γ

Cppm = 106Cw (10.1c)�

Note that the concentration in parts per million Cppm is given by 1,000,000
times the weight of sediment over the weight of the water–sediment mixture. The
corresponding concentration in mg/l and Cv is then given by the following formula.

Cmg/l = 1mg/l G Cppm

G + (1 − G)10−6 Cppm
= ρG Cv = 106 mg/l G Cv (10.1d)

The conversion factors from Cppm to Cmg/l are given in Table 10.1. Notice that
there is less than 10% difference between Cppm and Cmg/l , at concentrations Cppm <

145,000, and less than 1% difference when C < 10,000 ppm.
In the laboratory, the sediment concentration in Cmg/l is measured as 1,000,000

times the ratio of the dry mass of sediment in grams to the volume of the water–
sediment mixture in cubic centimeters (1 cm3 = 1 ml). Two methods are commonly
used: evaporation and filtration. The evaporation method is used where the sediment
concentration of samples exceeds 2,000 mg/l–10,000 mg/l; the filtration method is
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preferred at lower concentrations. The lower limit applies when the sample consists
mostly of fine material (silt and clay) and the upper limit when the sample is mostly
sand. For samples having low sediment concentration, the evaporation method
requires a correction if the dissolved solids content is high.

Another important consideration is that the concentration C varies with space
(x,y,z) and time (t). Several average values are considered:

(1) The time-averaged concentration Ct is measured at a fixed location and integrated over
the sampling time ts, typically of the order of 10–60 seconds:

Ct(x0, y0, z0, t)= 1

ts

to+ts∫
to

C(x, y, z, t)dt (10.2a)

Time-averaged concentrations are commonly called point measurements.
(2) The volume-averaged concentration C∀ integrated over a volume ∀:

C∀(x, y, z, to)= 1

∀
∫ ∫ ∫

∀
C(x, y, z, t)d∀ (10.2b)

Volume-averaged concentrations are obtained from instantaneous measurements like
bucket samples from the free surface.

(3) The flux-averaged concentration Cf , when multiplied by the total flow discharge Q,
gives the exact advective mass flux passing through a given cross-section A, thus

Cf = 1

Q

∫
A

Cvx d A (10.2c)

The flux-averaged concentration Cf is used when defining the concentration of sedi-
ments at a given stream cross-section. Measured sediment concentration profiles will
vary around the flux-averaged concentration as discussed in Section 10.4.

The different types of concentration will be measured from different sampling
devices as described in Section 10.7. It is essential to understand advection and
diffusion processes before analyzing vertical concentration profiles.

10.2 Advection–diffusion equation

The equation governing the conservation of sediment mass can be applied to a
small cubic control volume to derive the sediment continuity relationship. The rate
of sediment changes per unit volume ∂C/∂t simply equals the difference of sediment
fluxes across the faces of the control volume. The derivation previously detailed in
Example 3.1 states that the sediment continuity relationship can be written as

∂C

∂t
+ ∂qtx

∂x
+ ∂qty

∂y
+ ∂qtz

∂z
= Ċ (10.3)�
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in which C is the volume-averaged sediment concentration inside the infinitesimal
control volume; q̂tx, q̂ty, q̂tz are the sediment fluxes per unit area through the faces
of the control volume; and Ċ is the rate of sediment production per unit volume.
This term Ċ is zero for conservative substances and most sedimentation engineer-
ing applications. It is however kept in this equation to relate to possible internal
mass changes such as chemical reactions, phase changes, adsorption, dissolution,
flocculation, radioactive decay, etc. Note that the units of C can be Cppm,Cv, or
Cmg/l , as long as they are consistent with those of qt and Ċ.

Expanding upon the derivation in Example 3.1, one recognizes several types of
mass fluxes per unit area across the faces of the control volume: advective fluxes,
diffusive fluxes, mixing fluxes, as well as dispersive fluxes. This can be written in
a simple mathematical form as:

q̂tx = vxC − (D + εx)
∂C

∂x
(10.4a)

q̂ty = vyC − (D + εy)
∂C

∂y
(10.4b)

q̂tz = vzC︸︷︷︸
advective

fluxes

− (D + εz)
∂C

∂z︸ ︷︷ ︸
diffusive and
mixing fluxes

(10.4c)

The advective fluxes describe the transport of sediments imparted by velocity
currents. The rate of mass transport per unit area carried by advection is obtained
from the product of sediment concentration and the velocity components vx,vy, and
vz, respectively (e.g. Example 3.1).

Two additional fluxes must be considered in sediment transport. Molecular dif-
fusion describes the scattering of sediment particles by random molecular motion
as described by Fick’s law. In Figure 10.1, the example of molecular diffusion of
cream in a still cup of coffee illustrates the slow molecular diffusion process. Turbu-
lent mixing induces the motion of sediment particles due to turbulent fluid motion.
The turbulent mixing process is far more effective than molecular diffusion and the
example of stirring up the coffee with a spoon (Figure 10.1) illustrates this process.
The rate of sediment transport for both fluxes is proportional to the concentration
gradient. For diffusion in laminar flow, the proportionality constant D is called the
molecular diffusion coefficient and has dimensions of L2/T . The minus sign indi-
cates that the mass flux is directed toward the direction of decreasing concentration
(or negative concentration gradient). For mixing in turbulent flow, the turbulent
mixing coefficients εy and εz describe the processes of turbulent diffusion. Mass
transport in turbulent flow is also proportional to the concentration gradient. The
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q   = – D

v

v
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∂C
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v
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z
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tx ∂x
∂C
∂x

ε

ε

Figure 10.1. Sketch of advection, diffusion, mixing, and dispersion processes

molecular diffusion coefficient D is several orders of magnitude smaller than the
turbulent mixing coefficients ε in turbulent flow. Dispersion is a process acting in
the flow direction, which combines the interaction between advection and turbulent
mixing, as sketched in Figure 10.1. This dispersion coefficient εx or Kd is usually
very large.

The general relationship describing conservation of sediment mass for incom-
pressible dilute suspensions subjected to diffusion, mixing, dispersion, and advec-
tion with point sediment sources is obtained from substituting Equation (10.4) into
Equation (10.3):

∂C

∂t
+ ∂vxC

∂x
+ ∂vyC

∂y
+ ∂vzC

∂z

= Ċ + (D + εx)
∂2C

∂x2
+ (D + εy)

∂2C

∂y2
+ (D + εz)

∂2C

∂z2
(10.5a)
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Owing to the conservation of fluid mass (Equation (3.6d)) for incompressible
fluid at a low sediment concentration, the advection–diffusion relationship can
be rewritten as

∂C

∂t︸︷︷︸
mass

change

+ vx
∂C

∂x
+ vy

∂C

∂y
+ vz

∂C

∂z︸ ︷︷ ︸
advective terms

= Ċ+︸ ︷︷ ︸
phase

change

(D + εx)
∂2C

∂x2
+ (D + εy)

∂2C

∂y2
+ (D + εz)

∂2C

∂z2︸ ︷︷ ︸
diffusive and mixing terms

(10.5b)

In laminar flow, the turbulent mixing and dispersive coefficients vanish (εx = εy =
εz = 0). Conversely, in turbulent flows, the molecular diffusion coefficient D is
negligible compared to the turbulent mixing and dispersion coefficients (D � ε).

As opposed to the Navier–Stokes equations discussed in Chapter 5, Equation
(10.5a) can be easily solved owing to the linearity of the independent parameter C.
This Equation (10.5a) is sometimes called advection–dispersion, or the diffusion–
dispersion equation and has numerous applications in the field of sediment and
contaminant transport in open channels.

10.3 Turbulent mixing of washload

This section focuses on sediment particles that are too fine to settle. The concept
of washload refers to fine particles which are easily washed away by the flow –
more specifically, particles in transport which are too fine to be found in significant
amounts in the bed material. Washload often corresponds to silts and clays in
sand-bed channels.

10.3.1 One-dimensional diffusion

Consider the case of one-dimensional molecular diffusion in still water as sketched
in Figure 10.2. A mass m of fine sediment diffuses without settling in the y direc-
tion given the molecular diffusion coefficient D. The governing one-dimensional
equation (Equation (10.5)) for molecular diffusion given ∂C/∂x = ∂C/∂z = vy =
vz = ∂2C/∂x2 = ∂2C/∂z2 = εy = Ċ = 0, reduces to

∂C

∂t
= D∂2C

∂y2
(10.6)
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Figure 10.2. Sketch of one-dimensional diffusion

The solution to this equation defines the concentration C(y, t) in space and time,

C(y, t)= m

A
√

4πDt
e− y2

4Dt (10.7)

in which the mass m = ∫∀ Cmg/l d∀ is the volume integral of the concentration given
the cross-sectional area A. The properties of this normal distribution are that the
variance increases linearly with time σ 2

D = 2Dt, and a practical estimate of the width
of the sediment cloud (95% of the mass) is simply contained within 4σD = 4

√
2Dt.

10.3.2 Mixing and dispersion coefficients, length and time scales

Consider a straight rectangular channel of width W , flow depth h and shear velocity
u∗. The vertical mixing coefficient εv, the transversal mixing coefficient εt , and the
longitudinal dispersion coefficient Kd are empirical functions of the product hu∗ as
suggested by Fischer et al. (1979):

εv ∼= 0.067 hu∗ (10.8a)

εt
∼= 0.15 hu∗ in straight channels (10.8b)

or εt
∼= 0.6 hu∗ in natural channels (10.8c)

Kd
∼= 250 hu∗ or 0.011

V 2 W 2

hu∗
(10.8d)

The basic relationship for vertical mixing (Equation (10.8a)) between the coefficient
εv and hu∗ will be demonstrated in Section 10.4.

It is noticeable that vertical, transversal, and dispersion coefficients increase by
orders of magnitude, respectively. Given the property of the variance for normal
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distributions, in the previous section, σ 2 ≈ 2Dt, the vertical time scale tv, the
transversal time scale, tt , and the longitudinal dispersion time scale td in a stream are
defined after substituting tt respectively with the average flow depth h(h2 = 2εvtv),
the channel width W (W 2 = 2εt tt), and the dispersion length Xd (X 2

d = 2Kd td ).

tv = Xv

V
∼= h

0.1u∗
(10.9a)

tt = Xt

V
∼= W 2

hu∗
(10.9b)

td = Xd

V
∼= X 2

d

500hu∗
; where td > tt (10.9c)

These time scales provide very rough approximations, but are very useful to
determine which physical process is dominant in open channels, as sketched in
Figure 10.3. Similarly, first-order approximations for length scales can be defined.

Traveling downstream at the mean flow velocity V , the corresponding length
scales for complete vertical mixing Xv, complete transversal mixing Xt , and
longitudinal dispersion Xd are respectively given by

Xv = hV

0.1u∗
(10.10a)

Xt = VW 2

hu∗
(10.10b)

and Xd = 500hu∗
V , when lateral mixing is complete at a distance

X > VW 2/hu∗ (10.10c)

These first-order approximations of the distances Xv and Xt required for vertical
and transversal mixing indicate that tt

tv
= Xt

Xv
= 0.1W 2

h2 . It is concluded that vertical
mixing occurs before transversal mixing unless W < 3h. Consequently, studies of

31 v t d20

Dispersion

Instantaneous
point source

Complete
vertical
mixing

Complete
lateral
mixing

Longitudinal
dispersion

Mixing

t t  = t t  = tt   = t

Figure 10.3. Sketch of mixing and dispersion processes
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turbulent mixing in open channels generally assume that vertical mixing is com-
plete, and depth-integrated 2-D models x–y will often be sufficient. Example 10.1
provides calculations of time and length scales.

It is also important to consider that longitudinal dispersion will only be possible
when the concentration is uniform within a cross-section. This implies that disper-
sion can only be considered as the dominant process when td > tt = W 2/hu∗. In a
river flowing at a velocity V , this corresponds to saying that dispersion will start
when lateral mixing is completed, or when X > Xt = VW 2/hu∗.

Example 10.1 Application of mixing time and length scales

Determine an approximate time scale and downstream distance required for
complete vertical and horizontal mixing of washload in a gently meandering
600 ft-wide stream. The stream is 30 ft deep. The average flow velocity is V =
2 ft/s and the shear velocity u∗ is 0.2 ft/s.

Step 1. Vertical mixing occurs at a time tv approximated by Equation (10.9a)

tv ∼= h

0.1u∗ = 30ft × s

0.1 × 0.2ft
= 1,500s = 25minutes

The corresponding downstream distance is Xv = Vtv = 2.0ft
s ×1,500s = 3,000ft.

Notice that complete vertical mixing occurs at a downstream distance roughly
equal to 100 times the flow depth.

Step 2. Transversal mixing should be complete at a time tt approximated by
Equation (10.9b).

tt ∼= W 2

hu∗
= (600)2 ft2 s

30ft × 0.2ft
= 60,000s ∼= 17hours

The corresponding downstream distance Xt is

Xt = Vtt = 2.0ft

s
× 60,000s = 120,000ft ∼= 23miles

Vertical mixing is completed long before transversal mixing.

10.3.3 Lateral mixing from steady point sources

Consider the steady supply of fine sediment, or contaminant, as a centerline point
source of concentration Co at a mass rate ṁ into a stream of width W , depth h, and
average flow velocity V , as sketched on Figure 10.4a. Assuming that advection is
dominant in the downstream x direction while mixing occurs in the transversal y
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direction εy = εt , the governing equation [Equation (10.5)] reduces to

∂C

∂t
+ V ∂C

∂x
= εt

∂2C

∂y2
(10.11)

The solution, after a coordinate transformation x′ = x − Vt, becomes similar to
Equation (10.7) in which D is replaced by εt , and x by x′. Advection and mixing
are separate and additive processes. In other words, advective mixing is the same
as mixing in a stagnant fluid when viewed in a coordinate system moving at speed
V . Assuming that complete vertical mixing occurs long before transversal mixing,
the approximate solution when t > tv in an infinitely wide channel is obtained from
Equation (10.7) after considering t = x/V, A = hVt, and ṁ = m/t.

C(x,y)=
[

ṁ

h
√

4πεtxV

]
e

−y2V
4εt x (10.12)

In channels of finite width W , the relative concentration C/Co with C̄ = ṁ/hVW for
mid-stream point source is plotted on Figure 10.4a. The term in brackets of Equation
(10.12) represents the maximum concentration along a cross-section centerline at
a distance x from the point source. A reasonable length Xt for complete transversal
mixing is Xt

∼= 0.15 V W 2/εt for centerline injection. In the case of side injection, the
solution can be found by analogy with a double channel width. Thus, the distance
Xt for complete transversal mixing is Xt

∼= 0.6 V W 2/εt for side injection of fine
sediment such as washload from bank erosion. The case of mixing of two streams
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Figure 10.4. a) Plume for steady point source b) mixing at stream confluence (after
Fischer et al., 1979)
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of equal discharge with co = c̄ is shown on Figure 10.4b. A reasonable length for
complete transversal mixing is Xt ≈ 0.4 V W 2/εt . It is interesting to note that
the ratio of Xt/W ≈ 10W/h. This means that deep rivers (low W/h) will mix
rather quickly while shallow rivers (large W/h) will require very long distances
for complete lateral mixing.

Example 10.2 presents calculations of turbulent mixing of a steady point source
of washload.

Example 10.2 Application to resuspension from a dredge

As sketched in Figure E-10.2, sidecasting dredge causes the steady resuspension
of 3 million gallons per day of clay at a 200,000 ppm concentration near the
centerline of a 30 ft-deep and 1,300 ft-wide river. If the mean flow velocity is 2
ft/s and the shear velocity is 0.2 ft/s, determine the width of the plume and the
maximum concentration 10,000 ft downstream of the dredge.

V C       = Jk

10 000 ft

Sidecasting
dredge

max

Figure E-10.2 Steady point source

1million gallons/day = 1mgd = 0.04382 m3/s (From Table 2.2).

Step 1. The mass flux

ṁ = QC = 3 × 0.04382
m3

s
× 35.32

ft3

m3
× 2 × 105ppm = 9.3 × 105ppm ft3/s

Step 2. The transverse mixing coefficient εt
∼= 0.6hu∗

εt = 0.6 × 30ft × 0.2
ft

s
= 3.6

ft2

s

Step 3. The plume width is approximately 4 σ t from Section 10.3.1

4σt
∼= 4
√

2εtx/V = 4

√
2 × 3.6ft2

s
× 10,000ft

2ft
s

4σt
∼= 760ft



10.3 Turbulent mixing of washload 227

Step 4. The maximum centerline concentration from Equation (10.12), at x =
10,000 ft and y = 0, is

Cmax = ṁ

h
√

4πεtxV
= 9.30 × 105ft3 ppm

s30ft
√

4π × 3.6ft2/s × 10,000ft × 2ft/s

Cmax = 33 ppm

10.3.4 Longitudinal dispersion of an instantaneous point source

As sketched in Figure 10.1, dispersion is caused primarily by the non-uniformity
of the velocity profile in the cross-section of shear flow. Dispersion is due to the
combined and simultaneous action of advection and turbulent mixing. The disper-
sion coefficient Kd describes the diffusive property of the velocity distribution and
is given here without derivation (Fischer et al. 1979):

Kd = −1

hε

h∫
o

(vx − V )

z∫
o

z∫
o

(vx − V )dz dz dz (10.13)

where vx is the local velocity, V is the depth-averaged flow velocity, h is the flow
depth and ε is the turbulent mixing coefficient. Practical estimates of Kd are given
by Equation (10.8d). The dispersion coefficient is usually very large (order of 100
ft2/s or 10 m2/s). Washload transport in the streamwise direction is proportional to
the concentration gradient and the dispersion coefficient.

Dispersion only becomes the dominant mixing process after the sediment con-
centration becomes uniform in a cross-section as sketched in Figure 10.4. This
requires complete vertical mixing, t > tv, and complete transverse mixing, t > tt .
The critical requirement is usually that lateral mixing must be completed t > tt > tv.
This is possible at distances x> 0.4VW 2/εt and at time t > 0.4W 2/εt . At this incep-
tion point, the corresponding concentration obtained from Equations (10.7, 10.8b,
and 10.9c) will be approximately Cdi ≈ m/hW 2. This means that longitudinal dis-
persion will become of practical significance only in relatively small channels. In
large channels, the concentration becomes very small.

For a practical application, consider the instantaneous point source of fine
sediment. The cloud of sediment will approach a Gaussian distribution in the down-
stream direction only after an initial period of complete vertical and lateral mixing,
t > tdi = 0.4W 2/εt . After this initial period, a cloud of total length approximately
equal to 4σd = 4

√
2Kd t will propagate in the downstream direction at a peak



228 Suspended load

concentration given by:

Cmax = m

Wh
√

4πKd t
(10.14)

where t > 0.4W 2/εt . Example 10.3 outlines the application of this method to the
longitudinal dispersion of an instantaneous point source.

Example 10.3 Application to longitudinal dispersion of an instantaneous
point source

As sketched in Figure E-10.3, localized mass wasting of an overhanging stream
bank causes a Ms = 6,000 kg block of saturated very fine silt to dissolve into
a 20 m-wide and 1 m-deep stream. Assuming rapid erosion of the block under
a 1.5 m/s flow velocity and a stream slope of 100 cm/km, determine the peak
concentration and the length of the dispersed sediment cloud observed at a bridge
located at Xb = 10 km downstream of the sediment source. How long will the
pulse of increased concentration last under the bridge?

V

Mass wasting

C       = ?max

10 km

Figure E-10.3 Instantaneous point source

Step 1. The shear velocity is

u∗ =√g hS =
√

9.8m

s2
× 1m × 10−3 = 0.1m/s

Step 2. The dispersion coefficient Kd and the transverse mixing coefficient εt

are, respectively,

Kd
∼= 250hu∗ = 250 × 1m × 0.1m

s
= 25m2

s

εt = 0.6hu∗ = 0.6 × 1m × 0.1m

s
= 0.06m2

s
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Step 3. The initial period ends when

tdi = 0.4W 2

εt
= 0.4 × (20m)2s

0.06m2
= 2,667s = 45min

at a downstream distance Xdi

Xdi = V tdi = 1.5m

s
× 2,667s = 4,000m < 10km

Step 4. At the bridge, the length L of the dispersed cloud is

L = 4

√
2Kd Xb

V
= 4

√
2 × 25m2

s
× 10,000m s

1.5m
= 2.3km

and will be centered at the bridge at a time tb = Xb
V = 10,000m s

1.5m = 6,666s = 1.85
hours after the injection upstream.

Step 5. The maximum concentration of the dispersed cloud under the bridge
at time tb is given by:

Cmax = Ms

Wh
√

4πKd tb
= 6,000kg

20m × 1m
√

4π × 25m2

s × 6,666s

= 0.207kg

m3
= 207mg/l

Step 6. The increase in sediment concentration under the bridge will last
L/V = 2,300m/1.5m/s = 1,500 or about 25 minutes.

10.4 Suspended sediment concentration profiles

This section focuses on particles that are large enough to settle. Consider steady
uniform turbulent flow in a wide rectangular channel without any phase change
(Ċ = 0). The settling of sediment particles due to the density difference between
the particles and the surrounding fluid induces a downward particle settling flux.
All the terms of the diffusion–dispersion equation (Equation 10.5) vanish except
those describing the sediment fluxes in the vertical z direction:

vz
∂C

∂z
= εz

∂2C

∂z2
(10.15)

This equation can be integrated with respect to z. As sketched in Figure 10.5,
equilibrium is obtained when the upward turbulent flux is balanced by the downward
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Upward flux Downward flux

∂C
∂z

w C
z–  ε

Figure 10.5. Sketch of vertical sediment fluxes

settling flux. Although the net vertical velocity is zero, the downward fall velocity
of sediment particles, vz = −ω, in Equation (10.15) gives

ωC + εz
∂C

∂z
= 0 (10.16)

The resulting concentration profile for constant values of ω and εz is

C = C0e−ωz/εz (10.17)

This relationship shows that asωz<εz, the concentration profile becomes gradually
uniform, whereas most of the sediment is concentrated near the bed when ωz > εz.
Since εz ≈ 0.06hu∗, this relationship points to the fact that concentration profiles
depend on u∗/ω.

The most general case where the turbulent mixing coefficient of sediment εz

varies with depth is examined by analogy with the momentum exchange coefficient
εm defined in Equation (6.7).

εz = βsεm = βs
τdz

ρmdvx
(10.18)

in which βs is the ratio of the turbulent mixing coefficient of sediment to the
momentum exchange coefficient. This coefficient βs has been found to remain
sufficiently close to unity for most practical applications, but is kept here for the
derivation of the concentration profile.

The vertical sediment concentration can be determined after substituting the rela-
tionships for shear stress (Equation 8.6) and for turbulent velocity profiles (Equation
6.11) into Equation (10.18) to give

εz = βsκu∗
z

h
(h − z) (10.19)

The resulting mixing coefficient εz varies with z as shown in Figure 10.6. Notice that
the maximum value of εz with βs = 1 and κ = 0.4 equals εz = 0.1u∗h at mid-depth
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Figure 10.6. Vertical mixing coefficient

z = 0.5 h (result quite similar to Equation (10.8a) for the average of the parabolic
distribution of εz). The expression for εz in Equation (10.19) is substituted into
Equation (10.16), and solved after separating the variables C and z.

C

Ca
=
(

h − z

z

a

h − a

)Ro= ω
βsκu∗

(10.20a)��

in which Ca represents the reference sediment concentration at a reference eleva-
tion “a” above the bed elevation. The relative concentration C/Ca depends on the
elevation z above the reference elevation as derived by Rouse (1937). The exponent
Ro is referred to as the Rouse number and reflects the ratio of the sediment prop-
erties to the hydraulic characteristics of the flow. Also, with βs = 1 and κ = 0.4,
u∗/ω= 2.5/Ro.

Simplifications are possible for reciprocal points like z = h−a. For instance, the
concentration at 80% of the flow depth C0.8 and the concentration at 20% of the
flow depth C0.2 can be defined from Equation (10.20a) as

C0.8

C0.2
=
(

1

16

)Ro

(10.20b)

Conversely, one can thus use two-point concentration measurement to
define the Rouse number. For this instance above, Ro = 0.83logC0.2

/
C0.8 =

0.52logC0.1
/

C0.9. As examples, when u∗/ω= 25, or Ro = 0.1, Equation (10.20b)
gives C0.8

/
C0.2 = 0.75, and when u∗/ω= 100, or Ro = 0.025, then C0.8 = 0.93 C0.2.

The suspended sediment concentration profile becomes uniform under u∗ > 100 ω.
In practice, this corresponds to settling velocitiesω< 0.001 m/s, which corresponds
to silts and clays. This is why the methods covered previously in Section 10.3 are
usually applicable to silts and clays.

Figure 10.7 illustrates concentration profiles where a/h = 0.05. The concentra-
tion of sediment particles becomes increasingly large near the bed as the sediment
size increases. It is interesting to note that u∗/ω = 2.5/Ro. Accordingly, sediment
is predominantly transported near the bed (Chapter 9) when u∗/ω< 1, or Ro> 2.5.
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In the case where bedload is dominant, the sediment concentration profile near
the bed can be calculated from a simplification of Equation (10.20a) where h− z ≈
h − a, or

C

Ca
≈
(a

z

)Ro
near the bed (10.20c)

An example of near-bed concentration profiles is shown in Figure 10.8 based on
a = 2ds for Ro = 1.25, 2.5, and 5. This example shows that the thickness of the
layer where sediment transport takes place is larger than 2ds and varies with the
Rouse number, or u∗/ω. The concept of a bed layer of variable thickness seems
interesting at first. One must consider the difficulties of setting exact values for:
(1) bed elevation; (2) representative grain diameter; and (3) near-bed concentration.
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Figure 10.9. Suspended sediment concentration profiles (modified after Woo et al.,
1988)

It is also very difficult to measure sediment concentration in a layer that will be
typically a few millimeters in size. After all, it must be recognized that exact values
of Ca are very difficult to measure. It remains that when Ro > 2.5, most of the
sediment transport will take place in a thin layer very close to the bed.

As the Rouse number decreases, a greater fraction of the sediment will be trans-
ported in suspension. Typically, the suspension becomes significant as Ro < 2.5,
or as u∗ > ω. For steady uniform flow, the concentration of suspended sediment
C varies with flow depth h and distance above bed z. A log–log plot of C versus
(h − z)/z shows a straight line from which the exponent Ro can be graphically
defined, as shown on Figure 10.9.

This Figure 10.9 shows the usual procedure to determine Ro from point concen-
tration measurements. Straight lines can normally be fitted to the field concentration
measurements as long as the sediment concentration is less than about 100,000 mg/l,
which corresponds to about Cv < 0.05. As the concentration increases beyond that
point, hyperconcentrated sediment flows have more uniform sediment concentra-
tion profiles, as shown in run S-16. The maximum near-bed concentrations of gran-
ular material were around Cv ≈ 0.5, or about 1 × 106 mg/l. The second interesting
feature of Rouse plots, like Figure 10.9, is that h−z = z at mid-depth. The sediment
concentration at mid-depth Cmid from Equation (10.20a) becomes approximately

Cmid ≈ Ca (2ds/h)Ro (10.20d)

This shows that one can obtain an extremely large variability in sediment concen-
tration in deep sand-bed rivers when the Rouse number is fairly large (Ro > 0.5).
Case study 10.1 on the Mississippi River is quite instructive in this regard.
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Case study 10.1 Mississippi River, United States

This case study illustrates sediment transport calculations when u∗/ω > 2. The
suspended sediment concentration profiles of the Mississippi River near Tarbert
Landing were examined byAkalin (2002). Bed sediment samples were collected
with a drag bucket and point suspended sediment samples were collected with
a P-63 sampler. The gradation curves of bed and suspended material excluding
silts and clays are shown in Figure CS-10.1.1. At a flow depth of 66 ft (20 m)
and slope of 3.7 cm/km, the shear velocity is u∗ =√ghS = 0.085 m/s. The corre-
sponding flow properties are shown in Table CS-10.1.1.At values of Ro< 2.5, or
u∗ > ω, it becomes very difficult to determine sediment transport as a function
of bedload. Field measurements of sediment concentration thus become very
useful.
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Figure CS-10.1.1 Gradation curves of bed and suspended material (sand
fraction only) (after Akalin, 2002)

Table CS-10.1.1. Main properties of the Mississippi River at Tarbert Landing

Sand size (mm) d∗ ω (mm/s) u∗/ω Ro calculated τ ∗

0.1 2.5 8.2 10.3 0.24 4.46
0.17 (d50) 4.3 21 4.0 0.61 2.62
0.2 5 26 3.2 0.77 2.23
0.4 10 57 1.5 1.67 1.11
0.8 20 96 0.88 2.84 0.56



10.4 Suspended sediment concentration profiles 235

The suspended sediment concentration profile is shown in Figure CS-10.1.2.
The overall measured Rouse number is 0.66 and compares well with the cal-
culated Rouse number of 0.61 for the median grain diameter of the suspension
ds = 0.17 mm in Table CS-10.1.1. It is worthwhile estimating the concentration
near the bed from Ca ≈ Cmid-depth(h/2ds)

Ro = 50mg/l (20/2 × 0.00017)0.66

70,000 mg/l.

Inaccurate measurements ± 1 mg/L
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Figure CS-10.1.2 Suspended sediment concentration profile (after Akalin,
2002)

Calculations by size fractions for sand-bed rivers can become quite difficult
when Ro > 0.5. The reason is that the near-bed concentration becomes exces-
sively large as the Rouse number increases. To illustrate this, assume that the
measured mid-depth concentration is as low as possible, e.g. 1 mg/l. Notice that
sediment concentration measurement errors are of the order of a few mg/l. For
coarse sand (ds = 0.7 mm) with a calculated Rouse number Roc = 2, the near-bed
concentration would become Ca ≈ 1 mg/l (20/2 × 0.0007)2 = 204 kg/l, which
is physically impossible. In reality, measurement errors can cause discrepancies
between calculated and measured values of the Rouse number when Ro > 0.5,
or u∗/ω < 5. For example, measured mid-depth concentration of 1 mg/l and a
near-bed concentration of 70,000 mg/l would result in a measured Rouse number
of Rom = log (Ca/Cmid)/log (h/2ds)= log (70,000)/log (20/2 × 0.0007)= 1.2,
compared with a calculated Rouse number of 2. It can be concluded from this
analysis that the measured Rouse number will be smaller than the calculated
Rouse number in deep sand-bed rivers.

Figure CS-10.1.3 shows the results for the Mississippi River. The figure shows
good agreement between the calculated and measured values of the Rouse
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number for very fine sands (Ro ≈ 0.2). The apparent discrepancy for coarser
grain size is due to the fact that the real sediment concentrations for medium
(M), coarse (C), and very coarse (VC) sands in this example should be much
lower than 1 mg/l. As shown in Figure CS-10.1.2 as h/z > 100, large values of
the Rouse number will yield concentrations in most of the water column below
the accuracy in concentration measurement of a few mg/l.

10.5 Suspended load

The unit suspended sediment discharge qs in natural streams and canals is computed
from the depth-integrated advective flux of sediment Cvx above the bed layer z> a:

qs =
h∫

a

Cvx d z (10.21)
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The corresponding total suspended sediment discharge Qs is obtained from inte-
gration of the unit suspended sediment discharge over the entire width of the
channel, or

Qs =
∫

width

qs d W (10.22)

The suspended load Ls defines the amount of sediment passing a cross-section in
suspension over a certain period of time, thus

Ls =
∫

time

Qs dt (10.23)

By analogy with bedload, described in Chapter 9, the units can be either by
weight, mass, or volume. It is common to use the suspended load in metric tons
(1,000 kg).

The comparison of suspended load to bedload delineates which mode of sediment
transport is dominant. The suspended unit sediment discharge qs can be calculated
from Equation (10.21) after substituting C from Equation (10.20a) and vx from
Equation (6.16):

qs =
h∫

z=2ds

Ca
u∗
κ

[(
h − z

z

)(
a

h − a

)] ω
βsκu∗

ln
30z

k ′
s

d z (10.24)�

Similarly, the total unit sediment discharge can be obtained by integrating from
z = k ′

s/30 to the free surface z = h, thus:

qt =
h∫

z= k′s
30

Ca
u∗
κ

[(
h − z

z

)(
a

h − a

)] ω
βsκu∗

ln
30z

k ′
s

d z (10.25)

The ratio of suspended to total unit sediment discharges indicates whether most of
the sediment transport occurs in suspension or in the bed layer.

After substituting βs = 1, κ = 0.4, k ′
s = ds, the ratio qs/qt from Equations (10.24)

and (10.25) becomes independent of Ca and u∗, but varies as a function of the ratio of
shear to fall velocities u∗/ω and relative submergence h/ds. It is found that sediment
transport can be subdivided into three zones describing which mode of transport is



238 Suspended load

*

s
t

10

16 0.5 0.25

1

8 24 1

10
0

0.2

0.6

1.0

0.4

0.8

50

50

50

50

50

50

-1

Ratio shear velocity - fall velocity, u   /v

Bedload

CSU data

Mixed load Suspended load

R
at

io
 s

us
pe

nd
ed

 -
 to

ta
l l

oa
d,

 q
  /

q

d    = 190 μm
d    = 270 μm
d    = 280 μm
d    = 450 μm
d    = 930 μm

h/d    = 100,000

50h/d    = 100

Lowest incipient
motion (gravel)

h = 0.1 – 0.3 m 

Ro

Figure 10.10. Ratio of suspended to total load versus ratio of shear to fall velocities

dominant: (1) bedload; (2) mixed load; or (3) suspended load. Figure 10.10 shows
the ratio of suspended to total load as a function of u∗/ω and h/ds. The CSU Labo-
ratory data for the mixed load are from Guy, Simons, and Richardson (1966). It is
interesting to note that for turbulent flow over rough boundaries, incipient motion
corresponds to u∗/ω ∼= 0.2. The lines shown are those from the Einstein Integrals
of Guo and Julien (2004) as obtained by Shah-Fairbank (2009) for h/ds = 100
and 100,000. Bedload is dominant at values of u∗/ω less than about 0.5, and the
methods detailed in Chapter 9 should be used to determine the sediment transport
rate. A zone called mixed load is found where 0.5 < u∗/ω < 2 in which both the
bedload and the suspended load contribute to the transport. It is instructive to note
that when u∗/ω< 2, the ratio of the suspended load to the bedload is approximately
equal to (u∗/ω)2. The bedload and suspended load are approximately equal when
u∗ = ω. In the case of mixed load, u∗/ω < 2, the total load will be less than 5
times the bedload. Methods to calculate the bed material load are also presented in
Chapter 11. Suspended load is dominant when u∗/ω > 2, and gravitational effects
on the particles are negligible compared to turbulent mixing as u∗/ω becomes
very large. Bedload equations and the Einstein procedure from Equation (10.25)
and Appendix A should be used in the range of 0.2 < u∗/ω < 2 but should not
be used when u∗/ω > 2. In this case, field measurements of the suspended load
and the Modified Einstein procedure are preferable. These observations are sum-
marized in Table 10.2, and the results are also shown in the Shields diagram of
Figure 10.11.
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Table 10.2. Modes of sediment transport given
shear and fall velocities

Ro u∗/ω
Mode of sediment
transport

> 12.5 < 0.2 no motion∼= 12.5 ∼= 0.2 incipient motion
12.5–5 0.2–0.5 bedload – Chapter 9
5–1.25 0.5–2 mixed load – Chapter 11
0.5–1.25 2–5 suspension – Chapter 10
< 0.5 > 5 suspension
0.1 25 C0.8 = 0.75C0.2
0.025 100 C0.8 = 0.93C0.2
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10.6 Hyperconcentrations

Hyperconcentrations refer to heavily sediment-laden flows in which the presence
of fine sediments materially affects fluid properties and bed material transport. In
general, the volumetric sediment concentration Cv of hyperconcentrations ranges
from 5–60%. The mass density of hyperconcentrations ρm is calculated from ρm =
ρ + (ρs − ρ)Cv. The dry specific mass of a mixture is the mass of solids per unit
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total volume. It is identified as ρmd and calculated as ρsCv. The porosity p0 is
the ratio of the volume of water per unit total volume, or p0 = 1 − Cv. The void
ratio e corresponds to the volume of water per unit volume of solids, or e = (1 −
Cv)/Cv. The bulking factor B is the ratio of the total volume to the volume of
solids, B = 1/Cv = 1 + e. A linear sediment concentration λ has been defined by
Bagnold (1956) as a function of the volumetric sediment concentration Cv and the
maximum volumetric sediment concentration Cv∗ � 0.615. The relationship for λ
is λ= ((0.615/Cv

)1/3 − 1
)−1.

The fluid properties can also be defined from measurements of weight of solids Ws,
weight of fluid W , and total weight Wt . The sediment concentration by weight Cw is
definedastheratioofWs/Wt .Thewatercontentofsoilsas“w”isdefinedfromtheratio
of the weight of water W to the weight of solids Ws, or w = W/Ws. Conversions
to the volumetric concentration are obtained as Cv = 1/(1 + wG), or w = (1 −
Cv)/GCv. Typical values of these physical properties are listed in Table 10.3.

Atterberg limits define four states for a soil depending on the value of the water
content. The solid state refers to water contents less than the shrinkage limit ws.
The shrinkage limit is determined as the water content after just enough water is
added to fill all the voids of a dry pat of soil. A semi-solid state is defined when the
water content is less than the plastic limit wp. The plastic limit is determined by
measuring the water content of a soil when threads of soil 1/8 inch in diameter begin
to crumble. A plastic state is found when the water content is less than the liquid
limit wl . The liquid limit is determined from standard geotechnical procedures.
Finally, the liquid state is found when the water content exceeds the liquid limit
wl . The plasticity index Ip is the difference between the liquid and plastic limits,
or Ip = wl − wp. The liquidity index IL is defined as a function of wl and wp as
IL = (w − wp)/Ip. Although the limits between the various states have been set
arbitrarily, the concept of Atterberg limits is particularly suited to the analysis of
landslides and debris flows because it defines water contents at which a specific soil
behavior will be observed. Typical values of the Atterberg limits for clay minerals
are presented in Table 10.4. It is observed that the liquid limit of clay minerals are
about Cv = 0.4 for kaolinite, Cv = 0.25 for illite and can be as low as Cv < 0.05
for montmorillonite. The plastic limit can also be about Cv = 0.5 for kaolinite,
Cv = 0.4 for illite and Cv = 0.28 for montmorillonite. At a given concentration,
one can thus expect much larger values of yield strength and viscosity for soils
containing montmorillonite than kaolinite.

10.6.1 Rheology of hyperconcentrations

Rheology describes the forces required for the deformation of matter. More specifi-
cally, the graphical measure of the shear stress applied at a given rate of deformation
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Table 10.4. Volumetric concentrations of the Atterberg limits for
clays

Mineral Exchangeable ion Liquid limit Cv Plastic limit Cv

Montmorillonite Na
K
Ca
Mg
Fe

0.05
0.054
0.069
0.084
0.115

0.41
0.28
0.32
0.38
0.33

Illite Na
K
Ca
Mg
Fe

0.24
0.24
0.27
0.28
0.25

0.42
0.39
0.46
0.45
0.44

Kaolinite Na
K
Ca
Mg
Fe

0.42
0.43
0.50
0.41
0.39

0.54
0.56
0.56
0.55
0.50

Attapulgite H 0.12 0.20

Source: Lambe and Whitman, 1969.
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Figure 10.12. Rheogram for non-Newtonian fluids

dvx/dy of a fluid defines a rheogram (Figure 10.12). At low rates of deformation,
the shear stress in clear water increases linearly with the rate of deformation and the
fluid is said to be Newtonian. The dynamic viscosity of a mixtureμm in the laminar
flow regime is then defined as the slope of the rheogram. Under large shear stresses,
the boundary layer flow becomes turbulent (except in the laminar sublayer), and the
shear stress increases with the second power of the rate of deformation, as discussed
in Chapter 6.
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The Bingham rheological model (Bingham, 1922) is to some extent a useful
simplified rheological model. Beyond a finite shear stress, called yield stress τ y,
the rate of deformation dvx/dz is linearly proportional to the excess shear stress.
The constitutive equation is

τ = τy +μm
dvx

dz
(10.26)

in which μm is the dynamic viscosity of the mixture. The Bingham plastic model
is well-suited to homogeneous suspensions of fine particles, particularly muds,
under low rates of deformation. Experimental laboratory results by Qian and Wan
(1986) and others confirm that under rates of deformation observed in the field
(∂vx/∂z < 10s−1), fluids with large concentrations of silts and clays behave like
Bingham plastic fluids.

The analysis of coarse sediment mixtures is somewhat more complex and
involves an additional shear stress due to particle impact. Bagnold (1954) pio-
neered laboratory investigations on the impact of sediment particles. He defined
the dispersive shear stress τ d induced by the collision between sediment particles as:

τd = cBdρs

((
0.615

Cv

)1/3

− 1

)−2

d2
s

(
dvx

dz

)2

(10.27)

The dispersive shear stress is shown to increase with three parameters, namely: (1)
the second power of the particle size; (2) the volumetric sediment concentration;
and (3) the second power of the rate of deformation. It is important to recognize
that the dispersive stress is proportional to the product of these three parameters,
therefore high values of all three parameters are required to induce a significant
dispersive shear stress.

A quadratic rheological model has been proposed by O’Brien and Julien (1985)
which combines the following stress components of hyperconcentrated sediment
mixtures: (1) cohesion between particles; (2) internal friction between fluid and
sediment particles; (3) turbulence; and (4) inertial impact between particles. The
resulting quadratic model is:

τ = τy +μm
dvx

dz
+ ζ

(
dvx

dz

)2

(10.28)�

whereμm is the dynamic viscosity of the mixture, and ζ is the turbulent–dispersive
parameter. The last term of the quadratic model combines the effects of turbulence
with the dispersive stress induced by inertial impact of sediment particles. Com-
bining the conventional expression for the turbulent stress in sediment-laden flows
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with Bagnold’s dispersive stress gives:

ζ = ρml2
m + cBdρsλ

2d2
s (10.29)

where ρm and lm are respectively the mass density and mixing length of the mix-
ture; ds is the particle diameter; λ is Bagnold’s linear concentration; and cBd is an
empirical parameter defined by Bagnold (cBd

∼= 0.01).

10.6.2 Parameter evaluation

The rheological properties of hyperconcentrations are determined from laboratory
analyses of rheograms obtained from viscometric measurements. At least three
kinds of devices are commercially available for the measurement of rheograms:
(1) the capillary viscometer; (2) the concentric cylindrical viscometer; and (3) the
cone and plate viscometer. Concentric cylindrical viscometers seem to be best suited
for a wide range of shear rates. Field observations, however, indicate that shear
rates rarely exceed 100/s. It is therefore recommended to measure the rheological
properties of hyperconcentrations under similarly low rates of shear. Rheological
properties of hyperconcentrations are generally formulated as a function of sediment
concentration as shown on Figure 10.13. The recommended empirical formulas are
the exponential relationships for yield stress and viscosity at large concentrations
of fines, and the Bagnold equation to calculate the dispersive shear stress of coarse
particles.

The measurements in Figure 10.14 show that both the yield stress and viscosity
increase exponentially with the sediment concentration.

log τy ≈ log a + b Cv (10.30a)

log μm ≈ −3 + c Cv (10.30b)

where τy is the yield stress in Pa, μm is the dynamic viscosity in Pa.s and Cv is
the volumetric sediment concentration. The constants a,b, and c are coefficients
determined from the measurements. For instance, typical values of the coefficients
for different types of muds, clays, and lahars are presented in Table 10.5. Values of
b and c are equal to 10, meaning that a 10% increase in Cv gives a tenfold increase
in τ y and μm.

A generic relationship for typical soils as a function of the total sediment con-
centration can be obtained for a = 0.005, b = 7.5 and c = 8. Accordingly, the yield
stress of a typical soil at a volumetric sediment concentration of 70% can be esti-
mated from Equation (10.30a) as τy = a ×10bCv � 0.005×10(7.5×0.7) = 889Pa =
8,890 dynes/cm2. Similarly, the dynamic viscosity of the same mixture is calculated
from Equation (10.30b) as μm � 0.001 × 10cCv ∼= 0.001 × 10(8×0.7) = 398Pa.s =
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Table 10.5. Coefficients a, b, c of the yield strength and viscosity relationships

Yield strength in Pa
τ y = a10bCv

Viscosity in Pa.s
μm = 0.001×10cCv

Material Liquid limit Cv a b c

Bentonite
(montmorillonite)

0.05–0.2 0.002 100 100

Sensitive clays 0.35–0.6 0.3 10 5
Kaolinite 0.4–0.5 0.05 9 8
Typical soils 0.65–0.8 0.005 7.5 8
Granular material – – 2 3

3,980 poise. At such high sediment concentration this soil is probably not moving
because its yield strength exceeds the critical shear stress of large boulders and
the viscosity is 400,000 times larger than the viscosity of clear water. Figure 10.14
shows the comparison of Equation (10.30) with laboratory and field measurements.

10.6.3 Fall velocity and particle buoyancy

As presented in Equation (5.22a), and Happel and Brenner (1965), the fall velocity
of particles of diameter ds and specific weight γ s in a Bingham plastic fluid of
specific weight γm is given by:

ω2 = 4

3

gds

CD

γs − γm

γm
(10.31)

in which the drag coefficient CD depends on the dynamic viscosity μm and the
yield stress τ y of the Bingham fluid. After defining the Bingham Reynolds number

(ReB = ρmdsω
μm

) and the Hedstrom number He = ρmd2
s τy

μ2
m

, the drag coefficient can be

rewritten as

CD = 24

ReB
+ 2πHe

Re2
B

+ 1.5 (10.32)�

The settling velocityω can be obtained from solving Equations (10.31) and (10.32)
as a function of particle diameter ds, yield strength τ y, mixture viscosity μm and
mass density ρm as:

ω= 8μm

ρm ds

⎛
⎝(1 + ρm g d3

s (ρs −ρm)

72μ2
m

− π

48

ρm d2
s τy

μ2
m

)0.5

− 1

⎞
⎠ (10.33)�
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This relationship reduces to Equation (5.23d) when τy = 0, or He = 0, ρm = ρ and
μm = μ. Interestingly, the fall velocity reduces to zero for particles smaller than
the buoyant particle diameter dsb given by:

dsb = 3π

2

τy

(γs − γm)
(10.34)�

The particles ds < dsb remain neutrally buoyant in the mixture and do not settle
(Qian and Wan, 1986). At values of τy = 100 Pa and Cv = 0.6(ρm ≈ 2,000 kg/m3),
cobbles as large as 70 mm in diameter would not settle in the sediment mixture.

10.6.4 Dimensionless rheological model and classification

The relative magnitude of the terms in the quadratic equation (Equation (10.28))
defines conditions under which simplified rheological models are applicable. The
dimensionless rheological model was obtained by Julien and Lan (1991) after
rewriting Equations (10.28) and (10.29) as

Πτ = 1 + (1 +Πtd )Πdv (10.35)

in which the dimensionless parameters are defined as:

1. Dimensionless excess shear stress Πτ

Πτ = τ − τy

μm
dvx
dz

(10.36a)

2. Dimensionless dispersive–viscous ratio Πdv

Πdv = cBd
ρs d2

s

μm

((
0.615

Cv

)1/3

− 1

)−2(
dvx

dz

)
(10.36b)

3. Dimensionless turbulent–dispersive ratio Πtd

Πtd = ρm l2
m

cBd ·ρs d2
s

[(
C∗

v

Cv

)1/3

− 1

]2

(10.36c)

where C∗
v

∼= 0.615, cBd
∼= 0.01 and for field applications lm � 0.4h.

The usefulness of the dimensionless rheological model is demonstrated in Figure
10.15 where Πτ is plotted versus Πdv. When Equation (10.35) is fitted to the
experimental data sets of Govier et al., Savage and McKeown, and Bagnold, it is
interesting to notice that the value cBd = 0.01 suggested by Bagnold is comparable
to the value (1 +Πτd )= 0.87 obtained from the slope of the line on Figure 10.15.
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Simplifications of the quadratic rheological model are possible under the fol-
lowing conditions: (1) the Bingham model (Equation (10.26)) is applicable when
Πτ → 1, and viscosity will be dominant when τ < 5τy; (2) the flow is turbulent
when Πτ > 5 and Πτd > 1; and (3) the dispersive shear stress is dominant when
Πτ > 5 and Πdv > 4. This analysis suggests that hyperconcentrations could be
classified as: (1) mudflows when the Bingham rheological model is applicable; (2)
hyperconcentrated flows or mud flood, when the turbulent shear stress is domi-
nant; and (3) debris flows when the dispersive stress controls. Flood mitigation
design must take into consideration the rheological behavior of the three types of
hyperconcentrated sediment flows (Julien and Leon, 2000).

10.6.5 Classification and flood mitigation

Mud floods are very fluid hyperconcentrated flows in steep mountain channels. The
grain size is very small compared to flow depth (d50 � 0.02 h). Flow velocities are
very high and the turbulent flow is often supercritical. The water content is lower
than the liquid limit and the concentration of clay is low. The turbulent shear stress
is dominant. Conveyance design for mud floods should include consideration of
sediment bulking, surging (roll waves), supercritical flow, debris plugging, sedi-
ment abrasion, super elevation, and potential for sediment scour and deposition. It
is preferable to maintain the channel cross-section as straight and uniform as possi-
ble. Straight, steep channels will result in high velocities and high Froude numbers
and will prevent the formation of cross waves and local deposition behind channel
irregularities. Channel lining with concrete, or grouted riprap can be effective, but
very expensive. Two important design considerations with lining channels on steep
alluvial fan slopes are abrasion of the lining and excess pore water pressure.

Mudflows have a fluid viscosity that is several orders of magnitude higher than
that of water. The content of clay is high, and the clay type is often montmorillonite
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in the United States. The yield strength is very high (τy > 100 Pa) and some size
fractions do not settle according to Equation (10.34). The water content is fairly
close to the plastic limit and the Bingham model is applicable. The hydraulic prop-
erties of mudflows are typically low flow velocities and large flow depths, thus
low values of the Froude number. These hydraulic properties sustain motion of
mudflows on flat slopes. Flood mitigation design must include consideration of
flow avulsion, debris and mud plugging of channel and conveyance facilities, and
cleanup/maintenance. Effective mitigation measures for mudflows include storage,
deflection, spreading, and frontal wave dissipation. Mudflow detention basins can
be very effective where the mudflow volume is relatively small and can be estimated
for the design flood event.

Debris flows involve the motion of large rocks and debris characterized by
destructive frontal impact surging and flow cessation on steep slopes. The mix-
ture must contain very large concentrations of very coarse material. Dispersive
stress arising from the collision of large particles (Equation (10.27)) which con-
trols the exchange of flow momentum and energy dissipation. The fluid matrix is
essentially non-cohesive. The interstitial fluid does not significantly inhibit particle
contact, permitting frequent collisions and impact between the solid clasts. Debris
flows originate on steep slopes and attain high velocities. The impact forces gen-
erated by fast-moving coarse material can be exceedingly destructive. Structures
such as sabo dams, debris rakes, and fences are designed to separate out the debris
material. The purpose of sabo dams is to arrest the frontal wave of debris, store as
much solid material as possible, and drain the debris flow of the fluid matrix.

10.6.6 Velocity of hyperconcentrations

In Figure 10.16, measured values of resistance to flow in terms of the Darcy–
Weisbach friction factor f from V /u∗ = √8/f are shown as a function of the
relative submergence h/d50. It is interesting to observe that despite the complexity
of mudflows and debris flows, the ratio of V /u∗ is rarely larger than 30. There is a
slight increase in V /u∗ with h/d50, as described by the logarithmic relationship. A
straight line with slope 1/6 also shows that the Manning–Strickler approach is also
equally applicable. The dispersive stress relationship (Equation (10.27)) is only
comparable to the measurements when h/ds < 50.

For mud floods and debris flows, the mean flow velocity can be estimated from
the logarithmic equation

V = 5.75log

(
h

d50

)
(ghS)1/2 (10.37a)�
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Alternatively, the Manning approach with n = 0.064 d1/6
50 where ds is the median

grain diameter in meters also provides reasonable estimates. This corresponds to

V = 5

(
h

d50

)1/6

(ghS)1/2 (10.37b)

As a calculation example, the mean flow velocity in a steep mountain channel can
be estimated from S = 0.05, the flow depth is 3 m and the median grain diame-
ter is 30 mm. First the shear velocity is calculated with gravitational acceleration
g = 9.81 m/s2 as u∗ =√ghS = (9.81 × 3 × 0.05)1/2 = 1.21 m/s. The logarithmic
approach gives the following mean flow velocity of V ∼= u∗5.75 × logh/ds =
1.21 × 5.75 × log(3/0.03)= 13.9 m/s. Alternatively, the Manning equation yields
V = 9.811/2h2/3S1/2/(0.2d1/6

50 )= 9.811/2 32/3 0.051/2/0.2 × 0.031/6 = 13 m/s.
In the case of mudflows, the total shear stress is comparable to the yield strength

and the fluid is highly viscous, such that the Bingham model can be used as a first
approximation. In this case, the mean flow velocity can be approximated by V = h
(τ − τy)/2μm. For instance, consider a 4 m layer of mud at Cv = 0.6 containing a
significant proportion of bentonite on a slope S = 0.02 at τy = 600 Pa andμm = 1000
Pa.s. Because the yield strength (τ y = 600 Pa) is comparable to the applied shear
(τ = ρm × g × h × S ∼ 2,000 kg/m3 × 9.81 m/s2 × 4 m × 0.02 = 1,570 Pa), the
mean flow velocity can be estimated from V ∼ 4 m (1,570 – 600) Pa/2× 1,000
Pa.s = 1.94 m/s. Notice that this velocity of mudflows is only about two times
the shear velocity. Example 10.4 provides detailed calculations of some hyper-
concentrated flow characteristics. Example 10.5 provides a similar example for
mudflows.
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Example 10.4 Debris flow and mud flood

A mixture of uniform medium sand d50 = 0.5 mm flows on a very steep slope
So = 0.25. If the flow depth is 40 cm and the volumetric concentration is Cv = 0.4,
estimate the following: (1) the mass density of the mixture; (2) the yield stress;
(3) the dynamic viscosity of the mixture; (4) the non-settling particle diameter;
(5) the Hedstrom number of 5 mm gravel; (6) the fall velocity of 5 mm gravel;
(7) which rheological model applies when dvx/dz = 50/s; and (8) the mean flow
velocity.

Step 1. The mass density from Equation (2.13)

ρm = ρ(1 + (G − 1)Cv)= 1,000kg

m3
(1 + (2.65 − 1)0.4)= 1,660kg

m3

Step 2. The yield stress from Equation (10.30a) and Table 10.5 for a typical
soil:

τy
∼= 0.005 × 107.5×0.4 = 5Pa

Step 3. The dynamic viscosity from Equation (10.30b), Table 10.5 and μ at
20◦C

μm
∼= 1 × 10−3 × 108×0.4 = 1.6Pa.s or 1.6Ns/m2

Step 4. The non-settling grain diameter from Equation (10.34)

dsb = 3πτy

2(ρs −ρm)g
= 3π5N × m3 × s2

2m2(2,650 − 1,660)kg9.81m
= 2.4mm

Step 5. The Hedstrom number

He = ρm d2
s τy

μ2
m

= 1,660kg

m3
× 25 × 10−6m2

(1.6)2 Pa2s2
5Pa = 0.08

Step 6. (a) ω = 0 for 0.5 mm sand because ds < dsb = 2.4 mm; (b) the fall
velocity from Equation (10.33) for 5-mm gravel is

d3∗ = ρm gd3
s

μ2
m

(ρs −ρm)

= 1,660kg

m3
×9.81m

s2
× 125 × 10−9 m3(2,650 − 1,660)kg

(1.6)2Pa2 .s2 m3
= 0.787
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and

ω= 8μm

ρm ds

((
1 + d3∗

72
− πHe

48

)0.5

− 1

)

= 8 × 1.6Pa.sm3

1,660kg0.005m

((
1+0.787

72
− 0.08π

48

)0.5

− 1

)
= 4.4 mm/s

which is equivalent to the settling velocity of very fine sand.
Step 7. The applied boundary shear τ o is:

τo = ρm g h So = 1,660kg

m3
× 9.8m

s2
× 0.4m × 0.25 = 1,628Pa

Notice that the yield stress τ y from Step 2 is small compared to the total shear
stress τ o. The dimensionless parameters from Equation (10.35) at dvx

dz = 50/s
give

Πτ = τ − τy

μm
dvx
dz

= (1,628 − 5)N × m2 × s

m2 × 1.6N × s × 50
= 20

From Figure 10.15, both the viscous and yield stresses are negligible, and the
dominant stress is either turbulent or dispersive.

Considering lm = 0.4h, cBd = 0.01, and assuming the impact of particles
d50 = 5 mm, in Equation (10.36c)

Πtd = ρm(0.4)2

cBdρs

((
0.615

Cv

)1/3

− 1

)2
h2

d2
50

= 1,660kg

m3

(0.4)2(0.4)2m2 × m3

0.01 × 2,650kg (0.005)2m2

((
0.615

0.4

)1/3

− 1

)2

= 1,525

The dispersive stress is clearly negligible, and a turbulent model is applicable.
Another way to check this is that the dispersive stress can only be significant
when h/ds < 20. In this case turbulence is the main factor.

Step 8. From Figure 10.16 the mean flow velocity of this mud flood with a
boundary roughness d50 = 0.5 mm is

V =√ghS 5.75 logh/ds

V =
√

9.81m

s2
× 0.4m × 0.25 5.75 log

(
0.4m

0.0005m

)
= 16.5m/s
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Example 10.5 Mudflow

A 3 m-thick layer of mud flows down an alluvial fan S0 = 0.02. The analysis of a
sample reveals that the total volumetric concentration Cv = 0.7 and the sample
is comprised of 5% clay, 75% silt, and 20% sand with d50 = 0.05 mm. Estimate
the following: (1) the mass density of the mixture; (2) the yield stress; (3) the
dynamic viscosity of the mixture; (4) the non-settling particle diameter; (5) the
Hedstrom number; (6) the fall velocity of a l m boulder; and (7) the mean flow
velocity.

Step 1. The mass density from Equation (2.13)

ρm = ρ(1 + (G − 1)Cv)= 1,000kg

m3 (1 + (2.65 − 1)0.7)= 2,155kg

m3

Step 2. The yield stress from Equation (10.30a) and Table 10.5

τy
∼= 0.005 × 107.5×0.7 = 889Pa

The applied stress is

τ = ρmghS = 2,155kg

m3
× 9.81m

s2
× 3m × 0.02 = 1,268Pa

The applied shear is τ < 5τy = 1,268Pa, and the yield and viscous stresses are
dominant.

Step 3. From Equation (10.30b) and Table 10.5

μm
∼= 0.001 × 108×0.7 = 398Pa.s

Step 4. From Equation (10.34), the non-settling particle diameter is

dsb = 3π

2

τy

(ρs −ρm)g
= 3π × 889Pa × m3 s2

2(2,650 − 2,155)kg × 9.81m
= 860mm

It is interesting to note that medium boulders ds < 0.85 m, would not settle in
this mud.

Step 5. The Hedstrom number for a 1 m boulder

He = ρm d2
s τy

μ2
m

= 2,155kg

m3
× 1m2 × 889Pa

3982 Pa2 s2
= 12.1
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Step 6. The settling velocity of a 1 m boulder from Equation (10.33) is

ω= 8μm

ρm ds

[(
1 + ρm g d3

s (ρs −ρm)

72μ2
m

− π

48
He

)0.5

− 1

]

ω= 8 × 398Pa.sm3

2,155kg1m

[(
1 + 2,155kg

m3s2
× 9.81m

m3
× 1m3(2,650 − 2,155)kg

72 × 3982 Pa2s2

− π

48
× 12.1

)0.5 − 1

]
= 0.09m/s

Notice that the hyperconcentrated sediment mixture reduced the settling velocity
of a 1 m-diameter boulder to the settling velocity of an equivalent sand particle
in clear water.

Step 7. The yield stress is a significant fraction of the total shear stress. The
Bingham model is applicable. The mean flow velocity will be approximately

V ∼= h
(
τ − τy

)
2μm

= 3m (1,268 − 889)Pa

2 × 398Pa.s
= 1.42m/s

This velocity is only twice the shear velocity

u∗ =√ghS =
√

9.81m × 3m × 0.02

s2
= 0.76m/s

Mudflows are thus observed when τ y is large compared to τ and viscosity is
very high.

10.7 Field measurements of suspended sediment

The quantity of sediments held in suspension in a stream can be measured from
representative samples of the water–sediment mixture. Samples are divided into
three types according to the desired type of concentration measurement discussed
in Section 10.1. Additional information can be found in Edwards and Glysson
(1988) and Shen and Julien (1993).

10.7.1 Instantaneous samplers

Instantaneous samplers trap a volume of the suspension flowing through a cylin-
drical tube by simultaneously closing off both ends. Bucket sampling from the free
surface also gives an instantaneous sample. The sample is then filtered and dried
to provide a measure of volume-averaged sediment concentration, C∀.
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Instantaneous measurement
volume-averaged concentration

Point measurement
time-averaged concentration

Figure 10.17. Instantaneous and point sampling

Instruments of a container type that can be opened and closed instantaneously
have been designed. Studies of their effectiveness indicated that they are not suitable
for general field use. They are best used in reservoir studies and at river locations
where the particle size in suspension is sufficiently small to prevent settling at low
turbulence levels.

10.7.2 Point samplers

Point samplers are designed to collect through time a sample at a given point in the
stream vertical as sketched in Figure 10.17. The dried sample measures the time-
averaged sediment concentration, Ct . The body of the sampler contains air which
is compressed by the inflowing liquid so that its pressure balances the external
hydrostatic head. A remotely operated rotary valve opens and closes the sampler.
During the sampling period, the valve is opened and the air escapes the sampler at
a nozzle intake velocity nearly equal to the local stream velocity.

Point samplers such as the P-61 (100 lb), the P-63 (200 lb) and the P-50 (300 lb)
are commonly used to provide information on sediment concentration and particle
size distribution along a vertical. The P-61 uses a pint milk bottle container while
the P-63 is designed to use either the pint or the quart sample container. The P-50
is very similar to the P-63 and has been developed for use on major streams such
as the lower Mississippi River. The capacity of the container is a quart.

10.7.3 Depth-integrating samplers

Integrating samplers move vertically at a constant speed with an upstream-pointed
nozzle. Good samplers are designed to maintain isokinetic conditions.Accordingly,
the sampling intake velocity equals the natural flow velocity at every point. The
sample is then dried to measure the flux-averaged concentration, Cf .
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Depth-integrating samplers accumulate water and sediment as they are lowered
or raised along the vertical at a uniform rate. The air in the sample container is
compressed by the inflowing liquid. If the lowering speed is such that the rate of
air compression exceeds the normal rate of liquid inflow, the actual rate of inflow
will exceed the local stream velocity and inflow may occur through the air exhaust.
If the transit speed is too low, the container will be filled before the total depth is
reached. In practice, the transit time must be adjusted so that the container is not
completely filled. The descending and ascending velocities need not be equal, but
the velocity must remain constant during each phase.

Specifically, the lowering rate should not exceed 0.4 of the mean flow velocity
to avoid excessive angles between the nozzle and the approaching flow. Labora-
tory tests provide useful information on the recommended lowering rates RT as
a function of the flow velocity v and the flow depth for a 1 pint container in a
depth-integrating sampler with three intake nozzle diameters (Figure 10.18).

The DH-48 sampler (4.5 lb) is used in shallow flows when the unit dis-
charge does not exceed 1 m2/s. The DH-59 (24 lb) is used in streams with low
velocities and depths beyond the wading range. The D-49 (62 lb) with cable
suspension is designed for use in streams beyond the range of hand-operated
equipment.

10.7.4 Sediment discharge measurements

Sediment transport in natural streams is very important and the accuracy of sedi-
ment discharge measurements not only depends on the field methods and equipment
utilized for data collection, but also upon representative measurements of the sed-
iment distribution in the flow. In natural streams, the sediment concentration at a
given cross-section varies in both the vertical and the transversal directions and
also changes with time. Therefore, the concentration of sediment in suspension
may increase or decrease both in space and time although the flow remains steady
in a straight uniform reach.

The standard procedure used for the measurement of the rate of sediment transport
at a given instant is essentially based on the definition of the advective flux-averaged
concentration Equation (10.2c); hence

Qs = Cf Q =
∫

A
Cvx d A (10.38)

in which A is the cross-sectional area; Cf is the flux-averaged concentration and vx

is the velocity of sediment particles.
In small streams it is sometimes possible to measure the total stream discharge

by using one of the following methods: (1) volumetric method; (2) dilution method;
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Figure 10.18. Depth-integrating sampling characteristics

or (3) weir equation. In the first method, if the total flow of a small stream can be
directed into a given basin or container of fixed volume, the ratio of the volume to
the filling time determines the time-averaged discharge entering the container.

With the second method, a dilute suspension at concentration C1 of a conser-
vative substance is steadily injected in a stream at a constant rate Q1 into a small
turbulent stream of unknown discharge. Note that C1 represents the difference in
concentration between the solution and the natural concentration of the stream. With
reference to Section 10.3, a sample of water is taken at a certain distance, down-
stream of the source point where the vertical and transversal mixing are completed.
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With a measure of the uniform concentration C2 of the sample, the discharge Q2 of
the stream can be simply obtained by Q2 = C1Q1/C2.

With the third method, man-made structures with a fixed geometry, such as weirs,
spillways, and pipes are first located. The discharge, through these elements, is then
evaluated from the geometry, stage, and velocity measurements. For example, the
weir equation can be used with simple width and stage measurements.

The flux-averaged concentration in small streams can often be measured at loca-
tions where the turbulence intensity is very high such as plunge pools, downstream
of contractions, or in turbulence flumes. Particles from all size fractions are held in
suspension and a bulk sample provides an accurate evaluation of the flux-averaged
sediment concentration. Turbulence flumes consisting of series of baffles anchored
to a concrete slab can be installed. The turbulence induced by the baffles is suf-
ficient to transport in suspension almost the entire load in the stream. In streams
where mostly fine sediments (silts and clays) are held in suspension, the exponent
of the Rouse equation is generally very small and uniform concentration of sedi-
ment can be assumed for those fractions (e.g. Table 10.2 when u∗/ω> 25). In such
cases, a sample taken at any location along the vertical is sufficient to describe the
flux-averaged concentration for those size fractions.

Exercises

�10.1 Derive concentration by weight Cw (Equation 10.1b) from concentration by
volume Cv (Equation 10.1a) given the density of sediment particles G = γs/γ .
Also write Cv as a function of Cw.

�10.2 (a) Derive Equation (10.12) from Equation (10.7) for the steady point source;
(b) Derive Equation (10.19) from Equation (10.18); and
(c) Evaluate the maximum value of εz on a vertical.

��10.3 Define the Rouse number from concentration measurements at 25% and 75%
of the flow depth from Equation (10.20a).

�10.4 Derive the settling velocity of hyperconcentrations in Equation (10.33) from
Equations (10.31) and (10.32).

Problems
Problem 10.1

Assume a = 2ds and plot the dimensionless concentration profiles C/Ca for
medium silt, fine sand, and coarse sand in a 3 m-deep stream sloping at So =
0.002.
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(Answer: C/Ca > 0.95 for medium silt; C/Ca � 0.36 at mid-depth for fine sand;
and C/Ca < 0.05 for most of the coarse sand profile.)

��Problem 10.2

Given the sediment concentration profile from Problem 6.1: (a) plot the concen-
tration profile log C versus log (h – z)/z; (b) estimate the particle diameter from
the Rouse number; and (c) determine the unit sediment discharge from the given
data.

�Problem 10.3

Calculate the daily sediment load in a near-rectangular 50 m-wide stream with an
average flow depth h = 2 m and slope So = 0.0002 when 25% of the sediment load
is fine silt, 25% is very fine silt and 50% is clay, and the mid-depth concentration
is C = 50,000 mg/l. (Answer: Ls ≡ 750,000 tons/day.)

�Problem 10.4

A physical model of the stream in Problem 10.3 is to be constructed in the
hydraulics laboratory at a scale of 1:100 horizontal and 1:20 vertical. Calculate
the ratio of transversal to vertical mixing time scales: (a) for the model; and
(b) for the prototype. Also calculate the mixing coefficients and length scales
for vertical and lateral mixing for the prototype. At what downstream distance
would longitudinal dispersion become the dominant process? Are vertical and
lateral mixing complete at the same location in the model and prototype?

�Problem 10.5

Calculate the length required for complete transversal mixing in the St-Lawrence
river at a discharge of 500,000 cfs. Assume an average river width of 2 miles,
a slope of about 0.4 ft/mile and Manning n = 0.02. (Answer: More than 30,000
miles)

��Problem 10.6

The table in Problem 6.8 gives the velocity distribution and the suspended sand
concentration for the fraction passing the 0.105 mm sieve and retained on the
0.074 mm sieve on the Missouri river. Determine the following: (a) plot the
velocity profile V versus log z and concentration log C versus log (h – z)/z;
and (b) compute from the graphs and given data the following: u∗ = shear
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velocity, V = mean velocity, κ = von Kármán constant, f = Darcy–Weisbach
friction factor, and Ro = Rouse number; (c) compute the unit sediment discharge
for this size fraction from field measurements; (d) calculate the flux-averaged
concentration; and (e) estimate the near-bed concentration.

�Problem 10.7

Bank erosion of fine silts occurs on a short reach of a 100 m-wide meandering
river at a discharge of 750 m3/s. The riverbed slope is 50 cm/km and the flow
depth is 5 m. The mass wasted is about 10 metric tons per hour. Determine the
distance required for complete mixing in the river, the maximum concentration
at that point, and the average sediment concentration.

(Answer: X t ≈ 19 km; Cmax = 4.3 mg/l; C̄ = 3.7 mg/l.)

��Problem 10.8

Consider the mudflow characteristics at different locations along Rudd Creek,
Utah in the table below. Determine the following: (a) plot the yield strength,
viscosity, and velocity measurement; (b) compare the yield strength and viscosity
with Table 10.5 on Figures 10.13 and 10.16; (c) if the flow velocity increases
linearly with depth, determine ∂vx/∂z; (d) calculate the dimensionless parameters
from Equation (10.36), assuming C∗

v = 0.8; (e) what is the relative magnitude
of the different shear stresses? (f) what is the diameter of particles that are
non-settling? and (g) what is the settling velocity of a 1 m boulder?

Depth Bed slope Grain size τ y μm ρm Observed
(m) (m) (Pa) (Pa.s) Cv (kg/m3) velocity (m/s)

2 0.09 0.1 1,250 200 0.75 2,237 3
0.4 0.09 0.01 200 25 0.65 2,072 4.3
0.5 0.09 0.01 180 20 0.64 2,056 2.8
0.3 0.09 0.004 30 5 0.52 1,858 3
0.05 0.09 0.001 0 0.1 0.1 1,165 1.5

�Problem 10.9

Consider the lahar flow data shown below. Calculate the shear velocity and plot
the results assuming ds = 1 mm on Figure 10.16.



10.7 Field measurements of suspended sediment 261

Slope (mm/m) Velocity (m/s) Depth (m)

167 9 11.5
79 7.8 14.9
113 13.9 12.2
32 8.7 11.9
18 6.4 7.4

�Problem 10.10

Consider the lahar flow data at Mt. St. Helens below. At a median grain size of
5 mm, calculate u∗ =√g h Sf and plot the velocity on Figure 10.16.

Depth (m) Discharge (m3/s) Width (m) Velocity (m/s) Slope

15.2 26,800 106 16.6 0.092
10.6 25,900 99 24.6 0.065
14.5 28,200 148 13.1 0.041
14.9 21,700 117 12.4 0.042
14.8 19,900 123 10.9 0.043
13.9 21,000 106 14.2 0.036
10.7 19,200 85 21.1 0.031
9.4 16,600 116 15.2 0.026
9.3 6,250 72 9.3 0.027
6.0 7,320 100 12.2 0.03

Problem 10.11

Consider the data from the Rio Grande at Bernalillo on June 4, 1953 for
Culbertson et al. (1972). The total flow depth is 3.5 ft, the channel top width is
270 ft, energy grade line Sf is 0.00083 ft/ft, mean particle size is approximately

z (ft) v (ft/s) C (ppm)

0.3 3.72 2,359
0.8 4.09 1,809
1.3 4.36 1,540
1.7 4.36 1,240
2.2 4.25 1,151
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0.69 mm, and the temperature is 62◦F. The velocity and concentration profiles
are provided in the table above. Answer the same questions as Problem 10.6,
and determine the flux-average concentration.

��Problem 10.12

Consider the sediment concentration profile by size fraction of the Enoree River,
S. Carolina in the table below. Plot the Rouse profiles for each size fraction in mm
and find the Rouse numbers. Also determine the total sediment concentration
at each point, plot the Rouse profile and determine the Rouse number and the
concentration at a = 2ds ≈ 1 mm about the bed. The flow depth is 5 ft, the slope
is 0.00084 and the water temperature is 6.2◦C.

Concentration by size fraction (ppm)
Elevation Velocity
z (ft) v (ft/s) 0.074–0.124 (mm) 0.124–0.175 0.175–0.246 0.246–0.351 0.351–0.495 0.495–0.701

0.1 2.4 8.1 33 86 285 422
0.15 1.87 2.4 8.5 45 67 131 82
0.45 2.30 2.3 3.8 17 44 95 89
0.75 2.15 1.4 5.5 17 33 65 59
1.35 2.90 1.5 4.8 13 26 38 30
1.95 2.85 2.2 5.3 14 18 27 20
2.55 3.25 7.1 10.3 15 14 10 10
3.15 3.63 2.8 3.9 9 10 10 7

�Problem 10.13

Examine the possibility of removing the sill retaining about 37,000 m3 of con-
taminated sediment during a 100-year flood that would last 12 hours at a
discharge close to 355 m3/s.The channel is 25 m wide, 3.8 m deep, and S = 0.005.
The mean flow velocity is 3.7 m/s. The riverbed material is d10 = 6 mm,
d50 = 90 mm. The alluvial wedge sketched in Figure P-10.13 is finer with 80%
of the material finer than 2 mm, 16% between 2 and 16 mm and 4% coarser
than 16 mm.

Contaminated sediment
Sill removal

3.5 mi

Figure P-10.13 Sill removal
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Determine the following: (1) shear velocity; (2) Darcy–Weisbach f ; (3) Man-
ning n; (4) which size fractions will move as bedload/suspension; (5) length
and time for vertical mixing; (6) length and time for lateral mixing; (7) ini-
tial time for dispersion and compare with flood duration; (8) is dispersion
important?; (9) bedload transport rates in m3/s for particles between 2 and 16
mm; (10) methods from Chapter 11 that can estimate the bed material load
(answer: qbw � 150N/ms); and (11) if 30,000 m3 are removed during the
12 h flood, determine the maximum sediment concentration of contaminated
sediment (answer: Cmax � 5,000mg/l).
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Total load

This chapter describes methods to estimate the total sediment load of a river. In
Section 11.1, several sediment transport formulas commonly used in engineering
practice are presented with detailed calculation examples. Section 11.2 discusses
sediment-rating curves; Section 11.3 covers short- and long-term sediment load.
Section 11.4 focuses on sediment sources and sediment yield from upland areas.
This chapter includes three case studies of capacity- and supply-limited sediment
transport.

Every sediment particle which passes a given stream cross-section must satisfy the
following two conditions: (1) it must have been eroded somewhere in the watershed
above the cross-section; and (2) it must be transported by the flow from the place
of erosion to the cross-section. To his statement, Einstein (1964) added that each of
these two conditions may limit the rate of sediment transport depending on the rel-
ative magnitude of the two controls: (1) the transporting capacity of the stream; and
(2) the availability of material in the watershed. The amount of material transported
in a stream therefore depends on two groups of variables: (1) those governing the sed-
iment transport capacity of the stream such as channel geometry, width, depth, shape,
wettedperimeter,alignment,slope,vegetation,roughness,velocitydistribution, trac-
tiveforce, turbulence,anduniformityofdischarge;and(2) thosereflectingthequality
and quantity of material made available for transport by the stream including water-
shed topography, geology, magnitude-intensity-duration of rainfall and snowmelt,
weathering, vegetation, cultivation, grazing and land use, soil type, particle size,
shape, specific gravity, resistance to wear, settling velocity, mineralogy, cohesion,
surface erosion, bank cutting, and sediment supply from tributaries.

The sediment transport capacity of a stream under unlimited sediment supply can
be determined as a function of the hydraulic variables and the shape of the stream
cross-section. As sketched in Figure 11.1, the total sediment load in a stream can
be divided three different ways:

264
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Figure 11.1. Sketch of ways to determine the total load
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Figure 11.2. Sediment transport capacity and supply

(1) By the type of movement. The total sediment load LT can be divided into the bedload
Lb treated in Chapter 9, and the suspended load Ls (covered in Chapter 10).

LT = Lb + Ls (11.1a)

(2) By the method of measurement. In this case, the total sediment load LT consists of the
measured load Lm and the unmeasured load Lu. Because one can only use point samples
from the water surface to a distance of approximately 10 centimeters above the bed
surface, the measured sediment load Lm is only part of the suspended load Ls. The
unmeasured sediment load Lu consists of the entire bedload Lb plus the fraction of the
suspended load Ls, transported below the lowest sampling elevation.

LT = Lm + Lu (11.1b)

Helley–Smith samplers can measure part of the unmeasured load for the size fractions
coarser than the mesh size of the sampling bag.

(3) By the source of sediment. In this case, the total sediment load LT is equal to the fine
sediment fraction coming from upstream, also called washload Lw plus the coarser
grain sizes from the bed material load Lbm. The d10 of the bed material is therefore
commonly used as the breakpoint between washload (ds < d10) and bed material load
(ds > d10). As sketched in Figure 11.2, washload sediment transport is limited by the
upstream supply of fine particles. The bed material load is determined by the capacity
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of the flow to transport the sediment sizes found in the bed.

LT = Lw + Lbm (11.1c)

It must be recognized that it is difficult to determine the total sediment load of a
stream, from any Equations (11.1 a–c). Because the washload depends on sediment
supply rather than transport capacity, it is impossible to determine the total sediment
load from the sediment transport capacity based on flow characteristics alone.

11.1 Sediment transport capacity

Numerous sediment transport formulas have been proposed in the past fifty
years and subsequent modifications of original formulations have been prescribed.
Although significant progress has been made, none of the existing sediment trans-
port formulas can determine the total load. In engineering practice, several formulas
are compared with field observations to select the most appropriate equation at a
given field site.

For given streamflow conditions, any sediment transport equation can only pre-
dict the sediment transport capacity of a given bed sediment mixture. Existing
sediment transport formulas can be classified into several categories owing to their
basic approaches: (1) formulation based on advection; (2) formulation based on
energy concepts in which the rate of work done for transporting sediment particles
in turbulent flow is related to the rate of energy expenditure; and (3) graphical
methods and empirical equations based on regression analysis.

The following methods reflect more recent developments in sediment transport
calculations. Einstein’s method is still viewed as a landmark, despite the complexity
of the advection-based procedure and some recent developments include the series
expansion of the Einstein integrals by Guo and Julien, and the improvement of
the Modified Einstein Procedure. The method of Simons, Li, and Fullerton was
derived from Einstein’s method and offers simplicity in the calculations for steep
sand-bed channels. Four methods based on energy and stream power concepts are
presented. The methods of Bagnold and Engelund–Hansen offer simplicity while
those of Ackers–White and Yang gained popularity in computer models. Finally the
methods of Shen–Hung, Brownlie and Karim–Kennedy are essentially the result
of regression analysis using comprehensive data sets.

11.1.1 Einstein’s approach

The total bed sediment discharge per unit width qt can be calculated from the sum
of the unit bed sediment discharge qb and the unit suspended sediment discharge qs
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Bed material load, L

a = 2 ds
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h z

a

Figure 11.3. Sketch of the Einstein approach

from Equation (10.21). As sketched in Figure 11.3, the Einstein approach estimates
the suspended load from the bedload.

Thus, qt = qb +
h∫

a

C vx dz (11.2)

Given the velocity profile for a hydraulically rough boundary from Equation
(6.16) with k ′

s = ds and the Rouse concentration profiles from Equation (10.20a),
the total unit bed sediment discharge is written as:

qt = qb +
h∫

a

Ca
u∗
κ

(
h − z

z

a

h − a

) ω
βs κu∗

ln

(
30z

ds

)
dz (11.3)�

The reference concentration Ca = qb/ava is obtained from the unit bed sediment
discharge qb transported in the bed layer of thickness a = 2ds, given the veloc-
ity va at the top of the bed layer, va = (u∗/κ) ln (30a/ds) = 4.09u∗/κ , Einstein
used va = 11.6u∗. Rewriting Equation (11.3) in dimensionless form with z∗ = z/h,
E = 2ds/h and Ro = ω/βs κ u∗ gives:

qt = qb

[
1 + I1 ln

30h

ds
+ I2

]
(11.4a)

where

I1 = 0.216
ERo−1

(1 − E)Ro

1∫
E

[
1 − z∗

z∗

]Ro

dz∗

︸ ︷︷ ︸
J1(Ro)

(11.4b)

I2 = 0.216
ERo−1

(1 − E)Ro

1∫
E

[
1 − z∗

z∗

]Ro

ln z∗ dz∗

︸ ︷︷ ︸
J2(Ro)

(11.4c)
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The two integrals I1 and I2 have been solved with the use of nomographs prepared
by Einstein. The reader is referred to Appendix A for the details of the original
method.

11.1.2 Guo and Julien’s method

Recent developments include the series expansion of the Einstein integrals in
Equation (11.4) by Guo and Julien (2004). For u∗ > 2ω, the function of E = 2ds/h
and Rouse number Ro = ω/βSκu∗ is rapidly convergent as soon as the series
expansion term k > 1 + Ro. There are four steps for this method:
Step 1. Estimate F1 (Ro) using a maximum of 10 terms

F1(Ro)=
∫ E

o

(
1 − z∗

z∗

)Ro

dz∗ = (1-E)Ro

ERo−1 − Ro
10∑

k=1

(−1)k

k
− Ro

(
E

1 − E

)k−Ro

(11.5a)

Step 2. Estimate J1 (Ro) from Equation (11.4b)

J1(Ro)=
∫ 1

E

(
1 − z∗

z∗

)Ro

dz∗ = π Ro

sin (π Ro)
− F1 (Ro) (11.5b)

Step 3. Estimate F2 (Ro) with a maximum of 10 terms

F2(Ro)=
∫ E

o

(
1 − z∗

z∗

)Ro

ln z∗ dz∗ = F1Ro

(
lnE + 1

Ro − 1

)

+ Ro
10∑

k=1

(−1)k F1 (Ro − k)

(Ro − k) (Ro − k − 1)
(11.5c)

Step 4. Estimate J2 (Ro) from Equation (11.4c)

J2(Ro)=
∫ 1

E

(
1 − z∗

z∗

)Ro

ln z∗ dz∗ = Roπ

sinRoπ

×
{
π cot (Roπ)− 1 − 1

Ro
+ π2

6

Ro

(1 + Ro)0.7162

}
− F2 (Ro) (11.5d)

This formulation is very accurate for any non-integer value of Ro.
For integer values of the Rouse number, Ro = n ± 10−3, the formulations for

J1(Ro) and J2 (Ro) become:

J1(Ro = n)=
n−2≥0∑

k=0

(−1)k n!
(n − k)!k!

Ek−n+1 − 1

n − k − 1
+ (−1)n (n ln E − E + 1) (11.6a)
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and

J2(Ro = n)=
n−2≥0∑

k=0

(−1)k n!
(n − k)!k! ·

{
E1+k−n ln E

n − k − 1
+ E1+k−n − 1

(n − k − 1)2

}

+ (−1)n
{n

2
ln2 E − E ln E + E − 1

}
(11.6b)

For instance, for Ro = n = 1, J1(1) = E − 1 − ln E, and for Ro = n =
3,J1(3)= −3lnE + 1

2E2 − 3
E + 3

2 +E. An application example is presented in Case
study 11.1.

In a very simplified form, the sediment transport when u∗ < 2ω can also be
approximated by

qτ = qb

[
1 +
(u∗
ω

)2
]

(11.6c)�

This approach implies qs/qb = (u∗/ω)2 as shown in Figure 10.10. It is recom-
mended when u∗ < 2ω, or Ro> 1.25.

11.1.3 Simons, Li, and Fullerton’s method

Simons, Li, and Fullerton (1981) developed easy-to-apply power relationships that
estimate sediment transport based on the flow depth h and velocity V . The power
relationships were developed from a computer solution of the Meyer-Peter and
Muller bedload transport equation and Einstein’s integration of the suspended bed
sediment discharge

qs = cS1 hcS2 V cS3 (11.7)

The results of the total bed sediment discharge are presented in Table 11.1.
The high values of cS3 (3.3 < cS3 < 3.9) show that sediment transport rates
depend highly on velocity. The influence of depth is comparatively less impor-
tant (−0.34 < cS2 < 0.7). For flow conditions within the range outlined in
Table 11.2, the regression equations should be accurate within ten percent. The
equations were obtained for steep sand- and gravel-bed channels under super-
critical flow. They do not apply to cohesive material. The equations assume
that all sediment sizes are transported by the flow without armoring. Case
study 11.1 provides sample calculations of sediment transport using these power
relationships.
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Table 11.2. Range of parameters for the
Simons–Li–Fullerton method

Parameter Value range

Froude number 1 – 4
Velocity 6.5 – 26 (ft/s)
Manning n 0.015 – 0.025
Bed slope 0.005 – 0.040
Unit discharge 10 – 200 (ft2/s)
Particle size d50 ≥ 0.062 mm

d90 ≤ 15 mm

Case study 11.1 Big Sand Creek, United States

This case study illustrates sediment transport calculations when u∗/ω< 2. A test
reach of the Big Sand Creek near Greenwood, Mississippi has been used for bed
sediment discharge calculations by size fractions using the methods of Einstein,
Guo and Julien, and Simons–Li–Fullerton. The sand-bed channel has a bed slope
So = 0.00105.An average of four bed sediment samples is shown in the following
table, showing that 95.8% of the bed material is between ds = 0.589 mm and
ds = 0.147 mm, which is divided into four size fractions for the calculations:

Average grain size Settling velocity

Grain size distribution mm mm ft �pi in % cm/sec ft/s

ds > 0.60 — — 2.4 — —
0.60> ds > 0.42 .50 0.00162 17.8 6.2 0.205
0.42> ds > 0.30 0.36 0.00115 40.2 4.5 0.148
0.30> ds > 0.21 0.25 0.00081 32.0 3.2 0.106
0.21> ds > 0.15 0.18 0.00058 5.8 2.0 0.067
0.15> ds — — 1.8 — —

d16 = 0.24 mm σ g = 1.35
d35 = 0.29 mm Gr = 1.35
d50 = 0.34 mm
d65 = 0.37 mm
d84 = 0.44 mm

Einstein’s method

Calculations by size fractions using the Einstein method are detailed inAppendix
A, given the cross-sectional geometry information from Figure A.7.
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Guo and Julien’s method

Calculations in English units are based on d50 = 0.34 mm = 1.1×10−3 ft, orω=
0.164 ft/s. At a slope S = 0.00105, the shear velocity is u∗ =√ghS = 0.184h1/2

as a function of flow depth h in feet. The Rouse number is Ro = ω/0.4u∗ and
the Shields parameter is τ∗ = 0.57h.

The unit bed load by volume in ft2/s is qbv = 15τ 1.5∗ ωds = 1.18 × 10−3h1.5.
The unit bed material load by volume is obtained from Eq. (11.4) with E = 2ds/h

qtv = qbv

⎧⎪⎪⎪⎨
⎪⎪⎪⎩1 + 0.216ERo−1

(1 − E)Ro
[J1 (Ro) ln (60/E)+ J2 (Ro)]︸ ︷︷ ︸

qSv/qbv

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and the total sediment load in tons per day is

Qtw = qtv × W×γs = qtv

(
in ft2/s

)
× W (in ft)× 2.65

× 62.4 lb

ft3
× ton

2,000lb
× 86,400s

d

= 8.43h1.5W (1 + qSv/qbv)

For instance, at a flow depth h = 4.14 ft, u∗ = 0.374 ft/s, Ro = 1.096, τ ∗ = 2.36,
qbv = 0.01 ft2/s, E = 5.3 × 10−4, J1 = 9.863, J2 = −45.19, and qtv = 8.28qbv.
At a channel width W = 234 ft, the daily bed material load Qtw = 137,000 tons
per day.

It is instructive to notice from this example that the ratio of the suspended
load qSv to the bedload qbv is very roughly proportional to the square of u∗/ω.
This could be inferred from Figure 10.10 and is a reasonable approximation
when u∗ < 2ω. The Einstein method is less accurate when u∗ > 2ω because the
suspended load qSv is much larger than the bedload qbv.

W (ft) h (ft) E Ro u∗/ω J1 J2 qSv/qbv Qs (tons/day)

103 1.36 1.6 × 10−3 1.91 1.31 375 −2,029 1.18 3,010
136 1.76 1.25 × 10−3 1.67 1.48 126 −675 1.67 7,150
170 2.50 8.8 × 10−4 1.41 1.77 39 −203 2.79 21,500
194 3.30 6.7 × 10−4 1.226 2.04 17.2 −84 4.64 55,300
234 4.14 5.3 × 10−4 1.096 2.28 9.86 −45.2 7.28 137,000
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Simons, Li, and Fullerton’s method

This method does not involve calculations by size fractions. However, the coef-
ficients of the bed sediment transport equation can be interpolated from Table
11.1 given the gradation coefficient Gr and the median grain size d50. In the case
in point, d50 = 0.34 mm and Gr = 1.35, one obtains

qs(in ft2/s)= 1.25 × 10−5 h0.43(in ft)V 3.65(in ft/s)

or

Qs(tons/d)= 0.0893W (ft)h0.43(ft)V 3.65 (ft/s)

Sediment load (tons/day)

W ft h ft V ft/s Q ft3/s Qs Einstein Qs Guo & Julien Qs Simons et al.

103 1.36 2.92 409 670 3,010 525
136 1.76 4.44 1,063 3,940 7,150 3,580
170 2.50 6.63 2,818 30,500 21,500 22,400
194 3.30 8.40 5,377 113,000 55,300 68,400
234 4.14 9.92 9,610 324,000 137,000 167,000

10
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10
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D
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ar

ge
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ft
  /

s)

Bed-material discharge (t/d )

Simons – Li – Fullerton Einstein

Guo-Julien

Figure CS-11.1.1 Sample comparison of the methods of Einstein, Guo–Julien,
and Simons, Li, and Fullerton.

The results of bed sediment discharge calculations for Big Sand Creek using
the methods of Einstein, Guo–Julien, and Simons–Li–Fullerton are shown on
Figure CS-11.1.1. In all cases, the bed sediment discharge increases very rapidly
with water discharge.
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The following methods predict sediment transport as a function of mean flow
velocity V . This requires knowledge of resistance to flow, usually in the presence
of bedforms. At a given stage, bedforms increase resistance to flow as described in
Section 8.3, and thus reduce V and sediment transport. The following four methods
(Sections 11.1.4–8) also involve the concept of stream power. Bagnold used the
product of shear stress and mean flow velocity while Engelund–Hansen and Yang
used the product of velocity and slope. Finally, it should be noted that the stream
power approach does not always consider the concept of threshold of motion. For
instance the rate of sediment transport does not reduce to zero in the methods
of Bagnold and Engelund–Hansen, and this even at very low velocities or large
grain sizes.

11.1.4 Bagnold’s method

Bagnold (1966) developed a bed sediment transport formula based on the concepts
of energy balance. He stated that the available power of the flow supplies the energy
for bed sediment transport. The resulting bed sediment transport equation combines
bedload and suspended load:

qt = qb + qs = τoV

(G − 1)

(
eB + 0.01

V

ω

)
(11.8)

where 0.2< eB < 0.3. The sediment discharge qt is expressed as dry weight per unit
time and width in any consistent system of units. Note that the ratio of suspended
load to bedload is approximated by 0.01 V /eBω, which is close to u∗/ω when
V = 25u∗. Equation (11.8) is applicable to fully turbulent flows and results should
be best when u∗/ω < 2. Unfortunately, there is no threshold of motion with this
equation and it should not perform well when u∗/ω < 0.2.

11.1.5 Engelund and Hansen’s method

Engelund and Hansen (1967) applied Bagnold’s stream power concept and the
similarity principle to obtain the sediment concentration by weight Cw as follows:

Cw = 0.05

(
G

G − 1

)
V Sf

[(G − 1)gds]1/2

Rh Sf

(G − 1)ds
(11.9)

where ds is the grain size, Sf is the friction slope, Rh is the hydraulic radius, V is the
depth-averaged velocity, g is the gravitational acceleration, and G is the specific
gravity of sediment. This method does not have any threshold value for incipient
motion and will calculate concentrations for size fractions larger than incipient
motion.
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11.1.6 Ackers and White’s method

Ackers and White (1973) postulated that only a part of the shear stress on the
channel bed is effective in causing motion of coarse sediment, while in the case of
fine sediment, suspended load movement predominates for which the total shear
stress is effective in causing the sediment motion. On this premise, the sediment
mobility was described by the parameter

cAW 5 = ucAW 1∗√
(G − 1)g ds

(
V√

32 log (10h/ds)

)1−cAW 1

(11.10)

in which cAW 1 = 0 for coarse sediment and unity for fine sediment. The total
sediment concentration by weight is given by

Cw = cAW 2G
ds

h

(
V

u∗

)cAW 1
(

cAW 5

cAW 3
− 1

)cAW 4

(11.11)

in which cAW 1, cAW 2, cAW 3 and cAW 4 depend on the dimensionless particle diameter

d∗ =
[
(G−1)g
ν2

]1/3
ds. The relationships for cAW 1, cAW 2, cAW 3 and cAW 4 obtained

using flume data for particle sizes ranging from 0.04 mm to 4.0 mm are:

(1) for

1.0< d∗ ≤ 60.0,

cAW 1 = 1.0 − 0.56 log d∗

logcAW 2 = 2.86 log d∗ − (log d∗)2 − 3.53

cAW 3 = 0.23

d1/2∗
+ 0.14

cAW 4 = 9.66

d∗
+ 1.34

(2) for

d∗ > 60.0,

cAW 1 = 0, cAW 2 = 0.025, cAW 3 = 0.17, cAW 4 = 1.50.

It can be seen that incipient motion occurs where cAW 3 = cAW 5. Such a condition
for incipient motion agrees well with Shields’ value for coarse sediment. Ackers
and White’s method tends to largely overestimate the concentration and sediment
transport of fine and very fine sands.
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11.1.7 Yang’s method

Yang (1973) suggested that the total sediment concentration is related to potential
energy dissipation per unit weight of water, i.e. the unit stream power which he
expressed as the product of the velocity and slope. The dimensionless regression
relationships for the total sediment concentration Ct in ppm by weight are:

(1) for sand:

logCppm = 5.435 − 0.286 log
ωds

ν
− 0.457 log

u∗
ω

+
(

1.799 − 0.409 log
ωds

ν
− 0.314 log

u∗
ω

)
log

(
V S

ω
− Vc S

ω

)
(11.12a)

(2) for gravel,

log Cppm = 6.681 − 0.633 log
ωds

ν
− 4.816 log

u∗
ω

+
(

2.784 − 0.305 log
ωds

ν
− 0.282 log

u∗
ω

)
log

(
VS

ω
− VcS

ω

)
(11.12b)

in which the dimensionless critical velocity, Vc/ω, at incipient motion, can be expressed
as:

Vc

ω
= 2.5[

log
(

u∗ds
ν

)
− 0.06

] + 0.66; for 1.2<
u∗ds

ν
< 70 (11.13a)

and

Vc

ω
= 2.05; for

u∗ds

ν
≥ 70 (11.13b)

These empirical equations are dimensionless, including the total sediment con-
centration Cppm in parts per million by weight, Vc is the average flow velocity at
incipient motion, VS is the unit stream power, and VS/ω is the dimensionless unit
stream power. Flume and field data ranged from 0.137 to 1.71 mm for sand sizes,
and 0.037 to 49.9 feet for water depth. However, the majority of the data covered
medium to coarse sands at flow depths rarely exceeding 3 feet. Yang’s method
tends to overestimate transport for very coarse sands and there is a significant
discontinuity between sand and gravel equations at ds = 2 mm.

11.1.8 Shen and Hung’s Method

Shen and Hung (1972) recommended a regression formula based on available data
for engineering analysis of sediment transport. They selected the sediment con-
centration as the dependent variable and the fall velocity ω in ft/s of the median
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diameter of bed material, flow velocity V in ft/s, and energy slope as independent
variables. The concentration of bed sediment by weight in ppm is given as a power
series of the flow parameter, based on 587 data points:

log Cppm = [−107,404.459 + 324,214.747Sh

−326,309.589Sh2 + 109,503.872Sh3
]

(11.14a)

where

Sh =
[

V S0.57159

ω0.31988

]0.00750189

(11.14b)

The fall velocity of sediment particle was corrected to the actual measured water
temperature but not to include the effect of significant concentrations of fine sedi-
ment on bed material transport. It is most important not to round off the coefficients
and exponents of Equation (11.14). This equation performs quite well with flume
data, but tends to underpredict the total load of large rivers like the Rio Grande, the
Mississippi, the Atchafalaya, the Red River, and some large canals in Pakistan.

11.1.9 Brownlie’s method

Brownlie (1981) obtained the following equation for the concentration Cppm

Cppm = 7,115cB

(
V − Vc√
(G − 1)gds

)1.978

S0.6601
f

(
Rh

ds

)−0.3301

(11.15a)

in which the value of Vc is given in terms of the Shields dimensionless critical shear
stress τ ∗c, the friction slope Sf , and the geometric standard deviation of the bed
material σ g , by the equation

Vc√
(G − 1)gds

= 4.596τ 0.529∗c S−0.1405
f σ−0.1606

g (11.15b)

The coefficient cB is unity for laboratory data and 1.268 for field data.

11.1.10 Karim and Kennedy’s method

Karim and Kennedy (1983) carried out a regression analysis of the bed sediment
data from laboratory flumes and natural streams:

log
qt

γs
√
(G − 1)g d3

s

= −2.28 + 2.97ck1 + 0.30ck2 ck3 + 1.06ck1 ck3 (11.16a)
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where

ck1 = log
V√

(G − 1)g ds
; ck2 = log(h/ds); ck3 = log

(
u∗ − u∗c√
(G − 1)g ds

)
(11.16b)

The equations of Brownlie and Karim–Kennedy require further testing. Case study
11.2 compares bed sediment transport calculations on the Colorado river by the
methods of Bagnold, Engelund–Hansen,Ackers–White,Yang, Shen–Hung, Karim–
Kennedy, and Brownlie. These methods are expected to be most effective when
1< u∗/ω < 5.

Case study 11.2 Colorado River, United States

This case study illustrates sediment transport calculations when 1 < u∗/ω < 5.
The Colorado River at Taylor’s Ferry carries significant volumes of sand. The
bed material size has a geometric mean of 0.32 mm and standard deviation
σ g = 1.44, d35 = 0.287 mm, d50 = 0.33 mm, d65 = 0.378 mm. The detailed
sieve analysis is given in the table below, and the rating curve shown in Figure
CS-11.2.1.
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0.062 0.22
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The stage–discharge relationship for the Colorado River is shown on Figure
CS-11.2.1 at flow depths ranging from 4 to 12 feet and unit discharges from
8 to 35 ft2/s. Consider the channel slope 0.000217, channel width 350 ft, and
the water temperature at 60◦F, or ν = 1.21 × 10−5 ft2/s. Calculate the unit sed-
iment discharge by size fraction using the methods detailed in Sections 11.1.4
to 11.1.10. Plot the results on the given sediment-rating curve shown in Figure
CS-11.2.2.

For the sake of comparison of several bed sediment transport equations, flow
depths (a) h = 10 ft; and (b) 4 ft have been selected respectively. At each flow
depth, several sediment transport equations are compared in terms of potential
concentration in ppm for each size fraction, and then the fraction weighted
sediment discharge in lb/ft·s is given in the second tabulation.

Note that from Equation (10.1), Cppm = 106 Cw and Cmg/l = G Cppm
G+(1−G)Cw

. The
unit sediment discharge qs in N/m·s is obtained from

qs(in N/m/s)= 10−3g (in m/s2)C (in mg/l)q (in m2/s)

qs(in lb/ft × s)= qs(in N/ms)× lb

4.45N
× m

3.28ft
= 0.0685qs (in N/ms)
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(a) Flow depth h = 10 ft or 3.05 m
Velocity V = 3.2 ft/s or 0.97 m/s
Unit discharge q = 32 ft2/s or 2.97 m2/s
Hydraulic radius Rh = 9.45 ft or 2.9 m
Shear stress τo = 0.128 lb/ft2 or 6.14 N/m2

Shear velocity u∗ = 0.257 ft/s or 0.078 m/s

�pi ds (mm) d∗ ω (m/s) u∗/ω τ c (N/m2) τ∗

0.002 0.042 0.97 0.001 56.7 — 9.6
0.011 0.083 1.95 0.005 14.5 0.166 4.8
0.201 0.167 3.89 0.019 4.1 0.166 2.4
0.673 0.333 7.79 0.049 1.65 0.203 1.2
0.093 0.667 15.5 0.085 0.92 0.328 0.6
0.01 1.33 31.1 0.132 0.59 0.761 0.3
0.01 2.66 62.3 0.193 0.41 1.86 0.15

ds Bagnold
Engelund–
Hansen

Ackers–
White Yang

Shen–
Hung

Karim–
Kennedy Brownlie

Potential sediment concentration C (ppm)

0.042 960 2,003 a 3,529 1,439 7,584 1,133
0.083 270 1,013 2,017 567 586 1,289 491
0.167 101 504 584 162 222 454 313
0.333 60 252 140 93 97 181 191
0.667 48 126 69 91 54 79 107
1.33 43 63.3 31 113 34 35 48
2.67 40 31.5 5.9 1.8 22 14 14

Fraction weighted sediment transport �piqs (N/ms)

0.042 0.06 0.13 a 0.23 0.09 0.49 0.07
0.083 0.09 0.32 9 0.18 0.19 0.42 0.16
0.167 0.59 2.94 3.42 0.95 1.3 2.66 1.84
0.333 1.18 4.95 2.75 1.83 1.92 3.55 3.76
0.667 0.13 0.34 0.19 0.25 0.15 0.22 0.29
1.33 0.01 0.02 0.01 0.03 0.01 0.01 0.01
2.67 0.01 0 0 0 0.01 0 0

Total
N/ms 2.07 8.7 15.37?a 3.48 3.66 7.35 6.13
lb/fts 0.142 0.6 1.05 0.234 0.25 0.5 0.42

a Extremely high.
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(b) Flow depth h = 4 ft or 1.22 m
Velocity V = 2 ft/s or 0.61 m/s
Unit discharge q = 8 ft2/s or 0.74 m2/s
Hydraulic radius Rh = 3.91 ft or 1.2 m
Shear stress τ o = 0.053 lb/ft2 or 2.538 N/m2

Shear velocity u∗ = 0.1652 ft/s or 0.05 m/s

�pi ds (mm) d∗ ω u∗/ω (m/s) τ c (N/m2) τ∗

0.002 0.042 0.97 0.001 36.4 — 3.8
0.011 0.083 1.94 0.005 9.3 0.166 1.9
0.201 0.167 3.89 0.019 2.7 0.166 0.96
0.673 0.333 7.78 0.047 1.06 0.203 0.48
0.093 0.667 15.57 0.085 0.59 0.328 0.24
0.01 1.333 31.15 0.132 0.38 0.761 0.12
0.01 2.667 62.3 0.193 0.26 1.86 0.06

ds Bagnold
Engelund–
Hansen

Ackers–
White Yang

Shen–
Hung

Karim–
Kennedy Brownlie

Potential sediment concentration C (ppm)

0.042 612 797 a 1,570 543 1,522 598
0.083 181 403 2,017 250 184 255 198
0.167 75 200 142 69 56 116 127
0.333 50 100 57 37 21 58 75
0.667 42 50 30 34 10 31 38
1.33 39 25 5.2 42 5.7 14 11.1
2.67 37 12 0 1.2 3.4 3.3 0.03

Fraction weighted sediment transport �piqs (N/ms)

0.042 0.01 0.01 a 0.03 0.01 0.02 0.01
0.083 0.01 0.02 0.16 0.02 0.01 0.02 0.02
0.167 0.11 0.14 0.21 0.1 0.08 0.17 0.19
0.333 0.24 0.17 0.28 0.18 0.1 0.29 0.37
0.667 0.03 0.01 0.02 0.02 0.01 0.02 0.03
1.33 0 0 0 0 0 0 0
2.67 0 0 0 0 0 0 0

Total
N/ms 0.41 0.36 0.67?a 0.36 0.21 0.52 0.61
lb/fts 0.028 0.024 0.046 0.024 0.015 0.036 0.042

a extremely high.
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a = 2 ds
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Figure 11.4. Sketch of the modified Einstein approach

11.1.11 Modified Einstein Procedure

As sketched in Figure 11.4, the Modified Einstein Procedure estimates the unmea-
sured load from the measured load. It can proceed from depth-integrated samples
or point samples. The Modified Einstein Procedure (MEP) has been developed by
Colby and Hembree (1955) to determine the total sediment load based on field
measurements obtained from a depth-integrated suspended sediment sampler and
a sample of the bed material. The method was developed on data from the Nio-
brara River, Nebraska. The original procedure assumed that the Rouse number
(Ro) varied empirically with the settling velocity (ω) to a power of 0.7. In addition,
the procedure arbitrarily divides the Einstein bedload transport rate by 2. Several
re-modifications have been proposed (Colby and Hubbell 1961; Lara 1966;
Burkham and Dawdy 1980; Shen and Hung 1983) that aid in the total load cal-
culation based on the MEP. Holmquist-Johnson and Raff (2006) developed the
Bureau of Reclamations Automated Modified Einstein Procedure (BORAMEP),
which is based on Lara’s modification.

11.1.11a SEMEP procedure for a depth-integrated sampler

The most recent development of the MEP is based on the series expansion of the
Einstein integrals determined by Guo and Julien (2004), refer to Section 11.1.2.
The series expansion of the modified Einstein procedure (SEMEP), was developed
by Shah-Fairbank (2009) and tested on several laboratory and sand-bed river data
from the Niobrara to the Mississippi River.

Sediment is found in suspension when the shear velocity is greater than the
fall velocity. In order to quantify suspended sediment the logarithmic velocity law
(Equation 6.16) and the concentration profile (Equation 10.20a) are inserted into
Equation 11.1.

qt = qb + qs = qb +
h∫

a

Cvdz (11.17)
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Ca = qb

vaa
= qb

11.6 u∗a
(11.18)

qt = qb + 0.216qb
ERo−1

(1 − E)Ro

{
ln

(
30h

ds

)
J1 + J2

}
(11.19)

J1 =
1∫

E

(
1 − z∗

z∗
)Ro

dz∗ (11.20a)

J2 =
1∫

E

ln z ∗
(

1 − z∗
z∗
)Ro

dz∗ (11.20b)

Where, qt is the unit total load, qb is the unit bedload, C is the concentration, v is
the velocity, h is the flow depth, a is the reference depth of 2ds, ds is the particle
size, Ca is the reference concentration at a, va is the reference velocity at a,u∗ is
the shear velocity, E is 2ds/h and J1 and J2 are the Einstein integrals, and z∗ is the
ratio of z/h.

The value of qb is determined directly from qm measured between the sampler
nozzle height at z = dn and the free surface at z = h.

qm =
h∫

dn

Cv dz (11.21)

qm = 0.216qb
ERo−1

(1 − E)Ro

{
ln

(
60

E

)
J1A + J2A

}
(11.22)

J1A =
1∫

A

(
1 − z∗

z∗
)Ro

dz∗ (11.23)

J2A =
1∫

A

ln z ∗
(

1 − z∗
z∗
)Ro

dz∗ (11.24)

where A is dn/h, and J1A and J2A are the modified Einstein integrals.



284 Total load

Once qb is determined the unit total load qt can be calculated based on Equation
(11.19). The following are the advantages to SEMEP:

(1) based on median grain diameter (d50) in suspension, no bins are required;
(2) bedload calculated based on measured load, no need to arbitrarily divide the

Einstein bedload equation by 2;
(3) calculate Ro directly from settling equation, no Ro fitting based on power

function;
(4) calculate total load even when there are not enough overlapping bins between

suspended and bed material; and
(5) calculated total load cannot be less than measured load.

Example 11.1 Modified Einstein analysis for depth-integrated data

Shah-Fairbank (2009) analyzed data from three different USGS publications
(Colby and Hembree 1955; Kircher 1981; Williams and Rosgen 1989) to test
SEMEP. The data for the Platte River (Kircher 1981) and 93 other US streams
(Williams and Rosgen 1989) are considered to be total load data sets because
they contain both depth-integrated and Helley–Smith measurements. In addition,
data from the Niobrara River collected by Colby and Hembree (1955) were also
tested. The total load measurement on the Niobrara River occurs at a constricted
section where it is assumed that a depth-integrated sampler can measure the
total load.

Step 1: Determine the median particle size in suspension;
Step 2: Calculate the Ro based on the median particle size in suspension;
Step 3: Use the series expansion of the Einstein integrals to calculate J1A and J2A;
Step 4: Determine the unit bedload discharge from the measured load based on Equation

(11.22)
Step 5: Use the series expansion of the Einstein integrals to calculate J1 and J2; and

Calculate the unit total load based on Equation (11.19).

Based on the analysis using the data from several USGS publications a range
of applicability is developed. When the value of u∗/ω is greater than 5 (Ro less
than 0.5) and measured total load is greater than 1000 tons/day SEMEP per-
forms with a high level of accuracy. This is validated by the following statistical
analysis using three parameters (MAPE, R2 and CC) defined as:

MAPE =

n∑
i=1

abs (Xi − Yi)

Xi

n
Mean absolute percent error (E-11.1.1)
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where Xi is the measured sediment discharge, Yi is the calculated sediment
discharge and n is the sample size.

R2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

(
Xi − X̄

)(
Yi − Ȳ

)
√√√√ n∑

i=1

(
Xi − X̄

)2 n∑
i=1

(
Yi − Ȳ

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

2

Coefficient of determination

(E-11.1.2)

where X̄ is the average of the measured and Ȳ the average of the calculated
values

CC = 2Sxy

S2
x + S2

y + (X̄ − Ȳ
)2 Concordance correlation coefficient (E-11.1.3)

where Sxy is the covariance, Sx and Sy are the variance of the measured and
calculated values respectively.
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Figure E-11.1.1 Calculated versus measured total load in tons/day
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Figure E-11.1.2 Percentage error versus u∗/ω for modified Einstein

Table E-11.1.1. Statistical Results from SEMEP

Rivers u∗/ω n

Mean absolute
percent error
(MAPE)

Coefficient of
determination
(R2)

Concordance
coefficient
(CC)

Platte River > 5 6 0.156 0.706 0.001
< 5 11 0.180 0.621 0.706

US Streams > 5 203 0.020 0.991 0.994
with SS < 5 4 0.129 0.988 0.805

US Streams > 5 1 0.019 − −
from
Colorado

< 5 45 0.775 0.824 0.841

Niobrara > 5 25 0.227 0.480 0.569
River < 5 1 0.454 – –

11.1.11b SEMEP procedure with point samples

Equation (11.25) is derived from the logarithmic fit to the measured velocity pro-
file and the Rouse number Ro is obtained from the power function fitted to the
concentration measurements.

v = u∗
κ

ln

(
z

zo

)
(11.25)

C = Ca

(
h − z

z

a

h − a

)Ro

(11.26)
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where, v is the velocity, u∗ is the shear velocity, κ is the von Kármán constant of 0.4,
z is the flow depth, zo is the depth of flow where v is zero, C is the concentration,
Ca is the reference concentration, h is the flow depth, a is the reference depth and
Ro is the Rouse number. The values of u∗, zo (depth of zero velocity), Ca and Ro
are constants determined from the regression analysis.

The measured load and total load can be determined as follows:

qm = Cahu∗
κ

(
E

1 − E

)Ro{
ln

(
h

zo

)
J1A + J2A

}
(11.27)

qt = Cavaa + Cahu∗
κ

(
E

1 − E

)Ro{
ln

(
h

zo

)
J1E + J2E

}
(11.28)

Example 11.2 shows comparisons between the calculations and the measurements
of the total sediment load calculated from SEMEP with point measurements of flow
velocity and sediment concentration.

Example 11.2 Modified Einstein analysis for point data

Using a point sampler allows for the total load to be calculated directly by fitting
a concentration and velocity profile to the measured data points. As a result, the
following parameters are determined directly: u∗, yo, Ca and Ro. This example
compares total load between the measurements and calculated results based
on regression analysis and SEMEP. The data sets summarized in Table E-11.2
contain point velocity and concentration measurements.

Table E-11.2. Summary of point data

Data Source h dn h/ds

Laboratory
Data

Coleman
(1986)

0.170 to 0.172 m 0.006 m 1,600

Enoree River,
SC

Anderson
(1942)

3 to 5.15 ft 0.06 to 0.103 ft 3,200 to 6,300

Rio Grande at
Bernalillo,
NM

Nordin and
Dempster
(1963)

2.35 to 2.56 ft 0.27 to 0.37 ft 11,500 to 12,500

Mississippi
River, MS

Akalin
(2002)

21 to 110 ft 0.4 to 2.2 ft 15,000 to 530,000
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The original MEP only calculates total load based on sediment samples from
a depth-integrated sampler. The following procedure shows how a point sampler
can be used to quantify load. The first step is to quantify the total and measured
loads. Figure E-11.2.1a shows a schematic of the trapezoidal method used to
determine the actual sediment discharge.

The logarithmic velocity and concentration profiles are then fitted to the data
sets. Figure E-11.2.1b shows a schematic of the trend lines generated for the
velocity and concentration data set. Figure E-11.2.2 shows the values of the
measured to total loads qm/qt as a function of u∗/ω and the percentage of flow
depth sampled hm/h. All the data are plotted in Figure E-11.2.3 to show how
the accuracy of SEMEP varies with the ratio of measured depth to median grain
diameter in suspension.

The results show that when hm/ds are greater than 1,000 over 70% of the data
points have an error less than 25%. In addition, there is a high error with data
from the Coleman Laboratory data and Enoree River. This is because the value
of u∗/ω is smaller than 5 for those samples.

3
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Figure E-11.2.1a Calculation of unit measured and total load based on point
data
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Figure E-11.2.1b Fitted velocity and concentration profiles
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Table 11.3. Modes of transport and recommended procedure

u∗/ω Ro Mode of transport Calculation procedure

< 0.2 > 12.5 no motion –
0.2 to 0.5 5 to 12.5 bedload Bedload equation
0.5 to 2 1.25 to 5 mixed load Einstein Chap. 9 or Equation (11.6c)
2 to 5 0.5 to 1.25 suspended load SEMEP or Section 11.1
> 5 < 0.5 suspended load SEMEP

0.2
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10 1
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10 101
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No motion Bed load

Bedload
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Figure 11.5. Modes of transport and procedure for load calculation

Based on this analysis the mode of sediment transport and the recommended
procedure to calculate the total sediment load are summarized in Table 11.3 and
Figure 11.5.

11.2 Sediment-rating curves

Sediment-rating curves display the rate of sediment transport, as a function of flow
discharge. The rate of sediment transport is given in terms of sediment discharge
or alternatively as a flux-averaged concentration. The analysis of sediment-rating
curves depends on whether sediment transport is limited by the sediment transport
capacity of the stream, or the upstream supply of sediment. Section 11.2.1 covers
the analysis of capacity-limited sediment-rating curves; Section 11.2.2 deals with
the effects of graded sand mixtures; and Section 11.2.3 deals with supply-limited
sediment-rating curves.



11.2 Sediment-rating curves 291

11.2.1 Capacity-limited sediment-rating curves

In the case where sediment transport is controlled by the transporting capacity
of bed sediment, the analysis of sediment-rating curves can be considered in
two ways: (1) comparative analysis of sediment transport capacity curves by size
fractions; and (2) comparative analysis of sediment transport formulas with field
measurements.

The analysis of sediment transport capacity curves by size fractions involves
plotting the sediment transport capacity from various formulas versus the particle
size. An example is shown in Figure 11.6 for four sediment transport formulas, at
two flow depths 2 ft and 10 ft respectively, all other conditions being identical. The
transport capacity is shown to increase largely with flow depths and also varies
inversely with sand grain size. In this example from Williams and Julien (1989)
a comparison of these four sediment transport formulas highlights that: (1) there
is more variability in the predictions from different equations at high flows, e.g.
high sediment transport rates; (2) the transport rates calculated using the methods
of Ackers and White (1973) and of Toffaleti (1968) are very high for fine sands and
very low for coarse sands; and (3) Yang’s (1973) method shows a slight increase
in sediment transport capacity with grain size for coarse sands.
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11.2.2 Graded sand mixtures

In general, the transport capacity calculated by size fraction exceeds the transport
capacity calculations based on the median grain size. For instance, consider a sand
size distribution 33% at 0.125 mm, 33% at 0.25 mm, and 33% at 0.5 mm. At a flow
depth of 10 ft transport capacity calculations by size fractions using the Ackers–
White equation on Figure 11.6 gives 0.33 (∼= 7000 tons/ft · d)+0.33 (∼= 500 tons/ft.
d)+0.33 (· 180 tons/ft · d)= 2560 tons/ft · d which far exceeds calculations based
on the median grain size 1 · 500 tons/ft · d = 500 tons/ft· d .

In sand-bed channels, the method of Wu et al. (2004) analyzed the relationship
between sediment transport calculation by size fractions and calculations based on
the median grain diameter d50. The results depend on the gradation coefficient of
the bed material σg =√d84/d16. The data in Figure 11.7a shows that the measured
transport rate Qsi for a grain size di varies inversely with the grain size according
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to Qsi/Qs50 ≈ (di/d50)
−b where the value of b ≈ 1.2. Wu et al. (2004) then defined

the ratio of the transport rate by size fraction Qsf to the transport rate Qs50 based
on the median grain diameter d50 as

Qsf = Qs50 e
0.5
(

1.2lnσg

)2

(11.29a)�

Similarly, the d50t of the sediment in suspension could be determined as a function
of σ g and d50t of the bed material as

d50t = d50σ
−1.2 lnσg
g (11.29b)

where d50t is the median diameter of sediment in suspension and d50 is the median
diameter of the bed material. Comparisons with laboratory and field measure-
ments are shown in Figure 11.7b. In practice, it is found that this correction is
very significant when σ g > 2 and negligible when σ g < 1.5.

The bed sediment-rating curve in Figure CS-11.2.1 for the Colorado River illus-
trates the variability in calculated sediment discharge from various formulas at a
given discharge. It has long been considered that at a given discharge, the sediment
transport rate calculated from several formulas can vary by about two orders of
magnitude, as reported by Vanoni et al. (1960), ASCE (1977, 2007). Nowadays,
the state-of-the-art in sediment transport predictions has improved considerably.
As shown in Case study 11.2, the formulas presented in this book compare very
favorably with field observations in Figure CS-11.2.1. This is generally true for
rivers with capacity-limited sediment transport.

Relatively little scatter in field measurements is observed when the sediment
load is controlled by the sediment transport capacity. This is due to the fact that
the bed material load directly depends on discharge. In such cases, variations in
sediment-rating curves are due to variability in water temperature, stream slope,
bed sediment size, particle size distribution, and measurement errors. For capacity-
limited sediment transport, the sediment-rating curve often fits a power law of
the form:

qs = aqb (11.30a)

Fitting straight lines on logarithmic graphs within the range of observed discharge
often gives an exponent b̄ ranging between 1 and 2. The flux-averaged sediment
concentration Cf is given by the ratio of sediment discharge to water discharge.
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From Equation (11.30a) this concentration is

Cf = qs

q
= aqb−1 (11.30b)

It is reasonable to expect a concentration increase during floods, which corre-
sponds to the exponent b̄ > 1. The determination of the coefficients ā and b̄ by
regression analysis should preferably be based on Equation (11.30b), as opposed
to Equation (11.30a), to avoid spurious correlation.

11.2.3 Supply-limited sediment-rating curves

The case of supply-limited sediment-rating curves is characterized by low con-
centrations and high variability. Sediment transport is limited by the supply of
sediment, usually washload, which varies with the location and intensity of rain-
storms on the watershed (forest versus agricultural fields), seasonal variation in
temperature, weathering, vegetation, and type of precipitation (rain or snow). The
source of sediment includes upland erosion, streambank erosion, point sources, and
snowmelt.Acomparison with field sediment discharge measurements is essential in
the analysis of sediment-rating curves. Under supply-limited conditions, the trans-
port rate calculated from formulas can be several orders of magnitude larger than
field measurements. The sediment supply does not depend solely on discharge and
this causes a large variability of the flow discharge at a given rate of sediment sup-
ply. The example of the La Grande River in Figure 11.8a is typical of supply-limited
sediment transport with low concentration and large variability.

When the sediment concentration data are widely dispersed around the sediment
curve obtained by regression analysis, better results can be obtained by subdividing
the discharges into small intervals and taking the average value (without logarithmic
transformation) of sediment concentration for each interval. The sediment-rating
curve is then hand plotted from these mean values of the concentration. This
procedure circumvents the bias introduced by linear regression analysis of log-
transformed variables. This procedure also avoids the problems of mathematically
fitting straight lines through curvilinear sediment-rating relationships.

Loop-rating curves describe the fact that at a given flow discharge, there can
be a higher sediment concentration during the rising limb than falling limb of the
hydrograph. An example shown in Figure 11.8a, b, and c illustrates a loop-rating
curve, or hysteresis effects in sediment-rating curves. Hysteresis effects between
discharge and concentration, seasonal variation, inaccuracies in flow and sediment
measurements, and variability in the washload may explain the scatter of points on
the sediment transport graph. Better results are sometimes achieved, provided suffi-
cient data is available, by setting individual sediment-rating curves for each month.
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Different sediment-rating curves for the rising and falling limbs of hydrographs can
sometimes be identified (Figure 11.8c). Sediment supply from streambank erosion
can sometimes be separated from upland sediment sources. The identification of
sediment sources is possible when sediments from different sources have different
mineralogy, clay content, percentage of organic matter, color, concentration, and
water chemistry. At times, the name of the river alone provides an indication of the
type of sediment transport: e.g. Muddy Creek, Red River, Green River, Colorado
River, Black River, White River, Chalk Creek, Clear Creek, Caine River, and Platte
River. Finally, in cold regions, snowmelt erosion rates can be far different from
rainfall erosion rates.

11.3 Short- and long-term sediment load

The short-term analysis of sediment load in Section 11.3.1 provides information,
generally on a daily basis, on the magnitude and variability of sediment transport
during rainstorm or snowmelt events. The long-term analysis, on the other hand,
gives an estimate of the expected amount of sediment yielded by a stream. On
an annual basis, it gives the mean annual sediment load of a stream, covered in
Section 11.3.2. The long-term sediment load is required for reservoir sedimentation,
sediment budget, and specific degradation studies.

11.3.1 Daily sediment load

The daily sediment load can be computed with a relatively high degree of accu-
racy when the discharge and sediment concentration do not change rapidly within
one day. This can be a challenge on very small streams, but is a reasonably good
approximation for most rivers. The total sediment discharge in tons per day is the
product of the flux-averaged total sediment concentration, the daily mean water
discharge, and a unit conversion factor. The daily sediment load is obtained by one
of the following formulas:

Qs(metric tons/day)= 0.0864Cmg/lQ(in m3/s) (11.31a)�

or

Qs(metric tons/day)= 2.446 × 10−3Cmg/lQ(in ft3/s) (11.31b)

During periods of rapidly changing concentration and water discharge, the concen-
tration and gage records are subdivided into hourly time increments. Incomplete
sediment records in which daily discharge measurements are sparse can be ana-
lyzed by first obtaining the sediment-rating curve from the measurements using the
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Figure 11.9. Daily sediment load simulation of the York River (after Frenette and
Julien, 1987)

method of Section 11.2.2. Alternatively, non-linear regression of log-transformed
concentration versus discharge measurements is also possible. The reconstitution of
missing sediment concentration is then possible from discharge measurements and
the sediment-rating curve. A typical graph of daily sediment discharge for the York
River is shown in Figure 11.9. The results are usually good as long as there is mini-
mal variability in the sediment-rating curve. The case of capacity-limited sediment
transport usually provides the best results. In the case of supply-limited transport,
a stochastic component can be added to the deterministic mean sediment-rating
curve (e.g. Frenette and Julien, 1987).

11.3.2 Annual sediment load

There are two basic approaches for the determination of the long-term average
sediment load of a river: (1) the summation approach; and (2) the flow duration
curve approach. First, the summation over a long period of time of the measured and
reconstituted daily sediment discharges from Section 11.3.1 can be accomplished
using computers. Mass curves provide the cumulative sediment load as a function
of time in years. The slope of the line gives the mean annual sediment load. Mass
curves are useful to identify significant changes in flow regime. For example, the
effect of the Cochiti Dam on sediment transport is illustrated in Figure 11.10a.
Double mass curves plot the cumulative sediment discharge as a function of the
cumulative water discharge. The slope of the double mass curve provides average
sediment concentration as shown in Figure 11.10b.

The second approach combines a sediment-rating curve between total sediment
discharge, or flux-averaged concentration, and water discharge; and a flow-duration
curve. This method is referred to as the flow-duration/sediment-rating-curve
method. The flow-duration curve states the percentage of time a given river dis-
charge is exceeded. As an example, the flow-duration curve of the Chaudière River
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Figure 11.10. a) Mass; and b) double mass curve for the Rio Grande near
Albuquerque (after Julien et al., 2005)

is plotted in Figure 11.11a and discrete values are reported in columns (2) and (4)
of Table 11.4 respectively. Notice that the selected time percentage intervals are
smaller as discharge increases. The sediment-rating curve of the Chaudière River
at St-Lambert-de-Lévis is shown in Figure 11.11b, from which, the flux-averaged
concentration is approximated by Cmg/l = 3.88 × 10−4Q1.3

f 3/s. This figure is quite

enlightening for several reasons: (1) the highest value of daily sediment load more
than 10,000 times the low values, thus high values provide most of the sediment
load to this river; (2) sampling over a wide range of discharge will provide a better
correlation coefficient in sediment-rating curves; and (3) the average of numerical
values is higher than the average of log-transformed values. Sediment concentration
calculations for each interval are given in Table 11.4 column (5).

Experience indicates that the flow-duration/sediment-rating curve method is most
reliable: (1) when the period of recording is long; (2) when sufficient data at high
flows is available; and (3) when the sediment-rating curve shows considerable
scatter. Flood flows carry most of the sediments and in order to give full weight to
the total sediment inflow, observations must normally concentrate during the flood
period. Unfortunately, measurements are rarely available during extreme events,
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Figure 11.11. a) Flow-duration curve of the Chaudière River b) Sediment-rating
curve of the Chaudière River

and must be extrapolated, preferably from measurements during high flows. On an
annual basis, the sediment load is given by

Qs(metric tons/year)= 31.56Cmg/lQ(in m3/s) (11.32a)

or

Qs(metric tons/year)= 0.893Cmg/lQ(in ft3/s) (11.32b)
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The total annual sediment load is then given by the sum of all the intervals of
the flow-duration curve. In this example, the sum of all numbers in column (7)
gives an average annual sediment load of 367,500 metric tons per year for the
Chaudière River. The results in Table 11.4 also show that most of the sediment load
comes from high flow discharges exceeding 7,000 cfs. Likewise the median of the
sediment load corresponds to a discharge of about 27,000 cfs which is exceeded
1.5% of the time or about 5 days per year. The maximum sediment load in column
(7) is for discharges around 21,000 cfs, however, it should be considered that the
time intervals in column (1) get smaller at high flows.

11.4 Sediment sources and sediment yield

In streams with very coarse bed material, stiff clay, or bedrock control, the sediment
transport capacity of fine fractions calculated from sediment transport formulas far
exceeds the sediment supply from upstream sources. Sediment transport in such
streams can be obtained from an analysis of sediment sources (Section 11.4.1) and
sediment yield (Section 11.4.2).

11.4.1 Sediment sources

The analysis of sediment sources aims at estimating the total amount of sediment
eroded on the watershed on an annual basis, called annual gross erosion. The annual
gross erosion AT depends on the source of sediments in terms of upland erosion
AU , gully erosion AG, and local bank erosion AB, thus AT = AU + AG + AB.

Upland erosion AU generally constitutes the primary source of sediment, other
sources of gross erosion such as mass wasting or bank erosion AB and gully erosion
AG must be estimated at each specific site. For instance, the annual volume of
sediment scoured through lateral migration of the stream and the upstream migration
of headcuts can be determined from past and recent aerial photographs and field
surveys. In stable fluvial systems, the analysis of sediment sources focuses on
upland erosion losses from rainfall and snowmelt.

The impact of raindrops on a soil surface can exert a surface shear stress up to
10 Pa, thus far exceeding the bonding forces between soil particles (Hartley and
Julien, 1992). The detached particles are transported through sheet flow into rills
and small channels (Alonso et al., 1991). The critical shear stress of cohesive soils
can also be very high (Smerdon and Beasley, 1961) for dry soils but decreases on
wet soils. With reference to Example 2.2, the unit upland sediment discharge from
sheet and rill erosion can be written in the form

qt = e1 Se2
o qe3 (11.33a)
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Figure 11.12. Exponents of the equation for sheet flow and ill erosion (after Julien
and Simons, 1985a)

The values of the exponents e2 and e3 from field observations and from bedload
equations from Julien and Simons (1985a) are shown on Figure 11.12. The typical
range for field values is 1.2< e2 < 1.9 and 1.4< e3 < 2.4. The equation of Kilinc
(1972) for sheet and rill erosion is recommended for bare sandy soils:

qt(in lb/fts)= 1.24 × 105 S1.66
o q2.035;(q in ft2/s) (11.33b)

qt(in t/ms)= 2.55 × 104 S1.66
o q2.035;(q in m2/s) (11.33c)

Note that the coefficient 25,500 in Equation (11.33c) refers to English tons (ton =
2,000 lb). The factor 23,200 can be used for qt in metric tons per meter per second
(1 metric ton = 1,000 kg).

Considering various soil types and vegetation, the annual rainfall erosion losses
AU can be calculated from the Universal Soil-Loss Equation. The USLE computes
soil losses at a given site from the product of six major factors:

AU = R̂ K̂ L̂ Ŝ Ĉ P̂ (11.34)�

when AU is the soil loss per unit area from sheet and rill erosion normally in tons
per acre, R̂ is the rainfall erosivity factor, K̂ is the soil erodibility factor usually
in tons per acre, L̂ is the field length factor, Ŝ is the field slope factor, Ĉ is the
cropping-management factor normalized to a tilled area with continuous fallow,
and P̂ is the conservation practice factor normalized to straight-row farming up
and down the slope. GIS-based computer models have been developed to calculate
annual rainfall erosion losses (e.g. Molnar and Julien 1998, Johnson et al. 2000,
and Kim and Julien 2007).
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The rainfall erosivity factor R̂ can be calculated from the summation for each
storm during the period considered

R̂ = 0.01
∑

(916 + 331 log I) I (11.35)

where I is the rainfall intensity in in/hr. The annual rainfall erosion index in the
United States decreases from a value exceeding 500 near the Gulf of Mexico to
values less than 100 in the northern States and in the Rockies. The slope length-
steepness factor L̂ Ŝ is a topographic factor which can be approximated from the
field runoff length Xr in feet and surface slope So in ft/ft by:

L̂ Ŝ =√Xr

(
0.0076 + 0.53 So + 7.6 S2

o

)
(11.36)

The factor L̂ Ŝ is normalized to a runoff length of 72.6 feet and a 9 percent field
slope.

In the more general case of erosion from sheet flow, modifications to Equation
(11.33) reflect the influence of soil type, vegetation, and practice factors using the
factors K̂ , Ĉ and P̂ as:

qt(in tons/ms)= 1.7 × 105 S1.66
o q2.035 K̂ Ĉ P̂ (11.37)

where the surface slope So is in m/m, the unit discharge q is in m2/s. The soil erodi-
bility factor K̂ , the cropping-management factor Ĉ, and the conservation practice
factor P̂ are obtained from Tables 11.5, 11.6a, b, and c and 11.7, respectively.
Equation (11.34) is limited to rainfall erosion losses, Equation (11.37) is applicable
to both rainfall and snowmelt erosion losses.

The equivalent upland erosion is then calculated from

Au =
∫

time

∫
width

qt dwdt (11.38)

More information on upland erosion methods are detailed in Julien (2002) and US
Bureau of Reclamation (2006). Also, GIS-based computer models can simulate
the dynamics of surface runoff and sheet erosion during rainstorms. For instance
the models CASC2D-SED (Johnson et al. 2000, Julien and Rojas 2002, and Rojas
et al. 2008) and TREX (Velleux et al. 2006, 2008) have been successfully applied
to several watersheds.
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Table 11.5. Soil erodibility factor K̂ in
tons/acre

Organic matter content (%)

Textural class 0.5 2

Fine sand 0.16 0.14
Very fine sand 0.42 0.36
Loamy sand 0.12 0.1
Loamy very fine sand 0.44 0.38
Sandy loam 0.27 0.24
Very fine sandy loam 0.47 0.41
Silt loam 0.48 0.42
Clay loam 0.28 0.25
Silty clay loam 0.37 0.32
Silty clay 0.25 0.23

Source: Modified after Schwab et al. (1981)

Table 11.6a. Cropping-management factor Ĉ for
undisturbed forest land

Percent of area
covered by canopy of
trees and undergrowth

Percent of area
covered by duff at
least 2 inches deep Factor Ĉ

100–75 100–90 0.0001–0.001
70–45 85–75 0.002–0.004
40–20 70–40 0.003–0.009

Source: Modified after Wischmeier and Smith (1978).

Table 11.6b. Cropping-management factor Ĉ for
construction slopes

Type of mulch
Mulch rate
tons per acre Factor C

Straw 1.0–2.0 0.06–0.20
Crushed stone
1/4 to 1.5 inch

135
240

0.05
0.02

Wood chips 7
12
25

0.08
0.05
0.02

Source: Modified after Wischmeier and Smith (1978)
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Table 11.7. Conservation practice factor P̂ for
contouring, strip cropping, and terracing

Terracing
Farming on Contour

Land slope (%) contour strip crop (a) (b)

2 – 7 0.50 0.25 0.50 0.10
8 – 12 0.60 0.30 0.60 0.12
13 – 18 0.80 0.40 0.80 0.16
19 – 24 0.90 0.45 0.90 0.18

(a) For erosion-control planning on farmland.
(b) For prediction of contribution to off-field sediment load
Source: modified after Wischmeier (1972)

11.4.2 Sediment yield

The rate at which sediment is carried by natural streams is much less than the
gross erosion on its upstream watershed. Sediment is deposited between the source
and the stream cross-section whenever the transport capacity of runoff water is
insufficient to sustain transport. The sediment-delivery ratio SDR denotes the ratio
of the sediment yield Y at a given stream cross-section to the gross erosion AT from
the watershed upstream of the measuring point. The sediment yield can therefore
be written as

Y = AT SDR (11.39)�

The sediment-delivery ratio depends primarily on the drainage area At of the
upstream watershed, as shown in Figure 11.13. The sediment-delivery ratio
decreases with drainage because sediment from upland areas is trapped in lakes
and reservoirs and on flood plains. It can be expected that drainage basins with
numerous lakes and reservoirs would have lower values of sediment-delivery ratio
than watersheds with streams only.

The sediment yield of watersheds can be obtained from the gross erosion and
from the sediment-delivery ratio. An alternative method is to simply measure the
accumulation of sediment in reservoirs. Specific degradation refers to the ratio of
the sediment yield divided by the drainage area of the watershed.

Specific degradation results as a function of total annual rainfall and drainage area
are shown in Figures 11.14a and 11.14b respectively. The results from the field mea-
surements of reservoir sedimentation in US reservoirs by Kane and Julien (2007)
show a rather wide scatter of the data around mean annual values of several hundred
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Figure 11.14. Specific degradation (after Kane and Julien, 2007) versus a) annual
rainfall; and b) drainage area

tons of sediment per square kilometer. There is a decrease of specific degradation
with drainage area.

Case study 11.3 illustrates the application of several concepts for supply-limited
transport to the Chaudière watershed in Canada.
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Case study 11.3 Chaudière River, Canada

The Chaudière River, Canada, drains a 5,830 km2 Appalachian basin to the
St Lawrence River near Québec (Figure CS-11.3.1a). Approximately 65% of the

S > 7.5 %
2.5 % < S < 7.5 %
S < 2.5 %
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Figure CS-11.3.1 a) location of the Chaudière watershed (after Julien and
Frenette, 1987) b) surface slope of the Chaudière watershed (after Frenette
and Julien, 1986b) c) land use of the Chaudière watershed (after Frenette
and Julien, 1986b) d) specific degradation in metric par km2 (after Julien, 1979).
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watershed area is still forested and 35% supports agriculture and pasture (Figure
CS-11.3.1c).An analysis of soil erosion using the USLE shows that soil losses are
primarily a function of the surface slope So and the crop-management factor Ĉ of
the USLE, as shown in Figure CS-11.3.1b and d, the average gross erosion loss
is about 770 ton/km2 year. The mean annual gross rainfall erosion from upland
sources calculated from the USLE is of the order of 4.5 × 106 metric tons/year
(Figure CS-11.3.1d). Given the mean annual sediment yield of 267 ktons/year
from Table 11.4, the sediment-delivery ratio of this watershed is about 0.08 as
shown in Figure 11.13.

Short-term simulations of sediment discharge on Figure CS-11.3.2 are pos-
sible despite the large scatter on the sediment-rating curve on Figure 11.11b.
Monthly simulations of both rainfall and snowmelt erosion losses on Figure
CS-11.3.3 obtained from Equation (11.37) demonstrate that about 70% of the
mean annual sediment load results from snowmelt.
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Figure CS-11.3.2 Daily sediment load simulation of the Chaudière River (after
Frenette and Julien, 1986b).
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Exercises

��11.1 The particle size distribution of the bed material of the Mississippi River
at Tarbert Landing is d10 = 0.072 mm; d35 = 0.12 mm; d50 = 0.16 mm;
d65 = 0.18 mm; and d90 = 0.25 mm. The suspended samples shown in Figure
CS-10.1.1 contain 20–200 mg/l of sand depending on sampling depth, and 150–
300 mg/l of silt and clay. Determine: (a) the gradation coefficient of the bed
material; (b) what size fraction corresponds to washload; (c) can washload be
neglected?; and (d) should the bed material load calculation be done by size
fraction?

�11.2 Given Equation (11.29) of Wu et al. (2004) for calculations by size fractions,
what would be the ratio of Qsf /Qs50 for the Big Sand Creek example in Case
study 11.1?Also, estimate the median grain diameter of sediment in suspension.

Problems
�Problem 11.1

Compute the average sediment concentration Cppm in an alluvial canal using the
following methods: Engelund and Hansen, Ackers and White, and Yang. The
canal carries a discharge of 105 m3/sec with the water temperature of 15◦C. The
channel has a slope of 0.00027, an alluvial bed width of 46 m, a flow depth of
2.32 m, and a sideslope of 2 to 1. The bed material (specific gravity G = 2.65)
has the following particle size distribution:

Fraction
diameter (mm)

Geometric
mean (mm)

Fraction by
weight (�pi)

0.062–0.125 0.088 0.04
0.125–0.25 0.177 0.23
0.25–0.50 0.354 0.37
0.50–1.0 0.707 0.27
1.0–2.0 1.414 0.09

(Answer: Engelund-Hansen C = 356 ppm; Ackers-White C = 866 ppm; Yang
C = 140 ppm)

��Problem 11.2

The Conca de Tremp watershed covers 43.1 km2 in Spain. The elevation ranges
from 530–1,460 m above sea level, the climate is typically Mediterranean with
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690 mm of mean annual precipitation and a 12.5◦C mean annual temperature.
The Mediterranean forest has been depleted and the region has been inten-
sively farmed for centuries. Figure P-11.2 shows the upland erosion map in
metric tons per hectare per year (from Julien and Gonzalez del Tanago, 1991):
(a) estimate the gross upland erosion and the sediment yield of the water-
shed; (b) how does the erosion rate compare with the geologic erosion rate
0.1 tons/acre/year (1 acre = 0.4045 hectare)? (c) compare with the accelerated
erosion rates for pasture–5 tons/acre/year? (d) compare with the erosion rate of
urban development–50 tons/acre/year? and (e) plot the estimated sediment yield
from (a) and the estimated sediment-delivery ratio with specific degradation
rates on Figure 11.14.
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Figure P-11.2 Upland erosion map in metric tons/ha·yr

�Problem 11.3

Consider sediment transport in the Elkhorn River at Waterloo, Nebraska, given
the total drainage area of 6,900 mi2. The flow-duration curve and the sediment-
rating curve are detailed in the following tabulations:

Flow-duration curve

% time exceeded discharge (ft3/s)

0.05 37,000
0.3 15,000
1 9,000
3.25 4,500
10 2,100
20 1,200
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% time exceeded discharge (ft3/s)

30 880
40 710
50 600
60 510
70 425
80 345
90 260
96.75 180

Sediment-rating curve

discharge (ft3/s)
suspended load
(thousand tons/day)

280 0.25
500 0.6
800 1.0
1,150 3.0
1,800 8.0
2,300 18.0
4,200 40.0
6,400 90.0
8,000 300.0
10,000 500.0

Calculate: (a) the mean annual suspended sediment load using the flow duration–
sediment rating curve method; (b) the sediment yield per square mile; and (c)
plot the results on Figure 11.14.

(Answer: (a) 4.9 × 106 tons/year; (b) 710 tons/mi2 · year).

Problem 11.4

Compare the bed sediment discharge equation proposed by Julien (2002) as
qbv ≈ 18

√
gd3

s τ
2∗ , applicable where 0.1< τ∗ < 1, with: (a) the Big Sand Creek

in Case study 11.1; (b) the Colorado River in Case study 11.2; and (c) the example
in Figure 11.6.
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��Problem 11.5

With reference to Case study 11.3 on the Chaudière River: (a) use the data of
Table 11.4 to plot the entire flow-duration curve; (b) calculate the cumulative
sediment load from Table 11.4, column (7), from the bottom up; (c) divide
the cumulative sediment load by 367,500 ton/year and plot as a function of
the exceedence probability (column (2) of Table 11.4); and (d) determine the
sediment load exceeded 1% of the time.

��Problem 11.6

An example of suspended sediment data on the Mississippi River at Tarbert
Landing is given in the table below (Akalin, 2002). The discharge on April 10,
1998 was 847,658 ft3/s, the water temperature was 16◦C, and the average slope
is 3.78 cm/km. The average gradation of the bed material at Tarbert Landing
is 1% very fine sand, 37% fine sand, 57% medium sand, and 5% coarse sand.
Figure P-11.6 also shows how the sediment concentration of fine sand decreases
with temperature.
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Figure P-11.6 Sand concentration versus temperature (after Akalin, 2002)

Suspended sediment
percentage finer

Point concentration
(ppm)

Vertical
(ft)

Depth
(ft)

Sampling
depth

Velocity
(ft/s)

0.425
(mm)

0.25
(mm)

0.125
(mm)

0.0625
(mm) Sand Fine Total

1,371 62 6.2 4.85 100 91.4 31.7 4.3 29 162 191
18.6 4.11 100 90.0 23.7 2.4 49 151 200
31.0 4.04 100 92.7 31.5 4.0 40 135 175
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Suspended sediment
percentage finer

Point concentration
(ppm)

Vertical
(ft)

Depth
(ft)

Sampling
depth

Velocity
(ft/s)

0.425
(mm)

0.25
(mm)

0.125
(mm)

0.0625
(mm) Sand Fine Total

43.4 4.25 100 85.0 16.3 1.7 88 148 236
55.8 3.57 97.7 80.4 14.8 1.2 107 158 265
60.8 2.36 95.7 74.9 13.0 1.2 142 157 299

2,129 63 6.3 5.99 100 90.0 25.4 2.3 33 154 187
18.9 4.94 100 87.3 19.2 1.5 56 138 194
31.5 3.9 98.4 80.6 15.3 1.2 95 153 248
44.1 3.5 98.2 72.3 9.1 0.6 194 159 353
56.7 2.9 98.4 55.4 4.6 0.1 390 141 531
61.7 2.14 96.2 70.1 6.2 0.5 296 150 446

2,730 57 5.7 6.42 99.2 96.9 39.3 5.4 38 161 119
17.1 6.47 100 98.5 34.6 1.9 62 154 216
28.5 5.88 99.0 96.9 18.7 0.6 116 162 278
39.9 4.75 98.8 95.5 14.2 0.8 185 171 356
51.3 4.71 99.0 96.0 13.0 0.5 264 167 431
55.9 3.28 98.5 95.4 11.5 0.2 407 171 578

Determine the following: (a) what is the settling velocity of these size frac-
tions?; (b) what is the shear velocity?; (c) which of washload or bed material
load is predominant?; (d) the washload concentration variability over depth and
width; (e) the sediment concentration of medium, fine, and very fine sand; (f)
plot the Rouse diagrams for each size fraction and for the total sand fraction; (g)
extrapolate the concentration to a = 2d50 from the Rouse diagrams and com-
pare the results; (h) extrapolate the respective values of the Rouse number and
compare with the theoretical values assuming κ = 0.4; (i) plot the logarithmic
velocity profiles and determine the values of κ; (j) plot the particle size distri-
bution of the bed material and the suspended sediment; and (k) plot the d50t/d50

on Figure 11.7b.

�Problem 11.7

With reference to Case study 11.2, calculate the unit sediment discharge using the
bedload methods of DuBoys, Meyer-Peter and Müller; and Einstein–Brown in
Chapter 9. Plot the results of calculations based on d50 for h = 4 ft and h = 10 ft
in Figure CS-11.2.2.
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�Problem 11.8

Consider the canal data compiled by Kodoatie (1999). Plot the resistance to flow
measurements in Figure 6.6a. Examine the range of u∗/ω values. Compare the
measured concentration with those predicted from the methods of this chapter.

Canal data

Water
discharge
(m3/s)

Channel
width
W (m)

Flow
depth
h (m)

Flow
velocity
V (m/s)

Median
bed diameter
d50 (mm)

Surface
slope
Sw (m/m)

Water
temp. (◦C)

Measured
concentration
C (ppm)

American canal
12.59 11.73 1.83 0.59 0.096 0.000063 23 370

1.56 3.49 0.80 0.56 0.173 0.000253 21 249
1.22 3.19 0.80 0.47 0.229 0.000294 21 406

29.18 22.19 2.53 0.52 0.253 0.000058 22 115
29.40 14.81 2.59 0.77 0.311 0.000120 22 185

Indian canal
156.05 56.27 3.39 0.82 0.020 0.000060 20 2,601

59.16 25.49 2.44 0.95 0.021 0.000084 20 5,759
153.25 56.02 3.37 0.81 0.024 0.000060 20 2,887

60.72 25.56 2.49 0.95 0.025 0.000084 20 5,182
157.41 56.47 3.35 0.83 0.030 0.000070 20 2,316

Pakistani canal
158.09 118.87 2.23 0.60 0.083 0.000070 28 369

94.27 88.39 1.46 0.73 0.084 0.000137 28 190
29.59 35.66 1.68 0.49 0.085 0.000085 31 103
76.94 69.49 1.83 0.61 0.108 0.000132 27 125
52.13 35.66 2.29 0.64 0.110 0.000075 32 156

��Problem 11.9

Consider the Amazon River data below from Posada-Garcia (1995). Compare
the concentration measurements with those predicted from the methods of this
chapter.

Water
discharge
(m3/s)

Channel
width
(m)

Flow
depth
(m)

Flow
velocity
(m/s)

Median
bed
diameter
(mm)

Surface
slope
(m/m)

Water
temp.
(◦C)

Suspended
sed.
conc.
(mg/l)

38,100 970 23.00 1.71 0.255 0.0000686 26 351
43,600 1,080 23.80 1.70 0.220 0.0000691 27 398
63,600 1,400 23.70 1.92 0.233 0.0000580 27 276
57,100 1,360 22.70 1.85 0.196 0.0000641 27 606
86,100 2,100 21.90 1.87 0.238 0.0000560 26 238
83,700 2,129 22.00 1.79 0.198 0.0000560 27 243
65,400 2,160 19.00 1.59 0.244 0.0000641 27 499
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Water
discharge
(m3/s)

Channel
width
(m)

Flow
depth
(m)

Flow
velocity
(m/s)

Median
bed
diameter
(mm)

Surface
slope
(m/m)

Water
temp.
(◦C)

Suspended
sed.
conc.
(mg/l)

66,600 1,720 21.80 1.78 0.212 0.0000641 27 548
62,700 1,530 23.90 1.71 0.343 0.0000452 27 555
71,300 3,020 16.90 1.40 0.192 0.0000452 27 501
151,000 1,000 62.30 2.42 0.409 0.0000370 27 156
80,800 1,400 36.10 1.60 0.154 0.0000452 27 461
85,200 1,418 37.30 1.61 0.120 0.0000343 27 376
75,700 1,890 21.80 1.84 0.331 0.0000257 27 481
140,000 3,100 28.10 1.61 0.244 0.0000330 26 186
133,000 3,130 27.60 1.54 0.216 0.0000330 27 181
90,600 1,510 44.60 1.35 0.259 0.0000138 27 265
155,000 2,400 45.00 1.44 0.171 0.0000189 27 151
120,000 2,300 38.90 1.34 0.141 0.0000138 27 290
235,000 2,600 48.90 1.85 0.243 0.0000200 26 207
230,000 2,340 55.80 1.76 0.237 0.0000200 27 216

�Problem 11.10

Consider the Niobrara River data at comparable flow depth from Colby and
Hembree (1955). Plot the concentration as a function of channel slope, tem-
perature, and u∗/ω. Carry out calculations using methods from this chapter and
compare the results.

Q (m3/s) W (m) h (m) S (m/m) T◦ (◦C) d50 (mm) d65 (mm) σ g CT (ppm)

11.35 21.34 0.49 0.001705 5.0 0.30 0.41 2.345 1,890
11.72 21.64 0.49 0.001705 6.7 0.28 0.34 1.643 2,000
16.05 21.95 0.58 0.001799 11.7 0.21 0.25 1.573 2,220

9.74 21.34 0.47 0.001420 15.6 0.26 0.32 1.653 1,780
9.42 21.03 0.48 0.001402 16.1 0.32 0.38 1.514 1,490

12.88 21.64 0.53 0.001686 14.4 0.31 0.38 1.669 1,900
5.91 21.03 0.42 0.001250 28.3 0.32 0.38 1.631 392
7.53 21.34 0.49 0.001155 22.2 0.29 0.37 1.824 820
5.86 21.34 0.44 0.001212 22.8 0.34 0.42 1.956 429
6.65 21.18 0.47 0.001136 16.1 0.30 0.36 1.638 736
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�Problem 11.11

Consider the Middle Loup River data from Hubbell and Matejka (1959).
At comparable discharge, plot the sediment concentration as a function of
water temperature. Carry out calculations using methods from this chapter and
compare the results.

Q (m3/s) W (m) h (m) S (m/m) T◦ (◦C) d50 (mm) d65 (mm) σ g CT (ppm)

10.31 43.89 0.32 0.001458 24.4 0.317 0.399 1.980 632
10.45 43.28 0.36 0.001250 21.7 0.424 0.586 2.403 687
10.22 44.20 0.33 0.001345 10.0 0.339 0.416 1.849 1,410
10.39 44.81 0.37 0.001288 31.1 0.383 0.476 2.301 548
10.93 45.11 0.33 0.001326 26.1 0.334 0.424 2.095 686
10.36 45.11 0.33 0.001307 18.3 0.274 0.344 1.687 1,020

��Computer problem 11.1 Sediment-rating curve of the Niobrara River

The Niobrara River, Nebraska, carries significant volumes of sand. The bed
material size has a geometric mean of 0.283 mm and standard deviation σg = 1.6,
d35 = 0.233 mm, d50 = 0.277 mm, d65 = 0.335 mm, and d90 = 0.53 mm. The
detailed sieve analysis is given below.

Sieve opening (mm) % Finer

0.062 0.05
0.125 4.2
0.25 40.0
0.5 89.0
1.0 96.5
2.0 98.0
4.0 99.0

The stage–discharge relationship for the Niobrara River is shown in Figure
CP-11.1a at flow depths ranging from 0.7 to 1.3 feet and unit discharges from
1.7 to 5 ft2/s. The washload consisted of particles finer than 0.125 mm. Given
the channel width 110 ft, the channel slope 0.00129, and the water temperature
at 60◦F: (a) calculate the unit sediment discharge by size fractions using three
appropriate methods from this chapter; (b) plot the results on the sediment-rating
curve in Figure CP-11.1b; and (c) compare the calculated transport rates with
the field measurements.
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Figure CP-11.1 a) Stage-discharge of the Niobrara River b) Sediment-rating
curve of the Niobrara River (after Vanoni et al., 1960)

��Computer problem 11.2 Total bed sediment discharge

Consider the channel reach analyzed in Computer problems 3.1 and 8.2.
Select one appropriate bed-sediment discharge relationship to calculate the bed-
sediment discharge in metric tons/m·day by size fractions. Plot the total sediment
transport capacity along the 25 km reach, discuss the methods, assumptions
and results.
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Reservoir sedimentation

As natural streams enter reservoirs, the stream flow depth increases and the flow
velocity decreases. This reduces the sediment transport capacity of the stream and
causes settling. The pattern of deposition generally begins with a delta formation
in the reservoir headwater area. Density currents may transport finer sediment
particles closer to the dam. Figure 12.1 depicts a typical reservoir sedimentation
pattern. Aggradation in the upstream backwater areas may increase the risk of
flooding over long distances above the reservoir.

The rate of sedimentation in reservoirs varies with sediment production on
the watershed, the rate of transportation in streams, and the mode of deposition.
Reservoir sedimentation depends on the river regime, flood frequencies, reservoir
geometry and operation, flocculation potential, sediment consolidation, density cur-
rents, and possible land use changes over the life expectancy of the reservoir. In the
analysis of reservoir sedimentation, storage losses in terms of live and dead storage,
trap efficiency, control measures and the reservoir operations must be considered
given: the inflow hydrograph, the sediment inflow, the sediment characteristics, the
reservoir configuration, the regional geography, and land use.

The concept of life expectancy of reservoirs describes the time at which a reser-
voir is expected to become entirely filled with sediment. Its evaluation represents
a challenge since the sediment sources arise from various geological formations,
cutting and burning of brushland and forest, over-grazed grasslands, natural haz-
ards including landslides, typhoons, and volcanoes, and changes in land use are
all likely to occur during the expected life of the reservoir. Once the incoming
sediment load has been determined from Section 12.1, the analysis of backwa-
ter profiles in Section 12.2 is combined with an analysis of sediment transport
capacity to calculate the aggradation rate and the trap efficiency from Section 12.3.
Sediment deposits consolidate over time (Section 12.4) and the life expectancy
of a reservoir can be estimated from Section 12.5. The analysis of density cur-
rents (Section 12.6) is sometimes conducive to sediment management techniques

319
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River

Velocity distribution
Sediment distribution

Original water surface
Water surface with delta

Delta
(coarse sediments)

Topset slope
Foreset slope

Bottom deposit (fine sediments)

Original river slope
Density current

Density current bed
(very fine sediments)

Live storage

Dead storage

Figure 12.1. Typical reservoir sedimentation pattern (after Frenette and Julien,
1986a)

such as flushing. Reservoir sedimentation surveys and sediment control measures
are briefly outlined in Sections 12.7 and 12.8 respectively. Two examples and
two case studies provide more details on the application of methods covered in
this chapter.

12.1 Incoming sediment load

The incoming sediment load must be measured at appropriate gauging stations
over several years prior to construction. Flow and sediment measurements define
the long-term sediment load as described in Section 11.3. The annual sediment
yield can also be obtained from estimates of sediment sources and sediment yield
as shown in Section 11.4.

When washload is dominant, mathematical models can be used to predict soil
losses by overland flow (e.g. Case study 11.3). Watershed models using the universal
soil-loss equation among others can be used when sufficient data are available
from topographic, land use, and agricultural maps, geographic information systems,
aerial photographs, and field surveys. Sediment yield estimates based on physical
characteristics of the watershed are extremely valuable because the rate of sediment
transport can then be predicted for alternative watershed conditions. For instance,
Kim and Julien (2006) provided a method to estimate the sediment load into the
Imha reservoir in South Korea on a mean annual basis and for extreme single events
like typhoon Maemi in 2003.

12.2 Reservoir hydraulics

As a stream enters a reservoir, the flow depth increases and the velocity and fric-
tion slope decrease, as generally described by M-1 backwater curves (Chapter 3).
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Most streams can be analyzed by one-dimensional approximations of the equations
of conservation of mass and momentum. The resulting backwater equation has
been derived in Example 3.10, and the water surface elevation h varies with down-
stream distance x as a function of the bed slope So, the friction slope Sf , and the
Froude number Fr = V /

√
gh, given the mean flow velocity V and the gravitational

acceleration g.

dh

dx
= So − Sf

1 − Fr2
(E-3.10.1)

Equation (E-3.10.1) can be solved numerically from the point of maximum depth
at the downstream end. The flow depth change �h corresponding to reach length
�x is calculated by solving Equation (E-3.10.1) as:

�h = (So − Sf )�x

1 − Fr2
(12.1)

At the upstream end, the normal flow depth corresponds to �h → 0,�x → ∞
and Sf = So; while in the reservoir, Fr2 → 0, Sf → 0 and �x =�h/So. Solution
to Equation 12.1 is sought while satisfying the continuity relationship Q = VhW ,
given the channel width W . The resistance equation is also required in terms of
hydraulic radius and friction slope as compiled in Table 6.1. As a delta forms from
the aggradation of bed material load (sand and gravels), the topset bed slope will
decrease to about half the original stream slope, as shown in Figure 12.2.
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Figure 12.2. Topset slope versus stream slope (after US Bureau of Reclamation,
2006)
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12.3 Trap efficiency and aggradation

Owing to conservation of sediment mass, part of the total load deposits on the chan-
nel bed as the sediment transport capacity decreases in the downstream direction.
With reference to the sediment continuity relationship (Equation (10.3)) without
sediment source (Ċ = 0):

∂C

∂t
+ ∂ q̂tx

∂x
+ ∂ q̂ty

∂y
+ ∂ q̂tz

∂z
= 0 (12.2)

where the mass fluxes per unit area q̂tx, q̂ty, andq̂tz were defined in Equation (10.4).
Assuming a steady supply of sediment (∂C/∂t = 0), Equation (12.2) for one-

dimensional flow (∂ q̂ty/∂y = 0) reduces to

∂ q̂tx

∂x
+ ∂ q̂tz

∂z
= 0 (12.3)

It is further assumed that the diffusive and mixing fluxes from Equation 10.4
are small compared to the advective fluxes in a reservoir. Considering settling as
the dominant advective flux in the vertical direction vz = −ω, one obtains from
q̂tx = vxC and q̂tz = −ωC:

∂vxC

∂x
− ∂ωC

∂z
= 0 (12.4)

A practical approximation is obtained for gradually varied flow (∂vx/∂x → 0),
constant fall velocity ω and ∂C/∂z = −C/h, thus

vx
∂C

∂x
+ ωC

h
= 0 (12.5)

The solution for grain sizes of a given sediment fraction i (constant fall velocity)
at a constant unit discharge q = Vh, given vx = V , is a function of the upstream
sediment concentration Coi of fraction i at x = 0:

Ci = Coi e− Xωi
hV (12.6)

As shown in Figure 12.3, this relationship is in good agreement with the relationship
of Borland (1971) and the measurements of Cecen et al. (1969).

This shows that the concentration left in suspension is negligible (Ci/Coi = 0.01)
at a distance XCi .

XCi = 4.6
hV

ωi
= 4.6q

ωi
(12.7)
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The percentage of sediment fraction i that settles within a given distance X defines
the trap efficiency, TEi as:

TEi = Coi − Ci

Coi
= 1 − e− Xωi

hV (12.8)��

Without resuspension, 99% of the sediment in suspension settles within a distance
XCi = 4.6hV

ωi
. When calculating the trap efficiency of silt and clay particles, careful

consideration must also be given to density currents (Section 12.6) and possible
flocculation, in which case the flocculated settling velocity ωfi from Section 5.4.3
must be used instead of ωi.

Another way to estimate the percentage of sediment trapped in a reservoir is
from the ratio of reservoir volumetric capacity to the annual volumetric inflow of
water. The relationships from Brune and Churchill are shown in Figure 12.4 for
comparison with field measurements.
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Figure 12.5. Aggradation–degradation scheme

The settling sediment flux in the z direction for a given size fraction i causes a
change in bed surface elevation z. Given the porosity po = ∀v/∀t = 1 − Cv of the
bed material, the integrated form of Equation (12.3) over the depth h is a function
of the unit sediment discharge by volume qtx

(
in L2/T

)
:

TEi
∂qtxi

∂x
+ (1 − po)

∂zi

∂t
= 0 (12.9a)

or

∂zi

∂t
= − TEi

(1 − po)

∂qtxi

∂x
(12.9b)�

Values of porosity po depend on the specific weight of sediment deposits cov-
ered in Section 12.4. For model grid size �X >XC , the trap efficiency is unity
and aggradation responds directly to changes in the sediment transport capacity of
the stream. For �X <Xc, only part of the sediment load in suspension will settle
within the given reach. The sediment load at the downstream end can then exceed
the sediment transport capacity of the stream. For instance, in numerical models of
sedimentation of fine sediment in reservoirs with �X <Xc, or TE<1, the down-
stream sediment transport will be calculated, as shown in Figure 12.5b, by adding
the excess sedimentation flux to the calculated transport capacity

qtxi+1︸ ︷︷ ︸
actual

= qtxi+1︸ ︷︷ ︸
capacity

−(1 − TEi)�qtxi︸ ︷︷ ︸
non settled

(12.9c)

where,�qtxi = qtxi+1 −qtxi is negative when sediment transport capacity decreases
in the x direction. This correction is important for a better distribution of silts and
clays in reservoirs where the settling velocities are very small.
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12.4 Dry specific weight of sediment deposits

The conversion of the incoming weight of sediment to volume necessitates knowl-
edge of the average dry specific weight of a mixture γmd , defined in Chapter 2 as the
dry weight of sediment per unit total volume including voids. For material coarser
than 0.1 mm, the specific dry weight of the mixture remains practically constant
around γmd = 14.75 kN/m3 or 93 lb/ft3. The corresponding dry mass density of
the mixture ρmd = γmd/g = 1,500 kg/m3 or 2.9 slug/ft3. The porosity po of sand
material is then obtained from po = 1 − γmd/γs = 0.43. The volumetric sediment
concentration CV = 1 − po and the void ratio is e = po/(1 − po). The initial dry
specific mass of sediment deposits varies with the median grain size of the deposit.
The measurements in Figure 12.6 show that

ρmd in kg/m3 ∼= 1,600 + 300log d50(mm) (12.10a)

Under pressure, the dry specific weight of finer sediment fractions varies in time
due to the consolidation of the material and exposure to the air. After Tc years the
dry specific weight of a mixture γmdT increases as a function of time from the initial
dry specific weight γmd1 after Tc = 1 year according to

γmdT = γmd1 + K logTc (12.10b)�

Values of the initial dry specific weight γmd1 and consolidation factor K in lb/ft3

are compiled in Table 12.1. Assuming continuous uniform settling during a period
of Tc years, the depth-averaged dry specific weight of the mixture after Tc years
γmdT is given by the formula of Miller (1953):

γmdT = γmd1 + 0.43K

(
(Tc lnTc)

Tc − 1
− 1

)
(12.11)

(kg/m  ) = 1600 + 300 log d     (mm)
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Table 12.1. Dry specific weight of sediment deposits (γmd1 and K in lb/ft3)

Lane and Koelzer Trask

Sand Silt Clay Sand Silt Clay

γmd1 K γmd1 K γmd1 K γmd1 K γmd1 K γmd1 K

Sediment
always
submerged
or nearly
submerged

93 0 65 5.7 30 16.0 88 0 67 5.7 13 16.0

Normally
moderate
reservoir
drawdown

93 0 74 2.7 46 10.7 88 0 76 2.7 – 10.7

Normally con-
siderable
reservoir
drawdown

93 0 79 1.0 60 6.0 88 0 81 1.0 – 6.0

Reservoir
normally
empty

93 0 82 0.0 78 0.0 88 0 84 0.0 – 0.0

Note: 62.4 lb/ft3 = 9,810 N/m3

where:

γ̄mdT = dry specific weight after Tc years (lb/ft3)

γmd1 = initial dry specific weight (lb/ft3)

K = consolidation factor (lb/ft3)

Tc = consolidation time (years)

In the case of heterogeneous sediment mixtures, the specific weight of a mixture
is calculated using weight-averaged values for each size fraction, as shown in
Example 12.1.

Example 12.1 Density of sediment deposits

The source of sediment entering a large reservoir contains 20% sand, 65% silt,
and 15% clay:
(1) Determine the dry specific weight of the mixture after 1 year, and after 100 years,

considering nearly submerged conditions; refer to the following tabulation
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Size
class

Fraction
�pi

γmd1

lb/ft3
�pi · γmd1

lb/ft3
K
lb/ft3

γmd100
lb/ft3

�pi · γmd100
lb/ft3

Sand 0.20 93 18.6 0 93 18.6
Silt 0.65 65 42.2 5.7 74 48.1
Clay 0.15 30 4.5 16.0 55 8.2
Total 1.00 γmd1 = 65.3 lb/ft3 γmd100 = 75 lb/ft3

after 1 year after 100 years

(2) Calculate the porosity after 1 year and after 100 years.

po(1 year) = 1 − γmd1

γs
= 1 − 65.3

2.65 × 62.4
= 0.60

po(100 years) = 1 − γmd100

γs
= 1 − 75

2.65 × 62.4
= 0.55

12.5 Life expectancy of reservoirs

The life expectancy of a reservoir is the expected time at which the reservoir will
be completely filled with sediments. Its determination requires knowledge of the
storage capacity or volume of the reservoir ∀R, the mean annual incoming total
sediment discharge Qt in weight per year, the sediment size distribution, the trap
efficiency of the reservoir TE , and the dry specific weight of sediment deposits γmd .
After transforming the incoming mean annual sediment discharge into volume of
sediment trapped in the reservoir, the life expectancy TR is

TR = ∀R γmdT∑
i

TEi �pi Qti
(12.12)�

The life expectancy represents an average duration upon which the economic
feasibility of the reservoir can be based. The accuracy of life expectancy calculations
depends on the annual sediment discharge. Mean annual values are useful for long-
term estimates. However, the analysis of extreme events is also important when the
life expectancy is short and the variability in mean annual sediment yield is large
(e.g. arid areas). The probability of occurrence of one or several severe events that
may fill the reservoir before the expected life duration must then be considered.
For instance, the risk incurred by the occurrence of extreme floods in the next
five years, and its impact on the life expectancy must be examined. The risk of
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an extreme event causing severe depletion of the live storage would detrimentally
impact further use of the reservoir for hydropower generation and flood control.

In reservoirs having a reduced capacity–inflow ratio, it is important to consider
aspects of the incoming sediment load and the settling capacity of fine particles:
(1) What are the likely changes in land use of the watershed in terms of potential
increase in sediment production from upland areas during the life expectancy of
the reservoir? (2) What is the possible impact caused by an extreme event such as
a 1,000 year flood on the storage capacity and operation of the reservoir? (3) What
is the potential effect of flocculation on changes in trap efficiency of the reservoir?

12.6 Density currents

In general, engineering problems associated with density currents are concerned
with the passage of sediment through the reservoir and with the water quality issues
of the sediment-laden waters. A density current may be defined as the movement
under gravity of fluids of slightly different density. For density currents in reservoirs,
the density difference is caused by sediment-laden river water with a specific weight
different from clear water in the reservoir.

Table 12.2 shows the mass density of sediment mixtures at different tempera-
tures. It takes a sediment concentration of approximately 330 mg/l to compensate
a temperature decrease of 1◦C. For instance, at a concentration of 2,500 mg/l, the
density of a mixture at 25◦C is less than that of clear water at 10◦C. In thermally
stratified reservoirs during summer months, warm sediment-laden water would flow
along the thermocline, to result in interflow, as sketched in Figure 12.7.

Density currents consist chiefly of particles in suspension of less than 20 μm
in diameter. Stokes’ law gives a settling rate for particles of 10 μm diameter of
approximately 0.0001 ft/s, thus, they need about three hours to settle over a dis-
tance of one foot. Also, transverse turbulent fluctuations of the order of 1 percent
in a current having a mean velocity of only 0.1 ft/s would be sufficient to keep such
particles in suspension. Sediment particles found in most density currents are com-
monly referred to as “washload,” originating from erosion on the land slopes of the
drainage area rather than from the streambed. In the river, the concentration of such
material is practically constant from bed to surface, and is relatively independent
of major changes in flow conditions that occur at the plunge point of the reservoir.

The relation between the mass density difference �ρ, or the specific weight
difference �γ , and the volumetric concentration is described by

�ρ

ρ
= �γ

γ
= Cv(G − 1)= 10−6 (G − 1)

G
Cmg/l (12.13)



12.6 Density currents 329

Table 12.2. Mass density of sediment mixtures ρm in kg/m3

Sediment concentration mg/l

Temp. ◦C Clear water 500 1,000 2,500 5,000 10,000 25,000

4 999.97 1,000.28 1,000.59 1,001.53 1,003.09 1,006.20 1,015.54
5 999.96 1,000.28 1,000.59 1,001.52 1,003.08 1,006.19 1,015.53
7 999.90 1,000.21 1,000.52 1,001.46 1,003.01 1,006.13 1,015.47
10 999.69 1,000.01 1,000.32 1,001.26 1,002.81 1,005.92 1,015.26
15 999.10 999.41 999.72 1,000.66 1,002.21 1,005.32 1,014.65
20 998.20 998.52 998.83 999.76 1,001.31 1,004.42 1,013.75
25 997.05 997.37 997.68 998.61 1,000.16 1,003.27 1,012.58
30 995.68 995.99 996.30 997.23 998.78 1,001.88 1,011.18
35 994.12 994.43 994.74 995.67 997.22 1,000.31 1,009.60
40 992.42 992.73 993.04 993.97 995.51 998.60 1,007.87
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Figure 12.7. Types of density currents a) underflow b) overflow c) interflow
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Per Figure 12.7, underflows are the most common type of density currents. High
concentrations of washload (C > 5,000 mg/l) can overcome density differences
due to water temperature (e.g. Table 12.2). The plunge point usually appears when
the densimetric Froude number at the plunge point is Frp = Vp/

√
ghp�ρ/ρ ∼=

0.5−0.78. The flow depth at the plunge point hp is calculated from the unit discharge
q as hp = (ρq2/Fr2

pg�ρ)1/3.
By analogy with open-channel flow, the average velocity Vd of the density current

of thickness hd given the bed slope So of the reservoir is a function of the densimetric
friction factor fd

Vd =
√

8�ρg hd So

ρfd (1 +αd )
(12.14)

the density current unit discharge corresponds to qd = Vd hd and the sediment flux by
volume qtvis calculated by qtv = Cvqd as the sediment concentration is relatively
uniform. In the case of turbulent flow, Red = Vd hd/ν > 1000, the densimetric
friction factor can be approximated by fd � 0.01 and αd � 0.5.

Any attempt to refine the analysis of turbulent flows is hindered by the fact that
as the degree of turbulence increases, the interface becomes increasingly difficult
to define, due to mixing and resulting vertical density variations. The interface of
a density current at very low velocities is smooth and distinct, and consists of a
sharp discontinuity of density across which the velocity variation is continuous. As
the relative velocity between the two layers is increased, waves are formed at the
interface, and at a certain critical velocity the mixing process begins by the periodic
breaking of the interfacial waves.

Various criteria for determining the flow conditions at which mixing begins
have been proposed. Keulegan (1949) defined a mixing stability parameter ϑ from
viscous and gravity forces as

ϑ =
(
νg�ρ

V 3
d ρ

)1/3

=
(

1

Fr2
d Red

)1/3

(12.15)

in which the densimetric Froude number Frd = Vd/

√
�ρ
ρ

ghd , and the densimetric

Reynolds number, Red = Vd hd/ν. The average experimental value of ϑc for tur-
bulent flow is ϑc = 0.18. The flow is stable when ϑ > ϑc and mixing occurs when
ϑ < ϑc.

The corresponding mean flow velocity of a stable density current Vd is calculated
from Equation (12.15) and is usually of the order of Vc � 0.03 m/s, or 3 km/day.
Given the low friction factor f � 0.01, the corresponding shear velocity is of the
order of u∗ � 1 mm/s. With suspensions maintained when u∗ > 2ω (Figure 10.10),
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the corresponding diameter of sediment particles in suspension is therefore less
than about 30 μm. It is concluded that silts and clays contribute to density currents.
Another consideration for density currents stems from Fr2

d = 8 So/f (1+α), which
requires a steep slope, typically So > 50 cm/km.

In summary, underflow occurs when the silt-laden flows have a higher density
than the deep reservoir water. Underflow density currents require: (1) large sediment
concentrations; (2) sediment particles are typically finer than about 30 μm; and
(3) steep bed slope of the reservoir, typically So > 50 cm/km. Example 12.2 provides
an application of this method to the density currents observed in Lake Mead.

Overflow and interflow density currents occur when the reservoir is thermally
stratified (shown in Figure 12.7). During the summer months, the surface temper-
ature in the epilimnion may reach 20◦–25◦C and the density difference with the
colder water of the hypolimnion can be of the order of 2 kg/m3 (see Table 12.2).
River flows may carry up to a couple of thousand mg/l of washload (silts and clays)
and still be lighter then the colder reservoir waters. In such cases, river waters will
spread out as overflow in the shallow epilimnion and interflow when the thermocline
is deep. A recent example is described in DeCesare et al. (2006).

Example 12.2 Density currents at Lake Mead, United States

Surveys of Lake Mead indicated the existence of underflows when the density
difference between the current and the surrounding water is of the order of
�ρ/ρ = 0.0005. The average bed slope of the reservoir is about 5 ft/mile, or
So = 0.00095. If measurements indicate a density current depth of approximately
15 ft, the magnitude of the velocity can be obtained from Equation (12.14) after
assuming fd = 0.010 and αd = 0.5 for turbulent flow.

Vd =
√

8(0.0005) 32.2ft

0.010(1.5)s2
×√15 ft (0.00095)= 0.35ft/s

The density current Reynolds number is therefore

Red = Vd hd

ν
= 5 × 105

The computed velocity of 0.35 ft/s (approximately 6 miles/day) is consistent
with field measurements. The stability of the density current is calculated from
Equation (12.15)

ϑ =
(

1.2 × 10−5 ft2

s
× 32.2ft

s2
× 0.0005s3

(0.35)3 ft3

)1/3

= 0.0165
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Mixing will occur because ϑ < 0.18 for turbulent flow.
The rate of sediment transport by the density current can also be estimated.

From Equation (12.13), Cv = 0.0003 or C = 803 mg/liter, and if the average
width Wd of the density current is taken as 500 ft, then the discharge represented
by the density current is Qd = Vhd Wd = 2,625 ft3/s, and that of the sediment
Qsd = Qd Cv = 0.78 ft3/s, or 130 lb/s, which is approximately equivalent to a
sediment transport rate of 5,600 tons/day.

12.7 Reservoir sedimentation surveys

Reservoir surveys obtained after the closure of a dam provide useful information
on the deposition pattern, trap efficiency, and density of deposited sediment. This
information may be necessary for efficient reservoir operation. Before undertaking
a new survey, the original and/or preceding ones should be studied. Subsequently
a decision should be made on which technique to use for the forthcoming survey.
There are three basic survey techniques:

(1) For filled reservoirs; sonic equipment measuring primarily the reservoir bottom eleva-
tion, and terrestrial or aerial photogrammetric surveying measuring the water surface
area at a given stage;

(2) For empty reservoirs; aerial photogrammetric survey of the reservoir topography; and
(3) For partly empty reservoirs; a combination of the above.

In addition it is essential to sample the deposited sediments, to determine specific
mass density and particle size distribution.

Electronic surveying equipment can be used quite effectively. Airborne or
satellite-based methods prove to be economically attractive; they require a mini-
mum of ground control and with stereoscopic equipment a contour map can easily be
drawn. Global Positioning Systems (GPS) and differential GPS are recommended,
and a 1–2 meter position is currently considered acceptable for reservoir mapping
and sediment volume estimates (US Bureau of Reclamation, 2006).

Sonic sounders or fathometers, operating from a boat crossing the reservoir,
detect the reservoir bottom continuously. The sonic sounder consists of a sensor unit
containing the transmitting and receiving transducer and a recording unit, which
continuously records the water depth on a chart. Sonic sounders are sometimes
capable of delineating the differences in densities of submerged deposits.

Sediment samplers, such as gravity core samplers, piston core samplers, and
spud-rod samplers, are used to take undisturbed volumetric samples of deposited
sediments. As a last resort, radioactive gamma probes determine the specific weight
of the deposit in situ without removing a sample.
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12.8 Control measures

Because of the large number of variables involved in reservoir sedimentation
problems, no single control measure can be suggested. To simplify the discussion,
the control measures can be grouped into categories: watershed control, inflow
control, and deposition control.

Control of the watershed may be the most effective sediment control measure, if
at all possible, since it reduces the sediment production from the watershed. Such
a control measure is certainly feasible on small watersheds; however, it may be an
expensive long-term undertaking in larger ones. Proper soil conservation practices
provide an effective means of reducing erosion. Measures to increase the vegetative
cover of a watershed are very important to control sheet, gully, and channel erosion.

The control of sediment inflow into a reservoir can be achieved by proper water-
shed management supplemented with sediment-retarding structures throughout the
watershed. Stream-channel improvement and stabilization should be considered,
including the building of settling (or debris) basins, sabo dams, off-channel reser-
voirs, utilization of existing or new by-pass canals, and vegetation screens (as dense
plant growth reduces the flow velocity and causes deposition).

Control of deposition begins with the proper design of a reservoir, particularly
the position and operation of outlets, spillways, and possibly sluice gates drawing
directly sediment-laden density currents. After deposition has occurred, various
methods exist for the removal of sediments. Dredging should be minimized because
it is expensive. Flushing and sluicing can be examined as viable alternatives for
low dams (Ji, 2006). In reservoirs with a low capacity–inflow ratio, flushing for
several days during the flood season is sometimes sufficient to wash out several
years’ of accumulated sediments. Flushing reservoirs with a large capacity–inflow
ratio is generally counter-productive. Two case studies illustrate various aspects of
reservoir sedimentation.

Case study 12.1 Tarbela Dam, Pakistan

Tarbela Dam is located on the Indus River near Islamabad in Pakistan. It is
the world’s largest rock and earth-fill dam, 2.74 km long and 143 m high.
Built at a cost of about 1.5 billion US dollars, it has the capacity to generate
3,750 MW of hydropower. The reservoir spans over 80 km upstream of the dam
(Figure CS-12.1.1) with a total storage capacity of 11.3 million acre-feet, or 13.9
km3. The upstream watershed covers 171,000 km2, of which only 6% receives
monsoon rain, the annual precipitation on the remainder of the watershed does
not exceed 10 cm (Lowe and Fox, 1982).
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Surface runoff and incoming sediment load depend primarily on melting snow
(Figures CS-12.1.2 and 3). The mean annual flow based on a 115-year record is
78.9 km3/year, which is about 5 to 6 times the reservoir storage capacity. The
average annual sediment load is of the order of 200 million tons per year. With
a sediment size distribution of 60% sand, 33% silt and 7% clay, a dry specific
mass of about 1,350 kg/m3 is estimated. With a trap efficiency estimated at 90%,
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Figure CS-12.1.3 Sediment-rating curves, Indus River

the depletion in storage capacity due to sedimentation is about 0.135 km3 per
year, from which the life expectancy is about 100 years.

Case study 12.2 Molineros Reservoir, Bolivia

The projected Molineros Reservoir is located on the Caine River in the Boli-
vian Andes. In 1983, the proposed project included a 200 m-high dam with
hydropower production reaching 132 MW. The 45 km-long reservoir in a narrow
gorge has a live storage capacity of 2.98 km3.

The steep watershed is sparsely covered with ground vegetation on very
erodible sandstone. About 80% of the 630 mm mean annual precipitation on
the 9,530 km2 watershed occurs during the wet season extending from Decem-
ber to March. The mean annual flow is 47.2 m3/s with possible flood flows
reaching 3,750 m3/s and 4,150 m3/s at a period of return of 1,000 and 10,000
years respectively.

The sediment-rating curve and the flow duration are shown on
Figure CS-12.2.1; sediment concentrations as high as 150,000 mg/l have been
measured. The analysis of annual suspended sediment load gives 92 × 106

tons/year, shown in Figure CS-12.2.2.Assuming that about 15% of the total load
is bedload, a mean annual sediment load of 108 × 106 tons/year is estimated.
Given that the sediment size distribution is about 25% sand, 65% silt, and 10%
clay, the dry specific mass of reservoir deposits range from 1,100 kg/m3 to 1,300
kg/m3. The trap efficiency of this large reservoir approaches 100% for all size
fractions. Considering a reservoir capacity close to 3 km3, the life expectancy
varies between 19 and 35 years depending on various alternatives selected. In
Figure CS-12.2.2 it is shown that in this case, the inflow of sediment during
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a 100-year flood is equivalent to about four times the mean annual sediment
inflow. Large sediment loads in the river have postponed the otherwise viable
project since 1972.
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Exercises

��12.1 Estimate the mass density of a sediment mixture when C = 17,000 mg/l at
0◦ C< T ◦ < 40◦C.

�12.2. Determine the variability in porosity and Cv as a function of grain size from
Equation (12.10a).
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Problems
��Problem 12.1

From the data given in Case study 12.2 on the Molineros Reservoir Project; (a)
determine the trap efficiency and the specific weight of sediment deposits after
10 years; (b) use the flow-duration–sediment-rating curve method to estimate
the annual sediment load; (c) calculate the life expectancy of the reservoir; and
(d) examine the impact of possible occurrence of a 100-year flood in the next
five years on the life expectancy of the reservoir.

��Problem 12.2

From the data shown for the interflow of the Imha Reservoir after typhoon Maemi
on 9/12/2003 (Kim, 2006) shown in Figure P-12.2, estimate the following: (a)
position of the thermocline and epilimnion depth; (b) maximum concentration
of suspended solids; (c) mass density of the epilimnion with the sediment and
clear water of the hypolimnion; (d) explain why interflow exists in this case;
(e) estimate the particle size from the rate of settling; and (f) if the reservoir
bottom is at elevation 110 m, how long will it take for the remaining sediment
in suspension to settle?
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��Review Problem 12.3: this is a typical review problem for this entire book

Consider the Missouri River data at a discharge of 2,980 m3/s, slope 15.5 cm/km,
depth 3.08 m, velocity 1.37 m/s, d50 = 0.2 mm, d90 = 0.26 mm at a tempera-
ture of 22◦C. Determine the following in SI: (1) kinematic viscosity; (2) shear
velocity; (3) dimensionless grain diameter; (4) Reynolds number of the particle;
(5) drag coefficient of settling particles; (6) settling velocity; (7) angle of repose;
(8) critical Shields parameter; (9) critical shear stress; (10) critical shear velocity;
(11) grain shear Reynolds number; (12) laminar sublayer thickness; (13) calcu-
late zo; (14) hydraulic radius; (15) Manning n; (16) Darcy–Weisbach f ; (17)
Chézy C; (18) Froude number; (19) grain roughness height; (20) transport-stage
parameter; (21) grain Shields parameter; (22) grain resistance f ′and C ′; (23) form
resistance f ′′and C ′′; (24) bedform type from Simons and Richardson; (25) dune
height; (26) dune length; (27) dominant mode of sediment transport (bedload or
suspended load); (28) bedload thickness; (29) bedload using MPM; (30) bed-
load using Einstein–Brown; (31) near-bed concentration Ca; (32) concentration
Ca by volume and in ppm; (33) Rouse number assuming κ = 0.4; (34) sedi-
ment concentration at mid-depth; (35) flux-averaged concentration from Yang’s
equation; (36) bed material discharge from Yang’s equation; (37) vertical mix-
ing coefficient; (38) lateral mixing coefficient; (39) dispersion coefficient; (40)
time scale for vertical mixing; (41) length scale for vertical mixing; (42) time
scale for lateral mixing; (43) length scale for lateral mixing; (44) what sampler
would be appropriate for suspended sediment measurements; (45) what sampler
would be appropriate for bed material; (46) what sampler would be appropriate
for bedload measurements; (47) what laboratory technique would be appropriate
for the particle size distribution of the bed material; (48) what is the trap effi-
ciency over �x = 1 km; (49) what is the specific weight of sediment after 100
years; and (50) what would be the porosity of the bed sediment after 1,000 years.



Appendix A

Einstein’s Sediment Transport Method

Einstein’s method (1950) is herein presented using the original notations. Einstein’s
bed sediment discharge function gives the rate at which flow of any magnitude in
a given channel transports the individual sediment sizes found in the bed material.
His equations are extremely valuable in many studies for determining the time
change in bed material when each size moves at its own rate. For each size Ds of
the bed material, the bedload discharge is given as

iB qB (A.1)

and the suspended sediment discharge is given by

is qs (A.2)

and the total bed sediment discharge is

iT qT = is qs + iB qB (A.3)

and finally

QT =
∑

iT qT (A.4)

where iT, is, and iB are the fractions of the total, suspended and contact bed sediment
discharges, qT, qs, and qB for a given grain size Ds. The term QT is the total
bed sediment discharge. The suspended sediment discharge is related to the bed
sediment discharge because there is a continuous exchange of particles between
the two modes of transport.

With suspended sediment discharge related to the bed sediment discharge,
Equation A.3 becomes

iTqT = iBqB(1 + PEI1 + I2) (A.5)

339
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Figure A.1. Einstein’s ϕ∗ −ψ∗ bedload function (Einstein, 1950)

where

iB qB = ϕ∗iBγs(
ρ

ρs −ρ

1

g D3
s

)1/2
(A.6)

and

γs = the unit weight of sediment;

ρ = the density of water;

ρs = the density of sediment;

g = gravitational acceleration;

ϕ∗ = dimensionless sediment transport function f (ψ∗) given in Figure A.1

ψ∗ = ξY(log10.6/Bx)
2ψ (A.7)

ψ =
(
ρs −ρ

ρ

)
Ds

Rb
′Sf

(A.8)

ξ = a correction factor given as a function of Ds/X in Figure A.2;

X = 0.77�, if �/δ′ > 1.8; (A.9a)

X = 1.39δ′, if �/δ′ < 1.8 (A.9b)

�= the apparent roughness of the bed, ks/X;
X = a correction factor in the logarithmic velocity distribution equation given as a
function of ks/δ

′ in Figure A.3a

δ′ = 11.6υ/V∗′ (A.10)
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V/V∗′ = Einstein’s velocity distribution equation

V/V∗′ = 5.75log(30.2yo/�) (A.11)

V∗′ = the shear velocity due to grain roughness

V∗′ =√g Rb
′Sf (A.12)

Rb
′ = the hydraulic radius of the bed due to grain roughness,

Rb
′ = Rb − Rb

′′ ;

Rb
′′ = the hydraulic radius of the bed due to channel irregularities

Sf = the slope of the energy grade line normally taken as the slope of the water
surface;

Y= another correction term given as a function of D65/δ
′ in Figure A.3b; and

Bx = log (10.6X /�).

The preceding equations are used to compute the fraction iB of the load. The other
terms in Equation A.5 are

PE = 2.3 log30.2yo/� (A.13)



342 Appendix A: Einstein’s Sediment Transport Method

X

Y

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a)

(b)

10 1 1010
-1

101

1

10
-1

65

10
-1

2

Hydraulically rough wall
H

yd
ra

ul
ic

al
ly

 s
m

oo
th

 w
al

l

k  /   's δ

D    /   'δ

Fig. A.3 a) Einstein’s multiplication factor X in the logarithmic velocity equations
(Einstein, 1950) b) Pressure correction (Einstein, 1950)

I1 and I2 are integrals of Einstein’s form of the suspended sediment Equation A.2

I1 = 0.216
EZ−1

(1 − E)Z

∫ 1

E

(
1 − y

y

)Z

dy (A.14)

I2 = 0.216
EZ−1

(1 − E)Z

∫ 1

E

(
1 − y

y

)Z

ln ydy (A.15)

where

Z = ω/0.4V∗′;
ω= the fall velocity of the particle of size Ds;

E = the ratio of bed layer thickness to flow depth, a/yo;

yo = depth of flow; and

a = the thickness of the bed layer, 2D65.
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The two integrals I1 and I2 are given in Figures A.4 and A.5, respectively, as a
function of Z and E.

In the preceding calculations for the total load, the shear velocity is based on the
hydraulic radius of the bed due to grain roughness Rb

′. Its computation is explained
in the following paragraph.

Total resistance to flow is composed of two parts, surface drag and form drag.
The transmission of shear to the boundary is accompanied by a transformation of
flow energy into turbulence. The part of energy corresponding to grain roughness
is transformed into turbulence which stays at least for a short time in the immediate
vicinity of the grains and has a great effect on the bedload motion; whereas, the
other part of the energy which corresponds to the form resistance is transformed into
turbulence at the interface between wake and free stream flow, or at a considerable
distance away from the grains.This energy does not contribute to the bedload motion
of the particles and may be largely neglected in the sediment transportation.

Einstein’s equation for mean flow velocity V in terms of V′∗ is

V/V′∗ = 5.75log(12.26Rb
′/�) (A.16a)
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Figure A.5. Integral I2 in terms of E and Z (Einstein, 1950)

or

V/V∗′ = 5.75log(12.26Rb
′/ksX) (A.16b)

Furthermore, Einstein suggested that

V/V∗′′ = f [ψ ′] (A.17)

where

ψ ′ =
(
ρs −ρ

ρ

)
D35

Rb
′Sf

(A.18)

The relation for Equation (A.18) is given in Figure A.6. The procedure to follow in
computing Rb

′ depends on the information available. If mean velocity V, friction
slope Sf , hydraulic radius Rb and bed material size are known, then Rb is computed
by trial and error using Equation A.16 and Figure A.6.
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The procedure for computing total bed sediment discharge in terms of different
size fractions of the bed material is:

(1) Calculate ψ∗ using Equation (A.7) for each size fraction;
(2) Find ϕ∗ from Figure A.1 for each size fraction;
(3) Calculate iB qB for each size fraction using Equation (A.6);
(4) Sum up the qB across the flow to obtain iB QB; and
(5) Sum the size fractions to obtain QB;

For the suspended sediment discharge:

(6) Calculate Z for each size fraction using the equation below Equation (A-15);
(7) Calculate E = 2 Ds/yo for each fraction;
(8) Determine I1 and I2 for each fraction from Figures A.4 and A.5;
(9) Calculate PE using Equation (A.13);

(10) Compute the suspended discharge from iB qB (PEI1 + I2); and
(11) Sum all the qB and all the iB to obtain the total suspended discharge Qss.

Thus, the total bed sediment discharge:

(12) Add the results of Step 5 and 11.

Asample problem showing the calculation of the total bed sediment discharge using
Einstein’s procedure is presented in Example A.1.

Example A.1 Total bed sediment discharge calculation from
Einstein’s method

Atest reach, representative of the Big Sand Creek near Greenwood, Mississippi, was
used by Einstein (1950) as an illustrative example for applying his bed-load func-
tion. His example is considered here. For simplicity, the effects due to bank friction
are neglected. The reader can refer to the original example for the construction of the
representative cross-section. The characteristics of this cross-section are as follows.
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The channel slope was determined as Sf = 0.00105. The relation between cross-
sectional area, hydraulic radius, and wetted perimeter of the representative cross-
section and stage are given in Figure A.7. In the case of this wide and shallow chan-
nel, the wetted perimeter is assumed to equal the surface width. The averaged values
of the four bed-material samples are given inTableA.1. Ninety-six percent of the bed
material is between 0.147 and 0.589 mm, which is divided into four size fractions.

The sediment transport calculations are made for the individual size fraction
which has the representative grain size equal to the geometric mean grain diameter
of each fraction. The water viscosity is v = 1.0 × 10−5 ft2/sec and the specific
gravity of the sediment is 2.65.

The calculation of important hydraulic parameters is performed in Table A.2.
The table heading, its meaning, and calculation are explained with footnotes. The
bed sediment transport is then calculated for each grain fraction of the bed material
at each given flow depth. It is convenient to summarize the calculations in the
form of tables. The procedure is given in Table A.3.
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Figure A.7. Description of the average cross-section (Einstein, 1950)

Table A.1. Bed sediment information for sample problem

Average grain size Settling velocity
Grain size distribution
mm mm ft iB in % cm/sec ft/s

Ds > 0.60 – – 2.4 – –
0.60>Ds > 0.42 0.50 0.00162 17.8 6.2 0.205
0.42>Ds > 0.30 0.36 0.00115 40.2 4.5 0.148
0.30 > Ds > 0.21 0.25 0.00081 32.0 3.2 0.106
0.21>Ds > 0.15 0.18 0.00058 5.8 2.0 0.067
0.15> Ds – – 1.8 – –

D16 = 0.24 mm σg = 1.35
D35 = 0.29 mm Gr = 1.35
D50 = 0.34 mm
D65 = 0.37 mm
D84 = 0.44 mm



Appendix A: Einstein’s Sediment Transport Method 347

Table A.2. Hydraulic calculations for sample problem in applying the Einstein
procedure (after Einstein, 1950)

Rb
′ V∗′ δ′ κs/δ′ X � V ψ ′ V/V∗′′ V∗′′ Rb

′′
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.5 0.129 0.00095 1.21 1.59 0.00072 2.92 2.98 16.8 0.17 0.86
1.0 0.184 0.00067 1.72 1.46 0.00079 4.44 1.49 27.0 0.16 0.76
2.0 0.259 0.00047 2.44 1.27 0.00090 6.63 0.75 51.0 0.13 0.50
3.0 0.318 0.00039 2.95 1.18 0.00097 8.40 0.50 87.0 0.10 0.30
4.0 0.368 0.00033 3.50 1.14 0.00102 9.92 0.37 150.0 0.07 0.14
5.0 0.412 0.00030 3.84 1.10 0.00104 11.30 0.30 240.0 0.05 0.07
6.0 0.450 0.00027 4.26 1.08 0.00107 12.58 0.25 370.0 0.03 0.03

Rb yo Zo A Pb Q X Y Bx (B/Bx)2 PE
(12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)

1.36 1.36 150.2 140 103 409 0.00132 0.84 1.29 0.63 10.97
1.76 1.76 150.9 240 136 1,065 0.00093 0.68 1.19 0.85 11.10
2.50 2.50 152.1 425 170 2,820 0.00069 0.56 0.91 1.27 11.30
3.30 3.30 153.3 640 194 5,380 0.00076 0.55 0.91 1.27 11.50
4.14 4.14 154.9 970 234 9,620 0.00079 0.54 0.91 1.27 11.70
5.07 5.07 156.9 1,465 289 16,550 0.00080 0.54 0.91 1.27 11.90
6.03 6.03 159.5 2,400 398 30,220 0.00082 0.54 0.91 1.27 12.04

(1) Rb
′ = bed hydraulic radius due to grain roughness, ft.

(2) V∗′ = shear velocity due to grain roughness, fps =√gRb′Sf

(3) δ′ = thickness of the laminar sublayer, ft = 11.62 ν/V∗′
(4) κs = roughness diameter, ft = D65

(5) X = correction factor in the logarithmic velocity distribution, given in Figure A.3a
(6) �= apparent roughness diameter, ft = κs /X
(7) V = average flow velocity, fps = 5.75 V∗′ log (12.27 Rb

′/�)
(8) ψ ′ = intensity of shear on representative particles

= ρs −ρ

ρ

D35

Rb′Sf
(9) V/V∗′′ = velocity ratio, given in Figure A.6

(10) V∗′′ = shear velocity due to form roughness, fps
(11) Rb

′′ = bed hydraulic radius due to form roughness, ft = V∗′′2/gS
(12) Rb = bed hydraulic radius, ft = R, the total hydraulic radius if there is no additional

friction = Rb
′ + Rb

′′
(13) yo = average flow depth, ft = R for wide, shallow streams
(14) Zo = stage, ft from Figure A.7
(15) A= cross-sectional area, ft2

(16) Pb = bed wetter perimeter, ft
(17) Q= flow discharge =AV
(18) X = characteristic distance, from Equation A.9
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Appendix A: Einstein’s Sediment Transport Method 349

(19) Y= pressure correction term, given in Figure A.3b
(20) Bx = coefficient = log (10.6 X/�)]
(21) B = coefficient = log 10.6
(22) PE = Einstein’s transport parameter

= 2.303 log
30.2yo

�

See the following for explanation of symbols in Table A.3, column by column:

(1) D = representative grain size, ft, given in Table A.1
(2) iB = fraction of bed material given in Table A.1
(3) Rb

′ = bed hydraulic radius due to grain roughness, ft, given in Table A.2

(4) ψ = intensity of shear on a particle = ρs −ρ

ρ
D

Rb′ Sf

(5) D/X = dimensionless ratio, X given in Table A.2
(6) ξ = hiding factor, given in Figure A.2
(7) ψ∗ = intensity of shear on individual grain size = ξY(B/Bx)

2ψ , (values of Y and
(B/Bx)

2 are given in Table A.2
(8) ϕ∗ = intensity of sediment transport for individual grain from Figure A.1
(9) iBqB = bedload discharge per unit width for a size fraction, lb/sec/ft =

iBϕ∗ρs(gD)3/2√(ρs/ρ)− 1
(10) iBQB = bedload discharge for a size fraction for entire cross-section, tons/day = 43.2

WiBqB, W = Pb given in Table A.2 (1 ton = 2000 lbs)
(11) +iBQB = total bedload discharge for all size fractions for entire cross-section, tons/day
(12) E = ratio of bed layer thickness to water depth = 2 D/yo, for values of yo, see TablesA.2
(13) Z = exponent for concentration distribution =ω/(0.4U∗′), for values of ω and U∗′ see

Tables A.1 and A.2
(14) I1 = integral, given in Figure A.4
(15) −I2 = integral, given in Figure A.5
(16) PEI1+ I2 + 1 = factor between bedload and total load, using PE in Table A.2
(17) iTqT = bed material load per unit width of stream for a size fraction, lb/sec-ft = iBqB

(PEI1 + I2 + 1)
(18) iTQT = bed material load for a size fraction of entire cross-section, tons/day = 43.2

PbiBqB, Pb is given in Table A.2 (1 ton = 2000 lbs)
(19) +iTQT = total bed material load for all size fractions, tons/day



Appendix B

Useful mathematical relationships

bx = y, x = logb y

log(ab)= loga + logb

log(a/b)= loga − logb

Quadratic equation

ax2 + bx + c = 0

x = −b ±
√

b2 − 4ac

2a
; b2 > 4ac for real roots

Determinants∣∣∣∣a1 b1

a2 b2

∣∣∣∣ = a1b2 − a2b1∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = a1 (b2c3 − b3c2)− b1 (a2c3 − a3c2)+ c1 (a2b3 − a3b2)

Trigonometry

sin2 θ+ cos2 θ = 1

1 + tan2 θ = sec2 θ

1 + cot2 θ = cosec2θ

350



Appendix B: Useful mathematical relationships 351

sin(θ/2)=
√

1

2
(1 − cosθ)

cos(θ/2)=
√

1

2
(1 + cosθ)

sin(2θ)= 2sinθcosθ

cos(2θ)= cos2 θ− sin2 θ

sin(a ± b)= sin acosb ± cosasin b

cos(a ± b)= cosacosb ∓ sin asin b

Series

sin x = x − x3

3! + x5

5! − x7

7! · · ·

cosx = 1 − x2

2! + x4

4! − x6

6! · · ·

sinh x = x + x3

3! + x5

5! + x7

7! · · ·

cosh x = 1 + x2

2! + x4

4! + x6

6! · · ·

Derivatives

d sinx = cos x dx

d cosx = −sin x dx

d tanx = sec2 x dx

d sinhx = coshx dx

d coshx = sinhx dx

d tanhx = sech2 x dx

Integrals

∫
xndx = xn+1

n + 1∫
dx

x
= ln x



352 Appendix B: Useful mathematical relationships∫
dx√

a + bx
= 2

√
a + bx

b∫
x dx√
a + bx

= 1

b2
[a + bx − a ln (a + bx)]

∫
dx

a + bx2
= 1√

ab
tan−1 x

√
ab

a∫
x dx

a + bx2
= 1

2b
ln
(

a + bx2
)

∫
ln x dx =x ln x − x

∫
eaxdx = eax

a∫
x eaxdx = eax

a2 (ax − 1)∫
sin x dx = −cosx∫
cosx dx = sin x

∫ π/2

0
sinx dx =

∫ π/2

0
cosx dx = 1

∫
sin2 x dx = x

2
− sin 2x

4∫
cos2 x dx = x

2
+ sin 2x

4∫ π/2

0
sin2 x dx =

∫ π/2

0
cos2x dx = π

4∫
sin x cosx dx = sin2 x

2∫ π/2

0
sin x cosx dx = 1

2∫
sin3x dx = −cos x

3

(
2 + sin2 x

)
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cos3x dx = sin x

3

(
2 + cos2 x

)
∫ π/2

0
sin3 x dx =

∫ π/2

0
cos3x dx = 2

3∫ π/2

0
sin4x dx = 3π

16∫
cos5x dx = sin x − 2

3
sin3 x + 1

5
sin5 x
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angular deformation, 29
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annual suspended load versus probability, 336
antidunes, 175
apparent stresses, 115
Archimedes principle, 44
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Bingham model, 248
Bingham Reynolds number, 246
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buoyant particle diameter, 247
BWT withdrawal time, 106
by-pass canals, 333

Caine River, 335
capacity limited, 265
capacity-limited sediment transport, 293
capacity-limited sediment-rating curves, 291
capillary viscometer, 244
Carnot formula, 186
Cartesian coordinates, 40
celerity of dunes, 200
centerline injection, 225
Chabert and Chauvin, 177, 178
channel lining, 248
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Chaudiere River, 298, 299, 300, 307, 309, 313
Chaudiere watershed, 308
Chezy coefficient, 120, 126
chutes and pools, 175
circular cylinder, 68
clay, 241
coarse particle samples, 205
coefficient of determination, 284, 286
cohesion between particles, 243
cohesive channels, 154, 156
Colorado River, 278
comparison of sediment transport equations, 279
Conca de Tremp watershed, 310
concentration by weight, 216
concentration in parts per million, 216, 217
concordance coefficient, 286
concordance correlation coefficient, 285
cone and plate viscometer, 244
conservation practice factor, 302, 306
consolidation, 325
consolidation factor, 326
consolidation time, 326
continuity of sediment, 36
contour stripcrop, 306
contouring, strip cropping, and terracing, 306
control volume, 31
control volume for sediment, 33
convective acceleration terms, 38
conversion of units, 6
Corey shape factor, 12, 94
Coriolis coefficient, 55
creeping flow past a sphere, 89
creeping motion, 109
crest-stage gage, 132
critical shear stress, 150, 163, 167
critical shear stress of cohesive soils, 301
critical shear stress on an incline, 166
cropping-management factor, 302, 304, 305, 306
cylindrical coordinates, 40
cylindrical viscometer, 244

daily sediment load, 296, 309
Darcy-Weisbach friction factor, 51, 120, 122, 125
debris and mud plugging, 249
debris flow and mud flood, 251
debris flows, 248, 249
debris rakes, 249
deep samples, 205
deflection vanes, 133
deflocculation, 98
delta formation, 319
densimetric Froude number, 330
densimetric Reynolds number, 330
density currents, 328, 330
depth-integrating samplers, 255
depth-integrating sampling characteristics, 257
derivatives, 351
destabilizing force, 162
determinants, 350
deviations from logarithmic velocity profiles, 126
differential continuity, 30

differential GPS, 332
diffusion of vorticity, 88
diffusion-dispersion equation, 229
diffusive and mixing terms, 221
diffusive fluxes, 219
digital recorder, 132
dilution method, 256
dimensional analysis, 19
dimensionless dispersive-viscous ratio, 247
dimensionless excess shear stress, 247
dimensionless parameters, 20
dimensionless particle diameter, 96, 97, 148, 178
dimensionless rheological model, 247
dimensionless sediment discharge, 198
dimensionless shear stress, 146
dimensionless turbulent-dispersive ratio, 247
dimensionless variables, 5
dipole, 68
dispersing agent, 98
dispersion, 220, 222, 227
dispersion coefficient, 220, 227
dispersive fluxes, 219
dispersive stress, 243, 244
dissipation function, 102
divergence theorem, 34
double mass curve, 297
drag bodies, 133
drag bucket, 205
drag coefficient, 94
drag force, 71, 146, 157
drag force on a sphere, 20, 90
dredging, 333
dry specific mass of a mixture, 17
dry specific mass of sediment, 325
dry specific weight, 325
dry specific weight of a mixture, 17
dry specific weight of sediment deposits, 325, 326
dry-sieve method, 15
DuBoys, 208
DuBoys’ equation, 196, 209, 212, 213
dune celerity, 201
dune height, 183
dune steepness, 183
dunes, 174, 175
dynamic variables, 5
dynamic viscosity, 8, 9, 245, 251
dynamic viscosity of a mixture, 243
dynamic viscosity of a Newtonian mixture, 18

eddy viscosity, 116
Einstein approach, 267, 347
Einstein procedure, 347
Einstein-Brown, 208, 212
Einstein-Brown’s equation, 197, 209
Einstein-Brown’s method, 213
Einstein’s approach, 266
Einstein’s bed load function, 340
Einstein’s integrals, 342, 343, 344
Einstein’s sediment transport method, 339
Eklhorn River, 311
elastic energy, 54
electromagnetic device, 132, 133



Index 367

electromagnetic flow meter, 133
electromagnetic wave velocimeter, 134
embankment side slopes, 164
energy correction factor, 126
energy dissipation, 103
energy grade line, 56
Engelund, 186
Engelund and Hansen’s method, 274
Enoree River, 262, 287
epilimnion, 330, 331, 337
equal mobility, 152
equal mobility diagram, 153
equation of continuity, 30
equations of motion, 37, 40
equilibrium pick-up rate, 204
equilibrium sediment concentration profiles, 232
equivalent concentrations and mass densities, 217
Euler equations, 41, 42
evaporation method, 217
external forces, 38
extreme floods, 327

fall velocity, 94, 96, 97
fall velocity measurements, 104
farming on contour, 306
fathometers, 332
field length factor, 302
field measurements of suspended sediment, 254
field slope factor, 302
field surveys, 301
filling time, 257
filtration method, 217
float gage, 132
floats, 133
flocculation, 98
flow avulsion, 249
flow duration curve approach, 297
flow duration-sediment rating curve method, 312
flow net, 67
flow potential , 66
flow-duration curve, 300, 336
flow-duration/sediment-rating-curve method, 297, 299
flushing, 333
flux-average concentration, 218
flux-averaged total sediment concentration, 296
form drag, 91
form resistance, 184
free vortex, 67
friction slope, 50, 52, 125
Froude number, 46, 52, 125
fundamental dimensions, 4

geometric variables, 5
geometry of dunes, 181
Goodwin Creek, 295
grab bucket or clamshell, 205
gradation coefficient, 16, 293
gradation curves, 234
graded sand mixtures, 292
gradually varied flow, 51
grain resistance, 184

grain shear Reynolds number, 147
gravel-bed streams, 206
gravitational acceleration, 8
gross erosion, 303
gully erosion, 301
Guo and Julien’s method, 272

half-cylinder, 71
harmonic functions, 65
head loss, 55
Hedstrom number, 246, 251, 253
Helley-Smith, 206
Helley-Smith sampler, 167, 207
hiding factor, 341
hot film, 133
hot wire, 133
hydraulic grade line, 56
hydraulically rough, 181
hydraulically rough boundaries, 119
hydraulically smooth, 119, 181
hydrometer, 104, 108
hyperconcentrated flows, 248
hyperconcentrations, 233, 239, 245
hypolimnion, 330, 337
hysteresis, 295
hysteresis effects, 294

Imha Reservoir, 337
impact of raindrops, 301
impulse-momentum relationship, 48
incipient motion, 143
incoming sediment load, 320
Indus River, 334
inertial impact between particles, 243
initial period, 229
instantaneous point source, 227, 228
instantaneous samplers, 254
intake nozzle diameter, 257
integral continuity equation, 34
integrals, 351
interflow, 330, 331, 337
internal forces, 38
internal friction between fluid and sediment

particles, 243
inviscid fluids, 64
irrotational flow, 64
isokinetic conditions, 255

Jamuna River, 193
Julien and Klaassen, 183
Julien and Raslan, 180

kaolinite, 242, 246
Karim and Kennedy’s method, 277
kinematic variables, 5
kinematic viscosity, 8, 9
kinematic viscosity of a Newtonian mixture, 19
kinematics of flow, 28
kinetic theory of gases, 116

La Grande River, 295
laboratory measurements, 103
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labyrinth weir, 59
Lake Mead, 331
laminar sublayer thickness, 118, 125, 136
Laplace equation, 65
laser, 133
laser doppler anemometers, 133
lateral mixing, 224
length and time scales, 222
length scales, 223
lidars, 132
life expectancy of reservoirs, 327
lift and drag forces on a sphere, 75
lift and drag on a circular cylinder, 69
lift and drag on a half-cylinder, 71
lift and drag on a half-sphere, 77
lift coefficient, 80
lift force, 69, 73, 77, 83, 146, 157
lift to drag moments, 147
lift-drag force ratio, 147
lift-drag ratio, 159, 162
line source, 66
linear deformation, 29
linear sediment concentration, 241
liquid limit, 241, 246
liquidity index, 241
Little Granite Creek, 167, 211
Liu, 176
location and intensity of rainstorms, 294
logarithmic velocity profile, 115, 119, 135
log-wake law, 126
longitudinal dispersion, 227, 228
longitudinal dispersion coefficient, 222
longitudinal dispersion time scale, 223
loop-rating curves, 294
low flow conveyance channel, 137
low water reference plane, 132
lower regime, 172
lowering rate, 256

Manning coefficient, 120, 125
Manning-Strickler approximation, 123
Manning-Strickler relationship, 121
mass , 298
mass change, 221
mass curves, 297
mass density, 9
mass density of a fluid, 7
mass density of sediment mixtures, 329
mass density of solid particles, 10
maximum centerline concentration, 227
maximum elevation of a sill, 47
maximum permissible velocities, 155, 156
maximum volumetric sediment concentration, 241
mean absolute percent error, 284, 286
mean annual sediment load, 296
mean flow velocity, 125
mean flow velocity of mud floods, 252
measured load, 265
mechanics of bedforms, 170
median diameter of sediment in suspension, 293
Meuse River, 189

Meyer-Peter and Muller, 208, 212
Meyer-Peter and Muller’s method, 213
Meyer-Peter Muller’s equation, 197, 209
Middle Loup River, 317
Middle Rio Grande, 287
migration of dunes, 200
million gallons/day, 226
minimum channel width, 47
Mississippi River, 130, 140, 141, 192, 234, 287, 289,

310, 313
Missouri River, 181, 188, 191, 259, 338
mixed load, 238, 290
mixing, 222
mixing and dispersion processes, 223
mixing at stream confluence, 225
mixing coefficient, 230
mixing length concept, 116
mixing stability parameter, 330
mixing time and length scales, 224
modes of sediment transport, 239
modes of transport, 290
modified Einstein approach, 274
modified Einstein procedure, 281
modified log-wake law, 128
modified Shields diagram, 149
molecular diffusion, 219
molecular diffusion coefficient, 220
Molineros Reservoir, 335
moment stability analysis, 155, 157
momentum correction factor, 49, 126
momentum equations, 47
momentum exchange coefficient, 230
monthly sediment load, 309
montmorillonite, 242
Mountain Creek, 208
Mt. St.-Helens, 261
mud floods, 248, 249
mudflow, 253
mudflow detention basins, 249
mudflows, 248

Navier-Stokes equations, 84, 86, 87
near-bed concentration profiles, 232
near-bed sediment concentration, 204
near-bed volumetric sediment concentration, 202
near-equal mobility, 153
neutrally buoyant sphere, 60
Newtonian fluid, 8, 84
Niobrara River, 282, 316, 317, 318
non-settling grain diameter, 251
normal stresses, 38

Oden curve, 98, 100, 110
one-point method, 134
open channel flow measurements, 132
optical devices, 133
orientation angles, 162
overflow, 330

particle shape factor, 15
particle size distribution, 13, 16, 104
particle weight, 146
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pasture, range, and idle land, 305
peak concentration, 228
percentage error, 285
permissible velocity, 154
phase change, 221
physical properties of clear water, 9
physical properties of mudflows and debris

flows, 240
pick-up rate function, 203
pipette, 104
pipette method, 107
pipette withdrawal time, 107
piston core, 205
plane bed, 175
plastic limit, 241
plume for steady point source, 225
plume width, 226
plunge pools, 258
point gage, 132
point samplers, 255
point sources, 294
porosity, 17
power equation, 54, 270
pressure-type gage, 132
probability of occurrence, 327
properties of water-sediment mixtures, 19

quadratic equation, 350
quadratic rheological model, 243

radio tracking, 206
rainfall erosivity factor, 302, 303
Rankine vortex, 109, 110
rate of energy dissipation, 100
reconstitution of missing sediment data, 297
reference sediment concentration, 231
relative concentration, 231
relative pressure, 76
relative submergence, 121
reservoir sedimentation, 319
reservoir sedimentation pattern, 320
resistance, 122
resistance diagram for hyperconcentrated flows, 250
resistance to flow, 51, 120
resistance to flow with bedforms, 183, 187
resuspension from a dredge, 226
review problem, 338
Reynolds stresses, 115
rheogram for non-Newtonian fluids, 242
Rhine River, 139, 190
Rio Grande, 167, 189, 191, 261, 298
ripples, 174, 175, 177
rotating bucket, 205
rotating current meter, 133
rotating-element current meters, 133
rotation, 29
Rouse number, 231, 236
Rubey’s equation, 111
Rubey’s formulation, 96
Rudd Creek, 260

sabo, 249
sabo dams, 333
sampling domain, 257
sand concentration versus temperature, 313
sediment abrasion, 248
sediment budget, 296
sediment concentration, 216
sediment concentration at mid-depth, 233
sediment concentration profiles, 229
sediment continuity equation, 32
sediment continuity relationship, 218
sediment delivery ratio, 304, 307
sediment discharge measurements, 256
sediment grade scale, 13
sediment rating curves, 295, 312
sediment size, 11
sediment sources, 301
sediment supply, 264
sediment transport capacity, 264, 266
sediment traps, 206
sediment yield, 299, 301, 303, 304
sediment-rating curve, 279, 290, 293, 300, 317,

318, 336
SEMEP procedure for a depth-integrated sampler, 282
SEMEP procedure with point samples, 286
SEMEP with point measurements, 287
sensitive clays, 246
series, 351
series expansion of Einstein integrals, 268
series expansion of modified Einstein procedure, 282
settling basins, 333
settling flux, 230
settling velocity, 246, 254
shallow samples, 205
shear stress, 84
shear stresses, 38
shear velocity, 148
sheet and rill erosion, 301
Shen and Hung’s method, 276
Shields diagram, 148
Shields parameter, 146, 148, 158, 198, 202, 203, 204
shrinkage limit, 241
side injection, 225
sidecasting dredge, 226
sidewall correction method, 129
sieve analysis, 14
sill removal, 263
Simons and Richardson, 175, 177
Simons, Li and Fullerton’s method, 269, 271, 273
simplified stability analysis, 162
sink, 66
slope length-steepness factor, 303
sluice gates, 333
sluicing, 333
small bed perturbation, 172
smooth and rough plane boundaries, 117
snowmelt, 294
snowmelt erosion losses, 309
soil erodibility factor, 302, 304
soil erosion by overland flow, 22
soil loss per unit, 302
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sonic equipment, 332
sonic sounders, 332
specific degradation, 306, 307
specific energy, 46
specific gravity, 11, 12
specific mass of a mixture, 18
specific weight, 9
specific weight of a fluid, 7
specific weight of a mixture, 18
specific weight of solid particles, 11
spherical coordinates, 40
spherical radome, 83
sphericity, 12, 15
stability against rotation, 157
stability factor, 157, 158, 159, 161
stability of a particle, 160
stability of the density current, 331
stabilizing force, 162
stable channel design, 163
stable trapezoidal channel, 164, 165
staff gage, 132
stage measurements, 132
stage-discharge relationship, 317
standing waves, 175
steady point source, 224, 226
St-Lawrence River, 259
stream function, 66
streambank erosion, 294
stream-channel improvement, 333
stress tensor, 86, 87
submerged specific weight of a particle, 11
summation approach, 297
supercritical flow, 173
supply, 265
supply limited, 265
supply-limited sediment-rating curves, 294
surface drag, 90
surface layer, 152
surface method, 134
surging (roll waves), 248
suspended layer, 196
suspended load, 196, 216, 236, 237, 238, 265, 290
suspended sediment concentration profile, 233, 235
suspended sediment discharge, 237
suspended to total load, 238
suspension, 233
system of units, 4

Tarbela Dam, 333, 334
telemetering system, 132
temperature effects on bedforms, 181
terracing, 306
thermal stratification, 330
thermally stratified reservoirs, 328
thermocline, 328, 330, 331
three-dimensional dipole, 74
three-dimensional source and sink, 74
three-point method, 134
threshold conditions, 150
time-average concentration, 218
topset bed slope, 321

total load, 264
total resistance, 184
Toutle River, 214
tracer techniques, 206
tracers, 133
translation, 29
transport capacity, 265
transport capacity of sand mixtures, 292
transport rate by size fraction, 293
transport-stage parameter, 178
transversal mixing, 225, 224
transversal mixing coefficient, 222
transversal time scale, 223
transverse mixing coefficient, 226
trap efficiency, 322, 323, 324, 327
trigonometry, 350
turbidity, 337
turbulence, 113
turbulence flumes, 258
turbulent mixing, 219
turbulent mixing coefficient, 220
turbulent mixing coefficient of sediment, 230
turbulent mixing of washload, 221
turbulent velocity profiles, 113
turbulent-dispersive parameter, 243
two-point concentration measurement, 231
two-point method, 134
types of bedforms, 174

ultrasonic device, 133
underflows, 329, 330
unit bedload discharge, 195, 196
unit stream power, 276
unit suspended sediment discharge, 236
Universal Soil-Loss Equation, 302
unmeasured load, 265
upland erosion, 294
upland erosion map, 311
upland erosion methods, 303
upper regime, 173
upper regime plane bed, 180
useful mathematical relationships, 350

van Rijn, 178, 179, 182, 185
Vanoni-Brooks method, 129, 178
vegetation, 333
velocity and concentration profile, 139
velocity defect law, 127
velocity measurements, 133
velocity of a stable density current, 330
velocity of hyperconcentrations, 249
velocity of mudflows, 250
velocity profile, 118, 130
velocity vector, 32
velocity-head methods, 133
vertical mixing, 224
vertical mixing coefficient, 222, 231
vertical pipe, 205
vertical time scale, 223
viscosity, 246
visual accumulation tube, 104, 105
void ratio, 17
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volume-averaged concentration, 218
volumetric concentration, 245
volumetric method, 256
volumetric sediment concentration, 17, 216
von Karman constant, 116, 127
vortex tube, 207, 208
vorticity transport equations, 88

wake strength , 128
wake strength coefficient, 127, 135

wall friction factor, 130, 131
washed-out dunes, 174, 175
washload, 221, 265, 294, 328
water temperature, 313
work done in open channels, 55

Yang’s method, 276
yield strength, 245, 246, 251, 253

Zaire River, 192
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